1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{Bolt12OfferContext, Bolt12RefundContext, PaymentConstraints, PaymentContext, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::offer::{Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{new_pending_onion_message, Destination, MessageRouter, PendingOnionMessage, Responder, ResponseInstruction};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
79 #[cfg(not(c_bindings))]
81 crate::offers::offer::DerivedMetadata,
82 crate::routing::router::DefaultRouter,
83 crate::routing::gossip::NetworkGraph,
84 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
85 crate::sign::KeysManager,
89 crate::offers::offer::OfferWithDerivedMetadataBuilder,
90 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
93 use alloc::collections::{btree_map, BTreeMap};
96 use crate::prelude::*;
98 use core::cell::RefCell;
100 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
101 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
102 use core::time::Duration;
103 use core::ops::Deref;
105 // Re-export this for use in the public API.
106 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
107 use crate::ln::script::ShutdownScript;
109 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
111 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
112 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
113 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
115 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
116 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
117 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
118 // before we forward it.
120 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
121 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
122 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
123 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
124 // our payment, which we can use to decode errors or inform the user that the payment was sent.
126 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 #[cfg_attr(test, derive(Debug, PartialEq))]
129 pub enum PendingHTLCRouting {
130 /// An HTLC which should be forwarded on to another node.
132 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
133 /// do with the HTLC.
134 onion_packet: msgs::OnionPacket,
135 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
137 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
138 /// to the receiving node, such as one returned from
139 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
140 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
141 /// Set if this HTLC is being forwarded within a blinded path.
142 blinded: Option<BlindedForward>,
144 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
146 /// Note that at this point, we have not checked that the invoice being paid was actually
147 /// generated by us, but rather it's claiming to pay an invoice of ours.
149 /// Information about the amount the sender intended to pay and (potential) proof that this
150 /// is a payment for an invoice we generated. This proof of payment is is also used for
151 /// linking MPP parts of a larger payment.
152 payment_data: msgs::FinalOnionHopData,
153 /// Additional data which we (allegedly) instructed the sender to include in the onion.
155 /// For HTLCs received by LDK, this will ultimately be exposed in
156 /// [`Event::PaymentClaimable::onion_fields`] as
157 /// [`RecipientOnionFields::payment_metadata`].
158 payment_metadata: Option<Vec<u8>>,
159 /// The context of the payment included by the recipient in a blinded path, or `None` if a
160 /// blinded path was not used.
162 /// Used in part to determine the [`events::PaymentPurpose`].
163 payment_context: Option<PaymentContext>,
164 /// CLTV expiry of the received HTLC.
166 /// Used to track when we should expire pending HTLCs that go unclaimed.
167 incoming_cltv_expiry: u32,
168 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
169 /// provide the onion shared secret used to decrypt the next level of forwarding
171 phantom_shared_secret: Option<[u8; 32]>,
172 /// Custom TLVs which were set by the sender.
174 /// For HTLCs received by LDK, this will ultimately be exposed in
175 /// [`Event::PaymentClaimable::onion_fields`] as
176 /// [`RecipientOnionFields::custom_tlvs`].
177 custom_tlvs: Vec<(u64, Vec<u8>)>,
178 /// Set if this HTLC is the final hop in a multi-hop blinded path.
179 requires_blinded_error: bool,
181 /// The onion indicates that this is for payment to us but which contains the preimage for
182 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
183 /// "keysend" or "spontaneous" payment).
185 /// Information about the amount the sender intended to pay and possibly a token to
186 /// associate MPP parts of a larger payment.
188 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
189 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
190 payment_data: Option<msgs::FinalOnionHopData>,
191 /// Preimage for this onion payment. This preimage is provided by the sender and will be
192 /// used to settle the spontaneous payment.
193 payment_preimage: PaymentPreimage,
194 /// Additional data which we (allegedly) instructed the sender to include in the onion.
196 /// For HTLCs received by LDK, this will ultimately bubble back up as
197 /// [`RecipientOnionFields::payment_metadata`].
198 payment_metadata: Option<Vec<u8>>,
199 /// CLTV expiry of the received HTLC.
201 /// Used to track when we should expire pending HTLCs that go unclaimed.
202 incoming_cltv_expiry: u32,
203 /// Custom TLVs which were set by the sender.
205 /// For HTLCs received by LDK, these will ultimately bubble back up as
206 /// [`RecipientOnionFields::custom_tlvs`].
207 custom_tlvs: Vec<(u64, Vec<u8>)>,
208 /// Set if this HTLC is the final hop in a multi-hop blinded path.
209 requires_blinded_error: bool,
213 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
214 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
215 pub struct BlindedForward {
216 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
217 /// onion payload if we're the introduction node. Useful for calculating the next hop's
218 /// [`msgs::UpdateAddHTLC::blinding_point`].
219 pub inbound_blinding_point: PublicKey,
220 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
221 /// the introduction node.
222 pub failure: BlindedFailure,
225 impl PendingHTLCRouting {
226 // Used to override the onion failure code and data if the HTLC is blinded.
227 fn blinded_failure(&self) -> Option<BlindedFailure> {
229 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
230 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
231 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
237 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
239 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
240 #[cfg_attr(test, derive(Debug, PartialEq))]
241 pub struct PendingHTLCInfo {
242 /// Further routing details based on whether the HTLC is being forwarded or received.
243 pub routing: PendingHTLCRouting,
244 /// The onion shared secret we build with the sender used to decrypt the onion.
246 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
247 pub incoming_shared_secret: [u8; 32],
248 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
249 pub payment_hash: PaymentHash,
250 /// Amount received in the incoming HTLC.
252 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
254 pub incoming_amt_msat: Option<u64>,
255 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
256 /// intended for us to receive for received payments.
258 /// If the received amount is less than this for received payments, an intermediary hop has
259 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
260 /// it along another path).
262 /// Because nodes can take less than their required fees, and because senders may wish to
263 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
264 /// received payments. In such cases, recipients must handle this HTLC as if it had received
265 /// [`Self::outgoing_amt_msat`].
266 pub outgoing_amt_msat: u64,
267 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
268 /// should have been set on the received HTLC for received payments).
269 pub outgoing_cltv_value: u32,
270 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
272 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
275 /// If this is a received payment, this is the fee that our counterparty took.
277 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
279 pub skimmed_fee_msat: Option<u64>,
282 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
283 pub(super) enum HTLCFailureMsg {
284 Relay(msgs::UpdateFailHTLC),
285 Malformed(msgs::UpdateFailMalformedHTLC),
288 /// Stores whether we can't forward an HTLC or relevant forwarding info
289 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
290 pub(super) enum PendingHTLCStatus {
291 Forward(PendingHTLCInfo),
292 Fail(HTLCFailureMsg),
295 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
296 pub(super) struct PendingAddHTLCInfo {
297 pub(super) forward_info: PendingHTLCInfo,
299 // These fields are produced in `forward_htlcs()` and consumed in
300 // `process_pending_htlc_forwards()` for constructing the
301 // `HTLCSource::PreviousHopData` for failed and forwarded
304 // Note that this may be an outbound SCID alias for the associated channel.
305 prev_short_channel_id: u64,
307 prev_channel_id: ChannelId,
308 prev_funding_outpoint: OutPoint,
309 prev_user_channel_id: u128,
312 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
313 pub(super) enum HTLCForwardInfo {
314 AddHTLC(PendingAddHTLCInfo),
317 err_packet: msgs::OnionErrorPacket,
322 sha256_of_onion: [u8; 32],
326 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
327 /// which determines the failure message that should be used.
328 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
329 pub enum BlindedFailure {
330 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
331 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
332 FromIntroductionNode,
333 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
334 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
338 /// Tracks the inbound corresponding to an outbound HTLC
339 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
340 pub(crate) struct HTLCPreviousHopData {
341 // Note that this may be an outbound SCID alias for the associated channel.
342 short_channel_id: u64,
343 user_channel_id: Option<u128>,
345 incoming_packet_shared_secret: [u8; 32],
346 phantom_shared_secret: Option<[u8; 32]>,
347 blinded_failure: Option<BlindedFailure>,
348 channel_id: ChannelId,
350 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
351 // channel with a preimage provided by the forward channel.
356 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
358 /// This is only here for backwards-compatibility in serialization, in the future it can be
359 /// removed, breaking clients running 0.0.106 and earlier.
360 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
362 /// Contains the payer-provided preimage.
363 Spontaneous(PaymentPreimage),
366 /// HTLCs that are to us and can be failed/claimed by the user
367 struct ClaimableHTLC {
368 prev_hop: HTLCPreviousHopData,
370 /// The amount (in msats) of this MPP part
372 /// The amount (in msats) that the sender intended to be sent in this MPP
373 /// part (used for validating total MPP amount)
374 sender_intended_value: u64,
375 onion_payload: OnionPayload,
377 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
378 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
379 total_value_received: Option<u64>,
380 /// The sender intended sum total of all MPP parts specified in the onion
382 /// The extra fee our counterparty skimmed off the top of this HTLC.
383 counterparty_skimmed_fee_msat: Option<u64>,
386 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
387 fn from(val: &ClaimableHTLC) -> Self {
388 events::ClaimedHTLC {
389 channel_id: val.prev_hop.channel_id,
390 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
391 cltv_expiry: val.cltv_expiry,
392 value_msat: val.value,
393 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
398 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
399 /// a payment and ensure idempotency in LDK.
401 /// This is not exported to bindings users as we just use [u8; 32] directly
402 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
403 pub struct PaymentId(pub [u8; Self::LENGTH]);
406 /// Number of bytes in the id.
407 pub const LENGTH: usize = 32;
410 impl Writeable for PaymentId {
411 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
416 impl Readable for PaymentId {
417 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
418 let buf: [u8; 32] = Readable::read(r)?;
423 impl core::fmt::Display for PaymentId {
424 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
425 crate::util::logger::DebugBytes(&self.0).fmt(f)
429 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
431 /// This is not exported to bindings users as we just use [u8; 32] directly
432 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
433 pub struct InterceptId(pub [u8; 32]);
435 impl Writeable for InterceptId {
436 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
441 impl Readable for InterceptId {
442 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
443 let buf: [u8; 32] = Readable::read(r)?;
448 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
449 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
450 pub(crate) enum SentHTLCId {
451 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
452 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
455 pub(crate) fn from_source(source: &HTLCSource) -> Self {
457 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
458 short_channel_id: hop_data.short_channel_id,
459 htlc_id: hop_data.htlc_id,
461 HTLCSource::OutboundRoute { session_priv, .. } =>
462 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
466 impl_writeable_tlv_based_enum!(SentHTLCId,
467 (0, PreviousHopData) => {
468 (0, short_channel_id, required),
469 (2, htlc_id, required),
471 (2, OutboundRoute) => {
472 (0, session_priv, required),
477 /// Tracks the inbound corresponding to an outbound HTLC
478 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
479 #[derive(Clone, Debug, PartialEq, Eq)]
480 pub(crate) enum HTLCSource {
481 PreviousHopData(HTLCPreviousHopData),
484 session_priv: SecretKey,
485 /// Technically we can recalculate this from the route, but we cache it here to avoid
486 /// doing a double-pass on route when we get a failure back
487 first_hop_htlc_msat: u64,
488 payment_id: PaymentId,
491 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
492 impl core::hash::Hash for HTLCSource {
493 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
495 HTLCSource::PreviousHopData(prev_hop_data) => {
497 prev_hop_data.hash(hasher);
499 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
502 session_priv[..].hash(hasher);
503 payment_id.hash(hasher);
504 first_hop_htlc_msat.hash(hasher);
510 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
512 pub fn dummy() -> Self {
513 HTLCSource::OutboundRoute {
514 path: Path { hops: Vec::new(), blinded_tail: None },
515 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
516 first_hop_htlc_msat: 0,
517 payment_id: PaymentId([2; 32]),
521 #[cfg(debug_assertions)]
522 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
523 /// transaction. Useful to ensure different datastructures match up.
524 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
525 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
526 *first_hop_htlc_msat == htlc.amount_msat
528 // There's nothing we can check for forwarded HTLCs
534 /// This enum is used to specify which error data to send to peers when failing back an HTLC
535 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
537 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
538 #[derive(Clone, Copy)]
539 pub enum FailureCode {
540 /// We had a temporary error processing the payment. Useful if no other error codes fit
541 /// and you want to indicate that the payer may want to retry.
542 TemporaryNodeFailure,
543 /// We have a required feature which was not in this onion. For example, you may require
544 /// some additional metadata that was not provided with this payment.
545 RequiredNodeFeatureMissing,
546 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
547 /// the HTLC is too close to the current block height for safe handling.
548 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
549 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
550 IncorrectOrUnknownPaymentDetails,
551 /// We failed to process the payload after the onion was decrypted. You may wish to
552 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
554 /// If available, the tuple data may include the type number and byte offset in the
555 /// decrypted byte stream where the failure occurred.
556 InvalidOnionPayload(Option<(u64, u16)>),
559 impl Into<u16> for FailureCode {
560 fn into(self) -> u16 {
562 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
563 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
564 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
565 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
570 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
571 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
572 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
573 /// peer_state lock. We then return the set of things that need to be done outside the lock in
574 /// this struct and call handle_error!() on it.
576 struct MsgHandleErrInternal {
577 err: msgs::LightningError,
578 closes_channel: bool,
579 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
581 impl MsgHandleErrInternal {
583 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
585 err: LightningError {
587 action: msgs::ErrorAction::SendErrorMessage {
588 msg: msgs::ErrorMessage {
594 closes_channel: false,
595 shutdown_finish: None,
599 fn from_no_close(err: msgs::LightningError) -> Self {
600 Self { err, closes_channel: false, shutdown_finish: None }
603 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
604 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
605 let action = if shutdown_res.monitor_update.is_some() {
606 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
607 // should disconnect our peer such that we force them to broadcast their latest
608 // commitment upon reconnecting.
609 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
611 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
614 err: LightningError { err, action },
615 closes_channel: true,
616 shutdown_finish: Some((shutdown_res, channel_update)),
620 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
623 ChannelError::Warn(msg) => LightningError {
625 action: msgs::ErrorAction::SendWarningMessage {
626 msg: msgs::WarningMessage {
630 log_level: Level::Warn,
633 ChannelError::Ignore(msg) => LightningError {
635 action: msgs::ErrorAction::IgnoreError,
637 ChannelError::Close(msg) => LightningError {
639 action: msgs::ErrorAction::SendErrorMessage {
640 msg: msgs::ErrorMessage {
647 closes_channel: false,
648 shutdown_finish: None,
652 fn closes_channel(&self) -> bool {
657 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
658 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
659 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
660 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
661 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
663 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
664 /// be sent in the order they appear in the return value, however sometimes the order needs to be
665 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
666 /// they were originally sent). In those cases, this enum is also returned.
667 #[derive(Clone, PartialEq)]
668 pub(super) enum RAACommitmentOrder {
669 /// Send the CommitmentUpdate messages first
671 /// Send the RevokeAndACK message first
675 /// Information about a payment which is currently being claimed.
676 struct ClaimingPayment {
678 payment_purpose: events::PaymentPurpose,
679 receiver_node_id: PublicKey,
680 htlcs: Vec<events::ClaimedHTLC>,
681 sender_intended_value: Option<u64>,
683 impl_writeable_tlv_based!(ClaimingPayment, {
684 (0, amount_msat, required),
685 (2, payment_purpose, required),
686 (4, receiver_node_id, required),
687 (5, htlcs, optional_vec),
688 (7, sender_intended_value, option),
691 struct ClaimablePayment {
692 purpose: events::PaymentPurpose,
693 onion_fields: Option<RecipientOnionFields>,
694 htlcs: Vec<ClaimableHTLC>,
697 /// Information about claimable or being-claimed payments
698 struct ClaimablePayments {
699 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
700 /// failed/claimed by the user.
702 /// Note that, no consistency guarantees are made about the channels given here actually
703 /// existing anymore by the time you go to read them!
705 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
706 /// we don't get a duplicate payment.
707 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
709 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
710 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
711 /// as an [`events::Event::PaymentClaimed`].
712 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
715 /// Events which we process internally but cannot be processed immediately at the generation site
716 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
717 /// running normally, and specifically must be processed before any other non-background
718 /// [`ChannelMonitorUpdate`]s are applied.
720 enum BackgroundEvent {
721 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
722 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
723 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
724 /// channel has been force-closed we do not need the counterparty node_id.
726 /// Note that any such events are lost on shutdown, so in general they must be updates which
727 /// are regenerated on startup.
728 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
729 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
730 /// channel to continue normal operation.
732 /// In general this should be used rather than
733 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
734 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
735 /// error the other variant is acceptable.
737 /// Note that any such events are lost on shutdown, so in general they must be updates which
738 /// are regenerated on startup.
739 MonitorUpdateRegeneratedOnStartup {
740 counterparty_node_id: PublicKey,
741 funding_txo: OutPoint,
742 channel_id: ChannelId,
743 update: ChannelMonitorUpdate
745 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
746 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
748 MonitorUpdatesComplete {
749 counterparty_node_id: PublicKey,
750 channel_id: ChannelId,
755 pub(crate) enum MonitorUpdateCompletionAction {
756 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
757 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
758 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
759 /// event can be generated.
760 PaymentClaimed { payment_hash: PaymentHash },
761 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
762 /// operation of another channel.
764 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
765 /// from completing a monitor update which removes the payment preimage until the inbound edge
766 /// completes a monitor update containing the payment preimage. In that case, after the inbound
767 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
769 EmitEventAndFreeOtherChannel {
770 event: events::Event,
771 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
773 /// Indicates we should immediately resume the operation of another channel, unless there is
774 /// some other reason why the channel is blocked. In practice this simply means immediately
775 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
777 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
778 /// from completing a monitor update which removes the payment preimage until the inbound edge
779 /// completes a monitor update containing the payment preimage. However, we use this variant
780 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
781 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
783 /// This variant should thus never be written to disk, as it is processed inline rather than
784 /// stored for later processing.
785 FreeOtherChannelImmediately {
786 downstream_counterparty_node_id: PublicKey,
787 downstream_funding_outpoint: OutPoint,
788 blocking_action: RAAMonitorUpdateBlockingAction,
789 downstream_channel_id: ChannelId,
793 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
794 (0, PaymentClaimed) => { (0, payment_hash, required) },
795 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
796 // *immediately*. However, for simplicity we implement read/write here.
797 (1, FreeOtherChannelImmediately) => {
798 (0, downstream_counterparty_node_id, required),
799 (2, downstream_funding_outpoint, required),
800 (4, blocking_action, required),
801 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
802 // filled in, so we can safely unwrap it here.
803 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
805 (2, EmitEventAndFreeOtherChannel) => {
806 (0, event, upgradable_required),
807 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
808 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
809 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
810 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
811 // downgrades to prior versions.
812 (1, downstream_counterparty_and_funding_outpoint, option),
816 #[derive(Clone, Debug, PartialEq, Eq)]
817 pub(crate) enum EventCompletionAction {
818 ReleaseRAAChannelMonitorUpdate {
819 counterparty_node_id: PublicKey,
820 channel_funding_outpoint: OutPoint,
821 channel_id: ChannelId,
824 impl_writeable_tlv_based_enum!(EventCompletionAction,
825 (0, ReleaseRAAChannelMonitorUpdate) => {
826 (0, channel_funding_outpoint, required),
827 (2, counterparty_node_id, required),
828 // Note that by the time we get past the required read above, channel_funding_outpoint will be
829 // filled in, so we can safely unwrap it here.
830 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
834 #[derive(Clone, PartialEq, Eq, Debug)]
835 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
836 /// the blocked action here. See enum variants for more info.
837 pub(crate) enum RAAMonitorUpdateBlockingAction {
838 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
839 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
841 ForwardedPaymentInboundClaim {
842 /// The upstream channel ID (i.e. the inbound edge).
843 channel_id: ChannelId,
844 /// The HTLC ID on the inbound edge.
849 impl RAAMonitorUpdateBlockingAction {
850 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
851 Self::ForwardedPaymentInboundClaim {
852 channel_id: prev_hop.channel_id,
853 htlc_id: prev_hop.htlc_id,
858 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
859 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
863 /// State we hold per-peer.
864 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
865 /// `channel_id` -> `ChannelPhase`
867 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
868 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
869 /// `temporary_channel_id` -> `InboundChannelRequest`.
871 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
872 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
873 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
874 /// the channel is rejected, then the entry is simply removed.
875 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
876 /// The latest `InitFeatures` we heard from the peer.
877 latest_features: InitFeatures,
878 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
879 /// for broadcast messages, where ordering isn't as strict).
880 pub(super) pending_msg_events: Vec<MessageSendEvent>,
881 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
882 /// user but which have not yet completed.
884 /// Note that the channel may no longer exist. For example if the channel was closed but we
885 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
886 /// for a missing channel.
887 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
888 /// Map from a specific channel to some action(s) that should be taken when all pending
889 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
891 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
892 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
893 /// channels with a peer this will just be one allocation and will amount to a linear list of
894 /// channels to walk, avoiding the whole hashing rigmarole.
896 /// Note that the channel may no longer exist. For example, if a channel was closed but we
897 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
898 /// for a missing channel. While a malicious peer could construct a second channel with the
899 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
900 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
901 /// duplicates do not occur, so such channels should fail without a monitor update completing.
902 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
903 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
904 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
905 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
906 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
907 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
908 /// The peer is currently connected (i.e. we've seen a
909 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
910 /// [`ChannelMessageHandler::peer_disconnected`].
911 pub is_connected: bool,
914 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
915 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
916 /// If true is passed for `require_disconnected`, the function will return false if we haven't
917 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
918 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
919 if require_disconnected && self.is_connected {
922 !self.channel_by_id.iter().any(|(_, phase)|
924 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
925 ChannelPhase::UnfundedInboundV1(_) => false,
926 #[cfg(any(dual_funding, splicing))]
927 ChannelPhase::UnfundedOutboundV2(_) => true,
928 #[cfg(any(dual_funding, splicing))]
929 ChannelPhase::UnfundedInboundV2(_) => false,
932 && self.monitor_update_blocked_actions.is_empty()
933 && self.in_flight_monitor_updates.is_empty()
936 // Returns a count of all channels we have with this peer, including unfunded channels.
937 fn total_channel_count(&self) -> usize {
938 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
941 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
942 fn has_channel(&self, channel_id: &ChannelId) -> bool {
943 self.channel_by_id.contains_key(channel_id) ||
944 self.inbound_channel_request_by_id.contains_key(channel_id)
948 /// A not-yet-accepted inbound (from counterparty) channel. Once
949 /// accepted, the parameters will be used to construct a channel.
950 pub(super) struct InboundChannelRequest {
951 /// The original OpenChannel message.
952 pub open_channel_msg: msgs::OpenChannel,
953 /// The number of ticks remaining before the request expires.
954 pub ticks_remaining: i32,
957 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
958 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
959 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
961 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
962 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
964 /// For users who don't want to bother doing their own payment preimage storage, we also store that
967 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
968 /// and instead encoding it in the payment secret.
969 struct PendingInboundPayment {
970 /// The payment secret that the sender must use for us to accept this payment
971 payment_secret: PaymentSecret,
972 /// Time at which this HTLC expires - blocks with a header time above this value will result in
973 /// this payment being removed.
975 /// Arbitrary identifier the user specifies (or not)
976 user_payment_id: u64,
977 // Other required attributes of the payment, optionally enforced:
978 payment_preimage: Option<PaymentPreimage>,
979 min_value_msat: Option<u64>,
982 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
983 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
984 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
985 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
986 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
987 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
988 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
989 /// of [`KeysManager`] and [`DefaultRouter`].
991 /// This is not exported to bindings users as type aliases aren't supported in most languages.
992 #[cfg(not(c_bindings))]
993 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
1001 Arc<NetworkGraph<Arc<L>>>,
1004 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1005 ProbabilisticScoringFeeParameters,
1006 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1011 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1012 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1013 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1014 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1015 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1016 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1017 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1018 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1019 /// of [`KeysManager`] and [`DefaultRouter`].
1021 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1022 #[cfg(not(c_bindings))]
1023 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1032 &'f NetworkGraph<&'g L>,
1035 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1036 ProbabilisticScoringFeeParameters,
1037 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1042 /// A trivial trait which describes any [`ChannelManager`].
1044 /// This is not exported to bindings users as general cover traits aren't useful in other
1046 pub trait AChannelManager {
1047 /// A type implementing [`chain::Watch`].
1048 type Watch: chain::Watch<Self::Signer> + ?Sized;
1049 /// A type that may be dereferenced to [`Self::Watch`].
1050 type M: Deref<Target = Self::Watch>;
1051 /// A type implementing [`BroadcasterInterface`].
1052 type Broadcaster: BroadcasterInterface + ?Sized;
1053 /// A type that may be dereferenced to [`Self::Broadcaster`].
1054 type T: Deref<Target = Self::Broadcaster>;
1055 /// A type implementing [`EntropySource`].
1056 type EntropySource: EntropySource + ?Sized;
1057 /// A type that may be dereferenced to [`Self::EntropySource`].
1058 type ES: Deref<Target = Self::EntropySource>;
1059 /// A type implementing [`NodeSigner`].
1060 type NodeSigner: NodeSigner + ?Sized;
1061 /// A type that may be dereferenced to [`Self::NodeSigner`].
1062 type NS: Deref<Target = Self::NodeSigner>;
1063 /// A type implementing [`WriteableEcdsaChannelSigner`].
1064 type Signer: WriteableEcdsaChannelSigner + Sized;
1065 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1066 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1067 /// A type that may be dereferenced to [`Self::SignerProvider`].
1068 type SP: Deref<Target = Self::SignerProvider>;
1069 /// A type implementing [`FeeEstimator`].
1070 type FeeEstimator: FeeEstimator + ?Sized;
1071 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1072 type F: Deref<Target = Self::FeeEstimator>;
1073 /// A type implementing [`Router`].
1074 type Router: Router + ?Sized;
1075 /// A type that may be dereferenced to [`Self::Router`].
1076 type R: Deref<Target = Self::Router>;
1077 /// A type implementing [`Logger`].
1078 type Logger: Logger + ?Sized;
1079 /// A type that may be dereferenced to [`Self::Logger`].
1080 type L: Deref<Target = Self::Logger>;
1081 /// Returns a reference to the actual [`ChannelManager`] object.
1082 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1085 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1086 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1088 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1089 T::Target: BroadcasterInterface,
1090 ES::Target: EntropySource,
1091 NS::Target: NodeSigner,
1092 SP::Target: SignerProvider,
1093 F::Target: FeeEstimator,
1097 type Watch = M::Target;
1099 type Broadcaster = T::Target;
1101 type EntropySource = ES::Target;
1103 type NodeSigner = NS::Target;
1105 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1106 type SignerProvider = SP::Target;
1108 type FeeEstimator = F::Target;
1110 type Router = R::Target;
1112 type Logger = L::Target;
1114 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1117 /// A lightning node's channel state machine and payment management logic, which facilitates
1118 /// sending, forwarding, and receiving payments through lightning channels.
1120 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1121 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1123 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1124 /// closing channels
1125 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1126 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1127 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1128 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1130 /// - [`Router`] for finding payment paths when initiating and retrying payments
1131 /// - [`Logger`] for logging operational information of varying degrees
1133 /// Additionally, it implements the following traits:
1134 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1135 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1136 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1137 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1138 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1140 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1141 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1143 /// # `ChannelManager` vs `ChannelMonitor`
1145 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1146 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1147 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1148 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1149 /// [`chain::Watch`] of them.
1151 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1152 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1153 /// for any pertinent on-chain activity, enforcing claims as needed.
1155 /// This division of off-chain management and on-chain enforcement allows for interesting node
1156 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1157 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1159 /// # Initialization
1161 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1162 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1163 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1164 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1165 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1168 /// use bitcoin::BlockHash;
1169 /// use bitcoin::network::constants::Network;
1170 /// use lightning::chain::BestBlock;
1171 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1172 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1173 /// # use lightning::routing::gossip::NetworkGraph;
1174 /// use lightning::util::config::UserConfig;
1175 /// use lightning::util::ser::ReadableArgs;
1177 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1180 /// # L: lightning::util::logger::Logger,
1181 /// # ES: lightning::sign::EntropySource,
1182 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1183 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1185 /// # R: lightning::io::Read,
1187 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1188 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1189 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1190 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1192 /// # entropy_source: &ES,
1193 /// # node_signer: &dyn lightning::sign::NodeSigner,
1194 /// # signer_provider: &lightning::sign::DynSignerProvider,
1195 /// # best_block: lightning::chain::BestBlock,
1196 /// # current_timestamp: u32,
1197 /// # mut reader: R,
1198 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1199 /// // Fresh start with no channels
1200 /// let params = ChainParameters {
1201 /// network: Network::Bitcoin,
1204 /// let default_config = UserConfig::default();
1205 /// let channel_manager = ChannelManager::new(
1206 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1207 /// signer_provider, default_config, params, current_timestamp
1210 /// // Restart from deserialized data
1211 /// let mut channel_monitors = read_channel_monitors();
1212 /// let args = ChannelManagerReadArgs::new(
1213 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1214 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1216 /// let (block_hash, channel_manager) =
1217 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1219 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1222 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1223 /// for monitor in channel_monitors {
1224 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1232 /// The following is required for [`ChannelManager`] to function properly:
1233 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1234 /// called by [`PeerManager::read_event`] when processing network I/O)
1235 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1236 /// (typically initiated when [`PeerManager::process_events`] is called)
1237 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1238 /// as documented by those traits
1239 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1241 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1242 /// [`Persister`] such as a [`KVStore`] implementation
1243 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1245 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1246 /// when the last two requirements need to be checked.
1248 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1249 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1250 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1251 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1255 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1256 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1257 /// currently open channels.
1260 /// # use lightning::ln::channelmanager::AChannelManager;
1262 /// # fn example<T: AChannelManager>(channel_manager: T) {
1263 /// # let channel_manager = channel_manager.get_cm();
1264 /// let channels = channel_manager.list_usable_channels();
1265 /// for details in channels {
1266 /// println!("{:?}", details);
1271 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1272 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1273 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1274 /// by [`ChannelManager`].
1276 /// ## Opening Channels
1278 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1279 /// opening an outbound channel, which requires self-funding when handling
1280 /// [`Event::FundingGenerationReady`].
1283 /// # use bitcoin::{ScriptBuf, Transaction};
1284 /// # use bitcoin::secp256k1::PublicKey;
1285 /// # use lightning::ln::channelmanager::AChannelManager;
1286 /// # use lightning::events::{Event, EventsProvider};
1288 /// # trait Wallet {
1289 /// # fn create_funding_transaction(
1290 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1291 /// # ) -> Transaction;
1294 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1295 /// # let channel_manager = channel_manager.get_cm();
1296 /// let value_sats = 1_000_000;
1297 /// let push_msats = 10_000_000;
1298 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1299 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1300 /// Err(e) => println!("Error opening channel: {:?}", e),
1303 /// // On the event processing thread once the peer has responded
1304 /// channel_manager.process_pending_events(&|event| match event {
1305 /// Event::FundingGenerationReady {
1306 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1307 /// user_channel_id, ..
1309 /// assert_eq!(user_channel_id, 42);
1310 /// let funding_transaction = wallet.create_funding_transaction(
1311 /// channel_value_satoshis, output_script
1313 /// match channel_manager.funding_transaction_generated(
1314 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1316 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1317 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1320 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1321 /// assert_eq!(user_channel_id, 42);
1323 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1324 /// former_temporary_channel_id.unwrap()
1327 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1328 /// assert_eq!(user_channel_id, 42);
1329 /// println!("Channel {} ready", channel_id);
1337 /// ## Accepting Channels
1339 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1340 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1341 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1344 /// # use bitcoin::secp256k1::PublicKey;
1345 /// # use lightning::ln::channelmanager::AChannelManager;
1346 /// # use lightning::events::{Event, EventsProvider};
1348 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1350 /// # unimplemented!()
1353 /// # fn example<T: AChannelManager>(channel_manager: T) {
1354 /// # let channel_manager = channel_manager.get_cm();
1355 /// channel_manager.process_pending_events(&|event| match event {
1356 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1357 /// if !is_trusted(counterparty_node_id) {
1358 /// match channel_manager.force_close_without_broadcasting_txn(
1359 /// &temporary_channel_id, &counterparty_node_id
1361 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1362 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1367 /// let user_channel_id = 43;
1368 /// match channel_manager.accept_inbound_channel(
1369 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1371 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1372 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1381 /// ## Closing Channels
1383 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1384 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1385 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1386 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1387 /// once the channel has been closed successfully.
1390 /// # use bitcoin::secp256k1::PublicKey;
1391 /// # use lightning::ln::ChannelId;
1392 /// # use lightning::ln::channelmanager::AChannelManager;
1393 /// # use lightning::events::{Event, EventsProvider};
1395 /// # fn example<T: AChannelManager>(
1396 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1398 /// # let channel_manager = channel_manager.get_cm();
1399 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1400 /// Ok(()) => println!("Closing channel {}", channel_id),
1401 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1404 /// // On the event processing thread
1405 /// channel_manager.process_pending_events(&|event| match event {
1406 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1407 /// assert_eq!(user_channel_id, 42);
1408 /// println!("Channel {} closed", channel_id);
1418 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1419 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1420 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1421 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1422 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1425 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1426 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1427 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1428 /// [`abandon_payment`] is called.
1430 /// ## BOLT 11 Invoices
1432 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1433 /// functions in its `utils` module for constructing invoices that are compatible with
1434 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1435 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1436 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1437 /// the [`lightning-invoice`] `utils` module.
1439 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1440 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1441 /// an [`Event::PaymentClaimed`].
1444 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1445 /// # use lightning::ln::channelmanager::AChannelManager;
1447 /// # fn example<T: AChannelManager>(channel_manager: T) {
1448 /// # let channel_manager = channel_manager.get_cm();
1449 /// // Or use utils::create_invoice_from_channelmanager
1450 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1451 /// Some(10_000_000), 3600, None
1453 /// Ok((payment_hash, _payment_secret)) => {
1454 /// println!("Creating inbound payment {}", payment_hash);
1457 /// Err(()) => panic!("Error creating inbound payment"),
1460 /// // On the event processing thread
1461 /// channel_manager.process_pending_events(&|event| match event {
1462 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1463 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1464 /// assert_eq!(payment_hash, known_payment_hash);
1465 /// println!("Claiming payment {}", payment_hash);
1466 /// channel_manager.claim_funds(payment_preimage);
1468 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: None, .. } => {
1469 /// println!("Unknown payment hash: {}", payment_hash);
1471 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1472 /// assert_ne!(payment_hash, known_payment_hash);
1473 /// println!("Claiming spontaneous payment {}", payment_hash);
1474 /// channel_manager.claim_funds(payment_preimage);
1479 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1480 /// assert_eq!(payment_hash, known_payment_hash);
1481 /// println!("Claimed {} msats", amount_msat);
1489 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1490 /// functions for use with [`send_payment`].
1493 /// # use lightning::events::{Event, EventsProvider};
1494 /// # use lightning::ln::PaymentHash;
1495 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1496 /// # use lightning::routing::router::RouteParameters;
1498 /// # fn example<T: AChannelManager>(
1499 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1500 /// # route_params: RouteParameters, retry: Retry
1502 /// # let channel_manager = channel_manager.get_cm();
1503 /// // let (payment_hash, recipient_onion, route_params) =
1504 /// // payment::payment_parameters_from_invoice(&invoice);
1505 /// let payment_id = PaymentId([42; 32]);
1506 /// match channel_manager.send_payment(
1507 /// payment_hash, recipient_onion, payment_id, route_params, retry
1509 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1510 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1513 /// let expected_payment_id = payment_id;
1514 /// let expected_payment_hash = payment_hash;
1516 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1518 /// RecentPaymentDetails::Pending {
1519 /// payment_id: expected_payment_id,
1520 /// payment_hash: expected_payment_hash,
1526 /// // On the event processing thread
1527 /// channel_manager.process_pending_events(&|event| match event {
1528 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1529 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1536 /// ## BOLT 12 Offers
1538 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1539 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1540 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1541 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1542 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1543 /// stateless just as BOLT 11 invoices are.
1546 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1547 /// # use lightning::ln::channelmanager::AChannelManager;
1548 /// # use lightning::offers::parse::Bolt12SemanticError;
1550 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1551 /// # let channel_manager = channel_manager.get_cm();
1552 /// let offer = channel_manager
1553 /// .create_offer_builder("coffee".to_string())?
1555 /// # // Needed for compiling for c_bindings
1556 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1557 /// # let offer = builder
1558 /// .amount_msats(10_000_000)
1560 /// let bech32_offer = offer.to_string();
1562 /// // On the event processing thread
1563 /// channel_manager.process_pending_events(&|event| match event {
1564 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1565 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: Some(payment_preimage), .. } => {
1566 /// println!("Claiming payment {}", payment_hash);
1567 /// channel_manager.claim_funds(payment_preimage);
1569 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: None, .. } => {
1570 /// println!("Unknown payment hash: {}", payment_hash);
1575 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1576 /// println!("Claimed {} msats", amount_msat);
1585 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1586 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1587 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1590 /// # use lightning::events::{Event, EventsProvider};
1591 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1592 /// # use lightning::offers::offer::Offer;
1594 /// # fn example<T: AChannelManager>(
1595 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1596 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1598 /// # let channel_manager = channel_manager.get_cm();
1599 /// let payment_id = PaymentId([42; 32]);
1600 /// match channel_manager.pay_for_offer(
1601 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1603 /// Ok(()) => println!("Requesting invoice for offer"),
1604 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1607 /// // First the payment will be waiting on an invoice
1608 /// let expected_payment_id = payment_id;
1610 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1612 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1616 /// // Once the invoice is received, a payment will be sent
1618 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1620 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1624 /// // On the event processing thread
1625 /// channel_manager.process_pending_events(&|event| match event {
1626 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1627 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1628 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1635 /// ## BOLT 12 Refunds
1637 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1638 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1639 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1640 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1643 /// # use core::time::Duration;
1644 /// # use lightning::events::{Event, EventsProvider};
1645 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1646 /// # use lightning::offers::parse::Bolt12SemanticError;
1648 /// # fn example<T: AChannelManager>(
1649 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1650 /// # max_total_routing_fee_msat: Option<u64>
1651 /// # ) -> Result<(), Bolt12SemanticError> {
1652 /// # let channel_manager = channel_manager.get_cm();
1653 /// let payment_id = PaymentId([42; 32]);
1654 /// let refund = channel_manager
1655 /// .create_refund_builder(
1656 /// "coffee".to_string(), amount_msats, absolute_expiry, payment_id, retry,
1657 /// max_total_routing_fee_msat
1660 /// # // Needed for compiling for c_bindings
1661 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1662 /// # let refund = builder
1663 /// .payer_note("refund for order 1234".to_string())
1665 /// let bech32_refund = refund.to_string();
1667 /// // First the payment will be waiting on an invoice
1668 /// let expected_payment_id = payment_id;
1670 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1672 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1676 /// // Once the invoice is received, a payment will be sent
1678 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1680 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1684 /// // On the event processing thread
1685 /// channel_manager.process_pending_events(&|event| match event {
1686 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1687 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1695 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1696 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1699 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1700 /// # use lightning::ln::channelmanager::AChannelManager;
1701 /// # use lightning::offers::refund::Refund;
1703 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1704 /// # let channel_manager = channel_manager.get_cm();
1705 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1706 /// Ok(invoice) => {
1707 /// let payment_hash = invoice.payment_hash();
1708 /// println!("Requesting refund payment {}", payment_hash);
1711 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1714 /// // On the event processing thread
1715 /// channel_manager.process_pending_events(&|event| match event {
1716 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1717 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: Some(payment_preimage), .. } => {
1718 /// assert_eq!(payment_hash, known_payment_hash);
1719 /// println!("Claiming payment {}", payment_hash);
1720 /// channel_manager.claim_funds(payment_preimage);
1722 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: None, .. } => {
1723 /// println!("Unknown payment hash: {}", payment_hash);
1728 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1729 /// assert_eq!(payment_hash, known_payment_hash);
1730 /// println!("Claimed {} msats", amount_msat);
1740 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1741 /// all peers during write/read (though does not modify this instance, only the instance being
1742 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1743 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1745 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1746 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1747 /// [`ChannelMonitorUpdate`] before returning from
1748 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1749 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1750 /// `ChannelManager` operations from occurring during the serialization process). If the
1751 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1752 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1753 /// will be lost (modulo on-chain transaction fees).
1755 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1756 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1757 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1759 /// # `ChannelUpdate` Messages
1761 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1762 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1763 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1764 /// offline for a full minute. In order to track this, you must call
1765 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1767 /// # DoS Mitigation
1769 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1770 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1771 /// not have a channel with being unable to connect to us or open new channels with us if we have
1772 /// many peers with unfunded channels.
1774 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1775 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1776 /// never limited. Please ensure you limit the count of such channels yourself.
1780 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1781 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1782 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1783 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1784 /// you're using lightning-net-tokio.
1786 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1787 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1788 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1789 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1790 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1791 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1792 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1793 /// [`Persister`]: crate::util::persist::Persister
1794 /// [`KVStore`]: crate::util::persist::KVStore
1795 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1796 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1797 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1798 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1799 /// [`list_channels`]: Self::list_channels
1800 /// [`list_usable_channels`]: Self::list_usable_channels
1801 /// [`create_channel`]: Self::create_channel
1802 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1803 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1804 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1805 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1806 /// [`list_recent_payments`]: Self::list_recent_payments
1807 /// [`abandon_payment`]: Self::abandon_payment
1808 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1809 /// [`create_inbound_payment`]: Self::create_inbound_payment
1810 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1811 /// [`claim_funds`]: Self::claim_funds
1812 /// [`send_payment`]: Self::send_payment
1813 /// [`offers`]: crate::offers
1814 /// [`create_offer_builder`]: Self::create_offer_builder
1815 /// [`pay_for_offer`]: Self::pay_for_offer
1816 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1817 /// [`create_refund_builder`]: Self::create_refund_builder
1818 /// [`request_refund_payment`]: Self::request_refund_payment
1819 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1820 /// [`funding_created`]: msgs::FundingCreated
1821 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1822 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1823 /// [`update_channel`]: chain::Watch::update_channel
1824 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1825 /// [`read`]: ReadableArgs::read
1828 // The tree structure below illustrates the lock order requirements for the different locks of the
1829 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1830 // and should then be taken in the order of the lowest to the highest level in the tree.
1831 // Note that locks on different branches shall not be taken at the same time, as doing so will
1832 // create a new lock order for those specific locks in the order they were taken.
1836 // `pending_offers_messages`
1838 // `total_consistency_lock`
1840 // |__`forward_htlcs`
1842 // | |__`pending_intercepted_htlcs`
1844 // |__`decode_update_add_htlcs`
1846 // |__`per_peer_state`
1848 // |__`pending_inbound_payments`
1850 // |__`claimable_payments`
1852 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1856 // |__`outpoint_to_peer`
1858 // |__`short_to_chan_info`
1860 // |__`outbound_scid_aliases`
1864 // |__`pending_events`
1866 // |__`pending_background_events`
1868 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1870 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1871 T::Target: BroadcasterInterface,
1872 ES::Target: EntropySource,
1873 NS::Target: NodeSigner,
1874 SP::Target: SignerProvider,
1875 F::Target: FeeEstimator,
1879 default_configuration: UserConfig,
1880 chain_hash: ChainHash,
1881 fee_estimator: LowerBoundedFeeEstimator<F>,
1887 /// See `ChannelManager` struct-level documentation for lock order requirements.
1889 pub(super) best_block: RwLock<BestBlock>,
1891 best_block: RwLock<BestBlock>,
1892 secp_ctx: Secp256k1<secp256k1::All>,
1894 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1895 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1896 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1897 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1899 /// See `ChannelManager` struct-level documentation for lock order requirements.
1900 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1902 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1903 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1904 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1905 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1906 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1907 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1908 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1909 /// after reloading from disk while replaying blocks against ChannelMonitors.
1911 /// See `PendingOutboundPayment` documentation for more info.
1913 /// See `ChannelManager` struct-level documentation for lock order requirements.
1914 pending_outbound_payments: OutboundPayments,
1916 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1918 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1919 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1920 /// and via the classic SCID.
1922 /// Note that no consistency guarantees are made about the existence of a channel with the
1923 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1925 /// See `ChannelManager` struct-level documentation for lock order requirements.
1927 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1929 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1930 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1931 /// until the user tells us what we should do with them.
1933 /// See `ChannelManager` struct-level documentation for lock order requirements.
1934 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1936 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1938 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1939 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1940 /// and via the classic SCID.
1942 /// Note that no consistency guarantees are made about the existence of a channel with the
1943 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1945 /// See `ChannelManager` struct-level documentation for lock order requirements.
1946 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1948 /// The sets of payments which are claimable or currently being claimed. See
1949 /// [`ClaimablePayments`]' individual field docs for more info.
1951 /// See `ChannelManager` struct-level documentation for lock order requirements.
1952 claimable_payments: Mutex<ClaimablePayments>,
1954 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1955 /// and some closed channels which reached a usable state prior to being closed. This is used
1956 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1957 /// active channel list on load.
1959 /// See `ChannelManager` struct-level documentation for lock order requirements.
1960 outbound_scid_aliases: Mutex<HashSet<u64>>,
1962 /// Channel funding outpoint -> `counterparty_node_id`.
1964 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1965 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1966 /// the handling of the events.
1968 /// Note that no consistency guarantees are made about the existence of a peer with the
1969 /// `counterparty_node_id` in our other maps.
1972 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1973 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1974 /// would break backwards compatability.
1975 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1976 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1977 /// required to access the channel with the `counterparty_node_id`.
1979 /// See `ChannelManager` struct-level documentation for lock order requirements.
1981 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1983 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1985 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1987 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1988 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1989 /// confirmation depth.
1991 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1992 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1993 /// channel with the `channel_id` in our other maps.
1995 /// See `ChannelManager` struct-level documentation for lock order requirements.
1997 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1999 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2001 our_network_pubkey: PublicKey,
2003 inbound_payment_key: inbound_payment::ExpandedKey,
2005 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
2006 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
2007 /// we encrypt the namespace identifier using these bytes.
2009 /// [fake scids]: crate::util::scid_utils::fake_scid
2010 fake_scid_rand_bytes: [u8; 32],
2012 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2013 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2014 /// keeping additional state.
2015 probing_cookie_secret: [u8; 32],
2017 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2018 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2019 /// very far in the past, and can only ever be up to two hours in the future.
2020 highest_seen_timestamp: AtomicUsize,
2022 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2023 /// basis, as well as the peer's latest features.
2025 /// If we are connected to a peer we always at least have an entry here, even if no channels
2026 /// are currently open with that peer.
2028 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2029 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2032 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2034 /// See `ChannelManager` struct-level documentation for lock order requirements.
2035 #[cfg(not(any(test, feature = "_test_utils")))]
2036 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2037 #[cfg(any(test, feature = "_test_utils"))]
2038 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2040 /// The set of events which we need to give to the user to handle. In some cases an event may
2041 /// require some further action after the user handles it (currently only blocking a monitor
2042 /// update from being handed to the user to ensure the included changes to the channel state
2043 /// are handled by the user before they're persisted durably to disk). In that case, the second
2044 /// element in the tuple is set to `Some` with further details of the action.
2046 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2047 /// could be in the middle of being processed without the direct mutex held.
2049 /// See `ChannelManager` struct-level documentation for lock order requirements.
2050 #[cfg(not(any(test, feature = "_test_utils")))]
2051 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2052 #[cfg(any(test, feature = "_test_utils"))]
2053 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2055 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2056 pending_events_processor: AtomicBool,
2058 /// If we are running during init (either directly during the deserialization method or in
2059 /// block connection methods which run after deserialization but before normal operation) we
2060 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2061 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2062 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2064 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2066 /// See `ChannelManager` struct-level documentation for lock order requirements.
2068 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2069 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2070 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2071 /// Essentially just when we're serializing ourselves out.
2072 /// Taken first everywhere where we are making changes before any other locks.
2073 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2074 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2075 /// Notifier the lock contains sends out a notification when the lock is released.
2076 total_consistency_lock: RwLock<()>,
2077 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2078 /// received and the monitor has been persisted.
2080 /// This information does not need to be persisted as funding nodes can forget
2081 /// unfunded channels upon disconnection.
2082 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2084 background_events_processed_since_startup: AtomicBool,
2086 event_persist_notifier: Notifier,
2087 needs_persist_flag: AtomicBool,
2089 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2091 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2092 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2096 signer_provider: SP,
2101 /// Chain-related parameters used to construct a new `ChannelManager`.
2103 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2104 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2105 /// are not needed when deserializing a previously constructed `ChannelManager`.
2106 #[derive(Clone, Copy, PartialEq)]
2107 pub struct ChainParameters {
2108 /// The network for determining the `chain_hash` in Lightning messages.
2109 pub network: Network,
2111 /// The hash and height of the latest block successfully connected.
2113 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2114 pub best_block: BestBlock,
2117 #[derive(Copy, Clone, PartialEq)]
2121 SkipPersistHandleEvents,
2122 SkipPersistNoEvents,
2125 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2126 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2127 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2128 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2129 /// sending the aforementioned notification (since the lock being released indicates that the
2130 /// updates are ready for persistence).
2132 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2133 /// notify or not based on whether relevant changes have been made, providing a closure to
2134 /// `optionally_notify` which returns a `NotifyOption`.
2135 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2136 event_persist_notifier: &'a Notifier,
2137 needs_persist_flag: &'a AtomicBool,
2139 // We hold onto this result so the lock doesn't get released immediately.
2140 _read_guard: RwLockReadGuard<'a, ()>,
2143 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2144 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2145 /// events to handle.
2147 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2148 /// other cases where losing the changes on restart may result in a force-close or otherwise
2150 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2151 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2154 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2155 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2156 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2157 let force_notify = cm.get_cm().process_background_events();
2159 PersistenceNotifierGuard {
2160 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2161 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2162 should_persist: move || {
2163 // Pick the "most" action between `persist_check` and the background events
2164 // processing and return that.
2165 let notify = persist_check();
2166 match (notify, force_notify) {
2167 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2168 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2169 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2170 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2171 _ => NotifyOption::SkipPersistNoEvents,
2174 _read_guard: read_guard,
2178 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2179 /// [`ChannelManager::process_background_events`] MUST be called first (or
2180 /// [`Self::optionally_notify`] used).
2181 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2182 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2183 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2185 PersistenceNotifierGuard {
2186 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2187 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2188 should_persist: persist_check,
2189 _read_guard: read_guard,
2194 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2195 fn drop(&mut self) {
2196 match (self.should_persist)() {
2197 NotifyOption::DoPersist => {
2198 self.needs_persist_flag.store(true, Ordering::Release);
2199 self.event_persist_notifier.notify()
2201 NotifyOption::SkipPersistHandleEvents =>
2202 self.event_persist_notifier.notify(),
2203 NotifyOption::SkipPersistNoEvents => {},
2208 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2209 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2211 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2213 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2214 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2215 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2216 /// the maximum required amount in lnd as of March 2021.
2217 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2219 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2220 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2222 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2224 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2225 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2226 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2227 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2228 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2229 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2230 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2231 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2232 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2233 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2234 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2235 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2236 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2238 /// Minimum CLTV difference between the current block height and received inbound payments.
2239 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2241 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2242 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2243 // a payment was being routed, so we add an extra block to be safe.
2244 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2246 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2247 // ie that if the next-hop peer fails the HTLC within
2248 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2249 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2250 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2251 // LATENCY_GRACE_PERIOD_BLOCKS.
2253 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2255 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2256 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2258 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2260 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2261 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2263 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2264 /// until we mark the channel disabled and gossip the update.
2265 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2267 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2268 /// we mark the channel enabled and gossip the update.
2269 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2271 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2272 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2273 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2274 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2276 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2277 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2278 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2280 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2281 /// many peers we reject new (inbound) connections.
2282 const MAX_NO_CHANNEL_PEERS: usize = 250;
2284 /// Information needed for constructing an invoice route hint for this channel.
2285 #[derive(Clone, Debug, PartialEq)]
2286 pub struct CounterpartyForwardingInfo {
2287 /// Base routing fee in millisatoshis.
2288 pub fee_base_msat: u32,
2289 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2290 pub fee_proportional_millionths: u32,
2291 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2292 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2293 /// `cltv_expiry_delta` for more details.
2294 pub cltv_expiry_delta: u16,
2297 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2298 /// to better separate parameters.
2299 #[derive(Clone, Debug, PartialEq)]
2300 pub struct ChannelCounterparty {
2301 /// The node_id of our counterparty
2302 pub node_id: PublicKey,
2303 /// The Features the channel counterparty provided upon last connection.
2304 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2305 /// many routing-relevant features are present in the init context.
2306 pub features: InitFeatures,
2307 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2308 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2309 /// claiming at least this value on chain.
2311 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2313 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2314 pub unspendable_punishment_reserve: u64,
2315 /// Information on the fees and requirements that the counterparty requires when forwarding
2316 /// payments to us through this channel.
2317 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2318 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2319 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2320 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2321 pub outbound_htlc_minimum_msat: Option<u64>,
2322 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2323 pub outbound_htlc_maximum_msat: Option<u64>,
2326 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2327 #[derive(Clone, Debug, PartialEq)]
2328 pub struct ChannelDetails {
2329 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2330 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2331 /// Note that this means this value is *not* persistent - it can change once during the
2332 /// lifetime of the channel.
2333 pub channel_id: ChannelId,
2334 /// Parameters which apply to our counterparty. See individual fields for more information.
2335 pub counterparty: ChannelCounterparty,
2336 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2337 /// our counterparty already.
2338 pub funding_txo: Option<OutPoint>,
2339 /// The features which this channel operates with. See individual features for more info.
2341 /// `None` until negotiation completes and the channel type is finalized.
2342 pub channel_type: Option<ChannelTypeFeatures>,
2343 /// The position of the funding transaction in the chain. None if the funding transaction has
2344 /// not yet been confirmed and the channel fully opened.
2346 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2347 /// payments instead of this. See [`get_inbound_payment_scid`].
2349 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2350 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2352 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2353 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2354 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2355 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2356 /// [`confirmations_required`]: Self::confirmations_required
2357 pub short_channel_id: Option<u64>,
2358 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2359 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2360 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2363 /// This will be `None` as long as the channel is not available for routing outbound payments.
2365 /// [`short_channel_id`]: Self::short_channel_id
2366 /// [`confirmations_required`]: Self::confirmations_required
2367 pub outbound_scid_alias: Option<u64>,
2368 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2369 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2370 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2371 /// when they see a payment to be routed to us.
2373 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2374 /// previous values for inbound payment forwarding.
2376 /// [`short_channel_id`]: Self::short_channel_id
2377 pub inbound_scid_alias: Option<u64>,
2378 /// The value, in satoshis, of this channel as appears in the funding output
2379 pub channel_value_satoshis: u64,
2380 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2381 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2382 /// this value on chain.
2384 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2386 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2388 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2389 pub unspendable_punishment_reserve: Option<u64>,
2390 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2391 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2392 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2393 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2394 /// serialized with LDK versions prior to 0.0.113.
2396 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2397 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2398 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2399 pub user_channel_id: u128,
2400 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2401 /// which is applied to commitment and HTLC transactions.
2403 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2404 pub feerate_sat_per_1000_weight: Option<u32>,
2405 /// Our total balance. This is the amount we would get if we close the channel.
2406 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2407 /// amount is not likely to be recoverable on close.
2409 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2410 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2411 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2412 /// This does not consider any on-chain fees.
2414 /// See also [`ChannelDetails::outbound_capacity_msat`]
2415 pub balance_msat: u64,
2416 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2417 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2418 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2419 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2421 /// See also [`ChannelDetails::balance_msat`]
2423 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2424 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2425 /// should be able to spend nearly this amount.
2426 pub outbound_capacity_msat: u64,
2427 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2428 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2429 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2430 /// to use a limit as close as possible to the HTLC limit we can currently send.
2432 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2433 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2434 pub next_outbound_htlc_limit_msat: u64,
2435 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2436 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2437 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2438 /// route which is valid.
2439 pub next_outbound_htlc_minimum_msat: u64,
2440 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2441 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2442 /// available for inclusion in new inbound HTLCs).
2443 /// Note that there are some corner cases not fully handled here, so the actual available
2444 /// inbound capacity may be slightly higher than this.
2446 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2447 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2448 /// However, our counterparty should be able to spend nearly this amount.
2449 pub inbound_capacity_msat: u64,
2450 /// The number of required confirmations on the funding transaction before the funding will be
2451 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2452 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2453 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2454 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2456 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2458 /// [`is_outbound`]: ChannelDetails::is_outbound
2459 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2460 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2461 pub confirmations_required: Option<u32>,
2462 /// The current number of confirmations on the funding transaction.
2464 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2465 pub confirmations: Option<u32>,
2466 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2467 /// until we can claim our funds after we force-close the channel. During this time our
2468 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2469 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2470 /// time to claim our non-HTLC-encumbered funds.
2472 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2473 pub force_close_spend_delay: Option<u16>,
2474 /// True if the channel was initiated (and thus funded) by us.
2475 pub is_outbound: bool,
2476 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2477 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2478 /// required confirmation count has been reached (and we were connected to the peer at some
2479 /// point after the funding transaction received enough confirmations). The required
2480 /// confirmation count is provided in [`confirmations_required`].
2482 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2483 pub is_channel_ready: bool,
2484 /// The stage of the channel's shutdown.
2485 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2486 pub channel_shutdown_state: Option<ChannelShutdownState>,
2487 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2488 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2490 /// This is a strict superset of `is_channel_ready`.
2491 pub is_usable: bool,
2492 /// True if this channel is (or will be) publicly-announced.
2493 pub is_public: bool,
2494 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2495 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2496 pub inbound_htlc_minimum_msat: Option<u64>,
2497 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2498 pub inbound_htlc_maximum_msat: Option<u64>,
2499 /// Set of configurable parameters that affect channel operation.
2501 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2502 pub config: Option<ChannelConfig>,
2503 /// Pending inbound HTLCs.
2505 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2506 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2507 /// Pending outbound HTLCs.
2509 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2510 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2513 impl ChannelDetails {
2514 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2515 /// This should be used for providing invoice hints or in any other context where our
2516 /// counterparty will forward a payment to us.
2518 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2519 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2520 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2521 self.inbound_scid_alias.or(self.short_channel_id)
2524 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2525 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2526 /// we're sending or forwarding a payment outbound over this channel.
2528 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2529 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2530 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2531 self.short_channel_id.or(self.outbound_scid_alias)
2534 fn from_channel_context<SP: Deref, F: Deref>(
2535 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2536 fee_estimator: &LowerBoundedFeeEstimator<F>
2539 SP::Target: SignerProvider,
2540 F::Target: FeeEstimator
2542 let balance = context.get_available_balances(fee_estimator);
2543 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2544 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2546 channel_id: context.channel_id(),
2547 counterparty: ChannelCounterparty {
2548 node_id: context.get_counterparty_node_id(),
2549 features: latest_features,
2550 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2551 forwarding_info: context.counterparty_forwarding_info(),
2552 // Ensures that we have actually received the `htlc_minimum_msat` value
2553 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2554 // message (as they are always the first message from the counterparty).
2555 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2556 // default `0` value set by `Channel::new_outbound`.
2557 outbound_htlc_minimum_msat: if context.have_received_message() {
2558 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2559 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2561 funding_txo: context.get_funding_txo(),
2562 // Note that accept_channel (or open_channel) is always the first message, so
2563 // `have_received_message` indicates that type negotiation has completed.
2564 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2565 short_channel_id: context.get_short_channel_id(),
2566 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2567 inbound_scid_alias: context.latest_inbound_scid_alias(),
2568 channel_value_satoshis: context.get_value_satoshis(),
2569 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2570 unspendable_punishment_reserve: to_self_reserve_satoshis,
2571 balance_msat: balance.balance_msat,
2572 inbound_capacity_msat: balance.inbound_capacity_msat,
2573 outbound_capacity_msat: balance.outbound_capacity_msat,
2574 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2575 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2576 user_channel_id: context.get_user_id(),
2577 confirmations_required: context.minimum_depth(),
2578 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2579 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2580 is_outbound: context.is_outbound(),
2581 is_channel_ready: context.is_usable(),
2582 is_usable: context.is_live(),
2583 is_public: context.should_announce(),
2584 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2585 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2586 config: Some(context.config()),
2587 channel_shutdown_state: Some(context.shutdown_state()),
2588 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2589 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2594 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2595 /// Further information on the details of the channel shutdown.
2596 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2597 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2598 /// the channel will be removed shortly.
2599 /// Also note, that in normal operation, peers could disconnect at any of these states
2600 /// and require peer re-connection before making progress onto other states
2601 pub enum ChannelShutdownState {
2602 /// Channel has not sent or received a shutdown message.
2604 /// Local node has sent a shutdown message for this channel.
2606 /// Shutdown message exchanges have concluded and the channels are in the midst of
2607 /// resolving all existing open HTLCs before closing can continue.
2609 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2610 NegotiatingClosingFee,
2611 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2612 /// to drop the channel.
2616 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2617 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2618 #[derive(Debug, PartialEq)]
2619 pub enum RecentPaymentDetails {
2620 /// When an invoice was requested and thus a payment has not yet been sent.
2622 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2623 /// a payment and ensure idempotency in LDK.
2624 payment_id: PaymentId,
2626 /// When a payment is still being sent and awaiting successful delivery.
2628 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2629 /// a payment and ensure idempotency in LDK.
2630 payment_id: PaymentId,
2631 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2633 payment_hash: PaymentHash,
2634 /// Total amount (in msat, excluding fees) across all paths for this payment,
2635 /// not just the amount currently inflight.
2638 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2639 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2640 /// payment is removed from tracking.
2642 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2643 /// a payment and ensure idempotency in LDK.
2644 payment_id: PaymentId,
2645 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2646 /// made before LDK version 0.0.104.
2647 payment_hash: Option<PaymentHash>,
2649 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2650 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2651 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2653 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2654 /// a payment and ensure idempotency in LDK.
2655 payment_id: PaymentId,
2656 /// Hash of the payment that we have given up trying to send.
2657 payment_hash: PaymentHash,
2661 /// Route hints used in constructing invoices for [phantom node payents].
2663 /// [phantom node payments]: crate::sign::PhantomKeysManager
2665 pub struct PhantomRouteHints {
2666 /// The list of channels to be included in the invoice route hints.
2667 pub channels: Vec<ChannelDetails>,
2668 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2670 pub phantom_scid: u64,
2671 /// The pubkey of the real backing node that would ultimately receive the payment.
2672 pub real_node_pubkey: PublicKey,
2675 macro_rules! handle_error {
2676 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2677 // In testing, ensure there are no deadlocks where the lock is already held upon
2678 // entering the macro.
2679 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2680 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2684 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2685 let mut msg_event = None;
2687 if let Some((shutdown_res, update_option)) = shutdown_finish {
2688 let counterparty_node_id = shutdown_res.counterparty_node_id;
2689 let channel_id = shutdown_res.channel_id;
2690 let logger = WithContext::from(
2691 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2693 log_error!(logger, "Force-closing channel: {}", err.err);
2695 $self.finish_close_channel(shutdown_res);
2696 if let Some(update) = update_option {
2697 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2698 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2703 log_error!($self.logger, "Got non-closing error: {}", err.err);
2706 if let msgs::ErrorAction::IgnoreError = err.action {
2708 msg_event = Some(events::MessageSendEvent::HandleError {
2709 node_id: $counterparty_node_id,
2710 action: err.action.clone()
2714 if let Some(msg_event) = msg_event {
2715 let per_peer_state = $self.per_peer_state.read().unwrap();
2716 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2717 let mut peer_state = peer_state_mutex.lock().unwrap();
2718 peer_state.pending_msg_events.push(msg_event);
2722 // Return error in case higher-API need one
2729 macro_rules! update_maps_on_chan_removal {
2730 ($self: expr, $channel_context: expr) => {{
2731 if let Some(outpoint) = $channel_context.get_funding_txo() {
2732 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2734 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2735 if let Some(short_id) = $channel_context.get_short_channel_id() {
2736 short_to_chan_info.remove(&short_id);
2738 // If the channel was never confirmed on-chain prior to its closure, remove the
2739 // outbound SCID alias we used for it from the collision-prevention set. While we
2740 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2741 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2742 // opening a million channels with us which are closed before we ever reach the funding
2744 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2745 debug_assert!(alias_removed);
2747 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2751 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2752 macro_rules! convert_chan_phase_err {
2753 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2755 ChannelError::Warn(msg) => {
2756 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2758 ChannelError::Ignore(msg) => {
2759 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2761 ChannelError::Close(msg) => {
2762 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2763 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2764 update_maps_on_chan_removal!($self, $channel.context);
2765 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2766 let shutdown_res = $channel.context.force_shutdown(true, reason);
2768 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2773 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2774 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2776 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2777 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2779 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2780 match $channel_phase {
2781 ChannelPhase::Funded(channel) => {
2782 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2784 ChannelPhase::UnfundedOutboundV1(channel) => {
2785 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2787 ChannelPhase::UnfundedInboundV1(channel) => {
2788 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2790 #[cfg(any(dual_funding, splicing))]
2791 ChannelPhase::UnfundedOutboundV2(channel) => {
2792 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2794 #[cfg(any(dual_funding, splicing))]
2795 ChannelPhase::UnfundedInboundV2(channel) => {
2796 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2802 macro_rules! break_chan_phase_entry {
2803 ($self: ident, $res: expr, $entry: expr) => {
2807 let key = *$entry.key();
2808 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2810 $entry.remove_entry();
2818 macro_rules! try_chan_phase_entry {
2819 ($self: ident, $res: expr, $entry: expr) => {
2823 let key = *$entry.key();
2824 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2826 $entry.remove_entry();
2834 macro_rules! remove_channel_phase {
2835 ($self: expr, $entry: expr) => {
2837 let channel = $entry.remove_entry().1;
2838 update_maps_on_chan_removal!($self, &channel.context());
2844 macro_rules! send_channel_ready {
2845 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2846 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2847 node_id: $channel.context.get_counterparty_node_id(),
2848 msg: $channel_ready_msg,
2850 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2851 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2852 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2853 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2854 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2855 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2856 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2857 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2858 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2859 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2864 macro_rules! emit_channel_pending_event {
2865 ($locked_events: expr, $channel: expr) => {
2866 if $channel.context.should_emit_channel_pending_event() {
2867 $locked_events.push_back((events::Event::ChannelPending {
2868 channel_id: $channel.context.channel_id(),
2869 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2870 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2871 user_channel_id: $channel.context.get_user_id(),
2872 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2873 channel_type: Some($channel.context.get_channel_type().clone()),
2875 $channel.context.set_channel_pending_event_emitted();
2880 macro_rules! emit_channel_ready_event {
2881 ($locked_events: expr, $channel: expr) => {
2882 if $channel.context.should_emit_channel_ready_event() {
2883 debug_assert!($channel.context.channel_pending_event_emitted());
2884 $locked_events.push_back((events::Event::ChannelReady {
2885 channel_id: $channel.context.channel_id(),
2886 user_channel_id: $channel.context.get_user_id(),
2887 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2888 channel_type: $channel.context.get_channel_type().clone(),
2890 $channel.context.set_channel_ready_event_emitted();
2895 macro_rules! handle_monitor_update_completion {
2896 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2897 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2898 let mut updates = $chan.monitor_updating_restored(&&logger,
2899 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2900 $self.best_block.read().unwrap().height);
2901 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2902 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2903 // We only send a channel_update in the case where we are just now sending a
2904 // channel_ready and the channel is in a usable state. We may re-send a
2905 // channel_update later through the announcement_signatures process for public
2906 // channels, but there's no reason not to just inform our counterparty of our fees
2908 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2909 Some(events::MessageSendEvent::SendChannelUpdate {
2910 node_id: counterparty_node_id,
2916 let update_actions = $peer_state.monitor_update_blocked_actions
2917 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2919 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2920 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2921 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2922 updates.funding_broadcastable, updates.channel_ready,
2923 updates.announcement_sigs);
2924 if let Some(upd) = channel_update {
2925 $peer_state.pending_msg_events.push(upd);
2928 let channel_id = $chan.context.channel_id();
2929 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2930 core::mem::drop($peer_state_lock);
2931 core::mem::drop($per_peer_state_lock);
2933 // If the channel belongs to a batch funding transaction, the progress of the batch
2934 // should be updated as we have received funding_signed and persisted the monitor.
2935 if let Some(txid) = unbroadcasted_batch_funding_txid {
2936 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2937 let mut batch_completed = false;
2938 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2939 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2940 *chan_id == channel_id &&
2941 *pubkey == counterparty_node_id
2943 if let Some(channel_state) = channel_state {
2944 channel_state.2 = true;
2946 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2948 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2950 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2953 // When all channels in a batched funding transaction have become ready, it is not necessary
2954 // to track the progress of the batch anymore and the state of the channels can be updated.
2955 if batch_completed {
2956 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2957 let per_peer_state = $self.per_peer_state.read().unwrap();
2958 let mut batch_funding_tx = None;
2959 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2960 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2961 let mut peer_state = peer_state_mutex.lock().unwrap();
2962 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2963 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2964 chan.set_batch_ready();
2965 let mut pending_events = $self.pending_events.lock().unwrap();
2966 emit_channel_pending_event!(pending_events, chan);
2970 if let Some(tx) = batch_funding_tx {
2971 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2972 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2977 $self.handle_monitor_update_completion_actions(update_actions);
2979 if let Some(forwards) = htlc_forwards {
2980 $self.forward_htlcs(&mut [forwards][..]);
2982 if let Some(decode) = decode_update_add_htlcs {
2983 $self.push_decode_update_add_htlcs(decode);
2985 $self.finalize_claims(updates.finalized_claimed_htlcs);
2986 for failure in updates.failed_htlcs.drain(..) {
2987 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2988 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2993 macro_rules! handle_new_monitor_update {
2994 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2995 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2996 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2998 ChannelMonitorUpdateStatus::UnrecoverableError => {
2999 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
3000 log_error!(logger, "{}", err_str);
3001 panic!("{}", err_str);
3003 ChannelMonitorUpdateStatus::InProgress => {
3004 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
3005 &$chan.context.channel_id());
3008 ChannelMonitorUpdateStatus::Completed => {
3014 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3015 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3016 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3018 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3019 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3020 .or_insert_with(Vec::new);
3021 // During startup, we push monitor updates as background events through to here in
3022 // order to replay updates that were in-flight when we shut down. Thus, we have to
3023 // filter for uniqueness here.
3024 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3025 .unwrap_or_else(|| {
3026 in_flight_updates.push($update);
3027 in_flight_updates.len() - 1
3029 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3030 handle_new_monitor_update!($self, update_res, $chan, _internal,
3032 let _ = in_flight_updates.remove(idx);
3033 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3034 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3040 macro_rules! process_events_body {
3041 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3042 let mut processed_all_events = false;
3043 while !processed_all_events {
3044 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3051 // We'll acquire our total consistency lock so that we can be sure no other
3052 // persists happen while processing monitor events.
3053 let _read_guard = $self.total_consistency_lock.read().unwrap();
3055 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3056 // ensure any startup-generated background events are handled first.
3057 result = $self.process_background_events();
3059 // TODO: This behavior should be documented. It's unintuitive that we query
3060 // ChannelMonitors when clearing other events.
3061 if $self.process_pending_monitor_events() {
3062 result = NotifyOption::DoPersist;
3066 let pending_events = $self.pending_events.lock().unwrap().clone();
3067 let num_events = pending_events.len();
3068 if !pending_events.is_empty() {
3069 result = NotifyOption::DoPersist;
3072 let mut post_event_actions = Vec::new();
3074 for (event, action_opt) in pending_events {
3075 $event_to_handle = event;
3077 if let Some(action) = action_opt {
3078 post_event_actions.push(action);
3083 let mut pending_events = $self.pending_events.lock().unwrap();
3084 pending_events.drain(..num_events);
3085 processed_all_events = pending_events.is_empty();
3086 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3087 // updated here with the `pending_events` lock acquired.
3088 $self.pending_events_processor.store(false, Ordering::Release);
3091 if !post_event_actions.is_empty() {
3092 $self.handle_post_event_actions(post_event_actions);
3093 // If we had some actions, go around again as we may have more events now
3094 processed_all_events = false;
3098 NotifyOption::DoPersist => {
3099 $self.needs_persist_flag.store(true, Ordering::Release);
3100 $self.event_persist_notifier.notify();
3102 NotifyOption::SkipPersistHandleEvents =>
3103 $self.event_persist_notifier.notify(),
3104 NotifyOption::SkipPersistNoEvents => {},
3110 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3112 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3113 T::Target: BroadcasterInterface,
3114 ES::Target: EntropySource,
3115 NS::Target: NodeSigner,
3116 SP::Target: SignerProvider,
3117 F::Target: FeeEstimator,
3121 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3123 /// The current time or latest block header time can be provided as the `current_timestamp`.
3125 /// This is the main "logic hub" for all channel-related actions, and implements
3126 /// [`ChannelMessageHandler`].
3128 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3130 /// Users need to notify the new `ChannelManager` when a new block is connected or
3131 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3132 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3135 /// [`block_connected`]: chain::Listen::block_connected
3136 /// [`block_disconnected`]: chain::Listen::block_disconnected
3137 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3139 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3140 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3141 current_timestamp: u32,
3143 let mut secp_ctx = Secp256k1::new();
3144 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3145 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3146 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3148 default_configuration: config.clone(),
3149 chain_hash: ChainHash::using_genesis_block(params.network),
3150 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3155 best_block: RwLock::new(params.best_block),
3157 outbound_scid_aliases: Mutex::new(new_hash_set()),
3158 pending_inbound_payments: Mutex::new(new_hash_map()),
3159 pending_outbound_payments: OutboundPayments::new(),
3160 forward_htlcs: Mutex::new(new_hash_map()),
3161 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3162 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3163 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3164 outpoint_to_peer: Mutex::new(new_hash_map()),
3165 short_to_chan_info: FairRwLock::new(new_hash_map()),
3167 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3170 inbound_payment_key: expanded_inbound_key,
3171 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3173 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3175 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3177 per_peer_state: FairRwLock::new(new_hash_map()),
3179 pending_events: Mutex::new(VecDeque::new()),
3180 pending_events_processor: AtomicBool::new(false),
3181 pending_background_events: Mutex::new(Vec::new()),
3182 total_consistency_lock: RwLock::new(()),
3183 background_events_processed_since_startup: AtomicBool::new(false),
3184 event_persist_notifier: Notifier::new(),
3185 needs_persist_flag: AtomicBool::new(false),
3186 funding_batch_states: Mutex::new(BTreeMap::new()),
3188 pending_offers_messages: Mutex::new(Vec::new()),
3189 pending_broadcast_messages: Mutex::new(Vec::new()),
3199 /// Gets the current configuration applied to all new channels.
3200 pub fn get_current_default_configuration(&self) -> &UserConfig {
3201 &self.default_configuration
3204 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3205 let height = self.best_block.read().unwrap().height;
3206 let mut outbound_scid_alias = 0;
3209 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3210 outbound_scid_alias += 1;
3212 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3214 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3218 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3223 /// Creates a new outbound channel to the given remote node and with the given value.
3225 /// `user_channel_id` will be provided back as in
3226 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3227 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3228 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3229 /// is simply copied to events and otherwise ignored.
3231 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3232 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3234 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3235 /// generate a shutdown scriptpubkey or destination script set by
3236 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3238 /// Note that we do not check if you are currently connected to the given peer. If no
3239 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3240 /// the channel eventually being silently forgotten (dropped on reload).
3242 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3243 /// channel. Otherwise, a random one will be generated for you.
3245 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3246 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3247 /// [`ChannelDetails::channel_id`] until after
3248 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3249 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3250 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3252 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3253 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3254 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3255 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3256 if channel_value_satoshis < 1000 {
3257 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3260 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3261 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3262 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3264 let per_peer_state = self.per_peer_state.read().unwrap();
3266 let peer_state_mutex = per_peer_state.get(&their_network_key)
3267 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3269 let mut peer_state = peer_state_mutex.lock().unwrap();
3271 if let Some(temporary_channel_id) = temporary_channel_id {
3272 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3273 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3278 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3279 let their_features = &peer_state.latest_features;
3280 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3281 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3282 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3283 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3287 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3292 let res = channel.get_open_channel(self.chain_hash);
3294 let temporary_channel_id = channel.context.channel_id();
3295 match peer_state.channel_by_id.entry(temporary_channel_id) {
3296 hash_map::Entry::Occupied(_) => {
3298 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3300 panic!("RNG is bad???");
3303 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3306 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3307 node_id: their_network_key,
3310 Ok(temporary_channel_id)
3313 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3314 // Allocate our best estimate of the number of channels we have in the `res`
3315 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3316 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3317 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3318 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3319 // the same channel.
3320 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3322 let best_block_height = self.best_block.read().unwrap().height;
3323 let per_peer_state = self.per_peer_state.read().unwrap();
3324 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3325 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3326 let peer_state = &mut *peer_state_lock;
3327 res.extend(peer_state.channel_by_id.iter()
3328 .filter_map(|(chan_id, phase)| match phase {
3329 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3330 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3334 .map(|(_channel_id, channel)| {
3335 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3336 peer_state.latest_features.clone(), &self.fee_estimator)
3344 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3345 /// more information.
3346 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3347 // Allocate our best estimate of the number of channels we have in the `res`
3348 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3349 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3350 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3351 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3352 // the same channel.
3353 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3355 let best_block_height = self.best_block.read().unwrap().height;
3356 let per_peer_state = self.per_peer_state.read().unwrap();
3357 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3358 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3359 let peer_state = &mut *peer_state_lock;
3360 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3361 let details = ChannelDetails::from_channel_context(context, best_block_height,
3362 peer_state.latest_features.clone(), &self.fee_estimator);
3370 /// Gets the list of usable channels, in random order. Useful as an argument to
3371 /// [`Router::find_route`] to ensure non-announced channels are used.
3373 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3374 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3376 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3377 // Note we use is_live here instead of usable which leads to somewhat confused
3378 // internal/external nomenclature, but that's ok cause that's probably what the user
3379 // really wanted anyway.
3380 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3383 /// Gets the list of channels we have with a given counterparty, in random order.
3384 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3385 let best_block_height = self.best_block.read().unwrap().height;
3386 let per_peer_state = self.per_peer_state.read().unwrap();
3388 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3389 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3390 let peer_state = &mut *peer_state_lock;
3391 let features = &peer_state.latest_features;
3392 let context_to_details = |context| {
3393 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3395 return peer_state.channel_by_id
3397 .map(|(_, phase)| phase.context())
3398 .map(context_to_details)
3404 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3405 /// successful path, or have unresolved HTLCs.
3407 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3408 /// result of a crash. If such a payment exists, is not listed here, and an
3409 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3411 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3412 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3413 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3414 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3415 PendingOutboundPayment::AwaitingInvoice { .. } => {
3416 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3418 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3419 PendingOutboundPayment::InvoiceReceived { .. } => {
3420 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3422 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3423 Some(RecentPaymentDetails::Pending {
3424 payment_id: *payment_id,
3425 payment_hash: *payment_hash,
3426 total_msat: *total_msat,
3429 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3430 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3432 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3433 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3435 PendingOutboundPayment::Legacy { .. } => None
3440 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3441 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3443 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3444 let mut shutdown_result = None;
3447 let per_peer_state = self.per_peer_state.read().unwrap();
3449 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3450 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3452 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3453 let peer_state = &mut *peer_state_lock;
3455 match peer_state.channel_by_id.entry(channel_id.clone()) {
3456 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3457 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3458 let funding_txo_opt = chan.context.get_funding_txo();
3459 let their_features = &peer_state.latest_features;
3460 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3461 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3462 failed_htlcs = htlcs;
3464 // We can send the `shutdown` message before updating the `ChannelMonitor`
3465 // here as we don't need the monitor update to complete until we send a
3466 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3467 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3468 node_id: *counterparty_node_id,
3472 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3473 "We can't both complete shutdown and generate a monitor update");
3475 // Update the monitor with the shutdown script if necessary.
3476 if let Some(monitor_update) = monitor_update_opt.take() {
3477 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3478 peer_state_lock, peer_state, per_peer_state, chan);
3481 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3482 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3485 hash_map::Entry::Vacant(_) => {
3486 return Err(APIError::ChannelUnavailable {
3488 "Channel with id {} not found for the passed counterparty node_id {}",
3489 channel_id, counterparty_node_id,
3496 for htlc_source in failed_htlcs.drain(..) {
3497 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3498 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3499 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3502 if let Some(shutdown_result) = shutdown_result {
3503 self.finish_close_channel(shutdown_result);
3509 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3510 /// will be accepted on the given channel, and after additional timeout/the closing of all
3511 /// pending HTLCs, the channel will be closed on chain.
3513 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3514 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3516 /// * If our counterparty is the channel initiator, we will require a channel closing
3517 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3518 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3519 /// counterparty to pay as much fee as they'd like, however.
3521 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3523 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3524 /// generate a shutdown scriptpubkey or destination script set by
3525 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3528 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3529 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3530 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3531 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3532 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3533 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3536 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3537 /// will be accepted on the given channel, and after additional timeout/the closing of all
3538 /// pending HTLCs, the channel will be closed on chain.
3540 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3541 /// the channel being closed or not:
3542 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3543 /// transaction. The upper-bound is set by
3544 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3545 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3546 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3547 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3548 /// will appear on a force-closure transaction, whichever is lower).
3550 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3551 /// Will fail if a shutdown script has already been set for this channel by
3552 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3553 /// also be compatible with our and the counterparty's features.
3555 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3557 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3558 /// generate a shutdown scriptpubkey or destination script set by
3559 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3562 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3563 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3564 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3565 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3566 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3569 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3570 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3571 #[cfg(debug_assertions)]
3572 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3573 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3576 let logger = WithContext::from(
3577 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3580 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3581 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3582 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3583 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3584 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3585 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3586 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3588 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3589 // There isn't anything we can do if we get an update failure - we're already
3590 // force-closing. The monitor update on the required in-memory copy should broadcast
3591 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3592 // ignore the result here.
3593 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3595 let mut shutdown_results = Vec::new();
3596 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3597 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3598 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3599 let per_peer_state = self.per_peer_state.read().unwrap();
3600 let mut has_uncompleted_channel = None;
3601 for (channel_id, counterparty_node_id, state) in affected_channels {
3602 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3603 let mut peer_state = peer_state_mutex.lock().unwrap();
3604 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3605 update_maps_on_chan_removal!(self, &chan.context());
3606 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3609 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3612 has_uncompleted_channel.unwrap_or(true),
3613 "Closing a batch where all channels have completed initial monitor update",
3618 let mut pending_events = self.pending_events.lock().unwrap();
3619 pending_events.push_back((events::Event::ChannelClosed {
3620 channel_id: shutdown_res.channel_id,
3621 user_channel_id: shutdown_res.user_channel_id,
3622 reason: shutdown_res.closure_reason,
3623 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3624 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3625 channel_funding_txo: shutdown_res.channel_funding_txo,
3628 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3629 pending_events.push_back((events::Event::DiscardFunding {
3630 channel_id: shutdown_res.channel_id, transaction
3634 for shutdown_result in shutdown_results.drain(..) {
3635 self.finish_close_channel(shutdown_result);
3639 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3640 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3641 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3642 -> Result<PublicKey, APIError> {
3643 let per_peer_state = self.per_peer_state.read().unwrap();
3644 let peer_state_mutex = per_peer_state.get(peer_node_id)
3645 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3646 let (update_opt, counterparty_node_id) = {
3647 let mut peer_state = peer_state_mutex.lock().unwrap();
3648 let closure_reason = if let Some(peer_msg) = peer_msg {
3649 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3651 ClosureReason::HolderForceClosed
3653 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3654 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3655 log_error!(logger, "Force-closing channel {}", channel_id);
3656 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3657 mem::drop(peer_state);
3658 mem::drop(per_peer_state);
3660 ChannelPhase::Funded(mut chan) => {
3661 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3662 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3664 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3665 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3666 // Unfunded channel has no update
3667 (None, chan_phase.context().get_counterparty_node_id())
3669 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
3670 #[cfg(any(dual_funding, splicing))]
3671 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3672 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3673 // Unfunded channel has no update
3674 (None, chan_phase.context().get_counterparty_node_id())
3677 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3678 log_error!(logger, "Force-closing channel {}", &channel_id);
3679 // N.B. that we don't send any channel close event here: we
3680 // don't have a user_channel_id, and we never sent any opening
3682 (None, *peer_node_id)
3684 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3687 if let Some(update) = update_opt {
3688 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3689 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3690 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3695 Ok(counterparty_node_id)
3698 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3699 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3700 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3701 Ok(counterparty_node_id) => {
3702 let per_peer_state = self.per_peer_state.read().unwrap();
3703 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3704 let mut peer_state = peer_state_mutex.lock().unwrap();
3705 peer_state.pending_msg_events.push(
3706 events::MessageSendEvent::HandleError {
3707 node_id: counterparty_node_id,
3708 action: msgs::ErrorAction::DisconnectPeer {
3709 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3720 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3721 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3722 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3724 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3725 -> Result<(), APIError> {
3726 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3729 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3730 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3731 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3733 /// You can always broadcast the latest local transaction(s) via
3734 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3735 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3736 -> Result<(), APIError> {
3737 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3740 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3741 /// for each to the chain and rejecting new HTLCs on each.
3742 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3743 for chan in self.list_channels() {
3744 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3748 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3749 /// local transaction(s).
3750 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3751 for chan in self.list_channels() {
3752 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3756 fn can_forward_htlc_to_outgoing_channel(
3757 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3758 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3759 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3760 // Note that the behavior here should be identical to the above block - we
3761 // should NOT reveal the existence or non-existence of a private channel if
3762 // we don't allow forwards outbound over them.
3763 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3765 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3766 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3767 // "refuse to forward unless the SCID alias was used", so we pretend
3768 // we don't have the channel here.
3769 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3772 // Note that we could technically not return an error yet here and just hope
3773 // that the connection is reestablished or monitor updated by the time we get
3774 // around to doing the actual forward, but better to fail early if we can and
3775 // hopefully an attacker trying to path-trace payments cannot make this occur
3776 // on a small/per-node/per-channel scale.
3777 if !chan.context.is_live() { // channel_disabled
3778 // If the channel_update we're going to return is disabled (i.e. the
3779 // peer has been disabled for some time), return `channel_disabled`,
3780 // otherwise return `temporary_channel_failure`.
3781 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3782 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3783 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3785 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3788 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3789 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3790 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3792 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3793 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3794 return Err((err, code, chan_update_opt));
3800 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3801 /// `scid`. `None` is returned when the channel is not found.
3802 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3803 &self, scid: u64, callback: C,
3805 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3806 None => return None,
3807 Some((cp_id, id)) => (cp_id, id),
3809 let per_peer_state = self.per_peer_state.read().unwrap();
3810 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3811 if peer_state_mutex_opt.is_none() {
3814 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3815 let peer_state = &mut *peer_state_lock;
3816 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3817 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3820 Some(chan) => Some(callback(chan)),
3824 fn can_forward_htlc(
3825 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3826 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3827 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3828 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3831 Some(Err(e)) => return Err(e),
3833 // If we couldn't find the channel info for the scid, it may be a phantom or
3834 // intercept forward.
3835 if (self.default_configuration.accept_intercept_htlcs &&
3836 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3837 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3839 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3844 let cur_height = self.best_block.read().unwrap().height + 1;
3845 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3846 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3848 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3849 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3851 return Err((err_msg, err_code, chan_update_opt));
3857 fn htlc_failure_from_update_add_err(
3858 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3859 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3860 shared_secret: &[u8; 32]
3861 ) -> HTLCFailureMsg {
3862 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3863 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3864 let chan_update = chan_update.unwrap();
3865 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3866 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3868 else if err_code == 0x1000 | 13 {
3869 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3871 else if err_code == 0x1000 | 20 {
3872 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3873 0u16.write(&mut res).expect("Writes cannot fail");
3875 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3876 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3877 chan_update.write(&mut res).expect("Writes cannot fail");
3878 } else if err_code & 0x1000 == 0x1000 {
3879 // If we're trying to return an error that requires a `channel_update` but
3880 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3881 // generate an update), just use the generic "temporary_node_failure"
3883 err_code = 0x2000 | 2;
3887 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3888 "Failed to accept/forward incoming HTLC: {}", err_msg
3890 // If `msg.blinding_point` is set, we must always fail with malformed.
3891 if msg.blinding_point.is_some() {
3892 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3893 channel_id: msg.channel_id,
3894 htlc_id: msg.htlc_id,
3895 sha256_of_onion: [0; 32],
3896 failure_code: INVALID_ONION_BLINDING,
3900 let (err_code, err_data) = if is_intro_node_blinded_forward {
3901 (INVALID_ONION_BLINDING, &[0; 32][..])
3903 (err_code, &res.0[..])
3905 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3906 channel_id: msg.channel_id,
3907 htlc_id: msg.htlc_id,
3908 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3909 .get_encrypted_failure_packet(shared_secret, &None),
3913 fn decode_update_add_htlc_onion(
3914 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3916 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3918 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3919 msg, &self.node_signer, &self.logger, &self.secp_ctx
3922 let next_packet_details = match next_packet_details_opt {
3923 Some(next_packet_details) => next_packet_details,
3924 // it is a receive, so no need for outbound checks
3925 None => return Ok((next_hop, shared_secret, None)),
3928 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3929 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3930 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3931 let (err_msg, err_code, chan_update_opt) = e;
3932 self.htlc_failure_from_update_add_err(
3933 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3934 next_hop.is_intro_node_blinded_forward(), &shared_secret
3938 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3941 fn construct_pending_htlc_status<'a>(
3942 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3943 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3944 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3945 ) -> PendingHTLCStatus {
3946 macro_rules! return_err {
3947 ($msg: expr, $err_code: expr, $data: expr) => {
3949 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3950 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3951 if msg.blinding_point.is_some() {
3952 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3953 msgs::UpdateFailMalformedHTLC {
3954 channel_id: msg.channel_id,
3955 htlc_id: msg.htlc_id,
3956 sha256_of_onion: [0; 32],
3957 failure_code: INVALID_ONION_BLINDING,
3961 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3962 channel_id: msg.channel_id,
3963 htlc_id: msg.htlc_id,
3964 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3965 .get_encrypted_failure_packet(&shared_secret, &None),
3971 onion_utils::Hop::Receive(next_hop_data) => {
3973 let current_height: u32 = self.best_block.read().unwrap().height;
3974 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3975 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3976 current_height, self.default_configuration.accept_mpp_keysend)
3979 // Note that we could obviously respond immediately with an update_fulfill_htlc
3980 // message, however that would leak that we are the recipient of this payment, so
3981 // instead we stay symmetric with the forwarding case, only responding (after a
3982 // delay) once they've send us a commitment_signed!
3983 PendingHTLCStatus::Forward(info)
3985 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3988 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3989 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3990 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3991 Ok(info) => PendingHTLCStatus::Forward(info),
3992 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3998 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3999 /// public, and thus should be called whenever the result is going to be passed out in a
4000 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
4002 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
4003 /// corresponding to the channel's counterparty locked, as the channel been removed from the
4004 /// storage and the `peer_state` lock has been dropped.
4006 /// [`channel_update`]: msgs::ChannelUpdate
4007 /// [`internal_closing_signed`]: Self::internal_closing_signed
4008 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4009 if !chan.context.should_announce() {
4010 return Err(LightningError {
4011 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4012 action: msgs::ErrorAction::IgnoreError
4015 if chan.context.get_short_channel_id().is_none() {
4016 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4018 let logger = WithChannelContext::from(&self.logger, &chan.context);
4019 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4020 self.get_channel_update_for_unicast(chan)
4023 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4024 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4025 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4026 /// provided evidence that they know about the existence of the channel.
4028 /// Note that through [`internal_closing_signed`], this function is called without the
4029 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4030 /// removed from the storage and the `peer_state` lock has been dropped.
4032 /// [`channel_update`]: msgs::ChannelUpdate
4033 /// [`internal_closing_signed`]: Self::internal_closing_signed
4034 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4035 let logger = WithChannelContext::from(&self.logger, &chan.context);
4036 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4037 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4038 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4042 self.get_channel_update_for_onion(short_channel_id, chan)
4045 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4046 let logger = WithChannelContext::from(&self.logger, &chan.context);
4047 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4048 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4050 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4051 ChannelUpdateStatus::Enabled => true,
4052 ChannelUpdateStatus::DisabledStaged(_) => true,
4053 ChannelUpdateStatus::Disabled => false,
4054 ChannelUpdateStatus::EnabledStaged(_) => false,
4057 let unsigned = msgs::UnsignedChannelUpdate {
4058 chain_hash: self.chain_hash,
4060 timestamp: chan.context.get_update_time_counter(),
4061 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4062 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4063 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4064 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4065 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4066 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4067 excess_data: Vec::new(),
4069 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4070 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4071 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4073 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4075 Ok(msgs::ChannelUpdate {
4082 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4083 let _lck = self.total_consistency_lock.read().unwrap();
4084 self.send_payment_along_path(SendAlongPathArgs {
4085 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4090 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4091 let SendAlongPathArgs {
4092 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4095 // The top-level caller should hold the total_consistency_lock read lock.
4096 debug_assert!(self.total_consistency_lock.try_write().is_err());
4097 let prng_seed = self.entropy_source.get_secure_random_bytes();
4098 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4100 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4101 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4102 payment_hash, keysend_preimage, prng_seed
4104 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4105 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4109 let err: Result<(), _> = loop {
4110 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4112 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4113 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4114 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4116 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4119 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4121 "Attempting to send payment with payment hash {} along path with next hop {}",
4122 payment_hash, path.hops.first().unwrap().short_channel_id);
4124 let per_peer_state = self.per_peer_state.read().unwrap();
4125 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4126 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4127 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4128 let peer_state = &mut *peer_state_lock;
4129 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4130 match chan_phase_entry.get_mut() {
4131 ChannelPhase::Funded(chan) => {
4132 if !chan.context.is_live() {
4133 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4135 let funding_txo = chan.context.get_funding_txo().unwrap();
4136 let logger = WithChannelContext::from(&self.logger, &chan.context);
4137 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4138 htlc_cltv, HTLCSource::OutboundRoute {
4140 session_priv: session_priv.clone(),
4141 first_hop_htlc_msat: htlc_msat,
4143 }, onion_packet, None, &self.fee_estimator, &&logger);
4144 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4145 Some(monitor_update) => {
4146 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4148 // Note that MonitorUpdateInProgress here indicates (per function
4149 // docs) that we will resend the commitment update once monitor
4150 // updating completes. Therefore, we must return an error
4151 // indicating that it is unsafe to retry the payment wholesale,
4152 // which we do in the send_payment check for
4153 // MonitorUpdateInProgress, below.
4154 return Err(APIError::MonitorUpdateInProgress);
4162 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4165 // The channel was likely removed after we fetched the id from the
4166 // `short_to_chan_info` map, but before we successfully locked the
4167 // `channel_by_id` map.
4168 // This can occur as no consistency guarantees exists between the two maps.
4169 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4173 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4174 Ok(_) => unreachable!(),
4176 Err(APIError::ChannelUnavailable { err: e.err })
4181 /// Sends a payment along a given route.
4183 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4184 /// fields for more info.
4186 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4187 /// [`PeerManager::process_events`]).
4189 /// # Avoiding Duplicate Payments
4191 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4192 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4193 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4194 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4195 /// second payment with the same [`PaymentId`].
4197 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4198 /// tracking of payments, including state to indicate once a payment has completed. Because you
4199 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4200 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4201 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4203 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4204 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4205 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4206 /// [`ChannelManager::list_recent_payments`] for more information.
4208 /// # Possible Error States on [`PaymentSendFailure`]
4210 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4211 /// each entry matching the corresponding-index entry in the route paths, see
4212 /// [`PaymentSendFailure`] for more info.
4214 /// In general, a path may raise:
4215 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4216 /// node public key) is specified.
4217 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4218 /// closed, doesn't exist, or the peer is currently disconnected.
4219 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4220 /// relevant updates.
4222 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4223 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4224 /// different route unless you intend to pay twice!
4226 /// [`RouteHop`]: crate::routing::router::RouteHop
4227 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4228 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4229 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4230 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4231 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4232 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4233 let best_block_height = self.best_block.read().unwrap().height;
4234 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4235 self.pending_outbound_payments
4236 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4237 &self.entropy_source, &self.node_signer, best_block_height,
4238 |args| self.send_payment_along_path(args))
4241 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4242 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4243 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4244 let best_block_height = self.best_block.read().unwrap().height;
4245 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4246 self.pending_outbound_payments
4247 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4248 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4249 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4250 &self.pending_events, |args| self.send_payment_along_path(args))
4254 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4255 let best_block_height = self.best_block.read().unwrap().height;
4256 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4257 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4258 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4259 best_block_height, |args| self.send_payment_along_path(args))
4263 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4264 let best_block_height = self.best_block.read().unwrap().height;
4265 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4269 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4270 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4273 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4274 let best_block_height = self.best_block.read().unwrap().height;
4275 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4276 self.pending_outbound_payments
4277 .send_payment_for_bolt12_invoice(
4278 invoice, payment_id, &self.router, self.list_usable_channels(),
4279 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4280 best_block_height, &self.logger, &self.pending_events,
4281 |args| self.send_payment_along_path(args)
4285 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4286 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4287 /// retries are exhausted.
4289 /// # Event Generation
4291 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4292 /// as there are no remaining pending HTLCs for this payment.
4294 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4295 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4296 /// determine the ultimate status of a payment.
4298 /// # Requested Invoices
4300 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4301 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4302 /// and prevent any attempts at paying it once received. The other events may only be generated
4303 /// once the invoice has been received.
4305 /// # Restart Behavior
4307 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4308 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4309 /// [`Event::InvoiceRequestFailed`].
4311 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4312 pub fn abandon_payment(&self, payment_id: PaymentId) {
4313 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4314 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4317 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4318 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4319 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4320 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4321 /// never reach the recipient.
4323 /// See [`send_payment`] documentation for more details on the return value of this function
4324 /// and idempotency guarantees provided by the [`PaymentId`] key.
4326 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4327 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4329 /// [`send_payment`]: Self::send_payment
4330 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4331 let best_block_height = self.best_block.read().unwrap().height;
4332 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4333 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4334 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4335 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4338 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4339 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4341 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4344 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4345 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4346 let best_block_height = self.best_block.read().unwrap().height;
4347 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4348 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4349 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4350 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4351 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4354 /// Send a payment that is probing the given route for liquidity. We calculate the
4355 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4356 /// us to easily discern them from real payments.
4357 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4358 let best_block_height = self.best_block.read().unwrap().height;
4359 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4360 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4361 &self.entropy_source, &self.node_signer, best_block_height,
4362 |args| self.send_payment_along_path(args))
4365 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4368 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4369 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4372 /// Sends payment probes over all paths of a route that would be used to pay the given
4373 /// amount to the given `node_id`.
4375 /// See [`ChannelManager::send_preflight_probes`] for more information.
4376 pub fn send_spontaneous_preflight_probes(
4377 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4378 liquidity_limit_multiplier: Option<u64>,
4379 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4380 let payment_params =
4381 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4383 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4385 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4388 /// Sends payment probes over all paths of a route that would be used to pay a route found
4389 /// according to the given [`RouteParameters`].
4391 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4392 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4393 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4394 /// confirmation in a wallet UI.
4396 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4397 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4398 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4399 /// payment. To mitigate this issue, channels with available liquidity less than the required
4400 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4401 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4402 pub fn send_preflight_probes(
4403 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4404 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4405 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4407 let payer = self.get_our_node_id();
4408 let usable_channels = self.list_usable_channels();
4409 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4410 let inflight_htlcs = self.compute_inflight_htlcs();
4414 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4416 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4417 ProbeSendFailure::RouteNotFound
4420 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4422 let mut res = Vec::new();
4424 for mut path in route.paths {
4425 // If the last hop is probably an unannounced channel we refrain from probing all the
4426 // way through to the end and instead probe up to the second-to-last channel.
4427 while let Some(last_path_hop) = path.hops.last() {
4428 if last_path_hop.maybe_announced_channel {
4429 // We found a potentially announced last hop.
4432 // Drop the last hop, as it's likely unannounced.
4435 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4436 last_path_hop.short_channel_id
4438 let final_value_msat = path.final_value_msat();
4440 if let Some(new_last) = path.hops.last_mut() {
4441 new_last.fee_msat += final_value_msat;
4446 if path.hops.len() < 2 {
4449 "Skipped sending payment probe over path with less than two hops."
4454 if let Some(first_path_hop) = path.hops.first() {
4455 if let Some(first_hop) = first_hops.iter().find(|h| {
4456 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4458 let path_value = path.final_value_msat() + path.fee_msat();
4459 let used_liquidity =
4460 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4462 if first_hop.next_outbound_htlc_limit_msat
4463 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4465 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4468 *used_liquidity += path_value;
4473 res.push(self.send_probe(path).map_err(|e| {
4474 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4475 ProbeSendFailure::SendingFailed(e)
4482 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4483 /// which checks the correctness of the funding transaction given the associated channel.
4484 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
4485 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4486 mut find_funding_output: FundingOutput,
4487 ) -> Result<(), APIError> {
4488 let per_peer_state = self.per_peer_state.read().unwrap();
4489 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4490 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4492 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4493 let peer_state = &mut *peer_state_lock;
4495 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4496 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4497 funding_txo = find_funding_output(&chan, &funding_transaction)?;
4499 let logger = WithChannelContext::from(&self.logger, &chan.context);
4500 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
4501 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
4502 let channel_id = chan.context.channel_id();
4503 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4504 let shutdown_res = chan.context.force_shutdown(false, reason);
4505 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
4506 } else { unreachable!(); });
4508 Ok(funding_msg) => (chan, funding_msg),
4509 Err((chan, err)) => {
4510 mem::drop(peer_state_lock);
4511 mem::drop(per_peer_state);
4512 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
4513 return Err(APIError::ChannelUnavailable {
4514 err: "Signer refused to sign the initial commitment transaction".to_owned()
4520 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4521 return Err(APIError::APIMisuseError {
4523 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4524 temporary_channel_id, counterparty_node_id),
4527 None => return Err(APIError::ChannelUnavailable {err: format!(
4528 "Channel with id {} not found for the passed counterparty node_id {}",
4529 temporary_channel_id, counterparty_node_id),
4533 if let Some(msg) = msg_opt {
4534 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4535 node_id: chan.context.get_counterparty_node_id(),
4539 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4540 hash_map::Entry::Occupied(_) => {
4541 panic!("Generated duplicate funding txid?");
4543 hash_map::Entry::Vacant(e) => {
4544 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4545 match outpoint_to_peer.entry(funding_txo) {
4546 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4547 hash_map::Entry::Occupied(o) => {
4549 "An existing channel using outpoint {} is open with peer {}",
4550 funding_txo, o.get()
4552 mem::drop(outpoint_to_peer);
4553 mem::drop(peer_state_lock);
4554 mem::drop(per_peer_state);
4555 let reason = ClosureReason::ProcessingError { err: err.clone() };
4556 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4557 return Err(APIError::ChannelUnavailable { err });
4560 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4567 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4568 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4569 Ok(OutPoint { txid: tx.txid(), index: output_index })
4573 /// Call this upon creation of a funding transaction for the given channel.
4575 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4576 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4578 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4579 /// across the p2p network.
4581 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4582 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4584 /// May panic if the output found in the funding transaction is duplicative with some other
4585 /// channel (note that this should be trivially prevented by using unique funding transaction
4586 /// keys per-channel).
4588 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4589 /// counterparty's signature the funding transaction will automatically be broadcast via the
4590 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4592 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4593 /// not currently support replacing a funding transaction on an existing channel. Instead,
4594 /// create a new channel with a conflicting funding transaction.
4596 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4597 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4598 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4599 /// for more details.
4601 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4602 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4603 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4604 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4607 /// Call this upon creation of a batch funding transaction for the given channels.
4609 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4610 /// each individual channel and transaction output.
4612 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4613 /// will only be broadcast when we have safely received and persisted the counterparty's
4614 /// signature for each channel.
4616 /// If there is an error, all channels in the batch are to be considered closed.
4617 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4618 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4619 let mut result = Ok(());
4621 if !funding_transaction.is_coin_base() {
4622 for inp in funding_transaction.input.iter() {
4623 if inp.witness.is_empty() {
4624 result = result.and(Err(APIError::APIMisuseError {
4625 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4630 if funding_transaction.output.len() > u16::max_value() as usize {
4631 result = result.and(Err(APIError::APIMisuseError {
4632 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4636 let height = self.best_block.read().unwrap().height;
4637 // Transactions are evaluated as final by network mempools if their locktime is strictly
4638 // lower than the next block height. However, the modules constituting our Lightning
4639 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4640 // module is ahead of LDK, only allow one more block of headroom.
4641 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4642 funding_transaction.lock_time.is_block_height() &&
4643 funding_transaction.lock_time.to_consensus_u32() > height + 1
4645 result = result.and(Err(APIError::APIMisuseError {
4646 err: "Funding transaction absolute timelock is non-final".to_owned()
4651 let txid = funding_transaction.txid();
4652 let is_batch_funding = temporary_channels.len() > 1;
4653 let mut funding_batch_states = if is_batch_funding {
4654 Some(self.funding_batch_states.lock().unwrap())
4658 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4659 match states.entry(txid) {
4660 btree_map::Entry::Occupied(_) => {
4661 result = result.clone().and(Err(APIError::APIMisuseError {
4662 err: "Batch funding transaction with the same txid already exists".to_owned()
4666 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4669 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4670 result = result.and_then(|_| self.funding_transaction_generated_intern(
4671 temporary_channel_id,
4672 counterparty_node_id,
4673 funding_transaction.clone(),
4676 let mut output_index = None;
4677 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4678 for (idx, outp) in tx.output.iter().enumerate() {
4679 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4680 if output_index.is_some() {
4681 return Err(APIError::APIMisuseError {
4682 err: "Multiple outputs matched the expected script and value".to_owned()
4685 output_index = Some(idx as u16);
4688 if output_index.is_none() {
4689 return Err(APIError::APIMisuseError {
4690 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
4693 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4694 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4695 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4696 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4697 // want to support V2 batching here as well.
4698 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4704 if let Err(ref e) = result {
4705 // Remaining channels need to be removed on any error.
4706 let e = format!("Error in transaction funding: {:?}", e);
4707 let mut channels_to_remove = Vec::new();
4708 channels_to_remove.extend(funding_batch_states.as_mut()
4709 .and_then(|states| states.remove(&txid))
4710 .into_iter().flatten()
4711 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4713 channels_to_remove.extend(temporary_channels.iter()
4714 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4716 let mut shutdown_results = Vec::new();
4718 let per_peer_state = self.per_peer_state.read().unwrap();
4719 for (channel_id, counterparty_node_id) in channels_to_remove {
4720 per_peer_state.get(&counterparty_node_id)
4721 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4722 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4724 update_maps_on_chan_removal!(self, &chan.context());
4725 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4726 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4730 mem::drop(funding_batch_states);
4731 for shutdown_result in shutdown_results.drain(..) {
4732 self.finish_close_channel(shutdown_result);
4738 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4740 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4741 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4742 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4743 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4745 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4746 /// `counterparty_node_id` is provided.
4748 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4749 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4751 /// If an error is returned, none of the updates should be considered applied.
4753 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4754 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4755 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4756 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4757 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4758 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4759 /// [`APIMisuseError`]: APIError::APIMisuseError
4760 pub fn update_partial_channel_config(
4761 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4762 ) -> Result<(), APIError> {
4763 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4764 return Err(APIError::APIMisuseError {
4765 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4769 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4770 let per_peer_state = self.per_peer_state.read().unwrap();
4771 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4772 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4773 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4774 let peer_state = &mut *peer_state_lock;
4776 for channel_id in channel_ids {
4777 if !peer_state.has_channel(channel_id) {
4778 return Err(APIError::ChannelUnavailable {
4779 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4783 for channel_id in channel_ids {
4784 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4785 let mut config = channel_phase.context().config();
4786 config.apply(config_update);
4787 if !channel_phase.context_mut().update_config(&config) {
4790 if let ChannelPhase::Funded(channel) = channel_phase {
4791 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4792 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4793 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4794 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4795 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4796 node_id: channel.context.get_counterparty_node_id(),
4803 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4804 debug_assert!(false);
4805 return Err(APIError::ChannelUnavailable {
4807 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4808 channel_id, counterparty_node_id),
4815 /// Atomically updates the [`ChannelConfig`] for the given channels.
4817 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4818 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4819 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4820 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4822 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4823 /// `counterparty_node_id` is provided.
4825 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4826 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4828 /// If an error is returned, none of the updates should be considered applied.
4830 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4831 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4832 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4833 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4834 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4835 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4836 /// [`APIMisuseError`]: APIError::APIMisuseError
4837 pub fn update_channel_config(
4838 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4839 ) -> Result<(), APIError> {
4840 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4843 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4844 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4846 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4847 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4849 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4850 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4851 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4852 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4853 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4855 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4856 /// you from forwarding more than you received. See
4857 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4860 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4863 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4864 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4865 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4866 // TODO: when we move to deciding the best outbound channel at forward time, only take
4867 // `next_node_id` and not `next_hop_channel_id`
4868 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4869 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4871 let next_hop_scid = {
4872 let peer_state_lock = self.per_peer_state.read().unwrap();
4873 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4874 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4875 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4876 let peer_state = &mut *peer_state_lock;
4877 match peer_state.channel_by_id.get(next_hop_channel_id) {
4878 Some(ChannelPhase::Funded(chan)) => {
4879 if !chan.context.is_usable() {
4880 return Err(APIError::ChannelUnavailable {
4881 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4884 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4886 Some(_) => return Err(APIError::ChannelUnavailable {
4887 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4888 next_hop_channel_id, next_node_id)
4891 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4892 next_hop_channel_id, next_node_id);
4893 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4894 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4895 return Err(APIError::ChannelUnavailable {
4902 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4903 .ok_or_else(|| APIError::APIMisuseError {
4904 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4907 let routing = match payment.forward_info.routing {
4908 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4909 PendingHTLCRouting::Forward {
4910 onion_packet, blinded, short_channel_id: next_hop_scid
4913 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4915 let skimmed_fee_msat =
4916 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4917 let pending_htlc_info = PendingHTLCInfo {
4918 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4919 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4922 let mut per_source_pending_forward = [(
4923 payment.prev_short_channel_id,
4924 payment.prev_funding_outpoint,
4925 payment.prev_channel_id,
4926 payment.prev_user_channel_id,
4927 vec![(pending_htlc_info, payment.prev_htlc_id)]
4929 self.forward_htlcs(&mut per_source_pending_forward);
4933 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4934 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4936 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4939 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4940 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4941 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4943 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4944 .ok_or_else(|| APIError::APIMisuseError {
4945 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4948 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4949 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4950 short_channel_id: payment.prev_short_channel_id,
4951 user_channel_id: Some(payment.prev_user_channel_id),
4952 outpoint: payment.prev_funding_outpoint,
4953 channel_id: payment.prev_channel_id,
4954 htlc_id: payment.prev_htlc_id,
4955 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4956 phantom_shared_secret: None,
4957 blinded_failure: payment.forward_info.routing.blinded_failure(),
4960 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4961 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4962 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4963 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4968 fn process_pending_update_add_htlcs(&self) {
4969 let mut decode_update_add_htlcs = new_hash_map();
4970 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4972 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4973 if let Some(outgoing_scid) = outgoing_scid_opt {
4974 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4975 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4976 HTLCDestination::NextHopChannel {
4977 node_id: Some(*outgoing_counterparty_node_id),
4978 channel_id: *outgoing_channel_id,
4980 None => HTLCDestination::UnknownNextHop {
4981 requested_forward_scid: outgoing_scid,
4985 HTLCDestination::FailedPayment { payment_hash }
4989 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
4990 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
4991 let counterparty_node_id = chan.context.get_counterparty_node_id();
4992 let channel_id = chan.context.channel_id();
4993 let funding_txo = chan.context.get_funding_txo().unwrap();
4994 let user_channel_id = chan.context.get_user_id();
4995 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
4996 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
4999 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
5000 incoming_user_channel_id, incoming_accept_underpaying_htlcs
5001 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
5002 incoming_channel_details
5004 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5008 let mut htlc_forwards = Vec::new();
5009 let mut htlc_fails = Vec::new();
5010 for update_add_htlc in &update_add_htlcs {
5011 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5012 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5014 Ok(decoded_onion) => decoded_onion,
5016 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5021 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5022 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5024 // Process the HTLC on the incoming channel.
5025 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5026 let logger = WithChannelContext::from(&self.logger, &chan.context);
5027 chan.can_accept_incoming_htlc(
5028 update_add_htlc, &self.fee_estimator, &logger,
5032 Some(Err((err, code))) => {
5033 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5034 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5035 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5040 let htlc_fail = self.htlc_failure_from_update_add_err(
5041 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5042 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5044 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5045 htlc_fails.push((htlc_fail, htlc_destination));
5048 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5049 None => continue 'outer_loop,
5052 // Now process the HTLC on the outgoing channel if it's a forward.
5053 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5054 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5055 &update_add_htlc, next_packet_details
5057 let htlc_fail = self.htlc_failure_from_update_add_err(
5058 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5059 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5061 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5062 htlc_fails.push((htlc_fail, htlc_destination));
5067 match self.construct_pending_htlc_status(
5068 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5069 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5071 PendingHTLCStatus::Forward(htlc_forward) => {
5072 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5074 PendingHTLCStatus::Fail(htlc_fail) => {
5075 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5076 htlc_fails.push((htlc_fail, htlc_destination));
5081 // Process all of the forwards and failures for the channel in which the HTLCs were
5082 // proposed to as a batch.
5083 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5084 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5085 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5086 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5087 let failure = match htlc_fail {
5088 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5089 htlc_id: fail_htlc.htlc_id,
5090 err_packet: fail_htlc.reason,
5092 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5093 htlc_id: fail_malformed_htlc.htlc_id,
5094 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5095 failure_code: fail_malformed_htlc.failure_code,
5098 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5099 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5100 prev_channel_id: incoming_channel_id,
5101 failed_next_destination: htlc_destination,
5107 /// Processes HTLCs which are pending waiting on random forward delay.
5109 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5110 /// Will likely generate further events.
5111 pub fn process_pending_htlc_forwards(&self) {
5112 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5114 self.process_pending_update_add_htlcs();
5116 let mut new_events = VecDeque::new();
5117 let mut failed_forwards = Vec::new();
5118 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5120 let mut forward_htlcs = new_hash_map();
5121 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5123 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5124 if short_chan_id != 0 {
5125 let mut forwarding_counterparty = None;
5126 macro_rules! forwarding_channel_not_found {
5128 for forward_info in pending_forwards.drain(..) {
5129 match forward_info {
5130 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5131 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5132 prev_user_channel_id, forward_info: PendingHTLCInfo {
5133 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5134 outgoing_cltv_value, ..
5137 macro_rules! failure_handler {
5138 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5139 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5140 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5142 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5143 short_channel_id: prev_short_channel_id,
5144 user_channel_id: Some(prev_user_channel_id),
5145 channel_id: prev_channel_id,
5146 outpoint: prev_funding_outpoint,
5147 htlc_id: prev_htlc_id,
5148 incoming_packet_shared_secret: incoming_shared_secret,
5149 phantom_shared_secret: $phantom_ss,
5150 blinded_failure: routing.blinded_failure(),
5153 let reason = if $next_hop_unknown {
5154 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5156 HTLCDestination::FailedPayment{ payment_hash }
5159 failed_forwards.push((htlc_source, payment_hash,
5160 HTLCFailReason::reason($err_code, $err_data),
5166 macro_rules! fail_forward {
5167 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5169 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5173 macro_rules! failed_payment {
5174 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5176 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5180 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5181 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5182 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5183 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5184 let next_hop = match onion_utils::decode_next_payment_hop(
5185 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5186 payment_hash, None, &self.node_signer
5189 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5190 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5191 // In this scenario, the phantom would have sent us an
5192 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5193 // if it came from us (the second-to-last hop) but contains the sha256
5195 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5197 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5198 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5202 onion_utils::Hop::Receive(hop_data) => {
5203 let current_height: u32 = self.best_block.read().unwrap().height;
5204 match create_recv_pending_htlc_info(hop_data,
5205 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5206 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5207 current_height, self.default_configuration.accept_mpp_keysend)
5209 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5210 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5216 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5219 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5222 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5223 // Channel went away before we could fail it. This implies
5224 // the channel is now on chain and our counterparty is
5225 // trying to broadcast the HTLC-Timeout, but that's their
5226 // problem, not ours.
5232 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5233 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5234 Some((cp_id, chan_id)) => (cp_id, chan_id),
5236 forwarding_channel_not_found!();
5240 forwarding_counterparty = Some(counterparty_node_id);
5241 let per_peer_state = self.per_peer_state.read().unwrap();
5242 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5243 if peer_state_mutex_opt.is_none() {
5244 forwarding_channel_not_found!();
5247 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5248 let peer_state = &mut *peer_state_lock;
5249 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5250 let logger = WithChannelContext::from(&self.logger, &chan.context);
5251 for forward_info in pending_forwards.drain(..) {
5252 let queue_fail_htlc_res = match forward_info {
5253 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5254 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5255 prev_user_channel_id, forward_info: PendingHTLCInfo {
5256 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5257 routing: PendingHTLCRouting::Forward {
5258 onion_packet, blinded, ..
5259 }, skimmed_fee_msat, ..
5262 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5263 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5264 short_channel_id: prev_short_channel_id,
5265 user_channel_id: Some(prev_user_channel_id),
5266 channel_id: prev_channel_id,
5267 outpoint: prev_funding_outpoint,
5268 htlc_id: prev_htlc_id,
5269 incoming_packet_shared_secret: incoming_shared_secret,
5270 // Phantom payments are only PendingHTLCRouting::Receive.
5271 phantom_shared_secret: None,
5272 blinded_failure: blinded.map(|b| b.failure),
5274 let next_blinding_point = blinded.and_then(|b| {
5275 let encrypted_tlvs_ss = self.node_signer.ecdh(
5276 Recipient::Node, &b.inbound_blinding_point, None
5277 ).unwrap().secret_bytes();
5278 onion_utils::next_hop_pubkey(
5279 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5282 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5283 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5284 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5287 if let ChannelError::Ignore(msg) = e {
5288 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5290 panic!("Stated return value requirements in send_htlc() were not met");
5292 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5293 failed_forwards.push((htlc_source, payment_hash,
5294 HTLCFailReason::reason(failure_code, data),
5295 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5301 HTLCForwardInfo::AddHTLC { .. } => {
5302 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5304 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5305 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5306 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5308 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5309 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5310 let res = chan.queue_fail_malformed_htlc(
5311 htlc_id, failure_code, sha256_of_onion, &&logger
5313 Some((res, htlc_id))
5316 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5317 if let Err(e) = queue_fail_htlc_res {
5318 if let ChannelError::Ignore(msg) = e {
5319 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5321 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5323 // fail-backs are best-effort, we probably already have one
5324 // pending, and if not that's OK, if not, the channel is on
5325 // the chain and sending the HTLC-Timeout is their problem.
5331 forwarding_channel_not_found!();
5335 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5336 match forward_info {
5337 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5338 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5339 prev_user_channel_id, forward_info: PendingHTLCInfo {
5340 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5341 skimmed_fee_msat, ..
5344 let blinded_failure = routing.blinded_failure();
5345 let (cltv_expiry, onion_payload, payment_data, payment_context, phantom_shared_secret, mut onion_fields) = match routing {
5346 PendingHTLCRouting::Receive {
5347 payment_data, payment_metadata, payment_context,
5348 incoming_cltv_expiry, phantom_shared_secret, custom_tlvs,
5349 requires_blinded_error: _
5351 let _legacy_hop_data = Some(payment_data.clone());
5352 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5353 payment_metadata, custom_tlvs };
5354 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
5355 Some(payment_data), payment_context, phantom_shared_secret, onion_fields)
5357 PendingHTLCRouting::ReceiveKeysend {
5358 payment_data, payment_preimage, payment_metadata,
5359 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5361 let onion_fields = RecipientOnionFields {
5362 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5366 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5367 payment_data, None, None, onion_fields)
5370 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5373 let claimable_htlc = ClaimableHTLC {
5374 prev_hop: HTLCPreviousHopData {
5375 short_channel_id: prev_short_channel_id,
5376 user_channel_id: Some(prev_user_channel_id),
5377 channel_id: prev_channel_id,
5378 outpoint: prev_funding_outpoint,
5379 htlc_id: prev_htlc_id,
5380 incoming_packet_shared_secret: incoming_shared_secret,
5381 phantom_shared_secret,
5384 // We differentiate the received value from the sender intended value
5385 // if possible so that we don't prematurely mark MPP payments complete
5386 // if routing nodes overpay
5387 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5388 sender_intended_value: outgoing_amt_msat,
5390 total_value_received: None,
5391 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5394 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5397 let mut committed_to_claimable = false;
5399 macro_rules! fail_htlc {
5400 ($htlc: expr, $payment_hash: expr) => {
5401 debug_assert!(!committed_to_claimable);
5402 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5403 htlc_msat_height_data.extend_from_slice(
5404 &self.best_block.read().unwrap().height.to_be_bytes(),
5406 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5407 short_channel_id: $htlc.prev_hop.short_channel_id,
5408 user_channel_id: $htlc.prev_hop.user_channel_id,
5409 channel_id: prev_channel_id,
5410 outpoint: prev_funding_outpoint,
5411 htlc_id: $htlc.prev_hop.htlc_id,
5412 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5413 phantom_shared_secret,
5416 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5417 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5419 continue 'next_forwardable_htlc;
5422 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5423 let mut receiver_node_id = self.our_network_pubkey;
5424 if phantom_shared_secret.is_some() {
5425 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5426 .expect("Failed to get node_id for phantom node recipient");
5429 macro_rules! check_total_value {
5430 ($purpose: expr) => {{
5431 let mut payment_claimable_generated = false;
5432 let is_keysend = $purpose.is_keysend();
5433 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5434 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5435 fail_htlc!(claimable_htlc, payment_hash);
5437 let ref mut claimable_payment = claimable_payments.claimable_payments
5438 .entry(payment_hash)
5439 // Note that if we insert here we MUST NOT fail_htlc!()
5440 .or_insert_with(|| {
5441 committed_to_claimable = true;
5443 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5446 if $purpose != claimable_payment.purpose {
5447 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5448 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5449 fail_htlc!(claimable_htlc, payment_hash);
5451 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5452 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5453 fail_htlc!(claimable_htlc, payment_hash);
5455 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5456 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5457 fail_htlc!(claimable_htlc, payment_hash);
5460 claimable_payment.onion_fields = Some(onion_fields);
5462 let ref mut htlcs = &mut claimable_payment.htlcs;
5463 let mut total_value = claimable_htlc.sender_intended_value;
5464 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5465 for htlc in htlcs.iter() {
5466 total_value += htlc.sender_intended_value;
5467 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5468 if htlc.total_msat != claimable_htlc.total_msat {
5469 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5470 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5471 total_value = msgs::MAX_VALUE_MSAT;
5473 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5475 // The condition determining whether an MPP is complete must
5476 // match exactly the condition used in `timer_tick_occurred`
5477 if total_value >= msgs::MAX_VALUE_MSAT {
5478 fail_htlc!(claimable_htlc, payment_hash);
5479 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5480 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5482 fail_htlc!(claimable_htlc, payment_hash);
5483 } else if total_value >= claimable_htlc.total_msat {
5484 #[allow(unused_assignments)] {
5485 committed_to_claimable = true;
5487 htlcs.push(claimable_htlc);
5488 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5489 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5490 let counterparty_skimmed_fee_msat = htlcs.iter()
5491 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5492 debug_assert!(total_value.saturating_sub(amount_msat) <=
5493 counterparty_skimmed_fee_msat);
5494 new_events.push_back((events::Event::PaymentClaimable {
5495 receiver_node_id: Some(receiver_node_id),
5499 counterparty_skimmed_fee_msat,
5500 via_channel_id: Some(prev_channel_id),
5501 via_user_channel_id: Some(prev_user_channel_id),
5502 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5503 onion_fields: claimable_payment.onion_fields.clone(),
5505 payment_claimable_generated = true;
5507 // Nothing to do - we haven't reached the total
5508 // payment value yet, wait until we receive more
5510 htlcs.push(claimable_htlc);
5511 #[allow(unused_assignments)] {
5512 committed_to_claimable = true;
5515 payment_claimable_generated
5519 // Check that the payment hash and secret are known. Note that we
5520 // MUST take care to handle the "unknown payment hash" and
5521 // "incorrect payment secret" cases here identically or we'd expose
5522 // that we are the ultimate recipient of the given payment hash.
5523 // Further, we must not expose whether we have any other HTLCs
5524 // associated with the same payment_hash pending or not.
5525 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5526 match payment_secrets.entry(payment_hash) {
5527 hash_map::Entry::Vacant(_) => {
5528 match claimable_htlc.onion_payload {
5529 OnionPayload::Invoice { .. } => {
5530 let payment_data = payment_data.unwrap();
5531 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5532 Ok(result) => result,
5534 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5535 fail_htlc!(claimable_htlc, payment_hash);
5538 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5539 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5540 if (cltv_expiry as u64) < expected_min_expiry_height {
5541 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5542 &payment_hash, cltv_expiry, expected_min_expiry_height);
5543 fail_htlc!(claimable_htlc, payment_hash);
5546 let purpose = events::PaymentPurpose::from_parts(
5548 payment_data.payment_secret,
5551 check_total_value!(purpose);
5553 OnionPayload::Spontaneous(preimage) => {
5554 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5555 check_total_value!(purpose);
5559 hash_map::Entry::Occupied(inbound_payment) => {
5560 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
5561 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5562 fail_htlc!(claimable_htlc, payment_hash);
5564 let payment_data = payment_data.unwrap();
5565 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5566 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5567 fail_htlc!(claimable_htlc, payment_hash);
5568 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5569 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5570 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5571 fail_htlc!(claimable_htlc, payment_hash);
5573 let purpose = events::PaymentPurpose::from_parts(
5574 inbound_payment.get().payment_preimage,
5575 payment_data.payment_secret,
5578 let payment_claimable_generated = check_total_value!(purpose);
5579 if payment_claimable_generated {
5580 inbound_payment.remove_entry();
5586 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5587 panic!("Got pending fail of our own HTLC");
5595 let best_block_height = self.best_block.read().unwrap().height;
5596 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5597 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5598 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5600 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5601 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5603 self.forward_htlcs(&mut phantom_receives);
5605 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5606 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5607 // nice to do the work now if we can rather than while we're trying to get messages in the
5609 self.check_free_holding_cells();
5611 if new_events.is_empty() { return }
5612 let mut events = self.pending_events.lock().unwrap();
5613 events.append(&mut new_events);
5616 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5618 /// Expects the caller to have a total_consistency_lock read lock.
5619 fn process_background_events(&self) -> NotifyOption {
5620 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5622 self.background_events_processed_since_startup.store(true, Ordering::Release);
5624 let mut background_events = Vec::new();
5625 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5626 if background_events.is_empty() {
5627 return NotifyOption::SkipPersistNoEvents;
5630 for event in background_events.drain(..) {
5632 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5633 // The channel has already been closed, so no use bothering to care about the
5634 // monitor updating completing.
5635 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5637 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5638 let mut updated_chan = false;
5640 let per_peer_state = self.per_peer_state.read().unwrap();
5641 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5642 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5643 let peer_state = &mut *peer_state_lock;
5644 match peer_state.channel_by_id.entry(channel_id) {
5645 hash_map::Entry::Occupied(mut chan_phase) => {
5646 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5647 updated_chan = true;
5648 handle_new_monitor_update!(self, funding_txo, update.clone(),
5649 peer_state_lock, peer_state, per_peer_state, chan);
5651 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5654 hash_map::Entry::Vacant(_) => {},
5659 // TODO: Track this as in-flight even though the channel is closed.
5660 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5663 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5664 let per_peer_state = self.per_peer_state.read().unwrap();
5665 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5666 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5667 let peer_state = &mut *peer_state_lock;
5668 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5669 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5671 let update_actions = peer_state.monitor_update_blocked_actions
5672 .remove(&channel_id).unwrap_or(Vec::new());
5673 mem::drop(peer_state_lock);
5674 mem::drop(per_peer_state);
5675 self.handle_monitor_update_completion_actions(update_actions);
5681 NotifyOption::DoPersist
5684 #[cfg(any(test, feature = "_test_utils"))]
5685 /// Process background events, for functional testing
5686 pub fn test_process_background_events(&self) {
5687 let _lck = self.total_consistency_lock.read().unwrap();
5688 let _ = self.process_background_events();
5691 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5692 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5694 let logger = WithChannelContext::from(&self.logger, &chan.context);
5696 // If the feerate has decreased by less than half, don't bother
5697 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5698 return NotifyOption::SkipPersistNoEvents;
5700 if !chan.context.is_live() {
5701 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5702 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5703 return NotifyOption::SkipPersistNoEvents;
5705 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5706 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5708 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5709 NotifyOption::DoPersist
5713 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5714 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5715 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5716 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5717 pub fn maybe_update_chan_fees(&self) {
5718 PersistenceNotifierGuard::optionally_notify(self, || {
5719 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5721 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5722 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5724 let per_peer_state = self.per_peer_state.read().unwrap();
5725 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5726 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5727 let peer_state = &mut *peer_state_lock;
5728 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5729 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5731 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5736 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5737 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5745 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5747 /// This currently includes:
5748 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5749 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5750 /// than a minute, informing the network that they should no longer attempt to route over
5752 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5753 /// with the current [`ChannelConfig`].
5754 /// * Removing peers which have disconnected but and no longer have any channels.
5755 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5756 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5757 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5758 /// The latter is determined using the system clock in `std` and the highest seen block time
5759 /// minus two hours in `no-std`.
5761 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5762 /// estimate fetches.
5764 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5765 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5766 pub fn timer_tick_occurred(&self) {
5767 PersistenceNotifierGuard::optionally_notify(self, || {
5768 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5770 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5771 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5773 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5774 let mut timed_out_mpp_htlcs = Vec::new();
5775 let mut pending_peers_awaiting_removal = Vec::new();
5776 let mut shutdown_channels = Vec::new();
5778 let mut process_unfunded_channel_tick = |
5779 chan_id: &ChannelId,
5780 context: &mut ChannelContext<SP>,
5781 unfunded_context: &mut UnfundedChannelContext,
5782 pending_msg_events: &mut Vec<MessageSendEvent>,
5783 counterparty_node_id: PublicKey,
5785 context.maybe_expire_prev_config();
5786 if unfunded_context.should_expire_unfunded_channel() {
5787 let logger = WithChannelContext::from(&self.logger, context);
5789 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5790 update_maps_on_chan_removal!(self, &context);
5791 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5792 pending_msg_events.push(MessageSendEvent::HandleError {
5793 node_id: counterparty_node_id,
5794 action: msgs::ErrorAction::SendErrorMessage {
5795 msg: msgs::ErrorMessage {
5796 channel_id: *chan_id,
5797 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5808 let per_peer_state = self.per_peer_state.read().unwrap();
5809 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5810 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5811 let peer_state = &mut *peer_state_lock;
5812 let pending_msg_events = &mut peer_state.pending_msg_events;
5813 let counterparty_node_id = *counterparty_node_id;
5814 peer_state.channel_by_id.retain(|chan_id, phase| {
5816 ChannelPhase::Funded(chan) => {
5817 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5822 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5823 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5825 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5826 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5827 handle_errors.push((Err(err), counterparty_node_id));
5828 if needs_close { return false; }
5831 match chan.channel_update_status() {
5832 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5833 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5834 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5835 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5836 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5837 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5838 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5840 if n >= DISABLE_GOSSIP_TICKS {
5841 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5842 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5843 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5844 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5848 should_persist = NotifyOption::DoPersist;
5850 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5853 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5855 if n >= ENABLE_GOSSIP_TICKS {
5856 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5857 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5858 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5859 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5863 should_persist = NotifyOption::DoPersist;
5865 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5871 chan.context.maybe_expire_prev_config();
5873 if chan.should_disconnect_peer_awaiting_response() {
5874 let logger = WithChannelContext::from(&self.logger, &chan.context);
5875 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5876 counterparty_node_id, chan_id);
5877 pending_msg_events.push(MessageSendEvent::HandleError {
5878 node_id: counterparty_node_id,
5879 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5880 msg: msgs::WarningMessage {
5881 channel_id: *chan_id,
5882 data: "Disconnecting due to timeout awaiting response".to_owned(),
5890 ChannelPhase::UnfundedInboundV1(chan) => {
5891 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5892 pending_msg_events, counterparty_node_id)
5894 ChannelPhase::UnfundedOutboundV1(chan) => {
5895 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5896 pending_msg_events, counterparty_node_id)
5898 #[cfg(any(dual_funding, splicing))]
5899 ChannelPhase::UnfundedInboundV2(chan) => {
5900 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5901 pending_msg_events, counterparty_node_id)
5903 #[cfg(any(dual_funding, splicing))]
5904 ChannelPhase::UnfundedOutboundV2(chan) => {
5905 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5906 pending_msg_events, counterparty_node_id)
5911 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5912 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5913 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5914 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5915 peer_state.pending_msg_events.push(
5916 events::MessageSendEvent::HandleError {
5917 node_id: counterparty_node_id,
5918 action: msgs::ErrorAction::SendErrorMessage {
5919 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5925 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5927 if peer_state.ok_to_remove(true) {
5928 pending_peers_awaiting_removal.push(counterparty_node_id);
5933 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5934 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5935 // of to that peer is later closed while still being disconnected (i.e. force closed),
5936 // we therefore need to remove the peer from `peer_state` separately.
5937 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5938 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5939 // negative effects on parallelism as much as possible.
5940 if pending_peers_awaiting_removal.len() > 0 {
5941 let mut per_peer_state = self.per_peer_state.write().unwrap();
5942 for counterparty_node_id in pending_peers_awaiting_removal {
5943 match per_peer_state.entry(counterparty_node_id) {
5944 hash_map::Entry::Occupied(entry) => {
5945 // Remove the entry if the peer is still disconnected and we still
5946 // have no channels to the peer.
5947 let remove_entry = {
5948 let peer_state = entry.get().lock().unwrap();
5949 peer_state.ok_to_remove(true)
5952 entry.remove_entry();
5955 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5960 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5961 if payment.htlcs.is_empty() {
5962 // This should be unreachable
5963 debug_assert!(false);
5966 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5967 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5968 // In this case we're not going to handle any timeouts of the parts here.
5969 // This condition determining whether the MPP is complete here must match
5970 // exactly the condition used in `process_pending_htlc_forwards`.
5971 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5972 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5975 } else if payment.htlcs.iter_mut().any(|htlc| {
5976 htlc.timer_ticks += 1;
5977 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5979 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5980 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5987 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5988 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5989 let reason = HTLCFailReason::from_failure_code(23);
5990 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5991 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5994 for (err, counterparty_node_id) in handle_errors.drain(..) {
5995 let _ = handle_error!(self, err, counterparty_node_id);
5998 for shutdown_res in shutdown_channels {
5999 self.finish_close_channel(shutdown_res);
6002 #[cfg(feature = "std")]
6003 let duration_since_epoch = std::time::SystemTime::now()
6004 .duration_since(std::time::SystemTime::UNIX_EPOCH)
6005 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
6006 #[cfg(not(feature = "std"))]
6007 let duration_since_epoch = Duration::from_secs(
6008 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6011 self.pending_outbound_payments.remove_stale_payments(
6012 duration_since_epoch, &self.pending_events
6015 // Technically we don't need to do this here, but if we have holding cell entries in a
6016 // channel that need freeing, it's better to do that here and block a background task
6017 // than block the message queueing pipeline.
6018 if self.check_free_holding_cells() {
6019 should_persist = NotifyOption::DoPersist;
6026 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6027 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6028 /// along the path (including in our own channel on which we received it).
6030 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6031 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6032 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6033 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6035 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6036 /// [`ChannelManager::claim_funds`]), you should still monitor for
6037 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6038 /// startup during which time claims that were in-progress at shutdown may be replayed.
6039 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6040 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6043 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6044 /// reason for the failure.
6046 /// See [`FailureCode`] for valid failure codes.
6047 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6048 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6050 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6051 if let Some(payment) = removed_source {
6052 for htlc in payment.htlcs {
6053 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6054 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6055 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6056 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6061 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6062 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6063 match failure_code {
6064 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6065 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6066 FailureCode::IncorrectOrUnknownPaymentDetails => {
6067 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6068 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6069 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6071 FailureCode::InvalidOnionPayload(data) => {
6072 let fail_data = match data {
6073 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6076 HTLCFailReason::reason(failure_code.into(), fail_data)
6081 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6082 /// that we want to return and a channel.
6084 /// This is for failures on the channel on which the HTLC was *received*, not failures
6086 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6087 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6088 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6089 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6090 // an inbound SCID alias before the real SCID.
6091 let scid_pref = if chan.context.should_announce() {
6092 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6094 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6096 if let Some(scid) = scid_pref {
6097 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6099 (0x4000|10, Vec::new())
6104 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6105 /// that we want to return and a channel.
6106 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6107 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6108 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6109 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6110 if desired_err_code == 0x1000 | 20 {
6111 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6112 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6113 0u16.write(&mut enc).expect("Writes cannot fail");
6115 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6116 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6117 upd.write(&mut enc).expect("Writes cannot fail");
6118 (desired_err_code, enc.0)
6120 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6121 // which means we really shouldn't have gotten a payment to be forwarded over this
6122 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6123 // PERM|no_such_channel should be fine.
6124 (0x4000|10, Vec::new())
6128 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6129 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6130 // be surfaced to the user.
6131 fn fail_holding_cell_htlcs(
6132 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6133 counterparty_node_id: &PublicKey
6135 let (failure_code, onion_failure_data) = {
6136 let per_peer_state = self.per_peer_state.read().unwrap();
6137 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6138 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6139 let peer_state = &mut *peer_state_lock;
6140 match peer_state.channel_by_id.entry(channel_id) {
6141 hash_map::Entry::Occupied(chan_phase_entry) => {
6142 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6143 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6145 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6146 debug_assert!(false);
6147 (0x4000|10, Vec::new())
6150 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6152 } else { (0x4000|10, Vec::new()) }
6155 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6156 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6157 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6158 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6162 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6163 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6164 if push_forward_event { self.push_pending_forwards_ev(); }
6167 /// Fails an HTLC backwards to the sender of it to us.
6168 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6169 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6170 // Ensure that no peer state channel storage lock is held when calling this function.
6171 // This ensures that future code doesn't introduce a lock-order requirement for
6172 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6173 // this function with any `per_peer_state` peer lock acquired would.
6174 #[cfg(debug_assertions)]
6175 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6176 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6179 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6180 //identify whether we sent it or not based on the (I presume) very different runtime
6181 //between the branches here. We should make this async and move it into the forward HTLCs
6184 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6185 // from block_connected which may run during initialization prior to the chain_monitor
6186 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6187 let mut push_forward_event;
6189 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6190 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6191 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6192 &self.pending_events, &self.logger);
6194 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6195 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6196 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6199 WithContext::from(&self.logger, None, Some(*channel_id)),
6200 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6201 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6203 let failure = match blinded_failure {
6204 Some(BlindedFailure::FromIntroductionNode) => {
6205 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6206 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6207 incoming_packet_shared_secret, phantom_shared_secret
6209 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6211 Some(BlindedFailure::FromBlindedNode) => {
6212 HTLCForwardInfo::FailMalformedHTLC {
6214 failure_code: INVALID_ONION_BLINDING,
6215 sha256_of_onion: [0; 32]
6219 let err_packet = onion_error.get_encrypted_failure_packet(
6220 incoming_packet_shared_secret, phantom_shared_secret
6222 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6226 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6227 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6228 push_forward_event &= forward_htlcs.is_empty();
6229 match forward_htlcs.entry(*short_channel_id) {
6230 hash_map::Entry::Occupied(mut entry) => {
6231 entry.get_mut().push(failure);
6233 hash_map::Entry::Vacant(entry) => {
6234 entry.insert(vec!(failure));
6237 mem::drop(forward_htlcs);
6238 let mut pending_events = self.pending_events.lock().unwrap();
6239 pending_events.push_back((events::Event::HTLCHandlingFailed {
6240 prev_channel_id: *channel_id,
6241 failed_next_destination: destination,
6248 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6249 /// [`MessageSendEvent`]s needed to claim the payment.
6251 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6252 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6253 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6254 /// successful. It will generally be available in the next [`process_pending_events`] call.
6256 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6257 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6258 /// event matches your expectation. If you fail to do so and call this method, you may provide
6259 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6261 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6262 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6263 /// [`claim_funds_with_known_custom_tlvs`].
6265 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6266 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6267 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6268 /// [`process_pending_events`]: EventsProvider::process_pending_events
6269 /// [`create_inbound_payment`]: Self::create_inbound_payment
6270 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6271 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6272 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6273 self.claim_payment_internal(payment_preimage, false);
6276 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6277 /// even type numbers.
6281 /// You MUST check you've understood all even TLVs before using this to
6282 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6284 /// [`claim_funds`]: Self::claim_funds
6285 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6286 self.claim_payment_internal(payment_preimage, true);
6289 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6290 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6292 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6295 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6296 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6297 let mut receiver_node_id = self.our_network_pubkey;
6298 for htlc in payment.htlcs.iter() {
6299 if htlc.prev_hop.phantom_shared_secret.is_some() {
6300 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6301 .expect("Failed to get node_id for phantom node recipient");
6302 receiver_node_id = phantom_pubkey;
6307 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6308 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6309 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6310 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6311 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6313 if dup_purpose.is_some() {
6314 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6315 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6319 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6320 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6321 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6322 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6323 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6324 mem::drop(claimable_payments);
6325 for htlc in payment.htlcs {
6326 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6327 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6328 let receiver = HTLCDestination::FailedPayment { payment_hash };
6329 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6338 debug_assert!(!sources.is_empty());
6340 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6341 // and when we got here we need to check that the amount we're about to claim matches the
6342 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6343 // the MPP parts all have the same `total_msat`.
6344 let mut claimable_amt_msat = 0;
6345 let mut prev_total_msat = None;
6346 let mut expected_amt_msat = None;
6347 let mut valid_mpp = true;
6348 let mut errs = Vec::new();
6349 let per_peer_state = self.per_peer_state.read().unwrap();
6350 for htlc in sources.iter() {
6351 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6352 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6353 debug_assert!(false);
6357 prev_total_msat = Some(htlc.total_msat);
6359 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6360 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6361 debug_assert!(false);
6365 expected_amt_msat = htlc.total_value_received;
6366 claimable_amt_msat += htlc.value;
6368 mem::drop(per_peer_state);
6369 if sources.is_empty() || expected_amt_msat.is_none() {
6370 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6371 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6374 if claimable_amt_msat != expected_amt_msat.unwrap() {
6375 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6376 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6377 expected_amt_msat.unwrap(), claimable_amt_msat);
6381 for htlc in sources.drain(..) {
6382 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6383 if let Err((pk, err)) = self.claim_funds_from_hop(
6384 htlc.prev_hop, payment_preimage,
6385 |_, definitely_duplicate| {
6386 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6387 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6390 if let msgs::ErrorAction::IgnoreError = err.err.action {
6391 // We got a temporary failure updating monitor, but will claim the
6392 // HTLC when the monitor updating is restored (or on chain).
6393 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6394 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6395 } else { errs.push((pk, err)); }
6400 for htlc in sources.drain(..) {
6401 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6402 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6403 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6404 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6405 let receiver = HTLCDestination::FailedPayment { payment_hash };
6406 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6408 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6411 // Now we can handle any errors which were generated.
6412 for (counterparty_node_id, err) in errs.drain(..) {
6413 let res: Result<(), _> = Err(err);
6414 let _ = handle_error!(self, res, counterparty_node_id);
6418 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6419 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6420 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6421 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6423 // If we haven't yet run background events assume we're still deserializing and shouldn't
6424 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6425 // `BackgroundEvent`s.
6426 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6428 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6429 // the required mutexes are not held before we start.
6430 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6431 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6434 let per_peer_state = self.per_peer_state.read().unwrap();
6435 let chan_id = prev_hop.channel_id;
6436 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6437 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6441 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6442 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6443 .map(|peer_mutex| peer_mutex.lock().unwrap())
6446 if peer_state_opt.is_some() {
6447 let mut peer_state_lock = peer_state_opt.unwrap();
6448 let peer_state = &mut *peer_state_lock;
6449 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6450 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6451 let counterparty_node_id = chan.context.get_counterparty_node_id();
6452 let logger = WithChannelContext::from(&self.logger, &chan.context);
6453 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6456 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6457 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6458 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6460 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6463 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6464 peer_state, per_peer_state, chan);
6466 // If we're running during init we cannot update a monitor directly -
6467 // they probably haven't actually been loaded yet. Instead, push the
6468 // monitor update as a background event.
6469 self.pending_background_events.lock().unwrap().push(
6470 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6471 counterparty_node_id,
6472 funding_txo: prev_hop.outpoint,
6473 channel_id: prev_hop.channel_id,
6474 update: monitor_update.clone(),
6478 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6479 let action = if let Some(action) = completion_action(None, true) {
6484 mem::drop(peer_state_lock);
6486 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6488 let (node_id, _funding_outpoint, channel_id, blocker) =
6489 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6490 downstream_counterparty_node_id: node_id,
6491 downstream_funding_outpoint: funding_outpoint,
6492 blocking_action: blocker, downstream_channel_id: channel_id,
6494 (node_id, funding_outpoint, channel_id, blocker)
6496 debug_assert!(false,
6497 "Duplicate claims should always free another channel immediately");
6500 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6501 let mut peer_state = peer_state_mtx.lock().unwrap();
6502 if let Some(blockers) = peer_state
6503 .actions_blocking_raa_monitor_updates
6504 .get_mut(&channel_id)
6506 let mut found_blocker = false;
6507 blockers.retain(|iter| {
6508 // Note that we could actually be blocked, in
6509 // which case we need to only remove the one
6510 // blocker which was added duplicatively.
6511 let first_blocker = !found_blocker;
6512 if *iter == blocker { found_blocker = true; }
6513 *iter != blocker || !first_blocker
6515 debug_assert!(found_blocker);
6518 debug_assert!(false);
6527 let preimage_update = ChannelMonitorUpdate {
6528 update_id: CLOSED_CHANNEL_UPDATE_ID,
6529 counterparty_node_id: None,
6530 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6533 channel_id: Some(prev_hop.channel_id),
6537 // We update the ChannelMonitor on the backward link, after
6538 // receiving an `update_fulfill_htlc` from the forward link.
6539 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6540 if update_res != ChannelMonitorUpdateStatus::Completed {
6541 // TODO: This needs to be handled somehow - if we receive a monitor update
6542 // with a preimage we *must* somehow manage to propagate it to the upstream
6543 // channel, or we must have an ability to receive the same event and try
6544 // again on restart.
6545 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6546 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6547 payment_preimage, update_res);
6550 // If we're running during init we cannot update a monitor directly - they probably
6551 // haven't actually been loaded yet. Instead, push the monitor update as a background
6553 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6554 // channel is already closed) we need to ultimately handle the monitor update
6555 // completion action only after we've completed the monitor update. This is the only
6556 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6557 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6558 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6559 // complete the monitor update completion action from `completion_action`.
6560 self.pending_background_events.lock().unwrap().push(
6561 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6562 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6565 // Note that we do process the completion action here. This totally could be a
6566 // duplicate claim, but we have no way of knowing without interrogating the
6567 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6568 // generally always allowed to be duplicative (and it's specifically noted in
6569 // `PaymentForwarded`).
6570 self.handle_monitor_update_completion_actions(completion_action(None, false));
6574 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6575 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6578 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6579 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6580 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6581 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6584 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6585 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6586 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6587 if let Some(pubkey) = next_channel_counterparty_node_id {
6588 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6590 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6591 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6592 counterparty_node_id: path.hops[0].pubkey,
6594 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6595 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6598 HTLCSource::PreviousHopData(hop_data) => {
6599 let prev_channel_id = hop_data.channel_id;
6600 let prev_user_channel_id = hop_data.user_channel_id;
6601 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6602 #[cfg(debug_assertions)]
6603 let claiming_chan_funding_outpoint = hop_data.outpoint;
6604 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6605 |htlc_claim_value_msat, definitely_duplicate| {
6606 let chan_to_release =
6607 if let Some(node_id) = next_channel_counterparty_node_id {
6608 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6610 // We can only get `None` here if we are processing a
6611 // `ChannelMonitor`-originated event, in which case we
6612 // don't care about ensuring we wake the downstream
6613 // channel's monitor updating - the channel is already
6618 if definitely_duplicate && startup_replay {
6619 // On startup we may get redundant claims which are related to
6620 // monitor updates still in flight. In that case, we shouldn't
6621 // immediately free, but instead let that monitor update complete
6622 // in the background.
6623 #[cfg(debug_assertions)] {
6624 let background_events = self.pending_background_events.lock().unwrap();
6625 // There should be a `BackgroundEvent` pending...
6626 assert!(background_events.iter().any(|ev| {
6628 // to apply a monitor update that blocked the claiming channel,
6629 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6630 funding_txo, update, ..
6632 if *funding_txo == claiming_chan_funding_outpoint {
6633 assert!(update.updates.iter().any(|upd|
6634 if let ChannelMonitorUpdateStep::PaymentPreimage {
6635 payment_preimage: update_preimage
6637 payment_preimage == *update_preimage
6643 // or the channel we'd unblock is already closed,
6644 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6645 (funding_txo, _channel_id, monitor_update)
6647 if *funding_txo == next_channel_outpoint {
6648 assert_eq!(monitor_update.updates.len(), 1);
6650 monitor_update.updates[0],
6651 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6656 // or the monitor update has completed and will unblock
6657 // immediately once we get going.
6658 BackgroundEvent::MonitorUpdatesComplete {
6661 *channel_id == prev_channel_id,
6663 }), "{:?}", *background_events);
6666 } else if definitely_duplicate {
6667 if let Some(other_chan) = chan_to_release {
6668 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6669 downstream_counterparty_node_id: other_chan.0,
6670 downstream_funding_outpoint: other_chan.1,
6671 downstream_channel_id: other_chan.2,
6672 blocking_action: other_chan.3,
6676 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6677 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6678 Some(claimed_htlc_value - forwarded_htlc_value)
6681 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6682 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6683 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6684 event: events::Event::PaymentForwarded {
6685 prev_channel_id: Some(prev_channel_id),
6686 next_channel_id: Some(next_channel_id),
6687 prev_user_channel_id,
6688 next_user_channel_id,
6689 total_fee_earned_msat,
6691 claim_from_onchain_tx: from_onchain,
6692 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6694 downstream_counterparty_and_funding_outpoint: chan_to_release,
6698 if let Err((pk, err)) = res {
6699 let result: Result<(), _> = Err(err);
6700 let _ = handle_error!(self, result, pk);
6706 /// Gets the node_id held by this ChannelManager
6707 pub fn get_our_node_id(&self) -> PublicKey {
6708 self.our_network_pubkey.clone()
6711 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6712 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6713 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6714 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6716 for action in actions.into_iter() {
6718 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6719 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6720 if let Some(ClaimingPayment {
6722 payment_purpose: purpose,
6725 sender_intended_value: sender_intended_total_msat,
6727 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6731 receiver_node_id: Some(receiver_node_id),
6733 sender_intended_total_msat,
6737 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6738 event, downstream_counterparty_and_funding_outpoint
6740 self.pending_events.lock().unwrap().push_back((event, None));
6741 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6742 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6745 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6746 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6748 self.handle_monitor_update_release(
6749 downstream_counterparty_node_id,
6750 downstream_funding_outpoint,
6751 downstream_channel_id,
6752 Some(blocking_action),
6759 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6760 /// update completion.
6761 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6762 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6763 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6764 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6765 funding_broadcastable: Option<Transaction>,
6766 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6767 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6768 let logger = WithChannelContext::from(&self.logger, &channel.context);
6769 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6770 &channel.context.channel_id(),
6771 if raa.is_some() { "an" } else { "no" },
6772 if commitment_update.is_some() { "a" } else { "no" },
6773 pending_forwards.len(), pending_update_adds.len(),
6774 if funding_broadcastable.is_some() { "" } else { "not " },
6775 if channel_ready.is_some() { "sending" } else { "without" },
6776 if announcement_sigs.is_some() { "sending" } else { "without" });
6778 let counterparty_node_id = channel.context.get_counterparty_node_id();
6779 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6781 let mut htlc_forwards = None;
6782 if !pending_forwards.is_empty() {
6783 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6784 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6786 let mut decode_update_add_htlcs = None;
6787 if !pending_update_adds.is_empty() {
6788 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6791 if let Some(msg) = channel_ready {
6792 send_channel_ready!(self, pending_msg_events, channel, msg);
6794 if let Some(msg) = announcement_sigs {
6795 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6796 node_id: counterparty_node_id,
6801 macro_rules! handle_cs { () => {
6802 if let Some(update) = commitment_update {
6803 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6804 node_id: counterparty_node_id,
6809 macro_rules! handle_raa { () => {
6810 if let Some(revoke_and_ack) = raa {
6811 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6812 node_id: counterparty_node_id,
6813 msg: revoke_and_ack,
6818 RAACommitmentOrder::CommitmentFirst => {
6822 RAACommitmentOrder::RevokeAndACKFirst => {
6828 if let Some(tx) = funding_broadcastable {
6829 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6830 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6834 let mut pending_events = self.pending_events.lock().unwrap();
6835 emit_channel_pending_event!(pending_events, channel);
6836 emit_channel_ready_event!(pending_events, channel);
6839 (htlc_forwards, decode_update_add_htlcs)
6842 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6843 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6845 let counterparty_node_id = match counterparty_node_id {
6846 Some(cp_id) => cp_id.clone(),
6848 // TODO: Once we can rely on the counterparty_node_id from the
6849 // monitor event, this and the outpoint_to_peer map should be removed.
6850 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6851 match outpoint_to_peer.get(funding_txo) {
6852 Some(cp_id) => cp_id.clone(),
6857 let per_peer_state = self.per_peer_state.read().unwrap();
6858 let mut peer_state_lock;
6859 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6860 if peer_state_mutex_opt.is_none() { return }
6861 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6862 let peer_state = &mut *peer_state_lock;
6864 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6867 let update_actions = peer_state.monitor_update_blocked_actions
6868 .remove(&channel_id).unwrap_or(Vec::new());
6869 mem::drop(peer_state_lock);
6870 mem::drop(per_peer_state);
6871 self.handle_monitor_update_completion_actions(update_actions);
6874 let remaining_in_flight =
6875 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6876 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6879 let logger = WithChannelContext::from(&self.logger, &channel.context);
6880 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6881 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6882 remaining_in_flight);
6883 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6886 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6889 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6891 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6892 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6895 /// The `user_channel_id` parameter will be provided back in
6896 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6897 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6899 /// Note that this method will return an error and reject the channel, if it requires support
6900 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6901 /// used to accept such channels.
6903 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6904 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6905 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6906 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6909 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6910 /// it as confirmed immediately.
6912 /// The `user_channel_id` parameter will be provided back in
6913 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6914 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6916 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6917 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6919 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6920 /// transaction and blindly assumes that it will eventually confirm.
6922 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6923 /// does not pay to the correct script the correct amount, *you will lose funds*.
6925 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6926 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6927 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6928 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6931 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6933 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6934 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6936 let peers_without_funded_channels =
6937 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6938 let per_peer_state = self.per_peer_state.read().unwrap();
6939 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6941 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6942 log_error!(logger, "{}", err_str);
6944 APIError::ChannelUnavailable { err: err_str }
6946 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6947 let peer_state = &mut *peer_state_lock;
6948 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6950 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6951 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6952 // that we can delay allocating the SCID until after we're sure that the checks below will
6954 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6955 Some(unaccepted_channel) => {
6956 let best_block_height = self.best_block.read().unwrap().height;
6957 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6958 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6959 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6960 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6963 let err_str = "No such channel awaiting to be accepted.".to_owned();
6964 log_error!(logger, "{}", err_str);
6966 return Err(APIError::APIMisuseError { err: err_str });
6972 mem::drop(peer_state_lock);
6973 mem::drop(per_peer_state);
6974 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6975 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6977 return Err(APIError::ChannelUnavailable { err: e.err });
6981 Ok(mut channel) => {
6983 // This should have been correctly configured by the call to InboundV1Channel::new.
6984 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6985 } else if channel.context.get_channel_type().requires_zero_conf() {
6986 let send_msg_err_event = events::MessageSendEvent::HandleError {
6987 node_id: channel.context.get_counterparty_node_id(),
6988 action: msgs::ErrorAction::SendErrorMessage{
6989 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6992 peer_state.pending_msg_events.push(send_msg_err_event);
6993 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
6994 log_error!(logger, "{}", err_str);
6996 return Err(APIError::APIMisuseError { err: err_str });
6998 // If this peer already has some channels, a new channel won't increase our number of peers
6999 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7000 // channels per-peer we can accept channels from a peer with existing ones.
7001 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
7002 let send_msg_err_event = events::MessageSendEvent::HandleError {
7003 node_id: channel.context.get_counterparty_node_id(),
7004 action: msgs::ErrorAction::SendErrorMessage{
7005 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7008 peer_state.pending_msg_events.push(send_msg_err_event);
7009 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7010 log_error!(logger, "{}", err_str);
7012 return Err(APIError::APIMisuseError { err: err_str });
7016 // Now that we know we have a channel, assign an outbound SCID alias.
7017 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7018 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7020 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7021 node_id: channel.context.get_counterparty_node_id(),
7022 msg: channel.accept_inbound_channel(),
7025 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7032 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7033 /// or 0-conf channels.
7035 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7036 /// non-0-conf channels we have with the peer.
7037 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7038 where Filter: Fn(&PeerState<SP>) -> bool {
7039 let mut peers_without_funded_channels = 0;
7040 let best_block_height = self.best_block.read().unwrap().height;
7042 let peer_state_lock = self.per_peer_state.read().unwrap();
7043 for (_, peer_mtx) in peer_state_lock.iter() {
7044 let peer = peer_mtx.lock().unwrap();
7045 if !maybe_count_peer(&*peer) { continue; }
7046 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7047 if num_unfunded_channels == peer.total_channel_count() {
7048 peers_without_funded_channels += 1;
7052 return peers_without_funded_channels;
7055 fn unfunded_channel_count(
7056 peer: &PeerState<SP>, best_block_height: u32
7058 let mut num_unfunded_channels = 0;
7059 for (_, phase) in peer.channel_by_id.iter() {
7061 ChannelPhase::Funded(chan) => {
7062 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7063 // which have not yet had any confirmations on-chain.
7064 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7065 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7067 num_unfunded_channels += 1;
7070 ChannelPhase::UnfundedInboundV1(chan) => {
7071 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7072 num_unfunded_channels += 1;
7075 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7076 #[cfg(any(dual_funding, splicing))]
7077 ChannelPhase::UnfundedInboundV2(chan) => {
7078 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7079 // included in the unfunded count.
7080 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7081 chan.dual_funding_context.our_funding_satoshis == 0 {
7082 num_unfunded_channels += 1;
7085 ChannelPhase::UnfundedOutboundV1(_) => {
7086 // Outbound channels don't contribute to the unfunded count in the DoS context.
7089 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7090 #[cfg(any(dual_funding, splicing))]
7091 ChannelPhase::UnfundedOutboundV2(_) => {
7092 // Outbound channels don't contribute to the unfunded count in the DoS context.
7097 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7100 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7101 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7102 // likely to be lost on restart!
7103 if msg.common_fields.chain_hash != self.chain_hash {
7104 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7105 msg.common_fields.temporary_channel_id.clone()));
7108 if !self.default_configuration.accept_inbound_channels {
7109 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7110 msg.common_fields.temporary_channel_id.clone()));
7113 // Get the number of peers with channels, but without funded ones. We don't care too much
7114 // about peers that never open a channel, so we filter by peers that have at least one
7115 // channel, and then limit the number of those with unfunded channels.
7116 let channeled_peers_without_funding =
7117 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7119 let per_peer_state = self.per_peer_state.read().unwrap();
7120 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7122 debug_assert!(false);
7123 MsgHandleErrInternal::send_err_msg_no_close(
7124 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7125 msg.common_fields.temporary_channel_id.clone())
7127 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7128 let peer_state = &mut *peer_state_lock;
7130 // If this peer already has some channels, a new channel won't increase our number of peers
7131 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7132 // channels per-peer we can accept channels from a peer with existing ones.
7133 if peer_state.total_channel_count() == 0 &&
7134 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7135 !self.default_configuration.manually_accept_inbound_channels
7137 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7138 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7139 msg.common_fields.temporary_channel_id.clone()));
7142 let best_block_height = self.best_block.read().unwrap().height;
7143 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7144 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7145 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7146 msg.common_fields.temporary_channel_id.clone()));
7149 let channel_id = msg.common_fields.temporary_channel_id;
7150 let channel_exists = peer_state.has_channel(&channel_id);
7152 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7153 "temporary_channel_id collision for the same peer!".to_owned(),
7154 msg.common_fields.temporary_channel_id.clone()));
7157 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7158 if self.default_configuration.manually_accept_inbound_channels {
7159 let channel_type = channel::channel_type_from_open_channel(
7160 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7162 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7164 let mut pending_events = self.pending_events.lock().unwrap();
7165 pending_events.push_back((events::Event::OpenChannelRequest {
7166 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7167 counterparty_node_id: counterparty_node_id.clone(),
7168 funding_satoshis: msg.common_fields.funding_satoshis,
7169 push_msat: msg.push_msat,
7172 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7173 open_channel_msg: msg.clone(),
7174 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7179 // Otherwise create the channel right now.
7180 let mut random_bytes = [0u8; 16];
7181 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7182 let user_channel_id = u128::from_be_bytes(random_bytes);
7183 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7184 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7185 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7188 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7193 let channel_type = channel.context.get_channel_type();
7194 if channel_type.requires_zero_conf() {
7195 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7196 "No zero confirmation channels accepted".to_owned(),
7197 msg.common_fields.temporary_channel_id.clone()));
7199 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7200 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7201 "No channels with anchor outputs accepted".to_owned(),
7202 msg.common_fields.temporary_channel_id.clone()));
7205 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7206 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7208 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7209 node_id: counterparty_node_id.clone(),
7210 msg: channel.accept_inbound_channel(),
7212 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7216 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7217 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7218 // likely to be lost on restart!
7219 let (value, output_script, user_id) = {
7220 let per_peer_state = self.per_peer_state.read().unwrap();
7221 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7223 debug_assert!(false);
7224 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7226 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7227 let peer_state = &mut *peer_state_lock;
7228 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7229 hash_map::Entry::Occupied(mut phase) => {
7230 match phase.get_mut() {
7231 ChannelPhase::UnfundedOutboundV1(chan) => {
7232 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7233 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7236 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7240 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7243 let mut pending_events = self.pending_events.lock().unwrap();
7244 pending_events.push_back((events::Event::FundingGenerationReady {
7245 temporary_channel_id: msg.common_fields.temporary_channel_id,
7246 counterparty_node_id: *counterparty_node_id,
7247 channel_value_satoshis: value,
7249 user_channel_id: user_id,
7254 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7255 let best_block = *self.best_block.read().unwrap();
7257 let per_peer_state = self.per_peer_state.read().unwrap();
7258 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7260 debug_assert!(false);
7261 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7264 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7265 let peer_state = &mut *peer_state_lock;
7266 let (mut chan, funding_msg_opt, monitor) =
7267 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7268 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7269 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7270 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7272 Err((inbound_chan, err)) => {
7273 // We've already removed this inbound channel from the map in `PeerState`
7274 // above so at this point we just need to clean up any lingering entries
7275 // concerning this channel as it is safe to do so.
7276 debug_assert!(matches!(err, ChannelError::Close(_)));
7277 // Really we should be returning the channel_id the peer expects based
7278 // on their funding info here, but they're horribly confused anyway, so
7279 // there's not a lot we can do to save them.
7280 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7284 Some(mut phase) => {
7285 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7286 let err = ChannelError::Close(err_msg);
7287 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7289 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7292 let funded_channel_id = chan.context.channel_id();
7294 macro_rules! fail_chan { ($err: expr) => { {
7295 // Note that at this point we've filled in the funding outpoint on our
7296 // channel, but its actually in conflict with another channel. Thus, if
7297 // we call `convert_chan_phase_err` immediately (thus calling
7298 // `update_maps_on_chan_removal`), we'll remove the existing channel
7299 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7301 let err = ChannelError::Close($err.to_owned());
7302 chan.unset_funding_info(msg.temporary_channel_id);
7303 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7306 match peer_state.channel_by_id.entry(funded_channel_id) {
7307 hash_map::Entry::Occupied(_) => {
7308 fail_chan!("Already had channel with the new channel_id");
7310 hash_map::Entry::Vacant(e) => {
7311 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7312 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7313 hash_map::Entry::Occupied(_) => {
7314 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7316 hash_map::Entry::Vacant(i_e) => {
7317 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7318 if let Ok(persist_state) = monitor_res {
7319 i_e.insert(chan.context.get_counterparty_node_id());
7320 mem::drop(outpoint_to_peer_lock);
7322 // There's no problem signing a counterparty's funding transaction if our monitor
7323 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7324 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7325 // until we have persisted our monitor.
7326 if let Some(msg) = funding_msg_opt {
7327 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7328 node_id: counterparty_node_id.clone(),
7333 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7334 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7335 per_peer_state, chan, INITIAL_MONITOR);
7337 unreachable!("This must be a funded channel as we just inserted it.");
7341 let logger = WithChannelContext::from(&self.logger, &chan.context);
7342 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7343 fail_chan!("Duplicate funding outpoint");
7351 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7352 let best_block = *self.best_block.read().unwrap();
7353 let per_peer_state = self.per_peer_state.read().unwrap();
7354 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7356 debug_assert!(false);
7357 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7360 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7361 let peer_state = &mut *peer_state_lock;
7362 match peer_state.channel_by_id.entry(msg.channel_id) {
7363 hash_map::Entry::Occupied(chan_phase_entry) => {
7364 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7365 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7366 let logger = WithContext::from(
7368 Some(chan.context.get_counterparty_node_id()),
7369 Some(chan.context.channel_id())
7372 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7374 Ok((mut chan, monitor)) => {
7375 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7376 // We really should be able to insert here without doing a second
7377 // lookup, but sadly rust stdlib doesn't currently allow keeping
7378 // the original Entry around with the value removed.
7379 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7380 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7381 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7382 } else { unreachable!(); }
7385 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7386 // We weren't able to watch the channel to begin with, so no
7387 // updates should be made on it. Previously, full_stack_target
7388 // found an (unreachable) panic when the monitor update contained
7389 // within `shutdown_finish` was applied.
7390 chan.unset_funding_info(msg.channel_id);
7391 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7395 debug_assert!(matches!(e, ChannelError::Close(_)),
7396 "We don't have a channel anymore, so the error better have expected close");
7397 // We've already removed this outbound channel from the map in
7398 // `PeerState` above so at this point we just need to clean up any
7399 // lingering entries concerning this channel as it is safe to do so.
7400 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7404 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7407 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7411 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7412 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7413 // closing a channel), so any changes are likely to be lost on restart!
7414 let per_peer_state = self.per_peer_state.read().unwrap();
7415 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7417 debug_assert!(false);
7418 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7420 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7421 let peer_state = &mut *peer_state_lock;
7422 match peer_state.channel_by_id.entry(msg.channel_id) {
7423 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7424 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7425 let logger = WithChannelContext::from(&self.logger, &chan.context);
7426 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7427 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7428 if let Some(announcement_sigs) = announcement_sigs_opt {
7429 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7430 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7431 node_id: counterparty_node_id.clone(),
7432 msg: announcement_sigs,
7434 } else if chan.context.is_usable() {
7435 // If we're sending an announcement_signatures, we'll send the (public)
7436 // channel_update after sending a channel_announcement when we receive our
7437 // counterparty's announcement_signatures. Thus, we only bother to send a
7438 // channel_update here if the channel is not public, i.e. we're not sending an
7439 // announcement_signatures.
7440 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7441 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7442 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7443 node_id: counterparty_node_id.clone(),
7450 let mut pending_events = self.pending_events.lock().unwrap();
7451 emit_channel_ready_event!(pending_events, chan);
7456 try_chan_phase_entry!(self, Err(ChannelError::Close(
7457 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7460 hash_map::Entry::Vacant(_) => {
7461 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7466 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7467 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7468 let mut finish_shutdown = None;
7470 let per_peer_state = self.per_peer_state.read().unwrap();
7471 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7473 debug_assert!(false);
7474 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7476 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7477 let peer_state = &mut *peer_state_lock;
7478 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7479 let phase = chan_phase_entry.get_mut();
7481 ChannelPhase::Funded(chan) => {
7482 if !chan.received_shutdown() {
7483 let logger = WithChannelContext::from(&self.logger, &chan.context);
7484 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7486 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7489 let funding_txo_opt = chan.context.get_funding_txo();
7490 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7491 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7492 dropped_htlcs = htlcs;
7494 if let Some(msg) = shutdown {
7495 // We can send the `shutdown` message before updating the `ChannelMonitor`
7496 // here as we don't need the monitor update to complete until we send a
7497 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7498 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7499 node_id: *counterparty_node_id,
7503 // Update the monitor with the shutdown script if necessary.
7504 if let Some(monitor_update) = monitor_update_opt {
7505 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7506 peer_state_lock, peer_state, per_peer_state, chan);
7509 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7510 let context = phase.context_mut();
7511 let logger = WithChannelContext::from(&self.logger, context);
7512 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7513 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7514 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7516 // TODO(dual_funding): Combine this match arm with above.
7517 #[cfg(any(dual_funding, splicing))]
7518 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7519 let context = phase.context_mut();
7520 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7521 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7522 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7526 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7529 for htlc_source in dropped_htlcs.drain(..) {
7530 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7531 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7532 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7534 if let Some(shutdown_res) = finish_shutdown {
7535 self.finish_close_channel(shutdown_res);
7541 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7542 let per_peer_state = self.per_peer_state.read().unwrap();
7543 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7545 debug_assert!(false);
7546 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7548 let (tx, chan_option, shutdown_result) = {
7549 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7550 let peer_state = &mut *peer_state_lock;
7551 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7552 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7553 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7554 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7555 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7556 if let Some(msg) = closing_signed {
7557 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7558 node_id: counterparty_node_id.clone(),
7563 // We're done with this channel, we've got a signed closing transaction and
7564 // will send the closing_signed back to the remote peer upon return. This
7565 // also implies there are no pending HTLCs left on the channel, so we can
7566 // fully delete it from tracking (the channel monitor is still around to
7567 // watch for old state broadcasts)!
7568 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7569 } else { (tx, None, shutdown_result) }
7571 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7572 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7575 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7578 if let Some(broadcast_tx) = tx {
7579 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7580 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7581 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7583 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7584 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7585 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7586 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7591 mem::drop(per_peer_state);
7592 if let Some(shutdown_result) = shutdown_result {
7593 self.finish_close_channel(shutdown_result);
7598 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7599 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7600 //determine the state of the payment based on our response/if we forward anything/the time
7601 //we take to respond. We should take care to avoid allowing such an attack.
7603 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7604 //us repeatedly garbled in different ways, and compare our error messages, which are
7605 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7606 //but we should prevent it anyway.
7608 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7609 // closing a channel), so any changes are likely to be lost on restart!
7611 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7612 let per_peer_state = self.per_peer_state.read().unwrap();
7613 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7615 debug_assert!(false);
7616 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7618 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7619 let peer_state = &mut *peer_state_lock;
7620 match peer_state.channel_by_id.entry(msg.channel_id) {
7621 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7622 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7623 let mut pending_forward_info = match decoded_hop_res {
7624 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7625 self.construct_pending_htlc_status(
7626 msg, counterparty_node_id, shared_secret, next_hop,
7627 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7629 Err(e) => PendingHTLCStatus::Fail(e)
7631 let logger = WithChannelContext::from(&self.logger, &chan.context);
7632 // If the update_add is completely bogus, the call will Err and we will close,
7633 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7634 // want to reject the new HTLC and fail it backwards instead of forwarding.
7635 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7636 if msg.blinding_point.is_some() {
7637 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7638 msgs::UpdateFailMalformedHTLC {
7639 channel_id: msg.channel_id,
7640 htlc_id: msg.htlc_id,
7641 sha256_of_onion: [0; 32],
7642 failure_code: INVALID_ONION_BLINDING,
7646 match pending_forward_info {
7647 PendingHTLCStatus::Forward(PendingHTLCInfo {
7648 ref incoming_shared_secret, ref routing, ..
7650 let reason = if routing.blinded_failure().is_some() {
7651 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7652 } else if (error_code & 0x1000) != 0 {
7653 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7654 HTLCFailReason::reason(real_code, error_data)
7656 HTLCFailReason::from_failure_code(error_code)
7657 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7658 let msg = msgs::UpdateFailHTLC {
7659 channel_id: msg.channel_id,
7660 htlc_id: msg.htlc_id,
7663 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7669 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7671 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7672 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7675 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7680 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7682 let next_user_channel_id;
7683 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7684 let per_peer_state = self.per_peer_state.read().unwrap();
7685 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7687 debug_assert!(false);
7688 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7690 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7691 let peer_state = &mut *peer_state_lock;
7692 match peer_state.channel_by_id.entry(msg.channel_id) {
7693 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7694 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7695 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7696 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7697 let logger = WithChannelContext::from(&self.logger, &chan.context);
7699 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7701 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7702 .or_insert_with(Vec::new)
7703 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7705 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7706 // entry here, even though we *do* need to block the next RAA monitor update.
7707 // We do this instead in the `claim_funds_internal` by attaching a
7708 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7709 // outbound HTLC is claimed. This is guaranteed to all complete before we
7710 // process the RAA as messages are processed from single peers serially.
7711 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7712 next_user_channel_id = chan.context.get_user_id();
7715 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7716 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7719 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7722 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7723 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7724 funding_txo, msg.channel_id, Some(next_user_channel_id),
7730 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7731 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7732 // closing a channel), so any changes are likely to be lost on restart!
7733 let per_peer_state = self.per_peer_state.read().unwrap();
7734 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7736 debug_assert!(false);
7737 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7739 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7740 let peer_state = &mut *peer_state_lock;
7741 match peer_state.channel_by_id.entry(msg.channel_id) {
7742 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7743 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7744 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7746 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7747 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7750 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7755 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7756 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7757 // closing a channel), so any changes are likely to be lost on restart!
7758 let per_peer_state = self.per_peer_state.read().unwrap();
7759 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7761 debug_assert!(false);
7762 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7764 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7765 let peer_state = &mut *peer_state_lock;
7766 match peer_state.channel_by_id.entry(msg.channel_id) {
7767 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7768 if (msg.failure_code & 0x8000) == 0 {
7769 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7770 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7772 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7773 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7775 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7776 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7780 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7784 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7785 let per_peer_state = self.per_peer_state.read().unwrap();
7786 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7788 debug_assert!(false);
7789 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7791 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7792 let peer_state = &mut *peer_state_lock;
7793 match peer_state.channel_by_id.entry(msg.channel_id) {
7794 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7795 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7796 let logger = WithChannelContext::from(&self.logger, &chan.context);
7797 let funding_txo = chan.context.get_funding_txo();
7798 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7799 if let Some(monitor_update) = monitor_update_opt {
7800 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7801 peer_state, per_peer_state, chan);
7805 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7806 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7809 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7813 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7814 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7815 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7816 push_forward_event &= decode_update_add_htlcs.is_empty();
7817 let scid = update_add_htlcs.0;
7818 match decode_update_add_htlcs.entry(scid) {
7819 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7820 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7822 if push_forward_event { self.push_pending_forwards_ev(); }
7826 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7827 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7828 if push_forward_event { self.push_pending_forwards_ev() }
7832 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7833 let mut push_forward_event = false;
7834 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7835 let mut new_intercept_events = VecDeque::new();
7836 let mut failed_intercept_forwards = Vec::new();
7837 if !pending_forwards.is_empty() {
7838 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7839 let scid = match forward_info.routing {
7840 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7841 PendingHTLCRouting::Receive { .. } => 0,
7842 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7844 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7845 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7847 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7848 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7849 let forward_htlcs_empty = forward_htlcs.is_empty();
7850 match forward_htlcs.entry(scid) {
7851 hash_map::Entry::Occupied(mut entry) => {
7852 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7853 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7855 hash_map::Entry::Vacant(entry) => {
7856 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7857 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7859 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7860 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7861 match pending_intercepts.entry(intercept_id) {
7862 hash_map::Entry::Vacant(entry) => {
7863 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7864 requested_next_hop_scid: scid,
7865 payment_hash: forward_info.payment_hash,
7866 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7867 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7870 entry.insert(PendingAddHTLCInfo {
7871 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7873 hash_map::Entry::Occupied(_) => {
7874 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7875 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7876 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7877 short_channel_id: prev_short_channel_id,
7878 user_channel_id: Some(prev_user_channel_id),
7879 outpoint: prev_funding_outpoint,
7880 channel_id: prev_channel_id,
7881 htlc_id: prev_htlc_id,
7882 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7883 phantom_shared_secret: None,
7884 blinded_failure: forward_info.routing.blinded_failure(),
7887 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7888 HTLCFailReason::from_failure_code(0x4000 | 10),
7889 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7894 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7895 // payments are being processed.
7896 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7897 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7898 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7905 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7906 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7909 if !new_intercept_events.is_empty() {
7910 let mut events = self.pending_events.lock().unwrap();
7911 events.append(&mut new_intercept_events);
7917 fn push_pending_forwards_ev(&self) {
7918 let mut pending_events = self.pending_events.lock().unwrap();
7919 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7920 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7921 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7923 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7924 // events is done in batches and they are not removed until we're done processing each
7925 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7926 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7927 // payments will need an additional forwarding event before being claimed to make them look
7928 // real by taking more time.
7929 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7930 pending_events.push_back((Event::PendingHTLCsForwardable {
7931 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7936 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7937 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7938 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7939 /// the [`ChannelMonitorUpdate`] in question.
7940 fn raa_monitor_updates_held(&self,
7941 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7942 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7944 actions_blocking_raa_monitor_updates
7945 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7946 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7947 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7948 channel_funding_outpoint,
7950 counterparty_node_id,
7955 #[cfg(any(test, feature = "_test_utils"))]
7956 pub(crate) fn test_raa_monitor_updates_held(&self,
7957 counterparty_node_id: PublicKey, channel_id: ChannelId
7959 let per_peer_state = self.per_peer_state.read().unwrap();
7960 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7961 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7962 let peer_state = &mut *peer_state_lck;
7964 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7965 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7966 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7972 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7973 let htlcs_to_fail = {
7974 let per_peer_state = self.per_peer_state.read().unwrap();
7975 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7977 debug_assert!(false);
7978 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7979 }).map(|mtx| mtx.lock().unwrap())?;
7980 let peer_state = &mut *peer_state_lock;
7981 match peer_state.channel_by_id.entry(msg.channel_id) {
7982 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7983 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7984 let logger = WithChannelContext::from(&self.logger, &chan.context);
7985 let funding_txo_opt = chan.context.get_funding_txo();
7986 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
7987 self.raa_monitor_updates_held(
7988 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
7989 *counterparty_node_id)
7991 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
7992 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
7993 if let Some(monitor_update) = monitor_update_opt {
7994 let funding_txo = funding_txo_opt
7995 .expect("Funding outpoint must have been set for RAA handling to succeed");
7996 handle_new_monitor_update!(self, funding_txo, monitor_update,
7997 peer_state_lock, peer_state, per_peer_state, chan);
8001 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8002 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
8005 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8008 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8012 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8013 let per_peer_state = self.per_peer_state.read().unwrap();
8014 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8016 debug_assert!(false);
8017 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8019 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8020 let peer_state = &mut *peer_state_lock;
8021 match peer_state.channel_by_id.entry(msg.channel_id) {
8022 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8023 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8024 let logger = WithChannelContext::from(&self.logger, &chan.context);
8025 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8027 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8028 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8031 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8036 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8037 let per_peer_state = self.per_peer_state.read().unwrap();
8038 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8040 debug_assert!(false);
8041 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8043 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8044 let peer_state = &mut *peer_state_lock;
8045 match peer_state.channel_by_id.entry(msg.channel_id) {
8046 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8047 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8048 if !chan.context.is_usable() {
8049 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8052 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8053 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8054 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8055 msg, &self.default_configuration
8056 ), chan_phase_entry),
8057 // Note that announcement_signatures fails if the channel cannot be announced,
8058 // so get_channel_update_for_broadcast will never fail by the time we get here.
8059 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8062 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8063 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8066 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8071 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8072 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8073 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8074 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8076 // It's not a local channel
8077 return Ok(NotifyOption::SkipPersistNoEvents)
8080 let per_peer_state = self.per_peer_state.read().unwrap();
8081 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8082 if peer_state_mutex_opt.is_none() {
8083 return Ok(NotifyOption::SkipPersistNoEvents)
8085 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8086 let peer_state = &mut *peer_state_lock;
8087 match peer_state.channel_by_id.entry(chan_id) {
8088 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8089 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8090 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8091 if chan.context.should_announce() {
8092 // If the announcement is about a channel of ours which is public, some
8093 // other peer may simply be forwarding all its gossip to us. Don't provide
8094 // a scary-looking error message and return Ok instead.
8095 return Ok(NotifyOption::SkipPersistNoEvents);
8097 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8099 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8100 let msg_from_node_one = msg.contents.flags & 1 == 0;
8101 if were_node_one == msg_from_node_one {
8102 return Ok(NotifyOption::SkipPersistNoEvents);
8104 let logger = WithChannelContext::from(&self.logger, &chan.context);
8105 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8106 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8107 // If nothing changed after applying their update, we don't need to bother
8110 return Ok(NotifyOption::SkipPersistNoEvents);
8114 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8115 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8118 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8120 Ok(NotifyOption::DoPersist)
8123 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8124 let need_lnd_workaround = {
8125 let per_peer_state = self.per_peer_state.read().unwrap();
8127 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8129 debug_assert!(false);
8130 MsgHandleErrInternal::send_err_msg_no_close(
8131 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8135 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8136 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8137 let peer_state = &mut *peer_state_lock;
8138 match peer_state.channel_by_id.entry(msg.channel_id) {
8139 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8140 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8141 // Currently, we expect all holding cell update_adds to be dropped on peer
8142 // disconnect, so Channel's reestablish will never hand us any holding cell
8143 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8144 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8145 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8146 msg, &&logger, &self.node_signer, self.chain_hash,
8147 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8148 let mut channel_update = None;
8149 if let Some(msg) = responses.shutdown_msg {
8150 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8151 node_id: counterparty_node_id.clone(),
8154 } else if chan.context.is_usable() {
8155 // If the channel is in a usable state (ie the channel is not being shut
8156 // down), send a unicast channel_update to our counterparty to make sure
8157 // they have the latest channel parameters.
8158 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8159 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8160 node_id: chan.context.get_counterparty_node_id(),
8165 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8166 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8167 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8168 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8169 debug_assert!(htlc_forwards.is_none());
8170 debug_assert!(decode_update_add_htlcs.is_none());
8171 if let Some(upd) = channel_update {
8172 peer_state.pending_msg_events.push(upd);
8176 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8177 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8180 hash_map::Entry::Vacant(_) => {
8181 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8183 // Unfortunately, lnd doesn't force close on errors
8184 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8185 // One of the few ways to get an lnd counterparty to force close is by
8186 // replicating what they do when restoring static channel backups (SCBs). They
8187 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8188 // invalid `your_last_per_commitment_secret`.
8190 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8191 // can assume it's likely the channel closed from our point of view, but it
8192 // remains open on the counterparty's side. By sending this bogus
8193 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8194 // force close broadcasting their latest state. If the closing transaction from
8195 // our point of view remains unconfirmed, it'll enter a race with the
8196 // counterparty's to-be-broadcast latest commitment transaction.
8197 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8198 node_id: *counterparty_node_id,
8199 msg: msgs::ChannelReestablish {
8200 channel_id: msg.channel_id,
8201 next_local_commitment_number: 0,
8202 next_remote_commitment_number: 0,
8203 your_last_per_commitment_secret: [1u8; 32],
8204 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8205 next_funding_txid: None,
8208 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8209 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8210 counterparty_node_id), msg.channel_id)
8216 if let Some(channel_ready_msg) = need_lnd_workaround {
8217 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8219 Ok(NotifyOption::SkipPersistHandleEvents)
8222 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8223 fn process_pending_monitor_events(&self) -> bool {
8224 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8226 let mut failed_channels = Vec::new();
8227 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8228 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8229 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8230 for monitor_event in monitor_events.drain(..) {
8231 match monitor_event {
8232 MonitorEvent::HTLCEvent(htlc_update) => {
8233 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8234 if let Some(preimage) = htlc_update.payment_preimage {
8235 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8236 self.claim_funds_internal(htlc_update.source, preimage,
8237 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8238 false, counterparty_node_id, funding_outpoint, channel_id, None);
8240 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8241 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8242 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8243 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8246 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8247 let counterparty_node_id_opt = match counterparty_node_id {
8248 Some(cp_id) => Some(cp_id),
8250 // TODO: Once we can rely on the counterparty_node_id from the
8251 // monitor event, this and the outpoint_to_peer map should be removed.
8252 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8253 outpoint_to_peer.get(&funding_outpoint).cloned()
8256 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8257 let per_peer_state = self.per_peer_state.read().unwrap();
8258 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8259 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8260 let peer_state = &mut *peer_state_lock;
8261 let pending_msg_events = &mut peer_state.pending_msg_events;
8262 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8263 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8264 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8267 ClosureReason::HolderForceClosed
8269 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8270 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8271 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8272 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8276 pending_msg_events.push(events::MessageSendEvent::HandleError {
8277 node_id: chan.context.get_counterparty_node_id(),
8278 action: msgs::ErrorAction::DisconnectPeer {
8279 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8287 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8288 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8294 for failure in failed_channels.drain(..) {
8295 self.finish_close_channel(failure);
8298 has_pending_monitor_events
8301 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8302 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8303 /// update events as a separate process method here.
8305 pub fn process_monitor_events(&self) {
8306 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8307 self.process_pending_monitor_events();
8310 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8311 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8312 /// update was applied.
8313 fn check_free_holding_cells(&self) -> bool {
8314 let mut has_monitor_update = false;
8315 let mut failed_htlcs = Vec::new();
8317 // Walk our list of channels and find any that need to update. Note that when we do find an
8318 // update, if it includes actions that must be taken afterwards, we have to drop the
8319 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8320 // manage to go through all our peers without finding a single channel to update.
8322 let per_peer_state = self.per_peer_state.read().unwrap();
8323 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8325 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8326 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8327 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8328 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8330 let counterparty_node_id = chan.context.get_counterparty_node_id();
8331 let funding_txo = chan.context.get_funding_txo();
8332 let (monitor_opt, holding_cell_failed_htlcs) =
8333 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8334 if !holding_cell_failed_htlcs.is_empty() {
8335 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8337 if let Some(monitor_update) = monitor_opt {
8338 has_monitor_update = true;
8340 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8341 peer_state_lock, peer_state, per_peer_state, chan);
8342 continue 'peer_loop;
8351 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8352 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8353 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8359 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8360 /// is (temporarily) unavailable, and the operation should be retried later.
8362 /// This method allows for that retry - either checking for any signer-pending messages to be
8363 /// attempted in every channel, or in the specifically provided channel.
8365 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8366 #[cfg(async_signing)]
8367 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8368 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8370 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8371 let node_id = phase.context().get_counterparty_node_id();
8373 ChannelPhase::Funded(chan) => {
8374 let msgs = chan.signer_maybe_unblocked(&self.logger);
8375 if let Some(updates) = msgs.commitment_update {
8376 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8381 if let Some(msg) = msgs.funding_signed {
8382 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8387 if let Some(msg) = msgs.channel_ready {
8388 send_channel_ready!(self, pending_msg_events, chan, msg);
8391 ChannelPhase::UnfundedOutboundV1(chan) => {
8392 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8393 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8399 ChannelPhase::UnfundedInboundV1(_) => {},
8403 let per_peer_state = self.per_peer_state.read().unwrap();
8404 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8405 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8406 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8407 let peer_state = &mut *peer_state_lock;
8408 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8409 unblock_chan(chan, &mut peer_state.pending_msg_events);
8413 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8414 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8415 let peer_state = &mut *peer_state_lock;
8416 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8417 unblock_chan(chan, &mut peer_state.pending_msg_events);
8423 /// Check whether any channels have finished removing all pending updates after a shutdown
8424 /// exchange and can now send a closing_signed.
8425 /// Returns whether any closing_signed messages were generated.
8426 fn maybe_generate_initial_closing_signed(&self) -> bool {
8427 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8428 let mut has_update = false;
8429 let mut shutdown_results = Vec::new();
8431 let per_peer_state = self.per_peer_state.read().unwrap();
8433 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8434 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8435 let peer_state = &mut *peer_state_lock;
8436 let pending_msg_events = &mut peer_state.pending_msg_events;
8437 peer_state.channel_by_id.retain(|channel_id, phase| {
8439 ChannelPhase::Funded(chan) => {
8440 let logger = WithChannelContext::from(&self.logger, &chan.context);
8441 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8442 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8443 if let Some(msg) = msg_opt {
8445 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8446 node_id: chan.context.get_counterparty_node_id(), msg,
8449 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8450 if let Some(shutdown_result) = shutdown_result_opt {
8451 shutdown_results.push(shutdown_result);
8453 if let Some(tx) = tx_opt {
8454 // We're done with this channel. We got a closing_signed and sent back
8455 // a closing_signed with a closing transaction to broadcast.
8456 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8457 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8458 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8463 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8464 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8465 update_maps_on_chan_removal!(self, &chan.context);
8471 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8472 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8477 _ => true, // Retain unfunded channels if present.
8483 for (counterparty_node_id, err) in handle_errors.drain(..) {
8484 let _ = handle_error!(self, err, counterparty_node_id);
8487 for shutdown_result in shutdown_results.drain(..) {
8488 self.finish_close_channel(shutdown_result);
8494 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8495 /// pushing the channel monitor update (if any) to the background events queue and removing the
8497 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8498 for mut failure in failed_channels.drain(..) {
8499 // Either a commitment transactions has been confirmed on-chain or
8500 // Channel::block_disconnected detected that the funding transaction has been
8501 // reorganized out of the main chain.
8502 // We cannot broadcast our latest local state via monitor update (as
8503 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8504 // so we track the update internally and handle it when the user next calls
8505 // timer_tick_occurred, guaranteeing we're running normally.
8506 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8507 assert_eq!(update.updates.len(), 1);
8508 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8509 assert!(should_broadcast);
8510 } else { unreachable!(); }
8511 self.pending_background_events.lock().unwrap().push(
8512 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8513 counterparty_node_id, funding_txo, update, channel_id,
8516 self.finish_close_channel(failure);
8521 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8522 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8523 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8524 /// not have an expiration unless otherwise set on the builder.
8528 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8529 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8530 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8531 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8532 /// order to send the [`InvoiceRequest`].
8534 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8538 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8543 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8545 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8547 /// [`Offer`]: crate::offers::offer::Offer
8548 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8549 pub fn create_offer_builder(
8550 &$self, description: String
8551 ) -> Result<$builder, Bolt12SemanticError> {
8552 let node_id = $self.get_our_node_id();
8553 let expanded_key = &$self.inbound_payment_key;
8554 let entropy = &*$self.entropy_source;
8555 let secp_ctx = &$self.secp_ctx;
8557 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8558 let builder = OfferBuilder::deriving_signing_pubkey(
8559 description, node_id, expanded_key, entropy, secp_ctx
8561 .chain_hash($self.chain_hash)
8568 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8569 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8570 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8574 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8575 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8577 /// The builder will have the provided expiration set. Any changes to the expiration on the
8578 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8579 /// block time minus two hours is used for the current time when determining if the refund has
8582 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8583 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8584 /// with an [`Event::InvoiceRequestFailed`].
8586 /// If `max_total_routing_fee_msat` is not specified, The default from
8587 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8591 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8592 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8593 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8594 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8595 /// order to send the [`Bolt12Invoice`].
8597 /// Also, uses a derived payer id in the refund for payer privacy.
8601 /// Requires a direct connection to an introduction node in the responding
8602 /// [`Bolt12Invoice::payment_paths`].
8607 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8608 /// - `amount_msats` is invalid, or
8609 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8611 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8613 /// [`Refund`]: crate::offers::refund::Refund
8614 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8615 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8616 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8617 pub fn create_refund_builder(
8618 &$self, description: String, amount_msats: u64, absolute_expiry: Duration,
8619 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8620 ) -> Result<$builder, Bolt12SemanticError> {
8621 let node_id = $self.get_our_node_id();
8622 let expanded_key = &$self.inbound_payment_key;
8623 let entropy = &*$self.entropy_source;
8624 let secp_ctx = &$self.secp_ctx;
8626 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8627 let builder = RefundBuilder::deriving_payer_id(
8628 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8630 .chain_hash($self.chain_hash)
8631 .absolute_expiry(absolute_expiry)
8634 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8636 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8637 $self.pending_outbound_payments
8638 .add_new_awaiting_invoice(
8639 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8641 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8647 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8649 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8650 T::Target: BroadcasterInterface,
8651 ES::Target: EntropySource,
8652 NS::Target: NodeSigner,
8653 SP::Target: SignerProvider,
8654 F::Target: FeeEstimator,
8658 #[cfg(not(c_bindings))]
8659 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8660 #[cfg(not(c_bindings))]
8661 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8664 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8666 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8668 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8669 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8670 /// [`Bolt12Invoice`] once it is received.
8672 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8673 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8674 /// The optional parameters are used in the builder, if `Some`:
8675 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8676 /// [`Offer::expects_quantity`] is `true`.
8677 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8678 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8680 /// If `max_total_routing_fee_msat` is not specified, The default from
8681 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8685 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8686 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8689 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8690 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8691 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8695 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8696 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8697 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8698 /// in order to send the [`Bolt12Invoice`].
8702 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8703 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8704 /// [`Bolt12Invoice::payment_paths`].
8709 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8710 /// - the provided parameters are invalid for the offer,
8711 /// - the offer is for an unsupported chain, or
8712 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8715 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8716 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8717 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8718 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8719 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8720 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8721 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8722 pub fn pay_for_offer(
8723 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8724 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8725 max_total_routing_fee_msat: Option<u64>
8726 ) -> Result<(), Bolt12SemanticError> {
8727 let expanded_key = &self.inbound_payment_key;
8728 let entropy = &*self.entropy_source;
8729 let secp_ctx = &self.secp_ctx;
8731 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8732 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8734 let builder = builder.chain_hash(self.chain_hash)?;
8736 let builder = match quantity {
8738 Some(quantity) => builder.quantity(quantity)?,
8740 let builder = match amount_msats {
8742 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8744 let builder = match payer_note {
8746 Some(payer_note) => builder.payer_note(payer_note),
8748 let invoice_request = builder.build_and_sign()?;
8749 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8751 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8753 let expiration = StaleExpiration::TimerTicks(1);
8754 self.pending_outbound_payments
8755 .add_new_awaiting_invoice(
8756 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8758 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8760 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8761 if !offer.paths().is_empty() {
8762 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8763 // Using only one path could result in a failure if the path no longer exists. But only
8764 // one invoice for a given payment id will be paid, even if more than one is received.
8765 const REQUEST_LIMIT: usize = 10;
8766 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8767 let message = new_pending_onion_message(
8768 OffersMessage::InvoiceRequest(invoice_request.clone()),
8769 Destination::BlindedPath(path.clone()),
8770 Some(reply_path.clone()),
8772 pending_offers_messages.push(message);
8774 } else if let Some(signing_pubkey) = offer.signing_pubkey() {
8775 let message = new_pending_onion_message(
8776 OffersMessage::InvoiceRequest(invoice_request),
8777 Destination::Node(signing_pubkey),
8780 pending_offers_messages.push(message);
8782 debug_assert!(false);
8783 return Err(Bolt12SemanticError::MissingSigningPubkey);
8789 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8792 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8793 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8794 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8798 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8799 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8800 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8801 /// received and no retries will be made.
8806 /// - the refund is for an unsupported chain, or
8807 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8810 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8811 pub fn request_refund_payment(
8812 &self, refund: &Refund
8813 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8814 let expanded_key = &self.inbound_payment_key;
8815 let entropy = &*self.entropy_source;
8816 let secp_ctx = &self.secp_ctx;
8818 let amount_msats = refund.amount_msats();
8819 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8821 if refund.chain() != self.chain_hash {
8822 return Err(Bolt12SemanticError::UnsupportedChain);
8825 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8827 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8828 Ok((payment_hash, payment_secret)) => {
8829 let payment_context = PaymentContext::Bolt12Refund(Bolt12RefundContext {});
8830 let payment_paths = self.create_blinded_payment_paths(
8831 amount_msats, payment_secret, payment_context
8833 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8835 #[cfg(feature = "std")]
8836 let builder = refund.respond_using_derived_keys(
8837 payment_paths, payment_hash, expanded_key, entropy
8839 #[cfg(not(feature = "std"))]
8840 let created_at = Duration::from_secs(
8841 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8843 #[cfg(not(feature = "std"))]
8844 let builder = refund.respond_using_derived_keys_no_std(
8845 payment_paths, payment_hash, created_at, expanded_key, entropy
8847 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8848 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8849 let reply_path = self.create_blinded_path()
8850 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8852 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8853 if refund.paths().is_empty() {
8854 let message = new_pending_onion_message(
8855 OffersMessage::Invoice(invoice.clone()),
8856 Destination::Node(refund.payer_id()),
8859 pending_offers_messages.push(message);
8861 for path in refund.paths() {
8862 let message = new_pending_onion_message(
8863 OffersMessage::Invoice(invoice.clone()),
8864 Destination::BlindedPath(path.clone()),
8865 Some(reply_path.clone()),
8867 pending_offers_messages.push(message);
8873 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8877 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8880 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8881 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8883 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`] event, which
8884 /// will have the [`PaymentClaimable::purpose`] return `Some` for [`PaymentPurpose::preimage`]. That
8885 /// should then be passed directly to [`claim_funds`].
8887 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8889 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8890 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8894 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8895 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8897 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8899 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8900 /// on versions of LDK prior to 0.0.114.
8902 /// [`claim_funds`]: Self::claim_funds
8903 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8904 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8905 /// [`PaymentPurpose::preimage`]: events::PaymentPurpose::preimage
8906 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8907 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8908 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8909 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8910 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8911 min_final_cltv_expiry_delta)
8914 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8915 /// stored external to LDK.
8917 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8918 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8919 /// the `min_value_msat` provided here, if one is provided.
8921 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8922 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8925 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8926 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8927 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8928 /// sender "proof-of-payment" unless they have paid the required amount.
8930 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8931 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8932 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8933 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8934 /// invoices when no timeout is set.
8936 /// Note that we use block header time to time-out pending inbound payments (with some margin
8937 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8938 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8939 /// If you need exact expiry semantics, you should enforce them upon receipt of
8940 /// [`PaymentClaimable`].
8942 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8943 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8945 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8946 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8950 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8951 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8953 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8955 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8956 /// on versions of LDK prior to 0.0.114.
8958 /// [`create_inbound_payment`]: Self::create_inbound_payment
8959 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8960 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8961 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8962 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8963 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8964 min_final_cltv_expiry)
8967 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8968 /// previously returned from [`create_inbound_payment`].
8970 /// [`create_inbound_payment`]: Self::create_inbound_payment
8971 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8972 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8975 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8977 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8978 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8979 let recipient = self.get_our_node_id();
8980 let secp_ctx = &self.secp_ctx;
8982 let peers = self.per_peer_state.read().unwrap()
8984 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
8985 .map(|(node_id, _)| *node_id)
8986 .collect::<Vec<_>>();
8989 .create_blinded_paths(recipient, peers, secp_ctx)
8990 .and_then(|paths| paths.into_iter().next().ok_or(()))
8993 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
8994 /// [`Router::create_blinded_payment_paths`].
8995 fn create_blinded_payment_paths(
8996 &self, amount_msats: u64, payment_secret: PaymentSecret, payment_context: PaymentContext
8997 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
8998 let secp_ctx = &self.secp_ctx;
9000 let first_hops = self.list_usable_channels();
9001 let payee_node_id = self.get_our_node_id();
9002 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
9003 + LATENCY_GRACE_PERIOD_BLOCKS;
9004 let payee_tlvs = ReceiveTlvs {
9006 payment_constraints: PaymentConstraints {
9008 htlc_minimum_msat: 1,
9012 self.router.create_blinded_payment_paths(
9013 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9017 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9018 /// are used when constructing the phantom invoice's route hints.
9020 /// [phantom node payments]: crate::sign::PhantomKeysManager
9021 pub fn get_phantom_scid(&self) -> u64 {
9022 let best_block_height = self.best_block.read().unwrap().height;
9023 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9025 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9026 // Ensure the generated scid doesn't conflict with a real channel.
9027 match short_to_chan_info.get(&scid_candidate) {
9028 Some(_) => continue,
9029 None => return scid_candidate
9034 /// Gets route hints for use in receiving [phantom node payments].
9036 /// [phantom node payments]: crate::sign::PhantomKeysManager
9037 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9039 channels: self.list_usable_channels(),
9040 phantom_scid: self.get_phantom_scid(),
9041 real_node_pubkey: self.get_our_node_id(),
9045 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9046 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9047 /// [`ChannelManager::forward_intercepted_htlc`].
9049 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9050 /// times to get a unique scid.
9051 pub fn get_intercept_scid(&self) -> u64 {
9052 let best_block_height = self.best_block.read().unwrap().height;
9053 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9055 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9056 // Ensure the generated scid doesn't conflict with a real channel.
9057 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9058 return scid_candidate
9062 /// Gets inflight HTLC information by processing pending outbound payments that are in
9063 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9064 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9065 let mut inflight_htlcs = InFlightHtlcs::new();
9067 let per_peer_state = self.per_peer_state.read().unwrap();
9068 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9069 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9070 let peer_state = &mut *peer_state_lock;
9071 for chan in peer_state.channel_by_id.values().filter_map(
9072 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9074 for (htlc_source, _) in chan.inflight_htlc_sources() {
9075 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9076 inflight_htlcs.process_path(path, self.get_our_node_id());
9085 #[cfg(any(test, feature = "_test_utils"))]
9086 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9087 let events = core::cell::RefCell::new(Vec::new());
9088 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9089 self.process_pending_events(&event_handler);
9093 #[cfg(feature = "_test_utils")]
9094 pub fn push_pending_event(&self, event: events::Event) {
9095 let mut events = self.pending_events.lock().unwrap();
9096 events.push_back((event, None));
9100 pub fn pop_pending_event(&self) -> Option<events::Event> {
9101 let mut events = self.pending_events.lock().unwrap();
9102 events.pop_front().map(|(e, _)| e)
9106 pub fn has_pending_payments(&self) -> bool {
9107 self.pending_outbound_payments.has_pending_payments()
9111 pub fn clear_pending_payments(&self) {
9112 self.pending_outbound_payments.clear_pending_payments()
9115 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9116 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9117 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9118 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9119 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9120 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9121 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9123 let logger = WithContext::from(
9124 &self.logger, Some(counterparty_node_id), Some(channel_id),
9127 let per_peer_state = self.per_peer_state.read().unwrap();
9128 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9129 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9130 let peer_state = &mut *peer_state_lck;
9131 if let Some(blocker) = completed_blocker.take() {
9132 // Only do this on the first iteration of the loop.
9133 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9134 .get_mut(&channel_id)
9136 blockers.retain(|iter| iter != &blocker);
9140 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9141 channel_funding_outpoint, channel_id, counterparty_node_id) {
9142 // Check that, while holding the peer lock, we don't have anything else
9143 // blocking monitor updates for this channel. If we do, release the monitor
9144 // update(s) when those blockers complete.
9145 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9150 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9152 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9153 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9154 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9155 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9157 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9158 peer_state_lck, peer_state, per_peer_state, chan);
9159 if further_update_exists {
9160 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9165 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9172 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9173 log_pubkey!(counterparty_node_id));
9179 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9180 for action in actions {
9182 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9183 channel_funding_outpoint, channel_id, counterparty_node_id
9185 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9191 /// Processes any events asynchronously in the order they were generated since the last call
9192 /// using the given event handler.
9194 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9195 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9199 process_events_body!(self, ev, { handler(ev).await });
9203 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9205 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9206 T::Target: BroadcasterInterface,
9207 ES::Target: EntropySource,
9208 NS::Target: NodeSigner,
9209 SP::Target: SignerProvider,
9210 F::Target: FeeEstimator,
9214 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9215 /// The returned array will contain `MessageSendEvent`s for different peers if
9216 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9217 /// is always placed next to each other.
9219 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9220 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9221 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9222 /// will randomly be placed first or last in the returned array.
9224 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9225 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9226 /// the `MessageSendEvent`s to the specific peer they were generated under.
9227 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9228 let events = RefCell::new(Vec::new());
9229 PersistenceNotifierGuard::optionally_notify(self, || {
9230 let mut result = NotifyOption::SkipPersistNoEvents;
9232 // TODO: This behavior should be documented. It's unintuitive that we query
9233 // ChannelMonitors when clearing other events.
9234 if self.process_pending_monitor_events() {
9235 result = NotifyOption::DoPersist;
9238 if self.check_free_holding_cells() {
9239 result = NotifyOption::DoPersist;
9241 if self.maybe_generate_initial_closing_signed() {
9242 result = NotifyOption::DoPersist;
9245 let mut is_any_peer_connected = false;
9246 let mut pending_events = Vec::new();
9247 let per_peer_state = self.per_peer_state.read().unwrap();
9248 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9249 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9250 let peer_state = &mut *peer_state_lock;
9251 if peer_state.pending_msg_events.len() > 0 {
9252 pending_events.append(&mut peer_state.pending_msg_events);
9254 if peer_state.is_connected {
9255 is_any_peer_connected = true
9259 // Ensure that we are connected to some peers before getting broadcast messages.
9260 if is_any_peer_connected {
9261 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9262 pending_events.append(&mut broadcast_msgs);
9265 if !pending_events.is_empty() {
9266 events.replace(pending_events);
9275 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9277 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9278 T::Target: BroadcasterInterface,
9279 ES::Target: EntropySource,
9280 NS::Target: NodeSigner,
9281 SP::Target: SignerProvider,
9282 F::Target: FeeEstimator,
9286 /// Processes events that must be periodically handled.
9288 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9289 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9290 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9292 process_events_body!(self, ev, handler.handle_event(ev));
9296 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9298 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9299 T::Target: BroadcasterInterface,
9300 ES::Target: EntropySource,
9301 NS::Target: NodeSigner,
9302 SP::Target: SignerProvider,
9303 F::Target: FeeEstimator,
9307 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9309 let best_block = self.best_block.read().unwrap();
9310 assert_eq!(best_block.block_hash, header.prev_blockhash,
9311 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9312 assert_eq!(best_block.height, height - 1,
9313 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9316 self.transactions_confirmed(header, txdata, height);
9317 self.best_block_updated(header, height);
9320 fn block_disconnected(&self, header: &Header, height: u32) {
9321 let _persistence_guard =
9322 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9323 self, || -> NotifyOption { NotifyOption::DoPersist });
9324 let new_height = height - 1;
9326 let mut best_block = self.best_block.write().unwrap();
9327 assert_eq!(best_block.block_hash, header.block_hash(),
9328 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9329 assert_eq!(best_block.height, height,
9330 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9331 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9334 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9338 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9340 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9341 T::Target: BroadcasterInterface,
9342 ES::Target: EntropySource,
9343 NS::Target: NodeSigner,
9344 SP::Target: SignerProvider,
9345 F::Target: FeeEstimator,
9349 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9350 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9351 // during initialization prior to the chain_monitor being fully configured in some cases.
9352 // See the docs for `ChannelManagerReadArgs` for more.
9354 let block_hash = header.block_hash();
9355 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9357 let _persistence_guard =
9358 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9359 self, || -> NotifyOption { NotifyOption::DoPersist });
9360 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9361 .map(|(a, b)| (a, Vec::new(), b)));
9363 let last_best_block_height = self.best_block.read().unwrap().height;
9364 if height < last_best_block_height {
9365 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9366 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9370 fn best_block_updated(&self, header: &Header, height: u32) {
9371 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9372 // during initialization prior to the chain_monitor being fully configured in some cases.
9373 // See the docs for `ChannelManagerReadArgs` for more.
9375 let block_hash = header.block_hash();
9376 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9378 let _persistence_guard =
9379 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9380 self, || -> NotifyOption { NotifyOption::DoPersist });
9381 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9383 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9385 macro_rules! max_time {
9386 ($timestamp: expr) => {
9388 // Update $timestamp to be the max of its current value and the block
9389 // timestamp. This should keep us close to the current time without relying on
9390 // having an explicit local time source.
9391 // Just in case we end up in a race, we loop until we either successfully
9392 // update $timestamp or decide we don't need to.
9393 let old_serial = $timestamp.load(Ordering::Acquire);
9394 if old_serial >= header.time as usize { break; }
9395 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9401 max_time!(self.highest_seen_timestamp);
9402 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9403 payment_secrets.retain(|_, inbound_payment| {
9404 inbound_payment.expiry_time > header.time as u64
9408 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9409 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9410 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9411 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9412 let peer_state = &mut *peer_state_lock;
9413 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9414 let txid_opt = chan.context.get_funding_txo();
9415 let height_opt = chan.context.get_funding_tx_confirmation_height();
9416 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9417 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9418 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9425 fn transaction_unconfirmed(&self, txid: &Txid) {
9426 let _persistence_guard =
9427 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9428 self, || -> NotifyOption { NotifyOption::DoPersist });
9429 self.do_chain_event(None, |channel| {
9430 if let Some(funding_txo) = channel.context.get_funding_txo() {
9431 if funding_txo.txid == *txid {
9432 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9433 } else { Ok((None, Vec::new(), None)) }
9434 } else { Ok((None, Vec::new(), None)) }
9439 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9441 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9442 T::Target: BroadcasterInterface,
9443 ES::Target: EntropySource,
9444 NS::Target: NodeSigner,
9445 SP::Target: SignerProvider,
9446 F::Target: FeeEstimator,
9450 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9451 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9453 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9454 (&self, height_opt: Option<u32>, f: FN) {
9455 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9456 // during initialization prior to the chain_monitor being fully configured in some cases.
9457 // See the docs for `ChannelManagerReadArgs` for more.
9459 let mut failed_channels = Vec::new();
9460 let mut timed_out_htlcs = Vec::new();
9462 let per_peer_state = self.per_peer_state.read().unwrap();
9463 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9464 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9465 let peer_state = &mut *peer_state_lock;
9466 let pending_msg_events = &mut peer_state.pending_msg_events;
9468 peer_state.channel_by_id.retain(|_, phase| {
9470 // Retain unfunded channels.
9471 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9472 // TODO(dual_funding): Combine this match arm with above.
9473 #[cfg(any(dual_funding, splicing))]
9474 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9475 ChannelPhase::Funded(channel) => {
9476 let res = f(channel);
9477 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9478 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9479 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9480 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9481 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9483 let logger = WithChannelContext::from(&self.logger, &channel.context);
9484 if let Some(channel_ready) = channel_ready_opt {
9485 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9486 if channel.context.is_usable() {
9487 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9488 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9489 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9490 node_id: channel.context.get_counterparty_node_id(),
9495 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9500 let mut pending_events = self.pending_events.lock().unwrap();
9501 emit_channel_ready_event!(pending_events, channel);
9504 if let Some(announcement_sigs) = announcement_sigs {
9505 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9506 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9507 node_id: channel.context.get_counterparty_node_id(),
9508 msg: announcement_sigs,
9510 if let Some(height) = height_opt {
9511 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9512 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9514 // Note that announcement_signatures fails if the channel cannot be announced,
9515 // so get_channel_update_for_broadcast will never fail by the time we get here.
9516 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9521 if channel.is_our_channel_ready() {
9522 if let Some(real_scid) = channel.context.get_short_channel_id() {
9523 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9524 // to the short_to_chan_info map here. Note that we check whether we
9525 // can relay using the real SCID at relay-time (i.e.
9526 // enforce option_scid_alias then), and if the funding tx is ever
9527 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9528 // is always consistent.
9529 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9530 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9531 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9532 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9533 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9536 } else if let Err(reason) = res {
9537 update_maps_on_chan_removal!(self, &channel.context);
9538 // It looks like our counterparty went on-chain or funding transaction was
9539 // reorged out of the main chain. Close the channel.
9540 let reason_message = format!("{}", reason);
9541 failed_channels.push(channel.context.force_shutdown(true, reason));
9542 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9543 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9544 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9548 pending_msg_events.push(events::MessageSendEvent::HandleError {
9549 node_id: channel.context.get_counterparty_node_id(),
9550 action: msgs::ErrorAction::DisconnectPeer {
9551 msg: Some(msgs::ErrorMessage {
9552 channel_id: channel.context.channel_id(),
9553 data: reason_message,
9566 if let Some(height) = height_opt {
9567 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9568 payment.htlcs.retain(|htlc| {
9569 // If height is approaching the number of blocks we think it takes us to get
9570 // our commitment transaction confirmed before the HTLC expires, plus the
9571 // number of blocks we generally consider it to take to do a commitment update,
9572 // just give up on it and fail the HTLC.
9573 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9574 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9575 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9577 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9578 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9579 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9583 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9586 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9587 intercepted_htlcs.retain(|_, htlc| {
9588 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9589 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9590 short_channel_id: htlc.prev_short_channel_id,
9591 user_channel_id: Some(htlc.prev_user_channel_id),
9592 htlc_id: htlc.prev_htlc_id,
9593 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9594 phantom_shared_secret: None,
9595 outpoint: htlc.prev_funding_outpoint,
9596 channel_id: htlc.prev_channel_id,
9597 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9600 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9601 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9602 _ => unreachable!(),
9604 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9605 HTLCFailReason::from_failure_code(0x2000 | 2),
9606 HTLCDestination::InvalidForward { requested_forward_scid }));
9607 let logger = WithContext::from(
9608 &self.logger, None, Some(htlc.prev_channel_id)
9610 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9616 self.handle_init_event_channel_failures(failed_channels);
9618 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9619 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9623 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9624 /// may have events that need processing.
9626 /// In order to check if this [`ChannelManager`] needs persisting, call
9627 /// [`Self::get_and_clear_needs_persistence`].
9629 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9630 /// [`ChannelManager`] and should instead register actions to be taken later.
9631 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9632 self.event_persist_notifier.get_future()
9635 /// Returns true if this [`ChannelManager`] needs to be persisted.
9637 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9638 /// indicates this should be checked.
9639 pub fn get_and_clear_needs_persistence(&self) -> bool {
9640 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9643 #[cfg(any(test, feature = "_test_utils"))]
9644 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9645 self.event_persist_notifier.notify_pending()
9648 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9649 /// [`chain::Confirm`] interfaces.
9650 pub fn current_best_block(&self) -> BestBlock {
9651 self.best_block.read().unwrap().clone()
9654 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9655 /// [`ChannelManager`].
9656 pub fn node_features(&self) -> NodeFeatures {
9657 provided_node_features(&self.default_configuration)
9660 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9661 /// [`ChannelManager`].
9663 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9664 /// or not. Thus, this method is not public.
9665 #[cfg(any(feature = "_test_utils", test))]
9666 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9667 provided_bolt11_invoice_features(&self.default_configuration)
9670 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9671 /// [`ChannelManager`].
9672 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9673 provided_bolt12_invoice_features(&self.default_configuration)
9676 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9677 /// [`ChannelManager`].
9678 pub fn channel_features(&self) -> ChannelFeatures {
9679 provided_channel_features(&self.default_configuration)
9682 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9683 /// [`ChannelManager`].
9684 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9685 provided_channel_type_features(&self.default_configuration)
9688 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9689 /// [`ChannelManager`].
9690 pub fn init_features(&self) -> InitFeatures {
9691 provided_init_features(&self.default_configuration)
9695 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9696 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9698 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9699 T::Target: BroadcasterInterface,
9700 ES::Target: EntropySource,
9701 NS::Target: NodeSigner,
9702 SP::Target: SignerProvider,
9703 F::Target: FeeEstimator,
9707 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9708 // Note that we never need to persist the updated ChannelManager for an inbound
9709 // open_channel message - pre-funded channels are never written so there should be no
9710 // change to the contents.
9711 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9712 let res = self.internal_open_channel(counterparty_node_id, msg);
9713 let persist = match &res {
9714 Err(e) if e.closes_channel() => {
9715 debug_assert!(false, "We shouldn't close a new channel");
9716 NotifyOption::DoPersist
9718 _ => NotifyOption::SkipPersistHandleEvents,
9720 let _ = handle_error!(self, res, *counterparty_node_id);
9725 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9726 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9727 "Dual-funded channels not supported".to_owned(),
9728 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9731 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9732 // Note that we never need to persist the updated ChannelManager for an inbound
9733 // accept_channel message - pre-funded channels are never written so there should be no
9734 // change to the contents.
9735 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9736 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9737 NotifyOption::SkipPersistHandleEvents
9741 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9742 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9743 "Dual-funded channels not supported".to_owned(),
9744 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9747 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9748 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9749 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9752 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9753 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9754 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9757 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9758 // Note that we never need to persist the updated ChannelManager for an inbound
9759 // channel_ready message - while the channel's state will change, any channel_ready message
9760 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9761 // will not force-close the channel on startup.
9762 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9763 let res = self.internal_channel_ready(counterparty_node_id, msg);
9764 let persist = match &res {
9765 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9766 _ => NotifyOption::SkipPersistHandleEvents,
9768 let _ = handle_error!(self, res, *counterparty_node_id);
9773 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9774 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9775 "Quiescence not supported".to_owned(),
9776 msg.channel_id.clone())), *counterparty_node_id);
9780 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9781 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9782 "Splicing not supported".to_owned(),
9783 msg.channel_id.clone())), *counterparty_node_id);
9787 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9788 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9789 "Splicing not supported (splice_ack)".to_owned(),
9790 msg.channel_id.clone())), *counterparty_node_id);
9794 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9795 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9796 "Splicing not supported (splice_locked)".to_owned(),
9797 msg.channel_id.clone())), *counterparty_node_id);
9800 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9801 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9802 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9805 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9806 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9807 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9810 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9811 // Note that we never need to persist the updated ChannelManager for an inbound
9812 // update_add_htlc message - the message itself doesn't change our channel state only the
9813 // `commitment_signed` message afterwards will.
9814 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9815 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9816 let persist = match &res {
9817 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9818 Err(_) => NotifyOption::SkipPersistHandleEvents,
9819 Ok(()) => NotifyOption::SkipPersistNoEvents,
9821 let _ = handle_error!(self, res, *counterparty_node_id);
9826 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9827 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9828 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9831 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9832 // Note that we never need to persist the updated ChannelManager for an inbound
9833 // update_fail_htlc message - the message itself doesn't change our channel state only the
9834 // `commitment_signed` message afterwards will.
9835 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9836 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9837 let persist = match &res {
9838 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9839 Err(_) => NotifyOption::SkipPersistHandleEvents,
9840 Ok(()) => NotifyOption::SkipPersistNoEvents,
9842 let _ = handle_error!(self, res, *counterparty_node_id);
9847 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9848 // Note that we never need to persist the updated ChannelManager for an inbound
9849 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9850 // only the `commitment_signed` message afterwards will.
9851 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9852 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9853 let persist = match &res {
9854 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9855 Err(_) => NotifyOption::SkipPersistHandleEvents,
9856 Ok(()) => NotifyOption::SkipPersistNoEvents,
9858 let _ = handle_error!(self, res, *counterparty_node_id);
9863 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9864 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9865 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9868 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9869 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9870 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9873 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9874 // Note that we never need to persist the updated ChannelManager for an inbound
9875 // update_fee message - the message itself doesn't change our channel state only the
9876 // `commitment_signed` message afterwards will.
9877 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9878 let res = self.internal_update_fee(counterparty_node_id, msg);
9879 let persist = match &res {
9880 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9881 Err(_) => NotifyOption::SkipPersistHandleEvents,
9882 Ok(()) => NotifyOption::SkipPersistNoEvents,
9884 let _ = handle_error!(self, res, *counterparty_node_id);
9889 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9890 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9891 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9894 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9895 PersistenceNotifierGuard::optionally_notify(self, || {
9896 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9899 NotifyOption::DoPersist
9904 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9905 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9906 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9907 let persist = match &res {
9908 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9909 Err(_) => NotifyOption::SkipPersistHandleEvents,
9910 Ok(persist) => *persist,
9912 let _ = handle_error!(self, res, *counterparty_node_id);
9917 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9918 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9919 self, || NotifyOption::SkipPersistHandleEvents);
9920 let mut failed_channels = Vec::new();
9921 let mut per_peer_state = self.per_peer_state.write().unwrap();
9924 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9925 "Marking channels with {} disconnected and generating channel_updates.",
9926 log_pubkey!(counterparty_node_id)
9928 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9929 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9930 let peer_state = &mut *peer_state_lock;
9931 let pending_msg_events = &mut peer_state.pending_msg_events;
9932 peer_state.channel_by_id.retain(|_, phase| {
9933 let context = match phase {
9934 ChannelPhase::Funded(chan) => {
9935 let logger = WithChannelContext::from(&self.logger, &chan.context);
9936 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9937 // We only retain funded channels that are not shutdown.
9942 // We retain UnfundedOutboundV1 channel for some time in case
9943 // peer unexpectedly disconnects, and intends to reconnect again.
9944 ChannelPhase::UnfundedOutboundV1(_) => {
9947 // Unfunded inbound channels will always be removed.
9948 ChannelPhase::UnfundedInboundV1(chan) => {
9951 #[cfg(any(dual_funding, splicing))]
9952 ChannelPhase::UnfundedOutboundV2(chan) => {
9955 #[cfg(any(dual_funding, splicing))]
9956 ChannelPhase::UnfundedInboundV2(chan) => {
9960 // Clean up for removal.
9961 update_maps_on_chan_removal!(self, &context);
9962 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9965 // Note that we don't bother generating any events for pre-accept channels -
9966 // they're not considered "channels" yet from the PoV of our events interface.
9967 peer_state.inbound_channel_request_by_id.clear();
9968 pending_msg_events.retain(|msg| {
9970 // V1 Channel Establishment
9971 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9972 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9973 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9974 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9975 // V2 Channel Establishment
9976 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9977 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9978 // Common Channel Establishment
9979 &events::MessageSendEvent::SendChannelReady { .. } => false,
9980 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9982 &events::MessageSendEvent::SendStfu { .. } => false,
9984 &events::MessageSendEvent::SendSplice { .. } => false,
9985 &events::MessageSendEvent::SendSpliceAck { .. } => false,
9986 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
9987 // Interactive Transaction Construction
9988 &events::MessageSendEvent::SendTxAddInput { .. } => false,
9989 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
9990 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
9991 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
9992 &events::MessageSendEvent::SendTxComplete { .. } => false,
9993 &events::MessageSendEvent::SendTxSignatures { .. } => false,
9994 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
9995 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
9996 &events::MessageSendEvent::SendTxAbort { .. } => false,
9997 // Channel Operations
9998 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
9999 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
10000 &events::MessageSendEvent::SendClosingSigned { .. } => false,
10001 &events::MessageSendEvent::SendShutdown { .. } => false,
10002 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
10003 &events::MessageSendEvent::HandleError { .. } => false,
10005 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
10006 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
10007 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
10008 // This check here is to ensure exhaustivity.
10009 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
10010 debug_assert!(false, "This event shouldn't have been here");
10013 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
10014 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
10015 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10016 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10017 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10018 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10021 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10022 peer_state.is_connected = false;
10023 peer_state.ok_to_remove(true)
10024 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10027 per_peer_state.remove(counterparty_node_id);
10029 mem::drop(per_peer_state);
10031 for failure in failed_channels.drain(..) {
10032 self.finish_close_channel(failure);
10036 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10037 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10038 if !init_msg.features.supports_static_remote_key() {
10039 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10043 let mut res = Ok(());
10045 PersistenceNotifierGuard::optionally_notify(self, || {
10046 // If we have too many peers connected which don't have funded channels, disconnect the
10047 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10048 // unfunded channels taking up space in memory for disconnected peers, we still let new
10049 // peers connect, but we'll reject new channels from them.
10050 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10051 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10054 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10055 match peer_state_lock.entry(counterparty_node_id.clone()) {
10056 hash_map::Entry::Vacant(e) => {
10057 if inbound_peer_limited {
10059 return NotifyOption::SkipPersistNoEvents;
10061 e.insert(Mutex::new(PeerState {
10062 channel_by_id: new_hash_map(),
10063 inbound_channel_request_by_id: new_hash_map(),
10064 latest_features: init_msg.features.clone(),
10065 pending_msg_events: Vec::new(),
10066 in_flight_monitor_updates: BTreeMap::new(),
10067 monitor_update_blocked_actions: BTreeMap::new(),
10068 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10069 is_connected: true,
10072 hash_map::Entry::Occupied(e) => {
10073 let mut peer_state = e.get().lock().unwrap();
10074 peer_state.latest_features = init_msg.features.clone();
10076 let best_block_height = self.best_block.read().unwrap().height;
10077 if inbound_peer_limited &&
10078 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10079 peer_state.channel_by_id.len()
10082 return NotifyOption::SkipPersistNoEvents;
10085 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10086 peer_state.is_connected = true;
10091 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10093 let per_peer_state = self.per_peer_state.read().unwrap();
10094 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10095 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10096 let peer_state = &mut *peer_state_lock;
10097 let pending_msg_events = &mut peer_state.pending_msg_events;
10099 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10101 ChannelPhase::Funded(chan) => {
10102 let logger = WithChannelContext::from(&self.logger, &chan.context);
10103 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10104 node_id: chan.context.get_counterparty_node_id(),
10105 msg: chan.get_channel_reestablish(&&logger),
10109 ChannelPhase::UnfundedOutboundV1(chan) => {
10110 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10111 node_id: chan.context.get_counterparty_node_id(),
10112 msg: chan.get_open_channel(self.chain_hash),
10116 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10117 #[cfg(any(dual_funding, splicing))]
10118 ChannelPhase::UnfundedOutboundV2(chan) => {
10119 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10120 node_id: chan.context.get_counterparty_node_id(),
10121 msg: chan.get_open_channel_v2(self.chain_hash),
10125 ChannelPhase::UnfundedInboundV1(_) => {
10126 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10127 // they are not persisted and won't be recovered after a crash.
10128 // Therefore, they shouldn't exist at this point.
10129 debug_assert!(false);
10132 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10133 #[cfg(any(dual_funding, splicing))]
10134 ChannelPhase::UnfundedInboundV2(channel) => {
10135 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10136 // they are not persisted and won't be recovered after a crash.
10137 // Therefore, they shouldn't exist at this point.
10138 debug_assert!(false);
10144 return NotifyOption::SkipPersistHandleEvents;
10145 //TODO: Also re-broadcast announcement_signatures
10150 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10151 match &msg.data as &str {
10152 "cannot co-op close channel w/ active htlcs"|
10153 "link failed to shutdown" =>
10155 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10156 // send one while HTLCs are still present. The issue is tracked at
10157 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10158 // to fix it but none so far have managed to land upstream. The issue appears to be
10159 // very low priority for the LND team despite being marked "P1".
10160 // We're not going to bother handling this in a sensible way, instead simply
10161 // repeating the Shutdown message on repeat until morale improves.
10162 if !msg.channel_id.is_zero() {
10163 PersistenceNotifierGuard::optionally_notify(
10165 || -> NotifyOption {
10166 let per_peer_state = self.per_peer_state.read().unwrap();
10167 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10168 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10169 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10170 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10171 if let Some(msg) = chan.get_outbound_shutdown() {
10172 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10173 node_id: *counterparty_node_id,
10177 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10178 node_id: *counterparty_node_id,
10179 action: msgs::ErrorAction::SendWarningMessage {
10180 msg: msgs::WarningMessage {
10181 channel_id: msg.channel_id,
10182 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10184 log_level: Level::Trace,
10187 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10188 // a `ChannelManager` write here.
10189 return NotifyOption::SkipPersistHandleEvents;
10191 NotifyOption::SkipPersistNoEvents
10200 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10202 if msg.channel_id.is_zero() {
10203 let channel_ids: Vec<ChannelId> = {
10204 let per_peer_state = self.per_peer_state.read().unwrap();
10205 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10206 if peer_state_mutex_opt.is_none() { return; }
10207 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10208 let peer_state = &mut *peer_state_lock;
10209 // Note that we don't bother generating any events for pre-accept channels -
10210 // they're not considered "channels" yet from the PoV of our events interface.
10211 peer_state.inbound_channel_request_by_id.clear();
10212 peer_state.channel_by_id.keys().cloned().collect()
10214 for channel_id in channel_ids {
10215 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10216 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10220 // First check if we can advance the channel type and try again.
10221 let per_peer_state = self.per_peer_state.read().unwrap();
10222 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10223 if peer_state_mutex_opt.is_none() { return; }
10224 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10225 let peer_state = &mut *peer_state_lock;
10226 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10227 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10228 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10229 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10230 node_id: *counterparty_node_id,
10236 #[cfg(any(dual_funding, splicing))]
10237 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10238 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10239 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10240 node_id: *counterparty_node_id,
10246 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10247 #[cfg(any(dual_funding, splicing))]
10248 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10252 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10253 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10257 fn provided_node_features(&self) -> NodeFeatures {
10258 provided_node_features(&self.default_configuration)
10261 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10262 provided_init_features(&self.default_configuration)
10265 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10266 Some(vec![self.chain_hash])
10269 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10270 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10271 "Dual-funded channels not supported".to_owned(),
10272 msg.channel_id.clone())), *counterparty_node_id);
10275 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10276 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10277 "Dual-funded channels not supported".to_owned(),
10278 msg.channel_id.clone())), *counterparty_node_id);
10281 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10282 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10283 "Dual-funded channels not supported".to_owned(),
10284 msg.channel_id.clone())), *counterparty_node_id);
10287 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10288 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10289 "Dual-funded channels not supported".to_owned(),
10290 msg.channel_id.clone())), *counterparty_node_id);
10293 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10294 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10295 "Dual-funded channels not supported".to_owned(),
10296 msg.channel_id.clone())), *counterparty_node_id);
10299 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10300 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10301 "Dual-funded channels not supported".to_owned(),
10302 msg.channel_id.clone())), *counterparty_node_id);
10305 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10306 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10307 "Dual-funded channels not supported".to_owned(),
10308 msg.channel_id.clone())), *counterparty_node_id);
10311 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10312 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10313 "Dual-funded channels not supported".to_owned(),
10314 msg.channel_id.clone())), *counterparty_node_id);
10317 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10318 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10319 "Dual-funded channels not supported".to_owned(),
10320 msg.channel_id.clone())), *counterparty_node_id);
10324 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10325 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10327 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10328 T::Target: BroadcasterInterface,
10329 ES::Target: EntropySource,
10330 NS::Target: NodeSigner,
10331 SP::Target: SignerProvider,
10332 F::Target: FeeEstimator,
10336 fn handle_message(&self, message: OffersMessage, responder: Option<Responder>) -> ResponseInstruction<OffersMessage> {
10337 let secp_ctx = &self.secp_ctx;
10338 let expanded_key = &self.inbound_payment_key;
10341 OffersMessage::InvoiceRequest(invoice_request) => {
10342 let responder = match responder {
10343 Some(responder) => responder,
10344 None => return ResponseInstruction::NoResponse,
10346 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10349 Ok(amount_msats) => amount_msats,
10350 Err(error) => return responder.respond(OffersMessage::InvoiceError(error.into())),
10352 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10353 Ok(invoice_request) => invoice_request,
10355 let error = Bolt12SemanticError::InvalidMetadata;
10356 return responder.respond(OffersMessage::InvoiceError(error.into()));
10360 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10361 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10362 Some(amount_msats), relative_expiry, None
10364 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10366 let error = Bolt12SemanticError::InvalidAmount;
10367 return responder.respond(OffersMessage::InvoiceError(error.into()));
10371 let payment_context = PaymentContext::Bolt12Offer(Bolt12OfferContext {
10372 offer_id: invoice_request.offer_id,
10373 invoice_request: invoice_request.fields(),
10375 let payment_paths = match self.create_blinded_payment_paths(
10376 amount_msats, payment_secret, payment_context
10378 Ok(payment_paths) => payment_paths,
10380 let error = Bolt12SemanticError::MissingPaths;
10381 return responder.respond(OffersMessage::InvoiceError(error.into()));
10385 #[cfg(not(feature = "std"))]
10386 let created_at = Duration::from_secs(
10387 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10390 let response = if invoice_request.keys.is_some() {
10391 #[cfg(feature = "std")]
10392 let builder = invoice_request.respond_using_derived_keys(
10393 payment_paths, payment_hash
10395 #[cfg(not(feature = "std"))]
10396 let builder = invoice_request.respond_using_derived_keys_no_std(
10397 payment_paths, payment_hash, created_at
10400 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10401 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10402 .map_err(InvoiceError::from)
10404 #[cfg(feature = "std")]
10405 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10406 #[cfg(not(feature = "std"))]
10407 let builder = invoice_request.respond_with_no_std(
10408 payment_paths, payment_hash, created_at
10411 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10412 .and_then(|builder| builder.allow_mpp().build())
10413 .map_err(InvoiceError::from)
10414 .and_then(|invoice| {
10416 let mut invoice = invoice;
10418 .sign(|invoice: &UnsignedBolt12Invoice|
10419 self.node_signer.sign_bolt12_invoice(invoice)
10421 .map_err(InvoiceError::from)
10426 Ok(invoice) => return responder.respond(OffersMessage::Invoice(invoice)),
10427 Err(error) => return responder.respond(OffersMessage::InvoiceError(error.into())),
10430 OffersMessage::Invoice(invoice) => {
10431 let response = invoice
10432 .verify(expanded_key, secp_ctx)
10433 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10434 .and_then(|payment_id| {
10435 let features = self.bolt12_invoice_features();
10436 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10437 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10439 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10441 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10442 InvoiceError::from_string(format!("{:?}", e))
10447 match (responder, response) {
10448 (Some(responder), Err(e)) => responder.respond(OffersMessage::InvoiceError(e)),
10449 (None, Err(_)) => {
10452 "A response was generated, but there is no reply_path specified for sending the response."
10454 return ResponseInstruction::NoResponse;
10456 _ => return ResponseInstruction::NoResponse,
10459 OffersMessage::InvoiceError(invoice_error) => {
10460 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10461 return ResponseInstruction::NoResponse;
10466 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10467 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10471 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10472 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10474 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10475 T::Target: BroadcasterInterface,
10476 ES::Target: EntropySource,
10477 NS::Target: NodeSigner,
10478 SP::Target: SignerProvider,
10479 F::Target: FeeEstimator,
10483 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10484 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10488 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10489 /// [`ChannelManager`].
10490 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10491 let mut node_features = provided_init_features(config).to_context();
10492 node_features.set_keysend_optional();
10496 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10497 /// [`ChannelManager`].
10499 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10500 /// or not. Thus, this method is not public.
10501 #[cfg(any(feature = "_test_utils", test))]
10502 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10503 provided_init_features(config).to_context()
10506 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10507 /// [`ChannelManager`].
10508 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10509 provided_init_features(config).to_context()
10512 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10513 /// [`ChannelManager`].
10514 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10515 provided_init_features(config).to_context()
10518 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10519 /// [`ChannelManager`].
10520 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10521 ChannelTypeFeatures::from_init(&provided_init_features(config))
10524 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10525 /// [`ChannelManager`].
10526 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10527 // Note that if new features are added here which other peers may (eventually) require, we
10528 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10529 // [`ErroringMessageHandler`].
10530 let mut features = InitFeatures::empty();
10531 features.set_data_loss_protect_required();
10532 features.set_upfront_shutdown_script_optional();
10533 features.set_variable_length_onion_required();
10534 features.set_static_remote_key_required();
10535 features.set_payment_secret_required();
10536 features.set_basic_mpp_optional();
10537 features.set_wumbo_optional();
10538 features.set_shutdown_any_segwit_optional();
10539 features.set_channel_type_optional();
10540 features.set_scid_privacy_optional();
10541 features.set_zero_conf_optional();
10542 features.set_route_blinding_optional();
10543 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10544 features.set_anchors_zero_fee_htlc_tx_optional();
10549 const SERIALIZATION_VERSION: u8 = 1;
10550 const MIN_SERIALIZATION_VERSION: u8 = 1;
10552 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10553 (2, fee_base_msat, required),
10554 (4, fee_proportional_millionths, required),
10555 (6, cltv_expiry_delta, required),
10558 impl_writeable_tlv_based!(ChannelCounterparty, {
10559 (2, node_id, required),
10560 (4, features, required),
10561 (6, unspendable_punishment_reserve, required),
10562 (8, forwarding_info, option),
10563 (9, outbound_htlc_minimum_msat, option),
10564 (11, outbound_htlc_maximum_msat, option),
10567 impl Writeable for ChannelDetails {
10568 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10569 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10570 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10571 let user_channel_id_low = self.user_channel_id as u64;
10572 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10573 write_tlv_fields!(writer, {
10574 (1, self.inbound_scid_alias, option),
10575 (2, self.channel_id, required),
10576 (3, self.channel_type, option),
10577 (4, self.counterparty, required),
10578 (5, self.outbound_scid_alias, option),
10579 (6, self.funding_txo, option),
10580 (7, self.config, option),
10581 (8, self.short_channel_id, option),
10582 (9, self.confirmations, option),
10583 (10, self.channel_value_satoshis, required),
10584 (12, self.unspendable_punishment_reserve, option),
10585 (14, user_channel_id_low, required),
10586 (16, self.balance_msat, required),
10587 (18, self.outbound_capacity_msat, required),
10588 (19, self.next_outbound_htlc_limit_msat, required),
10589 (20, self.inbound_capacity_msat, required),
10590 (21, self.next_outbound_htlc_minimum_msat, required),
10591 (22, self.confirmations_required, option),
10592 (24, self.force_close_spend_delay, option),
10593 (26, self.is_outbound, required),
10594 (28, self.is_channel_ready, required),
10595 (30, self.is_usable, required),
10596 (32, self.is_public, required),
10597 (33, self.inbound_htlc_minimum_msat, option),
10598 (35, self.inbound_htlc_maximum_msat, option),
10599 (37, user_channel_id_high_opt, option),
10600 (39, self.feerate_sat_per_1000_weight, option),
10601 (41, self.channel_shutdown_state, option),
10602 (43, self.pending_inbound_htlcs, optional_vec),
10603 (45, self.pending_outbound_htlcs, optional_vec),
10609 impl Readable for ChannelDetails {
10610 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10611 _init_and_read_len_prefixed_tlv_fields!(reader, {
10612 (1, inbound_scid_alias, option),
10613 (2, channel_id, required),
10614 (3, channel_type, option),
10615 (4, counterparty, required),
10616 (5, outbound_scid_alias, option),
10617 (6, funding_txo, option),
10618 (7, config, option),
10619 (8, short_channel_id, option),
10620 (9, confirmations, option),
10621 (10, channel_value_satoshis, required),
10622 (12, unspendable_punishment_reserve, option),
10623 (14, user_channel_id_low, required),
10624 (16, balance_msat, required),
10625 (18, outbound_capacity_msat, required),
10626 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10627 // filled in, so we can safely unwrap it here.
10628 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10629 (20, inbound_capacity_msat, required),
10630 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10631 (22, confirmations_required, option),
10632 (24, force_close_spend_delay, option),
10633 (26, is_outbound, required),
10634 (28, is_channel_ready, required),
10635 (30, is_usable, required),
10636 (32, is_public, required),
10637 (33, inbound_htlc_minimum_msat, option),
10638 (35, inbound_htlc_maximum_msat, option),
10639 (37, user_channel_id_high_opt, option),
10640 (39, feerate_sat_per_1000_weight, option),
10641 (41, channel_shutdown_state, option),
10642 (43, pending_inbound_htlcs, optional_vec),
10643 (45, pending_outbound_htlcs, optional_vec),
10646 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10647 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10648 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10649 let user_channel_id = user_channel_id_low as u128 +
10650 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10653 inbound_scid_alias,
10654 channel_id: channel_id.0.unwrap(),
10656 counterparty: counterparty.0.unwrap(),
10657 outbound_scid_alias,
10661 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10662 unspendable_punishment_reserve,
10664 balance_msat: balance_msat.0.unwrap(),
10665 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10666 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10667 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10668 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10669 confirmations_required,
10671 force_close_spend_delay,
10672 is_outbound: is_outbound.0.unwrap(),
10673 is_channel_ready: is_channel_ready.0.unwrap(),
10674 is_usable: is_usable.0.unwrap(),
10675 is_public: is_public.0.unwrap(),
10676 inbound_htlc_minimum_msat,
10677 inbound_htlc_maximum_msat,
10678 feerate_sat_per_1000_weight,
10679 channel_shutdown_state,
10680 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10681 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10686 impl_writeable_tlv_based!(PhantomRouteHints, {
10687 (2, channels, required_vec),
10688 (4, phantom_scid, required),
10689 (6, real_node_pubkey, required),
10692 impl_writeable_tlv_based!(BlindedForward, {
10693 (0, inbound_blinding_point, required),
10694 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10697 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10699 (0, onion_packet, required),
10700 (1, blinded, option),
10701 (2, short_channel_id, required),
10704 (0, payment_data, required),
10705 (1, phantom_shared_secret, option),
10706 (2, incoming_cltv_expiry, required),
10707 (3, payment_metadata, option),
10708 (5, custom_tlvs, optional_vec),
10709 (7, requires_blinded_error, (default_value, false)),
10710 (9, payment_context, option),
10712 (2, ReceiveKeysend) => {
10713 (0, payment_preimage, required),
10714 (1, requires_blinded_error, (default_value, false)),
10715 (2, incoming_cltv_expiry, required),
10716 (3, payment_metadata, option),
10717 (4, payment_data, option), // Added in 0.0.116
10718 (5, custom_tlvs, optional_vec),
10722 impl_writeable_tlv_based!(PendingHTLCInfo, {
10723 (0, routing, required),
10724 (2, incoming_shared_secret, required),
10725 (4, payment_hash, required),
10726 (6, outgoing_amt_msat, required),
10727 (8, outgoing_cltv_value, required),
10728 (9, incoming_amt_msat, option),
10729 (10, skimmed_fee_msat, option),
10733 impl Writeable for HTLCFailureMsg {
10734 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10736 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10737 0u8.write(writer)?;
10738 channel_id.write(writer)?;
10739 htlc_id.write(writer)?;
10740 reason.write(writer)?;
10742 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10743 channel_id, htlc_id, sha256_of_onion, failure_code
10745 1u8.write(writer)?;
10746 channel_id.write(writer)?;
10747 htlc_id.write(writer)?;
10748 sha256_of_onion.write(writer)?;
10749 failure_code.write(writer)?;
10756 impl Readable for HTLCFailureMsg {
10757 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10758 let id: u8 = Readable::read(reader)?;
10761 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10762 channel_id: Readable::read(reader)?,
10763 htlc_id: Readable::read(reader)?,
10764 reason: Readable::read(reader)?,
10768 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10769 channel_id: Readable::read(reader)?,
10770 htlc_id: Readable::read(reader)?,
10771 sha256_of_onion: Readable::read(reader)?,
10772 failure_code: Readable::read(reader)?,
10775 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10776 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10777 // messages contained in the variants.
10778 // In version 0.0.101, support for reading the variants with these types was added, and
10779 // we should migrate to writing these variants when UpdateFailHTLC or
10780 // UpdateFailMalformedHTLC get TLV fields.
10782 let length: BigSize = Readable::read(reader)?;
10783 let mut s = FixedLengthReader::new(reader, length.0);
10784 let res = Readable::read(&mut s)?;
10785 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10786 Ok(HTLCFailureMsg::Relay(res))
10789 let length: BigSize = Readable::read(reader)?;
10790 let mut s = FixedLengthReader::new(reader, length.0);
10791 let res = Readable::read(&mut s)?;
10792 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10793 Ok(HTLCFailureMsg::Malformed(res))
10795 _ => Err(DecodeError::UnknownRequiredFeature),
10800 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10805 impl_writeable_tlv_based_enum!(BlindedFailure,
10806 (0, FromIntroductionNode) => {},
10807 (2, FromBlindedNode) => {}, ;
10810 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10811 (0, short_channel_id, required),
10812 (1, phantom_shared_secret, option),
10813 (2, outpoint, required),
10814 (3, blinded_failure, option),
10815 (4, htlc_id, required),
10816 (6, incoming_packet_shared_secret, required),
10817 (7, user_channel_id, option),
10818 // Note that by the time we get past the required read for type 2 above, outpoint will be
10819 // filled in, so we can safely unwrap it here.
10820 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10823 impl Writeable for ClaimableHTLC {
10824 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10825 let (payment_data, keysend_preimage) = match &self.onion_payload {
10826 OnionPayload::Invoice { _legacy_hop_data } => {
10827 (_legacy_hop_data.as_ref(), None)
10829 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
10831 write_tlv_fields!(writer, {
10832 (0, self.prev_hop, required),
10833 (1, self.total_msat, required),
10834 (2, self.value, required),
10835 (3, self.sender_intended_value, required),
10836 (4, payment_data, option),
10837 (5, self.total_value_received, option),
10838 (6, self.cltv_expiry, required),
10839 (8, keysend_preimage, option),
10840 (10, self.counterparty_skimmed_fee_msat, option),
10846 impl Readable for ClaimableHTLC {
10847 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10848 _init_and_read_len_prefixed_tlv_fields!(reader, {
10849 (0, prev_hop, required),
10850 (1, total_msat, option),
10851 (2, value_ser, required),
10852 (3, sender_intended_value, option),
10853 (4, payment_data_opt, option),
10854 (5, total_value_received, option),
10855 (6, cltv_expiry, required),
10856 (8, keysend_preimage, option),
10857 (10, counterparty_skimmed_fee_msat, option),
10859 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10860 let value = value_ser.0.unwrap();
10861 let onion_payload = match keysend_preimage {
10863 if payment_data.is_some() {
10864 return Err(DecodeError::InvalidValue)
10866 if total_msat.is_none() {
10867 total_msat = Some(value);
10869 OnionPayload::Spontaneous(p)
10872 if total_msat.is_none() {
10873 if payment_data.is_none() {
10874 return Err(DecodeError::InvalidValue)
10876 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10878 OnionPayload::Invoice { _legacy_hop_data: payment_data }
10882 prev_hop: prev_hop.0.unwrap(),
10885 sender_intended_value: sender_intended_value.unwrap_or(value),
10886 total_value_received,
10887 total_msat: total_msat.unwrap(),
10889 cltv_expiry: cltv_expiry.0.unwrap(),
10890 counterparty_skimmed_fee_msat,
10895 impl Readable for HTLCSource {
10896 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10897 let id: u8 = Readable::read(reader)?;
10900 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10901 let mut first_hop_htlc_msat: u64 = 0;
10902 let mut path_hops = Vec::new();
10903 let mut payment_id = None;
10904 let mut payment_params: Option<PaymentParameters> = None;
10905 let mut blinded_tail: Option<BlindedTail> = None;
10906 read_tlv_fields!(reader, {
10907 (0, session_priv, required),
10908 (1, payment_id, option),
10909 (2, first_hop_htlc_msat, required),
10910 (4, path_hops, required_vec),
10911 (5, payment_params, (option: ReadableArgs, 0)),
10912 (6, blinded_tail, option),
10914 if payment_id.is_none() {
10915 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10917 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10919 let path = Path { hops: path_hops, blinded_tail };
10920 if path.hops.len() == 0 {
10921 return Err(DecodeError::InvalidValue);
10923 if let Some(params) = payment_params.as_mut() {
10924 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10925 if final_cltv_expiry_delta == &0 {
10926 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10930 Ok(HTLCSource::OutboundRoute {
10931 session_priv: session_priv.0.unwrap(),
10932 first_hop_htlc_msat,
10934 payment_id: payment_id.unwrap(),
10937 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10938 _ => Err(DecodeError::UnknownRequiredFeature),
10943 impl Writeable for HTLCSource {
10944 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10946 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10947 0u8.write(writer)?;
10948 let payment_id_opt = Some(payment_id);
10949 write_tlv_fields!(writer, {
10950 (0, session_priv, required),
10951 (1, payment_id_opt, option),
10952 (2, first_hop_htlc_msat, required),
10953 // 3 was previously used to write a PaymentSecret for the payment.
10954 (4, path.hops, required_vec),
10955 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10956 (6, path.blinded_tail, option),
10959 HTLCSource::PreviousHopData(ref field) => {
10960 1u8.write(writer)?;
10961 field.write(writer)?;
10968 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10969 (0, forward_info, required),
10970 (1, prev_user_channel_id, (default_value, 0)),
10971 (2, prev_short_channel_id, required),
10972 (4, prev_htlc_id, required),
10973 (6, prev_funding_outpoint, required),
10974 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10975 // filled in, so we can safely unwrap it here.
10976 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10979 impl Writeable for HTLCForwardInfo {
10980 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10981 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10983 Self::AddHTLC(info) => {
10987 Self::FailHTLC { htlc_id, err_packet } => {
10988 FAIL_HTLC_VARIANT_ID.write(w)?;
10989 write_tlv_fields!(w, {
10990 (0, htlc_id, required),
10991 (2, err_packet, required),
10994 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
10995 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
10996 // packet so older versions have something to fail back with, but serialize the real data as
10997 // optional TLVs for the benefit of newer versions.
10998 FAIL_HTLC_VARIANT_ID.write(w)?;
10999 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
11000 write_tlv_fields!(w, {
11001 (0, htlc_id, required),
11002 (1, failure_code, required),
11003 (2, dummy_err_packet, required),
11004 (3, sha256_of_onion, required),
11012 impl Readable for HTLCForwardInfo {
11013 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
11014 let id: u8 = Readable::read(r)?;
11016 0 => Self::AddHTLC(Readable::read(r)?),
11018 _init_and_read_len_prefixed_tlv_fields!(r, {
11019 (0, htlc_id, required),
11020 (1, malformed_htlc_failure_code, option),
11021 (2, err_packet, required),
11022 (3, sha256_of_onion, option),
11024 if let Some(failure_code) = malformed_htlc_failure_code {
11025 Self::FailMalformedHTLC {
11026 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11028 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
11032 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11033 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11037 _ => return Err(DecodeError::InvalidValue),
11042 impl_writeable_tlv_based!(PendingInboundPayment, {
11043 (0, payment_secret, required),
11044 (2, expiry_time, required),
11045 (4, user_payment_id, required),
11046 (6, payment_preimage, required),
11047 (8, min_value_msat, required),
11050 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11052 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11053 T::Target: BroadcasterInterface,
11054 ES::Target: EntropySource,
11055 NS::Target: NodeSigner,
11056 SP::Target: SignerProvider,
11057 F::Target: FeeEstimator,
11061 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11062 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11064 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11066 self.chain_hash.write(writer)?;
11068 let best_block = self.best_block.read().unwrap();
11069 best_block.height.write(writer)?;
11070 best_block.block_hash.write(writer)?;
11073 let per_peer_state = self.per_peer_state.write().unwrap();
11075 let mut serializable_peer_count: u64 = 0;
11077 let mut number_of_funded_channels = 0;
11078 for (_, peer_state_mutex) in per_peer_state.iter() {
11079 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11080 let peer_state = &mut *peer_state_lock;
11081 if !peer_state.ok_to_remove(false) {
11082 serializable_peer_count += 1;
11085 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11086 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11090 (number_of_funded_channels as u64).write(writer)?;
11092 for (_, peer_state_mutex) in per_peer_state.iter() {
11093 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11094 let peer_state = &mut *peer_state_lock;
11095 for channel in peer_state.channel_by_id.iter().filter_map(
11096 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11097 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11100 channel.write(writer)?;
11106 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11107 (forward_htlcs.len() as u64).write(writer)?;
11108 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11109 short_channel_id.write(writer)?;
11110 (pending_forwards.len() as u64).write(writer)?;
11111 for forward in pending_forwards {
11112 forward.write(writer)?;
11117 let mut decode_update_add_htlcs_opt = None;
11118 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11119 if !decode_update_add_htlcs.is_empty() {
11120 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11123 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11124 let claimable_payments = self.claimable_payments.lock().unwrap();
11125 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11127 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11128 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11129 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11130 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11131 payment_hash.write(writer)?;
11132 (payment.htlcs.len() as u64).write(writer)?;
11133 for htlc in payment.htlcs.iter() {
11134 htlc.write(writer)?;
11136 htlc_purposes.push(&payment.purpose);
11137 htlc_onion_fields.push(&payment.onion_fields);
11140 let mut monitor_update_blocked_actions_per_peer = None;
11141 let mut peer_states = Vec::new();
11142 for (_, peer_state_mutex) in per_peer_state.iter() {
11143 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11144 // of a lockorder violation deadlock - no other thread can be holding any
11145 // per_peer_state lock at all.
11146 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11149 (serializable_peer_count).write(writer)?;
11150 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11151 // Peers which we have no channels to should be dropped once disconnected. As we
11152 // disconnect all peers when shutting down and serializing the ChannelManager, we
11153 // consider all peers as disconnected here. There's therefore no need write peers with
11155 if !peer_state.ok_to_remove(false) {
11156 peer_pubkey.write(writer)?;
11157 peer_state.latest_features.write(writer)?;
11158 if !peer_state.monitor_update_blocked_actions.is_empty() {
11159 monitor_update_blocked_actions_per_peer
11160 .get_or_insert_with(Vec::new)
11161 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11166 let events = self.pending_events.lock().unwrap();
11167 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11168 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11169 // refuse to read the new ChannelManager.
11170 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11171 if events_not_backwards_compatible {
11172 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11173 // well save the space and not write any events here.
11174 0u64.write(writer)?;
11176 (events.len() as u64).write(writer)?;
11177 for (event, _) in events.iter() {
11178 event.write(writer)?;
11182 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11183 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11184 // the closing monitor updates were always effectively replayed on startup (either directly
11185 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11186 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11187 0u64.write(writer)?;
11189 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11190 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11191 // likely to be identical.
11192 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11193 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11195 (pending_inbound_payments.len() as u64).write(writer)?;
11196 for (hash, pending_payment) in pending_inbound_payments.iter() {
11197 hash.write(writer)?;
11198 pending_payment.write(writer)?;
11201 // For backwards compat, write the session privs and their total length.
11202 let mut num_pending_outbounds_compat: u64 = 0;
11203 for (_, outbound) in pending_outbound_payments.iter() {
11204 if !outbound.is_fulfilled() && !outbound.abandoned() {
11205 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11208 num_pending_outbounds_compat.write(writer)?;
11209 for (_, outbound) in pending_outbound_payments.iter() {
11211 PendingOutboundPayment::Legacy { session_privs } |
11212 PendingOutboundPayment::Retryable { session_privs, .. } => {
11213 for session_priv in session_privs.iter() {
11214 session_priv.write(writer)?;
11217 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11218 PendingOutboundPayment::InvoiceReceived { .. } => {},
11219 PendingOutboundPayment::Fulfilled { .. } => {},
11220 PendingOutboundPayment::Abandoned { .. } => {},
11224 // Encode without retry info for 0.0.101 compatibility.
11225 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11226 for (id, outbound) in pending_outbound_payments.iter() {
11228 PendingOutboundPayment::Legacy { session_privs } |
11229 PendingOutboundPayment::Retryable { session_privs, .. } => {
11230 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11236 let mut pending_intercepted_htlcs = None;
11237 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11238 if our_pending_intercepts.len() != 0 {
11239 pending_intercepted_htlcs = Some(our_pending_intercepts);
11242 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11243 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11244 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11245 // map. Thus, if there are no entries we skip writing a TLV for it.
11246 pending_claiming_payments = None;
11249 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11250 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11251 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11252 if !updates.is_empty() {
11253 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11254 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11259 write_tlv_fields!(writer, {
11260 (1, pending_outbound_payments_no_retry, required),
11261 (2, pending_intercepted_htlcs, option),
11262 (3, pending_outbound_payments, required),
11263 (4, pending_claiming_payments, option),
11264 (5, self.our_network_pubkey, required),
11265 (6, monitor_update_blocked_actions_per_peer, option),
11266 (7, self.fake_scid_rand_bytes, required),
11267 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11268 (9, htlc_purposes, required_vec),
11269 (10, in_flight_monitor_updates, option),
11270 (11, self.probing_cookie_secret, required),
11271 (13, htlc_onion_fields, optional_vec),
11272 (14, decode_update_add_htlcs_opt, option),
11279 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11280 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11281 (self.len() as u64).write(w)?;
11282 for (event, action) in self.iter() {
11285 #[cfg(debug_assertions)] {
11286 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11287 // be persisted and are regenerated on restart. However, if such an event has a
11288 // post-event-handling action we'll write nothing for the event and would have to
11289 // either forget the action or fail on deserialization (which we do below). Thus,
11290 // check that the event is sane here.
11291 let event_encoded = event.encode();
11292 let event_read: Option<Event> =
11293 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11294 if action.is_some() { assert!(event_read.is_some()); }
11300 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11301 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11302 let len: u64 = Readable::read(reader)?;
11303 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11304 let mut events: Self = VecDeque::with_capacity(cmp::min(
11305 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11308 let ev_opt = MaybeReadable::read(reader)?;
11309 let action = Readable::read(reader)?;
11310 if let Some(ev) = ev_opt {
11311 events.push_back((ev, action));
11312 } else if action.is_some() {
11313 return Err(DecodeError::InvalidValue);
11320 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11321 (0, NotShuttingDown) => {},
11322 (2, ShutdownInitiated) => {},
11323 (4, ResolvingHTLCs) => {},
11324 (6, NegotiatingClosingFee) => {},
11325 (8, ShutdownComplete) => {}, ;
11328 /// Arguments for the creation of a ChannelManager that are not deserialized.
11330 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11332 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11333 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11334 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11335 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11336 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11337 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11338 /// same way you would handle a [`chain::Filter`] call using
11339 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11340 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11341 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11342 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11343 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11344 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11346 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11347 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11349 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11350 /// call any other methods on the newly-deserialized [`ChannelManager`].
11352 /// Note that because some channels may be closed during deserialization, it is critical that you
11353 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11354 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11355 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11356 /// not force-close the same channels but consider them live), you may end up revoking a state for
11357 /// which you've already broadcasted the transaction.
11359 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11360 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11362 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11363 T::Target: BroadcasterInterface,
11364 ES::Target: EntropySource,
11365 NS::Target: NodeSigner,
11366 SP::Target: SignerProvider,
11367 F::Target: FeeEstimator,
11371 /// A cryptographically secure source of entropy.
11372 pub entropy_source: ES,
11374 /// A signer that is able to perform node-scoped cryptographic operations.
11375 pub node_signer: NS,
11377 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11378 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11380 pub signer_provider: SP,
11382 /// The fee_estimator for use in the ChannelManager in the future.
11384 /// No calls to the FeeEstimator will be made during deserialization.
11385 pub fee_estimator: F,
11386 /// The chain::Watch for use in the ChannelManager in the future.
11388 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11389 /// you have deserialized ChannelMonitors separately and will add them to your
11390 /// chain::Watch after deserializing this ChannelManager.
11391 pub chain_monitor: M,
11393 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11394 /// used to broadcast the latest local commitment transactions of channels which must be
11395 /// force-closed during deserialization.
11396 pub tx_broadcaster: T,
11397 /// The router which will be used in the ChannelManager in the future for finding routes
11398 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11400 /// No calls to the router will be made during deserialization.
11402 /// The Logger for use in the ChannelManager and which may be used to log information during
11403 /// deserialization.
11405 /// Default settings used for new channels. Any existing channels will continue to use the
11406 /// runtime settings which were stored when the ChannelManager was serialized.
11407 pub default_config: UserConfig,
11409 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11410 /// value.context.get_funding_txo() should be the key).
11412 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11413 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11414 /// is true for missing channels as well. If there is a monitor missing for which we find
11415 /// channel data Err(DecodeError::InvalidValue) will be returned.
11417 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11420 /// This is not exported to bindings users because we have no HashMap bindings
11421 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11424 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11425 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11427 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11428 T::Target: BroadcasterInterface,
11429 ES::Target: EntropySource,
11430 NS::Target: NodeSigner,
11431 SP::Target: SignerProvider,
11432 F::Target: FeeEstimator,
11436 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11437 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11438 /// populate a HashMap directly from C.
11439 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11440 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11442 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11443 channel_monitors: hash_map_from_iter(
11444 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11450 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11451 // SipmleArcChannelManager type:
11452 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11453 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11455 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11456 T::Target: BroadcasterInterface,
11457 ES::Target: EntropySource,
11458 NS::Target: NodeSigner,
11459 SP::Target: SignerProvider,
11460 F::Target: FeeEstimator,
11464 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11465 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11466 Ok((blockhash, Arc::new(chan_manager)))
11470 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11471 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11473 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11474 T::Target: BroadcasterInterface,
11475 ES::Target: EntropySource,
11476 NS::Target: NodeSigner,
11477 SP::Target: SignerProvider,
11478 F::Target: FeeEstimator,
11482 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11483 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11485 let chain_hash: ChainHash = Readable::read(reader)?;
11486 let best_block_height: u32 = Readable::read(reader)?;
11487 let best_block_hash: BlockHash = Readable::read(reader)?;
11489 let mut failed_htlcs = Vec::new();
11491 let channel_count: u64 = Readable::read(reader)?;
11492 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11493 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11494 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11495 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11496 let mut channel_closures = VecDeque::new();
11497 let mut close_background_events = Vec::new();
11498 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11499 for _ in 0..channel_count {
11500 let mut channel: Channel<SP> = Channel::read(reader, (
11501 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11503 let logger = WithChannelContext::from(&args.logger, &channel.context);
11504 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11505 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11506 funding_txo_set.insert(funding_txo.clone());
11507 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11508 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11509 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11510 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11511 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11512 // But if the channel is behind of the monitor, close the channel:
11513 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11514 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11515 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11516 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11517 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11519 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11520 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11521 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11523 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11524 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11525 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11527 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11528 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11529 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11531 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11532 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11533 return Err(DecodeError::InvalidValue);
11535 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11536 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11537 counterparty_node_id, funding_txo, channel_id, update
11540 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11541 channel_closures.push_back((events::Event::ChannelClosed {
11542 channel_id: channel.context.channel_id(),
11543 user_channel_id: channel.context.get_user_id(),
11544 reason: ClosureReason::OutdatedChannelManager,
11545 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11546 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11547 channel_funding_txo: channel.context.get_funding_txo(),
11549 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11550 let mut found_htlc = false;
11551 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11552 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11555 // If we have some HTLCs in the channel which are not present in the newer
11556 // ChannelMonitor, they have been removed and should be failed back to
11557 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11558 // were actually claimed we'd have generated and ensured the previous-hop
11559 // claim update ChannelMonitor updates were persisted prior to persising
11560 // the ChannelMonitor update for the forward leg, so attempting to fail the
11561 // backwards leg of the HTLC will simply be rejected.
11563 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11564 &channel.context.channel_id(), &payment_hash);
11565 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11569 channel.on_startup_drop_completed_blocked_mon_updates_through(&logger, monitor.get_latest_update_id());
11570 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {} with {} blocked updates",
11571 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11572 monitor.get_latest_update_id(), channel.blocked_monitor_updates_pending());
11573 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11574 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11576 if let Some(funding_txo) = channel.context.get_funding_txo() {
11577 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11579 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11580 hash_map::Entry::Occupied(mut entry) => {
11581 let by_id_map = entry.get_mut();
11582 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11584 hash_map::Entry::Vacant(entry) => {
11585 let mut by_id_map = new_hash_map();
11586 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11587 entry.insert(by_id_map);
11591 } else if channel.is_awaiting_initial_mon_persist() {
11592 // If we were persisted and shut down while the initial ChannelMonitor persistence
11593 // was in-progress, we never broadcasted the funding transaction and can still
11594 // safely discard the channel.
11595 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11596 channel_closures.push_back((events::Event::ChannelClosed {
11597 channel_id: channel.context.channel_id(),
11598 user_channel_id: channel.context.get_user_id(),
11599 reason: ClosureReason::DisconnectedPeer,
11600 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11601 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11602 channel_funding_txo: channel.context.get_funding_txo(),
11605 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11606 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11607 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11608 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11609 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11610 return Err(DecodeError::InvalidValue);
11614 for (funding_txo, monitor) in args.channel_monitors.iter() {
11615 if !funding_txo_set.contains(funding_txo) {
11616 let logger = WithChannelMonitor::from(&args.logger, monitor);
11617 let channel_id = monitor.channel_id();
11618 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11620 let monitor_update = ChannelMonitorUpdate {
11621 update_id: CLOSED_CHANNEL_UPDATE_ID,
11622 counterparty_node_id: None,
11623 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11624 channel_id: Some(monitor.channel_id()),
11626 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11630 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11631 let forward_htlcs_count: u64 = Readable::read(reader)?;
11632 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11633 for _ in 0..forward_htlcs_count {
11634 let short_channel_id = Readable::read(reader)?;
11635 let pending_forwards_count: u64 = Readable::read(reader)?;
11636 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11637 for _ in 0..pending_forwards_count {
11638 pending_forwards.push(Readable::read(reader)?);
11640 forward_htlcs.insert(short_channel_id, pending_forwards);
11643 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11644 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11645 for _ in 0..claimable_htlcs_count {
11646 let payment_hash = Readable::read(reader)?;
11647 let previous_hops_len: u64 = Readable::read(reader)?;
11648 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11649 for _ in 0..previous_hops_len {
11650 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11652 claimable_htlcs_list.push((payment_hash, previous_hops));
11655 let peer_state_from_chans = |channel_by_id| {
11658 inbound_channel_request_by_id: new_hash_map(),
11659 latest_features: InitFeatures::empty(),
11660 pending_msg_events: Vec::new(),
11661 in_flight_monitor_updates: BTreeMap::new(),
11662 monitor_update_blocked_actions: BTreeMap::new(),
11663 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11664 is_connected: false,
11668 let peer_count: u64 = Readable::read(reader)?;
11669 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11670 for _ in 0..peer_count {
11671 let peer_pubkey = Readable::read(reader)?;
11672 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11673 let mut peer_state = peer_state_from_chans(peer_chans);
11674 peer_state.latest_features = Readable::read(reader)?;
11675 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11678 let event_count: u64 = Readable::read(reader)?;
11679 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11680 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11681 for _ in 0..event_count {
11682 match MaybeReadable::read(reader)? {
11683 Some(event) => pending_events_read.push_back((event, None)),
11688 let background_event_count: u64 = Readable::read(reader)?;
11689 for _ in 0..background_event_count {
11690 match <u8 as Readable>::read(reader)? {
11692 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11693 // however we really don't (and never did) need them - we regenerate all
11694 // on-startup monitor updates.
11695 let _: OutPoint = Readable::read(reader)?;
11696 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11698 _ => return Err(DecodeError::InvalidValue),
11702 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11703 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11705 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11706 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11707 for _ in 0..pending_inbound_payment_count {
11708 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11709 return Err(DecodeError::InvalidValue);
11713 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11714 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11715 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11716 for _ in 0..pending_outbound_payments_count_compat {
11717 let session_priv = Readable::read(reader)?;
11718 let payment = PendingOutboundPayment::Legacy {
11719 session_privs: hash_set_from_iter([session_priv]),
11721 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11722 return Err(DecodeError::InvalidValue)
11726 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11727 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11728 let mut pending_outbound_payments = None;
11729 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11730 let mut received_network_pubkey: Option<PublicKey> = None;
11731 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11732 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11733 let mut claimable_htlc_purposes = None;
11734 let mut claimable_htlc_onion_fields = None;
11735 let mut pending_claiming_payments = Some(new_hash_map());
11736 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11737 let mut events_override = None;
11738 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11739 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11740 read_tlv_fields!(reader, {
11741 (1, pending_outbound_payments_no_retry, option),
11742 (2, pending_intercepted_htlcs, option),
11743 (3, pending_outbound_payments, option),
11744 (4, pending_claiming_payments, option),
11745 (5, received_network_pubkey, option),
11746 (6, monitor_update_blocked_actions_per_peer, option),
11747 (7, fake_scid_rand_bytes, option),
11748 (8, events_override, option),
11749 (9, claimable_htlc_purposes, optional_vec),
11750 (10, in_flight_monitor_updates, option),
11751 (11, probing_cookie_secret, option),
11752 (13, claimable_htlc_onion_fields, optional_vec),
11753 (14, decode_update_add_htlcs, option),
11755 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11756 if fake_scid_rand_bytes.is_none() {
11757 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11760 if probing_cookie_secret.is_none() {
11761 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11764 if let Some(events) = events_override {
11765 pending_events_read = events;
11768 if !channel_closures.is_empty() {
11769 pending_events_read.append(&mut channel_closures);
11772 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11773 pending_outbound_payments = Some(pending_outbound_payments_compat);
11774 } else if pending_outbound_payments.is_none() {
11775 let mut outbounds = new_hash_map();
11776 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11777 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11779 pending_outbound_payments = Some(outbounds);
11781 let pending_outbounds = OutboundPayments {
11782 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11783 retry_lock: Mutex::new(())
11786 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11787 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11788 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11789 // replayed, and for each monitor update we have to replay we have to ensure there's a
11790 // `ChannelMonitor` for it.
11792 // In order to do so we first walk all of our live channels (so that we can check their
11793 // state immediately after doing the update replays, when we have the `update_id`s
11794 // available) and then walk any remaining in-flight updates.
11796 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11797 let mut pending_background_events = Vec::new();
11798 macro_rules! handle_in_flight_updates {
11799 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11800 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11802 let mut max_in_flight_update_id = 0;
11803 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11804 for update in $chan_in_flight_upds.iter() {
11805 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11806 update.update_id, $channel_info_log, &$monitor.channel_id());
11807 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11808 pending_background_events.push(
11809 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11810 counterparty_node_id: $counterparty_node_id,
11811 funding_txo: $funding_txo,
11812 channel_id: $monitor.channel_id(),
11813 update: update.clone(),
11816 if $chan_in_flight_upds.is_empty() {
11817 // We had some updates to apply, but it turns out they had completed before we
11818 // were serialized, we just weren't notified of that. Thus, we may have to run
11819 // the completion actions for any monitor updates, but otherwise are done.
11820 pending_background_events.push(
11821 BackgroundEvent::MonitorUpdatesComplete {
11822 counterparty_node_id: $counterparty_node_id,
11823 channel_id: $monitor.channel_id(),
11826 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11827 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11828 return Err(DecodeError::InvalidValue);
11830 max_in_flight_update_id
11834 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11835 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11836 let peer_state = &mut *peer_state_lock;
11837 for phase in peer_state.channel_by_id.values() {
11838 if let ChannelPhase::Funded(chan) = phase {
11839 let logger = WithChannelContext::from(&args.logger, &chan.context);
11841 // Channels that were persisted have to be funded, otherwise they should have been
11843 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11844 let monitor = args.channel_monitors.get(&funding_txo)
11845 .expect("We already checked for monitor presence when loading channels");
11846 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11847 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11848 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11849 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11850 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11851 funding_txo, monitor, peer_state, logger, ""));
11854 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11855 // If the channel is ahead of the monitor, return DangerousValue:
11856 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11857 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11858 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11859 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11860 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11861 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11862 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11863 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11864 return Err(DecodeError::DangerousValue);
11867 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11868 // created in this `channel_by_id` map.
11869 debug_assert!(false);
11870 return Err(DecodeError::InvalidValue);
11875 if let Some(in_flight_upds) = in_flight_monitor_updates {
11876 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11877 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11878 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11879 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11880 // Now that we've removed all the in-flight monitor updates for channels that are
11881 // still open, we need to replay any monitor updates that are for closed channels,
11882 // creating the neccessary peer_state entries as we go.
11883 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11884 Mutex::new(peer_state_from_chans(new_hash_map()))
11886 let mut peer_state = peer_state_mutex.lock().unwrap();
11887 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11888 funding_txo, monitor, peer_state, logger, "closed ");
11890 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11891 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11892 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11893 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11894 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11895 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11896 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11897 log_error!(logger, " Pending in-flight updates are: {:?}", chan_in_flight_updates);
11898 return Err(DecodeError::InvalidValue);
11903 // Note that we have to do the above replays before we push new monitor updates.
11904 pending_background_events.append(&mut close_background_events);
11906 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11907 // should ensure we try them again on the inbound edge. We put them here and do so after we
11908 // have a fully-constructed `ChannelManager` at the end.
11909 let mut pending_claims_to_replay = Vec::new();
11912 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11913 // ChannelMonitor data for any channels for which we do not have authorative state
11914 // (i.e. those for which we just force-closed above or we otherwise don't have a
11915 // corresponding `Channel` at all).
11916 // This avoids several edge-cases where we would otherwise "forget" about pending
11917 // payments which are still in-flight via their on-chain state.
11918 // We only rebuild the pending payments map if we were most recently serialized by
11920 for (_, monitor) in args.channel_monitors.iter() {
11921 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11922 if counterparty_opt.is_none() {
11923 let logger = WithChannelMonitor::from(&args.logger, monitor);
11924 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11925 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11926 if path.hops.is_empty() {
11927 log_error!(logger, "Got an empty path for a pending payment");
11928 return Err(DecodeError::InvalidValue);
11931 let path_amt = path.final_value_msat();
11932 let mut session_priv_bytes = [0; 32];
11933 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11934 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11935 hash_map::Entry::Occupied(mut entry) => {
11936 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11937 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11938 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11940 hash_map::Entry::Vacant(entry) => {
11941 let path_fee = path.fee_msat();
11942 entry.insert(PendingOutboundPayment::Retryable {
11943 retry_strategy: None,
11944 attempts: PaymentAttempts::new(),
11945 payment_params: None,
11946 session_privs: hash_set_from_iter([session_priv_bytes]),
11947 payment_hash: htlc.payment_hash,
11948 payment_secret: None, // only used for retries, and we'll never retry on startup
11949 payment_metadata: None, // only used for retries, and we'll never retry on startup
11950 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11951 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11952 pending_amt_msat: path_amt,
11953 pending_fee_msat: Some(path_fee),
11954 total_msat: path_amt,
11955 starting_block_height: best_block_height,
11956 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11958 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11959 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11964 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11965 match htlc_source {
11966 HTLCSource::PreviousHopData(prev_hop_data) => {
11967 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11968 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11969 info.prev_htlc_id == prev_hop_data.htlc_id
11971 // The ChannelMonitor is now responsible for this HTLC's
11972 // failure/success and will let us know what its outcome is. If we
11973 // still have an entry for this HTLC in `forward_htlcs` or
11974 // `pending_intercepted_htlcs`, we were apparently not persisted after
11975 // the monitor was when forwarding the payment.
11976 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11977 update_add_htlcs.retain(|update_add_htlc| {
11978 let matches = *scid == prev_hop_data.short_channel_id &&
11979 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11981 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11982 &htlc.payment_hash, &monitor.channel_id());
11986 !update_add_htlcs.is_empty()
11988 forward_htlcs.retain(|_, forwards| {
11989 forwards.retain(|forward| {
11990 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11991 if pending_forward_matches_htlc(&htlc_info) {
11992 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11993 &htlc.payment_hash, &monitor.channel_id());
11998 !forwards.is_empty()
12000 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
12001 if pending_forward_matches_htlc(&htlc_info) {
12002 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
12003 &htlc.payment_hash, &monitor.channel_id());
12004 pending_events_read.retain(|(event, _)| {
12005 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
12006 intercepted_id != ev_id
12013 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
12014 if let Some(preimage) = preimage_opt {
12015 let pending_events = Mutex::new(pending_events_read);
12016 // Note that we set `from_onchain` to "false" here,
12017 // deliberately keeping the pending payment around forever.
12018 // Given it should only occur when we have a channel we're
12019 // force-closing for being stale that's okay.
12020 // The alternative would be to wipe the state when claiming,
12021 // generating a `PaymentPathSuccessful` event but regenerating
12022 // it and the `PaymentSent` on every restart until the
12023 // `ChannelMonitor` is removed.
12025 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
12026 channel_funding_outpoint: monitor.get_funding_txo().0,
12027 channel_id: monitor.channel_id(),
12028 counterparty_node_id: path.hops[0].pubkey,
12030 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
12031 path, false, compl_action, &pending_events, &&logger);
12032 pending_events_read = pending_events.into_inner().unwrap();
12039 // Whether the downstream channel was closed or not, try to re-apply any payment
12040 // preimages from it which may be needed in upstream channels for forwarded
12042 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12044 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12045 if let HTLCSource::PreviousHopData(_) = htlc_source {
12046 if let Some(payment_preimage) = preimage_opt {
12047 Some((htlc_source, payment_preimage, htlc.amount_msat,
12048 // Check if `counterparty_opt.is_none()` to see if the
12049 // downstream chan is closed (because we don't have a
12050 // channel_id -> peer map entry).
12051 counterparty_opt.is_none(),
12052 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12053 monitor.get_funding_txo().0, monitor.channel_id()))
12056 // If it was an outbound payment, we've handled it above - if a preimage
12057 // came in and we persisted the `ChannelManager` we either handled it and
12058 // are good to go or the channel force-closed - we don't have to handle the
12059 // channel still live case here.
12063 for tuple in outbound_claimed_htlcs_iter {
12064 pending_claims_to_replay.push(tuple);
12069 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12070 // If we have pending HTLCs to forward, assume we either dropped a
12071 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12072 // shut down before the timer hit. Either way, set the time_forwardable to a small
12073 // constant as enough time has likely passed that we should simply handle the forwards
12074 // now, or at least after the user gets a chance to reconnect to our peers.
12075 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12076 time_forwardable: Duration::from_secs(2),
12080 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12081 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12083 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12084 if let Some(purposes) = claimable_htlc_purposes {
12085 if purposes.len() != claimable_htlcs_list.len() {
12086 return Err(DecodeError::InvalidValue);
12088 if let Some(onion_fields) = claimable_htlc_onion_fields {
12089 if onion_fields.len() != claimable_htlcs_list.len() {
12090 return Err(DecodeError::InvalidValue);
12092 for (purpose, (onion, (payment_hash, htlcs))) in
12093 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12095 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12096 purpose, htlcs, onion_fields: onion,
12098 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12101 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12102 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12103 purpose, htlcs, onion_fields: None,
12105 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12109 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12110 // include a `_legacy_hop_data` in the `OnionPayload`.
12111 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12112 if htlcs.is_empty() {
12113 return Err(DecodeError::InvalidValue);
12115 let purpose = match &htlcs[0].onion_payload {
12116 OnionPayload::Invoice { _legacy_hop_data } => {
12117 if let Some(hop_data) = _legacy_hop_data {
12118 events::PaymentPurpose::Bolt11InvoicePayment {
12119 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12120 Some(inbound_payment) => inbound_payment.payment_preimage,
12121 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12122 Ok((payment_preimage, _)) => payment_preimage,
12124 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12125 return Err(DecodeError::InvalidValue);
12129 payment_secret: hop_data.payment_secret,
12131 } else { return Err(DecodeError::InvalidValue); }
12133 OnionPayload::Spontaneous(payment_preimage) =>
12134 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12136 claimable_payments.insert(payment_hash, ClaimablePayment {
12137 purpose, htlcs, onion_fields: None,
12142 let mut secp_ctx = Secp256k1::new();
12143 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12145 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12147 Err(()) => return Err(DecodeError::InvalidValue)
12149 if let Some(network_pubkey) = received_network_pubkey {
12150 if network_pubkey != our_network_pubkey {
12151 log_error!(args.logger, "Key that was generated does not match the existing key.");
12152 return Err(DecodeError::InvalidValue);
12156 let mut outbound_scid_aliases = new_hash_set();
12157 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12158 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12159 let peer_state = &mut *peer_state_lock;
12160 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12161 if let ChannelPhase::Funded(chan) = phase {
12162 let logger = WithChannelContext::from(&args.logger, &chan.context);
12163 if chan.context.outbound_scid_alias() == 0 {
12164 let mut outbound_scid_alias;
12166 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12167 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12168 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12170 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12171 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12172 // Note that in rare cases its possible to hit this while reading an older
12173 // channel if we just happened to pick a colliding outbound alias above.
12174 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12175 return Err(DecodeError::InvalidValue);
12177 if chan.context.is_usable() {
12178 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12179 // Note that in rare cases its possible to hit this while reading an older
12180 // channel if we just happened to pick a colliding outbound alias above.
12181 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12182 return Err(DecodeError::InvalidValue);
12186 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12187 // created in this `channel_by_id` map.
12188 debug_assert!(false);
12189 return Err(DecodeError::InvalidValue);
12194 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12196 for (_, monitor) in args.channel_monitors.iter() {
12197 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12198 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12199 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12200 let mut claimable_amt_msat = 0;
12201 let mut receiver_node_id = Some(our_network_pubkey);
12202 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12203 if phantom_shared_secret.is_some() {
12204 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12205 .expect("Failed to get node_id for phantom node recipient");
12206 receiver_node_id = Some(phantom_pubkey)
12208 for claimable_htlc in &payment.htlcs {
12209 claimable_amt_msat += claimable_htlc.value;
12211 // Add a holding-cell claim of the payment to the Channel, which should be
12212 // applied ~immediately on peer reconnection. Because it won't generate a
12213 // new commitment transaction we can just provide the payment preimage to
12214 // the corresponding ChannelMonitor and nothing else.
12216 // We do so directly instead of via the normal ChannelMonitor update
12217 // procedure as the ChainMonitor hasn't yet been initialized, implying
12218 // we're not allowed to call it directly yet. Further, we do the update
12219 // without incrementing the ChannelMonitor update ID as there isn't any
12221 // If we were to generate a new ChannelMonitor update ID here and then
12222 // crash before the user finishes block connect we'd end up force-closing
12223 // this channel as well. On the flip side, there's no harm in restarting
12224 // without the new monitor persisted - we'll end up right back here on
12226 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12227 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12228 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12229 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12230 let peer_state = &mut *peer_state_lock;
12231 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12232 let logger = WithChannelContext::from(&args.logger, &channel.context);
12233 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12236 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12237 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12240 pending_events_read.push_back((events::Event::PaymentClaimed {
12243 purpose: payment.purpose,
12244 amount_msat: claimable_amt_msat,
12245 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12246 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12252 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12253 if let Some(peer_state) = per_peer_state.get(&node_id) {
12254 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12255 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12256 for action in actions.iter() {
12257 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12258 downstream_counterparty_and_funding_outpoint:
12259 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12261 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12263 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12264 blocked_channel_id);
12265 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12266 .entry(*blocked_channel_id)
12267 .or_insert_with(Vec::new).push(blocking_action.clone());
12269 // If the channel we were blocking has closed, we don't need to
12270 // worry about it - the blocked monitor update should never have
12271 // been released from the `Channel` object so it can't have
12272 // completed, and if the channel closed there's no reason to bother
12276 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12277 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12281 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12283 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12284 return Err(DecodeError::InvalidValue);
12288 let channel_manager = ChannelManager {
12290 fee_estimator: bounded_fee_estimator,
12291 chain_monitor: args.chain_monitor,
12292 tx_broadcaster: args.tx_broadcaster,
12293 router: args.router,
12295 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12297 inbound_payment_key: expanded_inbound_key,
12298 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12299 pending_outbound_payments: pending_outbounds,
12300 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12302 forward_htlcs: Mutex::new(forward_htlcs),
12303 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12304 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12305 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12306 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12307 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12308 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12310 probing_cookie_secret: probing_cookie_secret.unwrap(),
12312 our_network_pubkey,
12315 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12317 per_peer_state: FairRwLock::new(per_peer_state),
12319 pending_events: Mutex::new(pending_events_read),
12320 pending_events_processor: AtomicBool::new(false),
12321 pending_background_events: Mutex::new(pending_background_events),
12322 total_consistency_lock: RwLock::new(()),
12323 background_events_processed_since_startup: AtomicBool::new(false),
12325 event_persist_notifier: Notifier::new(),
12326 needs_persist_flag: AtomicBool::new(false),
12328 funding_batch_states: Mutex::new(BTreeMap::new()),
12330 pending_offers_messages: Mutex::new(Vec::new()),
12332 pending_broadcast_messages: Mutex::new(Vec::new()),
12334 entropy_source: args.entropy_source,
12335 node_signer: args.node_signer,
12336 signer_provider: args.signer_provider,
12338 logger: args.logger,
12339 default_configuration: args.default_config,
12342 for htlc_source in failed_htlcs.drain(..) {
12343 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12344 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12345 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12346 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12349 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12350 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12351 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12352 // channel is closed we just assume that it probably came from an on-chain claim.
12353 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12354 downstream_closed, true, downstream_node_id, downstream_funding,
12355 downstream_channel_id, None
12359 //TODO: Broadcast channel update for closed channels, but only after we've made a
12360 //connection or two.
12362 Ok((best_block_hash.clone(), channel_manager))
12368 use bitcoin::hashes::Hash;
12369 use bitcoin::hashes::sha256::Hash as Sha256;
12370 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12371 use core::sync::atomic::Ordering;
12372 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12373 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12374 use crate::ln::ChannelId;
12375 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12376 use crate::ln::functional_test_utils::*;
12377 use crate::ln::msgs::{self, ErrorAction};
12378 use crate::ln::msgs::ChannelMessageHandler;
12379 use crate::prelude::*;
12380 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12381 use crate::util::errors::APIError;
12382 use crate::util::ser::Writeable;
12383 use crate::util::test_utils;
12384 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12385 use crate::sign::EntropySource;
12388 fn test_notify_limits() {
12389 // Check that a few cases which don't require the persistence of a new ChannelManager,
12390 // indeed, do not cause the persistence of a new ChannelManager.
12391 let chanmon_cfgs = create_chanmon_cfgs(3);
12392 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12393 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12394 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12396 // All nodes start with a persistable update pending as `create_network` connects each node
12397 // with all other nodes to make most tests simpler.
12398 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12399 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12400 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12402 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12404 // We check that the channel info nodes have doesn't change too early, even though we try
12405 // to connect messages with new values
12406 chan.0.contents.fee_base_msat *= 2;
12407 chan.1.contents.fee_base_msat *= 2;
12408 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12409 &nodes[1].node.get_our_node_id()).pop().unwrap();
12410 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12411 &nodes[0].node.get_our_node_id()).pop().unwrap();
12413 // The first two nodes (which opened a channel) should now require fresh persistence
12414 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12415 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12416 // ... but the last node should not.
12417 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12418 // After persisting the first two nodes they should no longer need fresh persistence.
12419 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12420 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12422 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12423 // about the channel.
12424 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12425 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12426 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12428 // The nodes which are a party to the channel should also ignore messages from unrelated
12430 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12431 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12432 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12433 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12434 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12435 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12437 // At this point the channel info given by peers should still be the same.
12438 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12439 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12441 // An earlier version of handle_channel_update didn't check the directionality of the
12442 // update message and would always update the local fee info, even if our peer was
12443 // (spuriously) forwarding us our own channel_update.
12444 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12445 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12446 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12448 // First deliver each peers' own message, checking that the node doesn't need to be
12449 // persisted and that its channel info remains the same.
12450 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12451 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12452 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12453 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12454 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12455 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12457 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12458 // the channel info has updated.
12459 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12460 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12461 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12462 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12463 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12464 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12468 fn test_keysend_dup_hash_partial_mpp() {
12469 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12471 let chanmon_cfgs = create_chanmon_cfgs(2);
12472 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12473 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12474 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12475 create_announced_chan_between_nodes(&nodes, 0, 1);
12477 // First, send a partial MPP payment.
12478 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12479 let mut mpp_route = route.clone();
12480 mpp_route.paths.push(mpp_route.paths[0].clone());
12482 let payment_id = PaymentId([42; 32]);
12483 // Use the utility function send_payment_along_path to send the payment with MPP data which
12484 // indicates there are more HTLCs coming.
12485 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12486 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12487 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12488 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12489 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12490 check_added_monitors!(nodes[0], 1);
12491 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12492 assert_eq!(events.len(), 1);
12493 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12495 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12496 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12497 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12498 check_added_monitors!(nodes[0], 1);
12499 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12500 assert_eq!(events.len(), 1);
12501 let ev = events.drain(..).next().unwrap();
12502 let payment_event = SendEvent::from_event(ev);
12503 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12504 check_added_monitors!(nodes[1], 0);
12505 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12506 expect_pending_htlcs_forwardable!(nodes[1]);
12507 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12508 check_added_monitors!(nodes[1], 1);
12509 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12510 assert!(updates.update_add_htlcs.is_empty());
12511 assert!(updates.update_fulfill_htlcs.is_empty());
12512 assert_eq!(updates.update_fail_htlcs.len(), 1);
12513 assert!(updates.update_fail_malformed_htlcs.is_empty());
12514 assert!(updates.update_fee.is_none());
12515 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12516 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12517 expect_payment_failed!(nodes[0], our_payment_hash, true);
12519 // Send the second half of the original MPP payment.
12520 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12521 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12522 check_added_monitors!(nodes[0], 1);
12523 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12524 assert_eq!(events.len(), 1);
12525 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12527 // Claim the full MPP payment. Note that we can't use a test utility like
12528 // claim_funds_along_route because the ordering of the messages causes the second half of the
12529 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12530 // lightning messages manually.
12531 nodes[1].node.claim_funds(payment_preimage);
12532 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12533 check_added_monitors!(nodes[1], 2);
12535 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12536 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12537 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12538 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12539 check_added_monitors!(nodes[0], 1);
12540 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12541 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12542 check_added_monitors!(nodes[1], 1);
12543 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12544 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12545 check_added_monitors!(nodes[1], 1);
12546 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12547 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12548 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12549 check_added_monitors!(nodes[0], 1);
12550 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12551 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12552 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12553 check_added_monitors!(nodes[0], 1);
12554 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12555 check_added_monitors!(nodes[1], 1);
12556 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12557 check_added_monitors!(nodes[1], 1);
12558 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12559 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12560 check_added_monitors!(nodes[0], 1);
12562 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12563 // path's success and a PaymentPathSuccessful event for each path's success.
12564 let events = nodes[0].node.get_and_clear_pending_events();
12565 assert_eq!(events.len(), 2);
12567 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12568 assert_eq!(payment_id, *actual_payment_id);
12569 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12570 assert_eq!(route.paths[0], *path);
12572 _ => panic!("Unexpected event"),
12575 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12576 assert_eq!(payment_id, *actual_payment_id);
12577 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12578 assert_eq!(route.paths[0], *path);
12580 _ => panic!("Unexpected event"),
12585 fn test_keysend_dup_payment_hash() {
12586 do_test_keysend_dup_payment_hash(false);
12587 do_test_keysend_dup_payment_hash(true);
12590 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12591 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12592 // outbound regular payment fails as expected.
12593 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12594 // fails as expected.
12595 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12596 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12597 // reject MPP keysend payments, since in this case where the payment has no payment
12598 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12599 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12600 // payment secrets and reject otherwise.
12601 let chanmon_cfgs = create_chanmon_cfgs(2);
12602 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12603 let mut mpp_keysend_cfg = test_default_channel_config();
12604 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12605 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12606 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12607 create_announced_chan_between_nodes(&nodes, 0, 1);
12608 let scorer = test_utils::TestScorer::new();
12609 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12611 // To start (1), send a regular payment but don't claim it.
12612 let expected_route = [&nodes[1]];
12613 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12615 // Next, attempt a keysend payment and make sure it fails.
12616 let route_params = RouteParameters::from_payment_params_and_value(
12617 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12618 TEST_FINAL_CLTV, false), 100_000);
12619 let route = find_route(
12620 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12621 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12623 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12624 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12625 check_added_monitors!(nodes[0], 1);
12626 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12627 assert_eq!(events.len(), 1);
12628 let ev = events.drain(..).next().unwrap();
12629 let payment_event = SendEvent::from_event(ev);
12630 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12631 check_added_monitors!(nodes[1], 0);
12632 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12633 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12634 // fails), the second will process the resulting failure and fail the HTLC backward
12635 expect_pending_htlcs_forwardable!(nodes[1]);
12636 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12637 check_added_monitors!(nodes[1], 1);
12638 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12639 assert!(updates.update_add_htlcs.is_empty());
12640 assert!(updates.update_fulfill_htlcs.is_empty());
12641 assert_eq!(updates.update_fail_htlcs.len(), 1);
12642 assert!(updates.update_fail_malformed_htlcs.is_empty());
12643 assert!(updates.update_fee.is_none());
12644 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12645 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12646 expect_payment_failed!(nodes[0], payment_hash, true);
12648 // Finally, claim the original payment.
12649 claim_payment(&nodes[0], &expected_route, payment_preimage);
12651 // To start (2), send a keysend payment but don't claim it.
12652 let payment_preimage = PaymentPreimage([42; 32]);
12653 let route = find_route(
12654 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12655 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12657 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12658 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12659 check_added_monitors!(nodes[0], 1);
12660 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12661 assert_eq!(events.len(), 1);
12662 let event = events.pop().unwrap();
12663 let path = vec![&nodes[1]];
12664 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12666 // Next, attempt a regular payment and make sure it fails.
12667 let payment_secret = PaymentSecret([43; 32]);
12668 nodes[0].node.send_payment_with_route(&route, payment_hash,
12669 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12670 check_added_monitors!(nodes[0], 1);
12671 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12672 assert_eq!(events.len(), 1);
12673 let ev = events.drain(..).next().unwrap();
12674 let payment_event = SendEvent::from_event(ev);
12675 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12676 check_added_monitors!(nodes[1], 0);
12677 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12678 expect_pending_htlcs_forwardable!(nodes[1]);
12679 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12680 check_added_monitors!(nodes[1], 1);
12681 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12682 assert!(updates.update_add_htlcs.is_empty());
12683 assert!(updates.update_fulfill_htlcs.is_empty());
12684 assert_eq!(updates.update_fail_htlcs.len(), 1);
12685 assert!(updates.update_fail_malformed_htlcs.is_empty());
12686 assert!(updates.update_fee.is_none());
12687 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12688 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12689 expect_payment_failed!(nodes[0], payment_hash, true);
12691 // Finally, succeed the keysend payment.
12692 claim_payment(&nodes[0], &expected_route, payment_preimage);
12694 // To start (3), send a keysend payment but don't claim it.
12695 let payment_id_1 = PaymentId([44; 32]);
12696 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12697 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12698 check_added_monitors!(nodes[0], 1);
12699 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12700 assert_eq!(events.len(), 1);
12701 let event = events.pop().unwrap();
12702 let path = vec![&nodes[1]];
12703 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12705 // Next, attempt a keysend payment and make sure it fails.
12706 let route_params = RouteParameters::from_payment_params_and_value(
12707 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12710 let route = find_route(
12711 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12712 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12714 let payment_id_2 = PaymentId([45; 32]);
12715 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12716 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12717 check_added_monitors!(nodes[0], 1);
12718 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12719 assert_eq!(events.len(), 1);
12720 let ev = events.drain(..).next().unwrap();
12721 let payment_event = SendEvent::from_event(ev);
12722 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12723 check_added_monitors!(nodes[1], 0);
12724 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12725 expect_pending_htlcs_forwardable!(nodes[1]);
12726 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12727 check_added_monitors!(nodes[1], 1);
12728 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12729 assert!(updates.update_add_htlcs.is_empty());
12730 assert!(updates.update_fulfill_htlcs.is_empty());
12731 assert_eq!(updates.update_fail_htlcs.len(), 1);
12732 assert!(updates.update_fail_malformed_htlcs.is_empty());
12733 assert!(updates.update_fee.is_none());
12734 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12735 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12736 expect_payment_failed!(nodes[0], payment_hash, true);
12738 // Finally, claim the original payment.
12739 claim_payment(&nodes[0], &expected_route, payment_preimage);
12743 fn test_keysend_hash_mismatch() {
12744 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12745 // preimage doesn't match the msg's payment hash.
12746 let chanmon_cfgs = create_chanmon_cfgs(2);
12747 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12748 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12749 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12751 let payer_pubkey = nodes[0].node.get_our_node_id();
12752 let payee_pubkey = nodes[1].node.get_our_node_id();
12754 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12755 let route_params = RouteParameters::from_payment_params_and_value(
12756 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12757 let network_graph = nodes[0].network_graph;
12758 let first_hops = nodes[0].node.list_usable_channels();
12759 let scorer = test_utils::TestScorer::new();
12760 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12761 let route = find_route(
12762 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12763 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12766 let test_preimage = PaymentPreimage([42; 32]);
12767 let mismatch_payment_hash = PaymentHash([43; 32]);
12768 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12769 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12770 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12771 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12772 check_added_monitors!(nodes[0], 1);
12774 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12775 assert_eq!(updates.update_add_htlcs.len(), 1);
12776 assert!(updates.update_fulfill_htlcs.is_empty());
12777 assert!(updates.update_fail_htlcs.is_empty());
12778 assert!(updates.update_fail_malformed_htlcs.is_empty());
12779 assert!(updates.update_fee.is_none());
12780 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12782 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12786 fn test_keysend_msg_with_secret_err() {
12787 // Test that we error as expected if we receive a keysend payment that includes a payment
12788 // secret when we don't support MPP keysend.
12789 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12790 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12791 let chanmon_cfgs = create_chanmon_cfgs(2);
12792 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12793 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12794 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12796 let payer_pubkey = nodes[0].node.get_our_node_id();
12797 let payee_pubkey = nodes[1].node.get_our_node_id();
12799 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12800 let route_params = RouteParameters::from_payment_params_and_value(
12801 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12802 let network_graph = nodes[0].network_graph;
12803 let first_hops = nodes[0].node.list_usable_channels();
12804 let scorer = test_utils::TestScorer::new();
12805 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12806 let route = find_route(
12807 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12808 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12811 let test_preimage = PaymentPreimage([42; 32]);
12812 let test_secret = PaymentSecret([43; 32]);
12813 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12814 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12815 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12816 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12817 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12818 PaymentId(payment_hash.0), None, session_privs).unwrap();
12819 check_added_monitors!(nodes[0], 1);
12821 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12822 assert_eq!(updates.update_add_htlcs.len(), 1);
12823 assert!(updates.update_fulfill_htlcs.is_empty());
12824 assert!(updates.update_fail_htlcs.is_empty());
12825 assert!(updates.update_fail_malformed_htlcs.is_empty());
12826 assert!(updates.update_fee.is_none());
12827 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12829 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12833 fn test_multi_hop_missing_secret() {
12834 let chanmon_cfgs = create_chanmon_cfgs(4);
12835 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12836 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12837 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12839 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12840 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12841 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12842 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12844 // Marshall an MPP route.
12845 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12846 let path = route.paths[0].clone();
12847 route.paths.push(path);
12848 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12849 route.paths[0].hops[0].short_channel_id = chan_1_id;
12850 route.paths[0].hops[1].short_channel_id = chan_3_id;
12851 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12852 route.paths[1].hops[0].short_channel_id = chan_2_id;
12853 route.paths[1].hops[1].short_channel_id = chan_4_id;
12855 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12856 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12858 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12859 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12861 _ => panic!("unexpected error")
12866 fn test_channel_update_cached() {
12867 let chanmon_cfgs = create_chanmon_cfgs(3);
12868 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12869 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12870 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12872 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12874 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12875 check_added_monitors!(nodes[0], 1);
12876 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12878 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12879 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12880 assert_eq!(node_1_events.len(), 0);
12883 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12884 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12885 assert_eq!(pending_broadcast_messages.len(), 1);
12888 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12889 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12890 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12892 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12893 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12895 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12896 assert_eq!(node_0_events.len(), 0);
12898 // Now we reconnect to a peer
12899 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12900 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12902 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12903 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12904 }, false).unwrap();
12906 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12907 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12908 assert_eq!(node_0_events.len(), 1);
12909 match &node_0_events[0] {
12910 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12911 _ => panic!("Unexpected event"),
12914 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12915 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12916 assert_eq!(pending_broadcast_messages.len(), 0);
12921 fn test_drop_disconnected_peers_when_removing_channels() {
12922 let chanmon_cfgs = create_chanmon_cfgs(2);
12923 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12924 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12925 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12927 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12929 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12930 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12932 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12933 check_closed_broadcast!(nodes[0], true);
12934 check_added_monitors!(nodes[0], 1);
12935 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12938 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12939 // disconnected and the channel between has been force closed.
12940 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12941 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12942 assert_eq!(nodes_0_per_peer_state.len(), 1);
12943 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12946 nodes[0].node.timer_tick_occurred();
12949 // Assert that nodes[1] has now been removed.
12950 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12955 fn bad_inbound_payment_hash() {
12956 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12957 let chanmon_cfgs = create_chanmon_cfgs(2);
12958 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12959 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12960 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12962 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12963 let payment_data = msgs::FinalOnionHopData {
12965 total_msat: 100_000,
12968 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12969 // payment verification fails as expected.
12970 let mut bad_payment_hash = payment_hash.clone();
12971 bad_payment_hash.0[0] += 1;
12972 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12973 Ok(_) => panic!("Unexpected ok"),
12975 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12979 // Check that using the original payment hash succeeds.
12980 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12984 fn test_outpoint_to_peer_coverage() {
12985 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12986 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12987 // the channel is successfully closed.
12988 let chanmon_cfgs = create_chanmon_cfgs(2);
12989 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12990 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12991 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12993 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12994 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12995 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
12996 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12997 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
12999 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
13000 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
13002 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
13003 // funding transaction, and have the real `channel_id`.
13004 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13005 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13008 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
13010 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
13011 // as it has the funding transaction.
13012 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13013 assert_eq!(nodes_0_lock.len(), 1);
13014 assert!(nodes_0_lock.contains_key(&funding_output));
13017 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13019 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13021 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13023 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13024 assert_eq!(nodes_0_lock.len(), 1);
13025 assert!(nodes_0_lock.contains_key(&funding_output));
13027 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13030 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
13031 // soon as it has the funding transaction.
13032 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13033 assert_eq!(nodes_1_lock.len(), 1);
13034 assert!(nodes_1_lock.contains_key(&funding_output));
13036 check_added_monitors!(nodes[1], 1);
13037 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13038 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13039 check_added_monitors!(nodes[0], 1);
13040 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13041 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13042 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13043 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13045 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13046 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13047 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13048 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13050 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13051 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13053 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13054 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13055 // fee for the closing transaction has been negotiated and the parties has the other
13056 // party's signature for the fee negotiated closing transaction.)
13057 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13058 assert_eq!(nodes_0_lock.len(), 1);
13059 assert!(nodes_0_lock.contains_key(&funding_output));
13063 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13064 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13065 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13066 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13067 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13068 assert_eq!(nodes_1_lock.len(), 1);
13069 assert!(nodes_1_lock.contains_key(&funding_output));
13072 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13074 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13075 // therefore has all it needs to fully close the channel (both signatures for the
13076 // closing transaction).
13077 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13078 // fully closed by `nodes[0]`.
13079 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13081 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13082 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13083 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13084 assert_eq!(nodes_1_lock.len(), 1);
13085 assert!(nodes_1_lock.contains_key(&funding_output));
13088 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13090 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13092 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13093 // they both have everything required to fully close the channel.
13094 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13096 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13098 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13099 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13102 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13103 let expected_message = format!("Not connected to node: {}", expected_public_key);
13104 check_api_error_message(expected_message, res_err)
13107 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13108 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13109 check_api_error_message(expected_message, res_err)
13112 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13113 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13114 check_api_error_message(expected_message, res_err)
13117 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13118 let expected_message = "No such channel awaiting to be accepted.".to_string();
13119 check_api_error_message(expected_message, res_err)
13122 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13124 Err(APIError::APIMisuseError { err }) => {
13125 assert_eq!(err, expected_err_message);
13127 Err(APIError::ChannelUnavailable { err }) => {
13128 assert_eq!(err, expected_err_message);
13130 Ok(_) => panic!("Unexpected Ok"),
13131 Err(_) => panic!("Unexpected Error"),
13136 fn test_api_calls_with_unkown_counterparty_node() {
13137 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13138 // expected if the `counterparty_node_id` is an unkown peer in the
13139 // `ChannelManager::per_peer_state` map.
13140 let chanmon_cfg = create_chanmon_cfgs(2);
13141 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13142 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13143 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13146 let channel_id = ChannelId::from_bytes([4; 32]);
13147 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13148 let intercept_id = InterceptId([0; 32]);
13150 // Test the API functions.
13151 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13153 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13155 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13157 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13159 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13161 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13163 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13167 fn test_api_calls_with_unavailable_channel() {
13168 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13169 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13170 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13171 // the given `channel_id`.
13172 let chanmon_cfg = create_chanmon_cfgs(2);
13173 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13174 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13175 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13177 let counterparty_node_id = nodes[1].node.get_our_node_id();
13180 let channel_id = ChannelId::from_bytes([4; 32]);
13182 // Test the API functions.
13183 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13185 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13187 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13189 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13191 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13193 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13197 fn test_connection_limiting() {
13198 // Test that we limit un-channel'd peers and un-funded channels properly.
13199 let chanmon_cfgs = create_chanmon_cfgs(2);
13200 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13201 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13202 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13204 // Note that create_network connects the nodes together for us
13206 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13207 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13209 let mut funding_tx = None;
13210 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13211 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13212 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13215 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13216 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13217 funding_tx = Some(tx.clone());
13218 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13219 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13221 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13222 check_added_monitors!(nodes[1], 1);
13223 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13225 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13227 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13228 check_added_monitors!(nodes[0], 1);
13229 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13231 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13234 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13235 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13236 &nodes[0].keys_manager);
13237 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13238 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13239 open_channel_msg.common_fields.temporary_channel_id);
13241 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13242 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13244 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13245 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13246 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13247 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13248 peer_pks.push(random_pk);
13249 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13250 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13253 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13254 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13255 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13256 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13257 }, true).unwrap_err();
13259 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13260 // them if we have too many un-channel'd peers.
13261 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13262 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13263 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13264 for ev in chan_closed_events {
13265 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13267 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13268 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13270 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13271 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13272 }, true).unwrap_err();
13274 // but of course if the connection is outbound its allowed...
13275 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13276 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13277 }, false).unwrap();
13278 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13280 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13281 // Even though we accept one more connection from new peers, we won't actually let them
13283 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13284 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13285 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13286 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13287 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13289 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13290 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13291 open_channel_msg.common_fields.temporary_channel_id);
13293 // Of course, however, outbound channels are always allowed
13294 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13295 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13297 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13298 // "protected" and can connect again.
13299 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13300 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13301 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13303 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13305 // Further, because the first channel was funded, we can open another channel with
13307 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13308 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13312 fn test_outbound_chans_unlimited() {
13313 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13314 let chanmon_cfgs = create_chanmon_cfgs(2);
13315 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13316 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13317 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13319 // Note that create_network connects the nodes together for us
13321 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13322 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13324 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13325 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13326 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13327 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13330 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13332 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13333 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13334 open_channel_msg.common_fields.temporary_channel_id);
13336 // but we can still open an outbound channel.
13337 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13338 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13340 // but even with such an outbound channel, additional inbound channels will still fail.
13341 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13342 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13343 open_channel_msg.common_fields.temporary_channel_id);
13347 fn test_0conf_limiting() {
13348 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13349 // flag set and (sometimes) accept channels as 0conf.
13350 let chanmon_cfgs = create_chanmon_cfgs(2);
13351 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13352 let mut settings = test_default_channel_config();
13353 settings.manually_accept_inbound_channels = true;
13354 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13355 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13357 // Note that create_network connects the nodes together for us
13359 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13360 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13362 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13363 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13364 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13365 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13366 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13367 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13370 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13371 let events = nodes[1].node.get_and_clear_pending_events();
13373 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13374 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13376 _ => panic!("Unexpected event"),
13378 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13379 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13382 // If we try to accept a channel from another peer non-0conf it will fail.
13383 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13384 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13385 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13386 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13388 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13389 let events = nodes[1].node.get_and_clear_pending_events();
13391 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13392 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13393 Err(APIError::APIMisuseError { err }) =>
13394 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13398 _ => panic!("Unexpected event"),
13400 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13401 open_channel_msg.common_fields.temporary_channel_id);
13403 // ...however if we accept the same channel 0conf it should work just fine.
13404 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13405 let events = nodes[1].node.get_and_clear_pending_events();
13407 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13408 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13410 _ => panic!("Unexpected event"),
13412 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13416 fn reject_excessively_underpaying_htlcs() {
13417 let chanmon_cfg = create_chanmon_cfgs(1);
13418 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13419 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13420 let node = create_network(1, &node_cfg, &node_chanmgr);
13421 let sender_intended_amt_msat = 100;
13422 let extra_fee_msat = 10;
13423 let hop_data = msgs::InboundOnionPayload::Receive {
13424 sender_intended_htlc_amt_msat: 100,
13425 cltv_expiry_height: 42,
13426 payment_metadata: None,
13427 keysend_preimage: None,
13428 payment_data: Some(msgs::FinalOnionHopData {
13429 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13431 custom_tlvs: Vec::new(),
13433 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13434 // intended amount, we fail the payment.
13435 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13436 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13437 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13438 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13439 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13441 assert_eq!(err_code, 19);
13442 } else { panic!(); }
13444 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13445 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13446 sender_intended_htlc_amt_msat: 100,
13447 cltv_expiry_height: 42,
13448 payment_metadata: None,
13449 keysend_preimage: None,
13450 payment_data: Some(msgs::FinalOnionHopData {
13451 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13453 custom_tlvs: Vec::new(),
13455 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13456 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13457 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13458 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13462 fn test_final_incorrect_cltv(){
13463 let chanmon_cfg = create_chanmon_cfgs(1);
13464 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13465 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13466 let node = create_network(1, &node_cfg, &node_chanmgr);
13468 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13469 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13470 sender_intended_htlc_amt_msat: 100,
13471 cltv_expiry_height: 22,
13472 payment_metadata: None,
13473 keysend_preimage: None,
13474 payment_data: Some(msgs::FinalOnionHopData {
13475 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13477 custom_tlvs: Vec::new(),
13478 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13479 node[0].node.default_configuration.accept_mpp_keysend);
13481 // Should not return an error as this condition:
13482 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13483 // is not satisfied.
13484 assert!(result.is_ok());
13488 fn test_inbound_anchors_manual_acceptance() {
13489 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13490 // flag set and (sometimes) accept channels as 0conf.
13491 let mut anchors_cfg = test_default_channel_config();
13492 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13494 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13495 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13497 let chanmon_cfgs = create_chanmon_cfgs(3);
13498 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13499 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13500 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13501 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13503 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13504 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13506 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13507 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13508 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13509 match &msg_events[0] {
13510 MessageSendEvent::HandleError { node_id, action } => {
13511 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13513 ErrorAction::SendErrorMessage { msg } =>
13514 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13515 _ => panic!("Unexpected error action"),
13518 _ => panic!("Unexpected event"),
13521 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13522 let events = nodes[2].node.get_and_clear_pending_events();
13524 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13525 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13526 _ => panic!("Unexpected event"),
13528 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13532 fn test_anchors_zero_fee_htlc_tx_fallback() {
13533 // Tests that if both nodes support anchors, but the remote node does not want to accept
13534 // anchor channels at the moment, an error it sent to the local node such that it can retry
13535 // the channel without the anchors feature.
13536 let chanmon_cfgs = create_chanmon_cfgs(2);
13537 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13538 let mut anchors_config = test_default_channel_config();
13539 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13540 anchors_config.manually_accept_inbound_channels = true;
13541 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13542 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13544 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13545 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13546 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13548 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13549 let events = nodes[1].node.get_and_clear_pending_events();
13551 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13552 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13554 _ => panic!("Unexpected event"),
13557 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13558 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13560 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13561 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13563 // Since nodes[1] should not have accepted the channel, it should
13564 // not have generated any events.
13565 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13569 fn test_update_channel_config() {
13570 let chanmon_cfg = create_chanmon_cfgs(2);
13571 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13572 let mut user_config = test_default_channel_config();
13573 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13574 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13575 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13576 let channel = &nodes[0].node.list_channels()[0];
13578 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13579 let events = nodes[0].node.get_and_clear_pending_msg_events();
13580 assert_eq!(events.len(), 0);
13582 user_config.channel_config.forwarding_fee_base_msat += 10;
13583 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13584 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13585 let events = nodes[0].node.get_and_clear_pending_msg_events();
13586 assert_eq!(events.len(), 1);
13588 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13589 _ => panic!("expected BroadcastChannelUpdate event"),
13592 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13593 let events = nodes[0].node.get_and_clear_pending_msg_events();
13594 assert_eq!(events.len(), 0);
13596 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13597 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13598 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13599 ..Default::default()
13601 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13602 let events = nodes[0].node.get_and_clear_pending_msg_events();
13603 assert_eq!(events.len(), 1);
13605 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13606 _ => panic!("expected BroadcastChannelUpdate event"),
13609 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13610 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13611 forwarding_fee_proportional_millionths: Some(new_fee),
13612 ..Default::default()
13614 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13615 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13616 let events = nodes[0].node.get_and_clear_pending_msg_events();
13617 assert_eq!(events.len(), 1);
13619 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13620 _ => panic!("expected BroadcastChannelUpdate event"),
13623 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13624 // should be applied to ensure update atomicity as specified in the API docs.
13625 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13626 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13627 let new_fee = current_fee + 100;
13630 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13631 forwarding_fee_proportional_millionths: Some(new_fee),
13632 ..Default::default()
13634 Err(APIError::ChannelUnavailable { err: _ }),
13637 // Check that the fee hasn't changed for the channel that exists.
13638 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13639 let events = nodes[0].node.get_and_clear_pending_msg_events();
13640 assert_eq!(events.len(), 0);
13644 fn test_payment_display() {
13645 let payment_id = PaymentId([42; 32]);
13646 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13647 let payment_hash = PaymentHash([42; 32]);
13648 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13649 let payment_preimage = PaymentPreimage([42; 32]);
13650 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13654 fn test_trigger_lnd_force_close() {
13655 let chanmon_cfg = create_chanmon_cfgs(2);
13656 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13657 let user_config = test_default_channel_config();
13658 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13659 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13661 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13662 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13663 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13664 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13665 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13666 check_closed_broadcast(&nodes[0], 1, true);
13667 check_added_monitors(&nodes[0], 1);
13668 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13670 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13671 assert_eq!(txn.len(), 1);
13672 check_spends!(txn[0], funding_tx);
13675 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13676 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13678 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13679 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13681 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13682 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13683 }, false).unwrap();
13684 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13685 let channel_reestablish = get_event_msg!(
13686 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13688 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13690 // Alice should respond with an error since the channel isn't known, but a bogus
13691 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13692 // close even if it was an lnd node.
13693 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13694 assert_eq!(msg_events.len(), 2);
13695 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13696 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13697 assert_eq!(msg.next_local_commitment_number, 0);
13698 assert_eq!(msg.next_remote_commitment_number, 0);
13699 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13700 } else { panic!() };
13701 check_closed_broadcast(&nodes[1], 1, true);
13702 check_added_monitors(&nodes[1], 1);
13703 let expected_close_reason = ClosureReason::ProcessingError {
13704 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13706 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13708 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13709 assert_eq!(txn.len(), 1);
13710 check_spends!(txn[0], funding_tx);
13715 fn test_malformed_forward_htlcs_ser() {
13716 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13717 let chanmon_cfg = create_chanmon_cfgs(1);
13718 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13721 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13722 let deserialized_chanmgr;
13723 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13725 let dummy_failed_htlc = |htlc_id| {
13726 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13728 let dummy_malformed_htlc = |htlc_id| {
13729 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13732 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13733 if htlc_id % 2 == 0 {
13734 dummy_failed_htlc(htlc_id)
13736 dummy_malformed_htlc(htlc_id)
13740 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13741 if htlc_id % 2 == 1 {
13742 dummy_failed_htlc(htlc_id)
13744 dummy_malformed_htlc(htlc_id)
13749 let (scid_1, scid_2) = (42, 43);
13750 let mut forward_htlcs = new_hash_map();
13751 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13752 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13754 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13755 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13756 core::mem::drop(chanmgr_fwd_htlcs);
13758 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13760 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13761 for scid in [scid_1, scid_2].iter() {
13762 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13763 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13765 assert!(deserialized_fwd_htlcs.is_empty());
13766 core::mem::drop(deserialized_fwd_htlcs);
13768 expect_pending_htlcs_forwardable!(nodes[0]);
13774 use crate::chain::Listen;
13775 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13776 use crate::sign::{KeysManager, InMemorySigner};
13777 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13778 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13779 use crate::ln::functional_test_utils::*;
13780 use crate::ln::msgs::{ChannelMessageHandler, Init};
13781 use crate::routing::gossip::NetworkGraph;
13782 use crate::routing::router::{PaymentParameters, RouteParameters};
13783 use crate::util::test_utils;
13784 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13786 use bitcoin::blockdata::locktime::absolute::LockTime;
13787 use bitcoin::hashes::Hash;
13788 use bitcoin::hashes::sha256::Hash as Sha256;
13789 use bitcoin::{Transaction, TxOut};
13791 use crate::sync::{Arc, Mutex, RwLock};
13793 use criterion::Criterion;
13795 type Manager<'a, P> = ChannelManager<
13796 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13797 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13798 &'a test_utils::TestLogger, &'a P>,
13799 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13800 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13801 &'a test_utils::TestLogger>;
13803 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13804 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13806 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13807 type CM = Manager<'chan_mon_cfg, P>;
13809 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13811 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13814 pub fn bench_sends(bench: &mut Criterion) {
13815 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13818 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13819 // Do a simple benchmark of sending a payment back and forth between two nodes.
13820 // Note that this is unrealistic as each payment send will require at least two fsync
13822 let network = bitcoin::Network::Testnet;
13823 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13825 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13826 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13827 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13828 let scorer = RwLock::new(test_utils::TestScorer::new());
13829 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13831 let mut config: UserConfig = Default::default();
13832 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13833 config.channel_handshake_config.minimum_depth = 1;
13835 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13836 let seed_a = [1u8; 32];
13837 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13838 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13840 best_block: BestBlock::from_network(network),
13841 }, genesis_block.header.time);
13842 let node_a_holder = ANodeHolder { node: &node_a };
13844 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13845 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13846 let seed_b = [2u8; 32];
13847 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13848 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13850 best_block: BestBlock::from_network(network),
13851 }, genesis_block.header.time);
13852 let node_b_holder = ANodeHolder { node: &node_b };
13854 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13855 features: node_b.init_features(), networks: None, remote_network_address: None
13857 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13858 features: node_a.init_features(), networks: None, remote_network_address: None
13859 }, false).unwrap();
13860 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13861 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13862 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13865 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13866 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13867 value: 8_000_000, script_pubkey: output_script,
13869 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13870 } else { panic!(); }
13872 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13873 let events_b = node_b.get_and_clear_pending_events();
13874 assert_eq!(events_b.len(), 1);
13875 match events_b[0] {
13876 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13877 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13879 _ => panic!("Unexpected event"),
13882 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13883 let events_a = node_a.get_and_clear_pending_events();
13884 assert_eq!(events_a.len(), 1);
13885 match events_a[0] {
13886 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13887 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13889 _ => panic!("Unexpected event"),
13892 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13894 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13895 Listen::block_connected(&node_a, &block, 1);
13896 Listen::block_connected(&node_b, &block, 1);
13898 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13899 let msg_events = node_a.get_and_clear_pending_msg_events();
13900 assert_eq!(msg_events.len(), 2);
13901 match msg_events[0] {
13902 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13903 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13904 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13908 match msg_events[1] {
13909 MessageSendEvent::SendChannelUpdate { .. } => {},
13913 let events_a = node_a.get_and_clear_pending_events();
13914 assert_eq!(events_a.len(), 1);
13915 match events_a[0] {
13916 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13917 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13919 _ => panic!("Unexpected event"),
13922 let events_b = node_b.get_and_clear_pending_events();
13923 assert_eq!(events_b.len(), 1);
13924 match events_b[0] {
13925 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13926 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13928 _ => panic!("Unexpected event"),
13931 let mut payment_count: u64 = 0;
13932 macro_rules! send_payment {
13933 ($node_a: expr, $node_b: expr) => {
13934 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13935 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13936 let mut payment_preimage = PaymentPreimage([0; 32]);
13937 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13938 payment_count += 1;
13939 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13940 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13942 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13943 PaymentId(payment_hash.0),
13944 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13945 Retry::Attempts(0)).unwrap();
13946 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13947 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13948 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13949 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13950 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13951 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13952 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13954 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13955 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13956 $node_b.claim_funds(payment_preimage);
13957 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13959 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13960 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13961 assert_eq!(node_id, $node_a.get_our_node_id());
13962 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13963 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13965 _ => panic!("Failed to generate claim event"),
13968 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13969 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13970 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13971 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13973 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13977 bench.bench_function(bench_name, |b| b.iter(|| {
13978 send_payment!(node_a, node_b);
13979 send_payment!(node_b, node_a);