1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
33 use crate::blinded_path::BlindedPath;
35 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
36 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
37 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
38 use crate::chain::transaction::{OutPoint, TransactionData};
40 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
41 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
42 // construct one themselves.
43 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
44 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
45 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
46 #[cfg(any(feature = "_test_utils", test))]
47 use crate::ln::features::Bolt11InvoiceFeatures;
48 use crate::routing::gossip::NetworkGraph;
49 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
50 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
52 use crate::ln::onion_utils;
53 use crate::ln::onion_utils::HTLCFailReason;
54 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
56 use crate::ln::outbound_payment;
57 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs};
58 use crate::ln::wire::Encode;
59 use crate::offers::offer::{DerivedMetadata, OfferBuilder};
60 use crate::offers::parse::Bolt12SemanticError;
61 use crate::offers::refund::RefundBuilder;
62 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
63 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
64 use crate::util::wakers::{Future, Notifier};
65 use crate::util::scid_utils::fake_scid;
66 use crate::util::string::UntrustedString;
67 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
68 use crate::util::logger::{Level, Logger};
69 use crate::util::errors::APIError;
71 use alloc::collections::{btree_map, BTreeMap};
74 use crate::prelude::*;
76 use core::cell::RefCell;
78 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
79 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
80 use core::time::Duration;
83 // Re-export this for use in the public API.
84 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
85 use crate::ln::script::ShutdownScript;
87 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
89 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
90 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
91 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
93 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
94 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
95 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
96 // before we forward it.
98 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
99 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
100 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
101 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
102 // our payment, which we can use to decode errors or inform the user that the payment was sent.
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) enum PendingHTLCRouting {
107 onion_packet: msgs::OnionPacket,
108 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
109 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
110 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
113 payment_data: msgs::FinalOnionHopData,
114 payment_metadata: Option<Vec<u8>>,
115 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
116 phantom_shared_secret: Option<[u8; 32]>,
117 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
118 custom_tlvs: Vec<(u64, Vec<u8>)>,
121 /// This was added in 0.0.116 and will break deserialization on downgrades.
122 payment_data: Option<msgs::FinalOnionHopData>,
123 payment_preimage: PaymentPreimage,
124 payment_metadata: Option<Vec<u8>>,
125 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
126 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
127 custom_tlvs: Vec<(u64, Vec<u8>)>,
131 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
132 pub(super) struct PendingHTLCInfo {
133 pub(super) routing: PendingHTLCRouting,
134 pub(super) incoming_shared_secret: [u8; 32],
135 payment_hash: PaymentHash,
137 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
138 /// Sender intended amount to forward or receive (actual amount received
139 /// may overshoot this in either case)
140 pub(super) outgoing_amt_msat: u64,
141 pub(super) outgoing_cltv_value: u32,
142 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
143 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
144 pub(super) skimmed_fee_msat: Option<u64>,
147 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
148 pub(super) enum HTLCFailureMsg {
149 Relay(msgs::UpdateFailHTLC),
150 Malformed(msgs::UpdateFailMalformedHTLC),
153 /// Stores whether we can't forward an HTLC or relevant forwarding info
154 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
155 pub(super) enum PendingHTLCStatus {
156 Forward(PendingHTLCInfo),
157 Fail(HTLCFailureMsg),
160 pub(super) struct PendingAddHTLCInfo {
161 pub(super) forward_info: PendingHTLCInfo,
163 // These fields are produced in `forward_htlcs()` and consumed in
164 // `process_pending_htlc_forwards()` for constructing the
165 // `HTLCSource::PreviousHopData` for failed and forwarded
168 // Note that this may be an outbound SCID alias for the associated channel.
169 prev_short_channel_id: u64,
171 prev_funding_outpoint: OutPoint,
172 prev_user_channel_id: u128,
175 pub(super) enum HTLCForwardInfo {
176 AddHTLC(PendingAddHTLCInfo),
179 err_packet: msgs::OnionErrorPacket,
183 /// Tracks the inbound corresponding to an outbound HTLC
184 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
185 pub(crate) struct HTLCPreviousHopData {
186 // Note that this may be an outbound SCID alias for the associated channel.
187 short_channel_id: u64,
188 user_channel_id: Option<u128>,
190 incoming_packet_shared_secret: [u8; 32],
191 phantom_shared_secret: Option<[u8; 32]>,
193 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
194 // channel with a preimage provided by the forward channel.
199 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
201 /// This is only here for backwards-compatibility in serialization, in the future it can be
202 /// removed, breaking clients running 0.0.106 and earlier.
203 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
205 /// Contains the payer-provided preimage.
206 Spontaneous(PaymentPreimage),
209 /// HTLCs that are to us and can be failed/claimed by the user
210 struct ClaimableHTLC {
211 prev_hop: HTLCPreviousHopData,
213 /// The amount (in msats) of this MPP part
215 /// The amount (in msats) that the sender intended to be sent in this MPP
216 /// part (used for validating total MPP amount)
217 sender_intended_value: u64,
218 onion_payload: OnionPayload,
220 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
221 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
222 total_value_received: Option<u64>,
223 /// The sender intended sum total of all MPP parts specified in the onion
225 /// The extra fee our counterparty skimmed off the top of this HTLC.
226 counterparty_skimmed_fee_msat: Option<u64>,
229 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
230 fn from(val: &ClaimableHTLC) -> Self {
231 events::ClaimedHTLC {
232 channel_id: val.prev_hop.outpoint.to_channel_id(),
233 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
234 cltv_expiry: val.cltv_expiry,
235 value_msat: val.value,
240 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
241 /// a payment and ensure idempotency in LDK.
243 /// This is not exported to bindings users as we just use [u8; 32] directly
244 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
245 pub struct PaymentId(pub [u8; Self::LENGTH]);
248 /// Number of bytes in the id.
249 pub const LENGTH: usize = 32;
252 impl Writeable for PaymentId {
253 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
258 impl Readable for PaymentId {
259 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
260 let buf: [u8; 32] = Readable::read(r)?;
265 impl core::fmt::Display for PaymentId {
266 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
267 crate::util::logger::DebugBytes(&self.0).fmt(f)
271 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
273 /// This is not exported to bindings users as we just use [u8; 32] directly
274 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
275 pub struct InterceptId(pub [u8; 32]);
277 impl Writeable for InterceptId {
278 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
283 impl Readable for InterceptId {
284 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
285 let buf: [u8; 32] = Readable::read(r)?;
290 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
291 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
292 pub(crate) enum SentHTLCId {
293 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
294 OutboundRoute { session_priv: SecretKey },
297 pub(crate) fn from_source(source: &HTLCSource) -> Self {
299 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
300 short_channel_id: hop_data.short_channel_id,
301 htlc_id: hop_data.htlc_id,
303 HTLCSource::OutboundRoute { session_priv, .. } =>
304 Self::OutboundRoute { session_priv: *session_priv },
308 impl_writeable_tlv_based_enum!(SentHTLCId,
309 (0, PreviousHopData) => {
310 (0, short_channel_id, required),
311 (2, htlc_id, required),
313 (2, OutboundRoute) => {
314 (0, session_priv, required),
319 /// Tracks the inbound corresponding to an outbound HTLC
320 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
321 #[derive(Clone, Debug, PartialEq, Eq)]
322 pub(crate) enum HTLCSource {
323 PreviousHopData(HTLCPreviousHopData),
326 session_priv: SecretKey,
327 /// Technically we can recalculate this from the route, but we cache it here to avoid
328 /// doing a double-pass on route when we get a failure back
329 first_hop_htlc_msat: u64,
330 payment_id: PaymentId,
333 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
334 impl core::hash::Hash for HTLCSource {
335 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
337 HTLCSource::PreviousHopData(prev_hop_data) => {
339 prev_hop_data.hash(hasher);
341 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
344 session_priv[..].hash(hasher);
345 payment_id.hash(hasher);
346 first_hop_htlc_msat.hash(hasher);
352 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
354 pub fn dummy() -> Self {
355 HTLCSource::OutboundRoute {
356 path: Path { hops: Vec::new(), blinded_tail: None },
357 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
358 first_hop_htlc_msat: 0,
359 payment_id: PaymentId([2; 32]),
363 #[cfg(debug_assertions)]
364 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
365 /// transaction. Useful to ensure different datastructures match up.
366 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
367 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
368 *first_hop_htlc_msat == htlc.amount_msat
370 // There's nothing we can check for forwarded HTLCs
376 struct InboundOnionErr {
382 /// This enum is used to specify which error data to send to peers when failing back an HTLC
383 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
385 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
386 #[derive(Clone, Copy)]
387 pub enum FailureCode {
388 /// We had a temporary error processing the payment. Useful if no other error codes fit
389 /// and you want to indicate that the payer may want to retry.
390 TemporaryNodeFailure,
391 /// We have a required feature which was not in this onion. For example, you may require
392 /// some additional metadata that was not provided with this payment.
393 RequiredNodeFeatureMissing,
394 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
395 /// the HTLC is too close to the current block height for safe handling.
396 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
397 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
398 IncorrectOrUnknownPaymentDetails,
399 /// We failed to process the payload after the onion was decrypted. You may wish to
400 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
402 /// If available, the tuple data may include the type number and byte offset in the
403 /// decrypted byte stream where the failure occurred.
404 InvalidOnionPayload(Option<(u64, u16)>),
407 impl Into<u16> for FailureCode {
408 fn into(self) -> u16 {
410 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
411 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
412 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
413 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
418 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
419 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
420 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
421 /// peer_state lock. We then return the set of things that need to be done outside the lock in
422 /// this struct and call handle_error!() on it.
424 struct MsgHandleErrInternal {
425 err: msgs::LightningError,
426 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
427 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
428 channel_capacity: Option<u64>,
430 impl MsgHandleErrInternal {
432 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
434 err: LightningError {
436 action: msgs::ErrorAction::SendErrorMessage {
437 msg: msgs::ErrorMessage {
444 shutdown_finish: None,
445 channel_capacity: None,
449 fn from_no_close(err: msgs::LightningError) -> Self {
450 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
453 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
454 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
455 let action = if shutdown_res.monitor_update.is_some() {
456 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
457 // should disconnect our peer such that we force them to broadcast their latest
458 // commitment upon reconnecting.
459 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
461 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
464 err: LightningError { err, action },
465 chan_id: Some((channel_id, user_channel_id)),
466 shutdown_finish: Some((shutdown_res, channel_update)),
467 channel_capacity: Some(channel_capacity)
471 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
474 ChannelError::Warn(msg) => LightningError {
476 action: msgs::ErrorAction::SendWarningMessage {
477 msg: msgs::WarningMessage {
481 log_level: Level::Warn,
484 ChannelError::Ignore(msg) => LightningError {
486 action: msgs::ErrorAction::IgnoreError,
488 ChannelError::Close(msg) => LightningError {
490 action: msgs::ErrorAction::SendErrorMessage {
491 msg: msgs::ErrorMessage {
499 shutdown_finish: None,
500 channel_capacity: None,
504 fn closes_channel(&self) -> bool {
505 self.chan_id.is_some()
509 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
510 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
511 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
512 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
513 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
515 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
516 /// be sent in the order they appear in the return value, however sometimes the order needs to be
517 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
518 /// they were originally sent). In those cases, this enum is also returned.
519 #[derive(Clone, PartialEq)]
520 pub(super) enum RAACommitmentOrder {
521 /// Send the CommitmentUpdate messages first
523 /// Send the RevokeAndACK message first
527 /// Information about a payment which is currently being claimed.
528 struct ClaimingPayment {
530 payment_purpose: events::PaymentPurpose,
531 receiver_node_id: PublicKey,
532 htlcs: Vec<events::ClaimedHTLC>,
533 sender_intended_value: Option<u64>,
535 impl_writeable_tlv_based!(ClaimingPayment, {
536 (0, amount_msat, required),
537 (2, payment_purpose, required),
538 (4, receiver_node_id, required),
539 (5, htlcs, optional_vec),
540 (7, sender_intended_value, option),
543 struct ClaimablePayment {
544 purpose: events::PaymentPurpose,
545 onion_fields: Option<RecipientOnionFields>,
546 htlcs: Vec<ClaimableHTLC>,
549 /// Information about claimable or being-claimed payments
550 struct ClaimablePayments {
551 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
552 /// failed/claimed by the user.
554 /// Note that, no consistency guarantees are made about the channels given here actually
555 /// existing anymore by the time you go to read them!
557 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
558 /// we don't get a duplicate payment.
559 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
561 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
562 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
563 /// as an [`events::Event::PaymentClaimed`].
564 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
567 /// Events which we process internally but cannot be processed immediately at the generation site
568 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
569 /// running normally, and specifically must be processed before any other non-background
570 /// [`ChannelMonitorUpdate`]s are applied.
571 enum BackgroundEvent {
572 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
573 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
574 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
575 /// channel has been force-closed we do not need the counterparty node_id.
577 /// Note that any such events are lost on shutdown, so in general they must be updates which
578 /// are regenerated on startup.
579 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
580 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
581 /// channel to continue normal operation.
583 /// In general this should be used rather than
584 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
585 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
586 /// error the other variant is acceptable.
588 /// Note that any such events are lost on shutdown, so in general they must be updates which
589 /// are regenerated on startup.
590 MonitorUpdateRegeneratedOnStartup {
591 counterparty_node_id: PublicKey,
592 funding_txo: OutPoint,
593 update: ChannelMonitorUpdate
595 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
596 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
598 MonitorUpdatesComplete {
599 counterparty_node_id: PublicKey,
600 channel_id: ChannelId,
605 pub(crate) enum MonitorUpdateCompletionAction {
606 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
607 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
608 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
609 /// event can be generated.
610 PaymentClaimed { payment_hash: PaymentHash },
611 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
612 /// operation of another channel.
614 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
615 /// from completing a monitor update which removes the payment preimage until the inbound edge
616 /// completes a monitor update containing the payment preimage. In that case, after the inbound
617 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
619 EmitEventAndFreeOtherChannel {
620 event: events::Event,
621 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
625 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
626 (0, PaymentClaimed) => { (0, payment_hash, required) },
627 (2, EmitEventAndFreeOtherChannel) => {
628 (0, event, upgradable_required),
629 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
630 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
631 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
632 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
633 // downgrades to prior versions.
634 (1, downstream_counterparty_and_funding_outpoint, option),
638 #[derive(Clone, Debug, PartialEq, Eq)]
639 pub(crate) enum EventCompletionAction {
640 ReleaseRAAChannelMonitorUpdate {
641 counterparty_node_id: PublicKey,
642 channel_funding_outpoint: OutPoint,
645 impl_writeable_tlv_based_enum!(EventCompletionAction,
646 (0, ReleaseRAAChannelMonitorUpdate) => {
647 (0, channel_funding_outpoint, required),
648 (2, counterparty_node_id, required),
652 #[derive(Clone, PartialEq, Eq, Debug)]
653 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
654 /// the blocked action here. See enum variants for more info.
655 pub(crate) enum RAAMonitorUpdateBlockingAction {
656 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
657 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
659 ForwardedPaymentInboundClaim {
660 /// The upstream channel ID (i.e. the inbound edge).
661 channel_id: ChannelId,
662 /// The HTLC ID on the inbound edge.
667 impl RAAMonitorUpdateBlockingAction {
668 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
669 Self::ForwardedPaymentInboundClaim {
670 channel_id: prev_hop.outpoint.to_channel_id(),
671 htlc_id: prev_hop.htlc_id,
676 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
677 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
681 /// State we hold per-peer.
682 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
683 /// `channel_id` -> `ChannelPhase`
685 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
686 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
687 /// `temporary_channel_id` -> `InboundChannelRequest`.
689 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
690 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
691 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
692 /// the channel is rejected, then the entry is simply removed.
693 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
694 /// The latest `InitFeatures` we heard from the peer.
695 latest_features: InitFeatures,
696 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
697 /// for broadcast messages, where ordering isn't as strict).
698 pub(super) pending_msg_events: Vec<MessageSendEvent>,
699 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
700 /// user but which have not yet completed.
702 /// Note that the channel may no longer exist. For example if the channel was closed but we
703 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
704 /// for a missing channel.
705 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
706 /// Map from a specific channel to some action(s) that should be taken when all pending
707 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
709 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
710 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
711 /// channels with a peer this will just be one allocation and will amount to a linear list of
712 /// channels to walk, avoiding the whole hashing rigmarole.
714 /// Note that the channel may no longer exist. For example, if a channel was closed but we
715 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
716 /// for a missing channel. While a malicious peer could construct a second channel with the
717 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
718 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
719 /// duplicates do not occur, so such channels should fail without a monitor update completing.
720 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
721 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
722 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
723 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
724 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
725 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
726 /// The peer is currently connected (i.e. we've seen a
727 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
728 /// [`ChannelMessageHandler::peer_disconnected`].
732 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
733 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
734 /// If true is passed for `require_disconnected`, the function will return false if we haven't
735 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
736 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
737 if require_disconnected && self.is_connected {
740 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
741 && self.monitor_update_blocked_actions.is_empty()
742 && self.in_flight_monitor_updates.is_empty()
745 // Returns a count of all channels we have with this peer, including unfunded channels.
746 fn total_channel_count(&self) -> usize {
747 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
750 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
751 fn has_channel(&self, channel_id: &ChannelId) -> bool {
752 self.channel_by_id.contains_key(channel_id) ||
753 self.inbound_channel_request_by_id.contains_key(channel_id)
757 /// A not-yet-accepted inbound (from counterparty) channel. Once
758 /// accepted, the parameters will be used to construct a channel.
759 pub(super) struct InboundChannelRequest {
760 /// The original OpenChannel message.
761 pub open_channel_msg: msgs::OpenChannel,
762 /// The number of ticks remaining before the request expires.
763 pub ticks_remaining: i32,
766 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
767 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
768 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
770 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
771 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
773 /// For users who don't want to bother doing their own payment preimage storage, we also store that
776 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
777 /// and instead encoding it in the payment secret.
778 struct PendingInboundPayment {
779 /// The payment secret that the sender must use for us to accept this payment
780 payment_secret: PaymentSecret,
781 /// Time at which this HTLC expires - blocks with a header time above this value will result in
782 /// this payment being removed.
784 /// Arbitrary identifier the user specifies (or not)
785 user_payment_id: u64,
786 // Other required attributes of the payment, optionally enforced:
787 payment_preimage: Option<PaymentPreimage>,
788 min_value_msat: Option<u64>,
791 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
792 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
793 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
794 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
795 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
796 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
797 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
798 /// of [`KeysManager`] and [`DefaultRouter`].
800 /// This is not exported to bindings users as Arcs don't make sense in bindings
801 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
809 Arc<NetworkGraph<Arc<L>>>,
811 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
812 ProbabilisticScoringFeeParameters,
813 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
818 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
819 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
820 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
821 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
822 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
823 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
824 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
825 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
826 /// of [`KeysManager`] and [`DefaultRouter`].
828 /// This is not exported to bindings users as Arcs don't make sense in bindings
829 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
838 &'f NetworkGraph<&'g L>,
840 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
841 ProbabilisticScoringFeeParameters,
842 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
847 /// A trivial trait which describes any [`ChannelManager`].
849 /// This is not exported to bindings users as general cover traits aren't useful in other
851 pub trait AChannelManager {
852 /// A type implementing [`chain::Watch`].
853 type Watch: chain::Watch<Self::Signer> + ?Sized;
854 /// A type that may be dereferenced to [`Self::Watch`].
855 type M: Deref<Target = Self::Watch>;
856 /// A type implementing [`BroadcasterInterface`].
857 type Broadcaster: BroadcasterInterface + ?Sized;
858 /// A type that may be dereferenced to [`Self::Broadcaster`].
859 type T: Deref<Target = Self::Broadcaster>;
860 /// A type implementing [`EntropySource`].
861 type EntropySource: EntropySource + ?Sized;
862 /// A type that may be dereferenced to [`Self::EntropySource`].
863 type ES: Deref<Target = Self::EntropySource>;
864 /// A type implementing [`NodeSigner`].
865 type NodeSigner: NodeSigner + ?Sized;
866 /// A type that may be dereferenced to [`Self::NodeSigner`].
867 type NS: Deref<Target = Self::NodeSigner>;
868 /// A type implementing [`WriteableEcdsaChannelSigner`].
869 type Signer: WriteableEcdsaChannelSigner + Sized;
870 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
871 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
872 /// A type that may be dereferenced to [`Self::SignerProvider`].
873 type SP: Deref<Target = Self::SignerProvider>;
874 /// A type implementing [`FeeEstimator`].
875 type FeeEstimator: FeeEstimator + ?Sized;
876 /// A type that may be dereferenced to [`Self::FeeEstimator`].
877 type F: Deref<Target = Self::FeeEstimator>;
878 /// A type implementing [`Router`].
879 type Router: Router + ?Sized;
880 /// A type that may be dereferenced to [`Self::Router`].
881 type R: Deref<Target = Self::Router>;
882 /// A type implementing [`Logger`].
883 type Logger: Logger + ?Sized;
884 /// A type that may be dereferenced to [`Self::Logger`].
885 type L: Deref<Target = Self::Logger>;
886 /// Returns a reference to the actual [`ChannelManager`] object.
887 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
890 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
891 for ChannelManager<M, T, ES, NS, SP, F, R, L>
893 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
894 T::Target: BroadcasterInterface,
895 ES::Target: EntropySource,
896 NS::Target: NodeSigner,
897 SP::Target: SignerProvider,
898 F::Target: FeeEstimator,
902 type Watch = M::Target;
904 type Broadcaster = T::Target;
906 type EntropySource = ES::Target;
908 type NodeSigner = NS::Target;
910 type Signer = <SP::Target as SignerProvider>::Signer;
911 type SignerProvider = SP::Target;
913 type FeeEstimator = F::Target;
915 type Router = R::Target;
917 type Logger = L::Target;
919 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
922 /// Manager which keeps track of a number of channels and sends messages to the appropriate
923 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
925 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
926 /// to individual Channels.
928 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
929 /// all peers during write/read (though does not modify this instance, only the instance being
930 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
931 /// called [`funding_transaction_generated`] for outbound channels) being closed.
933 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
934 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
935 /// [`ChannelMonitorUpdate`] before returning from
936 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
937 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
938 /// `ChannelManager` operations from occurring during the serialization process). If the
939 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
940 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
941 /// will be lost (modulo on-chain transaction fees).
943 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
944 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
945 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
947 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
948 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
949 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
950 /// offline for a full minute. In order to track this, you must call
951 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
953 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
954 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
955 /// not have a channel with being unable to connect to us or open new channels with us if we have
956 /// many peers with unfunded channels.
958 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
959 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
960 /// never limited. Please ensure you limit the count of such channels yourself.
962 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
963 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
964 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
965 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
966 /// you're using lightning-net-tokio.
968 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
969 /// [`funding_created`]: msgs::FundingCreated
970 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
971 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
972 /// [`update_channel`]: chain::Watch::update_channel
973 /// [`ChannelUpdate`]: msgs::ChannelUpdate
974 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
975 /// [`read`]: ReadableArgs::read
978 // The tree structure below illustrates the lock order requirements for the different locks of the
979 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
980 // and should then be taken in the order of the lowest to the highest level in the tree.
981 // Note that locks on different branches shall not be taken at the same time, as doing so will
982 // create a new lock order for those specific locks in the order they were taken.
986 // `total_consistency_lock`
988 // |__`forward_htlcs`
990 // | |__`pending_intercepted_htlcs`
992 // |__`per_peer_state`
994 // | |__`pending_inbound_payments`
996 // | |__`claimable_payments`
998 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1000 // | |__`peer_state`
1002 // | |__`id_to_peer`
1004 // | |__`short_to_chan_info`
1006 // | |__`outbound_scid_aliases`
1008 // | |__`best_block`
1010 // | |__`pending_events`
1012 // | |__`pending_background_events`
1014 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1016 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1017 T::Target: BroadcasterInterface,
1018 ES::Target: EntropySource,
1019 NS::Target: NodeSigner,
1020 SP::Target: SignerProvider,
1021 F::Target: FeeEstimator,
1025 default_configuration: UserConfig,
1026 chain_hash: ChainHash,
1027 fee_estimator: LowerBoundedFeeEstimator<F>,
1033 /// See `ChannelManager` struct-level documentation for lock order requirements.
1035 pub(super) best_block: RwLock<BestBlock>,
1037 best_block: RwLock<BestBlock>,
1038 secp_ctx: Secp256k1<secp256k1::All>,
1040 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1041 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1042 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1043 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1045 /// See `ChannelManager` struct-level documentation for lock order requirements.
1046 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1048 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1049 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1050 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1051 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1052 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1053 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1054 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1055 /// after reloading from disk while replaying blocks against ChannelMonitors.
1057 /// See `PendingOutboundPayment` documentation for more info.
1059 /// See `ChannelManager` struct-level documentation for lock order requirements.
1060 pending_outbound_payments: OutboundPayments,
1062 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1064 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1065 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1066 /// and via the classic SCID.
1068 /// Note that no consistency guarantees are made about the existence of a channel with the
1069 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1071 /// See `ChannelManager` struct-level documentation for lock order requirements.
1073 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1075 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1076 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1077 /// until the user tells us what we should do with them.
1079 /// See `ChannelManager` struct-level documentation for lock order requirements.
1080 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1082 /// The sets of payments which are claimable or currently being claimed. See
1083 /// [`ClaimablePayments`]' individual field docs for more info.
1085 /// See `ChannelManager` struct-level documentation for lock order requirements.
1086 claimable_payments: Mutex<ClaimablePayments>,
1088 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1089 /// and some closed channels which reached a usable state prior to being closed. This is used
1090 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1091 /// active channel list on load.
1093 /// See `ChannelManager` struct-level documentation for lock order requirements.
1094 outbound_scid_aliases: Mutex<HashSet<u64>>,
1096 /// `channel_id` -> `counterparty_node_id`.
1098 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1099 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1100 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1102 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1103 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1104 /// the handling of the events.
1106 /// Note that no consistency guarantees are made about the existence of a peer with the
1107 /// `counterparty_node_id` in our other maps.
1110 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1111 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1112 /// would break backwards compatability.
1113 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1114 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1115 /// required to access the channel with the `counterparty_node_id`.
1117 /// See `ChannelManager` struct-level documentation for lock order requirements.
1118 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1120 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1122 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1123 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1124 /// confirmation depth.
1126 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1127 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1128 /// channel with the `channel_id` in our other maps.
1130 /// See `ChannelManager` struct-level documentation for lock order requirements.
1132 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1134 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1136 our_network_pubkey: PublicKey,
1138 inbound_payment_key: inbound_payment::ExpandedKey,
1140 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1141 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1142 /// we encrypt the namespace identifier using these bytes.
1144 /// [fake scids]: crate::util::scid_utils::fake_scid
1145 fake_scid_rand_bytes: [u8; 32],
1147 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1148 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1149 /// keeping additional state.
1150 probing_cookie_secret: [u8; 32],
1152 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1153 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1154 /// very far in the past, and can only ever be up to two hours in the future.
1155 highest_seen_timestamp: AtomicUsize,
1157 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1158 /// basis, as well as the peer's latest features.
1160 /// If we are connected to a peer we always at least have an entry here, even if no channels
1161 /// are currently open with that peer.
1163 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1164 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1167 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1169 /// See `ChannelManager` struct-level documentation for lock order requirements.
1170 #[cfg(not(any(test, feature = "_test_utils")))]
1171 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1172 #[cfg(any(test, feature = "_test_utils"))]
1173 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1175 /// The set of events which we need to give to the user to handle. In some cases an event may
1176 /// require some further action after the user handles it (currently only blocking a monitor
1177 /// update from being handed to the user to ensure the included changes to the channel state
1178 /// are handled by the user before they're persisted durably to disk). In that case, the second
1179 /// element in the tuple is set to `Some` with further details of the action.
1181 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1182 /// could be in the middle of being processed without the direct mutex held.
1184 /// See `ChannelManager` struct-level documentation for lock order requirements.
1185 #[cfg(not(any(test, feature = "_test_utils")))]
1186 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1187 #[cfg(any(test, feature = "_test_utils"))]
1188 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1190 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1191 pending_events_processor: AtomicBool,
1193 /// If we are running during init (either directly during the deserialization method or in
1194 /// block connection methods which run after deserialization but before normal operation) we
1195 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1196 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1197 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1199 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1201 /// See `ChannelManager` struct-level documentation for lock order requirements.
1203 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1204 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1205 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1206 /// Essentially just when we're serializing ourselves out.
1207 /// Taken first everywhere where we are making changes before any other locks.
1208 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1209 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1210 /// Notifier the lock contains sends out a notification when the lock is released.
1211 total_consistency_lock: RwLock<()>,
1212 /// Tracks the progress of channels going through batch funding by whether funding_signed was
1213 /// received and the monitor has been persisted.
1215 /// This information does not need to be persisted as funding nodes can forget
1216 /// unfunded channels upon disconnection.
1217 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
1219 background_events_processed_since_startup: AtomicBool,
1221 event_persist_notifier: Notifier,
1222 needs_persist_flag: AtomicBool,
1226 signer_provider: SP,
1231 /// Chain-related parameters used to construct a new `ChannelManager`.
1233 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1234 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1235 /// are not needed when deserializing a previously constructed `ChannelManager`.
1236 #[derive(Clone, Copy, PartialEq)]
1237 pub struct ChainParameters {
1238 /// The network for determining the `chain_hash` in Lightning messages.
1239 pub network: Network,
1241 /// The hash and height of the latest block successfully connected.
1243 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1244 pub best_block: BestBlock,
1247 #[derive(Copy, Clone, PartialEq)]
1251 SkipPersistHandleEvents,
1252 SkipPersistNoEvents,
1255 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1256 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1257 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1258 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1259 /// sending the aforementioned notification (since the lock being released indicates that the
1260 /// updates are ready for persistence).
1262 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1263 /// notify or not based on whether relevant changes have been made, providing a closure to
1264 /// `optionally_notify` which returns a `NotifyOption`.
1265 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1266 event_persist_notifier: &'a Notifier,
1267 needs_persist_flag: &'a AtomicBool,
1269 // We hold onto this result so the lock doesn't get released immediately.
1270 _read_guard: RwLockReadGuard<'a, ()>,
1273 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1274 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1275 /// events to handle.
1277 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1278 /// other cases where losing the changes on restart may result in a force-close or otherwise
1280 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1281 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1284 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1285 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1286 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1287 let force_notify = cm.get_cm().process_background_events();
1289 PersistenceNotifierGuard {
1290 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1291 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1292 should_persist: move || {
1293 // Pick the "most" action between `persist_check` and the background events
1294 // processing and return that.
1295 let notify = persist_check();
1296 match (notify, force_notify) {
1297 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1298 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1299 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1300 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1301 _ => NotifyOption::SkipPersistNoEvents,
1304 _read_guard: read_guard,
1308 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1309 /// [`ChannelManager::process_background_events`] MUST be called first (or
1310 /// [`Self::optionally_notify`] used).
1311 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1312 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1313 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1315 PersistenceNotifierGuard {
1316 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1317 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1318 should_persist: persist_check,
1319 _read_guard: read_guard,
1324 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1325 fn drop(&mut self) {
1326 match (self.should_persist)() {
1327 NotifyOption::DoPersist => {
1328 self.needs_persist_flag.store(true, Ordering::Release);
1329 self.event_persist_notifier.notify()
1331 NotifyOption::SkipPersistHandleEvents =>
1332 self.event_persist_notifier.notify(),
1333 NotifyOption::SkipPersistNoEvents => {},
1338 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1339 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1341 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1343 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1344 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1345 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1346 /// the maximum required amount in lnd as of March 2021.
1347 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1349 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1350 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1352 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1354 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1355 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1356 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1357 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1358 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1359 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1360 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1361 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1362 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1363 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1364 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1365 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1366 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1368 /// Minimum CLTV difference between the current block height and received inbound payments.
1369 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1371 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1372 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1373 // a payment was being routed, so we add an extra block to be safe.
1374 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1376 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1377 // ie that if the next-hop peer fails the HTLC within
1378 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1379 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1380 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1381 // LATENCY_GRACE_PERIOD_BLOCKS.
1384 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1386 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1387 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1390 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1392 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1393 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1395 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1396 /// until we mark the channel disabled and gossip the update.
1397 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1399 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1400 /// we mark the channel enabled and gossip the update.
1401 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1403 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1404 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1405 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1406 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1408 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1409 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1410 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1412 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1413 /// many peers we reject new (inbound) connections.
1414 const MAX_NO_CHANNEL_PEERS: usize = 250;
1416 /// Information needed for constructing an invoice route hint for this channel.
1417 #[derive(Clone, Debug, PartialEq)]
1418 pub struct CounterpartyForwardingInfo {
1419 /// Base routing fee in millisatoshis.
1420 pub fee_base_msat: u32,
1421 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1422 pub fee_proportional_millionths: u32,
1423 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1424 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1425 /// `cltv_expiry_delta` for more details.
1426 pub cltv_expiry_delta: u16,
1429 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1430 /// to better separate parameters.
1431 #[derive(Clone, Debug, PartialEq)]
1432 pub struct ChannelCounterparty {
1433 /// The node_id of our counterparty
1434 pub node_id: PublicKey,
1435 /// The Features the channel counterparty provided upon last connection.
1436 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1437 /// many routing-relevant features are present in the init context.
1438 pub features: InitFeatures,
1439 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1440 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1441 /// claiming at least this value on chain.
1443 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1445 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1446 pub unspendable_punishment_reserve: u64,
1447 /// Information on the fees and requirements that the counterparty requires when forwarding
1448 /// payments to us through this channel.
1449 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1450 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1451 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1452 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1453 pub outbound_htlc_minimum_msat: Option<u64>,
1454 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1455 pub outbound_htlc_maximum_msat: Option<u64>,
1458 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1459 #[derive(Clone, Debug, PartialEq)]
1460 pub struct ChannelDetails {
1461 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1462 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1463 /// Note that this means this value is *not* persistent - it can change once during the
1464 /// lifetime of the channel.
1465 pub channel_id: ChannelId,
1466 /// Parameters which apply to our counterparty. See individual fields for more information.
1467 pub counterparty: ChannelCounterparty,
1468 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1469 /// our counterparty already.
1471 /// Note that, if this has been set, `channel_id` will be equivalent to
1472 /// `funding_txo.unwrap().to_channel_id()`.
1473 pub funding_txo: Option<OutPoint>,
1474 /// The features which this channel operates with. See individual features for more info.
1476 /// `None` until negotiation completes and the channel type is finalized.
1477 pub channel_type: Option<ChannelTypeFeatures>,
1478 /// The position of the funding transaction in the chain. None if the funding transaction has
1479 /// not yet been confirmed and the channel fully opened.
1481 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1482 /// payments instead of this. See [`get_inbound_payment_scid`].
1484 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1485 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1487 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1488 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1489 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1490 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1491 /// [`confirmations_required`]: Self::confirmations_required
1492 pub short_channel_id: Option<u64>,
1493 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1494 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1495 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1498 /// This will be `None` as long as the channel is not available for routing outbound payments.
1500 /// [`short_channel_id`]: Self::short_channel_id
1501 /// [`confirmations_required`]: Self::confirmations_required
1502 pub outbound_scid_alias: Option<u64>,
1503 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1504 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1505 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1506 /// when they see a payment to be routed to us.
1508 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1509 /// previous values for inbound payment forwarding.
1511 /// [`short_channel_id`]: Self::short_channel_id
1512 pub inbound_scid_alias: Option<u64>,
1513 /// The value, in satoshis, of this channel as appears in the funding output
1514 pub channel_value_satoshis: u64,
1515 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1516 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1517 /// this value on chain.
1519 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1521 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1523 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1524 pub unspendable_punishment_reserve: Option<u64>,
1525 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1526 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1527 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1528 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1529 /// serialized with LDK versions prior to 0.0.113.
1531 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1532 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1533 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1534 pub user_channel_id: u128,
1535 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1536 /// which is applied to commitment and HTLC transactions.
1538 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1539 pub feerate_sat_per_1000_weight: Option<u32>,
1540 /// Our total balance. This is the amount we would get if we close the channel.
1541 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1542 /// amount is not likely to be recoverable on close.
1544 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1545 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1546 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1547 /// This does not consider any on-chain fees.
1549 /// See also [`ChannelDetails::outbound_capacity_msat`]
1550 pub balance_msat: u64,
1551 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1552 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1553 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1554 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1556 /// See also [`ChannelDetails::balance_msat`]
1558 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1559 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1560 /// should be able to spend nearly this amount.
1561 pub outbound_capacity_msat: u64,
1562 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1563 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1564 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1565 /// to use a limit as close as possible to the HTLC limit we can currently send.
1567 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
1568 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
1569 pub next_outbound_htlc_limit_msat: u64,
1570 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1571 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1572 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1573 /// route which is valid.
1574 pub next_outbound_htlc_minimum_msat: u64,
1575 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1576 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1577 /// available for inclusion in new inbound HTLCs).
1578 /// Note that there are some corner cases not fully handled here, so the actual available
1579 /// inbound capacity may be slightly higher than this.
1581 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1582 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1583 /// However, our counterparty should be able to spend nearly this amount.
1584 pub inbound_capacity_msat: u64,
1585 /// The number of required confirmations on the funding transaction before the funding will be
1586 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1587 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1588 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1589 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1591 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1593 /// [`is_outbound`]: ChannelDetails::is_outbound
1594 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1595 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1596 pub confirmations_required: Option<u32>,
1597 /// The current number of confirmations on the funding transaction.
1599 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1600 pub confirmations: Option<u32>,
1601 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1602 /// until we can claim our funds after we force-close the channel. During this time our
1603 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1604 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1605 /// time to claim our non-HTLC-encumbered funds.
1607 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1608 pub force_close_spend_delay: Option<u16>,
1609 /// True if the channel was initiated (and thus funded) by us.
1610 pub is_outbound: bool,
1611 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1612 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1613 /// required confirmation count has been reached (and we were connected to the peer at some
1614 /// point after the funding transaction received enough confirmations). The required
1615 /// confirmation count is provided in [`confirmations_required`].
1617 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1618 pub is_channel_ready: bool,
1619 /// The stage of the channel's shutdown.
1620 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1621 pub channel_shutdown_state: Option<ChannelShutdownState>,
1622 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1623 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1625 /// This is a strict superset of `is_channel_ready`.
1626 pub is_usable: bool,
1627 /// True if this channel is (or will be) publicly-announced.
1628 pub is_public: bool,
1629 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1630 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1631 pub inbound_htlc_minimum_msat: Option<u64>,
1632 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1633 pub inbound_htlc_maximum_msat: Option<u64>,
1634 /// Set of configurable parameters that affect channel operation.
1636 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1637 pub config: Option<ChannelConfig>,
1640 impl ChannelDetails {
1641 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1642 /// This should be used for providing invoice hints or in any other context where our
1643 /// counterparty will forward a payment to us.
1645 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1646 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1647 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1648 self.inbound_scid_alias.or(self.short_channel_id)
1651 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1652 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1653 /// we're sending or forwarding a payment outbound over this channel.
1655 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1656 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1657 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1658 self.short_channel_id.or(self.outbound_scid_alias)
1661 fn from_channel_context<SP: Deref, F: Deref>(
1662 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1663 fee_estimator: &LowerBoundedFeeEstimator<F>
1666 SP::Target: SignerProvider,
1667 F::Target: FeeEstimator
1669 let balance = context.get_available_balances(fee_estimator);
1670 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1671 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1673 channel_id: context.channel_id(),
1674 counterparty: ChannelCounterparty {
1675 node_id: context.get_counterparty_node_id(),
1676 features: latest_features,
1677 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1678 forwarding_info: context.counterparty_forwarding_info(),
1679 // Ensures that we have actually received the `htlc_minimum_msat` value
1680 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1681 // message (as they are always the first message from the counterparty).
1682 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1683 // default `0` value set by `Channel::new_outbound`.
1684 outbound_htlc_minimum_msat: if context.have_received_message() {
1685 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1686 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1688 funding_txo: context.get_funding_txo(),
1689 // Note that accept_channel (or open_channel) is always the first message, so
1690 // `have_received_message` indicates that type negotiation has completed.
1691 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1692 short_channel_id: context.get_short_channel_id(),
1693 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1694 inbound_scid_alias: context.latest_inbound_scid_alias(),
1695 channel_value_satoshis: context.get_value_satoshis(),
1696 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1697 unspendable_punishment_reserve: to_self_reserve_satoshis,
1698 balance_msat: balance.balance_msat,
1699 inbound_capacity_msat: balance.inbound_capacity_msat,
1700 outbound_capacity_msat: balance.outbound_capacity_msat,
1701 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1702 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1703 user_channel_id: context.get_user_id(),
1704 confirmations_required: context.minimum_depth(),
1705 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1706 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1707 is_outbound: context.is_outbound(),
1708 is_channel_ready: context.is_usable(),
1709 is_usable: context.is_live(),
1710 is_public: context.should_announce(),
1711 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1712 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1713 config: Some(context.config()),
1714 channel_shutdown_state: Some(context.shutdown_state()),
1719 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1720 /// Further information on the details of the channel shutdown.
1721 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1722 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1723 /// the channel will be removed shortly.
1724 /// Also note, that in normal operation, peers could disconnect at any of these states
1725 /// and require peer re-connection before making progress onto other states
1726 pub enum ChannelShutdownState {
1727 /// Channel has not sent or received a shutdown message.
1729 /// Local node has sent a shutdown message for this channel.
1731 /// Shutdown message exchanges have concluded and the channels are in the midst of
1732 /// resolving all existing open HTLCs before closing can continue.
1734 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1735 NegotiatingClosingFee,
1736 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1737 /// to drop the channel.
1741 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1742 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1743 #[derive(Debug, PartialEq)]
1744 pub enum RecentPaymentDetails {
1745 /// When an invoice was requested and thus a payment has not yet been sent.
1747 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1748 /// a payment and ensure idempotency in LDK.
1749 payment_id: PaymentId,
1751 /// When a payment is still being sent and awaiting successful delivery.
1753 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1754 /// a payment and ensure idempotency in LDK.
1755 payment_id: PaymentId,
1756 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1758 payment_hash: PaymentHash,
1759 /// Total amount (in msat, excluding fees) across all paths for this payment,
1760 /// not just the amount currently inflight.
1763 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1764 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1765 /// payment is removed from tracking.
1767 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1768 /// a payment and ensure idempotency in LDK.
1769 payment_id: PaymentId,
1770 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1771 /// made before LDK version 0.0.104.
1772 payment_hash: Option<PaymentHash>,
1774 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1775 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1776 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1778 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1779 /// a payment and ensure idempotency in LDK.
1780 payment_id: PaymentId,
1781 /// Hash of the payment that we have given up trying to send.
1782 payment_hash: PaymentHash,
1786 /// Route hints used in constructing invoices for [phantom node payents].
1788 /// [phantom node payments]: crate::sign::PhantomKeysManager
1790 pub struct PhantomRouteHints {
1791 /// The list of channels to be included in the invoice route hints.
1792 pub channels: Vec<ChannelDetails>,
1793 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1795 pub phantom_scid: u64,
1796 /// The pubkey of the real backing node that would ultimately receive the payment.
1797 pub real_node_pubkey: PublicKey,
1800 macro_rules! handle_error {
1801 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1802 // In testing, ensure there are no deadlocks where the lock is already held upon
1803 // entering the macro.
1804 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1805 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1809 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1810 let mut msg_events = Vec::with_capacity(2);
1812 if let Some((shutdown_res, update_option)) = shutdown_finish {
1813 $self.finish_close_channel(shutdown_res);
1814 if let Some(update) = update_option {
1815 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1819 if let Some((channel_id, user_channel_id)) = chan_id {
1820 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1821 channel_id, user_channel_id,
1822 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1823 counterparty_node_id: Some($counterparty_node_id),
1824 channel_capacity_sats: channel_capacity,
1829 log_error!($self.logger, "{}", err.err);
1830 if let msgs::ErrorAction::IgnoreError = err.action {
1832 msg_events.push(events::MessageSendEvent::HandleError {
1833 node_id: $counterparty_node_id,
1834 action: err.action.clone()
1838 if !msg_events.is_empty() {
1839 let per_peer_state = $self.per_peer_state.read().unwrap();
1840 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1841 let mut peer_state = peer_state_mutex.lock().unwrap();
1842 peer_state.pending_msg_events.append(&mut msg_events);
1846 // Return error in case higher-API need one
1851 ($self: ident, $internal: expr) => {
1854 Err((chan, msg_handle_err)) => {
1855 let counterparty_node_id = chan.get_counterparty_node_id();
1856 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1862 macro_rules! update_maps_on_chan_removal {
1863 ($self: expr, $channel_context: expr) => {{
1864 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1865 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1866 if let Some(short_id) = $channel_context.get_short_channel_id() {
1867 short_to_chan_info.remove(&short_id);
1869 // If the channel was never confirmed on-chain prior to its closure, remove the
1870 // outbound SCID alias we used for it from the collision-prevention set. While we
1871 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1872 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1873 // opening a million channels with us which are closed before we ever reach the funding
1875 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1876 debug_assert!(alias_removed);
1878 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1882 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1883 macro_rules! convert_chan_phase_err {
1884 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1886 ChannelError::Warn(msg) => {
1887 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1889 ChannelError::Ignore(msg) => {
1890 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1892 ChannelError::Close(msg) => {
1893 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1894 update_maps_on_chan_removal!($self, $channel.context);
1895 let shutdown_res = $channel.context.force_shutdown(true);
1896 let user_id = $channel.context.get_user_id();
1897 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1899 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1900 shutdown_res, $channel_update, channel_capacity_satoshis))
1904 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1905 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1907 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1908 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1910 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1911 match $channel_phase {
1912 ChannelPhase::Funded(channel) => {
1913 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1915 ChannelPhase::UnfundedOutboundV1(channel) => {
1916 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1918 ChannelPhase::UnfundedInboundV1(channel) => {
1919 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1925 macro_rules! break_chan_phase_entry {
1926 ($self: ident, $res: expr, $entry: expr) => {
1930 let key = *$entry.key();
1931 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1933 $entry.remove_entry();
1941 macro_rules! try_chan_phase_entry {
1942 ($self: ident, $res: expr, $entry: expr) => {
1946 let key = *$entry.key();
1947 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1949 $entry.remove_entry();
1957 macro_rules! remove_channel_phase {
1958 ($self: expr, $entry: expr) => {
1960 let channel = $entry.remove_entry().1;
1961 update_maps_on_chan_removal!($self, &channel.context());
1967 macro_rules! send_channel_ready {
1968 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1969 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1970 node_id: $channel.context.get_counterparty_node_id(),
1971 msg: $channel_ready_msg,
1973 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1974 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1975 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1976 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1977 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1978 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1979 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1980 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1981 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1982 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1987 macro_rules! emit_channel_pending_event {
1988 ($locked_events: expr, $channel: expr) => {
1989 if $channel.context.should_emit_channel_pending_event() {
1990 $locked_events.push_back((events::Event::ChannelPending {
1991 channel_id: $channel.context.channel_id(),
1992 former_temporary_channel_id: $channel.context.temporary_channel_id(),
1993 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1994 user_channel_id: $channel.context.get_user_id(),
1995 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1997 $channel.context.set_channel_pending_event_emitted();
2002 macro_rules! emit_channel_ready_event {
2003 ($locked_events: expr, $channel: expr) => {
2004 if $channel.context.should_emit_channel_ready_event() {
2005 debug_assert!($channel.context.channel_pending_event_emitted());
2006 $locked_events.push_back((events::Event::ChannelReady {
2007 channel_id: $channel.context.channel_id(),
2008 user_channel_id: $channel.context.get_user_id(),
2009 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2010 channel_type: $channel.context.get_channel_type().clone(),
2012 $channel.context.set_channel_ready_event_emitted();
2017 macro_rules! handle_monitor_update_completion {
2018 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2019 let mut updates = $chan.monitor_updating_restored(&$self.logger,
2020 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2021 $self.best_block.read().unwrap().height());
2022 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2023 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2024 // We only send a channel_update in the case where we are just now sending a
2025 // channel_ready and the channel is in a usable state. We may re-send a
2026 // channel_update later through the announcement_signatures process for public
2027 // channels, but there's no reason not to just inform our counterparty of our fees
2029 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2030 Some(events::MessageSendEvent::SendChannelUpdate {
2031 node_id: counterparty_node_id,
2037 let update_actions = $peer_state.monitor_update_blocked_actions
2038 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2040 let htlc_forwards = $self.handle_channel_resumption(
2041 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2042 updates.commitment_update, updates.order, updates.accepted_htlcs,
2043 updates.funding_broadcastable, updates.channel_ready,
2044 updates.announcement_sigs);
2045 if let Some(upd) = channel_update {
2046 $peer_state.pending_msg_events.push(upd);
2049 let channel_id = $chan.context.channel_id();
2050 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2051 core::mem::drop($peer_state_lock);
2052 core::mem::drop($per_peer_state_lock);
2054 // If the channel belongs to a batch funding transaction, the progress of the batch
2055 // should be updated as we have received funding_signed and persisted the monitor.
2056 if let Some(txid) = unbroadcasted_batch_funding_txid {
2057 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2058 let mut batch_completed = false;
2059 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2060 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2061 *chan_id == channel_id &&
2062 *pubkey == counterparty_node_id
2064 if let Some(channel_state) = channel_state {
2065 channel_state.2 = true;
2067 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2069 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2071 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2074 // When all channels in a batched funding transaction have become ready, it is not necessary
2075 // to track the progress of the batch anymore and the state of the channels can be updated.
2076 if batch_completed {
2077 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2078 let per_peer_state = $self.per_peer_state.read().unwrap();
2079 let mut batch_funding_tx = None;
2080 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2081 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2082 let mut peer_state = peer_state_mutex.lock().unwrap();
2083 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2084 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2085 chan.set_batch_ready();
2086 let mut pending_events = $self.pending_events.lock().unwrap();
2087 emit_channel_pending_event!(pending_events, chan);
2091 if let Some(tx) = batch_funding_tx {
2092 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2093 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2098 $self.handle_monitor_update_completion_actions(update_actions);
2100 if let Some(forwards) = htlc_forwards {
2101 $self.forward_htlcs(&mut [forwards][..]);
2103 $self.finalize_claims(updates.finalized_claimed_htlcs);
2104 for failure in updates.failed_htlcs.drain(..) {
2105 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2106 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2111 macro_rules! handle_new_monitor_update {
2112 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2113 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2115 ChannelMonitorUpdateStatus::UnrecoverableError => {
2116 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2117 log_error!($self.logger, "{}", err_str);
2118 panic!("{}", err_str);
2120 ChannelMonitorUpdateStatus::InProgress => {
2121 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2122 &$chan.context.channel_id());
2125 ChannelMonitorUpdateStatus::Completed => {
2131 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2132 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2133 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2135 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2136 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2137 .or_insert_with(Vec::new);
2138 // During startup, we push monitor updates as background events through to here in
2139 // order to replay updates that were in-flight when we shut down. Thus, we have to
2140 // filter for uniqueness here.
2141 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2142 .unwrap_or_else(|| {
2143 in_flight_updates.push($update);
2144 in_flight_updates.len() - 1
2146 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2147 handle_new_monitor_update!($self, update_res, $chan, _internal,
2149 let _ = in_flight_updates.remove(idx);
2150 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2151 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2157 macro_rules! process_events_body {
2158 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2159 let mut processed_all_events = false;
2160 while !processed_all_events {
2161 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2168 // We'll acquire our total consistency lock so that we can be sure no other
2169 // persists happen while processing monitor events.
2170 let _read_guard = $self.total_consistency_lock.read().unwrap();
2172 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2173 // ensure any startup-generated background events are handled first.
2174 result = $self.process_background_events();
2176 // TODO: This behavior should be documented. It's unintuitive that we query
2177 // ChannelMonitors when clearing other events.
2178 if $self.process_pending_monitor_events() {
2179 result = NotifyOption::DoPersist;
2183 let pending_events = $self.pending_events.lock().unwrap().clone();
2184 let num_events = pending_events.len();
2185 if !pending_events.is_empty() {
2186 result = NotifyOption::DoPersist;
2189 let mut post_event_actions = Vec::new();
2191 for (event, action_opt) in pending_events {
2192 $event_to_handle = event;
2194 if let Some(action) = action_opt {
2195 post_event_actions.push(action);
2200 let mut pending_events = $self.pending_events.lock().unwrap();
2201 pending_events.drain(..num_events);
2202 processed_all_events = pending_events.is_empty();
2203 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2204 // updated here with the `pending_events` lock acquired.
2205 $self.pending_events_processor.store(false, Ordering::Release);
2208 if !post_event_actions.is_empty() {
2209 $self.handle_post_event_actions(post_event_actions);
2210 // If we had some actions, go around again as we may have more events now
2211 processed_all_events = false;
2215 NotifyOption::DoPersist => {
2216 $self.needs_persist_flag.store(true, Ordering::Release);
2217 $self.event_persist_notifier.notify();
2219 NotifyOption::SkipPersistHandleEvents =>
2220 $self.event_persist_notifier.notify(),
2221 NotifyOption::SkipPersistNoEvents => {},
2227 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2229 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2230 T::Target: BroadcasterInterface,
2231 ES::Target: EntropySource,
2232 NS::Target: NodeSigner,
2233 SP::Target: SignerProvider,
2234 F::Target: FeeEstimator,
2238 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2240 /// The current time or latest block header time can be provided as the `current_timestamp`.
2242 /// This is the main "logic hub" for all channel-related actions, and implements
2243 /// [`ChannelMessageHandler`].
2245 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2247 /// Users need to notify the new `ChannelManager` when a new block is connected or
2248 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2249 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2252 /// [`block_connected`]: chain::Listen::block_connected
2253 /// [`block_disconnected`]: chain::Listen::block_disconnected
2254 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2256 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2257 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2258 current_timestamp: u32,
2260 let mut secp_ctx = Secp256k1::new();
2261 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2262 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2263 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2265 default_configuration: config.clone(),
2266 chain_hash: ChainHash::using_genesis_block(params.network),
2267 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2272 best_block: RwLock::new(params.best_block),
2274 outbound_scid_aliases: Mutex::new(HashSet::new()),
2275 pending_inbound_payments: Mutex::new(HashMap::new()),
2276 pending_outbound_payments: OutboundPayments::new(),
2277 forward_htlcs: Mutex::new(HashMap::new()),
2278 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2279 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2280 id_to_peer: Mutex::new(HashMap::new()),
2281 short_to_chan_info: FairRwLock::new(HashMap::new()),
2283 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2286 inbound_payment_key: expanded_inbound_key,
2287 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2289 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2291 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2293 per_peer_state: FairRwLock::new(HashMap::new()),
2295 pending_events: Mutex::new(VecDeque::new()),
2296 pending_events_processor: AtomicBool::new(false),
2297 pending_background_events: Mutex::new(Vec::new()),
2298 total_consistency_lock: RwLock::new(()),
2299 background_events_processed_since_startup: AtomicBool::new(false),
2300 event_persist_notifier: Notifier::new(),
2301 needs_persist_flag: AtomicBool::new(false),
2302 funding_batch_states: Mutex::new(BTreeMap::new()),
2312 /// Gets the current configuration applied to all new channels.
2313 pub fn get_current_default_configuration(&self) -> &UserConfig {
2314 &self.default_configuration
2317 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2318 let height = self.best_block.read().unwrap().height();
2319 let mut outbound_scid_alias = 0;
2322 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2323 outbound_scid_alias += 1;
2325 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2327 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2331 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2336 /// Creates a new outbound channel to the given remote node and with the given value.
2338 /// `user_channel_id` will be provided back as in
2339 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2340 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2341 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2342 /// is simply copied to events and otherwise ignored.
2344 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2345 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2347 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2348 /// generate a shutdown scriptpubkey or destination script set by
2349 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2351 /// Note that we do not check if you are currently connected to the given peer. If no
2352 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2353 /// the channel eventually being silently forgotten (dropped on reload).
2355 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2356 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2357 /// [`ChannelDetails::channel_id`] until after
2358 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2359 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2360 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2362 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2363 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2364 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2365 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2366 if channel_value_satoshis < 1000 {
2367 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2370 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2371 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2372 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2374 let per_peer_state = self.per_peer_state.read().unwrap();
2376 let peer_state_mutex = per_peer_state.get(&their_network_key)
2377 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2379 let mut peer_state = peer_state_mutex.lock().unwrap();
2381 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2382 let their_features = &peer_state.latest_features;
2383 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2384 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2385 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2386 self.best_block.read().unwrap().height(), outbound_scid_alias)
2390 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2395 let res = channel.get_open_channel(self.chain_hash);
2397 let temporary_channel_id = channel.context.channel_id();
2398 match peer_state.channel_by_id.entry(temporary_channel_id) {
2399 hash_map::Entry::Occupied(_) => {
2401 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2403 panic!("RNG is bad???");
2406 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2409 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2410 node_id: their_network_key,
2413 Ok(temporary_channel_id)
2416 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2417 // Allocate our best estimate of the number of channels we have in the `res`
2418 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2419 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2420 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2421 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2422 // the same channel.
2423 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2425 let best_block_height = self.best_block.read().unwrap().height();
2426 let per_peer_state = self.per_peer_state.read().unwrap();
2427 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2428 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2429 let peer_state = &mut *peer_state_lock;
2430 res.extend(peer_state.channel_by_id.iter()
2431 .filter_map(|(chan_id, phase)| match phase {
2432 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2433 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2437 .map(|(_channel_id, channel)| {
2438 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2439 peer_state.latest_features.clone(), &self.fee_estimator)
2447 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2448 /// more information.
2449 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2450 // Allocate our best estimate of the number of channels we have in the `res`
2451 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2452 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2453 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2454 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2455 // the same channel.
2456 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2458 let best_block_height = self.best_block.read().unwrap().height();
2459 let per_peer_state = self.per_peer_state.read().unwrap();
2460 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2461 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2462 let peer_state = &mut *peer_state_lock;
2463 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2464 let details = ChannelDetails::from_channel_context(context, best_block_height,
2465 peer_state.latest_features.clone(), &self.fee_estimator);
2473 /// Gets the list of usable channels, in random order. Useful as an argument to
2474 /// [`Router::find_route`] to ensure non-announced channels are used.
2476 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2477 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2479 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2480 // Note we use is_live here instead of usable which leads to somewhat confused
2481 // internal/external nomenclature, but that's ok cause that's probably what the user
2482 // really wanted anyway.
2483 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2486 /// Gets the list of channels we have with a given counterparty, in random order.
2487 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2488 let best_block_height = self.best_block.read().unwrap().height();
2489 let per_peer_state = self.per_peer_state.read().unwrap();
2491 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2492 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2493 let peer_state = &mut *peer_state_lock;
2494 let features = &peer_state.latest_features;
2495 let context_to_details = |context| {
2496 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2498 return peer_state.channel_by_id
2500 .map(|(_, phase)| phase.context())
2501 .map(context_to_details)
2507 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2508 /// successful path, or have unresolved HTLCs.
2510 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2511 /// result of a crash. If such a payment exists, is not listed here, and an
2512 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2514 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2515 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2516 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2517 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2518 PendingOutboundPayment::AwaitingInvoice { .. } => {
2519 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2521 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2522 PendingOutboundPayment::InvoiceReceived { .. } => {
2523 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2525 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2526 Some(RecentPaymentDetails::Pending {
2527 payment_id: *payment_id,
2528 payment_hash: *payment_hash,
2529 total_msat: *total_msat,
2532 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2533 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2535 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2536 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2538 PendingOutboundPayment::Legacy { .. } => None
2543 /// Helper function that issues the channel close events
2544 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2545 let mut pending_events_lock = self.pending_events.lock().unwrap();
2546 match context.unbroadcasted_funding() {
2547 Some(transaction) => {
2548 pending_events_lock.push_back((events::Event::DiscardFunding {
2549 channel_id: context.channel_id(), transaction
2554 pending_events_lock.push_back((events::Event::ChannelClosed {
2555 channel_id: context.channel_id(),
2556 user_channel_id: context.get_user_id(),
2557 reason: closure_reason,
2558 counterparty_node_id: Some(context.get_counterparty_node_id()),
2559 channel_capacity_sats: Some(context.get_value_satoshis()),
2563 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2564 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2566 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2567 let shutdown_result;
2569 let per_peer_state = self.per_peer_state.read().unwrap();
2571 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2572 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2574 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2575 let peer_state = &mut *peer_state_lock;
2577 match peer_state.channel_by_id.entry(channel_id.clone()) {
2578 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2579 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2580 let funding_txo_opt = chan.context.get_funding_txo();
2581 let their_features = &peer_state.latest_features;
2582 let (shutdown_msg, mut monitor_update_opt, htlcs, local_shutdown_result) =
2583 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2584 failed_htlcs = htlcs;
2585 shutdown_result = local_shutdown_result;
2586 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
2588 // We can send the `shutdown` message before updating the `ChannelMonitor`
2589 // here as we don't need the monitor update to complete until we send a
2590 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2591 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2592 node_id: *counterparty_node_id,
2596 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2597 "We can't both complete shutdown and generate a monitor update");
2599 // Update the monitor with the shutdown script if necessary.
2600 if let Some(monitor_update) = monitor_update_opt.take() {
2601 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2602 peer_state_lock, peer_state, per_peer_state, chan);
2606 if chan.is_shutdown() {
2607 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2608 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2609 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2613 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2619 hash_map::Entry::Vacant(_) => {
2620 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2621 // it does not exist for this peer. Either way, we can attempt to force-close it.
2623 // An appropriate error will be returned for non-existence of the channel if that's the case.
2624 mem::drop(peer_state_lock);
2625 mem::drop(per_peer_state);
2626 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2631 for htlc_source in failed_htlcs.drain(..) {
2632 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2633 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2634 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2637 if let Some(shutdown_result) = shutdown_result {
2638 self.finish_close_channel(shutdown_result);
2644 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2645 /// will be accepted on the given channel, and after additional timeout/the closing of all
2646 /// pending HTLCs, the channel will be closed on chain.
2648 /// * If we are the channel initiator, we will pay between our [`Background`] and
2649 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2651 /// * If our counterparty is the channel initiator, we will require a channel closing
2652 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2653 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2654 /// counterparty to pay as much fee as they'd like, however.
2656 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2658 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2659 /// generate a shutdown scriptpubkey or destination script set by
2660 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2663 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2664 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2665 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2666 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2667 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2668 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2671 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2672 /// will be accepted on the given channel, and after additional timeout/the closing of all
2673 /// pending HTLCs, the channel will be closed on chain.
2675 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2676 /// the channel being closed or not:
2677 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2678 /// transaction. The upper-bound is set by
2679 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2680 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2681 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2682 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2683 /// will appear on a force-closure transaction, whichever is lower).
2685 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2686 /// Will fail if a shutdown script has already been set for this channel by
2687 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2688 /// also be compatible with our and the counterparty's features.
2690 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2692 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2693 /// generate a shutdown scriptpubkey or destination script set by
2694 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2697 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2698 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2699 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2700 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2701 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2702 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2705 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
2706 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2707 #[cfg(debug_assertions)]
2708 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2709 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2712 log_debug!(self.logger, "Finishing closure of channel with {} HTLCs to fail", shutdown_res.dropped_outbound_htlcs.len());
2713 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
2714 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2715 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2716 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2717 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2719 if let Some((_, funding_txo, monitor_update)) = shutdown_res.monitor_update {
2720 // There isn't anything we can do if we get an update failure - we're already
2721 // force-closing. The monitor update on the required in-memory copy should broadcast
2722 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2723 // ignore the result here.
2724 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2726 let mut shutdown_results = Vec::new();
2727 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
2728 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
2729 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
2730 let per_peer_state = self.per_peer_state.read().unwrap();
2731 let mut has_uncompleted_channel = None;
2732 for (channel_id, counterparty_node_id, state) in affected_channels {
2733 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2734 let mut peer_state = peer_state_mutex.lock().unwrap();
2735 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
2736 update_maps_on_chan_removal!(self, &chan.context());
2737 self.issue_channel_close_events(&chan.context(), ClosureReason::FundingBatchClosure);
2738 shutdown_results.push(chan.context_mut().force_shutdown(false));
2741 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
2744 has_uncompleted_channel.unwrap_or(true),
2745 "Closing a batch where all channels have completed initial monitor update",
2748 for shutdown_result in shutdown_results.drain(..) {
2749 self.finish_close_channel(shutdown_result);
2753 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2754 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2755 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2756 -> Result<PublicKey, APIError> {
2757 let per_peer_state = self.per_peer_state.read().unwrap();
2758 let peer_state_mutex = per_peer_state.get(peer_node_id)
2759 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2760 let (update_opt, counterparty_node_id) = {
2761 let mut peer_state = peer_state_mutex.lock().unwrap();
2762 let closure_reason = if let Some(peer_msg) = peer_msg {
2763 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2765 ClosureReason::HolderForceClosed
2767 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2768 log_error!(self.logger, "Force-closing channel {}", channel_id);
2769 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2770 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2771 mem::drop(peer_state);
2772 mem::drop(per_peer_state);
2774 ChannelPhase::Funded(mut chan) => {
2775 self.finish_close_channel(chan.context.force_shutdown(broadcast));
2776 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2778 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2779 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false));
2780 // Unfunded channel has no update
2781 (None, chan_phase.context().get_counterparty_node_id())
2784 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2785 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2786 // N.B. that we don't send any channel close event here: we
2787 // don't have a user_channel_id, and we never sent any opening
2789 (None, *peer_node_id)
2791 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2794 if let Some(update) = update_opt {
2795 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2796 // not try to broadcast it via whatever peer we have.
2797 let per_peer_state = self.per_peer_state.read().unwrap();
2798 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2799 .ok_or(per_peer_state.values().next());
2800 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2801 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2802 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2808 Ok(counterparty_node_id)
2811 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2812 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2813 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2814 Ok(counterparty_node_id) => {
2815 let per_peer_state = self.per_peer_state.read().unwrap();
2816 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2817 let mut peer_state = peer_state_mutex.lock().unwrap();
2818 peer_state.pending_msg_events.push(
2819 events::MessageSendEvent::HandleError {
2820 node_id: counterparty_node_id,
2821 action: msgs::ErrorAction::DisconnectPeer {
2822 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
2833 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2834 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2835 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2837 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2838 -> Result<(), APIError> {
2839 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2842 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2843 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2844 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2846 /// You can always get the latest local transaction(s) to broadcast from
2847 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2848 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2849 -> Result<(), APIError> {
2850 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2853 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2854 /// for each to the chain and rejecting new HTLCs on each.
2855 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2856 for chan in self.list_channels() {
2857 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2861 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2862 /// local transaction(s).
2863 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2864 for chan in self.list_channels() {
2865 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2869 fn construct_fwd_pending_htlc_info(
2870 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2871 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2872 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2873 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2874 debug_assert!(next_packet_pubkey_opt.is_some());
2875 let outgoing_packet = msgs::OnionPacket {
2877 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2878 hop_data: new_packet_bytes,
2882 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2883 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2884 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2885 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2886 return Err(InboundOnionErr {
2887 msg: "Final Node OnionHopData provided for us as an intermediary node",
2888 err_code: 0x4000 | 22,
2889 err_data: Vec::new(),
2893 Ok(PendingHTLCInfo {
2894 routing: PendingHTLCRouting::Forward {
2895 onion_packet: outgoing_packet,
2898 payment_hash: msg.payment_hash,
2899 incoming_shared_secret: shared_secret,
2900 incoming_amt_msat: Some(msg.amount_msat),
2901 outgoing_amt_msat: amt_to_forward,
2902 outgoing_cltv_value,
2903 skimmed_fee_msat: None,
2907 fn construct_recv_pending_htlc_info(
2908 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2909 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2910 counterparty_skimmed_fee_msat: Option<u64>,
2911 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2912 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2913 msgs::InboundOnionPayload::Receive {
2914 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2916 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2917 msgs::InboundOnionPayload::BlindedReceive {
2918 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2920 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2921 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2923 msgs::InboundOnionPayload::Forward { .. } => {
2924 return Err(InboundOnionErr {
2925 err_code: 0x4000|22,
2926 err_data: Vec::new(),
2927 msg: "Got non final data with an HMAC of 0",
2931 // final_incorrect_cltv_expiry
2932 if outgoing_cltv_value > cltv_expiry {
2933 return Err(InboundOnionErr {
2934 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2936 err_data: cltv_expiry.to_be_bytes().to_vec()
2939 // final_expiry_too_soon
2940 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2941 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2943 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2944 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2945 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2946 let current_height: u32 = self.best_block.read().unwrap().height();
2947 if cltv_expiry <= current_height + HTLC_FAIL_BACK_BUFFER + 1 {
2948 let mut err_data = Vec::with_capacity(12);
2949 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2950 err_data.extend_from_slice(¤t_height.to_be_bytes());
2951 return Err(InboundOnionErr {
2952 err_code: 0x4000 | 15, err_data,
2953 msg: "The final CLTV expiry is too soon to handle",
2956 if (!allow_underpay && onion_amt_msat > amt_msat) ||
2957 (allow_underpay && onion_amt_msat >
2958 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2960 return Err(InboundOnionErr {
2962 err_data: amt_msat.to_be_bytes().to_vec(),
2963 msg: "Upstream node sent less than we were supposed to receive in payment",
2967 let routing = if let Some(payment_preimage) = keysend_preimage {
2968 // We need to check that the sender knows the keysend preimage before processing this
2969 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2970 // could discover the final destination of X, by probing the adjacent nodes on the route
2971 // with a keysend payment of identical payment hash to X and observing the processing
2972 // time discrepancies due to a hash collision with X.
2973 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2974 if hashed_preimage != payment_hash {
2975 return Err(InboundOnionErr {
2976 err_code: 0x4000|22,
2977 err_data: Vec::new(),
2978 msg: "Payment preimage didn't match payment hash",
2981 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
2982 return Err(InboundOnionErr {
2983 err_code: 0x4000|22,
2984 err_data: Vec::new(),
2985 msg: "We don't support MPP keysend payments",
2988 PendingHTLCRouting::ReceiveKeysend {
2992 incoming_cltv_expiry: outgoing_cltv_value,
2995 } else if let Some(data) = payment_data {
2996 PendingHTLCRouting::Receive {
2999 incoming_cltv_expiry: outgoing_cltv_value,
3000 phantom_shared_secret,
3004 return Err(InboundOnionErr {
3005 err_code: 0x4000|0x2000|3,
3006 err_data: Vec::new(),
3007 msg: "We require payment_secrets",
3010 Ok(PendingHTLCInfo {
3013 incoming_shared_secret: shared_secret,
3014 incoming_amt_msat: Some(amt_msat),
3015 outgoing_amt_msat: onion_amt_msat,
3016 outgoing_cltv_value,
3017 skimmed_fee_msat: counterparty_skimmed_fee_msat,
3021 fn decode_update_add_htlc_onion(
3022 &self, msg: &msgs::UpdateAddHTLC
3023 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
3024 macro_rules! return_malformed_err {
3025 ($msg: expr, $err_code: expr) => {
3027 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3028 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3029 channel_id: msg.channel_id,
3030 htlc_id: msg.htlc_id,
3031 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
3032 failure_code: $err_code,
3038 if let Err(_) = msg.onion_routing_packet.public_key {
3039 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
3042 let shared_secret = self.node_signer.ecdh(
3043 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
3044 ).unwrap().secret_bytes();
3046 if msg.onion_routing_packet.version != 0 {
3047 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
3048 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
3049 //the hash doesn't really serve any purpose - in the case of hashing all data, the
3050 //receiving node would have to brute force to figure out which version was put in the
3051 //packet by the node that send us the message, in the case of hashing the hop_data, the
3052 //node knows the HMAC matched, so they already know what is there...
3053 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
3055 macro_rules! return_err {
3056 ($msg: expr, $err_code: expr, $data: expr) => {
3058 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3059 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3060 channel_id: msg.channel_id,
3061 htlc_id: msg.htlc_id,
3062 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3063 .get_encrypted_failure_packet(&shared_secret, &None),
3069 let next_hop = match onion_utils::decode_next_payment_hop(
3070 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
3071 msg.payment_hash, &self.node_signer
3074 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3075 return_malformed_err!(err_msg, err_code);
3077 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3078 return_err!(err_msg, err_code, &[0; 0]);
3081 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
3082 onion_utils::Hop::Forward {
3083 next_hop_data: msgs::InboundOnionPayload::Forward {
3084 short_channel_id, amt_to_forward, outgoing_cltv_value
3087 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
3088 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
3089 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
3091 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
3092 // inbound channel's state.
3093 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
3094 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
3095 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
3097 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3101 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3102 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3103 if let Some((err, mut code, chan_update)) = loop {
3104 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3105 let forwarding_chan_info_opt = match id_option {
3106 None => { // unknown_next_peer
3107 // Note that this is likely a timing oracle for detecting whether an scid is a
3108 // phantom or an intercept.
3109 if (self.default_configuration.accept_intercept_htlcs &&
3110 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)) ||
3111 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.chain_hash)
3115 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3118 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3120 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3121 let per_peer_state = self.per_peer_state.read().unwrap();
3122 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3123 if peer_state_mutex_opt.is_none() {
3124 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3126 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3127 let peer_state = &mut *peer_state_lock;
3128 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3129 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3132 // Channel was removed. The short_to_chan_info and channel_by_id maps
3133 // have no consistency guarantees.
3134 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3138 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3139 // Note that the behavior here should be identical to the above block - we
3140 // should NOT reveal the existence or non-existence of a private channel if
3141 // we don't allow forwards outbound over them.
3142 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3144 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3145 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3146 // "refuse to forward unless the SCID alias was used", so we pretend
3147 // we don't have the channel here.
3148 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3150 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3152 // Note that we could technically not return an error yet here and just hope
3153 // that the connection is reestablished or monitor updated by the time we get
3154 // around to doing the actual forward, but better to fail early if we can and
3155 // hopefully an attacker trying to path-trace payments cannot make this occur
3156 // on a small/per-node/per-channel scale.
3157 if !chan.context.is_live() { // channel_disabled
3158 // If the channel_update we're going to return is disabled (i.e. the
3159 // peer has been disabled for some time), return `channel_disabled`,
3160 // otherwise return `temporary_channel_failure`.
3161 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3162 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3164 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3167 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3168 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3170 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3171 break Some((err, code, chan_update_opt));
3175 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3176 // We really should set `incorrect_cltv_expiry` here but as we're not
3177 // forwarding over a real channel we can't generate a channel_update
3178 // for it. Instead we just return a generic temporary_node_failure.
3180 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3187 let cur_height = self.best_block.read().unwrap().height() + 1;
3188 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3189 // but we want to be robust wrt to counterparty packet sanitization (see
3190 // HTLC_FAIL_BACK_BUFFER rationale).
3191 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3192 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3194 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3195 break Some(("CLTV expiry is too far in the future", 21, None));
3197 // If the HTLC expires ~now, don't bother trying to forward it to our
3198 // counterparty. They should fail it anyway, but we don't want to bother with
3199 // the round-trips or risk them deciding they definitely want the HTLC and
3200 // force-closing to ensure they get it if we're offline.
3201 // We previously had a much more aggressive check here which tried to ensure
3202 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3203 // but there is no need to do that, and since we're a bit conservative with our
3204 // risk threshold it just results in failing to forward payments.
3205 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3206 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3212 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3213 if let Some(chan_update) = chan_update {
3214 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3215 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3217 else if code == 0x1000 | 13 {
3218 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3220 else if code == 0x1000 | 20 {
3221 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3222 0u16.write(&mut res).expect("Writes cannot fail");
3224 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3225 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3226 chan_update.write(&mut res).expect("Writes cannot fail");
3227 } else if code & 0x1000 == 0x1000 {
3228 // If we're trying to return an error that requires a `channel_update` but
3229 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3230 // generate an update), just use the generic "temporary_node_failure"
3234 return_err!(err, code, &res.0[..]);
3236 Ok((next_hop, shared_secret, next_packet_pk_opt))
3239 fn construct_pending_htlc_status<'a>(
3240 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3241 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3242 ) -> PendingHTLCStatus {
3243 macro_rules! return_err {
3244 ($msg: expr, $err_code: expr, $data: expr) => {
3246 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3247 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3248 channel_id: msg.channel_id,
3249 htlc_id: msg.htlc_id,
3250 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3251 .get_encrypted_failure_packet(&shared_secret, &None),
3257 onion_utils::Hop::Receive(next_hop_data) => {
3259 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3260 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3263 // Note that we could obviously respond immediately with an update_fulfill_htlc
3264 // message, however that would leak that we are the recipient of this payment, so
3265 // instead we stay symmetric with the forwarding case, only responding (after a
3266 // delay) once they've send us a commitment_signed!
3267 PendingHTLCStatus::Forward(info)
3269 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3272 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3273 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3274 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3275 Ok(info) => PendingHTLCStatus::Forward(info),
3276 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3282 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3283 /// public, and thus should be called whenever the result is going to be passed out in a
3284 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3286 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3287 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3288 /// storage and the `peer_state` lock has been dropped.
3290 /// [`channel_update`]: msgs::ChannelUpdate
3291 /// [`internal_closing_signed`]: Self::internal_closing_signed
3292 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3293 if !chan.context.should_announce() {
3294 return Err(LightningError {
3295 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3296 action: msgs::ErrorAction::IgnoreError
3299 if chan.context.get_short_channel_id().is_none() {
3300 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3302 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3303 self.get_channel_update_for_unicast(chan)
3306 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3307 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3308 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3309 /// provided evidence that they know about the existence of the channel.
3311 /// Note that through [`internal_closing_signed`], this function is called without the
3312 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3313 /// removed from the storage and the `peer_state` lock has been dropped.
3315 /// [`channel_update`]: msgs::ChannelUpdate
3316 /// [`internal_closing_signed`]: Self::internal_closing_signed
3317 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3318 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3319 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3320 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3324 self.get_channel_update_for_onion(short_channel_id, chan)
3327 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3328 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3329 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3331 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3332 ChannelUpdateStatus::Enabled => true,
3333 ChannelUpdateStatus::DisabledStaged(_) => true,
3334 ChannelUpdateStatus::Disabled => false,
3335 ChannelUpdateStatus::EnabledStaged(_) => false,
3338 let unsigned = msgs::UnsignedChannelUpdate {
3339 chain_hash: self.chain_hash,
3341 timestamp: chan.context.get_update_time_counter(),
3342 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3343 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3344 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3345 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3346 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3347 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3348 excess_data: Vec::new(),
3350 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3351 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3352 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3354 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3356 Ok(msgs::ChannelUpdate {
3363 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3364 let _lck = self.total_consistency_lock.read().unwrap();
3365 self.send_payment_along_path(SendAlongPathArgs {
3366 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3371 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3372 let SendAlongPathArgs {
3373 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3376 // The top-level caller should hold the total_consistency_lock read lock.
3377 debug_assert!(self.total_consistency_lock.try_write().is_err());
3379 log_trace!(self.logger,
3380 "Attempting to send payment with payment hash {} along path with next hop {}",
3381 payment_hash, path.hops.first().unwrap().short_channel_id);
3382 let prng_seed = self.entropy_source.get_secure_random_bytes();
3383 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3385 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3386 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3387 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3389 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3390 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3392 let err: Result<(), _> = loop {
3393 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3394 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3395 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3398 let per_peer_state = self.per_peer_state.read().unwrap();
3399 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3400 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3401 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3402 let peer_state = &mut *peer_state_lock;
3403 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3404 match chan_phase_entry.get_mut() {
3405 ChannelPhase::Funded(chan) => {
3406 if !chan.context.is_live() {
3407 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3409 let funding_txo = chan.context.get_funding_txo().unwrap();
3410 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3411 htlc_cltv, HTLCSource::OutboundRoute {
3413 session_priv: session_priv.clone(),
3414 first_hop_htlc_msat: htlc_msat,
3416 }, onion_packet, None, &self.fee_estimator, &self.logger);
3417 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3418 Some(monitor_update) => {
3419 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3421 // Note that MonitorUpdateInProgress here indicates (per function
3422 // docs) that we will resend the commitment update once monitor
3423 // updating completes. Therefore, we must return an error
3424 // indicating that it is unsafe to retry the payment wholesale,
3425 // which we do in the send_payment check for
3426 // MonitorUpdateInProgress, below.
3427 return Err(APIError::MonitorUpdateInProgress);
3435 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3438 // The channel was likely removed after we fetched the id from the
3439 // `short_to_chan_info` map, but before we successfully locked the
3440 // `channel_by_id` map.
3441 // This can occur as no consistency guarantees exists between the two maps.
3442 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3447 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3448 Ok(_) => unreachable!(),
3450 Err(APIError::ChannelUnavailable { err: e.err })
3455 /// Sends a payment along a given route.
3457 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3458 /// fields for more info.
3460 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3461 /// [`PeerManager::process_events`]).
3463 /// # Avoiding Duplicate Payments
3465 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3466 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3467 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3468 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3469 /// second payment with the same [`PaymentId`].
3471 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3472 /// tracking of payments, including state to indicate once a payment has completed. Because you
3473 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3474 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3475 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3477 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3478 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3479 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3480 /// [`ChannelManager::list_recent_payments`] for more information.
3482 /// # Possible Error States on [`PaymentSendFailure`]
3484 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3485 /// each entry matching the corresponding-index entry in the route paths, see
3486 /// [`PaymentSendFailure`] for more info.
3488 /// In general, a path may raise:
3489 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3490 /// node public key) is specified.
3491 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
3492 /// closed, doesn't exist, or the peer is currently disconnected.
3493 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3494 /// relevant updates.
3496 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3497 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3498 /// different route unless you intend to pay twice!
3500 /// [`RouteHop`]: crate::routing::router::RouteHop
3501 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3502 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3503 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3504 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3505 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3506 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3507 let best_block_height = self.best_block.read().unwrap().height();
3508 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3509 self.pending_outbound_payments
3510 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3511 &self.entropy_source, &self.node_signer, best_block_height,
3512 |args| self.send_payment_along_path(args))
3515 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3516 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3517 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3518 let best_block_height = self.best_block.read().unwrap().height();
3519 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3520 self.pending_outbound_payments
3521 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3522 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3523 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3524 &self.pending_events, |args| self.send_payment_along_path(args))
3528 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3529 let best_block_height = self.best_block.read().unwrap().height();
3530 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3531 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3532 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3533 best_block_height, |args| self.send_payment_along_path(args))
3537 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3538 let best_block_height = self.best_block.read().unwrap().height();
3539 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3543 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3544 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3548 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3549 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3550 /// retries are exhausted.
3552 /// # Event Generation
3554 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3555 /// as there are no remaining pending HTLCs for this payment.
3557 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3558 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3559 /// determine the ultimate status of a payment.
3561 /// # Restart Behavior
3563 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3564 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated.
3565 pub fn abandon_payment(&self, payment_id: PaymentId) {
3566 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3567 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3570 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3571 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3572 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3573 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3574 /// never reach the recipient.
3576 /// See [`send_payment`] documentation for more details on the return value of this function
3577 /// and idempotency guarantees provided by the [`PaymentId`] key.
3579 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3580 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3582 /// [`send_payment`]: Self::send_payment
3583 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3584 let best_block_height = self.best_block.read().unwrap().height();
3585 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3586 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3587 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3588 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3591 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3592 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3594 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3597 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3598 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3599 let best_block_height = self.best_block.read().unwrap().height();
3600 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3601 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3602 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3603 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3604 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3607 /// Send a payment that is probing the given route for liquidity. We calculate the
3608 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3609 /// us to easily discern them from real payments.
3610 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3611 let best_block_height = self.best_block.read().unwrap().height();
3612 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3613 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3614 &self.entropy_source, &self.node_signer, best_block_height,
3615 |args| self.send_payment_along_path(args))
3618 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3621 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3622 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3625 /// Sends payment probes over all paths of a route that would be used to pay the given
3626 /// amount to the given `node_id`.
3628 /// See [`ChannelManager::send_preflight_probes`] for more information.
3629 pub fn send_spontaneous_preflight_probes(
3630 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3631 liquidity_limit_multiplier: Option<u64>,
3632 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3633 let payment_params =
3634 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3636 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
3638 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3641 /// Sends payment probes over all paths of a route that would be used to pay a route found
3642 /// according to the given [`RouteParameters`].
3644 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3645 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3646 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3647 /// confirmation in a wallet UI.
3649 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3650 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3651 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3652 /// payment. To mitigate this issue, channels with available liquidity less than the required
3653 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3654 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3655 pub fn send_preflight_probes(
3656 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3657 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3658 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3660 let payer = self.get_our_node_id();
3661 let usable_channels = self.list_usable_channels();
3662 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3663 let inflight_htlcs = self.compute_inflight_htlcs();
3667 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3669 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3670 ProbeSendFailure::RouteNotFound
3673 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3675 let mut res = Vec::new();
3677 for mut path in route.paths {
3678 // If the last hop is probably an unannounced channel we refrain from probing all the
3679 // way through to the end and instead probe up to the second-to-last channel.
3680 while let Some(last_path_hop) = path.hops.last() {
3681 if last_path_hop.maybe_announced_channel {
3682 // We found a potentially announced last hop.
3685 // Drop the last hop, as it's likely unannounced.
3688 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3689 last_path_hop.short_channel_id
3691 let final_value_msat = path.final_value_msat();
3693 if let Some(new_last) = path.hops.last_mut() {
3694 new_last.fee_msat += final_value_msat;
3699 if path.hops.len() < 2 {
3702 "Skipped sending payment probe over path with less than two hops."
3707 if let Some(first_path_hop) = path.hops.first() {
3708 if let Some(first_hop) = first_hops.iter().find(|h| {
3709 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3711 let path_value = path.final_value_msat() + path.fee_msat();
3712 let used_liquidity =
3713 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3715 if first_hop.next_outbound_htlc_limit_msat
3716 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3718 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3721 *used_liquidity += path_value;
3726 res.push(self.send_probe(path).map_err(|e| {
3727 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3728 ProbeSendFailure::SendingFailed(e)
3735 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3736 /// which checks the correctness of the funding transaction given the associated channel.
3737 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3738 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
3739 mut find_funding_output: FundingOutput,
3740 ) -> Result<(), APIError> {
3741 let per_peer_state = self.per_peer_state.read().unwrap();
3742 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3743 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3745 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3746 let peer_state = &mut *peer_state_lock;
3747 let (chan, msg) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3748 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3749 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3751 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &self.logger)
3752 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3753 let channel_id = chan.context.channel_id();
3754 let user_id = chan.context.get_user_id();
3755 let shutdown_res = chan.context.force_shutdown(false);
3756 let channel_capacity = chan.context.get_value_satoshis();
3757 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3758 } else { unreachable!(); });
3760 Ok((chan, funding_msg)) => (chan, funding_msg),
3761 Err((chan, err)) => {
3762 mem::drop(peer_state_lock);
3763 mem::drop(per_peer_state);
3765 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3766 return Err(APIError::ChannelUnavailable {
3767 err: "Signer refused to sign the initial commitment transaction".to_owned()
3773 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3774 return Err(APIError::APIMisuseError {
3776 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3777 temporary_channel_id, counterparty_node_id),
3780 None => return Err(APIError::ChannelUnavailable {err: format!(
3781 "Channel with id {} not found for the passed counterparty node_id {}",
3782 temporary_channel_id, counterparty_node_id),
3786 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3787 node_id: chan.context.get_counterparty_node_id(),
3790 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3791 hash_map::Entry::Occupied(_) => {
3792 panic!("Generated duplicate funding txid?");
3794 hash_map::Entry::Vacant(e) => {
3795 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3796 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3797 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3799 e.insert(ChannelPhase::Funded(chan));
3806 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3807 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
3808 Ok(OutPoint { txid: tx.txid(), index: output_index })
3812 /// Call this upon creation of a funding transaction for the given channel.
3814 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3815 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3817 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3818 /// across the p2p network.
3820 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3821 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3823 /// May panic if the output found in the funding transaction is duplicative with some other
3824 /// channel (note that this should be trivially prevented by using unique funding transaction
3825 /// keys per-channel).
3827 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3828 /// counterparty's signature the funding transaction will automatically be broadcast via the
3829 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3831 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3832 /// not currently support replacing a funding transaction on an existing channel. Instead,
3833 /// create a new channel with a conflicting funding transaction.
3835 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3836 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3837 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3838 /// for more details.
3840 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3841 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3842 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3843 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
3846 /// Call this upon creation of a batch funding transaction for the given channels.
3848 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
3849 /// each individual channel and transaction output.
3851 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
3852 /// will only be broadcast when we have safely received and persisted the counterparty's
3853 /// signature for each channel.
3855 /// If there is an error, all channels in the batch are to be considered closed.
3856 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
3857 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3858 let mut result = Ok(());
3860 if !funding_transaction.is_coin_base() {
3861 for inp in funding_transaction.input.iter() {
3862 if inp.witness.is_empty() {
3863 result = result.and(Err(APIError::APIMisuseError {
3864 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3869 if funding_transaction.output.len() > u16::max_value() as usize {
3870 result = result.and(Err(APIError::APIMisuseError {
3871 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3875 let height = self.best_block.read().unwrap().height();
3876 // Transactions are evaluated as final by network mempools if their locktime is strictly
3877 // lower than the next block height. However, the modules constituting our Lightning
3878 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3879 // module is ahead of LDK, only allow one more block of headroom.
3880 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3881 result = result.and(Err(APIError::APIMisuseError {
3882 err: "Funding transaction absolute timelock is non-final".to_owned()
3887 let txid = funding_transaction.txid();
3888 let is_batch_funding = temporary_channels.len() > 1;
3889 let mut funding_batch_states = if is_batch_funding {
3890 Some(self.funding_batch_states.lock().unwrap())
3894 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
3895 match states.entry(txid) {
3896 btree_map::Entry::Occupied(_) => {
3897 result = result.clone().and(Err(APIError::APIMisuseError {
3898 err: "Batch funding transaction with the same txid already exists".to_owned()
3902 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
3905 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
3906 result = result.and_then(|_| self.funding_transaction_generated_intern(
3907 temporary_channel_id,
3908 counterparty_node_id,
3909 funding_transaction.clone(),
3912 let mut output_index = None;
3913 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3914 for (idx, outp) in tx.output.iter().enumerate() {
3915 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3916 if output_index.is_some() {
3917 return Err(APIError::APIMisuseError {
3918 err: "Multiple outputs matched the expected script and value".to_owned()
3921 output_index = Some(idx as u16);
3924 if output_index.is_none() {
3925 return Err(APIError::APIMisuseError {
3926 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3929 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
3930 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
3931 funding_batch_state.push((outpoint.to_channel_id(), *counterparty_node_id, false));
3937 if let Err(ref e) = result {
3938 // Remaining channels need to be removed on any error.
3939 let e = format!("Error in transaction funding: {:?}", e);
3940 let mut channels_to_remove = Vec::new();
3941 channels_to_remove.extend(funding_batch_states.as_mut()
3942 .and_then(|states| states.remove(&txid))
3943 .into_iter().flatten()
3944 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
3946 channels_to_remove.extend(temporary_channels.iter()
3947 .map(|(&chan_id, &node_id)| (chan_id, node_id))
3949 let mut shutdown_results = Vec::new();
3951 let per_peer_state = self.per_peer_state.read().unwrap();
3952 for (channel_id, counterparty_node_id) in channels_to_remove {
3953 per_peer_state.get(&counterparty_node_id)
3954 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
3955 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
3957 update_maps_on_chan_removal!(self, &chan.context());
3958 self.issue_channel_close_events(&chan.context(), ClosureReason::ProcessingError { err: e.clone() });
3959 shutdown_results.push(chan.context_mut().force_shutdown(false));
3963 for shutdown_result in shutdown_results.drain(..) {
3964 self.finish_close_channel(shutdown_result);
3970 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3972 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3973 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3974 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3975 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3977 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3978 /// `counterparty_node_id` is provided.
3980 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3981 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3983 /// If an error is returned, none of the updates should be considered applied.
3985 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3986 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3987 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3988 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3989 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3990 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3991 /// [`APIMisuseError`]: APIError::APIMisuseError
3992 pub fn update_partial_channel_config(
3993 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3994 ) -> Result<(), APIError> {
3995 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3996 return Err(APIError::APIMisuseError {
3997 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4001 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4002 let per_peer_state = self.per_peer_state.read().unwrap();
4003 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4004 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4005 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4006 let peer_state = &mut *peer_state_lock;
4007 for channel_id in channel_ids {
4008 if !peer_state.has_channel(channel_id) {
4009 return Err(APIError::ChannelUnavailable {
4010 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4014 for channel_id in channel_ids {
4015 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4016 let mut config = channel_phase.context().config();
4017 config.apply(config_update);
4018 if !channel_phase.context_mut().update_config(&config) {
4021 if let ChannelPhase::Funded(channel) = channel_phase {
4022 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4023 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4024 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4025 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4026 node_id: channel.context.get_counterparty_node_id(),
4033 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4034 debug_assert!(false);
4035 return Err(APIError::ChannelUnavailable {
4037 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4038 channel_id, counterparty_node_id),
4045 /// Atomically updates the [`ChannelConfig`] for the given channels.
4047 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4048 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4049 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4050 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4052 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4053 /// `counterparty_node_id` is provided.
4055 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4056 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4058 /// If an error is returned, none of the updates should be considered applied.
4060 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4061 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4062 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4063 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4064 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4065 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4066 /// [`APIMisuseError`]: APIError::APIMisuseError
4067 pub fn update_channel_config(
4068 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4069 ) -> Result<(), APIError> {
4070 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4073 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4074 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4076 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4077 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4079 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4080 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4081 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4082 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4083 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4085 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4086 /// you from forwarding more than you received. See
4087 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4090 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4093 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4094 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4095 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4096 // TODO: when we move to deciding the best outbound channel at forward time, only take
4097 // `next_node_id` and not `next_hop_channel_id`
4098 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4099 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4101 let next_hop_scid = {
4102 let peer_state_lock = self.per_peer_state.read().unwrap();
4103 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4104 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4105 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4106 let peer_state = &mut *peer_state_lock;
4107 match peer_state.channel_by_id.get(next_hop_channel_id) {
4108 Some(ChannelPhase::Funded(chan)) => {
4109 if !chan.context.is_usable() {
4110 return Err(APIError::ChannelUnavailable {
4111 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4114 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4116 Some(_) => return Err(APIError::ChannelUnavailable {
4117 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4118 next_hop_channel_id, next_node_id)
4120 None => return Err(APIError::ChannelUnavailable {
4121 err: format!("Channel with id {} not found for the passed counterparty node_id {}",
4122 next_hop_channel_id, next_node_id)
4127 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4128 .ok_or_else(|| APIError::APIMisuseError {
4129 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4132 let routing = match payment.forward_info.routing {
4133 PendingHTLCRouting::Forward { onion_packet, .. } => {
4134 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
4136 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4138 let skimmed_fee_msat =
4139 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4140 let pending_htlc_info = PendingHTLCInfo {
4141 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4142 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4145 let mut per_source_pending_forward = [(
4146 payment.prev_short_channel_id,
4147 payment.prev_funding_outpoint,
4148 payment.prev_user_channel_id,
4149 vec![(pending_htlc_info, payment.prev_htlc_id)]
4151 self.forward_htlcs(&mut per_source_pending_forward);
4155 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4156 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4158 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4161 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4162 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4163 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4165 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4166 .ok_or_else(|| APIError::APIMisuseError {
4167 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4170 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4171 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4172 short_channel_id: payment.prev_short_channel_id,
4173 user_channel_id: Some(payment.prev_user_channel_id),
4174 outpoint: payment.prev_funding_outpoint,
4175 htlc_id: payment.prev_htlc_id,
4176 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4177 phantom_shared_secret: None,
4180 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4181 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4182 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4183 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4188 /// Processes HTLCs which are pending waiting on random forward delay.
4190 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4191 /// Will likely generate further events.
4192 pub fn process_pending_htlc_forwards(&self) {
4193 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4195 let mut new_events = VecDeque::new();
4196 let mut failed_forwards = Vec::new();
4197 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4199 let mut forward_htlcs = HashMap::new();
4200 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4202 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4203 if short_chan_id != 0 {
4204 macro_rules! forwarding_channel_not_found {
4206 for forward_info in pending_forwards.drain(..) {
4207 match forward_info {
4208 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4209 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4210 forward_info: PendingHTLCInfo {
4211 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4212 outgoing_cltv_value, ..
4215 macro_rules! failure_handler {
4216 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4217 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4219 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4220 short_channel_id: prev_short_channel_id,
4221 user_channel_id: Some(prev_user_channel_id),
4222 outpoint: prev_funding_outpoint,
4223 htlc_id: prev_htlc_id,
4224 incoming_packet_shared_secret: incoming_shared_secret,
4225 phantom_shared_secret: $phantom_ss,
4228 let reason = if $next_hop_unknown {
4229 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4231 HTLCDestination::FailedPayment{ payment_hash }
4234 failed_forwards.push((htlc_source, payment_hash,
4235 HTLCFailReason::reason($err_code, $err_data),
4241 macro_rules! fail_forward {
4242 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4244 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4248 macro_rules! failed_payment {
4249 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4251 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4255 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4256 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4257 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
4258 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4259 let next_hop = match onion_utils::decode_next_payment_hop(
4260 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4261 payment_hash, &self.node_signer
4264 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4265 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4266 // In this scenario, the phantom would have sent us an
4267 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4268 // if it came from us (the second-to-last hop) but contains the sha256
4270 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4272 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4273 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4277 onion_utils::Hop::Receive(hop_data) => {
4278 match self.construct_recv_pending_htlc_info(hop_data,
4279 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4280 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4282 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4283 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4289 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4292 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4295 HTLCForwardInfo::FailHTLC { .. } => {
4296 // Channel went away before we could fail it. This implies
4297 // the channel is now on chain and our counterparty is
4298 // trying to broadcast the HTLC-Timeout, but that's their
4299 // problem, not ours.
4305 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
4306 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
4307 Some((cp_id, chan_id)) => (cp_id, chan_id),
4309 forwarding_channel_not_found!();
4313 let per_peer_state = self.per_peer_state.read().unwrap();
4314 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4315 if peer_state_mutex_opt.is_none() {
4316 forwarding_channel_not_found!();
4319 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4320 let peer_state = &mut *peer_state_lock;
4321 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4322 for forward_info in pending_forwards.drain(..) {
4323 match forward_info {
4324 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4325 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4326 forward_info: PendingHTLCInfo {
4327 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4328 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4331 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4332 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4333 short_channel_id: prev_short_channel_id,
4334 user_channel_id: Some(prev_user_channel_id),
4335 outpoint: prev_funding_outpoint,
4336 htlc_id: prev_htlc_id,
4337 incoming_packet_shared_secret: incoming_shared_secret,
4338 // Phantom payments are only PendingHTLCRouting::Receive.
4339 phantom_shared_secret: None,
4341 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4342 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4343 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4346 if let ChannelError::Ignore(msg) = e {
4347 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4349 panic!("Stated return value requirements in send_htlc() were not met");
4351 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4352 failed_forwards.push((htlc_source, payment_hash,
4353 HTLCFailReason::reason(failure_code, data),
4354 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4359 HTLCForwardInfo::AddHTLC { .. } => {
4360 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4362 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4363 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4364 if let Err(e) = chan.queue_fail_htlc(
4365 htlc_id, err_packet, &self.logger
4367 if let ChannelError::Ignore(msg) = e {
4368 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4370 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4372 // fail-backs are best-effort, we probably already have one
4373 // pending, and if not that's OK, if not, the channel is on
4374 // the chain and sending the HTLC-Timeout is their problem.
4381 forwarding_channel_not_found!();
4385 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4386 match forward_info {
4387 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4388 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4389 forward_info: PendingHTLCInfo {
4390 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4391 skimmed_fee_msat, ..
4394 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4395 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4396 let _legacy_hop_data = Some(payment_data.clone());
4397 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4398 payment_metadata, custom_tlvs };
4399 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4400 Some(payment_data), phantom_shared_secret, onion_fields)
4402 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4403 let onion_fields = RecipientOnionFields {
4404 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4408 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4409 payment_data, None, onion_fields)
4412 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4415 let claimable_htlc = ClaimableHTLC {
4416 prev_hop: HTLCPreviousHopData {
4417 short_channel_id: prev_short_channel_id,
4418 user_channel_id: Some(prev_user_channel_id),
4419 outpoint: prev_funding_outpoint,
4420 htlc_id: prev_htlc_id,
4421 incoming_packet_shared_secret: incoming_shared_secret,
4422 phantom_shared_secret,
4424 // We differentiate the received value from the sender intended value
4425 // if possible so that we don't prematurely mark MPP payments complete
4426 // if routing nodes overpay
4427 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4428 sender_intended_value: outgoing_amt_msat,
4430 total_value_received: None,
4431 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4434 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4437 let mut committed_to_claimable = false;
4439 macro_rules! fail_htlc {
4440 ($htlc: expr, $payment_hash: expr) => {
4441 debug_assert!(!committed_to_claimable);
4442 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4443 htlc_msat_height_data.extend_from_slice(
4444 &self.best_block.read().unwrap().height().to_be_bytes(),
4446 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4447 short_channel_id: $htlc.prev_hop.short_channel_id,
4448 user_channel_id: $htlc.prev_hop.user_channel_id,
4449 outpoint: prev_funding_outpoint,
4450 htlc_id: $htlc.prev_hop.htlc_id,
4451 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4452 phantom_shared_secret,
4454 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4455 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4457 continue 'next_forwardable_htlc;
4460 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4461 let mut receiver_node_id = self.our_network_pubkey;
4462 if phantom_shared_secret.is_some() {
4463 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4464 .expect("Failed to get node_id for phantom node recipient");
4467 macro_rules! check_total_value {
4468 ($purpose: expr) => {{
4469 let mut payment_claimable_generated = false;
4470 let is_keysend = match $purpose {
4471 events::PaymentPurpose::SpontaneousPayment(_) => true,
4472 events::PaymentPurpose::InvoicePayment { .. } => false,
4474 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4475 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4476 fail_htlc!(claimable_htlc, payment_hash);
4478 let ref mut claimable_payment = claimable_payments.claimable_payments
4479 .entry(payment_hash)
4480 // Note that if we insert here we MUST NOT fail_htlc!()
4481 .or_insert_with(|| {
4482 committed_to_claimable = true;
4484 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4487 if $purpose != claimable_payment.purpose {
4488 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4489 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4490 fail_htlc!(claimable_htlc, payment_hash);
4492 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4493 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4494 fail_htlc!(claimable_htlc, payment_hash);
4496 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4497 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4498 fail_htlc!(claimable_htlc, payment_hash);
4501 claimable_payment.onion_fields = Some(onion_fields);
4503 let ref mut htlcs = &mut claimable_payment.htlcs;
4504 let mut total_value = claimable_htlc.sender_intended_value;
4505 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4506 for htlc in htlcs.iter() {
4507 total_value += htlc.sender_intended_value;
4508 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4509 if htlc.total_msat != claimable_htlc.total_msat {
4510 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4511 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4512 total_value = msgs::MAX_VALUE_MSAT;
4514 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4516 // The condition determining whether an MPP is complete must
4517 // match exactly the condition used in `timer_tick_occurred`
4518 if total_value >= msgs::MAX_VALUE_MSAT {
4519 fail_htlc!(claimable_htlc, payment_hash);
4520 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4521 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4523 fail_htlc!(claimable_htlc, payment_hash);
4524 } else if total_value >= claimable_htlc.total_msat {
4525 #[allow(unused_assignments)] {
4526 committed_to_claimable = true;
4528 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4529 htlcs.push(claimable_htlc);
4530 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4531 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4532 let counterparty_skimmed_fee_msat = htlcs.iter()
4533 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4534 debug_assert!(total_value.saturating_sub(amount_msat) <=
4535 counterparty_skimmed_fee_msat);
4536 new_events.push_back((events::Event::PaymentClaimable {
4537 receiver_node_id: Some(receiver_node_id),
4541 counterparty_skimmed_fee_msat,
4542 via_channel_id: Some(prev_channel_id),
4543 via_user_channel_id: Some(prev_user_channel_id),
4544 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4545 onion_fields: claimable_payment.onion_fields.clone(),
4547 payment_claimable_generated = true;
4549 // Nothing to do - we haven't reached the total
4550 // payment value yet, wait until we receive more
4552 htlcs.push(claimable_htlc);
4553 #[allow(unused_assignments)] {
4554 committed_to_claimable = true;
4557 payment_claimable_generated
4561 // Check that the payment hash and secret are known. Note that we
4562 // MUST take care to handle the "unknown payment hash" and
4563 // "incorrect payment secret" cases here identically or we'd expose
4564 // that we are the ultimate recipient of the given payment hash.
4565 // Further, we must not expose whether we have any other HTLCs
4566 // associated with the same payment_hash pending or not.
4567 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4568 match payment_secrets.entry(payment_hash) {
4569 hash_map::Entry::Vacant(_) => {
4570 match claimable_htlc.onion_payload {
4571 OnionPayload::Invoice { .. } => {
4572 let payment_data = payment_data.unwrap();
4573 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4574 Ok(result) => result,
4576 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4577 fail_htlc!(claimable_htlc, payment_hash);
4580 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4581 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4582 if (cltv_expiry as u64) < expected_min_expiry_height {
4583 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4584 &payment_hash, cltv_expiry, expected_min_expiry_height);
4585 fail_htlc!(claimable_htlc, payment_hash);
4588 let purpose = events::PaymentPurpose::InvoicePayment {
4589 payment_preimage: payment_preimage.clone(),
4590 payment_secret: payment_data.payment_secret,
4592 check_total_value!(purpose);
4594 OnionPayload::Spontaneous(preimage) => {
4595 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4596 check_total_value!(purpose);
4600 hash_map::Entry::Occupied(inbound_payment) => {
4601 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4602 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4603 fail_htlc!(claimable_htlc, payment_hash);
4605 let payment_data = payment_data.unwrap();
4606 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4607 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4608 fail_htlc!(claimable_htlc, payment_hash);
4609 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4610 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4611 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4612 fail_htlc!(claimable_htlc, payment_hash);
4614 let purpose = events::PaymentPurpose::InvoicePayment {
4615 payment_preimage: inbound_payment.get().payment_preimage,
4616 payment_secret: payment_data.payment_secret,
4618 let payment_claimable_generated = check_total_value!(purpose);
4619 if payment_claimable_generated {
4620 inbound_payment.remove_entry();
4626 HTLCForwardInfo::FailHTLC { .. } => {
4627 panic!("Got pending fail of our own HTLC");
4635 let best_block_height = self.best_block.read().unwrap().height();
4636 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4637 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4638 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4640 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4641 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4643 self.forward_htlcs(&mut phantom_receives);
4645 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4646 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4647 // nice to do the work now if we can rather than while we're trying to get messages in the
4649 self.check_free_holding_cells();
4651 if new_events.is_empty() { return }
4652 let mut events = self.pending_events.lock().unwrap();
4653 events.append(&mut new_events);
4656 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4658 /// Expects the caller to have a total_consistency_lock read lock.
4659 fn process_background_events(&self) -> NotifyOption {
4660 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4662 self.background_events_processed_since_startup.store(true, Ordering::Release);
4664 let mut background_events = Vec::new();
4665 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4666 if background_events.is_empty() {
4667 return NotifyOption::SkipPersistNoEvents;
4670 for event in background_events.drain(..) {
4672 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4673 // The channel has already been closed, so no use bothering to care about the
4674 // monitor updating completing.
4675 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4677 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4678 let mut updated_chan = false;
4680 let per_peer_state = self.per_peer_state.read().unwrap();
4681 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4682 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4683 let peer_state = &mut *peer_state_lock;
4684 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4685 hash_map::Entry::Occupied(mut chan_phase) => {
4686 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4687 updated_chan = true;
4688 handle_new_monitor_update!(self, funding_txo, update.clone(),
4689 peer_state_lock, peer_state, per_peer_state, chan);
4691 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4694 hash_map::Entry::Vacant(_) => {},
4699 // TODO: Track this as in-flight even though the channel is closed.
4700 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4703 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4704 let per_peer_state = self.per_peer_state.read().unwrap();
4705 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4706 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4707 let peer_state = &mut *peer_state_lock;
4708 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4709 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4711 let update_actions = peer_state.monitor_update_blocked_actions
4712 .remove(&channel_id).unwrap_or(Vec::new());
4713 mem::drop(peer_state_lock);
4714 mem::drop(per_peer_state);
4715 self.handle_monitor_update_completion_actions(update_actions);
4721 NotifyOption::DoPersist
4724 #[cfg(any(test, feature = "_test_utils"))]
4725 /// Process background events, for functional testing
4726 pub fn test_process_background_events(&self) {
4727 let _lck = self.total_consistency_lock.read().unwrap();
4728 let _ = self.process_background_events();
4731 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4732 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4733 // If the feerate has decreased by less than half, don't bother
4734 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4735 if new_feerate != chan.context.get_feerate_sat_per_1000_weight() {
4736 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4737 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4739 return NotifyOption::SkipPersistNoEvents;
4741 if !chan.context.is_live() {
4742 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4743 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4744 return NotifyOption::SkipPersistNoEvents;
4746 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4747 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4749 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4750 NotifyOption::DoPersist
4754 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4755 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4756 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4757 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4758 pub fn maybe_update_chan_fees(&self) {
4759 PersistenceNotifierGuard::optionally_notify(self, || {
4760 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4762 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4763 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4765 let per_peer_state = self.per_peer_state.read().unwrap();
4766 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4767 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4768 let peer_state = &mut *peer_state_lock;
4769 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4770 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4772 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4777 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4778 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4786 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4788 /// This currently includes:
4789 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4790 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4791 /// than a minute, informing the network that they should no longer attempt to route over
4793 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4794 /// with the current [`ChannelConfig`].
4795 /// * Removing peers which have disconnected but and no longer have any channels.
4796 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4797 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
4798 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
4799 /// The latter is determined using the system clock in `std` and the block time minus two
4800 /// hours in `no-std`.
4802 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4803 /// estimate fetches.
4805 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4806 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4807 pub fn timer_tick_occurred(&self) {
4808 PersistenceNotifierGuard::optionally_notify(self, || {
4809 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4811 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4812 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4814 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4815 let mut timed_out_mpp_htlcs = Vec::new();
4816 let mut pending_peers_awaiting_removal = Vec::new();
4817 let mut shutdown_channels = Vec::new();
4819 let mut process_unfunded_channel_tick = |
4820 chan_id: &ChannelId,
4821 context: &mut ChannelContext<SP>,
4822 unfunded_context: &mut UnfundedChannelContext,
4823 pending_msg_events: &mut Vec<MessageSendEvent>,
4824 counterparty_node_id: PublicKey,
4826 context.maybe_expire_prev_config();
4827 if unfunded_context.should_expire_unfunded_channel() {
4828 log_error!(self.logger,
4829 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4830 update_maps_on_chan_removal!(self, &context);
4831 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4832 shutdown_channels.push(context.force_shutdown(false));
4833 pending_msg_events.push(MessageSendEvent::HandleError {
4834 node_id: counterparty_node_id,
4835 action: msgs::ErrorAction::SendErrorMessage {
4836 msg: msgs::ErrorMessage {
4837 channel_id: *chan_id,
4838 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4849 let per_peer_state = self.per_peer_state.read().unwrap();
4850 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4851 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4852 let peer_state = &mut *peer_state_lock;
4853 let pending_msg_events = &mut peer_state.pending_msg_events;
4854 let counterparty_node_id = *counterparty_node_id;
4855 peer_state.channel_by_id.retain(|chan_id, phase| {
4857 ChannelPhase::Funded(chan) => {
4858 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4863 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4864 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4866 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4867 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4868 handle_errors.push((Err(err), counterparty_node_id));
4869 if needs_close { return false; }
4872 match chan.channel_update_status() {
4873 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4874 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4875 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4876 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4877 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4878 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4879 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4881 if n >= DISABLE_GOSSIP_TICKS {
4882 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4883 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4884 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4888 should_persist = NotifyOption::DoPersist;
4890 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4893 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4895 if n >= ENABLE_GOSSIP_TICKS {
4896 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4897 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4898 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4902 should_persist = NotifyOption::DoPersist;
4904 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4910 chan.context.maybe_expire_prev_config();
4912 if chan.should_disconnect_peer_awaiting_response() {
4913 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4914 counterparty_node_id, chan_id);
4915 pending_msg_events.push(MessageSendEvent::HandleError {
4916 node_id: counterparty_node_id,
4917 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4918 msg: msgs::WarningMessage {
4919 channel_id: *chan_id,
4920 data: "Disconnecting due to timeout awaiting response".to_owned(),
4928 ChannelPhase::UnfundedInboundV1(chan) => {
4929 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4930 pending_msg_events, counterparty_node_id)
4932 ChannelPhase::UnfundedOutboundV1(chan) => {
4933 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4934 pending_msg_events, counterparty_node_id)
4939 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4940 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4941 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4942 peer_state.pending_msg_events.push(
4943 events::MessageSendEvent::HandleError {
4944 node_id: counterparty_node_id,
4945 action: msgs::ErrorAction::SendErrorMessage {
4946 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4952 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4954 if peer_state.ok_to_remove(true) {
4955 pending_peers_awaiting_removal.push(counterparty_node_id);
4960 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4961 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4962 // of to that peer is later closed while still being disconnected (i.e. force closed),
4963 // we therefore need to remove the peer from `peer_state` separately.
4964 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4965 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4966 // negative effects on parallelism as much as possible.
4967 if pending_peers_awaiting_removal.len() > 0 {
4968 let mut per_peer_state = self.per_peer_state.write().unwrap();
4969 for counterparty_node_id in pending_peers_awaiting_removal {
4970 match per_peer_state.entry(counterparty_node_id) {
4971 hash_map::Entry::Occupied(entry) => {
4972 // Remove the entry if the peer is still disconnected and we still
4973 // have no channels to the peer.
4974 let remove_entry = {
4975 let peer_state = entry.get().lock().unwrap();
4976 peer_state.ok_to_remove(true)
4979 entry.remove_entry();
4982 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4987 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4988 if payment.htlcs.is_empty() {
4989 // This should be unreachable
4990 debug_assert!(false);
4993 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4994 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4995 // In this case we're not going to handle any timeouts of the parts here.
4996 // This condition determining whether the MPP is complete here must match
4997 // exactly the condition used in `process_pending_htlc_forwards`.
4998 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4999 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5002 } else if payment.htlcs.iter_mut().any(|htlc| {
5003 htlc.timer_ticks += 1;
5004 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5006 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5007 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5014 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5015 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5016 let reason = HTLCFailReason::from_failure_code(23);
5017 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5018 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5021 for (err, counterparty_node_id) in handle_errors.drain(..) {
5022 let _ = handle_error!(self, err, counterparty_node_id);
5025 for shutdown_res in shutdown_channels {
5026 self.finish_close_channel(shutdown_res);
5029 #[cfg(feature = "std")]
5030 let duration_since_epoch = std::time::SystemTime::now()
5031 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5032 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5033 #[cfg(not(feature = "std"))]
5034 let duration_since_epoch = Duration::from_secs(
5035 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5038 self.pending_outbound_payments.remove_stale_payments(
5039 duration_since_epoch, &self.pending_events
5042 // Technically we don't need to do this here, but if we have holding cell entries in a
5043 // channel that need freeing, it's better to do that here and block a background task
5044 // than block the message queueing pipeline.
5045 if self.check_free_holding_cells() {
5046 should_persist = NotifyOption::DoPersist;
5053 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
5054 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
5055 /// along the path (including in our own channel on which we received it).
5057 /// Note that in some cases around unclean shutdown, it is possible the payment may have
5058 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
5059 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
5060 /// may have already been failed automatically by LDK if it was nearing its expiration time.
5062 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
5063 /// [`ChannelManager::claim_funds`]), you should still monitor for
5064 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
5065 /// startup during which time claims that were in-progress at shutdown may be replayed.
5066 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
5067 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
5070 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
5071 /// reason for the failure.
5073 /// See [`FailureCode`] for valid failure codes.
5074 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
5075 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5077 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
5078 if let Some(payment) = removed_source {
5079 for htlc in payment.htlcs {
5080 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
5081 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5082 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
5083 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5088 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
5089 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
5090 match failure_code {
5091 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
5092 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
5093 FailureCode::IncorrectOrUnknownPaymentDetails => {
5094 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5095 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5096 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
5098 FailureCode::InvalidOnionPayload(data) => {
5099 let fail_data = match data {
5100 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
5103 HTLCFailReason::reason(failure_code.into(), fail_data)
5108 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5109 /// that we want to return and a channel.
5111 /// This is for failures on the channel on which the HTLC was *received*, not failures
5113 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5114 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
5115 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
5116 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
5117 // an inbound SCID alias before the real SCID.
5118 let scid_pref = if chan.context.should_announce() {
5119 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
5121 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
5123 if let Some(scid) = scid_pref {
5124 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
5126 (0x4000|10, Vec::new())
5131 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
5132 /// that we want to return and a channel.
5133 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
5134 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
5135 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
5136 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
5137 if desired_err_code == 0x1000 | 20 {
5138 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
5139 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
5140 0u16.write(&mut enc).expect("Writes cannot fail");
5142 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
5143 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
5144 upd.write(&mut enc).expect("Writes cannot fail");
5145 (desired_err_code, enc.0)
5147 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
5148 // which means we really shouldn't have gotten a payment to be forwarded over this
5149 // channel yet, or if we did it's from a route hint. Either way, returning an error of
5150 // PERM|no_such_channel should be fine.
5151 (0x4000|10, Vec::new())
5155 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
5156 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
5157 // be surfaced to the user.
5158 fn fail_holding_cell_htlcs(
5159 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
5160 counterparty_node_id: &PublicKey
5162 let (failure_code, onion_failure_data) = {
5163 let per_peer_state = self.per_peer_state.read().unwrap();
5164 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
5165 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5166 let peer_state = &mut *peer_state_lock;
5167 match peer_state.channel_by_id.entry(channel_id) {
5168 hash_map::Entry::Occupied(chan_phase_entry) => {
5169 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
5170 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
5172 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
5173 debug_assert!(false);
5174 (0x4000|10, Vec::new())
5177 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
5179 } else { (0x4000|10, Vec::new()) }
5182 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
5183 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
5184 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5185 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5189 /// Fails an HTLC backwards to the sender of it to us.
5190 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5191 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5192 // Ensure that no peer state channel storage lock is held when calling this function.
5193 // This ensures that future code doesn't introduce a lock-order requirement for
5194 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5195 // this function with any `per_peer_state` peer lock acquired would.
5196 #[cfg(debug_assertions)]
5197 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5198 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5201 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5202 //identify whether we sent it or not based on the (I presume) very different runtime
5203 //between the branches here. We should make this async and move it into the forward HTLCs
5206 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5207 // from block_connected which may run during initialization prior to the chain_monitor
5208 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5210 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5211 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5212 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5213 &self.pending_events, &self.logger)
5214 { self.push_pending_forwards_ev(); }
5216 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5217 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5218 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5220 let mut push_forward_ev = false;
5221 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5222 if forward_htlcs.is_empty() {
5223 push_forward_ev = true;
5225 match forward_htlcs.entry(*short_channel_id) {
5226 hash_map::Entry::Occupied(mut entry) => {
5227 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5229 hash_map::Entry::Vacant(entry) => {
5230 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5233 mem::drop(forward_htlcs);
5234 if push_forward_ev { self.push_pending_forwards_ev(); }
5235 let mut pending_events = self.pending_events.lock().unwrap();
5236 pending_events.push_back((events::Event::HTLCHandlingFailed {
5237 prev_channel_id: outpoint.to_channel_id(),
5238 failed_next_destination: destination,
5244 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5245 /// [`MessageSendEvent`]s needed to claim the payment.
5247 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5248 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5249 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5250 /// successful. It will generally be available in the next [`process_pending_events`] call.
5252 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5253 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5254 /// event matches your expectation. If you fail to do so and call this method, you may provide
5255 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5257 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5258 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5259 /// [`claim_funds_with_known_custom_tlvs`].
5261 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5262 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5263 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5264 /// [`process_pending_events`]: EventsProvider::process_pending_events
5265 /// [`create_inbound_payment`]: Self::create_inbound_payment
5266 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5267 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5268 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5269 self.claim_payment_internal(payment_preimage, false);
5272 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5273 /// even type numbers.
5277 /// You MUST check you've understood all even TLVs before using this to
5278 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5280 /// [`claim_funds`]: Self::claim_funds
5281 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5282 self.claim_payment_internal(payment_preimage, true);
5285 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5286 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5288 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5291 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5292 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5293 let mut receiver_node_id = self.our_network_pubkey;
5294 for htlc in payment.htlcs.iter() {
5295 if htlc.prev_hop.phantom_shared_secret.is_some() {
5296 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5297 .expect("Failed to get node_id for phantom node recipient");
5298 receiver_node_id = phantom_pubkey;
5303 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5304 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5305 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5306 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5307 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5309 if dup_purpose.is_some() {
5310 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5311 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5315 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5316 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5317 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5318 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5319 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5320 mem::drop(claimable_payments);
5321 for htlc in payment.htlcs {
5322 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5323 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5324 let receiver = HTLCDestination::FailedPayment { payment_hash };
5325 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5334 debug_assert!(!sources.is_empty());
5336 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5337 // and when we got here we need to check that the amount we're about to claim matches the
5338 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5339 // the MPP parts all have the same `total_msat`.
5340 let mut claimable_amt_msat = 0;
5341 let mut prev_total_msat = None;
5342 let mut expected_amt_msat = None;
5343 let mut valid_mpp = true;
5344 let mut errs = Vec::new();
5345 let per_peer_state = self.per_peer_state.read().unwrap();
5346 for htlc in sources.iter() {
5347 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5348 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5349 debug_assert!(false);
5353 prev_total_msat = Some(htlc.total_msat);
5355 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5356 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5357 debug_assert!(false);
5361 expected_amt_msat = htlc.total_value_received;
5362 claimable_amt_msat += htlc.value;
5364 mem::drop(per_peer_state);
5365 if sources.is_empty() || expected_amt_msat.is_none() {
5366 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5367 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5370 if claimable_amt_msat != expected_amt_msat.unwrap() {
5371 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5372 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5373 expected_amt_msat.unwrap(), claimable_amt_msat);
5377 for htlc in sources.drain(..) {
5378 if let Err((pk, err)) = self.claim_funds_from_hop(
5379 htlc.prev_hop, payment_preimage,
5380 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
5382 if let msgs::ErrorAction::IgnoreError = err.err.action {
5383 // We got a temporary failure updating monitor, but will claim the
5384 // HTLC when the monitor updating is restored (or on chain).
5385 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5386 } else { errs.push((pk, err)); }
5391 for htlc in sources.drain(..) {
5392 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5393 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5394 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5395 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5396 let receiver = HTLCDestination::FailedPayment { payment_hash };
5397 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5399 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5402 // Now we can handle any errors which were generated.
5403 for (counterparty_node_id, err) in errs.drain(..) {
5404 let res: Result<(), _> = Err(err);
5405 let _ = handle_error!(self, res, counterparty_node_id);
5409 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
5410 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5411 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5412 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5414 // If we haven't yet run background events assume we're still deserializing and shouldn't
5415 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5416 // `BackgroundEvent`s.
5417 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5420 let per_peer_state = self.per_peer_state.read().unwrap();
5421 let chan_id = prev_hop.outpoint.to_channel_id();
5422 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5423 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5427 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5428 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5429 .map(|peer_mutex| peer_mutex.lock().unwrap())
5432 if peer_state_opt.is_some() {
5433 let mut peer_state_lock = peer_state_opt.unwrap();
5434 let peer_state = &mut *peer_state_lock;
5435 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5436 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5437 let counterparty_node_id = chan.context.get_counterparty_node_id();
5438 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5440 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
5441 if let Some(action) = completion_action(Some(htlc_value_msat)) {
5442 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5444 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5447 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5448 peer_state, per_peer_state, chan);
5450 // If we're running during init we cannot update a monitor directly -
5451 // they probably haven't actually been loaded yet. Instead, push the
5452 // monitor update as a background event.
5453 self.pending_background_events.lock().unwrap().push(
5454 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5455 counterparty_node_id,
5456 funding_txo: prev_hop.outpoint,
5457 update: monitor_update.clone(),
5466 let preimage_update = ChannelMonitorUpdate {
5467 update_id: CLOSED_CHANNEL_UPDATE_ID,
5468 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5474 // We update the ChannelMonitor on the backward link, after
5475 // receiving an `update_fulfill_htlc` from the forward link.
5476 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5477 if update_res != ChannelMonitorUpdateStatus::Completed {
5478 // TODO: This needs to be handled somehow - if we receive a monitor update
5479 // with a preimage we *must* somehow manage to propagate it to the upstream
5480 // channel, or we must have an ability to receive the same event and try
5481 // again on restart.
5482 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5483 payment_preimage, update_res);
5486 // If we're running during init we cannot update a monitor directly - they probably
5487 // haven't actually been loaded yet. Instead, push the monitor update as a background
5489 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5490 // channel is already closed) we need to ultimately handle the monitor update
5491 // completion action only after we've completed the monitor update. This is the only
5492 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5493 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5494 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5495 // complete the monitor update completion action from `completion_action`.
5496 self.pending_background_events.lock().unwrap().push(
5497 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5498 prev_hop.outpoint, preimage_update,
5501 // Note that we do process the completion action here. This totally could be a
5502 // duplicate claim, but we have no way of knowing without interrogating the
5503 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5504 // generally always allowed to be duplicative (and it's specifically noted in
5505 // `PaymentForwarded`).
5506 self.handle_monitor_update_completion_actions(completion_action(None));
5510 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5511 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5514 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5515 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool,
5516 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5519 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5520 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5521 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5522 if let Some(pubkey) = next_channel_counterparty_node_id {
5523 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5525 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5526 channel_funding_outpoint: next_channel_outpoint,
5527 counterparty_node_id: path.hops[0].pubkey,
5529 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5530 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5533 HTLCSource::PreviousHopData(hop_data) => {
5534 let prev_outpoint = hop_data.outpoint;
5535 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5536 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5537 |htlc_claim_value_msat| {
5538 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5539 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5540 Some(claimed_htlc_value - forwarded_htlc_value)
5543 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5544 event: events::Event::PaymentForwarded {
5546 claim_from_onchain_tx: from_onchain,
5547 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5548 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5549 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5551 downstream_counterparty_and_funding_outpoint:
5552 if let Some(node_id) = next_channel_counterparty_node_id {
5553 Some((node_id, next_channel_outpoint, completed_blocker))
5555 // We can only get `None` here if we are processing a
5556 // `ChannelMonitor`-originated event, in which case we
5557 // don't care about ensuring we wake the downstream
5558 // channel's monitor updating - the channel is already
5565 if let Err((pk, err)) = res {
5566 let result: Result<(), _> = Err(err);
5567 let _ = handle_error!(self, result, pk);
5573 /// Gets the node_id held by this ChannelManager
5574 pub fn get_our_node_id(&self) -> PublicKey {
5575 self.our_network_pubkey.clone()
5578 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5579 for action in actions.into_iter() {
5581 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5582 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5583 if let Some(ClaimingPayment {
5585 payment_purpose: purpose,
5588 sender_intended_value: sender_intended_total_msat,
5590 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5594 receiver_node_id: Some(receiver_node_id),
5596 sender_intended_total_msat,
5600 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5601 event, downstream_counterparty_and_funding_outpoint
5603 self.pending_events.lock().unwrap().push_back((event, None));
5604 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5605 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5612 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5613 /// update completion.
5614 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5615 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5616 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5617 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5618 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5619 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5620 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5621 &channel.context.channel_id(),
5622 if raa.is_some() { "an" } else { "no" },
5623 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5624 if funding_broadcastable.is_some() { "" } else { "not " },
5625 if channel_ready.is_some() { "sending" } else { "without" },
5626 if announcement_sigs.is_some() { "sending" } else { "without" });
5628 let mut htlc_forwards = None;
5630 let counterparty_node_id = channel.context.get_counterparty_node_id();
5631 if !pending_forwards.is_empty() {
5632 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5633 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5636 if let Some(msg) = channel_ready {
5637 send_channel_ready!(self, pending_msg_events, channel, msg);
5639 if let Some(msg) = announcement_sigs {
5640 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5641 node_id: counterparty_node_id,
5646 macro_rules! handle_cs { () => {
5647 if let Some(update) = commitment_update {
5648 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5649 node_id: counterparty_node_id,
5654 macro_rules! handle_raa { () => {
5655 if let Some(revoke_and_ack) = raa {
5656 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5657 node_id: counterparty_node_id,
5658 msg: revoke_and_ack,
5663 RAACommitmentOrder::CommitmentFirst => {
5667 RAACommitmentOrder::RevokeAndACKFirst => {
5673 if let Some(tx) = funding_broadcastable {
5674 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5675 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5679 let mut pending_events = self.pending_events.lock().unwrap();
5680 emit_channel_pending_event!(pending_events, channel);
5681 emit_channel_ready_event!(pending_events, channel);
5687 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5688 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5690 let counterparty_node_id = match counterparty_node_id {
5691 Some(cp_id) => cp_id.clone(),
5693 // TODO: Once we can rely on the counterparty_node_id from the
5694 // monitor event, this and the id_to_peer map should be removed.
5695 let id_to_peer = self.id_to_peer.lock().unwrap();
5696 match id_to_peer.get(&funding_txo.to_channel_id()) {
5697 Some(cp_id) => cp_id.clone(),
5702 let per_peer_state = self.per_peer_state.read().unwrap();
5703 let mut peer_state_lock;
5704 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5705 if peer_state_mutex_opt.is_none() { return }
5706 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5707 let peer_state = &mut *peer_state_lock;
5709 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5712 let update_actions = peer_state.monitor_update_blocked_actions
5713 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5714 mem::drop(peer_state_lock);
5715 mem::drop(per_peer_state);
5716 self.handle_monitor_update_completion_actions(update_actions);
5719 let remaining_in_flight =
5720 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5721 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5724 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5725 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5726 remaining_in_flight);
5727 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5730 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5733 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5735 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5736 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5739 /// The `user_channel_id` parameter will be provided back in
5740 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5741 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5743 /// Note that this method will return an error and reject the channel, if it requires support
5744 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5745 /// used to accept such channels.
5747 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5748 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5749 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5750 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5753 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5754 /// it as confirmed immediately.
5756 /// The `user_channel_id` parameter will be provided back in
5757 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5758 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5760 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5761 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5763 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5764 /// transaction and blindly assumes that it will eventually confirm.
5766 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5767 /// does not pay to the correct script the correct amount, *you will lose funds*.
5769 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5770 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5771 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5772 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5775 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5776 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5778 let peers_without_funded_channels =
5779 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5780 let per_peer_state = self.per_peer_state.read().unwrap();
5781 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5782 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5783 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5784 let peer_state = &mut *peer_state_lock;
5785 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5787 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5788 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5789 // that we can delay allocating the SCID until after we're sure that the checks below will
5791 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5792 Some(unaccepted_channel) => {
5793 let best_block_height = self.best_block.read().unwrap().height();
5794 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5795 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5796 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5797 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5799 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5803 // This should have been correctly configured by the call to InboundV1Channel::new.
5804 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5805 } else if channel.context.get_channel_type().requires_zero_conf() {
5806 let send_msg_err_event = events::MessageSendEvent::HandleError {
5807 node_id: channel.context.get_counterparty_node_id(),
5808 action: msgs::ErrorAction::SendErrorMessage{
5809 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5812 peer_state.pending_msg_events.push(send_msg_err_event);
5813 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5815 // If this peer already has some channels, a new channel won't increase our number of peers
5816 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5817 // channels per-peer we can accept channels from a peer with existing ones.
5818 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5819 let send_msg_err_event = events::MessageSendEvent::HandleError {
5820 node_id: channel.context.get_counterparty_node_id(),
5821 action: msgs::ErrorAction::SendErrorMessage{
5822 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5825 peer_state.pending_msg_events.push(send_msg_err_event);
5826 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5830 // Now that we know we have a channel, assign an outbound SCID alias.
5831 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5832 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5834 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5835 node_id: channel.context.get_counterparty_node_id(),
5836 msg: channel.accept_inbound_channel(),
5839 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5844 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5845 /// or 0-conf channels.
5847 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5848 /// non-0-conf channels we have with the peer.
5849 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5850 where Filter: Fn(&PeerState<SP>) -> bool {
5851 let mut peers_without_funded_channels = 0;
5852 let best_block_height = self.best_block.read().unwrap().height();
5854 let peer_state_lock = self.per_peer_state.read().unwrap();
5855 for (_, peer_mtx) in peer_state_lock.iter() {
5856 let peer = peer_mtx.lock().unwrap();
5857 if !maybe_count_peer(&*peer) { continue; }
5858 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5859 if num_unfunded_channels == peer.total_channel_count() {
5860 peers_without_funded_channels += 1;
5864 return peers_without_funded_channels;
5867 fn unfunded_channel_count(
5868 peer: &PeerState<SP>, best_block_height: u32
5870 let mut num_unfunded_channels = 0;
5871 for (_, phase) in peer.channel_by_id.iter() {
5873 ChannelPhase::Funded(chan) => {
5874 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5875 // which have not yet had any confirmations on-chain.
5876 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5877 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5879 num_unfunded_channels += 1;
5882 ChannelPhase::UnfundedInboundV1(chan) => {
5883 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5884 num_unfunded_channels += 1;
5887 ChannelPhase::UnfundedOutboundV1(_) => {
5888 // Outbound channels don't contribute to the unfunded count in the DoS context.
5893 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5896 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5897 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5898 // likely to be lost on restart!
5899 if msg.chain_hash != self.chain_hash {
5900 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5903 if !self.default_configuration.accept_inbound_channels {
5904 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5907 // Get the number of peers with channels, but without funded ones. We don't care too much
5908 // about peers that never open a channel, so we filter by peers that have at least one
5909 // channel, and then limit the number of those with unfunded channels.
5910 let channeled_peers_without_funding =
5911 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5913 let per_peer_state = self.per_peer_state.read().unwrap();
5914 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5916 debug_assert!(false);
5917 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5919 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5920 let peer_state = &mut *peer_state_lock;
5922 // If this peer already has some channels, a new channel won't increase our number of peers
5923 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5924 // channels per-peer we can accept channels from a peer with existing ones.
5925 if peer_state.total_channel_count() == 0 &&
5926 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5927 !self.default_configuration.manually_accept_inbound_channels
5929 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5930 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5931 msg.temporary_channel_id.clone()));
5934 let best_block_height = self.best_block.read().unwrap().height();
5935 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5936 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5937 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5938 msg.temporary_channel_id.clone()));
5941 let channel_id = msg.temporary_channel_id;
5942 let channel_exists = peer_state.has_channel(&channel_id);
5944 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5947 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5948 if self.default_configuration.manually_accept_inbound_channels {
5949 let mut pending_events = self.pending_events.lock().unwrap();
5950 pending_events.push_back((events::Event::OpenChannelRequest {
5951 temporary_channel_id: msg.temporary_channel_id.clone(),
5952 counterparty_node_id: counterparty_node_id.clone(),
5953 funding_satoshis: msg.funding_satoshis,
5954 push_msat: msg.push_msat,
5955 channel_type: msg.channel_type.clone().unwrap(),
5957 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5958 open_channel_msg: msg.clone(),
5959 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5964 // Otherwise create the channel right now.
5965 let mut random_bytes = [0u8; 16];
5966 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5967 let user_channel_id = u128::from_be_bytes(random_bytes);
5968 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5969 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5970 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5973 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5978 let channel_type = channel.context.get_channel_type();
5979 if channel_type.requires_zero_conf() {
5980 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5982 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5983 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5986 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5987 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5989 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5990 node_id: counterparty_node_id.clone(),
5991 msg: channel.accept_inbound_channel(),
5993 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
5997 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
5998 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5999 // likely to be lost on restart!
6000 let (value, output_script, user_id) = {
6001 let per_peer_state = self.per_peer_state.read().unwrap();
6002 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6004 debug_assert!(false);
6005 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6007 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6008 let peer_state = &mut *peer_state_lock;
6009 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
6010 hash_map::Entry::Occupied(mut phase) => {
6011 match phase.get_mut() {
6012 ChannelPhase::UnfundedOutboundV1(chan) => {
6013 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
6014 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
6017 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6021 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6024 let mut pending_events = self.pending_events.lock().unwrap();
6025 pending_events.push_back((events::Event::FundingGenerationReady {
6026 temporary_channel_id: msg.temporary_channel_id,
6027 counterparty_node_id: *counterparty_node_id,
6028 channel_value_satoshis: value,
6030 user_channel_id: user_id,
6035 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
6036 let best_block = *self.best_block.read().unwrap();
6038 let per_peer_state = self.per_peer_state.read().unwrap();
6039 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6041 debug_assert!(false);
6042 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
6045 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6046 let peer_state = &mut *peer_state_lock;
6047 let (chan, funding_msg, monitor) =
6048 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
6049 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
6050 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
6052 Err((mut inbound_chan, err)) => {
6053 // We've already removed this inbound channel from the map in `PeerState`
6054 // above so at this point we just need to clean up any lingering entries
6055 // concerning this channel as it is safe to do so.
6056 update_maps_on_chan_removal!(self, &inbound_chan.context);
6057 let user_id = inbound_chan.context.get_user_id();
6058 let shutdown_res = inbound_chan.context.force_shutdown(false);
6059 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
6060 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
6064 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
6065 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
6067 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
6070 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
6071 hash_map::Entry::Occupied(_) => {
6072 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
6074 hash_map::Entry::Vacant(e) => {
6075 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
6076 match id_to_peer_lock.entry(chan.context.channel_id()) {
6077 hash_map::Entry::Occupied(_) => {
6078 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6079 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6080 funding_msg.channel_id))
6082 hash_map::Entry::Vacant(i_e) => {
6083 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
6084 if let Ok(persist_state) = monitor_res {
6085 i_e.insert(chan.context.get_counterparty_node_id());
6086 mem::drop(id_to_peer_lock);
6088 // There's no problem signing a counterparty's funding transaction if our monitor
6089 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
6090 // accepted payment from yet. We do, however, need to wait to send our channel_ready
6091 // until we have persisted our monitor.
6092 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
6093 node_id: counterparty_node_id.clone(),
6097 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
6098 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
6099 per_peer_state, chan, INITIAL_MONITOR);
6101 unreachable!("This must be a funded channel as we just inserted it.");
6105 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
6106 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6107 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
6108 funding_msg.channel_id));
6116 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
6117 let best_block = *self.best_block.read().unwrap();
6118 let per_peer_state = self.per_peer_state.read().unwrap();
6119 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6121 debug_assert!(false);
6122 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6125 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6126 let peer_state = &mut *peer_state_lock;
6127 match peer_state.channel_by_id.entry(msg.channel_id) {
6128 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6129 match chan_phase_entry.get_mut() {
6130 ChannelPhase::Funded(ref mut chan) => {
6131 let monitor = try_chan_phase_entry!(self,
6132 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
6133 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
6134 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
6137 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
6141 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
6145 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
6149 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
6150 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6151 // closing a channel), so any changes are likely to be lost on restart!
6152 let per_peer_state = self.per_peer_state.read().unwrap();
6153 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6155 debug_assert!(false);
6156 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6158 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6159 let peer_state = &mut *peer_state_lock;
6160 match peer_state.channel_by_id.entry(msg.channel_id) {
6161 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6162 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6163 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
6164 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
6165 if let Some(announcement_sigs) = announcement_sigs_opt {
6166 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
6167 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6168 node_id: counterparty_node_id.clone(),
6169 msg: announcement_sigs,
6171 } else if chan.context.is_usable() {
6172 // If we're sending an announcement_signatures, we'll send the (public)
6173 // channel_update after sending a channel_announcement when we receive our
6174 // counterparty's announcement_signatures. Thus, we only bother to send a
6175 // channel_update here if the channel is not public, i.e. we're not sending an
6176 // announcement_signatures.
6177 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
6178 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6179 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6180 node_id: counterparty_node_id.clone(),
6187 let mut pending_events = self.pending_events.lock().unwrap();
6188 emit_channel_ready_event!(pending_events, chan);
6193 try_chan_phase_entry!(self, Err(ChannelError::Close(
6194 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6197 hash_map::Entry::Vacant(_) => {
6198 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6203 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6204 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6205 let mut finish_shutdown = None;
6207 let per_peer_state = self.per_peer_state.read().unwrap();
6208 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6210 debug_assert!(false);
6211 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6213 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6214 let peer_state = &mut *peer_state_lock;
6215 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6216 let phase = chan_phase_entry.get_mut();
6218 ChannelPhase::Funded(chan) => {
6219 if !chan.received_shutdown() {
6220 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6222 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6225 let funding_txo_opt = chan.context.get_funding_txo();
6226 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6227 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6228 dropped_htlcs = htlcs;
6230 if let Some(msg) = shutdown {
6231 // We can send the `shutdown` message before updating the `ChannelMonitor`
6232 // here as we don't need the monitor update to complete until we send a
6233 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6234 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6235 node_id: *counterparty_node_id,
6239 // Update the monitor with the shutdown script if necessary.
6240 if let Some(monitor_update) = monitor_update_opt {
6241 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6242 peer_state_lock, peer_state, per_peer_state, chan);
6245 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6246 let context = phase.context_mut();
6247 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6248 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6249 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6250 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6254 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6257 for htlc_source in dropped_htlcs.drain(..) {
6258 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6259 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6260 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6262 if let Some(shutdown_res) = finish_shutdown {
6263 self.finish_close_channel(shutdown_res);
6269 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6270 let per_peer_state = self.per_peer_state.read().unwrap();
6271 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6273 debug_assert!(false);
6274 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6276 let (tx, chan_option, shutdown_result) = {
6277 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6278 let peer_state = &mut *peer_state_lock;
6279 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6280 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6281 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6282 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6283 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
6284 if let Some(msg) = closing_signed {
6285 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6286 node_id: counterparty_node_id.clone(),
6291 // We're done with this channel, we've got a signed closing transaction and
6292 // will send the closing_signed back to the remote peer upon return. This
6293 // also implies there are no pending HTLCs left on the channel, so we can
6294 // fully delete it from tracking (the channel monitor is still around to
6295 // watch for old state broadcasts)!
6296 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
6297 } else { (tx, None, shutdown_result) }
6299 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6300 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6303 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6306 if let Some(broadcast_tx) = tx {
6307 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6308 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6310 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6311 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6312 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6313 let peer_state = &mut *peer_state_lock;
6314 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6318 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6320 mem::drop(per_peer_state);
6321 if let Some(shutdown_result) = shutdown_result {
6322 self.finish_close_channel(shutdown_result);
6327 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6328 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6329 //determine the state of the payment based on our response/if we forward anything/the time
6330 //we take to respond. We should take care to avoid allowing such an attack.
6332 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6333 //us repeatedly garbled in different ways, and compare our error messages, which are
6334 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6335 //but we should prevent it anyway.
6337 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6338 // closing a channel), so any changes are likely to be lost on restart!
6340 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6341 let per_peer_state = self.per_peer_state.read().unwrap();
6342 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6344 debug_assert!(false);
6345 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6347 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6348 let peer_state = &mut *peer_state_lock;
6349 match peer_state.channel_by_id.entry(msg.channel_id) {
6350 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6351 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6352 let pending_forward_info = match decoded_hop_res {
6353 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6354 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6355 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6356 Err(e) => PendingHTLCStatus::Fail(e)
6358 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6359 // If the update_add is completely bogus, the call will Err and we will close,
6360 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6361 // want to reject the new HTLC and fail it backwards instead of forwarding.
6362 match pending_forward_info {
6363 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6364 let reason = if (error_code & 0x1000) != 0 {
6365 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6366 HTLCFailReason::reason(real_code, error_data)
6368 HTLCFailReason::from_failure_code(error_code)
6369 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6370 let msg = msgs::UpdateFailHTLC {
6371 channel_id: msg.channel_id,
6372 htlc_id: msg.htlc_id,
6375 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6377 _ => pending_forward_info
6380 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6382 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6383 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6386 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6391 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6393 let (htlc_source, forwarded_htlc_value) = {
6394 let per_peer_state = self.per_peer_state.read().unwrap();
6395 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6397 debug_assert!(false);
6398 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6400 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6401 let peer_state = &mut *peer_state_lock;
6402 match peer_state.channel_by_id.entry(msg.channel_id) {
6403 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6404 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6405 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6406 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6407 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6408 .or_insert_with(Vec::new)
6409 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6411 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6412 // entry here, even though we *do* need to block the next RAA monitor update.
6413 // We do this instead in the `claim_funds_internal` by attaching a
6414 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6415 // outbound HTLC is claimed. This is guaranteed to all complete before we
6416 // process the RAA as messages are processed from single peers serially.
6417 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6420 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6421 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6424 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6427 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, Some(*counterparty_node_id), funding_txo);
6431 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6432 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6433 // closing a channel), so any changes are likely to be lost on restart!
6434 let per_peer_state = self.per_peer_state.read().unwrap();
6435 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6437 debug_assert!(false);
6438 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6440 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6441 let peer_state = &mut *peer_state_lock;
6442 match peer_state.channel_by_id.entry(msg.channel_id) {
6443 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6444 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6445 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6447 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6448 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6451 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6456 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6457 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6458 // closing a channel), so any changes are likely to be lost on restart!
6459 let per_peer_state = self.per_peer_state.read().unwrap();
6460 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6462 debug_assert!(false);
6463 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6465 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6466 let peer_state = &mut *peer_state_lock;
6467 match peer_state.channel_by_id.entry(msg.channel_id) {
6468 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6469 if (msg.failure_code & 0x8000) == 0 {
6470 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6471 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6473 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6474 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6476 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6477 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6481 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6485 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6486 let per_peer_state = self.per_peer_state.read().unwrap();
6487 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6489 debug_assert!(false);
6490 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6492 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6493 let peer_state = &mut *peer_state_lock;
6494 match peer_state.channel_by_id.entry(msg.channel_id) {
6495 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6496 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6497 let funding_txo = chan.context.get_funding_txo();
6498 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6499 if let Some(monitor_update) = monitor_update_opt {
6500 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6501 peer_state, per_peer_state, chan);
6505 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6506 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6509 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6514 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6515 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6516 let mut push_forward_event = false;
6517 let mut new_intercept_events = VecDeque::new();
6518 let mut failed_intercept_forwards = Vec::new();
6519 if !pending_forwards.is_empty() {
6520 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6521 let scid = match forward_info.routing {
6522 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6523 PendingHTLCRouting::Receive { .. } => 0,
6524 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6526 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6527 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6529 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6530 let forward_htlcs_empty = forward_htlcs.is_empty();
6531 match forward_htlcs.entry(scid) {
6532 hash_map::Entry::Occupied(mut entry) => {
6533 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6534 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6536 hash_map::Entry::Vacant(entry) => {
6537 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6538 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
6540 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6541 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6542 match pending_intercepts.entry(intercept_id) {
6543 hash_map::Entry::Vacant(entry) => {
6544 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6545 requested_next_hop_scid: scid,
6546 payment_hash: forward_info.payment_hash,
6547 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6548 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6551 entry.insert(PendingAddHTLCInfo {
6552 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6554 hash_map::Entry::Occupied(_) => {
6555 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6556 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6557 short_channel_id: prev_short_channel_id,
6558 user_channel_id: Some(prev_user_channel_id),
6559 outpoint: prev_funding_outpoint,
6560 htlc_id: prev_htlc_id,
6561 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6562 phantom_shared_secret: None,
6565 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6566 HTLCFailReason::from_failure_code(0x4000 | 10),
6567 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6572 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6573 // payments are being processed.
6574 if forward_htlcs_empty {
6575 push_forward_event = true;
6577 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6578 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6585 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6586 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6589 if !new_intercept_events.is_empty() {
6590 let mut events = self.pending_events.lock().unwrap();
6591 events.append(&mut new_intercept_events);
6593 if push_forward_event { self.push_pending_forwards_ev() }
6597 fn push_pending_forwards_ev(&self) {
6598 let mut pending_events = self.pending_events.lock().unwrap();
6599 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6600 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6601 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6603 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6604 // events is done in batches and they are not removed until we're done processing each
6605 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6606 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6607 // payments will need an additional forwarding event before being claimed to make them look
6608 // real by taking more time.
6609 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6610 pending_events.push_back((Event::PendingHTLCsForwardable {
6611 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6616 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6617 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6618 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6619 /// the [`ChannelMonitorUpdate`] in question.
6620 fn raa_monitor_updates_held(&self,
6621 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6622 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6624 actions_blocking_raa_monitor_updates
6625 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6626 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6627 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6628 channel_funding_outpoint,
6629 counterparty_node_id,
6634 #[cfg(any(test, feature = "_test_utils"))]
6635 pub(crate) fn test_raa_monitor_updates_held(&self,
6636 counterparty_node_id: PublicKey, channel_id: ChannelId
6638 let per_peer_state = self.per_peer_state.read().unwrap();
6639 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6640 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6641 let peer_state = &mut *peer_state_lck;
6643 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6644 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6645 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6651 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6652 let htlcs_to_fail = {
6653 let per_peer_state = self.per_peer_state.read().unwrap();
6654 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6656 debug_assert!(false);
6657 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6658 }).map(|mtx| mtx.lock().unwrap())?;
6659 let peer_state = &mut *peer_state_lock;
6660 match peer_state.channel_by_id.entry(msg.channel_id) {
6661 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6662 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6663 let funding_txo_opt = chan.context.get_funding_txo();
6664 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6665 self.raa_monitor_updates_held(
6666 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6667 *counterparty_node_id)
6669 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6670 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6671 if let Some(monitor_update) = monitor_update_opt {
6672 let funding_txo = funding_txo_opt
6673 .expect("Funding outpoint must have been set for RAA handling to succeed");
6674 handle_new_monitor_update!(self, funding_txo, monitor_update,
6675 peer_state_lock, peer_state, per_peer_state, chan);
6679 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6680 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6683 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6686 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6690 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6691 let per_peer_state = self.per_peer_state.read().unwrap();
6692 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6694 debug_assert!(false);
6695 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6697 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6698 let peer_state = &mut *peer_state_lock;
6699 match peer_state.channel_by_id.entry(msg.channel_id) {
6700 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6701 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6702 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6704 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6705 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6708 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6713 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6714 let per_peer_state = self.per_peer_state.read().unwrap();
6715 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6717 debug_assert!(false);
6718 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6720 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6721 let peer_state = &mut *peer_state_lock;
6722 match peer_state.channel_by_id.entry(msg.channel_id) {
6723 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6724 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6725 if !chan.context.is_usable() {
6726 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6729 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6730 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6731 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height(),
6732 msg, &self.default_configuration
6733 ), chan_phase_entry),
6734 // Note that announcement_signatures fails if the channel cannot be announced,
6735 // so get_channel_update_for_broadcast will never fail by the time we get here.
6736 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6739 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6740 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6743 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6748 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6749 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6750 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6751 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6753 // It's not a local channel
6754 return Ok(NotifyOption::SkipPersistNoEvents)
6757 let per_peer_state = self.per_peer_state.read().unwrap();
6758 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6759 if peer_state_mutex_opt.is_none() {
6760 return Ok(NotifyOption::SkipPersistNoEvents)
6762 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6763 let peer_state = &mut *peer_state_lock;
6764 match peer_state.channel_by_id.entry(chan_id) {
6765 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6766 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6767 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6768 if chan.context.should_announce() {
6769 // If the announcement is about a channel of ours which is public, some
6770 // other peer may simply be forwarding all its gossip to us. Don't provide
6771 // a scary-looking error message and return Ok instead.
6772 return Ok(NotifyOption::SkipPersistNoEvents);
6774 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6776 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6777 let msg_from_node_one = msg.contents.flags & 1 == 0;
6778 if were_node_one == msg_from_node_one {
6779 return Ok(NotifyOption::SkipPersistNoEvents);
6781 log_debug!(self.logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
6782 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6783 // If nothing changed after applying their update, we don't need to bother
6786 return Ok(NotifyOption::SkipPersistNoEvents);
6790 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6791 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6794 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6796 Ok(NotifyOption::DoPersist)
6799 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6801 let need_lnd_workaround = {
6802 let per_peer_state = self.per_peer_state.read().unwrap();
6804 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6806 debug_assert!(false);
6807 MsgHandleErrInternal::send_err_msg_no_close(
6808 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
6812 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6813 let peer_state = &mut *peer_state_lock;
6814 match peer_state.channel_by_id.entry(msg.channel_id) {
6815 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6816 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6817 // Currently, we expect all holding cell update_adds to be dropped on peer
6818 // disconnect, so Channel's reestablish will never hand us any holding cell
6819 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6820 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6821 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6822 msg, &self.logger, &self.node_signer, self.chain_hash,
6823 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6824 let mut channel_update = None;
6825 if let Some(msg) = responses.shutdown_msg {
6826 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6827 node_id: counterparty_node_id.clone(),
6830 } else if chan.context.is_usable() {
6831 // If the channel is in a usable state (ie the channel is not being shut
6832 // down), send a unicast channel_update to our counterparty to make sure
6833 // they have the latest channel parameters.
6834 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6835 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6836 node_id: chan.context.get_counterparty_node_id(),
6841 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6842 htlc_forwards = self.handle_channel_resumption(
6843 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6844 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6845 if let Some(upd) = channel_update {
6846 peer_state.pending_msg_events.push(upd);
6850 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6851 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6854 hash_map::Entry::Vacant(_) => {
6855 log_debug!(self.logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
6856 log_bytes!(msg.channel_id.0));
6857 // Unfortunately, lnd doesn't force close on errors
6858 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
6859 // One of the few ways to get an lnd counterparty to force close is by
6860 // replicating what they do when restoring static channel backups (SCBs). They
6861 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
6862 // invalid `your_last_per_commitment_secret`.
6864 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
6865 // can assume it's likely the channel closed from our point of view, but it
6866 // remains open on the counterparty's side. By sending this bogus
6867 // `ChannelReestablish` message now as a response to theirs, we trigger them to
6868 // force close broadcasting their latest state. If the closing transaction from
6869 // our point of view remains unconfirmed, it'll enter a race with the
6870 // counterparty's to-be-broadcast latest commitment transaction.
6871 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
6872 node_id: *counterparty_node_id,
6873 msg: msgs::ChannelReestablish {
6874 channel_id: msg.channel_id,
6875 next_local_commitment_number: 0,
6876 next_remote_commitment_number: 0,
6877 your_last_per_commitment_secret: [1u8; 32],
6878 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
6879 next_funding_txid: None,
6882 return Err(MsgHandleErrInternal::send_err_msg_no_close(
6883 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
6884 counterparty_node_id), msg.channel_id)
6890 let mut persist = NotifyOption::SkipPersistHandleEvents;
6891 if let Some(forwards) = htlc_forwards {
6892 self.forward_htlcs(&mut [forwards][..]);
6893 persist = NotifyOption::DoPersist;
6896 if let Some(channel_ready_msg) = need_lnd_workaround {
6897 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6902 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6903 fn process_pending_monitor_events(&self) -> bool {
6904 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6906 let mut failed_channels = Vec::new();
6907 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6908 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6909 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6910 for monitor_event in monitor_events.drain(..) {
6911 match monitor_event {
6912 MonitorEvent::HTLCEvent(htlc_update) => {
6913 if let Some(preimage) = htlc_update.payment_preimage {
6914 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6915 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, counterparty_node_id, funding_outpoint);
6917 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6918 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6919 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6920 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6923 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6924 let counterparty_node_id_opt = match counterparty_node_id {
6925 Some(cp_id) => Some(cp_id),
6927 // TODO: Once we can rely on the counterparty_node_id from the
6928 // monitor event, this and the id_to_peer map should be removed.
6929 let id_to_peer = self.id_to_peer.lock().unwrap();
6930 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6933 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6934 let per_peer_state = self.per_peer_state.read().unwrap();
6935 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6936 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6937 let peer_state = &mut *peer_state_lock;
6938 let pending_msg_events = &mut peer_state.pending_msg_events;
6939 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6940 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6941 failed_channels.push(chan.context.force_shutdown(false));
6942 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6943 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6947 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6948 pending_msg_events.push(events::MessageSendEvent::HandleError {
6949 node_id: chan.context.get_counterparty_node_id(),
6950 action: msgs::ErrorAction::DisconnectPeer {
6951 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() })
6959 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6960 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6966 for failure in failed_channels.drain(..) {
6967 self.finish_close_channel(failure);
6970 has_pending_monitor_events
6973 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6974 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6975 /// update events as a separate process method here.
6977 pub fn process_monitor_events(&self) {
6978 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6979 self.process_pending_monitor_events();
6982 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
6983 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
6984 /// update was applied.
6985 fn check_free_holding_cells(&self) -> bool {
6986 let mut has_monitor_update = false;
6987 let mut failed_htlcs = Vec::new();
6989 // Walk our list of channels and find any that need to update. Note that when we do find an
6990 // update, if it includes actions that must be taken afterwards, we have to drop the
6991 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
6992 // manage to go through all our peers without finding a single channel to update.
6994 let per_peer_state = self.per_peer_state.read().unwrap();
6995 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6997 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6998 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
6999 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
7000 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
7002 let counterparty_node_id = chan.context.get_counterparty_node_id();
7003 let funding_txo = chan.context.get_funding_txo();
7004 let (monitor_opt, holding_cell_failed_htlcs) =
7005 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
7006 if !holding_cell_failed_htlcs.is_empty() {
7007 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
7009 if let Some(monitor_update) = monitor_opt {
7010 has_monitor_update = true;
7012 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
7013 peer_state_lock, peer_state, per_peer_state, chan);
7014 continue 'peer_loop;
7023 let has_update = has_monitor_update || !failed_htlcs.is_empty();
7024 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
7025 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
7031 /// Check whether any channels have finished removing all pending updates after a shutdown
7032 /// exchange and can now send a closing_signed.
7033 /// Returns whether any closing_signed messages were generated.
7034 fn maybe_generate_initial_closing_signed(&self) -> bool {
7035 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
7036 let mut has_update = false;
7037 let mut shutdown_results = Vec::new();
7039 let per_peer_state = self.per_peer_state.read().unwrap();
7041 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7042 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7043 let peer_state = &mut *peer_state_lock;
7044 let pending_msg_events = &mut peer_state.pending_msg_events;
7045 peer_state.channel_by_id.retain(|channel_id, phase| {
7047 ChannelPhase::Funded(chan) => {
7048 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
7049 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
7050 if let Some(msg) = msg_opt {
7052 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7053 node_id: chan.context.get_counterparty_node_id(), msg,
7056 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
7057 if let Some(shutdown_result) = shutdown_result_opt {
7058 shutdown_results.push(shutdown_result);
7060 if let Some(tx) = tx_opt {
7061 // We're done with this channel. We got a closing_signed and sent back
7062 // a closing_signed with a closing transaction to broadcast.
7063 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7064 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7069 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
7071 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
7072 self.tx_broadcaster.broadcast_transactions(&[&tx]);
7073 update_maps_on_chan_removal!(self, &chan.context);
7079 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
7080 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
7085 _ => true, // Retain unfunded channels if present.
7091 for (counterparty_node_id, err) in handle_errors.drain(..) {
7092 let _ = handle_error!(self, err, counterparty_node_id);
7095 for shutdown_result in shutdown_results.drain(..) {
7096 self.finish_close_channel(shutdown_result);
7102 /// Handle a list of channel failures during a block_connected or block_disconnected call,
7103 /// pushing the channel monitor update (if any) to the background events queue and removing the
7105 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
7106 for mut failure in failed_channels.drain(..) {
7107 // Either a commitment transactions has been confirmed on-chain or
7108 // Channel::block_disconnected detected that the funding transaction has been
7109 // reorganized out of the main chain.
7110 // We cannot broadcast our latest local state via monitor update (as
7111 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
7112 // so we track the update internally and handle it when the user next calls
7113 // timer_tick_occurred, guaranteeing we're running normally.
7114 if let Some((counterparty_node_id, funding_txo, update)) = failure.monitor_update.take() {
7115 assert_eq!(update.updates.len(), 1);
7116 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
7117 assert!(should_broadcast);
7118 } else { unreachable!(); }
7119 self.pending_background_events.lock().unwrap().push(
7120 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
7121 counterparty_node_id, funding_txo, update
7124 self.finish_close_channel(failure);
7128 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
7129 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
7130 /// not have an expiration unless otherwise set on the builder.
7132 /// Uses a one-hop [`BlindedPath`] for the offer with [`ChannelManager::get_our_node_id`] as the
7133 /// introduction node and a derived signing pubkey for recipient privacy. As such, currently,
7134 /// the node must be announced. Otherwise, there is no way to find a path to the introduction
7135 /// node in order to send the [`InvoiceRequest`].
7137 /// [`Offer`]: crate::offers::offer::Offer
7138 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
7139 pub fn create_offer_builder(
7140 &self, description: String
7141 ) -> OfferBuilder<DerivedMetadata, secp256k1::All> {
7142 let node_id = self.get_our_node_id();
7143 let expanded_key = &self.inbound_payment_key;
7144 let entropy = &*self.entropy_source;
7145 let secp_ctx = &self.secp_ctx;
7146 let path = self.create_one_hop_blinded_path();
7148 OfferBuilder::deriving_signing_pubkey(description, node_id, expanded_key, entropy, secp_ctx)
7149 .chain_hash(self.chain_hash)
7153 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
7154 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund. The builder will
7155 /// have the provided expiration set. Any changes to the expiration on the returned builder will
7156 /// not be honored by [`ChannelManager`].
7158 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
7160 /// Uses a one-hop [`BlindedPath`] for the refund with [`ChannelManager::get_our_node_id`] as
7161 /// the introduction node and a derived payer id for sender privacy. As such, currently, the
7162 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
7163 /// in order to send the [`Bolt12Invoice`].
7165 /// [`Refund`]: crate::offers::refund::Refund
7166 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
7167 pub fn create_refund_builder(
7168 &self, description: String, amount_msats: u64, absolute_expiry: Duration,
7169 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
7170 ) -> Result<RefundBuilder<secp256k1::All>, Bolt12SemanticError> {
7171 let node_id = self.get_our_node_id();
7172 let expanded_key = &self.inbound_payment_key;
7173 let entropy = &*self.entropy_source;
7174 let secp_ctx = &self.secp_ctx;
7175 let path = self.create_one_hop_blinded_path();
7177 let builder = RefundBuilder::deriving_payer_id(
7178 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
7180 .chain_hash(self.chain_hash)
7181 .absolute_expiry(absolute_expiry)
7184 self.pending_outbound_payments
7185 .add_new_awaiting_invoice(
7186 payment_id, absolute_expiry, retry_strategy, max_total_routing_fee_msat,
7188 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
7193 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
7196 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
7197 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
7199 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
7200 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
7201 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
7202 /// passed directly to [`claim_funds`].
7204 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
7206 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7207 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7211 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7212 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7214 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7216 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7217 /// on versions of LDK prior to 0.0.114.
7219 /// [`claim_funds`]: Self::claim_funds
7220 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7221 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
7222 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
7223 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
7224 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
7225 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
7226 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
7227 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
7228 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7229 min_final_cltv_expiry_delta)
7232 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
7233 /// stored external to LDK.
7235 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
7236 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
7237 /// the `min_value_msat` provided here, if one is provided.
7239 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
7240 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
7243 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
7244 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
7245 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
7246 /// sender "proof-of-payment" unless they have paid the required amount.
7248 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
7249 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
7250 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
7251 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
7252 /// invoices when no timeout is set.
7254 /// Note that we use block header time to time-out pending inbound payments (with some margin
7255 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
7256 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
7257 /// If you need exact expiry semantics, you should enforce them upon receipt of
7258 /// [`PaymentClaimable`].
7260 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
7261 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
7263 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
7264 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
7268 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
7269 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
7271 /// Errors if `min_value_msat` is greater than total bitcoin supply.
7273 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
7274 /// on versions of LDK prior to 0.0.114.
7276 /// [`create_inbound_payment`]: Self::create_inbound_payment
7277 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
7278 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
7279 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
7280 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
7281 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
7282 min_final_cltv_expiry)
7285 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
7286 /// previously returned from [`create_inbound_payment`].
7288 /// [`create_inbound_payment`]: Self::create_inbound_payment
7289 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
7290 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
7293 /// Creates a one-hop blinded path with [`ChannelManager::get_our_node_id`] as the introduction
7295 fn create_one_hop_blinded_path(&self) -> BlindedPath {
7296 let entropy_source = self.entropy_source.deref();
7297 let secp_ctx = &self.secp_ctx;
7298 BlindedPath::one_hop_for_message(self.get_our_node_id(), entropy_source, secp_ctx).unwrap()
7301 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
7302 /// are used when constructing the phantom invoice's route hints.
7304 /// [phantom node payments]: crate::sign::PhantomKeysManager
7305 pub fn get_phantom_scid(&self) -> u64 {
7306 let best_block_height = self.best_block.read().unwrap().height();
7307 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7309 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7310 // Ensure the generated scid doesn't conflict with a real channel.
7311 match short_to_chan_info.get(&scid_candidate) {
7312 Some(_) => continue,
7313 None => return scid_candidate
7318 /// Gets route hints for use in receiving [phantom node payments].
7320 /// [phantom node payments]: crate::sign::PhantomKeysManager
7321 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7323 channels: self.list_usable_channels(),
7324 phantom_scid: self.get_phantom_scid(),
7325 real_node_pubkey: self.get_our_node_id(),
7329 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7330 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7331 /// [`ChannelManager::forward_intercepted_htlc`].
7333 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7334 /// times to get a unique scid.
7335 pub fn get_intercept_scid(&self) -> u64 {
7336 let best_block_height = self.best_block.read().unwrap().height();
7337 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7339 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7340 // Ensure the generated scid doesn't conflict with a real channel.
7341 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7342 return scid_candidate
7346 /// Gets inflight HTLC information by processing pending outbound payments that are in
7347 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7348 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7349 let mut inflight_htlcs = InFlightHtlcs::new();
7351 let per_peer_state = self.per_peer_state.read().unwrap();
7352 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7353 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7354 let peer_state = &mut *peer_state_lock;
7355 for chan in peer_state.channel_by_id.values().filter_map(
7356 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7358 for (htlc_source, _) in chan.inflight_htlc_sources() {
7359 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7360 inflight_htlcs.process_path(path, self.get_our_node_id());
7369 #[cfg(any(test, feature = "_test_utils"))]
7370 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7371 let events = core::cell::RefCell::new(Vec::new());
7372 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7373 self.process_pending_events(&event_handler);
7377 #[cfg(feature = "_test_utils")]
7378 pub fn push_pending_event(&self, event: events::Event) {
7379 let mut events = self.pending_events.lock().unwrap();
7380 events.push_back((event, None));
7384 pub fn pop_pending_event(&self) -> Option<events::Event> {
7385 let mut events = self.pending_events.lock().unwrap();
7386 events.pop_front().map(|(e, _)| e)
7390 pub fn has_pending_payments(&self) -> bool {
7391 self.pending_outbound_payments.has_pending_payments()
7395 pub fn clear_pending_payments(&self) {
7396 self.pending_outbound_payments.clear_pending_payments()
7399 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7400 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7401 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7402 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7403 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7405 let per_peer_state = self.per_peer_state.read().unwrap();
7406 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7407 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7408 let peer_state = &mut *peer_state_lck;
7410 if let Some(blocker) = completed_blocker.take() {
7411 // Only do this on the first iteration of the loop.
7412 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7413 .get_mut(&channel_funding_outpoint.to_channel_id())
7415 blockers.retain(|iter| iter != &blocker);
7419 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7420 channel_funding_outpoint, counterparty_node_id) {
7421 // Check that, while holding the peer lock, we don't have anything else
7422 // blocking monitor updates for this channel. If we do, release the monitor
7423 // update(s) when those blockers complete.
7424 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7425 &channel_funding_outpoint.to_channel_id());
7429 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7430 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7431 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7432 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7433 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7434 channel_funding_outpoint.to_channel_id());
7435 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7436 peer_state_lck, peer_state, per_peer_state, chan);
7437 if further_update_exists {
7438 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7443 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7444 channel_funding_outpoint.to_channel_id());
7449 log_debug!(self.logger,
7450 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7451 log_pubkey!(counterparty_node_id));
7457 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7458 for action in actions {
7460 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7461 channel_funding_outpoint, counterparty_node_id
7463 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7469 /// Processes any events asynchronously in the order they were generated since the last call
7470 /// using the given event handler.
7472 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7473 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7477 process_events_body!(self, ev, { handler(ev).await });
7481 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7483 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7484 T::Target: BroadcasterInterface,
7485 ES::Target: EntropySource,
7486 NS::Target: NodeSigner,
7487 SP::Target: SignerProvider,
7488 F::Target: FeeEstimator,
7492 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
7493 /// The returned array will contain `MessageSendEvent`s for different peers if
7494 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
7495 /// is always placed next to each other.
7497 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
7498 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
7499 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
7500 /// will randomly be placed first or last in the returned array.
7502 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
7503 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
7504 /// the `MessageSendEvent`s to the specific peer they were generated under.
7505 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
7506 let events = RefCell::new(Vec::new());
7507 PersistenceNotifierGuard::optionally_notify(self, || {
7508 let mut result = NotifyOption::SkipPersistNoEvents;
7510 // TODO: This behavior should be documented. It's unintuitive that we query
7511 // ChannelMonitors when clearing other events.
7512 if self.process_pending_monitor_events() {
7513 result = NotifyOption::DoPersist;
7516 if self.check_free_holding_cells() {
7517 result = NotifyOption::DoPersist;
7519 if self.maybe_generate_initial_closing_signed() {
7520 result = NotifyOption::DoPersist;
7523 let mut pending_events = Vec::new();
7524 let per_peer_state = self.per_peer_state.read().unwrap();
7525 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7526 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7527 let peer_state = &mut *peer_state_lock;
7528 if peer_state.pending_msg_events.len() > 0 {
7529 pending_events.append(&mut peer_state.pending_msg_events);
7533 if !pending_events.is_empty() {
7534 events.replace(pending_events);
7543 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7545 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7546 T::Target: BroadcasterInterface,
7547 ES::Target: EntropySource,
7548 NS::Target: NodeSigner,
7549 SP::Target: SignerProvider,
7550 F::Target: FeeEstimator,
7554 /// Processes events that must be periodically handled.
7556 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
7557 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
7558 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
7560 process_events_body!(self, ev, handler.handle_event(ev));
7564 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
7566 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7567 T::Target: BroadcasterInterface,
7568 ES::Target: EntropySource,
7569 NS::Target: NodeSigner,
7570 SP::Target: SignerProvider,
7571 F::Target: FeeEstimator,
7575 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7577 let best_block = self.best_block.read().unwrap();
7578 assert_eq!(best_block.block_hash(), header.prev_blockhash,
7579 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
7580 assert_eq!(best_block.height(), height - 1,
7581 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
7584 self.transactions_confirmed(header, txdata, height);
7585 self.best_block_updated(header, height);
7588 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
7589 let _persistence_guard =
7590 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7591 self, || -> NotifyOption { NotifyOption::DoPersist });
7592 let new_height = height - 1;
7594 let mut best_block = self.best_block.write().unwrap();
7595 assert_eq!(best_block.block_hash(), header.block_hash(),
7596 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
7597 assert_eq!(best_block.height(), height,
7598 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
7599 *best_block = BestBlock::new(header.prev_blockhash, new_height)
7602 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
7606 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
7608 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7609 T::Target: BroadcasterInterface,
7610 ES::Target: EntropySource,
7611 NS::Target: NodeSigner,
7612 SP::Target: SignerProvider,
7613 F::Target: FeeEstimator,
7617 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7618 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7619 // during initialization prior to the chain_monitor being fully configured in some cases.
7620 // See the docs for `ChannelManagerReadArgs` for more.
7622 let block_hash = header.block_hash();
7623 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
7625 let _persistence_guard =
7626 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7627 self, || -> NotifyOption { NotifyOption::DoPersist });
7628 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger)
7629 .map(|(a, b)| (a, Vec::new(), b)));
7631 let last_best_block_height = self.best_block.read().unwrap().height();
7632 if height < last_best_block_height {
7633 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
7634 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
7638 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
7639 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7640 // during initialization prior to the chain_monitor being fully configured in some cases.
7641 // See the docs for `ChannelManagerReadArgs` for more.
7643 let block_hash = header.block_hash();
7644 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
7646 let _persistence_guard =
7647 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7648 self, || -> NotifyOption { NotifyOption::DoPersist });
7649 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
7651 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &self.logger));
7653 macro_rules! max_time {
7654 ($timestamp: expr) => {
7656 // Update $timestamp to be the max of its current value and the block
7657 // timestamp. This should keep us close to the current time without relying on
7658 // having an explicit local time source.
7659 // Just in case we end up in a race, we loop until we either successfully
7660 // update $timestamp or decide we don't need to.
7661 let old_serial = $timestamp.load(Ordering::Acquire);
7662 if old_serial >= header.time as usize { break; }
7663 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
7669 max_time!(self.highest_seen_timestamp);
7670 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
7671 payment_secrets.retain(|_, inbound_payment| {
7672 inbound_payment.expiry_time > header.time as u64
7676 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
7677 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
7678 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
7679 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7680 let peer_state = &mut *peer_state_lock;
7681 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
7682 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
7683 res.push((funding_txo.txid, Some(block_hash)));
7690 fn transaction_unconfirmed(&self, txid: &Txid) {
7691 let _persistence_guard =
7692 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7693 self, || -> NotifyOption { NotifyOption::DoPersist });
7694 self.do_chain_event(None, |channel| {
7695 if let Some(funding_txo) = channel.context.get_funding_txo() {
7696 if funding_txo.txid == *txid {
7697 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
7698 } else { Ok((None, Vec::new(), None)) }
7699 } else { Ok((None, Vec::new(), None)) }
7704 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
7706 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7707 T::Target: BroadcasterInterface,
7708 ES::Target: EntropySource,
7709 NS::Target: NodeSigner,
7710 SP::Target: SignerProvider,
7711 F::Target: FeeEstimator,
7715 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
7716 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
7718 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
7719 (&self, height_opt: Option<u32>, f: FN) {
7720 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7721 // during initialization prior to the chain_monitor being fully configured in some cases.
7722 // See the docs for `ChannelManagerReadArgs` for more.
7724 let mut failed_channels = Vec::new();
7725 let mut timed_out_htlcs = Vec::new();
7727 let per_peer_state = self.per_peer_state.read().unwrap();
7728 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7729 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7730 let peer_state = &mut *peer_state_lock;
7731 let pending_msg_events = &mut peer_state.pending_msg_events;
7732 peer_state.channel_by_id.retain(|_, phase| {
7734 // Retain unfunded channels.
7735 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
7736 ChannelPhase::Funded(channel) => {
7737 let res = f(channel);
7738 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
7739 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
7740 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
7741 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
7742 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
7744 if let Some(channel_ready) = channel_ready_opt {
7745 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
7746 if channel.context.is_usable() {
7747 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
7748 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
7749 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7750 node_id: channel.context.get_counterparty_node_id(),
7755 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
7760 let mut pending_events = self.pending_events.lock().unwrap();
7761 emit_channel_ready_event!(pending_events, channel);
7764 if let Some(announcement_sigs) = announcement_sigs {
7765 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
7766 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7767 node_id: channel.context.get_counterparty_node_id(),
7768 msg: announcement_sigs,
7770 if let Some(height) = height_opt {
7771 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
7772 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7774 // Note that announcement_signatures fails if the channel cannot be announced,
7775 // so get_channel_update_for_broadcast will never fail by the time we get here.
7776 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
7781 if channel.is_our_channel_ready() {
7782 if let Some(real_scid) = channel.context.get_short_channel_id() {
7783 // If we sent a 0conf channel_ready, and now have an SCID, we add it
7784 // to the short_to_chan_info map here. Note that we check whether we
7785 // can relay using the real SCID at relay-time (i.e.
7786 // enforce option_scid_alias then), and if the funding tx is ever
7787 // un-confirmed we force-close the channel, ensuring short_to_chan_info
7788 // is always consistent.
7789 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
7790 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
7791 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
7792 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
7793 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
7796 } else if let Err(reason) = res {
7797 update_maps_on_chan_removal!(self, &channel.context);
7798 // It looks like our counterparty went on-chain or funding transaction was
7799 // reorged out of the main chain. Close the channel.
7800 failed_channels.push(channel.context.force_shutdown(true));
7801 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
7802 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7806 let reason_message = format!("{}", reason);
7807 self.issue_channel_close_events(&channel.context, reason);
7808 pending_msg_events.push(events::MessageSendEvent::HandleError {
7809 node_id: channel.context.get_counterparty_node_id(),
7810 action: msgs::ErrorAction::DisconnectPeer {
7811 msg: Some(msgs::ErrorMessage {
7812 channel_id: channel.context.channel_id(),
7813 data: reason_message,
7826 if let Some(height) = height_opt {
7827 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
7828 payment.htlcs.retain(|htlc| {
7829 // If height is approaching the number of blocks we think it takes us to get
7830 // our commitment transaction confirmed before the HTLC expires, plus the
7831 // number of blocks we generally consider it to take to do a commitment update,
7832 // just give up on it and fail the HTLC.
7833 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
7834 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
7835 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
7837 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
7838 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
7839 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
7843 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
7846 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
7847 intercepted_htlcs.retain(|_, htlc| {
7848 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
7849 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7850 short_channel_id: htlc.prev_short_channel_id,
7851 user_channel_id: Some(htlc.prev_user_channel_id),
7852 htlc_id: htlc.prev_htlc_id,
7853 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
7854 phantom_shared_secret: None,
7855 outpoint: htlc.prev_funding_outpoint,
7858 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
7859 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7860 _ => unreachable!(),
7862 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
7863 HTLCFailReason::from_failure_code(0x2000 | 2),
7864 HTLCDestination::InvalidForward { requested_forward_scid }));
7865 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
7871 self.handle_init_event_channel_failures(failed_channels);
7873 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
7874 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
7878 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
7879 /// may have events that need processing.
7881 /// In order to check if this [`ChannelManager`] needs persisting, call
7882 /// [`Self::get_and_clear_needs_persistence`].
7884 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
7885 /// [`ChannelManager`] and should instead register actions to be taken later.
7886 pub fn get_event_or_persistence_needed_future(&self) -> Future {
7887 self.event_persist_notifier.get_future()
7890 /// Returns true if this [`ChannelManager`] needs to be persisted.
7891 pub fn get_and_clear_needs_persistence(&self) -> bool {
7892 self.needs_persist_flag.swap(false, Ordering::AcqRel)
7895 #[cfg(any(test, feature = "_test_utils"))]
7896 pub fn get_event_or_persist_condvar_value(&self) -> bool {
7897 self.event_persist_notifier.notify_pending()
7900 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
7901 /// [`chain::Confirm`] interfaces.
7902 pub fn current_best_block(&self) -> BestBlock {
7903 self.best_block.read().unwrap().clone()
7906 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7907 /// [`ChannelManager`].
7908 pub fn node_features(&self) -> NodeFeatures {
7909 provided_node_features(&self.default_configuration)
7912 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7913 /// [`ChannelManager`].
7915 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7916 /// or not. Thus, this method is not public.
7917 #[cfg(any(feature = "_test_utils", test))]
7918 pub fn invoice_features(&self) -> Bolt11InvoiceFeatures {
7919 provided_invoice_features(&self.default_configuration)
7922 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7923 /// [`ChannelManager`].
7924 pub fn channel_features(&self) -> ChannelFeatures {
7925 provided_channel_features(&self.default_configuration)
7928 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7929 /// [`ChannelManager`].
7930 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
7931 provided_channel_type_features(&self.default_configuration)
7934 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7935 /// [`ChannelManager`].
7936 pub fn init_features(&self) -> InitFeatures {
7937 provided_init_features(&self.default_configuration)
7941 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7942 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
7944 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7945 T::Target: BroadcasterInterface,
7946 ES::Target: EntropySource,
7947 NS::Target: NodeSigner,
7948 SP::Target: SignerProvider,
7949 F::Target: FeeEstimator,
7953 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
7954 // Note that we never need to persist the updated ChannelManager for an inbound
7955 // open_channel message - pre-funded channels are never written so there should be no
7956 // change to the contents.
7957 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7958 let res = self.internal_open_channel(counterparty_node_id, msg);
7959 let persist = match &res {
7960 Err(e) if e.closes_channel() => {
7961 debug_assert!(false, "We shouldn't close a new channel");
7962 NotifyOption::DoPersist
7964 _ => NotifyOption::SkipPersistHandleEvents,
7966 let _ = handle_error!(self, res, *counterparty_node_id);
7971 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
7972 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7973 "Dual-funded channels not supported".to_owned(),
7974 msg.temporary_channel_id.clone())), *counterparty_node_id);
7977 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
7978 // Note that we never need to persist the updated ChannelManager for an inbound
7979 // accept_channel message - pre-funded channels are never written so there should be no
7980 // change to the contents.
7981 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7982 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
7983 NotifyOption::SkipPersistHandleEvents
7987 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
7988 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7989 "Dual-funded channels not supported".to_owned(),
7990 msg.temporary_channel_id.clone())), *counterparty_node_id);
7993 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
7994 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7995 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
7998 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
7999 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8000 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
8003 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
8004 // Note that we never need to persist the updated ChannelManager for an inbound
8005 // channel_ready message - while the channel's state will change, any channel_ready message
8006 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
8007 // will not force-close the channel on startup.
8008 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8009 let res = self.internal_channel_ready(counterparty_node_id, msg);
8010 let persist = match &res {
8011 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8012 _ => NotifyOption::SkipPersistHandleEvents,
8014 let _ = handle_error!(self, res, *counterparty_node_id);
8019 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
8020 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8021 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
8024 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
8025 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8026 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
8029 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
8030 // Note that we never need to persist the updated ChannelManager for an inbound
8031 // update_add_htlc message - the message itself doesn't change our channel state only the
8032 // `commitment_signed` message afterwards will.
8033 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8034 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
8035 let persist = match &res {
8036 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8037 Err(_) => NotifyOption::SkipPersistHandleEvents,
8038 Ok(()) => NotifyOption::SkipPersistNoEvents,
8040 let _ = handle_error!(self, res, *counterparty_node_id);
8045 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
8046 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8047 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
8050 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
8051 // Note that we never need to persist the updated ChannelManager for an inbound
8052 // update_fail_htlc message - the message itself doesn't change our channel state only the
8053 // `commitment_signed` message afterwards will.
8054 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8055 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
8056 let persist = match &res {
8057 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8058 Err(_) => NotifyOption::SkipPersistHandleEvents,
8059 Ok(()) => NotifyOption::SkipPersistNoEvents,
8061 let _ = handle_error!(self, res, *counterparty_node_id);
8066 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
8067 // Note that we never need to persist the updated ChannelManager for an inbound
8068 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
8069 // only the `commitment_signed` message afterwards will.
8070 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8071 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
8072 let persist = match &res {
8073 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8074 Err(_) => NotifyOption::SkipPersistHandleEvents,
8075 Ok(()) => NotifyOption::SkipPersistNoEvents,
8077 let _ = handle_error!(self, res, *counterparty_node_id);
8082 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
8083 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8084 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
8087 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
8088 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8089 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
8092 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
8093 // Note that we never need to persist the updated ChannelManager for an inbound
8094 // update_fee message - the message itself doesn't change our channel state only the
8095 // `commitment_signed` message afterwards will.
8096 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8097 let res = self.internal_update_fee(counterparty_node_id, msg);
8098 let persist = match &res {
8099 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8100 Err(_) => NotifyOption::SkipPersistHandleEvents,
8101 Ok(()) => NotifyOption::SkipPersistNoEvents,
8103 let _ = handle_error!(self, res, *counterparty_node_id);
8108 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
8109 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8110 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
8113 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
8114 PersistenceNotifierGuard::optionally_notify(self, || {
8115 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
8118 NotifyOption::DoPersist
8123 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
8124 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
8125 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
8126 let persist = match &res {
8127 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
8128 Err(_) => NotifyOption::SkipPersistHandleEvents,
8129 Ok(persist) => *persist,
8131 let _ = handle_error!(self, res, *counterparty_node_id);
8136 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
8137 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
8138 self, || NotifyOption::SkipPersistHandleEvents);
8139 let mut failed_channels = Vec::new();
8140 let mut per_peer_state = self.per_peer_state.write().unwrap();
8142 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
8143 log_pubkey!(counterparty_node_id));
8144 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8145 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8146 let peer_state = &mut *peer_state_lock;
8147 let pending_msg_events = &mut peer_state.pending_msg_events;
8148 peer_state.channel_by_id.retain(|_, phase| {
8149 let context = match phase {
8150 ChannelPhase::Funded(chan) => {
8151 if chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger).is_ok() {
8152 // We only retain funded channels that are not shutdown.
8157 // Unfunded channels will always be removed.
8158 ChannelPhase::UnfundedOutboundV1(chan) => {
8161 ChannelPhase::UnfundedInboundV1(chan) => {
8165 // Clean up for removal.
8166 update_maps_on_chan_removal!(self, &context);
8167 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
8168 failed_channels.push(context.force_shutdown(false));
8171 // Note that we don't bother generating any events for pre-accept channels -
8172 // they're not considered "channels" yet from the PoV of our events interface.
8173 peer_state.inbound_channel_request_by_id.clear();
8174 pending_msg_events.retain(|msg| {
8176 // V1 Channel Establishment
8177 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
8178 &events::MessageSendEvent::SendOpenChannel { .. } => false,
8179 &events::MessageSendEvent::SendFundingCreated { .. } => false,
8180 &events::MessageSendEvent::SendFundingSigned { .. } => false,
8181 // V2 Channel Establishment
8182 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
8183 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
8184 // Common Channel Establishment
8185 &events::MessageSendEvent::SendChannelReady { .. } => false,
8186 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
8187 // Interactive Transaction Construction
8188 &events::MessageSendEvent::SendTxAddInput { .. } => false,
8189 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
8190 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
8191 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
8192 &events::MessageSendEvent::SendTxComplete { .. } => false,
8193 &events::MessageSendEvent::SendTxSignatures { .. } => false,
8194 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
8195 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
8196 &events::MessageSendEvent::SendTxAbort { .. } => false,
8197 // Channel Operations
8198 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
8199 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
8200 &events::MessageSendEvent::SendClosingSigned { .. } => false,
8201 &events::MessageSendEvent::SendShutdown { .. } => false,
8202 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
8203 &events::MessageSendEvent::HandleError { .. } => false,
8205 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
8206 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
8207 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
8208 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
8209 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
8210 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
8211 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
8212 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
8213 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
8216 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
8217 peer_state.is_connected = false;
8218 peer_state.ok_to_remove(true)
8219 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
8222 per_peer_state.remove(counterparty_node_id);
8224 mem::drop(per_peer_state);
8226 for failure in failed_channels.drain(..) {
8227 self.finish_close_channel(failure);
8231 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
8232 if !init_msg.features.supports_static_remote_key() {
8233 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
8237 let mut res = Ok(());
8239 PersistenceNotifierGuard::optionally_notify(self, || {
8240 // If we have too many peers connected which don't have funded channels, disconnect the
8241 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
8242 // unfunded channels taking up space in memory for disconnected peers, we still let new
8243 // peers connect, but we'll reject new channels from them.
8244 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
8245 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
8248 let mut peer_state_lock = self.per_peer_state.write().unwrap();
8249 match peer_state_lock.entry(counterparty_node_id.clone()) {
8250 hash_map::Entry::Vacant(e) => {
8251 if inbound_peer_limited {
8253 return NotifyOption::SkipPersistNoEvents;
8255 e.insert(Mutex::new(PeerState {
8256 channel_by_id: HashMap::new(),
8257 inbound_channel_request_by_id: HashMap::new(),
8258 latest_features: init_msg.features.clone(),
8259 pending_msg_events: Vec::new(),
8260 in_flight_monitor_updates: BTreeMap::new(),
8261 monitor_update_blocked_actions: BTreeMap::new(),
8262 actions_blocking_raa_monitor_updates: BTreeMap::new(),
8266 hash_map::Entry::Occupied(e) => {
8267 let mut peer_state = e.get().lock().unwrap();
8268 peer_state.latest_features = init_msg.features.clone();
8270 let best_block_height = self.best_block.read().unwrap().height();
8271 if inbound_peer_limited &&
8272 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
8273 peer_state.channel_by_id.len()
8276 return NotifyOption::SkipPersistNoEvents;
8279 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
8280 peer_state.is_connected = true;
8285 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
8287 let per_peer_state = self.per_peer_state.read().unwrap();
8288 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
8289 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8290 let peer_state = &mut *peer_state_lock;
8291 let pending_msg_events = &mut peer_state.pending_msg_events;
8293 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
8294 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
8295 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
8296 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
8297 // worry about closing and removing them.
8298 debug_assert!(false);
8302 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
8303 node_id: chan.context.get_counterparty_node_id(),
8304 msg: chan.get_channel_reestablish(&self.logger),
8309 return NotifyOption::SkipPersistHandleEvents;
8310 //TODO: Also re-broadcast announcement_signatures
8315 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8316 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8318 match &msg.data as &str {
8319 "cannot co-op close channel w/ active htlcs"|
8320 "link failed to shutdown" =>
8322 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8323 // send one while HTLCs are still present. The issue is tracked at
8324 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8325 // to fix it but none so far have managed to land upstream. The issue appears to be
8326 // very low priority for the LND team despite being marked "P1".
8327 // We're not going to bother handling this in a sensible way, instead simply
8328 // repeating the Shutdown message on repeat until morale improves.
8329 if !msg.channel_id.is_zero() {
8330 let per_peer_state = self.per_peer_state.read().unwrap();
8331 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8332 if peer_state_mutex_opt.is_none() { return; }
8333 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8334 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8335 if let Some(msg) = chan.get_outbound_shutdown() {
8336 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8337 node_id: *counterparty_node_id,
8341 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8342 node_id: *counterparty_node_id,
8343 action: msgs::ErrorAction::SendWarningMessage {
8344 msg: msgs::WarningMessage {
8345 channel_id: msg.channel_id,
8346 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8348 log_level: Level::Trace,
8358 if msg.channel_id.is_zero() {
8359 let channel_ids: Vec<ChannelId> = {
8360 let per_peer_state = self.per_peer_state.read().unwrap();
8361 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8362 if peer_state_mutex_opt.is_none() { return; }
8363 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8364 let peer_state = &mut *peer_state_lock;
8365 // Note that we don't bother generating any events for pre-accept channels -
8366 // they're not considered "channels" yet from the PoV of our events interface.
8367 peer_state.inbound_channel_request_by_id.clear();
8368 peer_state.channel_by_id.keys().cloned().collect()
8370 for channel_id in channel_ids {
8371 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8372 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8376 // First check if we can advance the channel type and try again.
8377 let per_peer_state = self.per_peer_state.read().unwrap();
8378 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8379 if peer_state_mutex_opt.is_none() { return; }
8380 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8381 let peer_state = &mut *peer_state_lock;
8382 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8383 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
8384 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8385 node_id: *counterparty_node_id,
8393 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8394 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8398 fn provided_node_features(&self) -> NodeFeatures {
8399 provided_node_features(&self.default_configuration)
8402 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8403 provided_init_features(&self.default_configuration)
8406 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
8407 Some(vec![self.chain_hash])
8410 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8411 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8412 "Dual-funded channels not supported".to_owned(),
8413 msg.channel_id.clone())), *counterparty_node_id);
8416 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8417 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8418 "Dual-funded channels not supported".to_owned(),
8419 msg.channel_id.clone())), *counterparty_node_id);
8422 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8423 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8424 "Dual-funded channels not supported".to_owned(),
8425 msg.channel_id.clone())), *counterparty_node_id);
8428 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8429 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8430 "Dual-funded channels not supported".to_owned(),
8431 msg.channel_id.clone())), *counterparty_node_id);
8434 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8435 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8436 "Dual-funded channels not supported".to_owned(),
8437 msg.channel_id.clone())), *counterparty_node_id);
8440 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8441 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8442 "Dual-funded channels not supported".to_owned(),
8443 msg.channel_id.clone())), *counterparty_node_id);
8446 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8447 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8448 "Dual-funded channels not supported".to_owned(),
8449 msg.channel_id.clone())), *counterparty_node_id);
8452 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8453 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8454 "Dual-funded channels not supported".to_owned(),
8455 msg.channel_id.clone())), *counterparty_node_id);
8458 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8459 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8460 "Dual-funded channels not supported".to_owned(),
8461 msg.channel_id.clone())), *counterparty_node_id);
8465 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
8466 /// [`ChannelManager`].
8467 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
8468 let mut node_features = provided_init_features(config).to_context();
8469 node_features.set_keysend_optional();
8473 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
8474 /// [`ChannelManager`].
8476 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8477 /// or not. Thus, this method is not public.
8478 #[cfg(any(feature = "_test_utils", test))]
8479 pub(crate) fn provided_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
8480 provided_init_features(config).to_context()
8483 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
8484 /// [`ChannelManager`].
8485 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
8486 provided_init_features(config).to_context()
8489 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
8490 /// [`ChannelManager`].
8491 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
8492 ChannelTypeFeatures::from_init(&provided_init_features(config))
8495 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
8496 /// [`ChannelManager`].
8497 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
8498 // Note that if new features are added here which other peers may (eventually) require, we
8499 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
8500 // [`ErroringMessageHandler`].
8501 let mut features = InitFeatures::empty();
8502 features.set_data_loss_protect_required();
8503 features.set_upfront_shutdown_script_optional();
8504 features.set_variable_length_onion_required();
8505 features.set_static_remote_key_required();
8506 features.set_payment_secret_required();
8507 features.set_basic_mpp_optional();
8508 features.set_wumbo_optional();
8509 features.set_shutdown_any_segwit_optional();
8510 features.set_channel_type_optional();
8511 features.set_scid_privacy_optional();
8512 features.set_zero_conf_optional();
8513 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
8514 features.set_anchors_zero_fee_htlc_tx_optional();
8519 const SERIALIZATION_VERSION: u8 = 1;
8520 const MIN_SERIALIZATION_VERSION: u8 = 1;
8522 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
8523 (2, fee_base_msat, required),
8524 (4, fee_proportional_millionths, required),
8525 (6, cltv_expiry_delta, required),
8528 impl_writeable_tlv_based!(ChannelCounterparty, {
8529 (2, node_id, required),
8530 (4, features, required),
8531 (6, unspendable_punishment_reserve, required),
8532 (8, forwarding_info, option),
8533 (9, outbound_htlc_minimum_msat, option),
8534 (11, outbound_htlc_maximum_msat, option),
8537 impl Writeable for ChannelDetails {
8538 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8539 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8540 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8541 let user_channel_id_low = self.user_channel_id as u64;
8542 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
8543 write_tlv_fields!(writer, {
8544 (1, self.inbound_scid_alias, option),
8545 (2, self.channel_id, required),
8546 (3, self.channel_type, option),
8547 (4, self.counterparty, required),
8548 (5, self.outbound_scid_alias, option),
8549 (6, self.funding_txo, option),
8550 (7, self.config, option),
8551 (8, self.short_channel_id, option),
8552 (9, self.confirmations, option),
8553 (10, self.channel_value_satoshis, required),
8554 (12, self.unspendable_punishment_reserve, option),
8555 (14, user_channel_id_low, required),
8556 (16, self.balance_msat, required),
8557 (18, self.outbound_capacity_msat, required),
8558 (19, self.next_outbound_htlc_limit_msat, required),
8559 (20, self.inbound_capacity_msat, required),
8560 (21, self.next_outbound_htlc_minimum_msat, required),
8561 (22, self.confirmations_required, option),
8562 (24, self.force_close_spend_delay, option),
8563 (26, self.is_outbound, required),
8564 (28, self.is_channel_ready, required),
8565 (30, self.is_usable, required),
8566 (32, self.is_public, required),
8567 (33, self.inbound_htlc_minimum_msat, option),
8568 (35, self.inbound_htlc_maximum_msat, option),
8569 (37, user_channel_id_high_opt, option),
8570 (39, self.feerate_sat_per_1000_weight, option),
8571 (41, self.channel_shutdown_state, option),
8577 impl Readable for ChannelDetails {
8578 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8579 _init_and_read_len_prefixed_tlv_fields!(reader, {
8580 (1, inbound_scid_alias, option),
8581 (2, channel_id, required),
8582 (3, channel_type, option),
8583 (4, counterparty, required),
8584 (5, outbound_scid_alias, option),
8585 (6, funding_txo, option),
8586 (7, config, option),
8587 (8, short_channel_id, option),
8588 (9, confirmations, option),
8589 (10, channel_value_satoshis, required),
8590 (12, unspendable_punishment_reserve, option),
8591 (14, user_channel_id_low, required),
8592 (16, balance_msat, required),
8593 (18, outbound_capacity_msat, required),
8594 // Note that by the time we get past the required read above, outbound_capacity_msat will be
8595 // filled in, so we can safely unwrap it here.
8596 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
8597 (20, inbound_capacity_msat, required),
8598 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
8599 (22, confirmations_required, option),
8600 (24, force_close_spend_delay, option),
8601 (26, is_outbound, required),
8602 (28, is_channel_ready, required),
8603 (30, is_usable, required),
8604 (32, is_public, required),
8605 (33, inbound_htlc_minimum_msat, option),
8606 (35, inbound_htlc_maximum_msat, option),
8607 (37, user_channel_id_high_opt, option),
8608 (39, feerate_sat_per_1000_weight, option),
8609 (41, channel_shutdown_state, option),
8612 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8613 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8614 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
8615 let user_channel_id = user_channel_id_low as u128 +
8616 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
8620 channel_id: channel_id.0.unwrap(),
8622 counterparty: counterparty.0.unwrap(),
8623 outbound_scid_alias,
8627 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
8628 unspendable_punishment_reserve,
8630 balance_msat: balance_msat.0.unwrap(),
8631 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
8632 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
8633 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
8634 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
8635 confirmations_required,
8637 force_close_spend_delay,
8638 is_outbound: is_outbound.0.unwrap(),
8639 is_channel_ready: is_channel_ready.0.unwrap(),
8640 is_usable: is_usable.0.unwrap(),
8641 is_public: is_public.0.unwrap(),
8642 inbound_htlc_minimum_msat,
8643 inbound_htlc_maximum_msat,
8644 feerate_sat_per_1000_weight,
8645 channel_shutdown_state,
8650 impl_writeable_tlv_based!(PhantomRouteHints, {
8651 (2, channels, required_vec),
8652 (4, phantom_scid, required),
8653 (6, real_node_pubkey, required),
8656 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
8658 (0, onion_packet, required),
8659 (2, short_channel_id, required),
8662 (0, payment_data, required),
8663 (1, phantom_shared_secret, option),
8664 (2, incoming_cltv_expiry, required),
8665 (3, payment_metadata, option),
8666 (5, custom_tlvs, optional_vec),
8668 (2, ReceiveKeysend) => {
8669 (0, payment_preimage, required),
8670 (2, incoming_cltv_expiry, required),
8671 (3, payment_metadata, option),
8672 (4, payment_data, option), // Added in 0.0.116
8673 (5, custom_tlvs, optional_vec),
8677 impl_writeable_tlv_based!(PendingHTLCInfo, {
8678 (0, routing, required),
8679 (2, incoming_shared_secret, required),
8680 (4, payment_hash, required),
8681 (6, outgoing_amt_msat, required),
8682 (8, outgoing_cltv_value, required),
8683 (9, incoming_amt_msat, option),
8684 (10, skimmed_fee_msat, option),
8688 impl Writeable for HTLCFailureMsg {
8689 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8691 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
8693 channel_id.write(writer)?;
8694 htlc_id.write(writer)?;
8695 reason.write(writer)?;
8697 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8698 channel_id, htlc_id, sha256_of_onion, failure_code
8701 channel_id.write(writer)?;
8702 htlc_id.write(writer)?;
8703 sha256_of_onion.write(writer)?;
8704 failure_code.write(writer)?;
8711 impl Readable for HTLCFailureMsg {
8712 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8713 let id: u8 = Readable::read(reader)?;
8716 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8717 channel_id: Readable::read(reader)?,
8718 htlc_id: Readable::read(reader)?,
8719 reason: Readable::read(reader)?,
8723 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8724 channel_id: Readable::read(reader)?,
8725 htlc_id: Readable::read(reader)?,
8726 sha256_of_onion: Readable::read(reader)?,
8727 failure_code: Readable::read(reader)?,
8730 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
8731 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
8732 // messages contained in the variants.
8733 // In version 0.0.101, support for reading the variants with these types was added, and
8734 // we should migrate to writing these variants when UpdateFailHTLC or
8735 // UpdateFailMalformedHTLC get TLV fields.
8737 let length: BigSize = Readable::read(reader)?;
8738 let mut s = FixedLengthReader::new(reader, length.0);
8739 let res = Readable::read(&mut s)?;
8740 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8741 Ok(HTLCFailureMsg::Relay(res))
8744 let length: BigSize = Readable::read(reader)?;
8745 let mut s = FixedLengthReader::new(reader, length.0);
8746 let res = Readable::read(&mut s)?;
8747 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8748 Ok(HTLCFailureMsg::Malformed(res))
8750 _ => Err(DecodeError::UnknownRequiredFeature),
8755 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
8760 impl_writeable_tlv_based!(HTLCPreviousHopData, {
8761 (0, short_channel_id, required),
8762 (1, phantom_shared_secret, option),
8763 (2, outpoint, required),
8764 (4, htlc_id, required),
8765 (6, incoming_packet_shared_secret, required),
8766 (7, user_channel_id, option),
8769 impl Writeable for ClaimableHTLC {
8770 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8771 let (payment_data, keysend_preimage) = match &self.onion_payload {
8772 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
8773 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
8775 write_tlv_fields!(writer, {
8776 (0, self.prev_hop, required),
8777 (1, self.total_msat, required),
8778 (2, self.value, required),
8779 (3, self.sender_intended_value, required),
8780 (4, payment_data, option),
8781 (5, self.total_value_received, option),
8782 (6, self.cltv_expiry, required),
8783 (8, keysend_preimage, option),
8784 (10, self.counterparty_skimmed_fee_msat, option),
8790 impl Readable for ClaimableHTLC {
8791 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8792 _init_and_read_len_prefixed_tlv_fields!(reader, {
8793 (0, prev_hop, required),
8794 (1, total_msat, option),
8795 (2, value_ser, required),
8796 (3, sender_intended_value, option),
8797 (4, payment_data_opt, option),
8798 (5, total_value_received, option),
8799 (6, cltv_expiry, required),
8800 (8, keysend_preimage, option),
8801 (10, counterparty_skimmed_fee_msat, option),
8803 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
8804 let value = value_ser.0.unwrap();
8805 let onion_payload = match keysend_preimage {
8807 if payment_data.is_some() {
8808 return Err(DecodeError::InvalidValue)
8810 if total_msat.is_none() {
8811 total_msat = Some(value);
8813 OnionPayload::Spontaneous(p)
8816 if total_msat.is_none() {
8817 if payment_data.is_none() {
8818 return Err(DecodeError::InvalidValue)
8820 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
8822 OnionPayload::Invoice { _legacy_hop_data: payment_data }
8826 prev_hop: prev_hop.0.unwrap(),
8829 sender_intended_value: sender_intended_value.unwrap_or(value),
8830 total_value_received,
8831 total_msat: total_msat.unwrap(),
8833 cltv_expiry: cltv_expiry.0.unwrap(),
8834 counterparty_skimmed_fee_msat,
8839 impl Readable for HTLCSource {
8840 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8841 let id: u8 = Readable::read(reader)?;
8844 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
8845 let mut first_hop_htlc_msat: u64 = 0;
8846 let mut path_hops = Vec::new();
8847 let mut payment_id = None;
8848 let mut payment_params: Option<PaymentParameters> = None;
8849 let mut blinded_tail: Option<BlindedTail> = None;
8850 read_tlv_fields!(reader, {
8851 (0, session_priv, required),
8852 (1, payment_id, option),
8853 (2, first_hop_htlc_msat, required),
8854 (4, path_hops, required_vec),
8855 (5, payment_params, (option: ReadableArgs, 0)),
8856 (6, blinded_tail, option),
8858 if payment_id.is_none() {
8859 // For backwards compat, if there was no payment_id written, use the session_priv bytes
8861 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
8863 let path = Path { hops: path_hops, blinded_tail };
8864 if path.hops.len() == 0 {
8865 return Err(DecodeError::InvalidValue);
8867 if let Some(params) = payment_params.as_mut() {
8868 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
8869 if final_cltv_expiry_delta == &0 {
8870 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
8874 Ok(HTLCSource::OutboundRoute {
8875 session_priv: session_priv.0.unwrap(),
8876 first_hop_htlc_msat,
8878 payment_id: payment_id.unwrap(),
8881 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
8882 _ => Err(DecodeError::UnknownRequiredFeature),
8887 impl Writeable for HTLCSource {
8888 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
8890 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
8892 let payment_id_opt = Some(payment_id);
8893 write_tlv_fields!(writer, {
8894 (0, session_priv, required),
8895 (1, payment_id_opt, option),
8896 (2, first_hop_htlc_msat, required),
8897 // 3 was previously used to write a PaymentSecret for the payment.
8898 (4, path.hops, required_vec),
8899 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
8900 (6, path.blinded_tail, option),
8903 HTLCSource::PreviousHopData(ref field) => {
8905 field.write(writer)?;
8912 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
8913 (0, forward_info, required),
8914 (1, prev_user_channel_id, (default_value, 0)),
8915 (2, prev_short_channel_id, required),
8916 (4, prev_htlc_id, required),
8917 (6, prev_funding_outpoint, required),
8920 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
8922 (0, htlc_id, required),
8923 (2, err_packet, required),
8928 impl_writeable_tlv_based!(PendingInboundPayment, {
8929 (0, payment_secret, required),
8930 (2, expiry_time, required),
8931 (4, user_payment_id, required),
8932 (6, payment_preimage, required),
8933 (8, min_value_msat, required),
8936 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
8938 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8939 T::Target: BroadcasterInterface,
8940 ES::Target: EntropySource,
8941 NS::Target: NodeSigner,
8942 SP::Target: SignerProvider,
8943 F::Target: FeeEstimator,
8947 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8948 let _consistency_lock = self.total_consistency_lock.write().unwrap();
8950 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
8952 self.chain_hash.write(writer)?;
8954 let best_block = self.best_block.read().unwrap();
8955 best_block.height().write(writer)?;
8956 best_block.block_hash().write(writer)?;
8959 let mut serializable_peer_count: u64 = 0;
8961 let per_peer_state = self.per_peer_state.read().unwrap();
8962 let mut number_of_funded_channels = 0;
8963 for (_, peer_state_mutex) in per_peer_state.iter() {
8964 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8965 let peer_state = &mut *peer_state_lock;
8966 if !peer_state.ok_to_remove(false) {
8967 serializable_peer_count += 1;
8970 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
8971 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
8975 (number_of_funded_channels as u64).write(writer)?;
8977 for (_, peer_state_mutex) in per_peer_state.iter() {
8978 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8979 let peer_state = &mut *peer_state_lock;
8980 for channel in peer_state.channel_by_id.iter().filter_map(
8981 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
8982 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
8985 channel.write(writer)?;
8991 let forward_htlcs = self.forward_htlcs.lock().unwrap();
8992 (forward_htlcs.len() as u64).write(writer)?;
8993 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
8994 short_channel_id.write(writer)?;
8995 (pending_forwards.len() as u64).write(writer)?;
8996 for forward in pending_forwards {
8997 forward.write(writer)?;
9002 let per_peer_state = self.per_peer_state.write().unwrap();
9004 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
9005 let claimable_payments = self.claimable_payments.lock().unwrap();
9006 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
9008 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
9009 let mut htlc_onion_fields: Vec<&_> = Vec::new();
9010 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
9011 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
9012 payment_hash.write(writer)?;
9013 (payment.htlcs.len() as u64).write(writer)?;
9014 for htlc in payment.htlcs.iter() {
9015 htlc.write(writer)?;
9017 htlc_purposes.push(&payment.purpose);
9018 htlc_onion_fields.push(&payment.onion_fields);
9021 let mut monitor_update_blocked_actions_per_peer = None;
9022 let mut peer_states = Vec::new();
9023 for (_, peer_state_mutex) in per_peer_state.iter() {
9024 // Because we're holding the owning `per_peer_state` write lock here there's no chance
9025 // of a lockorder violation deadlock - no other thread can be holding any
9026 // per_peer_state lock at all.
9027 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
9030 (serializable_peer_count).write(writer)?;
9031 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9032 // Peers which we have no channels to should be dropped once disconnected. As we
9033 // disconnect all peers when shutting down and serializing the ChannelManager, we
9034 // consider all peers as disconnected here. There's therefore no need write peers with
9036 if !peer_state.ok_to_remove(false) {
9037 peer_pubkey.write(writer)?;
9038 peer_state.latest_features.write(writer)?;
9039 if !peer_state.monitor_update_blocked_actions.is_empty() {
9040 monitor_update_blocked_actions_per_peer
9041 .get_or_insert_with(Vec::new)
9042 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
9047 let events = self.pending_events.lock().unwrap();
9048 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
9049 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
9050 // refuse to read the new ChannelManager.
9051 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
9052 if events_not_backwards_compatible {
9053 // If we're gonna write a even TLV that will overwrite our events anyway we might as
9054 // well save the space and not write any events here.
9055 0u64.write(writer)?;
9057 (events.len() as u64).write(writer)?;
9058 for (event, _) in events.iter() {
9059 event.write(writer)?;
9063 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
9064 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
9065 // the closing monitor updates were always effectively replayed on startup (either directly
9066 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
9067 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
9068 0u64.write(writer)?;
9070 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
9071 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
9072 // likely to be identical.
9073 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9074 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
9076 (pending_inbound_payments.len() as u64).write(writer)?;
9077 for (hash, pending_payment) in pending_inbound_payments.iter() {
9078 hash.write(writer)?;
9079 pending_payment.write(writer)?;
9082 // For backwards compat, write the session privs and their total length.
9083 let mut num_pending_outbounds_compat: u64 = 0;
9084 for (_, outbound) in pending_outbound_payments.iter() {
9085 if !outbound.is_fulfilled() && !outbound.abandoned() {
9086 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
9089 num_pending_outbounds_compat.write(writer)?;
9090 for (_, outbound) in pending_outbound_payments.iter() {
9092 PendingOutboundPayment::Legacy { session_privs } |
9093 PendingOutboundPayment::Retryable { session_privs, .. } => {
9094 for session_priv in session_privs.iter() {
9095 session_priv.write(writer)?;
9098 PendingOutboundPayment::AwaitingInvoice { .. } => {},
9099 PendingOutboundPayment::InvoiceReceived { .. } => {},
9100 PendingOutboundPayment::Fulfilled { .. } => {},
9101 PendingOutboundPayment::Abandoned { .. } => {},
9105 // Encode without retry info for 0.0.101 compatibility.
9106 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
9107 for (id, outbound) in pending_outbound_payments.iter() {
9109 PendingOutboundPayment::Legacy { session_privs } |
9110 PendingOutboundPayment::Retryable { session_privs, .. } => {
9111 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
9117 let mut pending_intercepted_htlcs = None;
9118 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
9119 if our_pending_intercepts.len() != 0 {
9120 pending_intercepted_htlcs = Some(our_pending_intercepts);
9123 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
9124 if pending_claiming_payments.as_ref().unwrap().is_empty() {
9125 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
9126 // map. Thus, if there are no entries we skip writing a TLV for it.
9127 pending_claiming_payments = None;
9130 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
9131 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
9132 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
9133 if !updates.is_empty() {
9134 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
9135 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
9140 write_tlv_fields!(writer, {
9141 (1, pending_outbound_payments_no_retry, required),
9142 (2, pending_intercepted_htlcs, option),
9143 (3, pending_outbound_payments, required),
9144 (4, pending_claiming_payments, option),
9145 (5, self.our_network_pubkey, required),
9146 (6, monitor_update_blocked_actions_per_peer, option),
9147 (7, self.fake_scid_rand_bytes, required),
9148 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
9149 (9, htlc_purposes, required_vec),
9150 (10, in_flight_monitor_updates, option),
9151 (11, self.probing_cookie_secret, required),
9152 (13, htlc_onion_fields, optional_vec),
9159 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
9160 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
9161 (self.len() as u64).write(w)?;
9162 for (event, action) in self.iter() {
9165 #[cfg(debug_assertions)] {
9166 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
9167 // be persisted and are regenerated on restart. However, if such an event has a
9168 // post-event-handling action we'll write nothing for the event and would have to
9169 // either forget the action or fail on deserialization (which we do below). Thus,
9170 // check that the event is sane here.
9171 let event_encoded = event.encode();
9172 let event_read: Option<Event> =
9173 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
9174 if action.is_some() { assert!(event_read.is_some()); }
9180 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
9181 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
9182 let len: u64 = Readable::read(reader)?;
9183 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
9184 let mut events: Self = VecDeque::with_capacity(cmp::min(
9185 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
9188 let ev_opt = MaybeReadable::read(reader)?;
9189 let action = Readable::read(reader)?;
9190 if let Some(ev) = ev_opt {
9191 events.push_back((ev, action));
9192 } else if action.is_some() {
9193 return Err(DecodeError::InvalidValue);
9200 impl_writeable_tlv_based_enum!(ChannelShutdownState,
9201 (0, NotShuttingDown) => {},
9202 (2, ShutdownInitiated) => {},
9203 (4, ResolvingHTLCs) => {},
9204 (6, NegotiatingClosingFee) => {},
9205 (8, ShutdownComplete) => {}, ;
9208 /// Arguments for the creation of a ChannelManager that are not deserialized.
9210 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
9212 /// 1) Deserialize all stored [`ChannelMonitor`]s.
9213 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
9214 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
9215 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
9216 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
9217 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
9218 /// same way you would handle a [`chain::Filter`] call using
9219 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
9220 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
9221 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
9222 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
9223 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
9224 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
9226 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
9227 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
9229 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
9230 /// call any other methods on the newly-deserialized [`ChannelManager`].
9232 /// Note that because some channels may be closed during deserialization, it is critical that you
9233 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
9234 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
9235 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
9236 /// not force-close the same channels but consider them live), you may end up revoking a state for
9237 /// which you've already broadcasted the transaction.
9239 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
9240 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9242 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9243 T::Target: BroadcasterInterface,
9244 ES::Target: EntropySource,
9245 NS::Target: NodeSigner,
9246 SP::Target: SignerProvider,
9247 F::Target: FeeEstimator,
9251 /// A cryptographically secure source of entropy.
9252 pub entropy_source: ES,
9254 /// A signer that is able to perform node-scoped cryptographic operations.
9255 pub node_signer: NS,
9257 /// The keys provider which will give us relevant keys. Some keys will be loaded during
9258 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
9260 pub signer_provider: SP,
9262 /// The fee_estimator for use in the ChannelManager in the future.
9264 /// No calls to the FeeEstimator will be made during deserialization.
9265 pub fee_estimator: F,
9266 /// The chain::Watch for use in the ChannelManager in the future.
9268 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
9269 /// you have deserialized ChannelMonitors separately and will add them to your
9270 /// chain::Watch after deserializing this ChannelManager.
9271 pub chain_monitor: M,
9273 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
9274 /// used to broadcast the latest local commitment transactions of channels which must be
9275 /// force-closed during deserialization.
9276 pub tx_broadcaster: T,
9277 /// The router which will be used in the ChannelManager in the future for finding routes
9278 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
9280 /// No calls to the router will be made during deserialization.
9282 /// The Logger for use in the ChannelManager and which may be used to log information during
9283 /// deserialization.
9285 /// Default settings used for new channels. Any existing channels will continue to use the
9286 /// runtime settings which were stored when the ChannelManager was serialized.
9287 pub default_config: UserConfig,
9289 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
9290 /// value.context.get_funding_txo() should be the key).
9292 /// If a monitor is inconsistent with the channel state during deserialization the channel will
9293 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
9294 /// is true for missing channels as well. If there is a monitor missing for which we find
9295 /// channel data Err(DecodeError::InvalidValue) will be returned.
9297 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
9300 /// This is not exported to bindings users because we have no HashMap bindings
9301 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
9304 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9305 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
9307 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9308 T::Target: BroadcasterInterface,
9309 ES::Target: EntropySource,
9310 NS::Target: NodeSigner,
9311 SP::Target: SignerProvider,
9312 F::Target: FeeEstimator,
9316 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9317 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9318 /// populate a HashMap directly from C.
9319 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9320 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9322 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9323 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9328 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9329 // SipmleArcChannelManager type:
9330 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9331 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9333 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9334 T::Target: BroadcasterInterface,
9335 ES::Target: EntropySource,
9336 NS::Target: NodeSigner,
9337 SP::Target: SignerProvider,
9338 F::Target: FeeEstimator,
9342 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9343 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9344 Ok((blockhash, Arc::new(chan_manager)))
9348 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9349 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9351 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9352 T::Target: BroadcasterInterface,
9353 ES::Target: EntropySource,
9354 NS::Target: NodeSigner,
9355 SP::Target: SignerProvider,
9356 F::Target: FeeEstimator,
9360 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9361 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
9363 let chain_hash: ChainHash = Readable::read(reader)?;
9364 let best_block_height: u32 = Readable::read(reader)?;
9365 let best_block_hash: BlockHash = Readable::read(reader)?;
9367 let mut failed_htlcs = Vec::new();
9369 let channel_count: u64 = Readable::read(reader)?;
9370 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
9371 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9372 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9373 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9374 let mut channel_closures = VecDeque::new();
9375 let mut close_background_events = Vec::new();
9376 for _ in 0..channel_count {
9377 let mut channel: Channel<SP> = Channel::read(reader, (
9378 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
9380 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9381 funding_txo_set.insert(funding_txo.clone());
9382 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
9383 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
9384 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
9385 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
9386 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9387 // But if the channel is behind of the monitor, close the channel:
9388 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
9389 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
9390 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9391 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
9392 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
9394 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
9395 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
9396 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
9398 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
9399 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
9400 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
9402 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
9403 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
9404 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
9406 let mut shutdown_result = channel.context.force_shutdown(true);
9407 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
9408 return Err(DecodeError::InvalidValue);
9410 if let Some((counterparty_node_id, funding_txo, update)) = shutdown_result.monitor_update {
9411 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9412 counterparty_node_id, funding_txo, update
9415 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
9416 channel_closures.push_back((events::Event::ChannelClosed {
9417 channel_id: channel.context.channel_id(),
9418 user_channel_id: channel.context.get_user_id(),
9419 reason: ClosureReason::OutdatedChannelManager,
9420 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9421 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9423 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
9424 let mut found_htlc = false;
9425 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
9426 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
9429 // If we have some HTLCs in the channel which are not present in the newer
9430 // ChannelMonitor, they have been removed and should be failed back to
9431 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
9432 // were actually claimed we'd have generated and ensured the previous-hop
9433 // claim update ChannelMonitor updates were persisted prior to persising
9434 // the ChannelMonitor update for the forward leg, so attempting to fail the
9435 // backwards leg of the HTLC will simply be rejected.
9436 log_info!(args.logger,
9437 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
9438 &channel.context.channel_id(), &payment_hash);
9439 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9443 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
9444 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
9445 monitor.get_latest_update_id());
9446 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
9447 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9449 if channel.context.is_funding_broadcast() {
9450 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
9452 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
9453 hash_map::Entry::Occupied(mut entry) => {
9454 let by_id_map = entry.get_mut();
9455 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9457 hash_map::Entry::Vacant(entry) => {
9458 let mut by_id_map = HashMap::new();
9459 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9460 entry.insert(by_id_map);
9464 } else if channel.is_awaiting_initial_mon_persist() {
9465 // If we were persisted and shut down while the initial ChannelMonitor persistence
9466 // was in-progress, we never broadcasted the funding transaction and can still
9467 // safely discard the channel.
9468 let _ = channel.context.force_shutdown(false);
9469 channel_closures.push_back((events::Event::ChannelClosed {
9470 channel_id: channel.context.channel_id(),
9471 user_channel_id: channel.context.get_user_id(),
9472 reason: ClosureReason::DisconnectedPeer,
9473 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9474 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9477 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
9478 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9479 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9480 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
9481 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9482 return Err(DecodeError::InvalidValue);
9486 for (funding_txo, _) in args.channel_monitors.iter() {
9487 if !funding_txo_set.contains(funding_txo) {
9488 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
9489 &funding_txo.to_channel_id());
9490 let monitor_update = ChannelMonitorUpdate {
9491 update_id: CLOSED_CHANNEL_UPDATE_ID,
9492 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
9494 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
9498 const MAX_ALLOC_SIZE: usize = 1024 * 64;
9499 let forward_htlcs_count: u64 = Readable::read(reader)?;
9500 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
9501 for _ in 0..forward_htlcs_count {
9502 let short_channel_id = Readable::read(reader)?;
9503 let pending_forwards_count: u64 = Readable::read(reader)?;
9504 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
9505 for _ in 0..pending_forwards_count {
9506 pending_forwards.push(Readable::read(reader)?);
9508 forward_htlcs.insert(short_channel_id, pending_forwards);
9511 let claimable_htlcs_count: u64 = Readable::read(reader)?;
9512 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
9513 for _ in 0..claimable_htlcs_count {
9514 let payment_hash = Readable::read(reader)?;
9515 let previous_hops_len: u64 = Readable::read(reader)?;
9516 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
9517 for _ in 0..previous_hops_len {
9518 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
9520 claimable_htlcs_list.push((payment_hash, previous_hops));
9523 let peer_state_from_chans = |channel_by_id| {
9526 inbound_channel_request_by_id: HashMap::new(),
9527 latest_features: InitFeatures::empty(),
9528 pending_msg_events: Vec::new(),
9529 in_flight_monitor_updates: BTreeMap::new(),
9530 monitor_update_blocked_actions: BTreeMap::new(),
9531 actions_blocking_raa_monitor_updates: BTreeMap::new(),
9532 is_connected: false,
9536 let peer_count: u64 = Readable::read(reader)?;
9537 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
9538 for _ in 0..peer_count {
9539 let peer_pubkey = Readable::read(reader)?;
9540 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
9541 let mut peer_state = peer_state_from_chans(peer_chans);
9542 peer_state.latest_features = Readable::read(reader)?;
9543 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
9546 let event_count: u64 = Readable::read(reader)?;
9547 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
9548 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
9549 for _ in 0..event_count {
9550 match MaybeReadable::read(reader)? {
9551 Some(event) => pending_events_read.push_back((event, None)),
9556 let background_event_count: u64 = Readable::read(reader)?;
9557 for _ in 0..background_event_count {
9558 match <u8 as Readable>::read(reader)? {
9560 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
9561 // however we really don't (and never did) need them - we regenerate all
9562 // on-startup monitor updates.
9563 let _: OutPoint = Readable::read(reader)?;
9564 let _: ChannelMonitorUpdate = Readable::read(reader)?;
9566 _ => return Err(DecodeError::InvalidValue),
9570 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
9571 let highest_seen_timestamp: u32 = Readable::read(reader)?;
9573 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
9574 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
9575 for _ in 0..pending_inbound_payment_count {
9576 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
9577 return Err(DecodeError::InvalidValue);
9581 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
9582 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
9583 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
9584 for _ in 0..pending_outbound_payments_count_compat {
9585 let session_priv = Readable::read(reader)?;
9586 let payment = PendingOutboundPayment::Legacy {
9587 session_privs: [session_priv].iter().cloned().collect()
9589 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
9590 return Err(DecodeError::InvalidValue)
9594 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
9595 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
9596 let mut pending_outbound_payments = None;
9597 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
9598 let mut received_network_pubkey: Option<PublicKey> = None;
9599 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
9600 let mut probing_cookie_secret: Option<[u8; 32]> = None;
9601 let mut claimable_htlc_purposes = None;
9602 let mut claimable_htlc_onion_fields = None;
9603 let mut pending_claiming_payments = Some(HashMap::new());
9604 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
9605 let mut events_override = None;
9606 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
9607 read_tlv_fields!(reader, {
9608 (1, pending_outbound_payments_no_retry, option),
9609 (2, pending_intercepted_htlcs, option),
9610 (3, pending_outbound_payments, option),
9611 (4, pending_claiming_payments, option),
9612 (5, received_network_pubkey, option),
9613 (6, monitor_update_blocked_actions_per_peer, option),
9614 (7, fake_scid_rand_bytes, option),
9615 (8, events_override, option),
9616 (9, claimable_htlc_purposes, optional_vec),
9617 (10, in_flight_monitor_updates, option),
9618 (11, probing_cookie_secret, option),
9619 (13, claimable_htlc_onion_fields, optional_vec),
9621 if fake_scid_rand_bytes.is_none() {
9622 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
9625 if probing_cookie_secret.is_none() {
9626 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
9629 if let Some(events) = events_override {
9630 pending_events_read = events;
9633 if !channel_closures.is_empty() {
9634 pending_events_read.append(&mut channel_closures);
9637 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
9638 pending_outbound_payments = Some(pending_outbound_payments_compat);
9639 } else if pending_outbound_payments.is_none() {
9640 let mut outbounds = HashMap::new();
9641 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
9642 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
9644 pending_outbound_payments = Some(outbounds);
9646 let pending_outbounds = OutboundPayments {
9647 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
9648 retry_lock: Mutex::new(())
9651 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
9652 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
9653 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
9654 // replayed, and for each monitor update we have to replay we have to ensure there's a
9655 // `ChannelMonitor` for it.
9657 // In order to do so we first walk all of our live channels (so that we can check their
9658 // state immediately after doing the update replays, when we have the `update_id`s
9659 // available) and then walk any remaining in-flight updates.
9661 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
9662 let mut pending_background_events = Vec::new();
9663 macro_rules! handle_in_flight_updates {
9664 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
9665 $monitor: expr, $peer_state: expr, $channel_info_log: expr
9667 let mut max_in_flight_update_id = 0;
9668 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
9669 for update in $chan_in_flight_upds.iter() {
9670 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
9671 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
9672 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
9673 pending_background_events.push(
9674 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9675 counterparty_node_id: $counterparty_node_id,
9676 funding_txo: $funding_txo,
9677 update: update.clone(),
9680 if $chan_in_flight_upds.is_empty() {
9681 // We had some updates to apply, but it turns out they had completed before we
9682 // were serialized, we just weren't notified of that. Thus, we may have to run
9683 // the completion actions for any monitor updates, but otherwise are done.
9684 pending_background_events.push(
9685 BackgroundEvent::MonitorUpdatesComplete {
9686 counterparty_node_id: $counterparty_node_id,
9687 channel_id: $funding_txo.to_channel_id(),
9690 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
9691 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
9692 return Err(DecodeError::InvalidValue);
9694 max_in_flight_update_id
9698 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
9699 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
9700 let peer_state = &mut *peer_state_lock;
9701 for phase in peer_state.channel_by_id.values() {
9702 if let ChannelPhase::Funded(chan) = phase {
9703 // Channels that were persisted have to be funded, otherwise they should have been
9705 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9706 let monitor = args.channel_monitors.get(&funding_txo)
9707 .expect("We already checked for monitor presence when loading channels");
9708 let mut max_in_flight_update_id = monitor.get_latest_update_id();
9709 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
9710 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
9711 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
9712 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
9713 funding_txo, monitor, peer_state, ""));
9716 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
9717 // If the channel is ahead of the monitor, return InvalidValue:
9718 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
9719 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
9720 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
9721 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
9722 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9723 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9724 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9725 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9726 return Err(DecodeError::InvalidValue);
9729 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9730 // created in this `channel_by_id` map.
9731 debug_assert!(false);
9732 return Err(DecodeError::InvalidValue);
9737 if let Some(in_flight_upds) = in_flight_monitor_updates {
9738 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
9739 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
9740 // Now that we've removed all the in-flight monitor updates for channels that are
9741 // still open, we need to replay any monitor updates that are for closed channels,
9742 // creating the neccessary peer_state entries as we go.
9743 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
9744 Mutex::new(peer_state_from_chans(HashMap::new()))
9746 let mut peer_state = peer_state_mutex.lock().unwrap();
9747 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
9748 funding_txo, monitor, peer_state, "closed ");
9750 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
9751 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
9752 &funding_txo.to_channel_id());
9753 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9754 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9755 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9756 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9757 return Err(DecodeError::InvalidValue);
9762 // Note that we have to do the above replays before we push new monitor updates.
9763 pending_background_events.append(&mut close_background_events);
9765 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
9766 // should ensure we try them again on the inbound edge. We put them here and do so after we
9767 // have a fully-constructed `ChannelManager` at the end.
9768 let mut pending_claims_to_replay = Vec::new();
9771 // If we're tracking pending payments, ensure we haven't lost any by looking at the
9772 // ChannelMonitor data for any channels for which we do not have authorative state
9773 // (i.e. those for which we just force-closed above or we otherwise don't have a
9774 // corresponding `Channel` at all).
9775 // This avoids several edge-cases where we would otherwise "forget" about pending
9776 // payments which are still in-flight via their on-chain state.
9777 // We only rebuild the pending payments map if we were most recently serialized by
9779 for (_, monitor) in args.channel_monitors.iter() {
9780 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
9781 if counterparty_opt.is_none() {
9782 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
9783 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
9784 if path.hops.is_empty() {
9785 log_error!(args.logger, "Got an empty path for a pending payment");
9786 return Err(DecodeError::InvalidValue);
9789 let path_amt = path.final_value_msat();
9790 let mut session_priv_bytes = [0; 32];
9791 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
9792 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
9793 hash_map::Entry::Occupied(mut entry) => {
9794 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
9795 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
9796 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
9798 hash_map::Entry::Vacant(entry) => {
9799 let path_fee = path.fee_msat();
9800 entry.insert(PendingOutboundPayment::Retryable {
9801 retry_strategy: None,
9802 attempts: PaymentAttempts::new(),
9803 payment_params: None,
9804 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
9805 payment_hash: htlc.payment_hash,
9806 payment_secret: None, // only used for retries, and we'll never retry on startup
9807 payment_metadata: None, // only used for retries, and we'll never retry on startup
9808 keysend_preimage: None, // only used for retries, and we'll never retry on startup
9809 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
9810 pending_amt_msat: path_amt,
9811 pending_fee_msat: Some(path_fee),
9812 total_msat: path_amt,
9813 starting_block_height: best_block_height,
9814 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
9816 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
9817 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
9822 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
9824 HTLCSource::PreviousHopData(prev_hop_data) => {
9825 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
9826 info.prev_funding_outpoint == prev_hop_data.outpoint &&
9827 info.prev_htlc_id == prev_hop_data.htlc_id
9829 // The ChannelMonitor is now responsible for this HTLC's
9830 // failure/success and will let us know what its outcome is. If we
9831 // still have an entry for this HTLC in `forward_htlcs` or
9832 // `pending_intercepted_htlcs`, we were apparently not persisted after
9833 // the monitor was when forwarding the payment.
9834 forward_htlcs.retain(|_, forwards| {
9835 forwards.retain(|forward| {
9836 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
9837 if pending_forward_matches_htlc(&htlc_info) {
9838 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
9839 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9844 !forwards.is_empty()
9846 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
9847 if pending_forward_matches_htlc(&htlc_info) {
9848 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
9849 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9850 pending_events_read.retain(|(event, _)| {
9851 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
9852 intercepted_id != ev_id
9859 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
9860 if let Some(preimage) = preimage_opt {
9861 let pending_events = Mutex::new(pending_events_read);
9862 // Note that we set `from_onchain` to "false" here,
9863 // deliberately keeping the pending payment around forever.
9864 // Given it should only occur when we have a channel we're
9865 // force-closing for being stale that's okay.
9866 // The alternative would be to wipe the state when claiming,
9867 // generating a `PaymentPathSuccessful` event but regenerating
9868 // it and the `PaymentSent` on every restart until the
9869 // `ChannelMonitor` is removed.
9871 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9872 channel_funding_outpoint: monitor.get_funding_txo().0,
9873 counterparty_node_id: path.hops[0].pubkey,
9875 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
9876 path, false, compl_action, &pending_events, &args.logger);
9877 pending_events_read = pending_events.into_inner().unwrap();
9884 // Whether the downstream channel was closed or not, try to re-apply any payment
9885 // preimages from it which may be needed in upstream channels for forwarded
9887 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
9889 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
9890 if let HTLCSource::PreviousHopData(_) = htlc_source {
9891 if let Some(payment_preimage) = preimage_opt {
9892 Some((htlc_source, payment_preimage, htlc.amount_msat,
9893 // Check if `counterparty_opt.is_none()` to see if the
9894 // downstream chan is closed (because we don't have a
9895 // channel_id -> peer map entry).
9896 counterparty_opt.is_none(),
9897 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
9898 monitor.get_funding_txo().0))
9901 // If it was an outbound payment, we've handled it above - if a preimage
9902 // came in and we persisted the `ChannelManager` we either handled it and
9903 // are good to go or the channel force-closed - we don't have to handle the
9904 // channel still live case here.
9908 for tuple in outbound_claimed_htlcs_iter {
9909 pending_claims_to_replay.push(tuple);
9914 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
9915 // If we have pending HTLCs to forward, assume we either dropped a
9916 // `PendingHTLCsForwardable` or the user received it but never processed it as they
9917 // shut down before the timer hit. Either way, set the time_forwardable to a small
9918 // constant as enough time has likely passed that we should simply handle the forwards
9919 // now, or at least after the user gets a chance to reconnect to our peers.
9920 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
9921 time_forwardable: Duration::from_secs(2),
9925 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
9926 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
9928 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
9929 if let Some(purposes) = claimable_htlc_purposes {
9930 if purposes.len() != claimable_htlcs_list.len() {
9931 return Err(DecodeError::InvalidValue);
9933 if let Some(onion_fields) = claimable_htlc_onion_fields {
9934 if onion_fields.len() != claimable_htlcs_list.len() {
9935 return Err(DecodeError::InvalidValue);
9937 for (purpose, (onion, (payment_hash, htlcs))) in
9938 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
9940 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9941 purpose, htlcs, onion_fields: onion,
9943 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9946 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
9947 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9948 purpose, htlcs, onion_fields: None,
9950 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9954 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
9955 // include a `_legacy_hop_data` in the `OnionPayload`.
9956 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
9957 if htlcs.is_empty() {
9958 return Err(DecodeError::InvalidValue);
9960 let purpose = match &htlcs[0].onion_payload {
9961 OnionPayload::Invoice { _legacy_hop_data } => {
9962 if let Some(hop_data) = _legacy_hop_data {
9963 events::PaymentPurpose::InvoicePayment {
9964 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
9965 Some(inbound_payment) => inbound_payment.payment_preimage,
9966 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
9967 Ok((payment_preimage, _)) => payment_preimage,
9969 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
9970 return Err(DecodeError::InvalidValue);
9974 payment_secret: hop_data.payment_secret,
9976 } else { return Err(DecodeError::InvalidValue); }
9978 OnionPayload::Spontaneous(payment_preimage) =>
9979 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
9981 claimable_payments.insert(payment_hash, ClaimablePayment {
9982 purpose, htlcs, onion_fields: None,
9987 let mut secp_ctx = Secp256k1::new();
9988 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
9990 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
9992 Err(()) => return Err(DecodeError::InvalidValue)
9994 if let Some(network_pubkey) = received_network_pubkey {
9995 if network_pubkey != our_network_pubkey {
9996 log_error!(args.logger, "Key that was generated does not match the existing key.");
9997 return Err(DecodeError::InvalidValue);
10001 let mut outbound_scid_aliases = HashSet::new();
10002 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
10003 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10004 let peer_state = &mut *peer_state_lock;
10005 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
10006 if let ChannelPhase::Funded(chan) = phase {
10007 if chan.context.outbound_scid_alias() == 0 {
10008 let mut outbound_scid_alias;
10010 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
10011 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
10012 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
10014 chan.context.set_outbound_scid_alias(outbound_scid_alias);
10015 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
10016 // Note that in rare cases its possible to hit this while reading an older
10017 // channel if we just happened to pick a colliding outbound alias above.
10018 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10019 return Err(DecodeError::InvalidValue);
10021 if chan.context.is_usable() {
10022 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
10023 // Note that in rare cases its possible to hit this while reading an older
10024 // channel if we just happened to pick a colliding outbound alias above.
10025 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
10026 return Err(DecodeError::InvalidValue);
10030 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
10031 // created in this `channel_by_id` map.
10032 debug_assert!(false);
10033 return Err(DecodeError::InvalidValue);
10038 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
10040 for (_, monitor) in args.channel_monitors.iter() {
10041 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
10042 if let Some(payment) = claimable_payments.remove(&payment_hash) {
10043 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
10044 let mut claimable_amt_msat = 0;
10045 let mut receiver_node_id = Some(our_network_pubkey);
10046 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
10047 if phantom_shared_secret.is_some() {
10048 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
10049 .expect("Failed to get node_id for phantom node recipient");
10050 receiver_node_id = Some(phantom_pubkey)
10052 for claimable_htlc in &payment.htlcs {
10053 claimable_amt_msat += claimable_htlc.value;
10055 // Add a holding-cell claim of the payment to the Channel, which should be
10056 // applied ~immediately on peer reconnection. Because it won't generate a
10057 // new commitment transaction we can just provide the payment preimage to
10058 // the corresponding ChannelMonitor and nothing else.
10060 // We do so directly instead of via the normal ChannelMonitor update
10061 // procedure as the ChainMonitor hasn't yet been initialized, implying
10062 // we're not allowed to call it directly yet. Further, we do the update
10063 // without incrementing the ChannelMonitor update ID as there isn't any
10065 // If we were to generate a new ChannelMonitor update ID here and then
10066 // crash before the user finishes block connect we'd end up force-closing
10067 // this channel as well. On the flip side, there's no harm in restarting
10068 // without the new monitor persisted - we'll end up right back here on
10070 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
10071 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
10072 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
10073 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10074 let peer_state = &mut *peer_state_lock;
10075 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
10076 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
10079 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
10080 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
10083 pending_events_read.push_back((events::Event::PaymentClaimed {
10086 purpose: payment.purpose,
10087 amount_msat: claimable_amt_msat,
10088 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
10089 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
10095 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
10096 if let Some(peer_state) = per_peer_state.get(&node_id) {
10097 for (_, actions) in monitor_update_blocked_actions.iter() {
10098 for action in actions.iter() {
10099 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
10100 downstream_counterparty_and_funding_outpoint:
10101 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
10103 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
10104 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
10105 .entry(blocked_channel_outpoint.to_channel_id())
10106 .or_insert_with(Vec::new).push(blocking_action.clone());
10108 // If the channel we were blocking has closed, we don't need to
10109 // worry about it - the blocked monitor update should never have
10110 // been released from the `Channel` object so it can't have
10111 // completed, and if the channel closed there's no reason to bother
10117 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
10119 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
10120 return Err(DecodeError::InvalidValue);
10124 let channel_manager = ChannelManager {
10126 fee_estimator: bounded_fee_estimator,
10127 chain_monitor: args.chain_monitor,
10128 tx_broadcaster: args.tx_broadcaster,
10129 router: args.router,
10131 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
10133 inbound_payment_key: expanded_inbound_key,
10134 pending_inbound_payments: Mutex::new(pending_inbound_payments),
10135 pending_outbound_payments: pending_outbounds,
10136 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
10138 forward_htlcs: Mutex::new(forward_htlcs),
10139 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
10140 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
10141 id_to_peer: Mutex::new(id_to_peer),
10142 short_to_chan_info: FairRwLock::new(short_to_chan_info),
10143 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
10145 probing_cookie_secret: probing_cookie_secret.unwrap(),
10147 our_network_pubkey,
10150 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
10152 per_peer_state: FairRwLock::new(per_peer_state),
10154 pending_events: Mutex::new(pending_events_read),
10155 pending_events_processor: AtomicBool::new(false),
10156 pending_background_events: Mutex::new(pending_background_events),
10157 total_consistency_lock: RwLock::new(()),
10158 background_events_processed_since_startup: AtomicBool::new(false),
10160 event_persist_notifier: Notifier::new(),
10161 needs_persist_flag: AtomicBool::new(false),
10163 funding_batch_states: Mutex::new(BTreeMap::new()),
10165 entropy_source: args.entropy_source,
10166 node_signer: args.node_signer,
10167 signer_provider: args.signer_provider,
10169 logger: args.logger,
10170 default_configuration: args.default_config,
10173 for htlc_source in failed_htlcs.drain(..) {
10174 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
10175 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
10176 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
10177 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
10180 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
10181 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
10182 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
10183 // channel is closed we just assume that it probably came from an on-chain claim.
10184 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
10185 downstream_closed, downstream_node_id, downstream_funding);
10188 //TODO: Broadcast channel update for closed channels, but only after we've made a
10189 //connection or two.
10191 Ok((best_block_hash.clone(), channel_manager))
10197 use bitcoin::hashes::Hash;
10198 use bitcoin::hashes::sha256::Hash as Sha256;
10199 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
10200 use core::sync::atomic::Ordering;
10201 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
10202 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
10203 use crate::ln::ChannelId;
10204 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
10205 use crate::ln::functional_test_utils::*;
10206 use crate::ln::msgs::{self, ErrorAction};
10207 use crate::ln::msgs::ChannelMessageHandler;
10208 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
10209 use crate::util::errors::APIError;
10210 use crate::util::test_utils;
10211 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
10212 use crate::sign::EntropySource;
10215 fn test_notify_limits() {
10216 // Check that a few cases which don't require the persistence of a new ChannelManager,
10217 // indeed, do not cause the persistence of a new ChannelManager.
10218 let chanmon_cfgs = create_chanmon_cfgs(3);
10219 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10220 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
10221 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10223 // All nodes start with a persistable update pending as `create_network` connects each node
10224 // with all other nodes to make most tests simpler.
10225 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10226 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10227 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10229 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10231 // We check that the channel info nodes have doesn't change too early, even though we try
10232 // to connect messages with new values
10233 chan.0.contents.fee_base_msat *= 2;
10234 chan.1.contents.fee_base_msat *= 2;
10235 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
10236 &nodes[1].node.get_our_node_id()).pop().unwrap();
10237 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
10238 &nodes[0].node.get_our_node_id()).pop().unwrap();
10240 // The first two nodes (which opened a channel) should now require fresh persistence
10241 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10242 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10243 // ... but the last node should not.
10244 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10245 // After persisting the first two nodes they should no longer need fresh persistence.
10246 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10247 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10249 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
10250 // about the channel.
10251 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
10252 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
10253 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
10255 // The nodes which are a party to the channel should also ignore messages from unrelated
10257 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10258 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10259 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
10260 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
10261 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10262 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10264 // At this point the channel info given by peers should still be the same.
10265 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10266 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10268 // An earlier version of handle_channel_update didn't check the directionality of the
10269 // update message and would always update the local fee info, even if our peer was
10270 // (spuriously) forwarding us our own channel_update.
10271 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
10272 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
10273 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
10275 // First deliver each peers' own message, checking that the node doesn't need to be
10276 // persisted and that its channel info remains the same.
10277 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
10278 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
10279 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10280 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10281 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
10282 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
10284 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
10285 // the channel info has updated.
10286 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
10287 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
10288 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
10289 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
10290 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
10291 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
10295 fn test_keysend_dup_hash_partial_mpp() {
10296 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
10298 let chanmon_cfgs = create_chanmon_cfgs(2);
10299 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10300 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10301 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10302 create_announced_chan_between_nodes(&nodes, 0, 1);
10304 // First, send a partial MPP payment.
10305 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
10306 let mut mpp_route = route.clone();
10307 mpp_route.paths.push(mpp_route.paths[0].clone());
10309 let payment_id = PaymentId([42; 32]);
10310 // Use the utility function send_payment_along_path to send the payment with MPP data which
10311 // indicates there are more HTLCs coming.
10312 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
10313 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
10314 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
10315 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
10316 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
10317 check_added_monitors!(nodes[0], 1);
10318 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10319 assert_eq!(events.len(), 1);
10320 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10322 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10323 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10324 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10325 check_added_monitors!(nodes[0], 1);
10326 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10327 assert_eq!(events.len(), 1);
10328 let ev = events.drain(..).next().unwrap();
10329 let payment_event = SendEvent::from_event(ev);
10330 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10331 check_added_monitors!(nodes[1], 0);
10332 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10333 expect_pending_htlcs_forwardable!(nodes[1]);
10334 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
10335 check_added_monitors!(nodes[1], 1);
10336 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10337 assert!(updates.update_add_htlcs.is_empty());
10338 assert!(updates.update_fulfill_htlcs.is_empty());
10339 assert_eq!(updates.update_fail_htlcs.len(), 1);
10340 assert!(updates.update_fail_malformed_htlcs.is_empty());
10341 assert!(updates.update_fee.is_none());
10342 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10343 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10344 expect_payment_failed!(nodes[0], our_payment_hash, true);
10346 // Send the second half of the original MPP payment.
10347 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
10348 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
10349 check_added_monitors!(nodes[0], 1);
10350 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10351 assert_eq!(events.len(), 1);
10352 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
10354 // Claim the full MPP payment. Note that we can't use a test utility like
10355 // claim_funds_along_route because the ordering of the messages causes the second half of the
10356 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
10357 // lightning messages manually.
10358 nodes[1].node.claim_funds(payment_preimage);
10359 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
10360 check_added_monitors!(nodes[1], 2);
10362 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10363 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
10364 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
10365 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
10366 check_added_monitors!(nodes[0], 1);
10367 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10368 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
10369 check_added_monitors!(nodes[1], 1);
10370 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10371 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
10372 check_added_monitors!(nodes[1], 1);
10373 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10374 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
10375 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
10376 check_added_monitors!(nodes[0], 1);
10377 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
10378 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
10379 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10380 check_added_monitors!(nodes[0], 1);
10381 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
10382 check_added_monitors!(nodes[1], 1);
10383 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
10384 check_added_monitors!(nodes[1], 1);
10385 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10386 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
10387 check_added_monitors!(nodes[0], 1);
10389 // Note that successful MPP payments will generate a single PaymentSent event upon the first
10390 // path's success and a PaymentPathSuccessful event for each path's success.
10391 let events = nodes[0].node.get_and_clear_pending_events();
10392 assert_eq!(events.len(), 2);
10394 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10395 assert_eq!(payment_id, *actual_payment_id);
10396 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10397 assert_eq!(route.paths[0], *path);
10399 _ => panic!("Unexpected event"),
10402 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10403 assert_eq!(payment_id, *actual_payment_id);
10404 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10405 assert_eq!(route.paths[0], *path);
10407 _ => panic!("Unexpected event"),
10412 fn test_keysend_dup_payment_hash() {
10413 do_test_keysend_dup_payment_hash(false);
10414 do_test_keysend_dup_payment_hash(true);
10417 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
10418 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
10419 // outbound regular payment fails as expected.
10420 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
10421 // fails as expected.
10422 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
10423 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
10424 // reject MPP keysend payments, since in this case where the payment has no payment
10425 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
10426 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
10427 // payment secrets and reject otherwise.
10428 let chanmon_cfgs = create_chanmon_cfgs(2);
10429 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10430 let mut mpp_keysend_cfg = test_default_channel_config();
10431 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
10432 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
10433 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10434 create_announced_chan_between_nodes(&nodes, 0, 1);
10435 let scorer = test_utils::TestScorer::new();
10436 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10438 // To start (1), send a regular payment but don't claim it.
10439 let expected_route = [&nodes[1]];
10440 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
10442 // Next, attempt a keysend payment and make sure it fails.
10443 let route_params = RouteParameters::from_payment_params_and_value(
10444 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
10445 TEST_FINAL_CLTV, false), 100_000);
10446 let route = find_route(
10447 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10448 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10450 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10451 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10452 check_added_monitors!(nodes[0], 1);
10453 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10454 assert_eq!(events.len(), 1);
10455 let ev = events.drain(..).next().unwrap();
10456 let payment_event = SendEvent::from_event(ev);
10457 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10458 check_added_monitors!(nodes[1], 0);
10459 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10460 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
10461 // fails), the second will process the resulting failure and fail the HTLC backward
10462 expect_pending_htlcs_forwardable!(nodes[1]);
10463 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10464 check_added_monitors!(nodes[1], 1);
10465 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10466 assert!(updates.update_add_htlcs.is_empty());
10467 assert!(updates.update_fulfill_htlcs.is_empty());
10468 assert_eq!(updates.update_fail_htlcs.len(), 1);
10469 assert!(updates.update_fail_malformed_htlcs.is_empty());
10470 assert!(updates.update_fee.is_none());
10471 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10472 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10473 expect_payment_failed!(nodes[0], payment_hash, true);
10475 // Finally, claim the original payment.
10476 claim_payment(&nodes[0], &expected_route, payment_preimage);
10478 // To start (2), send a keysend payment but don't claim it.
10479 let payment_preimage = PaymentPreimage([42; 32]);
10480 let route = find_route(
10481 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10482 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10484 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10485 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10486 check_added_monitors!(nodes[0], 1);
10487 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10488 assert_eq!(events.len(), 1);
10489 let event = events.pop().unwrap();
10490 let path = vec![&nodes[1]];
10491 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10493 // Next, attempt a regular payment and make sure it fails.
10494 let payment_secret = PaymentSecret([43; 32]);
10495 nodes[0].node.send_payment_with_route(&route, payment_hash,
10496 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
10497 check_added_monitors!(nodes[0], 1);
10498 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10499 assert_eq!(events.len(), 1);
10500 let ev = events.drain(..).next().unwrap();
10501 let payment_event = SendEvent::from_event(ev);
10502 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10503 check_added_monitors!(nodes[1], 0);
10504 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10505 expect_pending_htlcs_forwardable!(nodes[1]);
10506 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10507 check_added_monitors!(nodes[1], 1);
10508 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10509 assert!(updates.update_add_htlcs.is_empty());
10510 assert!(updates.update_fulfill_htlcs.is_empty());
10511 assert_eq!(updates.update_fail_htlcs.len(), 1);
10512 assert!(updates.update_fail_malformed_htlcs.is_empty());
10513 assert!(updates.update_fee.is_none());
10514 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10515 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10516 expect_payment_failed!(nodes[0], payment_hash, true);
10518 // Finally, succeed the keysend payment.
10519 claim_payment(&nodes[0], &expected_route, payment_preimage);
10521 // To start (3), send a keysend payment but don't claim it.
10522 let payment_id_1 = PaymentId([44; 32]);
10523 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10524 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
10525 check_added_monitors!(nodes[0], 1);
10526 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10527 assert_eq!(events.len(), 1);
10528 let event = events.pop().unwrap();
10529 let path = vec![&nodes[1]];
10530 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10532 // Next, attempt a keysend payment and make sure it fails.
10533 let route_params = RouteParameters::from_payment_params_and_value(
10534 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
10537 let route = find_route(
10538 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10539 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10541 let payment_id_2 = PaymentId([45; 32]);
10542 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10543 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
10544 check_added_monitors!(nodes[0], 1);
10545 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10546 assert_eq!(events.len(), 1);
10547 let ev = events.drain(..).next().unwrap();
10548 let payment_event = SendEvent::from_event(ev);
10549 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10550 check_added_monitors!(nodes[1], 0);
10551 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10552 expect_pending_htlcs_forwardable!(nodes[1]);
10553 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10554 check_added_monitors!(nodes[1], 1);
10555 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10556 assert!(updates.update_add_htlcs.is_empty());
10557 assert!(updates.update_fulfill_htlcs.is_empty());
10558 assert_eq!(updates.update_fail_htlcs.len(), 1);
10559 assert!(updates.update_fail_malformed_htlcs.is_empty());
10560 assert!(updates.update_fee.is_none());
10561 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10562 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10563 expect_payment_failed!(nodes[0], payment_hash, true);
10565 // Finally, claim the original payment.
10566 claim_payment(&nodes[0], &expected_route, payment_preimage);
10570 fn test_keysend_hash_mismatch() {
10571 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
10572 // preimage doesn't match the msg's payment hash.
10573 let chanmon_cfgs = create_chanmon_cfgs(2);
10574 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10575 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10576 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10578 let payer_pubkey = nodes[0].node.get_our_node_id();
10579 let payee_pubkey = nodes[1].node.get_our_node_id();
10581 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10582 let route_params = RouteParameters::from_payment_params_and_value(
10583 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10584 let network_graph = nodes[0].network_graph.clone();
10585 let first_hops = nodes[0].node.list_usable_channels();
10586 let scorer = test_utils::TestScorer::new();
10587 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10588 let route = find_route(
10589 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10590 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10593 let test_preimage = PaymentPreimage([42; 32]);
10594 let mismatch_payment_hash = PaymentHash([43; 32]);
10595 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
10596 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
10597 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
10598 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
10599 check_added_monitors!(nodes[0], 1);
10601 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10602 assert_eq!(updates.update_add_htlcs.len(), 1);
10603 assert!(updates.update_fulfill_htlcs.is_empty());
10604 assert!(updates.update_fail_htlcs.is_empty());
10605 assert!(updates.update_fail_malformed_htlcs.is_empty());
10606 assert!(updates.update_fee.is_none());
10607 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10609 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
10613 fn test_keysend_msg_with_secret_err() {
10614 // Test that we error as expected if we receive a keysend payment that includes a payment
10615 // secret when we don't support MPP keysend.
10616 let mut reject_mpp_keysend_cfg = test_default_channel_config();
10617 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
10618 let chanmon_cfgs = create_chanmon_cfgs(2);
10619 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10620 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
10621 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10623 let payer_pubkey = nodes[0].node.get_our_node_id();
10624 let payee_pubkey = nodes[1].node.get_our_node_id();
10626 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10627 let route_params = RouteParameters::from_payment_params_and_value(
10628 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10629 let network_graph = nodes[0].network_graph.clone();
10630 let first_hops = nodes[0].node.list_usable_channels();
10631 let scorer = test_utils::TestScorer::new();
10632 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10633 let route = find_route(
10634 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10635 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10638 let test_preimage = PaymentPreimage([42; 32]);
10639 let test_secret = PaymentSecret([43; 32]);
10640 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
10641 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
10642 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
10643 nodes[0].node.test_send_payment_internal(&route, payment_hash,
10644 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
10645 PaymentId(payment_hash.0), None, session_privs).unwrap();
10646 check_added_monitors!(nodes[0], 1);
10648 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10649 assert_eq!(updates.update_add_htlcs.len(), 1);
10650 assert!(updates.update_fulfill_htlcs.is_empty());
10651 assert!(updates.update_fail_htlcs.is_empty());
10652 assert!(updates.update_fail_malformed_htlcs.is_empty());
10653 assert!(updates.update_fee.is_none());
10654 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10656 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
10660 fn test_multi_hop_missing_secret() {
10661 let chanmon_cfgs = create_chanmon_cfgs(4);
10662 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
10663 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
10664 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
10666 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
10667 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
10668 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
10669 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
10671 // Marshall an MPP route.
10672 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
10673 let path = route.paths[0].clone();
10674 route.paths.push(path);
10675 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
10676 route.paths[0].hops[0].short_channel_id = chan_1_id;
10677 route.paths[0].hops[1].short_channel_id = chan_3_id;
10678 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
10679 route.paths[1].hops[0].short_channel_id = chan_2_id;
10680 route.paths[1].hops[1].short_channel_id = chan_4_id;
10682 match nodes[0].node.send_payment_with_route(&route, payment_hash,
10683 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
10685 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
10686 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
10688 _ => panic!("unexpected error")
10693 fn test_drop_disconnected_peers_when_removing_channels() {
10694 let chanmon_cfgs = create_chanmon_cfgs(2);
10695 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10696 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10697 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10699 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10701 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
10702 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10704 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
10705 check_closed_broadcast!(nodes[0], true);
10706 check_added_monitors!(nodes[0], 1);
10707 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
10710 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
10711 // disconnected and the channel between has been force closed.
10712 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
10713 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
10714 assert_eq!(nodes_0_per_peer_state.len(), 1);
10715 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
10718 nodes[0].node.timer_tick_occurred();
10721 // Assert that nodes[1] has now been removed.
10722 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
10727 fn bad_inbound_payment_hash() {
10728 // Add coverage for checking that a user-provided payment hash matches the payment secret.
10729 let chanmon_cfgs = create_chanmon_cfgs(2);
10730 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10731 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10732 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10734 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
10735 let payment_data = msgs::FinalOnionHopData {
10737 total_msat: 100_000,
10740 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
10741 // payment verification fails as expected.
10742 let mut bad_payment_hash = payment_hash.clone();
10743 bad_payment_hash.0[0] += 1;
10744 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
10745 Ok(_) => panic!("Unexpected ok"),
10747 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
10751 // Check that using the original payment hash succeeds.
10752 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
10756 fn test_id_to_peer_coverage() {
10757 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
10758 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
10759 // the channel is successfully closed.
10760 let chanmon_cfgs = create_chanmon_cfgs(2);
10761 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10762 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10763 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10765 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
10766 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10767 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
10768 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10769 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10771 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
10772 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
10774 // Ensure that the `id_to_peer` map is empty until either party has received the
10775 // funding transaction, and have the real `channel_id`.
10776 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10777 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10780 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
10782 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
10783 // as it has the funding transaction.
10784 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10785 assert_eq!(nodes_0_lock.len(), 1);
10786 assert!(nodes_0_lock.contains_key(&channel_id));
10789 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10791 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10793 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10795 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10796 assert_eq!(nodes_0_lock.len(), 1);
10797 assert!(nodes_0_lock.contains_key(&channel_id));
10799 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10802 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
10803 // as it has the funding transaction.
10804 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10805 assert_eq!(nodes_1_lock.len(), 1);
10806 assert!(nodes_1_lock.contains_key(&channel_id));
10808 check_added_monitors!(nodes[1], 1);
10809 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10810 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10811 check_added_monitors!(nodes[0], 1);
10812 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10813 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
10814 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
10815 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
10817 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
10818 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
10819 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
10820 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
10822 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
10823 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
10825 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
10826 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
10827 // fee for the closing transaction has been negotiated and the parties has the other
10828 // party's signature for the fee negotiated closing transaction.)
10829 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10830 assert_eq!(nodes_0_lock.len(), 1);
10831 assert!(nodes_0_lock.contains_key(&channel_id));
10835 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
10836 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
10837 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
10838 // kept in the `nodes[1]`'s `id_to_peer` map.
10839 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10840 assert_eq!(nodes_1_lock.len(), 1);
10841 assert!(nodes_1_lock.contains_key(&channel_id));
10844 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
10846 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
10847 // therefore has all it needs to fully close the channel (both signatures for the
10848 // closing transaction).
10849 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
10850 // fully closed by `nodes[0]`.
10851 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10853 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
10854 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
10855 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10856 assert_eq!(nodes_1_lock.len(), 1);
10857 assert!(nodes_1_lock.contains_key(&channel_id));
10860 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
10862 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
10864 // Assert that the channel has now been removed from both parties `id_to_peer` map once
10865 // they both have everything required to fully close the channel.
10866 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10868 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
10870 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
10871 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
10874 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10875 let expected_message = format!("Not connected to node: {}", expected_public_key);
10876 check_api_error_message(expected_message, res_err)
10879 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10880 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
10881 check_api_error_message(expected_message, res_err)
10884 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
10885 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
10886 check_api_error_message(expected_message, res_err)
10889 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
10890 let expected_message = "No such channel awaiting to be accepted.".to_string();
10891 check_api_error_message(expected_message, res_err)
10894 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
10896 Err(APIError::APIMisuseError { err }) => {
10897 assert_eq!(err, expected_err_message);
10899 Err(APIError::ChannelUnavailable { err }) => {
10900 assert_eq!(err, expected_err_message);
10902 Ok(_) => panic!("Unexpected Ok"),
10903 Err(_) => panic!("Unexpected Error"),
10908 fn test_api_calls_with_unkown_counterparty_node() {
10909 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
10910 // expected if the `counterparty_node_id` is an unkown peer in the
10911 // `ChannelManager::per_peer_state` map.
10912 let chanmon_cfg = create_chanmon_cfgs(2);
10913 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10914 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10915 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10918 let channel_id = ChannelId::from_bytes([4; 32]);
10919 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
10920 let intercept_id = InterceptId([0; 32]);
10922 // Test the API functions.
10923 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
10925 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
10927 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
10929 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
10931 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
10933 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
10935 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
10939 fn test_api_calls_with_unavailable_channel() {
10940 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
10941 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
10942 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
10943 // the given `channel_id`.
10944 let chanmon_cfg = create_chanmon_cfgs(2);
10945 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10946 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10947 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10949 let counterparty_node_id = nodes[1].node.get_our_node_id();
10952 let channel_id = ChannelId::from_bytes([4; 32]);
10954 // Test the API functions.
10955 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
10957 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10959 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10961 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
10963 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
10965 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
10969 fn test_connection_limiting() {
10970 // Test that we limit un-channel'd peers and un-funded channels properly.
10971 let chanmon_cfgs = create_chanmon_cfgs(2);
10972 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10973 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10974 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10976 // Note that create_network connects the nodes together for us
10978 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10979 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10981 let mut funding_tx = None;
10982 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10983 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10984 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10987 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10988 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
10989 funding_tx = Some(tx.clone());
10990 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
10991 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10993 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10994 check_added_monitors!(nodes[1], 1);
10995 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10997 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10999 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
11000 check_added_monitors!(nodes[0], 1);
11001 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
11003 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11006 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
11007 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11008 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11009 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11010 open_channel_msg.temporary_channel_id);
11012 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
11013 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
11015 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
11016 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
11017 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11018 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11019 peer_pks.push(random_pk);
11020 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11021 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11024 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11025 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11026 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11027 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11028 }, true).unwrap_err();
11030 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
11031 // them if we have too many un-channel'd peers.
11032 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11033 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
11034 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
11035 for ev in chan_closed_events {
11036 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
11038 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11039 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11041 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11042 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11043 }, true).unwrap_err();
11045 // but of course if the connection is outbound its allowed...
11046 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11047 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11048 }, false).unwrap();
11049 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11051 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
11052 // Even though we accept one more connection from new peers, we won't actually let them
11054 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
11055 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11056 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
11057 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
11058 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11060 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11061 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11062 open_channel_msg.temporary_channel_id);
11064 // Of course, however, outbound channels are always allowed
11065 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
11066 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
11068 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
11069 // "protected" and can connect again.
11070 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
11071 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11072 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11074 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
11076 // Further, because the first channel was funded, we can open another channel with
11078 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11079 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11083 fn test_outbound_chans_unlimited() {
11084 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
11085 let chanmon_cfgs = create_chanmon_cfgs(2);
11086 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11087 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
11088 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11090 // Note that create_network connects the nodes together for us
11092 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11093 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11095 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
11096 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11097 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11098 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11101 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
11103 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11104 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11105 open_channel_msg.temporary_channel_id);
11107 // but we can still open an outbound channel.
11108 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11109 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
11111 // but even with such an outbound channel, additional inbound channels will still fail.
11112 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11113 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
11114 open_channel_msg.temporary_channel_id);
11118 fn test_0conf_limiting() {
11119 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11120 // flag set and (sometimes) accept channels as 0conf.
11121 let chanmon_cfgs = create_chanmon_cfgs(2);
11122 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11123 let mut settings = test_default_channel_config();
11124 settings.manually_accept_inbound_channels = true;
11125 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
11126 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11128 // Note that create_network connects the nodes together for us
11130 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11131 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11133 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
11134 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
11135 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11136 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11137 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
11138 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11141 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
11142 let events = nodes[1].node.get_and_clear_pending_events();
11144 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11145 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
11147 _ => panic!("Unexpected event"),
11149 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
11150 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
11153 // If we try to accept a channel from another peer non-0conf it will fail.
11154 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
11155 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
11156 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
11157 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11159 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11160 let events = nodes[1].node.get_and_clear_pending_events();
11162 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11163 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
11164 Err(APIError::APIMisuseError { err }) =>
11165 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
11169 _ => panic!("Unexpected event"),
11171 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
11172 open_channel_msg.temporary_channel_id);
11174 // ...however if we accept the same channel 0conf it should work just fine.
11175 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
11176 let events = nodes[1].node.get_and_clear_pending_events();
11178 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11179 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
11181 _ => panic!("Unexpected event"),
11183 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
11187 fn reject_excessively_underpaying_htlcs() {
11188 let chanmon_cfg = create_chanmon_cfgs(1);
11189 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11190 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11191 let node = create_network(1, &node_cfg, &node_chanmgr);
11192 let sender_intended_amt_msat = 100;
11193 let extra_fee_msat = 10;
11194 let hop_data = msgs::InboundOnionPayload::Receive {
11196 outgoing_cltv_value: 42,
11197 payment_metadata: None,
11198 keysend_preimage: None,
11199 payment_data: Some(msgs::FinalOnionHopData {
11200 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11202 custom_tlvs: Vec::new(),
11204 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
11205 // intended amount, we fail the payment.
11206 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
11207 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11208 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
11210 assert_eq!(err_code, 19);
11211 } else { panic!(); }
11213 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
11214 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
11216 outgoing_cltv_value: 42,
11217 payment_metadata: None,
11218 keysend_preimage: None,
11219 payment_data: Some(msgs::FinalOnionHopData {
11220 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
11222 custom_tlvs: Vec::new(),
11224 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
11225 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
11229 fn test_final_incorrect_cltv(){
11230 let chanmon_cfg = create_chanmon_cfgs(1);
11231 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
11232 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
11233 let node = create_network(1, &node_cfg, &node_chanmgr);
11235 let result = node[0].node.construct_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
11237 outgoing_cltv_value: 22,
11238 payment_metadata: None,
11239 keysend_preimage: None,
11240 payment_data: Some(msgs::FinalOnionHopData {
11241 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
11243 custom_tlvs: Vec::new(),
11244 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None);
11246 // Should not return an error as this condition:
11247 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
11248 // is not satisfied.
11249 assert!(result.is_ok());
11253 fn test_inbound_anchors_manual_acceptance() {
11254 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
11255 // flag set and (sometimes) accept channels as 0conf.
11256 let mut anchors_cfg = test_default_channel_config();
11257 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11259 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
11260 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
11262 let chanmon_cfgs = create_chanmon_cfgs(3);
11263 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
11264 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
11265 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
11266 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
11268 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
11269 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11271 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11272 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11273 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
11274 match &msg_events[0] {
11275 MessageSendEvent::HandleError { node_id, action } => {
11276 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
11278 ErrorAction::SendErrorMessage { msg } =>
11279 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
11280 _ => panic!("Unexpected error action"),
11283 _ => panic!("Unexpected event"),
11286 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11287 let events = nodes[2].node.get_and_clear_pending_events();
11289 Event::OpenChannelRequest { temporary_channel_id, .. } =>
11290 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
11291 _ => panic!("Unexpected event"),
11293 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
11297 fn test_anchors_zero_fee_htlc_tx_fallback() {
11298 // Tests that if both nodes support anchors, but the remote node does not want to accept
11299 // anchor channels at the moment, an error it sent to the local node such that it can retry
11300 // the channel without the anchors feature.
11301 let chanmon_cfgs = create_chanmon_cfgs(2);
11302 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
11303 let mut anchors_config = test_default_channel_config();
11304 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
11305 anchors_config.manually_accept_inbound_channels = true;
11306 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
11307 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
11309 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
11310 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11311 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
11313 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
11314 let events = nodes[1].node.get_and_clear_pending_events();
11316 Event::OpenChannelRequest { temporary_channel_id, .. } => {
11317 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
11319 _ => panic!("Unexpected event"),
11322 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
11323 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
11325 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
11326 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
11328 // Since nodes[1] should not have accepted the channel, it should
11329 // not have generated any events.
11330 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
11334 fn test_update_channel_config() {
11335 let chanmon_cfg = create_chanmon_cfgs(2);
11336 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11337 let mut user_config = test_default_channel_config();
11338 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
11339 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11340 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
11341 let channel = &nodes[0].node.list_channels()[0];
11343 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11344 let events = nodes[0].node.get_and_clear_pending_msg_events();
11345 assert_eq!(events.len(), 0);
11347 user_config.channel_config.forwarding_fee_base_msat += 10;
11348 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
11349 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
11350 let events = nodes[0].node.get_and_clear_pending_msg_events();
11351 assert_eq!(events.len(), 1);
11353 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11354 _ => panic!("expected BroadcastChannelUpdate event"),
11357 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
11358 let events = nodes[0].node.get_and_clear_pending_msg_events();
11359 assert_eq!(events.len(), 0);
11361 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
11362 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
11363 cltv_expiry_delta: Some(new_cltv_expiry_delta),
11364 ..Default::default()
11366 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
11367 let events = nodes[0].node.get_and_clear_pending_msg_events();
11368 assert_eq!(events.len(), 1);
11370 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11371 _ => panic!("expected BroadcastChannelUpdate event"),
11374 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
11375 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
11376 forwarding_fee_proportional_millionths: Some(new_fee),
11377 ..Default::default()
11379 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
11380 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
11381 let events = nodes[0].node.get_and_clear_pending_msg_events();
11382 assert_eq!(events.len(), 1);
11384 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11385 _ => panic!("expected BroadcastChannelUpdate event"),
11388 // If we provide a channel_id not associated with the peer, we should get an error and no updates
11389 // should be applied to ensure update atomicity as specified in the API docs.
11390 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
11391 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
11392 let new_fee = current_fee + 100;
11395 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
11396 forwarding_fee_proportional_millionths: Some(new_fee),
11397 ..Default::default()
11399 Err(APIError::ChannelUnavailable { err: _ }),
11402 // Check that the fee hasn't changed for the channel that exists.
11403 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
11404 let events = nodes[0].node.get_and_clear_pending_msg_events();
11405 assert_eq!(events.len(), 0);
11409 fn test_payment_display() {
11410 let payment_id = PaymentId([42; 32]);
11411 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11412 let payment_hash = PaymentHash([42; 32]);
11413 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11414 let payment_preimage = PaymentPreimage([42; 32]);
11415 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11419 fn test_trigger_lnd_force_close() {
11420 let chanmon_cfg = create_chanmon_cfgs(2);
11421 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
11422 let user_config = test_default_channel_config();
11423 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
11424 let nodes = create_network(2, &node_cfg, &node_chanmgr);
11426 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
11427 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
11428 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
11429 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
11430 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
11431 check_closed_broadcast(&nodes[0], 1, true);
11432 check_added_monitors(&nodes[0], 1);
11433 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
11435 let txn = nodes[0].tx_broadcaster.txn_broadcast();
11436 assert_eq!(txn.len(), 1);
11437 check_spends!(txn[0], funding_tx);
11440 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
11441 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
11443 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
11444 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
11446 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
11447 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
11448 }, false).unwrap();
11449 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
11450 let channel_reestablish = get_event_msg!(
11451 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
11453 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
11455 // Alice should respond with an error since the channel isn't known, but a bogus
11456 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
11457 // close even if it was an lnd node.
11458 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
11459 assert_eq!(msg_events.len(), 2);
11460 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
11461 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
11462 assert_eq!(msg.next_local_commitment_number, 0);
11463 assert_eq!(msg.next_remote_commitment_number, 0);
11464 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
11465 } else { panic!() };
11466 check_closed_broadcast(&nodes[1], 1, true);
11467 check_added_monitors(&nodes[1], 1);
11468 let expected_close_reason = ClosureReason::ProcessingError {
11469 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
11471 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
11473 let txn = nodes[1].tx_broadcaster.txn_broadcast();
11474 assert_eq!(txn.len(), 1);
11475 check_spends!(txn[0], funding_tx);
11482 use crate::chain::Listen;
11483 use crate::chain::chainmonitor::{ChainMonitor, Persist};
11484 use crate::sign::{KeysManager, InMemorySigner};
11485 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
11486 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
11487 use crate::ln::functional_test_utils::*;
11488 use crate::ln::msgs::{ChannelMessageHandler, Init};
11489 use crate::routing::gossip::NetworkGraph;
11490 use crate::routing::router::{PaymentParameters, RouteParameters};
11491 use crate::util::test_utils;
11492 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
11494 use bitcoin::hashes::Hash;
11495 use bitcoin::hashes::sha256::Hash as Sha256;
11496 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
11498 use crate::sync::{Arc, Mutex, RwLock};
11500 use criterion::Criterion;
11502 type Manager<'a, P> = ChannelManager<
11503 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
11504 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
11505 &'a test_utils::TestLogger, &'a P>,
11506 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
11507 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
11508 &'a test_utils::TestLogger>;
11510 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
11511 node: &'node_cfg Manager<'chan_mon_cfg, P>,
11513 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
11514 type CM = Manager<'chan_mon_cfg, P>;
11516 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
11518 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
11521 pub fn bench_sends(bench: &mut Criterion) {
11522 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
11525 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
11526 // Do a simple benchmark of sending a payment back and forth between two nodes.
11527 // Note that this is unrealistic as each payment send will require at least two fsync
11529 let network = bitcoin::Network::Testnet;
11530 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
11532 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
11533 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
11534 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
11535 let scorer = RwLock::new(test_utils::TestScorer::new());
11536 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
11538 let mut config: UserConfig = Default::default();
11539 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
11540 config.channel_handshake_config.minimum_depth = 1;
11542 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
11543 let seed_a = [1u8; 32];
11544 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
11545 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
11547 best_block: BestBlock::from_network(network),
11548 }, genesis_block.header.time);
11549 let node_a_holder = ANodeHolder { node: &node_a };
11551 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
11552 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
11553 let seed_b = [2u8; 32];
11554 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
11555 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
11557 best_block: BestBlock::from_network(network),
11558 }, genesis_block.header.time);
11559 let node_b_holder = ANodeHolder { node: &node_b };
11561 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
11562 features: node_b.init_features(), networks: None, remote_network_address: None
11564 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
11565 features: node_a.init_features(), networks: None, remote_network_address: None
11566 }, false).unwrap();
11567 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
11568 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
11569 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
11572 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
11573 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
11574 value: 8_000_000, script_pubkey: output_script,
11576 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
11577 } else { panic!(); }
11579 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
11580 let events_b = node_b.get_and_clear_pending_events();
11581 assert_eq!(events_b.len(), 1);
11582 match events_b[0] {
11583 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11584 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11586 _ => panic!("Unexpected event"),
11589 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
11590 let events_a = node_a.get_and_clear_pending_events();
11591 assert_eq!(events_a.len(), 1);
11592 match events_a[0] {
11593 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11594 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11596 _ => panic!("Unexpected event"),
11599 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
11601 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
11602 Listen::block_connected(&node_a, &block, 1);
11603 Listen::block_connected(&node_b, &block, 1);
11605 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
11606 let msg_events = node_a.get_and_clear_pending_msg_events();
11607 assert_eq!(msg_events.len(), 2);
11608 match msg_events[0] {
11609 MessageSendEvent::SendChannelReady { ref msg, .. } => {
11610 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
11611 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
11615 match msg_events[1] {
11616 MessageSendEvent::SendChannelUpdate { .. } => {},
11620 let events_a = node_a.get_and_clear_pending_events();
11621 assert_eq!(events_a.len(), 1);
11622 match events_a[0] {
11623 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11624 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11626 _ => panic!("Unexpected event"),
11629 let events_b = node_b.get_and_clear_pending_events();
11630 assert_eq!(events_b.len(), 1);
11631 match events_b[0] {
11632 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11633 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11635 _ => panic!("Unexpected event"),
11638 let mut payment_count: u64 = 0;
11639 macro_rules! send_payment {
11640 ($node_a: expr, $node_b: expr) => {
11641 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
11642 .with_bolt11_features($node_b.invoice_features()).unwrap();
11643 let mut payment_preimage = PaymentPreimage([0; 32]);
11644 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
11645 payment_count += 1;
11646 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
11647 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
11649 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
11650 PaymentId(payment_hash.0),
11651 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
11652 Retry::Attempts(0)).unwrap();
11653 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
11654 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
11655 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
11656 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
11657 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
11658 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
11659 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
11661 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
11662 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
11663 $node_b.claim_funds(payment_preimage);
11664 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
11666 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
11667 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
11668 assert_eq!(node_id, $node_a.get_our_node_id());
11669 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
11670 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
11672 _ => panic!("Failed to generate claim event"),
11675 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
11676 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
11677 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
11678 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
11680 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
11684 bench.bench_function(bench_name, |b| b.iter(|| {
11685 send_payment!(node_a, node_b);
11686 send_payment!(node_b, node_a);