Drop dead code for handling non-MPP payments in claim_funds
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 pub use ln::channel::CounterpartyForwardingInfo;
47 use ln::channel::{Channel, ChannelError};
48 use ln::features::{InitFeatures, NodeFeatures};
49 use routing::router::{Route, RouteHop};
50 use ln::msgs;
51 use ln::msgs::NetAddress;
52 use ln::onion_utils;
53 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
54 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
55 use util::config::UserConfig;
56 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
57 use util::{byte_utils, events};
58 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
59 use util::chacha20::{ChaCha20, ChaChaReader};
60 use util::logger::Logger;
61 use util::errors::APIError;
62
63 use std::{cmp, mem};
64 use std::collections::{HashMap, hash_map, HashSet};
65 use std::io::{Cursor, Read};
66 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
67 use std::sync::atomic::{AtomicUsize, Ordering};
68 use std::time::Duration;
69 #[cfg(any(test, feature = "allow_wallclock_use"))]
70 use std::time::Instant;
71 use std::marker::{Sync, Send};
72 use std::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 /// payment_hash type, use to cross-lock hop
201 /// (C-not exported) as we just use [u8; 32] directly
202 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
203 pub struct PaymentHash(pub [u8;32]);
204 /// payment_preimage type, use to route payment between hop
205 /// (C-not exported) as we just use [u8; 32] directly
206 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
207 pub struct PaymentPreimage(pub [u8;32]);
208 /// payment_secret type, use to authenticate sender to the receiver and tie MPP HTLCs together
209 /// (C-not exported) as we just use [u8; 32] directly
210 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
211 pub struct PaymentSecret(pub [u8;32]);
212
213 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
214
215 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
216 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
217 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
218 /// channel_state lock. We then return the set of things that need to be done outside the lock in
219 /// this struct and call handle_error!() on it.
220
221 struct MsgHandleErrInternal {
222         err: msgs::LightningError,
223         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
224 }
225 impl MsgHandleErrInternal {
226         #[inline]
227         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
228                 Self {
229                         err: LightningError {
230                                 err: err.clone(),
231                                 action: msgs::ErrorAction::SendErrorMessage {
232                                         msg: msgs::ErrorMessage {
233                                                 channel_id,
234                                                 data: err
235                                         },
236                                 },
237                         },
238                         shutdown_finish: None,
239                 }
240         }
241         #[inline]
242         fn ignore_no_close(err: String) -> Self {
243                 Self {
244                         err: LightningError {
245                                 err,
246                                 action: msgs::ErrorAction::IgnoreError,
247                         },
248                         shutdown_finish: None,
249                 }
250         }
251         #[inline]
252         fn from_no_close(err: msgs::LightningError) -> Self {
253                 Self { err, shutdown_finish: None }
254         }
255         #[inline]
256         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
257                 Self {
258                         err: LightningError {
259                                 err: err.clone(),
260                                 action: msgs::ErrorAction::SendErrorMessage {
261                                         msg: msgs::ErrorMessage {
262                                                 channel_id,
263                                                 data: err
264                                         },
265                                 },
266                         },
267                         shutdown_finish: Some((shutdown_res, channel_update)),
268                 }
269         }
270         #[inline]
271         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
272                 Self {
273                         err: match err {
274                                 ChannelError::Ignore(msg) => LightningError {
275                                         err: msg,
276                                         action: msgs::ErrorAction::IgnoreError,
277                                 },
278                                 ChannelError::Close(msg) => LightningError {
279                                         err: msg.clone(),
280                                         action: msgs::ErrorAction::SendErrorMessage {
281                                                 msg: msgs::ErrorMessage {
282                                                         channel_id,
283                                                         data: msg
284                                                 },
285                                         },
286                                 },
287                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
288                                         err: msg.clone(),
289                                         action: msgs::ErrorAction::SendErrorMessage {
290                                                 msg: msgs::ErrorMessage {
291                                                         channel_id,
292                                                         data: msg
293                                                 },
294                                         },
295                                 },
296                         },
297                         shutdown_finish: None,
298                 }
299         }
300 }
301
302 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
303 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
304 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
305 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
306 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
307
308 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
309 /// be sent in the order they appear in the return value, however sometimes the order needs to be
310 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
311 /// they were originally sent). In those cases, this enum is also returned.
312 #[derive(Clone, PartialEq)]
313 pub(super) enum RAACommitmentOrder {
314         /// Send the CommitmentUpdate messages first
315         CommitmentFirst,
316         /// Send the RevokeAndACK message first
317         RevokeAndACKFirst,
318 }
319
320 // Note this is only exposed in cfg(test):
321 pub(super) struct ChannelHolder<Signer: Sign> {
322         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
323         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
324         /// short channel id -> forward infos. Key of 0 means payments received
325         /// Note that while this is held in the same mutex as the channels themselves, no consistency
326         /// guarantees are made about the existence of a channel with the short id here, nor the short
327         /// ids in the PendingHTLCInfo!
328         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
329         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
330         /// Note that while this is held in the same mutex as the channels themselves, no consistency
331         /// guarantees are made about the channels given here actually existing anymore by the time you
332         /// go to read them!
333         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
334         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
335         /// for broadcast messages, where ordering isn't as strict).
336         pub(super) pending_msg_events: Vec<MessageSendEvent>,
337 }
338
339 /// Events which we process internally but cannot be procsesed immediately at the generation site
340 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
341 /// quite some time lag.
342 enum BackgroundEvent {
343         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
344         /// commitment transaction.
345         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
346 }
347
348 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
349 /// the latest Init features we heard from the peer.
350 struct PeerState {
351         latest_features: InitFeatures,
352 }
353
354 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
355 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
356 ///
357 /// For users who don't want to bother doing their own payment preimage storage, we also store that
358 /// here.
359 struct PendingInboundPayment {
360         /// The payment secret that the sender must use for us to accept this payment
361         payment_secret: PaymentSecret,
362         /// Time at which this HTLC expires - blocks with a header time above this value will result in
363         /// this payment being removed.
364         expiry_time: u64,
365         // Other required attributes of the payment, optionally enforced:
366         payment_preimage: Option<PaymentPreimage>,
367         min_value_msat: Option<u64>,
368 }
369
370 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
371 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
372 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
373 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
374 /// issues such as overly long function definitions. Note that the ChannelManager can take any
375 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
376 /// concrete type of the KeysManager.
377 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
378
379 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
380 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
381 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
382 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
383 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
384 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
385 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
386 /// concrete type of the KeysManager.
387 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
388
389 /// Manager which keeps track of a number of channels and sends messages to the appropriate
390 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
391 ///
392 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
393 /// to individual Channels.
394 ///
395 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
396 /// all peers during write/read (though does not modify this instance, only the instance being
397 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
398 /// called funding_transaction_generated for outbound channels).
399 ///
400 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
401 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
402 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
403 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
404 /// the serialization process). If the deserialized version is out-of-date compared to the
405 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
406 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
407 ///
408 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
409 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
410 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
411 /// block_connected() to step towards your best block) upon deserialization before using the
412 /// object!
413 ///
414 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
415 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
416 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
417 /// offline for a full minute. In order to track this, you must call
418 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
419 ///
420 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
421 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
422 /// essentially you should default to using a SimpleRefChannelManager, and use a
423 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
424 /// you're using lightning-net-tokio.
425 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
426         where M::Target: chain::Watch<Signer>,
427         T::Target: BroadcasterInterface,
428         K::Target: KeysInterface<Signer = Signer>,
429         F::Target: FeeEstimator,
430                                 L::Target: Logger,
431 {
432         default_configuration: UserConfig,
433         genesis_hash: BlockHash,
434         fee_estimator: F,
435         chain_monitor: M,
436         tx_broadcaster: T,
437
438         #[cfg(test)]
439         pub(super) best_block: RwLock<BestBlock>,
440         #[cfg(not(test))]
441         best_block: RwLock<BestBlock>,
442         secp_ctx: Secp256k1<secp256k1::All>,
443
444         #[cfg(any(test, feature = "_test_utils"))]
445         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
446         #[cfg(not(any(test, feature = "_test_utils")))]
447         channel_state: Mutex<ChannelHolder<Signer>>,
448
449         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
450         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
451         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
452         /// after we generate a PaymentReceived upon receipt of all MPP parts.
453         /// Locked *after* channel_state.
454         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
455
456         our_network_key: SecretKey,
457         our_network_pubkey: PublicKey,
458
459         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
460         /// value increases strictly since we don't assume access to a time source.
461         last_node_announcement_serial: AtomicUsize,
462
463         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
464         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
465         /// very far in the past, and can only ever be up to two hours in the future.
466         highest_seen_timestamp: AtomicUsize,
467
468         /// The bulk of our storage will eventually be here (channels and message queues and the like).
469         /// If we are connected to a peer we always at least have an entry here, even if no channels
470         /// are currently open with that peer.
471         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
472         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
473         /// new channel.
474         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
475
476         pending_events: Mutex<Vec<events::Event>>,
477         pending_background_events: Mutex<Vec<BackgroundEvent>>,
478         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
479         /// Essentially just when we're serializing ourselves out.
480         /// Taken first everywhere where we are making changes before any other locks.
481         /// When acquiring this lock in read mode, rather than acquiring it directly, call
482         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
483         /// the lock contains sends out a notification when the lock is released.
484         total_consistency_lock: RwLock<()>,
485
486         persistence_notifier: PersistenceNotifier,
487
488         keys_manager: K,
489
490         logger: L,
491 }
492
493 /// Chain-related parameters used to construct a new `ChannelManager`.
494 ///
495 /// Typically, the block-specific parameters are derived from the best block hash for the network,
496 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
497 /// are not needed when deserializing a previously constructed `ChannelManager`.
498 pub struct ChainParameters {
499         /// The network for determining the `chain_hash` in Lightning messages.
500         pub network: Network,
501
502         /// The hash and height of the latest block successfully connected.
503         ///
504         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
505         pub best_block: BestBlock,
506 }
507
508 /// The best known block as identified by its hash and height.
509 #[derive(Clone, Copy)]
510 pub struct BestBlock {
511         block_hash: BlockHash,
512         height: u32,
513 }
514
515 impl BestBlock {
516         /// Returns the best block from the genesis of the given network.
517         pub fn from_genesis(network: Network) -> Self {
518                 BestBlock {
519                         block_hash: genesis_block(network).header.block_hash(),
520                         height: 0,
521                 }
522         }
523
524         /// Returns the best block as identified by the given block hash and height.
525         pub fn new(block_hash: BlockHash, height: u32) -> Self {
526                 BestBlock { block_hash, height }
527         }
528
529         /// Returns the best block hash.
530         pub fn block_hash(&self) -> BlockHash { self.block_hash }
531
532         /// Returns the best block height.
533         pub fn height(&self) -> u32 { self.height }
534 }
535
536 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
537 /// desirable to notify any listeners on `await_persistable_update_timeout`/
538 /// `await_persistable_update` that new updates are available for persistence. Therefore, this
539 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
540 /// sending the aforementioned notification (since the lock being released indicates that the
541 /// updates are ready for persistence).
542 struct PersistenceNotifierGuard<'a> {
543         persistence_notifier: &'a PersistenceNotifier,
544         // We hold onto this result so the lock doesn't get released immediately.
545         _read_guard: RwLockReadGuard<'a, ()>,
546 }
547
548 impl<'a> PersistenceNotifierGuard<'a> {
549         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
550                 let read_guard = lock.read().unwrap();
551
552                 Self {
553                         persistence_notifier: notifier,
554                         _read_guard: read_guard,
555                 }
556         }
557 }
558
559 impl<'a> Drop for PersistenceNotifierGuard<'a> {
560         fn drop(&mut self) {
561                 self.persistence_notifier.notify();
562         }
563 }
564
565 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
566 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
567 ///
568 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
569 ///
570 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
571 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
572 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
573 /// the maximum required amount in lnd as of March 2021.
574 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
575
576 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
577 /// HTLC's CLTV. The current default represents roughly six hours of blocks at six blocks/hour.
578 ///
579 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
580 ///
581 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
582 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
583 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
584 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
585 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
586 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6 * 6;
587 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
588
589 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
590 // ie that if the next-hop peer fails the HTLC within
591 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
592 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
593 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
594 // LATENCY_GRACE_PERIOD_BLOCKS.
595 #[deny(const_err)]
596 #[allow(dead_code)]
597 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
598
599 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
600 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
601 #[deny(const_err)]
602 #[allow(dead_code)]
603 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
604
605 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
606 #[derive(Clone)]
607 pub struct ChannelDetails {
608         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
609         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
610         /// Note that this means this value is *not* persistent - it can change once during the
611         /// lifetime of the channel.
612         pub channel_id: [u8; 32],
613         /// The position of the funding transaction in the chain. None if the funding transaction has
614         /// not yet been confirmed and the channel fully opened.
615         pub short_channel_id: Option<u64>,
616         /// The node_id of our counterparty
617         pub remote_network_id: PublicKey,
618         /// The Features the channel counterparty provided upon last connection.
619         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
620         /// many routing-relevant features are present in the init context.
621         pub counterparty_features: InitFeatures,
622         /// The value, in satoshis, of this channel as appears in the funding output
623         pub channel_value_satoshis: u64,
624         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
625         pub user_id: u64,
626         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
627         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
628         /// available for inclusion in new outbound HTLCs). This further does not include any pending
629         /// outgoing HTLCs which are awaiting some other resolution to be sent.
630         pub outbound_capacity_msat: u64,
631         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
632         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
633         /// available for inclusion in new inbound HTLCs).
634         /// Note that there are some corner cases not fully handled here, so the actual available
635         /// inbound capacity may be slightly higher than this.
636         pub inbound_capacity_msat: u64,
637         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
638         /// the peer is connected, and (c) no monitor update failure is pending resolution.
639         pub is_live: bool,
640
641         /// Information on the fees and requirements that the counterparty requires when forwarding
642         /// payments to us through this channel.
643         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
644 }
645
646 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
647 /// Err() type describing which state the payment is in, see the description of individual enum
648 /// states for more.
649 #[derive(Clone, Debug)]
650 pub enum PaymentSendFailure {
651         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
652         /// send the payment at all. No channel state has been changed or messages sent to peers, and
653         /// once you've changed the parameter at error, you can freely retry the payment in full.
654         ParameterError(APIError),
655         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
656         /// from attempting to send the payment at all. No channel state has been changed or messages
657         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
658         /// payment in full.
659         ///
660         /// The results here are ordered the same as the paths in the route object which was passed to
661         /// send_payment.
662         PathParameterError(Vec<Result<(), APIError>>),
663         /// All paths which were attempted failed to send, with no channel state change taking place.
664         /// You can freely retry the payment in full (though you probably want to do so over different
665         /// paths than the ones selected).
666         AllFailedRetrySafe(Vec<APIError>),
667         /// Some paths which were attempted failed to send, though possibly not all. At least some
668         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
669         /// in over-/re-payment.
670         ///
671         /// The results here are ordered the same as the paths in the route object which was passed to
672         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
673         /// retried (though there is currently no API with which to do so).
674         ///
675         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
676         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
677         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
678         /// with the latest update_id.
679         PartialFailure(Vec<Result<(), APIError>>),
680 }
681
682 macro_rules! handle_error {
683         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
684                 match $internal {
685                         Ok(msg) => Ok(msg),
686                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
687                                 #[cfg(debug_assertions)]
688                                 {
689                                         // In testing, ensure there are no deadlocks where the lock is already held upon
690                                         // entering the macro.
691                                         assert!($self.channel_state.try_lock().is_ok());
692                                 }
693
694                                 let mut msg_events = Vec::with_capacity(2);
695
696                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
697                                         $self.finish_force_close_channel(shutdown_res);
698                                         if let Some(update) = update_option {
699                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
700                                                         msg: update
701                                                 });
702                                         }
703                                 }
704
705                                 log_error!($self.logger, "{}", err.err);
706                                 if let msgs::ErrorAction::IgnoreError = err.action {
707                                 } else {
708                                         msg_events.push(events::MessageSendEvent::HandleError {
709                                                 node_id: $counterparty_node_id,
710                                                 action: err.action.clone()
711                                         });
712                                 }
713
714                                 if !msg_events.is_empty() {
715                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
716                                 }
717
718                                 // Return error in case higher-API need one
719                                 Err(err)
720                         },
721                 }
722         }
723 }
724
725 macro_rules! break_chan_entry {
726         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
727                 match $res {
728                         Ok(res) => res,
729                         Err(ChannelError::Ignore(msg)) => {
730                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
731                         },
732                         Err(ChannelError::Close(msg)) => {
733                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
734                                 let (channel_id, mut chan) = $entry.remove_entry();
735                                 if let Some(short_id) = chan.get_short_channel_id() {
736                                         $channel_state.short_to_id.remove(&short_id);
737                                 }
738                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
739                         },
740                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
741                 }
742         }
743 }
744
745 macro_rules! try_chan_entry {
746         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
747                 match $res {
748                         Ok(res) => res,
749                         Err(ChannelError::Ignore(msg)) => {
750                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
751                         },
752                         Err(ChannelError::Close(msg)) => {
753                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
754                                 let (channel_id, mut chan) = $entry.remove_entry();
755                                 if let Some(short_id) = chan.get_short_channel_id() {
756                                         $channel_state.short_to_id.remove(&short_id);
757                                 }
758                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
759                         },
760                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
761                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
762                                 let (channel_id, mut chan) = $entry.remove_entry();
763                                 if let Some(short_id) = chan.get_short_channel_id() {
764                                         $channel_state.short_to_id.remove(&short_id);
765                                 }
766                                 let shutdown_res = chan.force_shutdown(false);
767                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
768                         }
769                 }
770         }
771 }
772
773 macro_rules! handle_monitor_err {
774         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
775                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
776         };
777         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
778                 match $err {
779                         ChannelMonitorUpdateErr::PermanentFailure => {
780                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
781                                 let (channel_id, mut chan) = $entry.remove_entry();
782                                 if let Some(short_id) = chan.get_short_channel_id() {
783                                         $channel_state.short_to_id.remove(&short_id);
784                                 }
785                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
786                                 // chain in a confused state! We need to move them into the ChannelMonitor which
787                                 // will be responsible for failing backwards once things confirm on-chain.
788                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
789                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
790                                 // us bother trying to claim it just to forward on to another peer. If we're
791                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
792                                 // given up the preimage yet, so might as well just wait until the payment is
793                                 // retried, avoiding the on-chain fees.
794                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
795                                 res
796                         },
797                         ChannelMonitorUpdateErr::TemporaryFailure => {
798                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
799                                                 log_bytes!($entry.key()[..]),
800                                                 if $resend_commitment && $resend_raa {
801                                                                 match $action_type {
802                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
803                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
804                                                                 }
805                                                         } else if $resend_commitment { "commitment" }
806                                                         else if $resend_raa { "RAA" }
807                                                         else { "nothing" },
808                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
809                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
810                                 if !$resend_commitment {
811                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
812                                 }
813                                 if !$resend_raa {
814                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
815                                 }
816                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
817                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
818                         },
819                 }
820         }
821 }
822
823 macro_rules! return_monitor_err {
824         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
825                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
826         };
827         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
828                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
829         }
830 }
831
832 // Does not break in case of TemporaryFailure!
833 macro_rules! maybe_break_monitor_err {
834         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
835                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
836                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
837                                 break e;
838                         },
839                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
840                 }
841         }
842 }
843
844 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
845         where M::Target: chain::Watch<Signer>,
846         T::Target: BroadcasterInterface,
847         K::Target: KeysInterface<Signer = Signer>,
848         F::Target: FeeEstimator,
849         L::Target: Logger,
850 {
851         /// Constructs a new ChannelManager to hold several channels and route between them.
852         ///
853         /// This is the main "logic hub" for all channel-related actions, and implements
854         /// ChannelMessageHandler.
855         ///
856         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
857         ///
858         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
859         ///
860         /// Users need to notify the new ChannelManager when a new block is connected or
861         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
862         /// from after `params.latest_hash`.
863         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
864                 let mut secp_ctx = Secp256k1::new();
865                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
866
867                 ChannelManager {
868                         default_configuration: config.clone(),
869                         genesis_hash: genesis_block(params.network).header.block_hash(),
870                         fee_estimator: fee_est,
871                         chain_monitor,
872                         tx_broadcaster,
873
874                         best_block: RwLock::new(params.best_block),
875
876                         channel_state: Mutex::new(ChannelHolder{
877                                 by_id: HashMap::new(),
878                                 short_to_id: HashMap::new(),
879                                 forward_htlcs: HashMap::new(),
880                                 claimable_htlcs: HashMap::new(),
881                                 pending_msg_events: Vec::new(),
882                         }),
883                         pending_inbound_payments: Mutex::new(HashMap::new()),
884
885                         our_network_key: keys_manager.get_node_secret(),
886                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
887                         secp_ctx,
888
889                         last_node_announcement_serial: AtomicUsize::new(0),
890                         highest_seen_timestamp: AtomicUsize::new(0),
891
892                         per_peer_state: RwLock::new(HashMap::new()),
893
894                         pending_events: Mutex::new(Vec::new()),
895                         pending_background_events: Mutex::new(Vec::new()),
896                         total_consistency_lock: RwLock::new(()),
897                         persistence_notifier: PersistenceNotifier::new(),
898
899                         keys_manager,
900
901                         logger,
902                 }
903         }
904
905         /// Gets the current configuration applied to all new channels,  as
906         pub fn get_current_default_configuration(&self) -> &UserConfig {
907                 &self.default_configuration
908         }
909
910         /// Creates a new outbound channel to the given remote node and with the given value.
911         ///
912         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
913         /// tracking of which events correspond with which create_channel call. Note that the
914         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
915         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
916         /// otherwise ignored.
917         ///
918         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
919         /// PeerManager::process_events afterwards.
920         ///
921         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
922         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
923         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
924                 if channel_value_satoshis < 1000 {
925                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
926                 }
927
928                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
929                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
930                 let res = channel.get_open_channel(self.genesis_hash.clone());
931
932                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
933                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
934                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
935
936                 let mut channel_state = self.channel_state.lock().unwrap();
937                 match channel_state.by_id.entry(channel.channel_id()) {
938                         hash_map::Entry::Occupied(_) => {
939                                 if cfg!(feature = "fuzztarget") {
940                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
941                                 } else {
942                                         panic!("RNG is bad???");
943                                 }
944                         },
945                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
946                 }
947                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
948                         node_id: their_network_key,
949                         msg: res,
950                 });
951                 Ok(())
952         }
953
954         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
955                 let mut res = Vec::new();
956                 {
957                         let channel_state = self.channel_state.lock().unwrap();
958                         res.reserve(channel_state.by_id.len());
959                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
960                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
961                                 res.push(ChannelDetails {
962                                         channel_id: (*channel_id).clone(),
963                                         short_channel_id: channel.get_short_channel_id(),
964                                         remote_network_id: channel.get_counterparty_node_id(),
965                                         counterparty_features: InitFeatures::empty(),
966                                         channel_value_satoshis: channel.get_value_satoshis(),
967                                         inbound_capacity_msat,
968                                         outbound_capacity_msat,
969                                         user_id: channel.get_user_id(),
970                                         is_live: channel.is_live(),
971                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
972                                 });
973                         }
974                 }
975                 let per_peer_state = self.per_peer_state.read().unwrap();
976                 for chan in res.iter_mut() {
977                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
978                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
979                         }
980                 }
981                 res
982         }
983
984         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
985         /// more information.
986         pub fn list_channels(&self) -> Vec<ChannelDetails> {
987                 self.list_channels_with_filter(|_| true)
988         }
989
990         /// Gets the list of usable channels, in random order. Useful as an argument to
991         /// get_route to ensure non-announced channels are used.
992         ///
993         /// These are guaranteed to have their is_live value set to true, see the documentation for
994         /// ChannelDetails::is_live for more info on exactly what the criteria are.
995         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
996                 // Note we use is_live here instead of usable which leads to somewhat confused
997                 // internal/external nomenclature, but that's ok cause that's probably what the user
998                 // really wanted anyway.
999                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1000         }
1001
1002         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1003         /// will be accepted on the given channel, and after additional timeout/the closing of all
1004         /// pending HTLCs, the channel will be closed on chain.
1005         ///
1006         /// May generate a SendShutdown message event on success, which should be relayed.
1007         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1008                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1009
1010                 let (mut failed_htlcs, chan_option) = {
1011                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1012                         let channel_state = &mut *channel_state_lock;
1013                         match channel_state.by_id.entry(channel_id.clone()) {
1014                                 hash_map::Entry::Occupied(mut chan_entry) => {
1015                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1016                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1017                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1018                                                 msg: shutdown_msg
1019                                         });
1020                                         if chan_entry.get().is_shutdown() {
1021                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1022                                                         channel_state.short_to_id.remove(&short_id);
1023                                                 }
1024                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1025                                         } else { (failed_htlcs, None) }
1026                                 },
1027                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1028                         }
1029                 };
1030                 for htlc_source in failed_htlcs.drain(..) {
1031                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1032                 }
1033                 let chan_update = if let Some(chan) = chan_option {
1034                         if let Ok(update) = self.get_channel_update(&chan) {
1035                                 Some(update)
1036                         } else { None }
1037                 } else { None };
1038
1039                 if let Some(update) = chan_update {
1040                         let mut channel_state = self.channel_state.lock().unwrap();
1041                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1042                                 msg: update
1043                         });
1044                 }
1045
1046                 Ok(())
1047         }
1048
1049         #[inline]
1050         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1051                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1052                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1053                 for htlc_source in failed_htlcs.drain(..) {
1054                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1055                 }
1056                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1057                         // There isn't anything we can do if we get an update failure - we're already
1058                         // force-closing. The monitor update on the required in-memory copy should broadcast
1059                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1060                         // ignore the result here.
1061                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1062                 }
1063         }
1064
1065         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1066                 let mut chan = {
1067                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1068                         let channel_state = &mut *channel_state_lock;
1069                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1070                                 if let Some(node_id) = peer_node_id {
1071                                         if chan.get().get_counterparty_node_id() != *node_id {
1072                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1073                                         }
1074                                 }
1075                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1076                                         channel_state.short_to_id.remove(&short_id);
1077                                 }
1078                                 chan.remove_entry().1
1079                         } else {
1080                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1081                         }
1082                 };
1083                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1084                 self.finish_force_close_channel(chan.force_shutdown(true));
1085                 if let Ok(update) = self.get_channel_update(&chan) {
1086                         let mut channel_state = self.channel_state.lock().unwrap();
1087                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1088                                 msg: update
1089                         });
1090                 }
1091
1092                 Ok(chan.get_counterparty_node_id())
1093         }
1094
1095         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1096         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1097         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1098                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1099                 match self.force_close_channel_with_peer(channel_id, None) {
1100                         Ok(counterparty_node_id) => {
1101                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1102                                         events::MessageSendEvent::HandleError {
1103                                                 node_id: counterparty_node_id,
1104                                                 action: msgs::ErrorAction::SendErrorMessage {
1105                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1106                                                 },
1107                                         }
1108                                 );
1109                                 Ok(())
1110                         },
1111                         Err(e) => Err(e)
1112                 }
1113         }
1114
1115         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1116         /// for each to the chain and rejecting new HTLCs on each.
1117         pub fn force_close_all_channels(&self) {
1118                 for chan in self.list_channels() {
1119                         let _ = self.force_close_channel(&chan.channel_id);
1120                 }
1121         }
1122
1123         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1124                 macro_rules! return_malformed_err {
1125                         ($msg: expr, $err_code: expr) => {
1126                                 {
1127                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1128                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1129                                                 channel_id: msg.channel_id,
1130                                                 htlc_id: msg.htlc_id,
1131                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1132                                                 failure_code: $err_code,
1133                                         })), self.channel_state.lock().unwrap());
1134                                 }
1135                         }
1136                 }
1137
1138                 if let Err(_) = msg.onion_routing_packet.public_key {
1139                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1140                 }
1141
1142                 let shared_secret = {
1143                         let mut arr = [0; 32];
1144                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1145                         arr
1146                 };
1147                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1148
1149                 if msg.onion_routing_packet.version != 0 {
1150                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1151                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1152                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1153                         //receiving node would have to brute force to figure out which version was put in the
1154                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1155                         //node knows the HMAC matched, so they already know what is there...
1156                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1157                 }
1158
1159                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1160                 hmac.input(&msg.onion_routing_packet.hop_data);
1161                 hmac.input(&msg.payment_hash.0[..]);
1162                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1163                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1164                 }
1165
1166                 let mut channel_state = None;
1167                 macro_rules! return_err {
1168                         ($msg: expr, $err_code: expr, $data: expr) => {
1169                                 {
1170                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1171                                         if channel_state.is_none() {
1172                                                 channel_state = Some(self.channel_state.lock().unwrap());
1173                                         }
1174                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1175                                                 channel_id: msg.channel_id,
1176                                                 htlc_id: msg.htlc_id,
1177                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1178                                         })), channel_state.unwrap());
1179                                 }
1180                         }
1181                 }
1182
1183                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1184                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1185                 let (next_hop_data, next_hop_hmac) = {
1186                         match msgs::OnionHopData::read(&mut chacha_stream) {
1187                                 Err(err) => {
1188                                         let error_code = match err {
1189                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1190                                                 msgs::DecodeError::UnknownRequiredFeature|
1191                                                 msgs::DecodeError::InvalidValue|
1192                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1193                                                 _ => 0x2000 | 2, // Should never happen
1194                                         };
1195                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1196                                 },
1197                                 Ok(msg) => {
1198                                         let mut hmac = [0; 32];
1199                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1200                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1201                                         }
1202                                         (msg, hmac)
1203                                 },
1204                         }
1205                 };
1206
1207                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1208                                 #[cfg(test)]
1209                                 {
1210                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1211                                         // We could do some fancy randomness test here, but, ehh, whatever.
1212                                         // This checks for the issue where you can calculate the path length given the
1213                                         // onion data as all the path entries that the originator sent will be here
1214                                         // as-is (and were originally 0s).
1215                                         // Of course reverse path calculation is still pretty easy given naive routing
1216                                         // algorithms, but this fixes the most-obvious case.
1217                                         let mut next_bytes = [0; 32];
1218                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1219                                         assert_ne!(next_bytes[..], [0; 32][..]);
1220                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1221                                         assert_ne!(next_bytes[..], [0; 32][..]);
1222                                 }
1223
1224                                 // OUR PAYMENT!
1225                                 // final_expiry_too_soon
1226                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1227                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1228                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1229                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1230                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1231                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1232                                 }
1233                                 // final_incorrect_htlc_amount
1234                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1235                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1236                                 }
1237                                 // final_incorrect_cltv_expiry
1238                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1239                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1240                                 }
1241
1242                                 let payment_data = match next_hop_data.format {
1243                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1244                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1245                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1246                                 };
1247
1248                                 if payment_data.is_none() {
1249                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1250                                 }
1251
1252                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1253                                 // message, however that would leak that we are the recipient of this payment, so
1254                                 // instead we stay symmetric with the forwarding case, only responding (after a
1255                                 // delay) once they've send us a commitment_signed!
1256
1257                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1258                                         routing: PendingHTLCRouting::Receive {
1259                                                 payment_data: payment_data.unwrap(),
1260                                                 incoming_cltv_expiry: msg.cltv_expiry,
1261                                         },
1262                                         payment_hash: msg.payment_hash.clone(),
1263                                         incoming_shared_secret: shared_secret,
1264                                         amt_to_forward: next_hop_data.amt_to_forward,
1265                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1266                                 })
1267                         } else {
1268                                 let mut new_packet_data = [0; 20*65];
1269                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1270                                 #[cfg(debug_assertions)]
1271                                 {
1272                                         // Check two things:
1273                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1274                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1275                                         // b) that we didn't somehow magically end up with extra data.
1276                                         let mut t = [0; 1];
1277                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1278                                 }
1279                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1280                                 // fill the onion hop data we'll forward to our next-hop peer.
1281                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1282
1283                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1284
1285                                 let blinding_factor = {
1286                                         let mut sha = Sha256::engine();
1287                                         sha.input(&new_pubkey.serialize()[..]);
1288                                         sha.input(&shared_secret);
1289                                         Sha256::from_engine(sha).into_inner()
1290                                 };
1291
1292                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1293                                         Err(e)
1294                                 } else { Ok(new_pubkey) };
1295
1296                                 let outgoing_packet = msgs::OnionPacket {
1297                                         version: 0,
1298                                         public_key,
1299                                         hop_data: new_packet_data,
1300                                         hmac: next_hop_hmac.clone(),
1301                                 };
1302
1303                                 let short_channel_id = match next_hop_data.format {
1304                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1305                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1306                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1307                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1308                                         },
1309                                 };
1310
1311                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1312                                         routing: PendingHTLCRouting::Forward {
1313                                                 onion_packet: outgoing_packet,
1314                                                 short_channel_id,
1315                                         },
1316                                         payment_hash: msg.payment_hash.clone(),
1317                                         incoming_shared_secret: shared_secret,
1318                                         amt_to_forward: next_hop_data.amt_to_forward,
1319                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1320                                 })
1321                         };
1322
1323                 channel_state = Some(self.channel_state.lock().unwrap());
1324                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1325                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1326                         // with a short_channel_id of 0. This is important as various things later assume
1327                         // short_channel_id is non-0 in any ::Forward.
1328                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1329                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1330                                 let forwarding_id = match id_option {
1331                                         None => { // unknown_next_peer
1332                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1333                                         },
1334                                         Some(id) => id.clone(),
1335                                 };
1336                                 if let Some((err, code, chan_update)) = loop {
1337                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1338
1339                                         // Note that we could technically not return an error yet here and just hope
1340                                         // that the connection is reestablished or monitor updated by the time we get
1341                                         // around to doing the actual forward, but better to fail early if we can and
1342                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1343                                         // on a small/per-node/per-channel scale.
1344                                         if !chan.is_live() { // channel_disabled
1345                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1346                                         }
1347                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1348                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1349                                         }
1350                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1351                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1352                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1353                                         }
1354                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1355                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1356                                         }
1357                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1358                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1359                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1360                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1361                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1362                                         }
1363                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1364                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1365                                         }
1366                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1367                                         // But, to be safe against policy reception, we use a longuer delay.
1368                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1369                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1370                                         }
1371
1372                                         break None;
1373                                 }
1374                                 {
1375                                         let mut res = Vec::with_capacity(8 + 128);
1376                                         if let Some(chan_update) = chan_update {
1377                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1378                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1379                                                 }
1380                                                 else if code == 0x1000 | 13 {
1381                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1382                                                 }
1383                                                 else if code == 0x1000 | 20 {
1384                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1385                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1386                                                 }
1387                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1388                                         }
1389                                         return_err!(err, code, &res[..]);
1390                                 }
1391                         }
1392                 }
1393
1394                 (pending_forward_info, channel_state.unwrap())
1395         }
1396
1397         /// only fails if the channel does not yet have an assigned short_id
1398         /// May be called with channel_state already locked!
1399         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1400                 let short_channel_id = match chan.get_short_channel_id() {
1401                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1402                         Some(id) => id,
1403                 };
1404
1405                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1406
1407                 let unsigned = msgs::UnsignedChannelUpdate {
1408                         chain_hash: self.genesis_hash,
1409                         short_channel_id,
1410                         timestamp: chan.get_update_time_counter(),
1411                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1412                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1413                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1414                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1415                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1416                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1417                         excess_data: Vec::new(),
1418                 };
1419
1420                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1421                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1422
1423                 Ok(msgs::ChannelUpdate {
1424                         signature: sig,
1425                         contents: unsigned
1426                 })
1427         }
1428
1429         // Only public for testing, this should otherwise never be called direcly
1430         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1431                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1432                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1433                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1434
1435                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1436                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1437                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1438                 if onion_utils::route_size_insane(&onion_payloads) {
1439                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1440                 }
1441                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1442
1443                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1444
1445                 let err: Result<(), _> = loop {
1446                         let mut channel_lock = self.channel_state.lock().unwrap();
1447                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1448                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1449                                 Some(id) => id.clone(),
1450                         };
1451
1452                         let channel_state = &mut *channel_lock;
1453                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1454                                 match {
1455                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1456                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1457                                         }
1458                                         if !chan.get().is_live() {
1459                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1460                                         }
1461                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1462                                                 path: path.clone(),
1463                                                 session_priv: session_priv.clone(),
1464                                                 first_hop_htlc_msat: htlc_msat,
1465                                         }, onion_packet, &self.logger), channel_state, chan)
1466                                 } {
1467                                         Some((update_add, commitment_signed, monitor_update)) => {
1468                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1469                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1470                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1471                                                         // that we will resend the commitment update once monitor updating
1472                                                         // is restored. Therefore, we must return an error indicating that
1473                                                         // it is unsafe to retry the payment wholesale, which we do in the
1474                                                         // send_payment check for MonitorUpdateFailed, below.
1475                                                         return Err(APIError::MonitorUpdateFailed);
1476                                                 }
1477
1478                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1479                                                         node_id: path.first().unwrap().pubkey,
1480                                                         updates: msgs::CommitmentUpdate {
1481                                                                 update_add_htlcs: vec![update_add],
1482                                                                 update_fulfill_htlcs: Vec::new(),
1483                                                                 update_fail_htlcs: Vec::new(),
1484                                                                 update_fail_malformed_htlcs: Vec::new(),
1485                                                                 update_fee: None,
1486                                                                 commitment_signed,
1487                                                         },
1488                                                 });
1489                                         },
1490                                         None => {},
1491                                 }
1492                         } else { unreachable!(); }
1493                         return Ok(());
1494                 };
1495
1496                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1497                         Ok(_) => unreachable!(),
1498                         Err(e) => {
1499                                 Err(APIError::ChannelUnavailable { err: e.err })
1500                         },
1501                 }
1502         }
1503
1504         /// Sends a payment along a given route.
1505         ///
1506         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1507         /// fields for more info.
1508         ///
1509         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1510         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1511         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1512         /// specified in the last hop in the route! Thus, you should probably do your own
1513         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1514         /// payment") and prevent double-sends yourself.
1515         ///
1516         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1517         ///
1518         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1519         /// each entry matching the corresponding-index entry in the route paths, see
1520         /// PaymentSendFailure for more info.
1521         ///
1522         /// In general, a path may raise:
1523         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1524         ///    node public key) is specified.
1525         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1526         ///    (including due to previous monitor update failure or new permanent monitor update
1527         ///    failure).
1528         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1529         ///    relevant updates.
1530         ///
1531         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1532         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1533         /// different route unless you intend to pay twice!
1534         ///
1535         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1536         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1537         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1538         /// must not contain multiple paths as multi-path payments require a recipient-provided
1539         /// payment_secret.
1540         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1541         /// bit set (either as required or as available). If multiple paths are present in the Route,
1542         /// we assume the invoice had the basic_mpp feature set.
1543         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1544                 if route.paths.len() < 1 {
1545                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1546                 }
1547                 if route.paths.len() > 10 {
1548                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1549                         // limits. After we support retrying individual paths we should likely bump this, but
1550                         // for now more than 10 paths likely carries too much one-path failure.
1551                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1552                 }
1553                 let mut total_value = 0;
1554                 let our_node_id = self.get_our_node_id();
1555                 let mut path_errs = Vec::with_capacity(route.paths.len());
1556                 'path_check: for path in route.paths.iter() {
1557                         if path.len() < 1 || path.len() > 20 {
1558                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1559                                 continue 'path_check;
1560                         }
1561                         for (idx, hop) in path.iter().enumerate() {
1562                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1563                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1564                                         continue 'path_check;
1565                                 }
1566                         }
1567                         total_value += path.last().unwrap().fee_msat;
1568                         path_errs.push(Ok(()));
1569                 }
1570                 if path_errs.iter().any(|e| e.is_err()) {
1571                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1572                 }
1573
1574                 let cur_height = self.best_block.read().unwrap().height() + 1;
1575                 let mut results = Vec::new();
1576                 for path in route.paths.iter() {
1577                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1578                 }
1579                 let mut has_ok = false;
1580                 let mut has_err = false;
1581                 for res in results.iter() {
1582                         if res.is_ok() { has_ok = true; }
1583                         if res.is_err() { has_err = true; }
1584                         if let &Err(APIError::MonitorUpdateFailed) = res {
1585                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1586                                 // PartialFailure.
1587                                 has_err = true;
1588                                 has_ok = true;
1589                                 break;
1590                         }
1591                 }
1592                 if has_err && has_ok {
1593                         Err(PaymentSendFailure::PartialFailure(results))
1594                 } else if has_err {
1595                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1596                 } else {
1597                         Ok(())
1598                 }
1599         }
1600
1601         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1602         /// which checks the correctness of the funding transaction given the associated channel.
1603         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1604                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1605                 let (chan, msg) = {
1606                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1607                                 Some(mut chan) => {
1608                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1609
1610                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1611                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1612                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1613                                                 } else { unreachable!(); })
1614                                         , chan)
1615                                 },
1616                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1617                         };
1618                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1619                                 Ok(funding_msg) => {
1620                                         (chan, funding_msg)
1621                                 },
1622                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1623                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1624                                 }) },
1625                         }
1626                 };
1627
1628                 let mut channel_state = self.channel_state.lock().unwrap();
1629                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1630                         node_id: chan.get_counterparty_node_id(),
1631                         msg,
1632                 });
1633                 match channel_state.by_id.entry(chan.channel_id()) {
1634                         hash_map::Entry::Occupied(_) => {
1635                                 panic!("Generated duplicate funding txid?");
1636                         },
1637                         hash_map::Entry::Vacant(e) => {
1638                                 e.insert(chan);
1639                         }
1640                 }
1641                 Ok(())
1642         }
1643
1644         #[cfg(test)]
1645         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1646                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1647                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1648                 })
1649         }
1650
1651         /// Call this upon creation of a funding transaction for the given channel.
1652         ///
1653         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1654         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1655         ///
1656         /// Panics if a funding transaction has already been provided for this channel.
1657         ///
1658         /// May panic if the output found in the funding transaction is duplicative with some other
1659         /// channel (note that this should be trivially prevented by using unique funding transaction
1660         /// keys per-channel).
1661         ///
1662         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1663         /// counterparty's signature the funding transaction will automatically be broadcast via the
1664         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1665         ///
1666         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1667         /// not currently support replacing a funding transaction on an existing channel. Instead,
1668         /// create a new channel with a conflicting funding transaction.
1669         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1670                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1671
1672                 for inp in funding_transaction.input.iter() {
1673                         if inp.witness.is_empty() {
1674                                 return Err(APIError::APIMisuseError {
1675                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1676                                 });
1677                         }
1678                 }
1679                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1680                         let mut output_index = None;
1681                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1682                         for (idx, outp) in tx.output.iter().enumerate() {
1683                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1684                                         if output_index.is_some() {
1685                                                 return Err(APIError::APIMisuseError {
1686                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1687                                                 });
1688                                         }
1689                                         if idx > u16::max_value() as usize {
1690                                                 return Err(APIError::APIMisuseError {
1691                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1692                                                 });
1693                                         }
1694                                         output_index = Some(idx as u16);
1695                                 }
1696                         }
1697                         if output_index.is_none() {
1698                                 return Err(APIError::APIMisuseError {
1699                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1700                                 });
1701                         }
1702                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1703                 })
1704         }
1705
1706         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1707                 if !chan.should_announce() {
1708                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1709                         return None
1710                 }
1711
1712                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1713                         Ok(res) => res,
1714                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1715                 };
1716                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1717                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1718
1719                 Some(msgs::AnnouncementSignatures {
1720                         channel_id: chan.channel_id(),
1721                         short_channel_id: chan.get_short_channel_id().unwrap(),
1722                         node_signature: our_node_sig,
1723                         bitcoin_signature: our_bitcoin_sig,
1724                 })
1725         }
1726
1727         #[allow(dead_code)]
1728         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1729         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1730         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1731         // message...
1732         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1733         #[deny(const_err)]
1734         #[allow(dead_code)]
1735         // ...by failing to compile if the number of addresses that would be half of a message is
1736         // smaller than 500:
1737         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1738
1739         /// Generates a signed node_announcement from the given arguments and creates a
1740         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1741         /// seen a channel_announcement from us (ie unless we have public channels open).
1742         ///
1743         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1744         /// to humans. They carry no in-protocol meaning.
1745         ///
1746         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1747         /// incoming connections. These will be broadcast to the network, publicly tying these
1748         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1749         /// only Tor Onion addresses.
1750         ///
1751         /// Panics if addresses is absurdly large (more than 500).
1752         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1753                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1754
1755                 if addresses.len() > 500 {
1756                         panic!("More than half the message size was taken up by public addresses!");
1757                 }
1758
1759                 let announcement = msgs::UnsignedNodeAnnouncement {
1760                         features: NodeFeatures::known(),
1761                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1762                         node_id: self.get_our_node_id(),
1763                         rgb, alias, addresses,
1764                         excess_address_data: Vec::new(),
1765                         excess_data: Vec::new(),
1766                 };
1767                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1768
1769                 let mut channel_state = self.channel_state.lock().unwrap();
1770                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1771                         msg: msgs::NodeAnnouncement {
1772                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1773                                 contents: announcement
1774                         },
1775                 });
1776         }
1777
1778         /// Processes HTLCs which are pending waiting on random forward delay.
1779         ///
1780         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1781         /// Will likely generate further events.
1782         pub fn process_pending_htlc_forwards(&self) {
1783                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1784
1785                 let mut new_events = Vec::new();
1786                 let mut failed_forwards = Vec::new();
1787                 let mut handle_errors = Vec::new();
1788                 {
1789                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1790                         let channel_state = &mut *channel_state_lock;
1791
1792                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1793                                 if short_chan_id != 0 {
1794                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1795                                                 Some(chan_id) => chan_id.clone(),
1796                                                 None => {
1797                                                         failed_forwards.reserve(pending_forwards.len());
1798                                                         for forward_info in pending_forwards.drain(..) {
1799                                                                 match forward_info {
1800                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1801                                                                                                    prev_funding_outpoint } => {
1802                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1803                                                                                         short_channel_id: prev_short_channel_id,
1804                                                                                         outpoint: prev_funding_outpoint,
1805                                                                                         htlc_id: prev_htlc_id,
1806                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1807                                                                                 });
1808                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1809                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1810                                                                                 ));
1811                                                                         },
1812                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1813                                                                                 // Channel went away before we could fail it. This implies
1814                                                                                 // the channel is now on chain and our counterparty is
1815                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1816                                                                                 // problem, not ours.
1817                                                                         }
1818                                                                 }
1819                                                         }
1820                                                         continue;
1821                                                 }
1822                                         };
1823                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1824                                                 let mut add_htlc_msgs = Vec::new();
1825                                                 let mut fail_htlc_msgs = Vec::new();
1826                                                 for forward_info in pending_forwards.drain(..) {
1827                                                         match forward_info {
1828                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1829                                                                                 routing: PendingHTLCRouting::Forward {
1830                                                                                         onion_packet, ..
1831                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1832                                                                                 prev_funding_outpoint } => {
1833                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1834                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1835                                                                                 short_channel_id: prev_short_channel_id,
1836                                                                                 outpoint: prev_funding_outpoint,
1837                                                                                 htlc_id: prev_htlc_id,
1838                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1839                                                                         });
1840                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1841                                                                                 Err(e) => {
1842                                                                                         if let ChannelError::Ignore(msg) = e {
1843                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1844                                                                                         } else {
1845                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1846                                                                                         }
1847                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1848                                                                                         failed_forwards.push((htlc_source, payment_hash,
1849                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1850                                                                                         ));
1851                                                                                         continue;
1852                                                                                 },
1853                                                                                 Ok(update_add) => {
1854                                                                                         match update_add {
1855                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1856                                                                                                 None => {
1857                                                                                                         // Nothing to do here...we're waiting on a remote
1858                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1859                                                                                                         // will automatically handle building the update_add_htlc and
1860                                                                                                         // commitment_signed messages when we can.
1861                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1862                                                                                                         // as we don't really want others relying on us relaying through
1863                                                                                                         // this channel currently :/.
1864                                                                                                 }
1865                                                                                         }
1866                                                                                 }
1867                                                                         }
1868                                                                 },
1869                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1870                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1871                                                                 },
1872                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1873                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1874                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1875                                                                                 Err(e) => {
1876                                                                                         if let ChannelError::Ignore(msg) = e {
1877                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1878                                                                                         } else {
1879                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1880                                                                                         }
1881                                                                                         // fail-backs are best-effort, we probably already have one
1882                                                                                         // pending, and if not that's OK, if not, the channel is on
1883                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1884                                                                                         continue;
1885                                                                                 },
1886                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1887                                                                                 Ok(None) => {
1888                                                                                         // Nothing to do here...we're waiting on a remote
1889                                                                                         // revoke_and_ack before we can update the commitment
1890                                                                                         // transaction. The Channel will automatically handle
1891                                                                                         // building the update_fail_htlc and commitment_signed
1892                                                                                         // messages when we can.
1893                                                                                         // We don't need any kind of timer here as they should fail
1894                                                                                         // the channel onto the chain if they can't get our
1895                                                                                         // update_fail_htlc in time, it's not our problem.
1896                                                                                 }
1897                                                                         }
1898                                                                 },
1899                                                         }
1900                                                 }
1901
1902                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1903                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1904                                                                 Ok(res) => res,
1905                                                                 Err(e) => {
1906                                                                         // We surely failed send_commitment due to bad keys, in that case
1907                                                                         // close channel and then send error message to peer.
1908                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1909                                                                         let err: Result<(), _>  = match e {
1910                                                                                 ChannelError::Ignore(_) => {
1911                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1912                                                                                 },
1913                                                                                 ChannelError::Close(msg) => {
1914                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1915                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1916                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1917                                                                                                 channel_state.short_to_id.remove(&short_id);
1918                                                                                         }
1919                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1920                                                                                 },
1921                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1922                                                                         };
1923                                                                         handle_errors.push((counterparty_node_id, err));
1924                                                                         continue;
1925                                                                 }
1926                                                         };
1927                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1928                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1929                                                                 continue;
1930                                                         }
1931                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1932                                                                 node_id: chan.get().get_counterparty_node_id(),
1933                                                                 updates: msgs::CommitmentUpdate {
1934                                                                         update_add_htlcs: add_htlc_msgs,
1935                                                                         update_fulfill_htlcs: Vec::new(),
1936                                                                         update_fail_htlcs: fail_htlc_msgs,
1937                                                                         update_fail_malformed_htlcs: Vec::new(),
1938                                                                         update_fee: None,
1939                                                                         commitment_signed: commitment_msg,
1940                                                                 },
1941                                                         });
1942                                                 }
1943                                         } else {
1944                                                 unreachable!();
1945                                         }
1946                                 } else {
1947                                         for forward_info in pending_forwards.drain(..) {
1948                                                 match forward_info {
1949                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1950                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1951                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1952                                                                         prev_funding_outpoint } => {
1953                                                                 let claimable_htlc = ClaimableHTLC {
1954                                                                         prev_hop: HTLCPreviousHopData {
1955                                                                                 short_channel_id: prev_short_channel_id,
1956                                                                                 outpoint: prev_funding_outpoint,
1957                                                                                 htlc_id: prev_htlc_id,
1958                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1959                                                                         },
1960                                                                         value: amt_to_forward,
1961                                                                         payment_data: payment_data.clone(),
1962                                                                         cltv_expiry: incoming_cltv_expiry,
1963                                                                 };
1964
1965                                                                 macro_rules! fail_htlc {
1966                                                                         ($htlc: expr) => {
1967                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
1968                                                                                 htlc_msat_height_data.extend_from_slice(
1969                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
1970                                                                                 );
1971                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1972                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
1973                                                                                                 outpoint: prev_funding_outpoint,
1974                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
1975                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
1976                                                                                         }), payment_hash,
1977                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1978                                                                                 ));
1979                                                                         }
1980                                                                 }
1981
1982                                                                 // Check that the payment hash and secret are known. Note that we
1983                                                                 // MUST take care to handle the "unknown payment hash" and
1984                                                                 // "incorrect payment secret" cases here identically or we'd expose
1985                                                                 // that we are the ultimate recipient of the given payment hash.
1986                                                                 // Further, we must not expose whether we have any other HTLCs
1987                                                                 // associated with the same payment_hash pending or not.
1988                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
1989                                                                 match payment_secrets.entry(payment_hash) {
1990                                                                         hash_map::Entry::Vacant(_) => {
1991                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
1992                                                                                 fail_htlc!(claimable_htlc);
1993                                                                         },
1994                                                                         hash_map::Entry::Occupied(inbound_payment) => {
1995                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
1996                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
1997                                                                                         fail_htlc!(claimable_htlc);
1998                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
1999                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2000                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2001                                                                                         fail_htlc!(claimable_htlc);
2002                                                                                 } else {
2003                                                                                         let mut total_value = 0;
2004                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2005                                                                                                 .or_insert(Vec::new());
2006                                                                                         htlcs.push(claimable_htlc);
2007                                                                                         for htlc in htlcs.iter() {
2008                                                                                                 total_value += htlc.value;
2009                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2010                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2011                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2012                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2013                                                                                                 }
2014                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2015                                                                                         }
2016                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2017                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2018                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2019                                                                                                 for htlc in htlcs.iter() {
2020                                                                                                         fail_htlc!(htlc);
2021                                                                                                 }
2022                                                                                         } else if total_value == payment_data.total_msat {
2023                                                                                                 new_events.push(events::Event::PaymentReceived {
2024                                                                                                         payment_hash,
2025                                                                                                         payment_secret: Some(payment_data.payment_secret),
2026                                                                                                         amt: total_value,
2027                                                                                                 });
2028                                                                                                 // Only ever generate at most one PaymentReceived
2029                                                                                                 // per registered payment_hash, even if it isn't
2030                                                                                                 // claimed.
2031                                                                                                 inbound_payment.remove_entry();
2032                                                                                         } else {
2033                                                                                                 // Nothing to do - we haven't reached the total
2034                                                                                                 // payment value yet, wait until we receive more
2035                                                                                                 // MPP parts.
2036                                                                                         }
2037                                                                                 }
2038                                                                         },
2039                                                                 };
2040                                                         },
2041                                                         HTLCForwardInfo::AddHTLC { .. } => {
2042                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2043                                                         },
2044                                                         HTLCForwardInfo::FailHTLC { .. } => {
2045                                                                 panic!("Got pending fail of our own HTLC");
2046                                                         }
2047                                                 }
2048                                         }
2049                                 }
2050                         }
2051                 }
2052
2053                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2054                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2055                 }
2056
2057                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2058                         let _ = handle_error!(self, err, counterparty_node_id);
2059                 }
2060
2061                 if new_events.is_empty() { return }
2062                 let mut events = self.pending_events.lock().unwrap();
2063                 events.append(&mut new_events);
2064         }
2065
2066         /// Free the background events, generally called from timer_tick_occurred.
2067         ///
2068         /// Exposed for testing to allow us to process events quickly without generating accidental
2069         /// BroadcastChannelUpdate events in timer_tick_occurred.
2070         ///
2071         /// Expects the caller to have a total_consistency_lock read lock.
2072         fn process_background_events(&self) {
2073                 let mut background_events = Vec::new();
2074                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2075                 for event in background_events.drain(..) {
2076                         match event {
2077                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2078                                         // The channel has already been closed, so no use bothering to care about the
2079                                         // monitor updating completing.
2080                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2081                                 },
2082                         }
2083                 }
2084         }
2085
2086         #[cfg(any(test, feature = "_test_utils"))]
2087         pub(crate) fn test_process_background_events(&self) {
2088                 self.process_background_events();
2089         }
2090
2091         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2092         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2093         /// to inform the network about the uselessness of these channels.
2094         ///
2095         /// This method handles all the details, and must be called roughly once per minute.
2096         ///
2097         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2098         pub fn timer_tick_occurred(&self) {
2099                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2100                 self.process_background_events();
2101
2102                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2103                 let channel_state = &mut *channel_state_lock;
2104                 for (_, chan) in channel_state.by_id.iter_mut() {
2105                         if chan.is_disabled_staged() && !chan.is_live() {
2106                                 if let Ok(update) = self.get_channel_update(&chan) {
2107                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2108                                                 msg: update
2109                                         });
2110                                 }
2111                                 chan.to_fresh();
2112                         } else if chan.is_disabled_staged() && chan.is_live() {
2113                                 chan.to_fresh();
2114                         } else if chan.is_disabled_marked() {
2115                                 chan.to_disabled_staged();
2116                         }
2117                 }
2118         }
2119
2120         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2121         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2122         /// along the path (including in our own channel on which we received it).
2123         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2124         /// HTLC backwards has been started.
2125         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash, _payment_secret: &Option<PaymentSecret>) -> bool {
2126                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2127
2128                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2129                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2130                 if let Some(mut sources) = removed_source {
2131                         for htlc in sources.drain(..) {
2132                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2133                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2134                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2135                                                 self.best_block.read().unwrap().height()));
2136                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2137                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2138                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2139                         }
2140                         true
2141                 } else { false }
2142         }
2143
2144         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2145         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2146         // be surfaced to the user.
2147         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2148                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2149                         match htlc_src {
2150                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2151                                         let (failure_code, onion_failure_data) =
2152                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2153                                                         hash_map::Entry::Occupied(chan_entry) => {
2154                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2155                                                                         (0x1000|7, upd.encode_with_len())
2156                                                                 } else {
2157                                                                         (0x4000|10, Vec::new())
2158                                                                 }
2159                                                         },
2160                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2161                                                 };
2162                                         let channel_state = self.channel_state.lock().unwrap();
2163                                         self.fail_htlc_backwards_internal(channel_state,
2164                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2165                                 },
2166                                 HTLCSource::OutboundRoute { .. } => {
2167                                         self.pending_events.lock().unwrap().push(
2168                                                 events::Event::PaymentFailed {
2169                                                         payment_hash,
2170                                                         rejected_by_dest: false,
2171 #[cfg(test)]
2172                                                         error_code: None,
2173 #[cfg(test)]
2174                                                         error_data: None,
2175                                                 }
2176                                         )
2177                                 },
2178                         };
2179                 }
2180         }
2181
2182         /// Fails an HTLC backwards to the sender of it to us.
2183         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2184         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2185         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2186         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2187         /// still-available channels.
2188         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2189                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2190                 //identify whether we sent it or not based on the (I presume) very different runtime
2191                 //between the branches here. We should make this async and move it into the forward HTLCs
2192                 //timer handling.
2193
2194                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2195                 // from block_connected which may run during initialization prior to the chain_monitor
2196                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2197                 match source {
2198                         HTLCSource::OutboundRoute { ref path, .. } => {
2199                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2200                                 mem::drop(channel_state_lock);
2201                                 match &onion_error {
2202                                         &HTLCFailReason::LightningError { ref err } => {
2203 #[cfg(test)]
2204                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2205 #[cfg(not(test))]
2206                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2207                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2208                                                 // process_onion_failure we should close that channel as it implies our
2209                                                 // next-hop is needlessly blaming us!
2210                                                 if let Some(update) = channel_update {
2211                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2212                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2213                                                                         update,
2214                                                                 }
2215                                                         );
2216                                                 }
2217                                                 self.pending_events.lock().unwrap().push(
2218                                                         events::Event::PaymentFailed {
2219                                                                 payment_hash: payment_hash.clone(),
2220                                                                 rejected_by_dest: !payment_retryable,
2221 #[cfg(test)]
2222                                                                 error_code: onion_error_code,
2223 #[cfg(test)]
2224                                                                 error_data: onion_error_data
2225                                                         }
2226                                                 );
2227                                         },
2228                                         &HTLCFailReason::Reason {
2229 #[cfg(test)]
2230                                                         ref failure_code,
2231 #[cfg(test)]
2232                                                         ref data,
2233                                                         .. } => {
2234                                                 // we get a fail_malformed_htlc from the first hop
2235                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2236                                                 // failures here, but that would be insufficient as get_route
2237                                                 // generally ignores its view of our own channels as we provide them via
2238                                                 // ChannelDetails.
2239                                                 // TODO: For non-temporary failures, we really should be closing the
2240                                                 // channel here as we apparently can't relay through them anyway.
2241                                                 self.pending_events.lock().unwrap().push(
2242                                                         events::Event::PaymentFailed {
2243                                                                 payment_hash: payment_hash.clone(),
2244                                                                 rejected_by_dest: path.len() == 1,
2245 #[cfg(test)]
2246                                                                 error_code: Some(*failure_code),
2247 #[cfg(test)]
2248                                                                 error_data: Some(data.clone()),
2249                                                         }
2250                                                 );
2251                                         }
2252                                 }
2253                         },
2254                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2255                                 let err_packet = match onion_error {
2256                                         HTLCFailReason::Reason { failure_code, data } => {
2257                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2258                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2259                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2260                                         },
2261                                         HTLCFailReason::LightningError { err } => {
2262                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2263                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2264                                         }
2265                                 };
2266
2267                                 let mut forward_event = None;
2268                                 if channel_state_lock.forward_htlcs.is_empty() {
2269                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2270                                 }
2271                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2272                                         hash_map::Entry::Occupied(mut entry) => {
2273                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2274                                         },
2275                                         hash_map::Entry::Vacant(entry) => {
2276                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2277                                         }
2278                                 }
2279                                 mem::drop(channel_state_lock);
2280                                 if let Some(time) = forward_event {
2281                                         let mut pending_events = self.pending_events.lock().unwrap();
2282                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2283                                                 time_forwardable: time
2284                                         });
2285                                 }
2286                         },
2287                 }
2288         }
2289
2290         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2291         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2292         /// should probably kick the net layer to go send messages if this returns true!
2293         ///
2294         /// You must specify the expected amounts for this HTLC, and we will only claim HTLCs
2295         /// available within a few percent of the expected amount. This is critical for several
2296         /// reasons : a) it avoids providing senders with `proof-of-payment` (in the form of the
2297         /// payment_preimage without having provided the full value and b) it avoids certain
2298         /// privacy-breaking recipient-probing attacks which may reveal payment activity to
2299         /// motivated attackers.
2300         ///
2301         /// Note that the privacy concerns in (b) are not relevant in payments with a payment_secret
2302         /// set. Thus, for such payments we will claim any payments which do not under-pay.
2303         ///
2304         /// May panic if called except in response to a PaymentReceived event.
2305         pub fn claim_funds(&self, payment_preimage: PaymentPreimage, _payment_secret: &Option<PaymentSecret>, expected_amount: u64) -> bool {
2306                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2307
2308                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2309
2310                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2311                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2312                 if let Some(mut sources) = removed_source {
2313                         assert!(!sources.is_empty());
2314
2315                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2316                         // channel exists before claiming all of the payments (inside one lock).
2317                         // Note that channel existance is sufficient as we should always get a monitor update
2318                         // which will take care of the real HTLC claim enforcement.
2319                         //
2320                         // If we find an HTLC which we would need to claim but for which we do not have a
2321                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2322                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2323                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2324                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2325                         // it.
2326                         let mut valid_mpp = sources[0].payment_data.total_msat >= expected_amount;
2327                         for htlc in sources.iter() {
2328                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2329                                         valid_mpp = false;
2330                                         break;
2331                                 }
2332                         }
2333
2334                         let mut errs = Vec::new();
2335                         let mut claimed_any_htlcs = false;
2336                         for htlc in sources.drain(..) {
2337                                 if !valid_mpp {
2338                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2339                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2340                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2341                                                         self.best_block.read().unwrap().height()));
2342                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2343                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2344                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2345                                 } else {
2346                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2347                                                 Err(Some(e)) => {
2348                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2349                                                                 // We got a temporary failure updating monitor, but will claim the
2350                                                                 // HTLC when the monitor updating is restored (or on chain).
2351                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2352                                                                 claimed_any_htlcs = true;
2353                                                         } else { errs.push(e); }
2354                                                 },
2355                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2356                                                 Ok(()) => claimed_any_htlcs = true,
2357                                         }
2358                                 }
2359                         }
2360
2361                         // Now that we've done the entire above loop in one lock, we can handle any errors
2362                         // which were generated.
2363                         channel_state.take();
2364
2365                         for (counterparty_node_id, err) in errs.drain(..) {
2366                                 let res: Result<(), _> = Err(err);
2367                                 let _ = handle_error!(self, res, counterparty_node_id);
2368                         }
2369
2370                         claimed_any_htlcs
2371                 } else { false }
2372         }
2373
2374         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2375                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2376                 let channel_state = &mut **channel_state_lock;
2377                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2378                         Some(chan_id) => chan_id.clone(),
2379                         None => {
2380                                 return Err(None)
2381                         }
2382                 };
2383
2384                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2385                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2386                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2387                                 Ok((msgs, monitor_option)) => {
2388                                         if let Some(monitor_update) = monitor_option {
2389                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2390                                                         if was_frozen_for_monitor {
2391                                                                 assert!(msgs.is_none());
2392                                                         } else {
2393                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2394                                                         }
2395                                                 }
2396                                         }
2397                                         if let Some((msg, commitment_signed)) = msgs {
2398                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2399                                                         node_id: chan.get().get_counterparty_node_id(),
2400                                                         updates: msgs::CommitmentUpdate {
2401                                                                 update_add_htlcs: Vec::new(),
2402                                                                 update_fulfill_htlcs: vec![msg],
2403                                                                 update_fail_htlcs: Vec::new(),
2404                                                                 update_fail_malformed_htlcs: Vec::new(),
2405                                                                 update_fee: None,
2406                                                                 commitment_signed,
2407                                                         }
2408                                                 });
2409                                         }
2410                                         return Ok(())
2411                                 },
2412                                 Err(e) => {
2413                                         // TODO: Do something with e?
2414                                         // This should only occur if we are claiming an HTLC at the same time as the
2415                                         // HTLC is being failed (eg because a block is being connected and this caused
2416                                         // an HTLC to time out). This should, of course, only occur if the user is the
2417                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2418                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2419                                         // previous HTLC was failed (thus not for an MPP payment).
2420                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2421                                         return Err(None)
2422                                 },
2423                         }
2424                 } else { unreachable!(); }
2425         }
2426
2427         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2428                 match source {
2429                         HTLCSource::OutboundRoute { .. } => {
2430                                 mem::drop(channel_state_lock);
2431                                 let mut pending_events = self.pending_events.lock().unwrap();
2432                                 pending_events.push(events::Event::PaymentSent {
2433                                         payment_preimage
2434                                 });
2435                         },
2436                         HTLCSource::PreviousHopData(hop_data) => {
2437                                 let prev_outpoint = hop_data.outpoint;
2438                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2439                                         Ok(()) => Ok(()),
2440                                         Err(None) => {
2441                                                 let preimage_update = ChannelMonitorUpdate {
2442                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2443                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2444                                                                 payment_preimage: payment_preimage.clone(),
2445                                                         }],
2446                                                 };
2447                                                 // We update the ChannelMonitor on the backward link, after
2448                                                 // receiving an offchain preimage event from the forward link (the
2449                                                 // event being update_fulfill_htlc).
2450                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2451                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2452                                                                    payment_preimage, e);
2453                                                 }
2454                                                 Ok(())
2455                                         },
2456                                         Err(Some(res)) => Err(res),
2457                                 } {
2458                                         mem::drop(channel_state_lock);
2459                                         let res: Result<(), _> = Err(err);
2460                                         let _ = handle_error!(self, res, counterparty_node_id);
2461                                 }
2462                         },
2463                 }
2464         }
2465
2466         /// Gets the node_id held by this ChannelManager
2467         pub fn get_our_node_id(&self) -> PublicKey {
2468                 self.our_network_pubkey.clone()
2469         }
2470
2471         /// Restores a single, given channel to normal operation after a
2472         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2473         /// operation.
2474         ///
2475         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2476         /// fully committed in every copy of the given channels' ChannelMonitors.
2477         ///
2478         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2479         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2480         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2481         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2482         ///
2483         /// Thus, the anticipated use is, at a high level:
2484         ///  1) You register a chain::Watch with this ChannelManager,
2485         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2486         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2487         ///     any time it cannot do so instantly,
2488         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2489         ///  4) once all remote copies are updated, you call this function with the update_id that
2490         ///     completed, and once it is the latest the Channel will be re-enabled.
2491         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2492                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2493
2494                 let mut close_results = Vec::new();
2495                 let mut htlc_forwards = Vec::new();
2496                 let mut htlc_failures = Vec::new();
2497                 let mut pending_events = Vec::new();
2498
2499                 {
2500                         let mut channel_lock = self.channel_state.lock().unwrap();
2501                         let channel_state = &mut *channel_lock;
2502                         let short_to_id = &mut channel_state.short_to_id;
2503                         let pending_msg_events = &mut channel_state.pending_msg_events;
2504                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2505                                 Some(chan) => chan,
2506                                 None => return,
2507                         };
2508                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2509                                 return;
2510                         }
2511
2512                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2513                         if !pending_forwards.is_empty() {
2514                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2515                         }
2516                         htlc_failures.append(&mut pending_failures);
2517
2518                         macro_rules! handle_cs { () => {
2519                                 if let Some(update) = commitment_update {
2520                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2521                                                 node_id: channel.get_counterparty_node_id(),
2522                                                 updates: update,
2523                                         });
2524                                 }
2525                         } }
2526                         macro_rules! handle_raa { () => {
2527                                 if let Some(revoke_and_ack) = raa {
2528                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2529                                                 node_id: channel.get_counterparty_node_id(),
2530                                                 msg: revoke_and_ack,
2531                                         });
2532                                 }
2533                         } }
2534                         match order {
2535                                 RAACommitmentOrder::CommitmentFirst => {
2536                                         handle_cs!();
2537                                         handle_raa!();
2538                                 },
2539                                 RAACommitmentOrder::RevokeAndACKFirst => {
2540                                         handle_raa!();
2541                                         handle_cs!();
2542                                 },
2543                         }
2544                         if let Some(tx) = funding_broadcastable {
2545                                 self.tx_broadcaster.broadcast_transaction(&tx);
2546                         }
2547                         if let Some(msg) = funding_locked {
2548                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2549                                         node_id: channel.get_counterparty_node_id(),
2550                                         msg,
2551                                 });
2552                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2553                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2554                                                 node_id: channel.get_counterparty_node_id(),
2555                                                 msg: announcement_sigs,
2556                                         });
2557                                 }
2558                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2559                         }
2560                 }
2561
2562                 self.pending_events.lock().unwrap().append(&mut pending_events);
2563
2564                 for failure in htlc_failures.drain(..) {
2565                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2566                 }
2567                 self.forward_htlcs(&mut htlc_forwards[..]);
2568
2569                 for res in close_results.drain(..) {
2570                         self.finish_force_close_channel(res);
2571                 }
2572         }
2573
2574         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2575                 if msg.chain_hash != self.genesis_hash {
2576                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2577                 }
2578
2579                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2580                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2581                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2582                 let channel_state = &mut *channel_state_lock;
2583                 match channel_state.by_id.entry(channel.channel_id()) {
2584                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2585                         hash_map::Entry::Vacant(entry) => {
2586                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2587                                         node_id: counterparty_node_id.clone(),
2588                                         msg: channel.get_accept_channel(),
2589                                 });
2590                                 entry.insert(channel);
2591                         }
2592                 }
2593                 Ok(())
2594         }
2595
2596         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2597                 let (value, output_script, user_id) = {
2598                         let mut channel_lock = self.channel_state.lock().unwrap();
2599                         let channel_state = &mut *channel_lock;
2600                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2601                                 hash_map::Entry::Occupied(mut chan) => {
2602                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2603                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2604                                         }
2605                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2606                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2607                                 },
2608                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2609                         }
2610                 };
2611                 let mut pending_events = self.pending_events.lock().unwrap();
2612                 pending_events.push(events::Event::FundingGenerationReady {
2613                         temporary_channel_id: msg.temporary_channel_id,
2614                         channel_value_satoshis: value,
2615                         output_script,
2616                         user_channel_id: user_id,
2617                 });
2618                 Ok(())
2619         }
2620
2621         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2622                 let ((funding_msg, monitor), mut chan) = {
2623                         let best_block = *self.best_block.read().unwrap();
2624                         let mut channel_lock = self.channel_state.lock().unwrap();
2625                         let channel_state = &mut *channel_lock;
2626                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2627                                 hash_map::Entry::Occupied(mut chan) => {
2628                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2629                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2630                                         }
2631                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2632                                 },
2633                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2634                         }
2635                 };
2636                 // Because we have exclusive ownership of the channel here we can release the channel_state
2637                 // lock before watch_channel
2638                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2639                         match e {
2640                                 ChannelMonitorUpdateErr::PermanentFailure => {
2641                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2642                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2643                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2644                                         // any messages referencing a previously-closed channel anyway.
2645                                         // We do not do a force-close here as that would generate a monitor update for
2646                                         // a monitor that we didn't manage to store (and that we don't care about - we
2647                                         // don't respond with the funding_signed so the channel can never go on chain).
2648                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2649                                         assert!(failed_htlcs.is_empty());
2650                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2651                                 },
2652                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2653                                         // There's no problem signing a counterparty's funding transaction if our monitor
2654                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2655                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2656                                         // until we have persisted our monitor.
2657                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2658                                 },
2659                         }
2660                 }
2661                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2662                 let channel_state = &mut *channel_state_lock;
2663                 match channel_state.by_id.entry(funding_msg.channel_id) {
2664                         hash_map::Entry::Occupied(_) => {
2665                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2666                         },
2667                         hash_map::Entry::Vacant(e) => {
2668                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2669                                         node_id: counterparty_node_id.clone(),
2670                                         msg: funding_msg,
2671                                 });
2672                                 e.insert(chan);
2673                         }
2674                 }
2675                 Ok(())
2676         }
2677
2678         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2679                 let funding_tx = {
2680                         let best_block = *self.best_block.read().unwrap();
2681                         let mut channel_lock = self.channel_state.lock().unwrap();
2682                         let channel_state = &mut *channel_lock;
2683                         match channel_state.by_id.entry(msg.channel_id) {
2684                                 hash_map::Entry::Occupied(mut chan) => {
2685                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2686                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2687                                         }
2688                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2689                                                 Ok(update) => update,
2690                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2691                                         };
2692                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2693                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2694                                         }
2695                                         funding_tx
2696                                 },
2697                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2698                         }
2699                 };
2700                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2701                 Ok(())
2702         }
2703
2704         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2705                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2706                 let channel_state = &mut *channel_state_lock;
2707                 match channel_state.by_id.entry(msg.channel_id) {
2708                         hash_map::Entry::Occupied(mut chan) => {
2709                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2710                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2711                                 }
2712                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2713                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2714                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2715                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2716                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2717                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2718                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2719                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2720                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2721                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2722                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2723                                         // to be received, from then sigs are going to be flood to the whole network.
2724                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2725                                                 node_id: counterparty_node_id.clone(),
2726                                                 msg: announcement_sigs,
2727                                         });
2728                                 }
2729                                 Ok(())
2730                         },
2731                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2732                 }
2733         }
2734
2735         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2736                 let (mut dropped_htlcs, chan_option) = {
2737                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2738                         let channel_state = &mut *channel_state_lock;
2739
2740                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2741                                 hash_map::Entry::Occupied(mut chan_entry) => {
2742                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2743                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2744                                         }
2745                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2746                                         if let Some(msg) = shutdown {
2747                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2748                                                         node_id: counterparty_node_id.clone(),
2749                                                         msg,
2750                                                 });
2751                                         }
2752                                         if let Some(msg) = closing_signed {
2753                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2754                                                         node_id: counterparty_node_id.clone(),
2755                                                         msg,
2756                                                 });
2757                                         }
2758                                         if chan_entry.get().is_shutdown() {
2759                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2760                                                         channel_state.short_to_id.remove(&short_id);
2761                                                 }
2762                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2763                                         } else { (dropped_htlcs, None) }
2764                                 },
2765                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2766                         }
2767                 };
2768                 for htlc_source in dropped_htlcs.drain(..) {
2769                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2770                 }
2771                 if let Some(chan) = chan_option {
2772                         if let Ok(update) = self.get_channel_update(&chan) {
2773                                 let mut channel_state = self.channel_state.lock().unwrap();
2774                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2775                                         msg: update
2776                                 });
2777                         }
2778                 }
2779                 Ok(())
2780         }
2781
2782         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2783                 let (tx, chan_option) = {
2784                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2785                         let channel_state = &mut *channel_state_lock;
2786                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2787                                 hash_map::Entry::Occupied(mut chan_entry) => {
2788                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2789                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2790                                         }
2791                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2792                                         if let Some(msg) = closing_signed {
2793                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2794                                                         node_id: counterparty_node_id.clone(),
2795                                                         msg,
2796                                                 });
2797                                         }
2798                                         if tx.is_some() {
2799                                                 // We're done with this channel, we've got a signed closing transaction and
2800                                                 // will send the closing_signed back to the remote peer upon return. This
2801                                                 // also implies there are no pending HTLCs left on the channel, so we can
2802                                                 // fully delete it from tracking (the channel monitor is still around to
2803                                                 // watch for old state broadcasts)!
2804                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2805                                                         channel_state.short_to_id.remove(&short_id);
2806                                                 }
2807                                                 (tx, Some(chan_entry.remove_entry().1))
2808                                         } else { (tx, None) }
2809                                 },
2810                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2811                         }
2812                 };
2813                 if let Some(broadcast_tx) = tx {
2814                         log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2815                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2816                 }
2817                 if let Some(chan) = chan_option {
2818                         if let Ok(update) = self.get_channel_update(&chan) {
2819                                 let mut channel_state = self.channel_state.lock().unwrap();
2820                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2821                                         msg: update
2822                                 });
2823                         }
2824                 }
2825                 Ok(())
2826         }
2827
2828         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2829                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2830                 //determine the state of the payment based on our response/if we forward anything/the time
2831                 //we take to respond. We should take care to avoid allowing such an attack.
2832                 //
2833                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2834                 //us repeatedly garbled in different ways, and compare our error messages, which are
2835                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2836                 //but we should prevent it anyway.
2837
2838                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2839                 let channel_state = &mut *channel_state_lock;
2840
2841                 match channel_state.by_id.entry(msg.channel_id) {
2842                         hash_map::Entry::Occupied(mut chan) => {
2843                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2844                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2845                                 }
2846
2847                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2848                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2849                                         // channel update along as part of failing the HTLC.
2850                                         assert!((error_code & 0x1000) != 0);
2851                                         // If the update_add is completely bogus, the call will Err and we will close,
2852                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2853                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2854                                         match pending_forward_info {
2855                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2856                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2857                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2858                                                                         let mut res = Vec::with_capacity(8 + 128);
2859                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2860                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2861                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2862                                                                         res
2863                                                                 }[..])
2864                                                         } else {
2865                                                                 // The only case where we'd be unable to
2866                                                                 // successfully get a channel update is if the
2867                                                                 // channel isn't in the fully-funded state yet,
2868                                                                 // implying our counterparty is trying to route
2869                                                                 // payments over the channel back to themselves
2870                                                                 // (cause no one else should know the short_id
2871                                                                 // is a lightning channel yet). We should have
2872                                                                 // no problem just calling this
2873                                                                 // unknown_next_peer (0x4000|10).
2874                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2875                                                         };
2876                                                         let msg = msgs::UpdateFailHTLC {
2877                                                                 channel_id: msg.channel_id,
2878                                                                 htlc_id: msg.htlc_id,
2879                                                                 reason
2880                                                         };
2881                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2882                                                 },
2883                                                 _ => pending_forward_info
2884                                         }
2885                                 };
2886                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2887                         },
2888                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2889                 }
2890                 Ok(())
2891         }
2892
2893         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2894                 let mut channel_lock = self.channel_state.lock().unwrap();
2895                 let htlc_source = {
2896                         let channel_state = &mut *channel_lock;
2897                         match channel_state.by_id.entry(msg.channel_id) {
2898                                 hash_map::Entry::Occupied(mut chan) => {
2899                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2900                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2901                                         }
2902                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2903                                 },
2904                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2905                         }
2906                 };
2907                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2908                 Ok(())
2909         }
2910
2911         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2912                 let mut channel_lock = self.channel_state.lock().unwrap();
2913                 let channel_state = &mut *channel_lock;
2914                 match channel_state.by_id.entry(msg.channel_id) {
2915                         hash_map::Entry::Occupied(mut chan) => {
2916                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2917                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2918                                 }
2919                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2920                         },
2921                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2922                 }
2923                 Ok(())
2924         }
2925
2926         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2927                 let mut channel_lock = self.channel_state.lock().unwrap();
2928                 let channel_state = &mut *channel_lock;
2929                 match channel_state.by_id.entry(msg.channel_id) {
2930                         hash_map::Entry::Occupied(mut chan) => {
2931                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2932                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2933                                 }
2934                                 if (msg.failure_code & 0x8000) == 0 {
2935                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2936                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2937                                 }
2938                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2939                                 Ok(())
2940                         },
2941                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2942                 }
2943         }
2944
2945         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2946                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2947                 let channel_state = &mut *channel_state_lock;
2948                 match channel_state.by_id.entry(msg.channel_id) {
2949                         hash_map::Entry::Occupied(mut chan) => {
2950                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2951                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2952                                 }
2953                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2954                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2955                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2956                                                 Err((Some(update), e)) => {
2957                                                         assert!(chan.get().is_awaiting_monitor_update());
2958                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2959                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2960                                                         unreachable!();
2961                                                 },
2962                                                 Ok(res) => res
2963                                         };
2964                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2965                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2966                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2967                                 }
2968                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2969                                         node_id: counterparty_node_id.clone(),
2970                                         msg: revoke_and_ack,
2971                                 });
2972                                 if let Some(msg) = commitment_signed {
2973                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2974                                                 node_id: counterparty_node_id.clone(),
2975                                                 updates: msgs::CommitmentUpdate {
2976                                                         update_add_htlcs: Vec::new(),
2977                                                         update_fulfill_htlcs: Vec::new(),
2978                                                         update_fail_htlcs: Vec::new(),
2979                                                         update_fail_malformed_htlcs: Vec::new(),
2980                                                         update_fee: None,
2981                                                         commitment_signed: msg,
2982                                                 },
2983                                         });
2984                                 }
2985                                 if let Some(msg) = closing_signed {
2986                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2987                                                 node_id: counterparty_node_id.clone(),
2988                                                 msg,
2989                                         });
2990                                 }
2991                                 Ok(())
2992                         },
2993                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2994                 }
2995         }
2996
2997         #[inline]
2998         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
2999                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3000                         let mut forward_event = None;
3001                         if !pending_forwards.is_empty() {
3002                                 let mut channel_state = self.channel_state.lock().unwrap();
3003                                 if channel_state.forward_htlcs.is_empty() {
3004                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3005                                 }
3006                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3007                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3008                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3009                                                         PendingHTLCRouting::Receive { .. } => 0,
3010                                         }) {
3011                                                 hash_map::Entry::Occupied(mut entry) => {
3012                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3013                                                                                                         prev_htlc_id, forward_info });
3014                                                 },
3015                                                 hash_map::Entry::Vacant(entry) => {
3016                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3017                                                                                                      prev_htlc_id, forward_info }));
3018                                                 }
3019                                         }
3020                                 }
3021                         }
3022                         match forward_event {
3023                                 Some(time) => {
3024                                         let mut pending_events = self.pending_events.lock().unwrap();
3025                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3026                                                 time_forwardable: time
3027                                         });
3028                                 }
3029                                 None => {},
3030                         }
3031                 }
3032         }
3033
3034         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3035                 let mut htlcs_to_fail = Vec::new();
3036                 let res = loop {
3037                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3038                         let channel_state = &mut *channel_state_lock;
3039                         match channel_state.by_id.entry(msg.channel_id) {
3040                                 hash_map::Entry::Occupied(mut chan) => {
3041                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3042                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3043                                         }
3044                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3045                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3046                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3047                                         htlcs_to_fail = htlcs_to_fail_in;
3048                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3049                                                 if was_frozen_for_monitor {
3050                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3051                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3052                                                 } else {
3053                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3054                                                                 break Err(e);
3055                                                         } else { unreachable!(); }
3056                                                 }
3057                                         }
3058                                         if let Some(updates) = commitment_update {
3059                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3060                                                         node_id: counterparty_node_id.clone(),
3061                                                         updates,
3062                                                 });
3063                                         }
3064                                         if let Some(msg) = closing_signed {
3065                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3066                                                         node_id: counterparty_node_id.clone(),
3067                                                         msg,
3068                                                 });
3069                                         }
3070                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3071                                 },
3072                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3073                         }
3074                 };
3075                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3076                 match res {
3077                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3078                                 for failure in pending_failures.drain(..) {
3079                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3080                                 }
3081                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3082                                 Ok(())
3083                         },
3084                         Err(e) => Err(e)
3085                 }
3086         }
3087
3088         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3089                 let mut channel_lock = self.channel_state.lock().unwrap();
3090                 let channel_state = &mut *channel_lock;
3091                 match channel_state.by_id.entry(msg.channel_id) {
3092                         hash_map::Entry::Occupied(mut chan) => {
3093                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3094                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3095                                 }
3096                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3097                         },
3098                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3099                 }
3100                 Ok(())
3101         }
3102
3103         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3104                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3105                 let channel_state = &mut *channel_state_lock;
3106
3107                 match channel_state.by_id.entry(msg.channel_id) {
3108                         hash_map::Entry::Occupied(mut chan) => {
3109                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3110                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3111                                 }
3112                                 if !chan.get().is_usable() {
3113                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3114                                 }
3115
3116                                 let our_node_id = self.get_our_node_id();
3117                                 let (announcement, our_bitcoin_sig) =
3118                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3119
3120                                 let were_node_one = announcement.node_id_1 == our_node_id;
3121                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3122                                 {
3123                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3124                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3125                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3126                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3127                                                 (Err(e), _) => {
3128                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3129                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3130                                                 },
3131                                                 (_, Err(e)) => {
3132                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3133                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3134                                                 },
3135                                                 _ => {}
3136                                         }
3137                                 }
3138
3139                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3140
3141                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3142                                         msg: msgs::ChannelAnnouncement {
3143                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3144                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3145                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3146                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3147                                                 contents: announcement,
3148                                         },
3149                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3150                                 });
3151                         },
3152                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3153                 }
3154                 Ok(())
3155         }
3156
3157         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3158                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3159                 let channel_state = &mut *channel_state_lock;
3160                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3161                         Some(chan_id) => chan_id.clone(),
3162                         None => {
3163                                 // It's not a local channel
3164                                 return Ok(())
3165                         }
3166                 };
3167                 match channel_state.by_id.entry(chan_id) {
3168                         hash_map::Entry::Occupied(mut chan) => {
3169                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3170                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3171                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3172                                 }
3173                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3174                         },
3175                         hash_map::Entry::Vacant(_) => unreachable!()
3176                 }
3177                 Ok(())
3178         }
3179
3180         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3181                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3182                 let channel_state = &mut *channel_state_lock;
3183
3184                 match channel_state.by_id.entry(msg.channel_id) {
3185                         hash_map::Entry::Occupied(mut chan) => {
3186                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3187                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3188                                 }
3189                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3190                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3191                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3192                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3193                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3194                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3195                                 if let Some(monitor_update) = monitor_update_opt {
3196                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3197                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3198                                                 // for the messages it returns, but if we're setting what messages to
3199                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3200                                                 if revoke_and_ack.is_none() {
3201                                                         order = RAACommitmentOrder::CommitmentFirst;
3202                                                 }
3203                                                 if commitment_update.is_none() {
3204                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3205                                                 }
3206                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3207                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3208                                         }
3209                                 }
3210                                 if let Some(msg) = funding_locked {
3211                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3212                                                 node_id: counterparty_node_id.clone(),
3213                                                 msg
3214                                         });
3215                                 }
3216                                 macro_rules! send_raa { () => {
3217                                         if let Some(msg) = revoke_and_ack {
3218                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3219                                                         node_id: counterparty_node_id.clone(),
3220                                                         msg
3221                                                 });
3222                                         }
3223                                 } }
3224                                 macro_rules! send_cu { () => {
3225                                         if let Some(updates) = commitment_update {
3226                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3227                                                         node_id: counterparty_node_id.clone(),
3228                                                         updates
3229                                                 });
3230                                         }
3231                                 } }
3232                                 match order {
3233                                         RAACommitmentOrder::RevokeAndACKFirst => {
3234                                                 send_raa!();
3235                                                 send_cu!();
3236                                         },
3237                                         RAACommitmentOrder::CommitmentFirst => {
3238                                                 send_cu!();
3239                                                 send_raa!();
3240                                         },
3241                                 }
3242                                 if let Some(msg) = shutdown {
3243                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3244                                                 node_id: counterparty_node_id.clone(),
3245                                                 msg,
3246                                         });
3247                                 }
3248                                 Ok(())
3249                         },
3250                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3251                 }
3252         }
3253
3254         /// Begin Update fee process. Allowed only on an outbound channel.
3255         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3256         /// PeerManager::process_events afterwards.
3257         /// Note: This API is likely to change!
3258         /// (C-not exported) Cause its doc(hidden) anyway
3259         #[doc(hidden)]
3260         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3261                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3262                 let counterparty_node_id;
3263                 let err: Result<(), _> = loop {
3264                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3265                         let channel_state = &mut *channel_state_lock;
3266
3267                         match channel_state.by_id.entry(channel_id) {
3268                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3269                                 hash_map::Entry::Occupied(mut chan) => {
3270                                         if !chan.get().is_outbound() {
3271                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3272                                         }
3273                                         if chan.get().is_awaiting_monitor_update() {
3274                                                 return Err(APIError::MonitorUpdateFailed);
3275                                         }
3276                                         if !chan.get().is_live() {
3277                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3278                                         }
3279                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3280                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3281                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3282                                         {
3283                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3284                                                         unimplemented!();
3285                                                 }
3286                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3287                                                         node_id: chan.get().get_counterparty_node_id(),
3288                                                         updates: msgs::CommitmentUpdate {
3289                                                                 update_add_htlcs: Vec::new(),
3290                                                                 update_fulfill_htlcs: Vec::new(),
3291                                                                 update_fail_htlcs: Vec::new(),
3292                                                                 update_fail_malformed_htlcs: Vec::new(),
3293                                                                 update_fee: Some(update_fee),
3294                                                                 commitment_signed,
3295                                                         },
3296                                                 });
3297                                         }
3298                                 },
3299                         }
3300                         return Ok(())
3301                 };
3302
3303                 match handle_error!(self, err, counterparty_node_id) {
3304                         Ok(_) => unreachable!(),
3305                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3306                 }
3307         }
3308
3309         /// Process pending events from the `chain::Watch`.
3310         fn process_pending_monitor_events(&self) {
3311                 let mut failed_channels = Vec::new();
3312                 {
3313                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3314                                 match monitor_event {
3315                                         MonitorEvent::HTLCEvent(htlc_update) => {
3316                                                 if let Some(preimage) = htlc_update.payment_preimage {
3317                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3318                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3319                                                 } else {
3320                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3321                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3322                                                 }
3323                                         },
3324                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3325                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3326                                                 let channel_state = &mut *channel_lock;
3327                                                 let by_id = &mut channel_state.by_id;
3328                                                 let short_to_id = &mut channel_state.short_to_id;
3329                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3330                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3331                                                         if let Some(short_id) = chan.get_short_channel_id() {
3332                                                                 short_to_id.remove(&short_id);
3333                                                         }
3334                                                         failed_channels.push(chan.force_shutdown(false));
3335                                                         if let Ok(update) = self.get_channel_update(&chan) {
3336                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3337                                                                         msg: update
3338                                                                 });
3339                                                         }
3340                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3341                                                                 node_id: chan.get_counterparty_node_id(),
3342                                                                 action: msgs::ErrorAction::SendErrorMessage {
3343                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3344                                                                 },
3345                                                         });
3346                                                 }
3347                                         },
3348                                 }
3349                         }
3350                 }
3351
3352                 for failure in failed_channels.drain(..) {
3353                         self.finish_force_close_channel(failure);
3354                 }
3355         }
3356
3357         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3358         /// pushing the channel monitor update (if any) to the background events queue and removing the
3359         /// Channel object.
3360         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3361                 for mut failure in failed_channels.drain(..) {
3362                         // Either a commitment transactions has been confirmed on-chain or
3363                         // Channel::block_disconnected detected that the funding transaction has been
3364                         // reorganized out of the main chain.
3365                         // We cannot broadcast our latest local state via monitor update (as
3366                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3367                         // so we track the update internally and handle it when the user next calls
3368                         // timer_tick_occurred, guaranteeing we're running normally.
3369                         if let Some((funding_txo, update)) = failure.0.take() {
3370                                 assert_eq!(update.updates.len(), 1);
3371                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3372                                         assert!(should_broadcast);
3373                                 } else { unreachable!(); }
3374                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3375                         }
3376                         self.finish_force_close_channel(failure);
3377                 }
3378         }
3379
3380         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
3381                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3382
3383                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3384
3385                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3386                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3387                 match payment_secrets.entry(payment_hash) {
3388                         hash_map::Entry::Vacant(e) => {
3389                                 e.insert(PendingInboundPayment {
3390                                         payment_secret, min_value_msat, payment_preimage,
3391                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3392                                         // its updated when we receive a new block with the maximum time we've seen in
3393                                         // a header. It should never be more than two hours in the future.
3394                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3395                                         // never fail a payment too early.
3396                                         // Note that we assume that received blocks have reasonably up-to-date
3397                                         // timestamps.
3398                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3399                                 });
3400                         },
3401                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3402                 }
3403                 Ok(payment_secret)
3404         }
3405
3406         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3407         /// to pay us.
3408         ///
3409         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3410         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3411         ///
3412         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3413         ///
3414         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3415         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> (PaymentHash, PaymentSecret) {
3416                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3417                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3418
3419                 (payment_hash,
3420                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)
3421                                 .expect("RNG Generated Duplicate PaymentHash"))
3422         }
3423
3424         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3425         /// stored external to LDK.
3426         ///
3427         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3428         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3429         /// the `min_value_msat` provided here, if one is provided.
3430         ///
3431         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3432         /// method may return an Err if another payment with the same payment_hash is still pending.
3433         ///
3434         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3435         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3436         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3437         /// sender "proof-of-payment" unless they have paid the required amount.
3438         ///
3439         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3440         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3441         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3442         /// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
3443         /// invoices when no timeout is set.
3444         ///
3445         /// Note that we use block header time to time-out pending inbound payments (with some margin
3446         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3447         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3448         /// If you need exact expiry semantics, you should enforce them upon receipt of
3449         /// [`PaymentReceived`].
3450         ///
3451         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3452         ///
3453         /// [`create_inbound_payment`]: Self::create_inbound_payment
3454         /// [`PaymentReceived`]: events::Event::PaymentReceived
3455         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
3456                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
3457         }
3458 }
3459
3460 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3461         where M::Target: chain::Watch<Signer>,
3462         T::Target: BroadcasterInterface,
3463         K::Target: KeysInterface<Signer = Signer>,
3464         F::Target: FeeEstimator,
3465                                 L::Target: Logger,
3466 {
3467         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3468                 //TODO: This behavior should be documented. It's non-intuitive that we query
3469                 // ChannelMonitors when clearing other events.
3470                 self.process_pending_monitor_events();
3471
3472                 let mut ret = Vec::new();
3473                 let mut channel_state = self.channel_state.lock().unwrap();
3474                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3475                 ret
3476         }
3477 }
3478
3479 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3480         where M::Target: chain::Watch<Signer>,
3481         T::Target: BroadcasterInterface,
3482         K::Target: KeysInterface<Signer = Signer>,
3483         F::Target: FeeEstimator,
3484                                 L::Target: Logger,
3485 {
3486         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3487                 //TODO: This behavior should be documented. It's non-intuitive that we query
3488                 // ChannelMonitors when clearing other events.
3489                 self.process_pending_monitor_events();
3490
3491                 let mut ret = Vec::new();
3492                 let mut pending_events = self.pending_events.lock().unwrap();
3493                 mem::swap(&mut ret, &mut *pending_events);
3494                 ret
3495         }
3496 }
3497
3498 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3499 where
3500         M::Target: chain::Watch<Signer>,
3501         T::Target: BroadcasterInterface,
3502         K::Target: KeysInterface<Signer = Signer>,
3503         F::Target: FeeEstimator,
3504         L::Target: Logger,
3505 {
3506         fn block_connected(&self, block: &Block, height: u32) {
3507                 {
3508                         let best_block = self.best_block.read().unwrap();
3509                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3510                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3511                         assert_eq!(best_block.height(), height - 1,
3512                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3513                 }
3514
3515                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3516                 self.transactions_confirmed(&block.header, &txdata, height);
3517                 self.best_block_updated(&block.header, height);
3518         }
3519
3520         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3521                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3522                 let new_height = height - 1;
3523                 {
3524                         let mut best_block = self.best_block.write().unwrap();
3525                         assert_eq!(best_block.block_hash(), header.block_hash(),
3526                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3527                         assert_eq!(best_block.height(), height,
3528                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3529                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3530                 }
3531
3532                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3533         }
3534 }
3535
3536 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3537 where
3538         M::Target: chain::Watch<Signer>,
3539         T::Target: BroadcasterInterface,
3540         K::Target: KeysInterface<Signer = Signer>,
3541         F::Target: FeeEstimator,
3542         L::Target: Logger,
3543 {
3544         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3545                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3546                 // during initialization prior to the chain_monitor being fully configured in some cases.
3547                 // See the docs for `ChannelManagerReadArgs` for more.
3548
3549                 let block_hash = header.block_hash();
3550                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3551
3552                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3553                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3554         }
3555
3556         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3557                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3558                 // during initialization prior to the chain_monitor being fully configured in some cases.
3559                 // See the docs for `ChannelManagerReadArgs` for more.
3560
3561                 let block_hash = header.block_hash();
3562                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3563
3564                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3565
3566                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3567
3568                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3569
3570                 macro_rules! max_time {
3571                         ($timestamp: expr) => {
3572                                 loop {
3573                                         // Update $timestamp to be the max of its current value and the block
3574                                         // timestamp. This should keep us close to the current time without relying on
3575                                         // having an explicit local time source.
3576                                         // Just in case we end up in a race, we loop until we either successfully
3577                                         // update $timestamp or decide we don't need to.
3578                                         let old_serial = $timestamp.load(Ordering::Acquire);
3579                                         if old_serial >= header.time as usize { break; }
3580                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3581                                                 break;
3582                                         }
3583                                 }
3584                         }
3585                 }
3586                 max_time!(self.last_node_announcement_serial);
3587                 max_time!(self.highest_seen_timestamp);
3588         }
3589
3590         fn get_relevant_txids(&self) -> Vec<Txid> {
3591                 let channel_state = self.channel_state.lock().unwrap();
3592                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3593                 for chan in channel_state.by_id.values() {
3594                         if let Some(funding_txo) = chan.get_funding_txo() {
3595                                 res.push(funding_txo.txid);
3596                         }
3597                 }
3598                 res
3599         }
3600
3601         fn transaction_unconfirmed(&self, txid: &Txid) {
3602                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3603                 self.do_chain_event(None, |channel| {
3604                         if let Some(funding_txo) = channel.get_funding_txo() {
3605                                 if funding_txo.txid == *txid {
3606                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3607                                 } else { Ok((None, Vec::new())) }
3608                         } else { Ok((None, Vec::new())) }
3609                 });
3610         }
3611 }
3612
3613 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3614 where
3615         M::Target: chain::Watch<Signer>,
3616         T::Target: BroadcasterInterface,
3617         K::Target: KeysInterface<Signer = Signer>,
3618         F::Target: FeeEstimator,
3619         L::Target: Logger,
3620 {
3621         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3622         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3623         /// the function.
3624         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3625                         (&self, height_opt: Option<u32>, f: FN) {
3626                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3627                 // during initialization prior to the chain_monitor being fully configured in some cases.
3628                 // See the docs for `ChannelManagerReadArgs` for more.
3629
3630                 let mut failed_channels = Vec::new();
3631                 let mut timed_out_htlcs = Vec::new();
3632                 {
3633                         let mut channel_lock = self.channel_state.lock().unwrap();
3634                         let channel_state = &mut *channel_lock;
3635                         let short_to_id = &mut channel_state.short_to_id;
3636                         let pending_msg_events = &mut channel_state.pending_msg_events;
3637                         channel_state.by_id.retain(|_, channel| {
3638                                 let res = f(channel);
3639                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3640                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3641                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3642                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3643                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3644                                                         data: chan_update,
3645                                                 }));
3646                                         }
3647                                         if let Some(funding_locked) = chan_res {
3648                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3649                                                         node_id: channel.get_counterparty_node_id(),
3650                                                         msg: funding_locked,
3651                                                 });
3652                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3653                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3654                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3655                                                                 node_id: channel.get_counterparty_node_id(),
3656                                                                 msg: announcement_sigs,
3657                                                         });
3658                                                 } else {
3659                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3660                                                 }
3661                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3662                                         }
3663                                 } else if let Err(e) = res {
3664                                         if let Some(short_id) = channel.get_short_channel_id() {
3665                                                 short_to_id.remove(&short_id);
3666                                         }
3667                                         // It looks like our counterparty went on-chain or funding transaction was
3668                                         // reorged out of the main chain. Close the channel.
3669                                         failed_channels.push(channel.force_shutdown(true));
3670                                         if let Ok(update) = self.get_channel_update(&channel) {
3671                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3672                                                         msg: update
3673                                                 });
3674                                         }
3675                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3676                                                 node_id: channel.get_counterparty_node_id(),
3677                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3678                                         });
3679                                         return false;
3680                                 }
3681                                 true
3682                         });
3683
3684                         if let Some(height) = height_opt {
3685                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3686                                         htlcs.retain(|htlc| {
3687                                                 // If height is approaching the number of blocks we think it takes us to get
3688                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3689                                                 // number of blocks we generally consider it to take to do a commitment update,
3690                                                 // just give up on it and fail the HTLC.
3691                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3692                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3693                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3694                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3695                                                                 failure_code: 0x4000 | 15,
3696                                                                 data: htlc_msat_height_data
3697                                                         }));
3698                                                         false
3699                                                 } else { true }
3700                                         });
3701                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3702                                 });
3703                         }
3704                 }
3705
3706                 self.handle_init_event_channel_failures(failed_channels);
3707
3708                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3709                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3710                 }
3711         }
3712
3713         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3714         /// indicating whether persistence is necessary. Only one listener on
3715         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3716         /// up.
3717         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3718         #[cfg(any(test, feature = "allow_wallclock_use"))]
3719         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3720                 self.persistence_notifier.wait_timeout(max_wait)
3721         }
3722
3723         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3724         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3725         /// up.
3726         pub fn await_persistable_update(&self) {
3727                 self.persistence_notifier.wait()
3728         }
3729
3730         #[cfg(any(test, feature = "_test_utils"))]
3731         pub fn get_persistence_condvar_value(&self) -> bool {
3732                 let mutcond = &self.persistence_notifier.persistence_lock;
3733                 let &(ref mtx, _) = mutcond;
3734                 let guard = mtx.lock().unwrap();
3735                 *guard
3736         }
3737 }
3738
3739 impl<Signer: Sign, M: Deref + Sync + Send, T: Deref + Sync + Send, K: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send>
3740         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3741         where M::Target: chain::Watch<Signer>,
3742         T::Target: BroadcasterInterface,
3743         K::Target: KeysInterface<Signer = Signer>,
3744         F::Target: FeeEstimator,
3745         L::Target: Logger,
3746 {
3747         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3748                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3749                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3750         }
3751
3752         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3753                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3754                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3755         }
3756
3757         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3758                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3759                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3760         }
3761
3762         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3763                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3764                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3765         }
3766
3767         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3768                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3769                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3770         }
3771
3772         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3773                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3774                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3775         }
3776
3777         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3778                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3779                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3780         }
3781
3782         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3783                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3784                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3785         }
3786
3787         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3788                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3789                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3790         }
3791
3792         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3793                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3794                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3795         }
3796
3797         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3798                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3799                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3800         }
3801
3802         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3803                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3804                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3805         }
3806
3807         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3808                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3809                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3810         }
3811
3812         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3813                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3814                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3815         }
3816
3817         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3818                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3819                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3820         }
3821
3822         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3823                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3824                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3825         }
3826
3827         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3828                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3829                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3830         }
3831
3832         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3833                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3834                 let mut failed_channels = Vec::new();
3835                 let mut failed_payments = Vec::new();
3836                 let mut no_channels_remain = true;
3837                 {
3838                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3839                         let channel_state = &mut *channel_state_lock;
3840                         let short_to_id = &mut channel_state.short_to_id;
3841                         let pending_msg_events = &mut channel_state.pending_msg_events;
3842                         if no_connection_possible {
3843                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3844                                 channel_state.by_id.retain(|_, chan| {
3845                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3846                                                 if let Some(short_id) = chan.get_short_channel_id() {
3847                                                         short_to_id.remove(&short_id);
3848                                                 }
3849                                                 failed_channels.push(chan.force_shutdown(true));
3850                                                 if let Ok(update) = self.get_channel_update(&chan) {
3851                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3852                                                                 msg: update
3853                                                         });
3854                                                 }
3855                                                 false
3856                                         } else {
3857                                                 true
3858                                         }
3859                                 });
3860                         } else {
3861                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3862                                 channel_state.by_id.retain(|_, chan| {
3863                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3864                                                 // Note that currently on channel reestablish we assert that there are no
3865                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3866                                                 // on peer disconnect here, there will need to be corresponding changes in
3867                                                 // reestablish logic.
3868                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3869                                                 chan.to_disabled_marked();
3870                                                 if !failed_adds.is_empty() {
3871                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3872                                                         failed_payments.push((chan_update, failed_adds));
3873                                                 }
3874                                                 if chan.is_shutdown() {
3875                                                         if let Some(short_id) = chan.get_short_channel_id() {
3876                                                                 short_to_id.remove(&short_id);
3877                                                         }
3878                                                         return false;
3879                                                 } else {
3880                                                         no_channels_remain = false;
3881                                                 }
3882                                         }
3883                                         true
3884                                 })
3885                         }
3886                         pending_msg_events.retain(|msg| {
3887                                 match msg {
3888                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3889                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3890                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3891                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3892                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3893                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3894                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3895                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3896                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3897                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3898                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3899                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3900                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3901                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3902                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3903                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3904                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3905                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3906                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
3907                                 }
3908                         });
3909                 }
3910                 if no_channels_remain {
3911                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3912                 }
3913
3914                 for failure in failed_channels.drain(..) {
3915                         self.finish_force_close_channel(failure);
3916                 }
3917                 for (chan_update, mut htlc_sources) in failed_payments {
3918                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3919                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3920                         }
3921                 }
3922         }
3923
3924         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3925                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3926
3927                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3928
3929                 {
3930                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3931                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3932                                 hash_map::Entry::Vacant(e) => {
3933                                         e.insert(Mutex::new(PeerState {
3934                                                 latest_features: init_msg.features.clone(),
3935                                         }));
3936                                 },
3937                                 hash_map::Entry::Occupied(e) => {
3938                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3939                                 },
3940                         }
3941                 }
3942
3943                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3944                 let channel_state = &mut *channel_state_lock;
3945                 let pending_msg_events = &mut channel_state.pending_msg_events;
3946                 channel_state.by_id.retain(|_, chan| {
3947                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3948                                 if !chan.have_received_message() {
3949                                         // If we created this (outbound) channel while we were disconnected from the
3950                                         // peer we probably failed to send the open_channel message, which is now
3951                                         // lost. We can't have had anything pending related to this channel, so we just
3952                                         // drop it.
3953                                         false
3954                                 } else {
3955                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3956                                                 node_id: chan.get_counterparty_node_id(),
3957                                                 msg: chan.get_channel_reestablish(&self.logger),
3958                                         });
3959                                         true
3960                                 }
3961                         } else { true }
3962                 });
3963                 //TODO: Also re-broadcast announcement_signatures
3964         }
3965
3966         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3967                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3968
3969                 if msg.channel_id == [0; 32] {
3970                         for chan in self.list_channels() {
3971                                 if chan.remote_network_id == *counterparty_node_id {
3972                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3973                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3974                                 }
3975                         }
3976                 } else {
3977                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3978                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
3979                 }
3980         }
3981 }
3982
3983 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
3984 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
3985 struct PersistenceNotifier {
3986         /// Users won't access the persistence_lock directly, but rather wait on its bool using
3987         /// `wait_timeout` and `wait`.
3988         persistence_lock: (Mutex<bool>, Condvar),
3989 }
3990
3991 impl PersistenceNotifier {
3992         fn new() -> Self {
3993                 Self {
3994                         persistence_lock: (Mutex::new(false), Condvar::new()),
3995                 }
3996         }
3997
3998         fn wait(&self) {
3999                 loop {
4000                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4001                         let mut guard = mtx.lock().unwrap();
4002                         guard = cvar.wait(guard).unwrap();
4003                         let result = *guard;
4004                         if result {
4005                                 *guard = false;
4006                                 return
4007                         }
4008                 }
4009         }
4010
4011         #[cfg(any(test, feature = "allow_wallclock_use"))]
4012         fn wait_timeout(&self, max_wait: Duration) -> bool {
4013                 let current_time = Instant::now();
4014                 loop {
4015                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4016                         let mut guard = mtx.lock().unwrap();
4017                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4018                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4019                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4020                         // time. Note that this logic can be highly simplified through the use of
4021                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4022                         // 1.42.0.
4023                         let elapsed = current_time.elapsed();
4024                         let result = *guard;
4025                         if result || elapsed >= max_wait {
4026                                 *guard = false;
4027                                 return result;
4028                         }
4029                         match max_wait.checked_sub(elapsed) {
4030                                 None => return result,
4031                                 Some(_) => continue
4032                         }
4033                 }
4034         }
4035
4036         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4037         fn notify(&self) {
4038                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4039                 let mut persistence_lock = persist_mtx.lock().unwrap();
4040                 *persistence_lock = true;
4041                 mem::drop(persistence_lock);
4042                 cnd.notify_all();
4043         }
4044 }
4045
4046 const SERIALIZATION_VERSION: u8 = 1;
4047 const MIN_SERIALIZATION_VERSION: u8 = 1;
4048
4049 impl Writeable for PendingHTLCInfo {
4050         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4051                 match &self.routing {
4052                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4053                                 0u8.write(writer)?;
4054                                 onion_packet.write(writer)?;
4055                                 short_channel_id.write(writer)?;
4056                         },
4057                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4058                                 1u8.write(writer)?;
4059                                 payment_data.payment_secret.write(writer)?;
4060                                 payment_data.total_msat.write(writer)?;
4061                                 incoming_cltv_expiry.write(writer)?;
4062                         },
4063                 }
4064                 self.incoming_shared_secret.write(writer)?;
4065                 self.payment_hash.write(writer)?;
4066                 self.amt_to_forward.write(writer)?;
4067                 self.outgoing_cltv_value.write(writer)?;
4068                 Ok(())
4069         }
4070 }
4071
4072 impl Readable for PendingHTLCInfo {
4073         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4074                 Ok(PendingHTLCInfo {
4075                         routing: match Readable::read(reader)? {
4076                                 0u8 => PendingHTLCRouting::Forward {
4077                                         onion_packet: Readable::read(reader)?,
4078                                         short_channel_id: Readable::read(reader)?,
4079                                 },
4080                                 1u8 => PendingHTLCRouting::Receive {
4081                                         payment_data: msgs::FinalOnionHopData {
4082                                                 payment_secret: Readable::read(reader)?,
4083                                                 total_msat: Readable::read(reader)?,
4084                                         },
4085                                         incoming_cltv_expiry: Readable::read(reader)?,
4086                                 },
4087                                 _ => return Err(DecodeError::InvalidValue),
4088                         },
4089                         incoming_shared_secret: Readable::read(reader)?,
4090                         payment_hash: Readable::read(reader)?,
4091                         amt_to_forward: Readable::read(reader)?,
4092                         outgoing_cltv_value: Readable::read(reader)?,
4093                 })
4094         }
4095 }
4096
4097 impl Writeable for HTLCFailureMsg {
4098         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4099                 match self {
4100                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4101                                 0u8.write(writer)?;
4102                                 fail_msg.write(writer)?;
4103                         },
4104                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4105                                 1u8.write(writer)?;
4106                                 fail_msg.write(writer)?;
4107                         }
4108                 }
4109                 Ok(())
4110         }
4111 }
4112
4113 impl Readable for HTLCFailureMsg {
4114         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4115                 match <u8 as Readable>::read(reader)? {
4116                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4117                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4118                         _ => Err(DecodeError::InvalidValue),
4119                 }
4120         }
4121 }
4122
4123 impl Writeable for PendingHTLCStatus {
4124         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4125                 match self {
4126                         &PendingHTLCStatus::Forward(ref forward_info) => {
4127                                 0u8.write(writer)?;
4128                                 forward_info.write(writer)?;
4129                         },
4130                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4131                                 1u8.write(writer)?;
4132                                 fail_msg.write(writer)?;
4133                         }
4134                 }
4135                 Ok(())
4136         }
4137 }
4138
4139 impl Readable for PendingHTLCStatus {
4140         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4141                 match <u8 as Readable>::read(reader)? {
4142                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4143                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4144                         _ => Err(DecodeError::InvalidValue),
4145                 }
4146         }
4147 }
4148
4149 impl_writeable!(HTLCPreviousHopData, 0, {
4150         short_channel_id,
4151         outpoint,
4152         htlc_id,
4153         incoming_packet_shared_secret
4154 });
4155
4156 impl Writeable for ClaimableHTLC {
4157         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4158                 self.prev_hop.write(writer)?;
4159                 self.value.write(writer)?;
4160                 self.payment_data.payment_secret.write(writer)?;
4161                 self.payment_data.total_msat.write(writer)?;
4162                 self.cltv_expiry.write(writer)
4163         }
4164 }
4165
4166 impl Readable for ClaimableHTLC {
4167         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4168                 Ok(ClaimableHTLC {
4169                         prev_hop: Readable::read(reader)?,
4170                         value: Readable::read(reader)?,
4171                         payment_data: msgs::FinalOnionHopData {
4172                                 payment_secret: Readable::read(reader)?,
4173                                 total_msat: Readable::read(reader)?,
4174                         },
4175                         cltv_expiry: Readable::read(reader)?,
4176                 })
4177         }
4178 }
4179
4180 impl Writeable for HTLCSource {
4181         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4182                 match self {
4183                         &HTLCSource::PreviousHopData(ref hop_data) => {
4184                                 0u8.write(writer)?;
4185                                 hop_data.write(writer)?;
4186                         },
4187                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4188                                 1u8.write(writer)?;
4189                                 path.write(writer)?;
4190                                 session_priv.write(writer)?;
4191                                 first_hop_htlc_msat.write(writer)?;
4192                         }
4193                 }
4194                 Ok(())
4195         }
4196 }
4197
4198 impl Readable for HTLCSource {
4199         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4200                 match <u8 as Readable>::read(reader)? {
4201                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4202                         1 => Ok(HTLCSource::OutboundRoute {
4203                                 path: Readable::read(reader)?,
4204                                 session_priv: Readable::read(reader)?,
4205                                 first_hop_htlc_msat: Readable::read(reader)?,
4206                         }),
4207                         _ => Err(DecodeError::InvalidValue),
4208                 }
4209         }
4210 }
4211
4212 impl Writeable for HTLCFailReason {
4213         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4214                 match self {
4215                         &HTLCFailReason::LightningError { ref err } => {
4216                                 0u8.write(writer)?;
4217                                 err.write(writer)?;
4218                         },
4219                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4220                                 1u8.write(writer)?;
4221                                 failure_code.write(writer)?;
4222                                 data.write(writer)?;
4223                         }
4224                 }
4225                 Ok(())
4226         }
4227 }
4228
4229 impl Readable for HTLCFailReason {
4230         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4231                 match <u8 as Readable>::read(reader)? {
4232                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4233                         1 => Ok(HTLCFailReason::Reason {
4234                                 failure_code: Readable::read(reader)?,
4235                                 data: Readable::read(reader)?,
4236                         }),
4237                         _ => Err(DecodeError::InvalidValue),
4238                 }
4239         }
4240 }
4241
4242 impl Writeable for HTLCForwardInfo {
4243         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4244                 match self {
4245                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4246                                 0u8.write(writer)?;
4247                                 prev_short_channel_id.write(writer)?;
4248                                 prev_funding_outpoint.write(writer)?;
4249                                 prev_htlc_id.write(writer)?;
4250                                 forward_info.write(writer)?;
4251                         },
4252                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4253                                 1u8.write(writer)?;
4254                                 htlc_id.write(writer)?;
4255                                 err_packet.write(writer)?;
4256                         },
4257                 }
4258                 Ok(())
4259         }
4260 }
4261
4262 impl Readable for HTLCForwardInfo {
4263         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4264                 match <u8 as Readable>::read(reader)? {
4265                         0 => Ok(HTLCForwardInfo::AddHTLC {
4266                                 prev_short_channel_id: Readable::read(reader)?,
4267                                 prev_funding_outpoint: Readable::read(reader)?,
4268                                 prev_htlc_id: Readable::read(reader)?,
4269                                 forward_info: Readable::read(reader)?,
4270                         }),
4271                         1 => Ok(HTLCForwardInfo::FailHTLC {
4272                                 htlc_id: Readable::read(reader)?,
4273                                 err_packet: Readable::read(reader)?,
4274                         }),
4275                         _ => Err(DecodeError::InvalidValue),
4276                 }
4277         }
4278 }
4279
4280 impl_writeable!(PendingInboundPayment, 0, {
4281         payment_secret,
4282         expiry_time,
4283         payment_preimage,
4284         min_value_msat
4285 });
4286
4287 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4288         where M::Target: chain::Watch<Signer>,
4289         T::Target: BroadcasterInterface,
4290         K::Target: KeysInterface<Signer = Signer>,
4291         F::Target: FeeEstimator,
4292         L::Target: Logger,
4293 {
4294         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4295                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4296
4297                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4298                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4299
4300                 self.genesis_hash.write(writer)?;
4301                 {
4302                         let best_block = self.best_block.read().unwrap();
4303                         best_block.height().write(writer)?;
4304                         best_block.block_hash().write(writer)?;
4305                 }
4306
4307                 let channel_state = self.channel_state.lock().unwrap();
4308                 let mut unfunded_channels = 0;
4309                 for (_, channel) in channel_state.by_id.iter() {
4310                         if !channel.is_funding_initiated() {
4311                                 unfunded_channels += 1;
4312                         }
4313                 }
4314                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4315                 for (_, channel) in channel_state.by_id.iter() {
4316                         if channel.is_funding_initiated() {
4317                                 channel.write(writer)?;
4318                         }
4319                 }
4320
4321                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4322                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4323                         short_channel_id.write(writer)?;
4324                         (pending_forwards.len() as u64).write(writer)?;
4325                         for forward in pending_forwards {
4326                                 forward.write(writer)?;
4327                         }
4328                 }
4329
4330                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4331                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4332                         payment_hash.write(writer)?;
4333                         (previous_hops.len() as u64).write(writer)?;
4334                         for htlc in previous_hops.iter() {
4335                                 htlc.write(writer)?;
4336                         }
4337                 }
4338
4339                 let per_peer_state = self.per_peer_state.write().unwrap();
4340                 (per_peer_state.len() as u64).write(writer)?;
4341                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4342                         peer_pubkey.write(writer)?;
4343                         let peer_state = peer_state_mutex.lock().unwrap();
4344                         peer_state.latest_features.write(writer)?;
4345                 }
4346
4347                 let events = self.pending_events.lock().unwrap();
4348                 (events.len() as u64).write(writer)?;
4349                 for event in events.iter() {
4350                         event.write(writer)?;
4351                 }
4352
4353                 let background_events = self.pending_background_events.lock().unwrap();
4354                 (background_events.len() as u64).write(writer)?;
4355                 for event in background_events.iter() {
4356                         match event {
4357                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4358                                         0u8.write(writer)?;
4359                                         funding_txo.write(writer)?;
4360                                         monitor_update.write(writer)?;
4361                                 },
4362                         }
4363                 }
4364
4365                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4366                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4367
4368                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4369                 (pending_inbound_payments.len() as u64).write(writer)?;
4370                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4371                         hash.write(writer)?;
4372                         pending_payment.write(writer)?;
4373                 }
4374
4375                 Ok(())
4376         }
4377 }
4378
4379 /// Arguments for the creation of a ChannelManager that are not deserialized.
4380 ///
4381 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4382 /// is:
4383 /// 1) Deserialize all stored ChannelMonitors.
4384 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4385 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4386 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4387 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4388 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4389 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4390 ///    ChannelMonitor::get_funding_txo().
4391 /// 4) Reconnect blocks on your ChannelMonitors.
4392 /// 5) Disconnect/connect blocks on the ChannelManager.
4393 /// 6) Move the ChannelMonitors into your local chain::Watch.
4394 ///
4395 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4396 /// call any other methods on the newly-deserialized ChannelManager.
4397 ///
4398 /// Note that because some channels may be closed during deserialization, it is critical that you
4399 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4400 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4401 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4402 /// not force-close the same channels but consider them live), you may end up revoking a state for
4403 /// which you've already broadcasted the transaction.
4404 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4405         where M::Target: chain::Watch<Signer>,
4406         T::Target: BroadcasterInterface,
4407         K::Target: KeysInterface<Signer = Signer>,
4408         F::Target: FeeEstimator,
4409         L::Target: Logger,
4410 {
4411         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4412         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4413         /// signing data.
4414         pub keys_manager: K,
4415
4416         /// The fee_estimator for use in the ChannelManager in the future.
4417         ///
4418         /// No calls to the FeeEstimator will be made during deserialization.
4419         pub fee_estimator: F,
4420         /// The chain::Watch for use in the ChannelManager in the future.
4421         ///
4422         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4423         /// you have deserialized ChannelMonitors separately and will add them to your
4424         /// chain::Watch after deserializing this ChannelManager.
4425         pub chain_monitor: M,
4426
4427         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4428         /// used to broadcast the latest local commitment transactions of channels which must be
4429         /// force-closed during deserialization.
4430         pub tx_broadcaster: T,
4431         /// The Logger for use in the ChannelManager and which may be used to log information during
4432         /// deserialization.
4433         pub logger: L,
4434         /// Default settings used for new channels. Any existing channels will continue to use the
4435         /// runtime settings which were stored when the ChannelManager was serialized.
4436         pub default_config: UserConfig,
4437
4438         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4439         /// value.get_funding_txo() should be the key).
4440         ///
4441         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4442         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4443         /// is true for missing channels as well. If there is a monitor missing for which we find
4444         /// channel data Err(DecodeError::InvalidValue) will be returned.
4445         ///
4446         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4447         /// this struct.
4448         ///
4449         /// (C-not exported) because we have no HashMap bindings
4450         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4451 }
4452
4453 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4454                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4455         where M::Target: chain::Watch<Signer>,
4456                 T::Target: BroadcasterInterface,
4457                 K::Target: KeysInterface<Signer = Signer>,
4458                 F::Target: FeeEstimator,
4459                 L::Target: Logger,
4460         {
4461         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4462         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4463         /// populate a HashMap directly from C.
4464         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4465                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4466                 Self {
4467                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4468                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4469                 }
4470         }
4471 }
4472
4473 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4474 // SipmleArcChannelManager type:
4475 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4476         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4477         where M::Target: chain::Watch<Signer>,
4478         T::Target: BroadcasterInterface,
4479         K::Target: KeysInterface<Signer = Signer>,
4480         F::Target: FeeEstimator,
4481         L::Target: Logger,
4482 {
4483         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4484                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4485                 Ok((blockhash, Arc::new(chan_manager)))
4486         }
4487 }
4488
4489 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4490         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4491         where M::Target: chain::Watch<Signer>,
4492         T::Target: BroadcasterInterface,
4493         K::Target: KeysInterface<Signer = Signer>,
4494         F::Target: FeeEstimator,
4495         L::Target: Logger,
4496 {
4497         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4498                 let _ver: u8 = Readable::read(reader)?;
4499                 let min_ver: u8 = Readable::read(reader)?;
4500                 if min_ver > SERIALIZATION_VERSION {
4501                         return Err(DecodeError::UnknownVersion);
4502                 }
4503
4504                 let genesis_hash: BlockHash = Readable::read(reader)?;
4505                 let best_block_height: u32 = Readable::read(reader)?;
4506                 let best_block_hash: BlockHash = Readable::read(reader)?;
4507
4508                 let mut failed_htlcs = Vec::new();
4509
4510                 let channel_count: u64 = Readable::read(reader)?;
4511                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4512                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4513                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4514                 for _ in 0..channel_count {
4515                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4516                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4517                         funding_txo_set.insert(funding_txo.clone());
4518                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4519                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4520                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4521                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4522                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4523                                         // If the channel is ahead of the monitor, return InvalidValue:
4524                                         return Err(DecodeError::InvalidValue);
4525                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4526                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4527                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4528                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4529                                         // But if the channel is behind of the monitor, close the channel:
4530                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4531                                         failed_htlcs.append(&mut new_failed_htlcs);
4532                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4533                                 } else {
4534                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4535                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4536                                         }
4537                                         by_id.insert(channel.channel_id(), channel);
4538                                 }
4539                         } else {
4540                                 return Err(DecodeError::InvalidValue);
4541                         }
4542                 }
4543
4544                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4545                         if !funding_txo_set.contains(funding_txo) {
4546                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4547                         }
4548                 }
4549
4550                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4551                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4552                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4553                 for _ in 0..forward_htlcs_count {
4554                         let short_channel_id = Readable::read(reader)?;
4555                         let pending_forwards_count: u64 = Readable::read(reader)?;
4556                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4557                         for _ in 0..pending_forwards_count {
4558                                 pending_forwards.push(Readable::read(reader)?);
4559                         }
4560                         forward_htlcs.insert(short_channel_id, pending_forwards);
4561                 }
4562
4563                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4564                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4565                 for _ in 0..claimable_htlcs_count {
4566                         let payment_hash = Readable::read(reader)?;
4567                         let previous_hops_len: u64 = Readable::read(reader)?;
4568                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4569                         for _ in 0..previous_hops_len {
4570                                 previous_hops.push(Readable::read(reader)?);
4571                         }
4572                         claimable_htlcs.insert(payment_hash, previous_hops);
4573                 }
4574
4575                 let peer_count: u64 = Readable::read(reader)?;
4576                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4577                 for _ in 0..peer_count {
4578                         let peer_pubkey = Readable::read(reader)?;
4579                         let peer_state = PeerState {
4580                                 latest_features: Readable::read(reader)?,
4581                         };
4582                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4583                 }
4584
4585                 let event_count: u64 = Readable::read(reader)?;
4586                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4587                 for _ in 0..event_count {
4588                         match MaybeReadable::read(reader)? {
4589                                 Some(event) => pending_events_read.push(event),
4590                                 None => continue,
4591                         }
4592                 }
4593
4594                 let background_event_count: u64 = Readable::read(reader)?;
4595                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4596                 for _ in 0..background_event_count {
4597                         match <u8 as Readable>::read(reader)? {
4598                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4599                                 _ => return Err(DecodeError::InvalidValue),
4600                         }
4601                 }
4602
4603                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4604                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4605
4606                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4607                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4608                 for _ in 0..pending_inbound_payment_count {
4609                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4610                                 return Err(DecodeError::InvalidValue);
4611                         }
4612                 }
4613
4614                 let mut secp_ctx = Secp256k1::new();
4615                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4616
4617                 let channel_manager = ChannelManager {
4618                         genesis_hash,
4619                         fee_estimator: args.fee_estimator,
4620                         chain_monitor: args.chain_monitor,
4621                         tx_broadcaster: args.tx_broadcaster,
4622
4623                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4624
4625                         channel_state: Mutex::new(ChannelHolder {
4626                                 by_id,
4627                                 short_to_id,
4628                                 forward_htlcs,
4629                                 claimable_htlcs,
4630                                 pending_msg_events: Vec::new(),
4631                         }),
4632                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4633
4634                         our_network_key: args.keys_manager.get_node_secret(),
4635                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4636                         secp_ctx,
4637
4638                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4639                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4640
4641                         per_peer_state: RwLock::new(per_peer_state),
4642
4643                         pending_events: Mutex::new(pending_events_read),
4644                         pending_background_events: Mutex::new(pending_background_events_read),
4645                         total_consistency_lock: RwLock::new(()),
4646                         persistence_notifier: PersistenceNotifier::new(),
4647
4648                         keys_manager: args.keys_manager,
4649                         logger: args.logger,
4650                         default_configuration: args.default_config,
4651                 };
4652
4653                 for htlc_source in failed_htlcs.drain(..) {
4654                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4655                 }
4656
4657                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4658                 //connection or two.
4659
4660                 Ok((best_block_hash.clone(), channel_manager))
4661         }
4662 }
4663
4664 #[cfg(test)]
4665 mod tests {
4666         use ln::channelmanager::PersistenceNotifier;
4667         use std::sync::Arc;
4668         use std::sync::atomic::{AtomicBool, Ordering};
4669         use std::thread;
4670         use std::time::Duration;
4671
4672         #[test]
4673         fn test_wait_timeout() {
4674                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4675                 let thread_notifier = Arc::clone(&persistence_notifier);
4676
4677                 let exit_thread = Arc::new(AtomicBool::new(false));
4678                 let exit_thread_clone = exit_thread.clone();
4679                 thread::spawn(move || {
4680                         loop {
4681                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4682                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4683                                 *persistence_lock = true;
4684                                 cnd.notify_all();
4685
4686                                 if exit_thread_clone.load(Ordering::SeqCst) {
4687                                         break
4688                                 }
4689                         }
4690                 });
4691
4692                 // Check that we can block indefinitely until updates are available.
4693                 let _ = persistence_notifier.wait();
4694
4695                 // Check that the PersistenceNotifier will return after the given duration if updates are
4696                 // available.
4697                 loop {
4698                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4699                                 break
4700                         }
4701                 }
4702
4703                 exit_thread.store(true, Ordering::SeqCst);
4704
4705                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4706                 // are available.
4707                 loop {
4708                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4709                                 break
4710                         }
4711                 }
4712         }
4713 }
4714
4715 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4716 pub mod bench {
4717         use chain::Listen;
4718         use chain::chainmonitor::ChainMonitor;
4719         use chain::channelmonitor::Persist;
4720         use chain::keysinterface::{KeysManager, InMemorySigner};
4721         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4722         use ln::features::{InitFeatures, InvoiceFeatures};
4723         use ln::functional_test_utils::*;
4724         use ln::msgs::ChannelMessageHandler;
4725         use routing::network_graph::NetworkGraph;
4726         use routing::router::get_route;
4727         use util::test_utils;
4728         use util::config::UserConfig;
4729         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4730
4731         use bitcoin::hashes::Hash;
4732         use bitcoin::hashes::sha256::Hash as Sha256;
4733         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4734
4735         use std::sync::Mutex;
4736
4737         use test::Bencher;
4738
4739         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4740                 node: &'a ChannelManager<InMemorySigner,
4741                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4742                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4743                                 &'a test_utils::TestLogger, &'a P>,
4744                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4745                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4746         }
4747
4748         #[cfg(test)]
4749         #[bench]
4750         fn bench_sends(bench: &mut Bencher) {
4751                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4752         }
4753
4754         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4755                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4756                 // Note that this is unrealistic as each payment send will require at least two fsync
4757                 // calls per node.
4758                 let network = bitcoin::Network::Testnet;
4759                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4760
4761                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4762                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4763
4764                 let mut config: UserConfig = Default::default();
4765                 config.own_channel_config.minimum_depth = 1;
4766
4767                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4768                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4769                 let seed_a = [1u8; 32];
4770                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4771                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4772                         network,
4773                         best_block: BestBlock::from_genesis(network),
4774                 });
4775                 let node_a_holder = NodeHolder { node: &node_a };
4776
4777                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4778                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4779                 let seed_b = [2u8; 32];
4780                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4781                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4782                         network,
4783                         best_block: BestBlock::from_genesis(network),
4784                 });
4785                 let node_b_holder = NodeHolder { node: &node_b };
4786
4787                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4788                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4789                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4790
4791                 let tx;
4792                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4793                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4794                                 value: 8_000_000, script_pubkey: output_script,
4795                         }]};
4796                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4797                 } else { panic!(); }
4798
4799                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4800                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4801
4802                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4803
4804                 let block = Block {
4805                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4806                         txdata: vec![tx],
4807                 };
4808                 Listen::block_connected(&node_a, &block, 1);
4809                 Listen::block_connected(&node_b, &block, 1);
4810
4811                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4812                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4813
4814                 let dummy_graph = NetworkGraph::new(genesis_hash);
4815
4816                 let mut payment_count: u64 = 0;
4817                 macro_rules! send_payment {
4818                         ($node_a: expr, $node_b: expr) => {
4819                                 let usable_channels = $node_a.list_usable_channels();
4820                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4821                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4822
4823                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4824                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4825                                 payment_count += 1;
4826                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4827                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
4828
4829                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4830                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4831                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4832                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4833                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4834                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4835                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4836                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4837
4838                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4839                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4840                                 assert!($node_b.claim_funds(payment_preimage, &Some(payment_secret), 10_000));
4841
4842                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4843                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4844                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4845                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4846                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4847                                         },
4848                                         _ => panic!("Failed to generate claim event"),
4849                                 }
4850
4851                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4852                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4853                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4854                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4855
4856                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4857                         }
4858                 }
4859
4860                 bench.iter(|| {
4861                         send_payment!(node_a, node_b);
4862                         send_payment!(node_b, node_a);
4863                 });
4864         }
4865 }