1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{Bolt12OfferContext, Bolt12RefundContext, PaymentConstraints, PaymentContext, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::offer::{Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
78 #[cfg(not(c_bindings))]
80 crate::offers::offer::DerivedMetadata,
81 crate::routing::router::DefaultRouter,
82 crate::routing::gossip::NetworkGraph,
83 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
84 crate::sign::KeysManager,
88 crate::offers::offer::OfferWithDerivedMetadataBuilder,
89 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
92 use alloc::collections::{btree_map, BTreeMap};
95 use crate::prelude::*;
97 use core::cell::RefCell;
99 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
100 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
101 use core::time::Duration;
102 use core::ops::Deref;
104 // Re-export this for use in the public API.
105 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
106 use crate::ln::script::ShutdownScript;
108 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
110 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
111 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
112 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
114 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
115 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
116 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
117 // before we forward it.
119 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
120 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
121 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
122 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
123 // our payment, which we can use to decode errors or inform the user that the payment was sent.
125 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
126 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
127 #[cfg_attr(test, derive(Debug, PartialEq))]
128 pub enum PendingHTLCRouting {
129 /// An HTLC which should be forwarded on to another node.
131 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
132 /// do with the HTLC.
133 onion_packet: msgs::OnionPacket,
134 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
136 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
137 /// to the receiving node, such as one returned from
138 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
139 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
140 /// Set if this HTLC is being forwarded within a blinded path.
141 blinded: Option<BlindedForward>,
143 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
145 /// Note that at this point, we have not checked that the invoice being paid was actually
146 /// generated by us, but rather it's claiming to pay an invoice of ours.
148 /// Information about the amount the sender intended to pay and (potential) proof that this
149 /// is a payment for an invoice we generated. This proof of payment is is also used for
150 /// linking MPP parts of a larger payment.
151 payment_data: msgs::FinalOnionHopData,
152 /// Additional data which we (allegedly) instructed the sender to include in the onion.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::payment_metadata`].
157 payment_metadata: Option<Vec<u8>>,
158 /// The context of the payment included by the recipient in a blinded path, or `None` if a
159 /// blinded path was not used.
161 /// Used in part to determine the [`events::PaymentPurpose`].
162 payment_context: Option<PaymentContext>,
163 /// CLTV expiry of the received HTLC.
165 /// Used to track when we should expire pending HTLCs that go unclaimed.
166 incoming_cltv_expiry: u32,
167 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
168 /// provide the onion shared secret used to decrypt the next level of forwarding
170 phantom_shared_secret: Option<[u8; 32]>,
171 /// Custom TLVs which were set by the sender.
173 /// For HTLCs received by LDK, this will ultimately be exposed in
174 /// [`Event::PaymentClaimable::onion_fields`] as
175 /// [`RecipientOnionFields::custom_tlvs`].
176 custom_tlvs: Vec<(u64, Vec<u8>)>,
177 /// Set if this HTLC is the final hop in a multi-hop blinded path.
178 requires_blinded_error: bool,
180 /// The onion indicates that this is for payment to us but which contains the preimage for
181 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
182 /// "keysend" or "spontaneous" payment).
184 /// Information about the amount the sender intended to pay and possibly a token to
185 /// associate MPP parts of a larger payment.
187 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
188 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
189 payment_data: Option<msgs::FinalOnionHopData>,
190 /// Preimage for this onion payment. This preimage is provided by the sender and will be
191 /// used to settle the spontaneous payment.
192 payment_preimage: PaymentPreimage,
193 /// Additional data which we (allegedly) instructed the sender to include in the onion.
195 /// For HTLCs received by LDK, this will ultimately bubble back up as
196 /// [`RecipientOnionFields::payment_metadata`].
197 payment_metadata: Option<Vec<u8>>,
198 /// CLTV expiry of the received HTLC.
200 /// Used to track when we should expire pending HTLCs that go unclaimed.
201 incoming_cltv_expiry: u32,
202 /// Custom TLVs which were set by the sender.
204 /// For HTLCs received by LDK, these will ultimately bubble back up as
205 /// [`RecipientOnionFields::custom_tlvs`].
206 custom_tlvs: Vec<(u64, Vec<u8>)>,
207 /// Set if this HTLC is the final hop in a multi-hop blinded path.
208 requires_blinded_error: bool,
212 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
213 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
214 pub struct BlindedForward {
215 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
216 /// onion payload if we're the introduction node. Useful for calculating the next hop's
217 /// [`msgs::UpdateAddHTLC::blinding_point`].
218 pub inbound_blinding_point: PublicKey,
219 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
220 /// the introduction node.
221 pub failure: BlindedFailure,
224 impl PendingHTLCRouting {
225 // Used to override the onion failure code and data if the HTLC is blinded.
226 fn blinded_failure(&self) -> Option<BlindedFailure> {
228 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
229 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
230 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
236 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
238 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
239 #[cfg_attr(test, derive(Debug, PartialEq))]
240 pub struct PendingHTLCInfo {
241 /// Further routing details based on whether the HTLC is being forwarded or received.
242 pub routing: PendingHTLCRouting,
243 /// The onion shared secret we build with the sender used to decrypt the onion.
245 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
246 pub incoming_shared_secret: [u8; 32],
247 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
248 pub payment_hash: PaymentHash,
249 /// Amount received in the incoming HTLC.
251 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
253 pub incoming_amt_msat: Option<u64>,
254 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
255 /// intended for us to receive for received payments.
257 /// If the received amount is less than this for received payments, an intermediary hop has
258 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
259 /// it along another path).
261 /// Because nodes can take less than their required fees, and because senders may wish to
262 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
263 /// received payments. In such cases, recipients must handle this HTLC as if it had received
264 /// [`Self::outgoing_amt_msat`].
265 pub outgoing_amt_msat: u64,
266 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
267 /// should have been set on the received HTLC for received payments).
268 pub outgoing_cltv_value: u32,
269 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
271 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
274 /// If this is a received payment, this is the fee that our counterparty took.
276 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
278 pub skimmed_fee_msat: Option<u64>,
281 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
282 pub(super) enum HTLCFailureMsg {
283 Relay(msgs::UpdateFailHTLC),
284 Malformed(msgs::UpdateFailMalformedHTLC),
287 /// Stores whether we can't forward an HTLC or relevant forwarding info
288 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
289 pub(super) enum PendingHTLCStatus {
290 Forward(PendingHTLCInfo),
291 Fail(HTLCFailureMsg),
294 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
295 pub(super) struct PendingAddHTLCInfo {
296 pub(super) forward_info: PendingHTLCInfo,
298 // These fields are produced in `forward_htlcs()` and consumed in
299 // `process_pending_htlc_forwards()` for constructing the
300 // `HTLCSource::PreviousHopData` for failed and forwarded
303 // Note that this may be an outbound SCID alias for the associated channel.
304 prev_short_channel_id: u64,
306 prev_channel_id: ChannelId,
307 prev_funding_outpoint: OutPoint,
308 prev_user_channel_id: u128,
311 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
312 pub(super) enum HTLCForwardInfo {
313 AddHTLC(PendingAddHTLCInfo),
316 err_packet: msgs::OnionErrorPacket,
321 sha256_of_onion: [u8; 32],
325 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
326 /// which determines the failure message that should be used.
327 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
328 pub enum BlindedFailure {
329 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
330 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
331 FromIntroductionNode,
332 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
333 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
337 /// Tracks the inbound corresponding to an outbound HTLC
338 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
339 pub(crate) struct HTLCPreviousHopData {
340 // Note that this may be an outbound SCID alias for the associated channel.
341 short_channel_id: u64,
342 user_channel_id: Option<u128>,
344 incoming_packet_shared_secret: [u8; 32],
345 phantom_shared_secret: Option<[u8; 32]>,
346 blinded_failure: Option<BlindedFailure>,
347 channel_id: ChannelId,
349 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
350 // channel with a preimage provided by the forward channel.
355 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
357 /// This is only here for backwards-compatibility in serialization, in the future it can be
358 /// removed, breaking clients running 0.0.106 and earlier.
359 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
360 /// The context of the payment included by the recipient in a blinded path, or `None` if a
361 /// blinded path was not used.
363 /// Used in part to determine the [`events::PaymentPurpose`].
364 payment_context: Option<PaymentContext>,
366 /// Contains the payer-provided preimage.
367 Spontaneous(PaymentPreimage),
370 /// HTLCs that are to us and can be failed/claimed by the user
371 struct ClaimableHTLC {
372 prev_hop: HTLCPreviousHopData,
374 /// The amount (in msats) of this MPP part
376 /// The amount (in msats) that the sender intended to be sent in this MPP
377 /// part (used for validating total MPP amount)
378 sender_intended_value: u64,
379 onion_payload: OnionPayload,
381 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
382 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
383 total_value_received: Option<u64>,
384 /// The sender intended sum total of all MPP parts specified in the onion
386 /// The extra fee our counterparty skimmed off the top of this HTLC.
387 counterparty_skimmed_fee_msat: Option<u64>,
390 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
391 fn from(val: &ClaimableHTLC) -> Self {
392 events::ClaimedHTLC {
393 channel_id: val.prev_hop.channel_id,
394 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
395 cltv_expiry: val.cltv_expiry,
396 value_msat: val.value,
397 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
402 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
403 /// a payment and ensure idempotency in LDK.
405 /// This is not exported to bindings users as we just use [u8; 32] directly
406 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
407 pub struct PaymentId(pub [u8; Self::LENGTH]);
410 /// Number of bytes in the id.
411 pub const LENGTH: usize = 32;
414 impl Writeable for PaymentId {
415 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
420 impl Readable for PaymentId {
421 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
422 let buf: [u8; 32] = Readable::read(r)?;
427 impl core::fmt::Display for PaymentId {
428 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
429 crate::util::logger::DebugBytes(&self.0).fmt(f)
433 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
435 /// This is not exported to bindings users as we just use [u8; 32] directly
436 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
437 pub struct InterceptId(pub [u8; 32]);
439 impl Writeable for InterceptId {
440 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
445 impl Readable for InterceptId {
446 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
447 let buf: [u8; 32] = Readable::read(r)?;
452 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
453 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
454 pub(crate) enum SentHTLCId {
455 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
456 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
459 pub(crate) fn from_source(source: &HTLCSource) -> Self {
461 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
462 short_channel_id: hop_data.short_channel_id,
463 htlc_id: hop_data.htlc_id,
465 HTLCSource::OutboundRoute { session_priv, .. } =>
466 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
470 impl_writeable_tlv_based_enum!(SentHTLCId,
471 (0, PreviousHopData) => {
472 (0, short_channel_id, required),
473 (2, htlc_id, required),
475 (2, OutboundRoute) => {
476 (0, session_priv, required),
481 /// Tracks the inbound corresponding to an outbound HTLC
482 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
483 #[derive(Clone, Debug, PartialEq, Eq)]
484 pub(crate) enum HTLCSource {
485 PreviousHopData(HTLCPreviousHopData),
488 session_priv: SecretKey,
489 /// Technically we can recalculate this from the route, but we cache it here to avoid
490 /// doing a double-pass on route when we get a failure back
491 first_hop_htlc_msat: u64,
492 payment_id: PaymentId,
495 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
496 impl core::hash::Hash for HTLCSource {
497 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
499 HTLCSource::PreviousHopData(prev_hop_data) => {
501 prev_hop_data.hash(hasher);
503 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
506 session_priv[..].hash(hasher);
507 payment_id.hash(hasher);
508 first_hop_htlc_msat.hash(hasher);
514 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
516 pub fn dummy() -> Self {
517 HTLCSource::OutboundRoute {
518 path: Path { hops: Vec::new(), blinded_tail: None },
519 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
520 first_hop_htlc_msat: 0,
521 payment_id: PaymentId([2; 32]),
525 #[cfg(debug_assertions)]
526 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
527 /// transaction. Useful to ensure different datastructures match up.
528 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
529 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
530 *first_hop_htlc_msat == htlc.amount_msat
532 // There's nothing we can check for forwarded HTLCs
538 /// This enum is used to specify which error data to send to peers when failing back an HTLC
539 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
541 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
542 #[derive(Clone, Copy)]
543 pub enum FailureCode {
544 /// We had a temporary error processing the payment. Useful if no other error codes fit
545 /// and you want to indicate that the payer may want to retry.
546 TemporaryNodeFailure,
547 /// We have a required feature which was not in this onion. For example, you may require
548 /// some additional metadata that was not provided with this payment.
549 RequiredNodeFeatureMissing,
550 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
551 /// the HTLC is too close to the current block height for safe handling.
552 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
553 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
554 IncorrectOrUnknownPaymentDetails,
555 /// We failed to process the payload after the onion was decrypted. You may wish to
556 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
558 /// If available, the tuple data may include the type number and byte offset in the
559 /// decrypted byte stream where the failure occurred.
560 InvalidOnionPayload(Option<(u64, u16)>),
563 impl Into<u16> for FailureCode {
564 fn into(self) -> u16 {
566 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
567 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
568 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
569 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
574 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
575 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
576 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
577 /// peer_state lock. We then return the set of things that need to be done outside the lock in
578 /// this struct and call handle_error!() on it.
580 struct MsgHandleErrInternal {
581 err: msgs::LightningError,
582 closes_channel: bool,
583 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
585 impl MsgHandleErrInternal {
587 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
589 err: LightningError {
591 action: msgs::ErrorAction::SendErrorMessage {
592 msg: msgs::ErrorMessage {
598 closes_channel: false,
599 shutdown_finish: None,
603 fn from_no_close(err: msgs::LightningError) -> Self {
604 Self { err, closes_channel: false, shutdown_finish: None }
607 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
608 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
609 let action = if shutdown_res.monitor_update.is_some() {
610 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
611 // should disconnect our peer such that we force them to broadcast their latest
612 // commitment upon reconnecting.
613 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
615 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
618 err: LightningError { err, action },
619 closes_channel: true,
620 shutdown_finish: Some((shutdown_res, channel_update)),
624 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
627 ChannelError::Warn(msg) => LightningError {
629 action: msgs::ErrorAction::SendWarningMessage {
630 msg: msgs::WarningMessage {
634 log_level: Level::Warn,
637 ChannelError::Ignore(msg) => LightningError {
639 action: msgs::ErrorAction::IgnoreError,
641 ChannelError::Close(msg) => LightningError {
643 action: msgs::ErrorAction::SendErrorMessage {
644 msg: msgs::ErrorMessage {
651 closes_channel: false,
652 shutdown_finish: None,
656 fn closes_channel(&self) -> bool {
661 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
662 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
663 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
664 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
665 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
667 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
668 /// be sent in the order they appear in the return value, however sometimes the order needs to be
669 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
670 /// they were originally sent). In those cases, this enum is also returned.
671 #[derive(Clone, PartialEq)]
672 pub(super) enum RAACommitmentOrder {
673 /// Send the CommitmentUpdate messages first
675 /// Send the RevokeAndACK message first
679 /// Information about a payment which is currently being claimed.
680 struct ClaimingPayment {
682 payment_purpose: events::PaymentPurpose,
683 receiver_node_id: PublicKey,
684 htlcs: Vec<events::ClaimedHTLC>,
685 sender_intended_value: Option<u64>,
687 impl_writeable_tlv_based!(ClaimingPayment, {
688 (0, amount_msat, required),
689 (2, payment_purpose, required),
690 (4, receiver_node_id, required),
691 (5, htlcs, optional_vec),
692 (7, sender_intended_value, option),
695 struct ClaimablePayment {
696 purpose: events::PaymentPurpose,
697 onion_fields: Option<RecipientOnionFields>,
698 htlcs: Vec<ClaimableHTLC>,
701 /// Information about claimable or being-claimed payments
702 struct ClaimablePayments {
703 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
704 /// failed/claimed by the user.
706 /// Note that, no consistency guarantees are made about the channels given here actually
707 /// existing anymore by the time you go to read them!
709 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
710 /// we don't get a duplicate payment.
711 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
713 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
714 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
715 /// as an [`events::Event::PaymentClaimed`].
716 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
719 /// Events which we process internally but cannot be processed immediately at the generation site
720 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
721 /// running normally, and specifically must be processed before any other non-background
722 /// [`ChannelMonitorUpdate`]s are applied.
724 enum BackgroundEvent {
725 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
726 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
727 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
728 /// channel has been force-closed we do not need the counterparty node_id.
730 /// Note that any such events are lost on shutdown, so in general they must be updates which
731 /// are regenerated on startup.
732 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
733 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
734 /// channel to continue normal operation.
736 /// In general this should be used rather than
737 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
738 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
739 /// error the other variant is acceptable.
741 /// Note that any such events are lost on shutdown, so in general they must be updates which
742 /// are regenerated on startup.
743 MonitorUpdateRegeneratedOnStartup {
744 counterparty_node_id: PublicKey,
745 funding_txo: OutPoint,
746 channel_id: ChannelId,
747 update: ChannelMonitorUpdate
749 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
750 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
752 MonitorUpdatesComplete {
753 counterparty_node_id: PublicKey,
754 channel_id: ChannelId,
759 pub(crate) enum MonitorUpdateCompletionAction {
760 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
761 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
762 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
763 /// event can be generated.
764 PaymentClaimed { payment_hash: PaymentHash },
765 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
766 /// operation of another channel.
768 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
769 /// from completing a monitor update which removes the payment preimage until the inbound edge
770 /// completes a monitor update containing the payment preimage. In that case, after the inbound
771 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
773 EmitEventAndFreeOtherChannel {
774 event: events::Event,
775 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
777 /// Indicates we should immediately resume the operation of another channel, unless there is
778 /// some other reason why the channel is blocked. In practice this simply means immediately
779 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
781 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
782 /// from completing a monitor update which removes the payment preimage until the inbound edge
783 /// completes a monitor update containing the payment preimage. However, we use this variant
784 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
785 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
787 /// This variant should thus never be written to disk, as it is processed inline rather than
788 /// stored for later processing.
789 FreeOtherChannelImmediately {
790 downstream_counterparty_node_id: PublicKey,
791 downstream_funding_outpoint: OutPoint,
792 blocking_action: RAAMonitorUpdateBlockingAction,
793 downstream_channel_id: ChannelId,
797 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
798 (0, PaymentClaimed) => { (0, payment_hash, required) },
799 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
800 // *immediately*. However, for simplicity we implement read/write here.
801 (1, FreeOtherChannelImmediately) => {
802 (0, downstream_counterparty_node_id, required),
803 (2, downstream_funding_outpoint, required),
804 (4, blocking_action, required),
805 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
806 // filled in, so we can safely unwrap it here.
807 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
809 (2, EmitEventAndFreeOtherChannel) => {
810 (0, event, upgradable_required),
811 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
812 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
813 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
814 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
815 // downgrades to prior versions.
816 (1, downstream_counterparty_and_funding_outpoint, option),
820 #[derive(Clone, Debug, PartialEq, Eq)]
821 pub(crate) enum EventCompletionAction {
822 ReleaseRAAChannelMonitorUpdate {
823 counterparty_node_id: PublicKey,
824 channel_funding_outpoint: OutPoint,
825 channel_id: ChannelId,
828 impl_writeable_tlv_based_enum!(EventCompletionAction,
829 (0, ReleaseRAAChannelMonitorUpdate) => {
830 (0, channel_funding_outpoint, required),
831 (2, counterparty_node_id, required),
832 // Note that by the time we get past the required read above, channel_funding_outpoint will be
833 // filled in, so we can safely unwrap it here.
834 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
838 #[derive(Clone, PartialEq, Eq, Debug)]
839 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
840 /// the blocked action here. See enum variants for more info.
841 pub(crate) enum RAAMonitorUpdateBlockingAction {
842 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
843 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
845 ForwardedPaymentInboundClaim {
846 /// The upstream channel ID (i.e. the inbound edge).
847 channel_id: ChannelId,
848 /// The HTLC ID on the inbound edge.
853 impl RAAMonitorUpdateBlockingAction {
854 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
855 Self::ForwardedPaymentInboundClaim {
856 channel_id: prev_hop.channel_id,
857 htlc_id: prev_hop.htlc_id,
862 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
863 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
867 /// State we hold per-peer.
868 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
869 /// `channel_id` -> `ChannelPhase`
871 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
872 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
873 /// `temporary_channel_id` -> `InboundChannelRequest`.
875 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
876 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
877 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
878 /// the channel is rejected, then the entry is simply removed.
879 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
880 /// The latest `InitFeatures` we heard from the peer.
881 latest_features: InitFeatures,
882 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
883 /// for broadcast messages, where ordering isn't as strict).
884 pub(super) pending_msg_events: Vec<MessageSendEvent>,
885 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
886 /// user but which have not yet completed.
888 /// Note that the channel may no longer exist. For example if the channel was closed but we
889 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
890 /// for a missing channel.
891 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
892 /// Map from a specific channel to some action(s) that should be taken when all pending
893 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
895 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
896 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
897 /// channels with a peer this will just be one allocation and will amount to a linear list of
898 /// channels to walk, avoiding the whole hashing rigmarole.
900 /// Note that the channel may no longer exist. For example, if a channel was closed but we
901 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
902 /// for a missing channel. While a malicious peer could construct a second channel with the
903 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
904 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
905 /// duplicates do not occur, so such channels should fail without a monitor update completing.
906 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
907 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
908 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
909 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
910 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
911 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
912 /// The peer is currently connected (i.e. we've seen a
913 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
914 /// [`ChannelMessageHandler::peer_disconnected`].
915 pub is_connected: bool,
918 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
919 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
920 /// If true is passed for `require_disconnected`, the function will return false if we haven't
921 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
922 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
923 if require_disconnected && self.is_connected {
926 !self.channel_by_id.iter().any(|(_, phase)|
928 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
929 ChannelPhase::UnfundedInboundV1(_) => false,
930 #[cfg(any(dual_funding, splicing))]
931 ChannelPhase::UnfundedOutboundV2(_) => true,
932 #[cfg(any(dual_funding, splicing))]
933 ChannelPhase::UnfundedInboundV2(_) => false,
936 && self.monitor_update_blocked_actions.is_empty()
937 && self.in_flight_monitor_updates.is_empty()
940 // Returns a count of all channels we have with this peer, including unfunded channels.
941 fn total_channel_count(&self) -> usize {
942 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
945 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
946 fn has_channel(&self, channel_id: &ChannelId) -> bool {
947 self.channel_by_id.contains_key(channel_id) ||
948 self.inbound_channel_request_by_id.contains_key(channel_id)
952 /// A not-yet-accepted inbound (from counterparty) channel. Once
953 /// accepted, the parameters will be used to construct a channel.
954 pub(super) struct InboundChannelRequest {
955 /// The original OpenChannel message.
956 pub open_channel_msg: msgs::OpenChannel,
957 /// The number of ticks remaining before the request expires.
958 pub ticks_remaining: i32,
961 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
962 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
963 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
965 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
966 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
968 /// For users who don't want to bother doing their own payment preimage storage, we also store that
971 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
972 /// and instead encoding it in the payment secret.
973 struct PendingInboundPayment {
974 /// The payment secret that the sender must use for us to accept this payment
975 payment_secret: PaymentSecret,
976 /// Time at which this HTLC expires - blocks with a header time above this value will result in
977 /// this payment being removed.
979 /// Arbitrary identifier the user specifies (or not)
980 user_payment_id: u64,
981 // Other required attributes of the payment, optionally enforced:
982 payment_preimage: Option<PaymentPreimage>,
983 min_value_msat: Option<u64>,
986 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
987 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
988 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
989 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
990 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
991 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
992 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
993 /// of [`KeysManager`] and [`DefaultRouter`].
995 /// This is not exported to bindings users as type aliases aren't supported in most languages.
996 #[cfg(not(c_bindings))]
997 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
1005 Arc<NetworkGraph<Arc<L>>>,
1008 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1009 ProbabilisticScoringFeeParameters,
1010 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1015 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1016 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1017 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1018 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1019 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1020 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1021 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1022 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1023 /// of [`KeysManager`] and [`DefaultRouter`].
1025 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1026 #[cfg(not(c_bindings))]
1027 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1036 &'f NetworkGraph<&'g L>,
1039 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1040 ProbabilisticScoringFeeParameters,
1041 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1046 /// A trivial trait which describes any [`ChannelManager`].
1048 /// This is not exported to bindings users as general cover traits aren't useful in other
1050 pub trait AChannelManager {
1051 /// A type implementing [`chain::Watch`].
1052 type Watch: chain::Watch<Self::Signer> + ?Sized;
1053 /// A type that may be dereferenced to [`Self::Watch`].
1054 type M: Deref<Target = Self::Watch>;
1055 /// A type implementing [`BroadcasterInterface`].
1056 type Broadcaster: BroadcasterInterface + ?Sized;
1057 /// A type that may be dereferenced to [`Self::Broadcaster`].
1058 type T: Deref<Target = Self::Broadcaster>;
1059 /// A type implementing [`EntropySource`].
1060 type EntropySource: EntropySource + ?Sized;
1061 /// A type that may be dereferenced to [`Self::EntropySource`].
1062 type ES: Deref<Target = Self::EntropySource>;
1063 /// A type implementing [`NodeSigner`].
1064 type NodeSigner: NodeSigner + ?Sized;
1065 /// A type that may be dereferenced to [`Self::NodeSigner`].
1066 type NS: Deref<Target = Self::NodeSigner>;
1067 /// A type implementing [`WriteableEcdsaChannelSigner`].
1068 type Signer: WriteableEcdsaChannelSigner + Sized;
1069 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1070 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1071 /// A type that may be dereferenced to [`Self::SignerProvider`].
1072 type SP: Deref<Target = Self::SignerProvider>;
1073 /// A type implementing [`FeeEstimator`].
1074 type FeeEstimator: FeeEstimator + ?Sized;
1075 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1076 type F: Deref<Target = Self::FeeEstimator>;
1077 /// A type implementing [`Router`].
1078 type Router: Router + ?Sized;
1079 /// A type that may be dereferenced to [`Self::Router`].
1080 type R: Deref<Target = Self::Router>;
1081 /// A type implementing [`Logger`].
1082 type Logger: Logger + ?Sized;
1083 /// A type that may be dereferenced to [`Self::Logger`].
1084 type L: Deref<Target = Self::Logger>;
1085 /// Returns a reference to the actual [`ChannelManager`] object.
1086 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1089 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1090 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1092 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1093 T::Target: BroadcasterInterface,
1094 ES::Target: EntropySource,
1095 NS::Target: NodeSigner,
1096 SP::Target: SignerProvider,
1097 F::Target: FeeEstimator,
1101 type Watch = M::Target;
1103 type Broadcaster = T::Target;
1105 type EntropySource = ES::Target;
1107 type NodeSigner = NS::Target;
1109 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1110 type SignerProvider = SP::Target;
1112 type FeeEstimator = F::Target;
1114 type Router = R::Target;
1116 type Logger = L::Target;
1118 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1121 /// A lightning node's channel state machine and payment management logic, which facilitates
1122 /// sending, forwarding, and receiving payments through lightning channels.
1124 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1125 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1127 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1128 /// closing channels
1129 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1130 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1131 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1132 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1134 /// - [`Router`] for finding payment paths when initiating and retrying payments
1135 /// - [`Logger`] for logging operational information of varying degrees
1137 /// Additionally, it implements the following traits:
1138 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1139 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1140 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1141 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1142 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1144 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1145 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1147 /// # `ChannelManager` vs `ChannelMonitor`
1149 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1150 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1151 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1152 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1153 /// [`chain::Watch`] of them.
1155 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1156 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1157 /// for any pertinent on-chain activity, enforcing claims as needed.
1159 /// This division of off-chain management and on-chain enforcement allows for interesting node
1160 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1161 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1163 /// # Initialization
1165 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1166 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1167 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1168 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1169 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1172 /// use bitcoin::BlockHash;
1173 /// use bitcoin::network::constants::Network;
1174 /// use lightning::chain::BestBlock;
1175 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1176 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1177 /// # use lightning::routing::gossip::NetworkGraph;
1178 /// use lightning::util::config::UserConfig;
1179 /// use lightning::util::ser::ReadableArgs;
1181 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1184 /// # L: lightning::util::logger::Logger,
1185 /// # ES: lightning::sign::EntropySource,
1186 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1187 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1189 /// # R: lightning::io::Read,
1191 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1192 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1193 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1194 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1196 /// # entropy_source: &ES,
1197 /// # node_signer: &dyn lightning::sign::NodeSigner,
1198 /// # signer_provider: &lightning::sign::DynSignerProvider,
1199 /// # best_block: lightning::chain::BestBlock,
1200 /// # current_timestamp: u32,
1201 /// # mut reader: R,
1202 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1203 /// // Fresh start with no channels
1204 /// let params = ChainParameters {
1205 /// network: Network::Bitcoin,
1208 /// let default_config = UserConfig::default();
1209 /// let channel_manager = ChannelManager::new(
1210 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1211 /// signer_provider, default_config, params, current_timestamp
1214 /// // Restart from deserialized data
1215 /// let mut channel_monitors = read_channel_monitors();
1216 /// let args = ChannelManagerReadArgs::new(
1217 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1218 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1220 /// let (block_hash, channel_manager) =
1221 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1223 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1226 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1227 /// for monitor in channel_monitors {
1228 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1236 /// The following is required for [`ChannelManager`] to function properly:
1237 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1238 /// called by [`PeerManager::read_event`] when processing network I/O)
1239 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1240 /// (typically initiated when [`PeerManager::process_events`] is called)
1241 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1242 /// as documented by those traits
1243 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1245 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1246 /// [`Persister`] such as a [`KVStore`] implementation
1247 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1249 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1250 /// when the last two requirements need to be checked.
1252 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1253 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1254 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1255 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1259 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1260 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1261 /// currently open channels.
1264 /// # use lightning::ln::channelmanager::AChannelManager;
1266 /// # fn example<T: AChannelManager>(channel_manager: T) {
1267 /// # let channel_manager = channel_manager.get_cm();
1268 /// let channels = channel_manager.list_usable_channels();
1269 /// for details in channels {
1270 /// println!("{:?}", details);
1275 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1276 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1277 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1278 /// by [`ChannelManager`].
1280 /// ## Opening Channels
1282 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1283 /// opening an outbound channel, which requires self-funding when handling
1284 /// [`Event::FundingGenerationReady`].
1287 /// # use bitcoin::{ScriptBuf, Transaction};
1288 /// # use bitcoin::secp256k1::PublicKey;
1289 /// # use lightning::ln::channelmanager::AChannelManager;
1290 /// # use lightning::events::{Event, EventsProvider};
1292 /// # trait Wallet {
1293 /// # fn create_funding_transaction(
1294 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1295 /// # ) -> Transaction;
1298 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1299 /// # let channel_manager = channel_manager.get_cm();
1300 /// let value_sats = 1_000_000;
1301 /// let push_msats = 10_000_000;
1302 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1303 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1304 /// Err(e) => println!("Error opening channel: {:?}", e),
1307 /// // On the event processing thread once the peer has responded
1308 /// channel_manager.process_pending_events(&|event| match event {
1309 /// Event::FundingGenerationReady {
1310 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1311 /// user_channel_id, ..
1313 /// assert_eq!(user_channel_id, 42);
1314 /// let funding_transaction = wallet.create_funding_transaction(
1315 /// channel_value_satoshis, output_script
1317 /// match channel_manager.funding_transaction_generated(
1318 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1320 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1321 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1324 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1325 /// assert_eq!(user_channel_id, 42);
1327 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1328 /// former_temporary_channel_id.unwrap()
1331 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1332 /// assert_eq!(user_channel_id, 42);
1333 /// println!("Channel {} ready", channel_id);
1341 /// ## Accepting Channels
1343 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1344 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1345 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1348 /// # use bitcoin::secp256k1::PublicKey;
1349 /// # use lightning::ln::channelmanager::AChannelManager;
1350 /// # use lightning::events::{Event, EventsProvider};
1352 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1354 /// # unimplemented!()
1357 /// # fn example<T: AChannelManager>(channel_manager: T) {
1358 /// # let channel_manager = channel_manager.get_cm();
1359 /// channel_manager.process_pending_events(&|event| match event {
1360 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1361 /// if !is_trusted(counterparty_node_id) {
1362 /// match channel_manager.force_close_without_broadcasting_txn(
1363 /// &temporary_channel_id, &counterparty_node_id
1365 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1366 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1371 /// let user_channel_id = 43;
1372 /// match channel_manager.accept_inbound_channel(
1373 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1375 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1376 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1385 /// ## Closing Channels
1387 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1388 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1389 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1390 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1391 /// once the channel has been closed successfully.
1394 /// # use bitcoin::secp256k1::PublicKey;
1395 /// # use lightning::ln::ChannelId;
1396 /// # use lightning::ln::channelmanager::AChannelManager;
1397 /// # use lightning::events::{Event, EventsProvider};
1399 /// # fn example<T: AChannelManager>(
1400 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1402 /// # let channel_manager = channel_manager.get_cm();
1403 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1404 /// Ok(()) => println!("Closing channel {}", channel_id),
1405 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1408 /// // On the event processing thread
1409 /// channel_manager.process_pending_events(&|event| match event {
1410 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1411 /// assert_eq!(user_channel_id, 42);
1412 /// println!("Channel {} closed", channel_id);
1422 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1423 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1424 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1425 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1426 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1429 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1430 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1431 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1432 /// [`abandon_payment`] is called.
1434 /// ## BOLT 11 Invoices
1436 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1437 /// functions in its `utils` module for constructing invoices that are compatible with
1438 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1439 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1440 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1441 /// the [`lightning-invoice`] `utils` module.
1443 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1444 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1445 /// an [`Event::PaymentClaimed`].
1448 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1449 /// # use lightning::ln::channelmanager::AChannelManager;
1451 /// # fn example<T: AChannelManager>(channel_manager: T) {
1452 /// # let channel_manager = channel_manager.get_cm();
1453 /// // Or use utils::create_invoice_from_channelmanager
1454 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1455 /// Some(10_000_000), 3600, None
1457 /// Ok((payment_hash, _payment_secret)) => {
1458 /// println!("Creating inbound payment {}", payment_hash);
1461 /// Err(()) => panic!("Error creating inbound payment"),
1464 /// // On the event processing thread
1465 /// channel_manager.process_pending_events(&|event| match event {
1466 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1467 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1468 /// assert_eq!(payment_hash, known_payment_hash);
1469 /// println!("Claiming payment {}", payment_hash);
1470 /// channel_manager.claim_funds(payment_preimage);
1472 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: None, .. } => {
1473 /// println!("Unknown payment hash: {}", payment_hash);
1475 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1476 /// assert_ne!(payment_hash, known_payment_hash);
1477 /// println!("Claiming spontaneous payment {}", payment_hash);
1478 /// channel_manager.claim_funds(payment_preimage);
1483 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1484 /// assert_eq!(payment_hash, known_payment_hash);
1485 /// println!("Claimed {} msats", amount_msat);
1493 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1494 /// functions for use with [`send_payment`].
1497 /// # use lightning::events::{Event, EventsProvider};
1498 /// # use lightning::ln::PaymentHash;
1499 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1500 /// # use lightning::routing::router::RouteParameters;
1502 /// # fn example<T: AChannelManager>(
1503 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1504 /// # route_params: RouteParameters, retry: Retry
1506 /// # let channel_manager = channel_manager.get_cm();
1507 /// // let (payment_hash, recipient_onion, route_params) =
1508 /// // payment::payment_parameters_from_invoice(&invoice);
1509 /// let payment_id = PaymentId([42; 32]);
1510 /// match channel_manager.send_payment(
1511 /// payment_hash, recipient_onion, payment_id, route_params, retry
1513 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1514 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1517 /// let expected_payment_id = payment_id;
1518 /// let expected_payment_hash = payment_hash;
1520 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1522 /// RecentPaymentDetails::Pending {
1523 /// payment_id: expected_payment_id,
1524 /// payment_hash: expected_payment_hash,
1530 /// // On the event processing thread
1531 /// channel_manager.process_pending_events(&|event| match event {
1532 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1533 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1540 /// ## BOLT 12 Offers
1542 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1543 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1544 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1545 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1546 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1547 /// stateless just as BOLT 11 invoices are.
1550 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1551 /// # use lightning::ln::channelmanager::AChannelManager;
1552 /// # use lightning::offers::parse::Bolt12SemanticError;
1554 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1555 /// # let channel_manager = channel_manager.get_cm();
1556 /// let offer = channel_manager
1557 /// .create_offer_builder("coffee".to_string())?
1559 /// # // Needed for compiling for c_bindings
1560 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1561 /// # let offer = builder
1562 /// .amount_msats(10_000_000)
1564 /// let bech32_offer = offer.to_string();
1566 /// // On the event processing thread
1567 /// channel_manager.process_pending_events(&|event| match event {
1568 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1569 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: Some(payment_preimage), .. } => {
1570 /// println!("Claiming payment {}", payment_hash);
1571 /// channel_manager.claim_funds(payment_preimage);
1573 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: None, .. } => {
1574 /// println!("Unknown payment hash: {}", payment_hash);
1579 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1580 /// println!("Claimed {} msats", amount_msat);
1589 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1590 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1591 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1594 /// # use lightning::events::{Event, EventsProvider};
1595 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1596 /// # use lightning::offers::offer::Offer;
1598 /// # fn example<T: AChannelManager>(
1599 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1600 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1602 /// # let channel_manager = channel_manager.get_cm();
1603 /// let payment_id = PaymentId([42; 32]);
1604 /// match channel_manager.pay_for_offer(
1605 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1607 /// Ok(()) => println!("Requesting invoice for offer"),
1608 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1611 /// // First the payment will be waiting on an invoice
1612 /// let expected_payment_id = payment_id;
1614 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1616 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1620 /// // Once the invoice is received, a payment will be sent
1622 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1624 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1628 /// // On the event processing thread
1629 /// channel_manager.process_pending_events(&|event| match event {
1630 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1631 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1632 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1639 /// ## BOLT 12 Refunds
1641 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1642 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1643 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1644 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1647 /// # use core::time::Duration;
1648 /// # use lightning::events::{Event, EventsProvider};
1649 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1650 /// # use lightning::offers::parse::Bolt12SemanticError;
1652 /// # fn example<T: AChannelManager>(
1653 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1654 /// # max_total_routing_fee_msat: Option<u64>
1655 /// # ) -> Result<(), Bolt12SemanticError> {
1656 /// # let channel_manager = channel_manager.get_cm();
1657 /// let payment_id = PaymentId([42; 32]);
1658 /// let refund = channel_manager
1659 /// .create_refund_builder(
1660 /// "coffee".to_string(), amount_msats, absolute_expiry, payment_id, retry,
1661 /// max_total_routing_fee_msat
1664 /// # // Needed for compiling for c_bindings
1665 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1666 /// # let refund = builder
1667 /// .payer_note("refund for order 1234".to_string())
1669 /// let bech32_refund = refund.to_string();
1671 /// // First the payment will be waiting on an invoice
1672 /// let expected_payment_id = payment_id;
1674 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1676 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1680 /// // Once the invoice is received, a payment will be sent
1682 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1684 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1688 /// // On the event processing thread
1689 /// channel_manager.process_pending_events(&|event| match event {
1690 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1691 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1699 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1700 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1703 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1704 /// # use lightning::ln::channelmanager::AChannelManager;
1705 /// # use lightning::offers::refund::Refund;
1707 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1708 /// # let channel_manager = channel_manager.get_cm();
1709 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1710 /// Ok(invoice) => {
1711 /// let payment_hash = invoice.payment_hash();
1712 /// println!("Requesting refund payment {}", payment_hash);
1715 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1718 /// // On the event processing thread
1719 /// channel_manager.process_pending_events(&|event| match event {
1720 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1721 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: Some(payment_preimage), .. } => {
1722 /// assert_eq!(payment_hash, known_payment_hash);
1723 /// println!("Claiming payment {}", payment_hash);
1724 /// channel_manager.claim_funds(payment_preimage);
1726 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: None, .. } => {
1727 /// println!("Unknown payment hash: {}", payment_hash);
1732 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1733 /// assert_eq!(payment_hash, known_payment_hash);
1734 /// println!("Claimed {} msats", amount_msat);
1744 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1745 /// all peers during write/read (though does not modify this instance, only the instance being
1746 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1747 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1749 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1750 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1751 /// [`ChannelMonitorUpdate`] before returning from
1752 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1753 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1754 /// `ChannelManager` operations from occurring during the serialization process). If the
1755 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1756 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1757 /// will be lost (modulo on-chain transaction fees).
1759 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1760 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1761 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1763 /// # `ChannelUpdate` Messages
1765 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1766 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1767 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1768 /// offline for a full minute. In order to track this, you must call
1769 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1771 /// # DoS Mitigation
1773 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1774 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1775 /// not have a channel with being unable to connect to us or open new channels with us if we have
1776 /// many peers with unfunded channels.
1778 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1779 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1780 /// never limited. Please ensure you limit the count of such channels yourself.
1784 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1785 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1786 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1787 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1788 /// you're using lightning-net-tokio.
1790 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1791 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1792 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1793 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1794 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1795 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1796 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1797 /// [`Persister`]: crate::util::persist::Persister
1798 /// [`KVStore`]: crate::util::persist::KVStore
1799 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1800 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1801 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1802 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1803 /// [`list_channels`]: Self::list_channels
1804 /// [`list_usable_channels`]: Self::list_usable_channels
1805 /// [`create_channel`]: Self::create_channel
1806 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1807 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1808 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1809 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1810 /// [`list_recent_payments`]: Self::list_recent_payments
1811 /// [`abandon_payment`]: Self::abandon_payment
1812 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1813 /// [`create_inbound_payment`]: Self::create_inbound_payment
1814 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1815 /// [`claim_funds`]: Self::claim_funds
1816 /// [`send_payment`]: Self::send_payment
1817 /// [`offers`]: crate::offers
1818 /// [`create_offer_builder`]: Self::create_offer_builder
1819 /// [`pay_for_offer`]: Self::pay_for_offer
1820 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1821 /// [`create_refund_builder`]: Self::create_refund_builder
1822 /// [`request_refund_payment`]: Self::request_refund_payment
1823 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1824 /// [`funding_created`]: msgs::FundingCreated
1825 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1826 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1827 /// [`update_channel`]: chain::Watch::update_channel
1828 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1829 /// [`read`]: ReadableArgs::read
1832 // The tree structure below illustrates the lock order requirements for the different locks of the
1833 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1834 // and should then be taken in the order of the lowest to the highest level in the tree.
1835 // Note that locks on different branches shall not be taken at the same time, as doing so will
1836 // create a new lock order for those specific locks in the order they were taken.
1840 // `pending_offers_messages`
1842 // `total_consistency_lock`
1844 // |__`forward_htlcs`
1846 // | |__`pending_intercepted_htlcs`
1848 // |__`decode_update_add_htlcs`
1850 // |__`per_peer_state`
1852 // |__`pending_inbound_payments`
1854 // |__`claimable_payments`
1856 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1860 // |__`outpoint_to_peer`
1862 // |__`short_to_chan_info`
1864 // |__`outbound_scid_aliases`
1868 // |__`pending_events`
1870 // |__`pending_background_events`
1872 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1874 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1875 T::Target: BroadcasterInterface,
1876 ES::Target: EntropySource,
1877 NS::Target: NodeSigner,
1878 SP::Target: SignerProvider,
1879 F::Target: FeeEstimator,
1883 default_configuration: UserConfig,
1884 chain_hash: ChainHash,
1885 fee_estimator: LowerBoundedFeeEstimator<F>,
1891 /// See `ChannelManager` struct-level documentation for lock order requirements.
1893 pub(super) best_block: RwLock<BestBlock>,
1895 best_block: RwLock<BestBlock>,
1896 secp_ctx: Secp256k1<secp256k1::All>,
1898 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1899 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1900 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1901 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1903 /// See `ChannelManager` struct-level documentation for lock order requirements.
1904 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1906 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1907 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1908 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1909 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1910 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1911 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1912 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1913 /// after reloading from disk while replaying blocks against ChannelMonitors.
1915 /// See `PendingOutboundPayment` documentation for more info.
1917 /// See `ChannelManager` struct-level documentation for lock order requirements.
1918 pending_outbound_payments: OutboundPayments,
1920 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1922 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1923 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1924 /// and via the classic SCID.
1926 /// Note that no consistency guarantees are made about the existence of a channel with the
1927 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1929 /// See `ChannelManager` struct-level documentation for lock order requirements.
1931 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1933 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1934 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1935 /// until the user tells us what we should do with them.
1937 /// See `ChannelManager` struct-level documentation for lock order requirements.
1938 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1940 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1942 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1943 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1944 /// and via the classic SCID.
1946 /// Note that no consistency guarantees are made about the existence of a channel with the
1947 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1949 /// See `ChannelManager` struct-level documentation for lock order requirements.
1950 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1952 /// The sets of payments which are claimable or currently being claimed. See
1953 /// [`ClaimablePayments`]' individual field docs for more info.
1955 /// See `ChannelManager` struct-level documentation for lock order requirements.
1956 claimable_payments: Mutex<ClaimablePayments>,
1958 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1959 /// and some closed channels which reached a usable state prior to being closed. This is used
1960 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1961 /// active channel list on load.
1963 /// See `ChannelManager` struct-level documentation for lock order requirements.
1964 outbound_scid_aliases: Mutex<HashSet<u64>>,
1966 /// Channel funding outpoint -> `counterparty_node_id`.
1968 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1969 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1970 /// the handling of the events.
1972 /// Note that no consistency guarantees are made about the existence of a peer with the
1973 /// `counterparty_node_id` in our other maps.
1976 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1977 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1978 /// would break backwards compatability.
1979 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1980 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1981 /// required to access the channel with the `counterparty_node_id`.
1983 /// See `ChannelManager` struct-level documentation for lock order requirements.
1985 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1987 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1989 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1991 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1992 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1993 /// confirmation depth.
1995 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1996 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1997 /// channel with the `channel_id` in our other maps.
1999 /// See `ChannelManager` struct-level documentation for lock order requirements.
2001 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2003 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2005 our_network_pubkey: PublicKey,
2007 inbound_payment_key: inbound_payment::ExpandedKey,
2009 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
2010 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
2011 /// we encrypt the namespace identifier using these bytes.
2013 /// [fake scids]: crate::util::scid_utils::fake_scid
2014 fake_scid_rand_bytes: [u8; 32],
2016 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2017 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2018 /// keeping additional state.
2019 probing_cookie_secret: [u8; 32],
2021 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2022 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2023 /// very far in the past, and can only ever be up to two hours in the future.
2024 highest_seen_timestamp: AtomicUsize,
2026 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2027 /// basis, as well as the peer's latest features.
2029 /// If we are connected to a peer we always at least have an entry here, even if no channels
2030 /// are currently open with that peer.
2032 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2033 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2036 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2038 /// See `ChannelManager` struct-level documentation for lock order requirements.
2039 #[cfg(not(any(test, feature = "_test_utils")))]
2040 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2041 #[cfg(any(test, feature = "_test_utils"))]
2042 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2044 /// The set of events which we need to give to the user to handle. In some cases an event may
2045 /// require some further action after the user handles it (currently only blocking a monitor
2046 /// update from being handed to the user to ensure the included changes to the channel state
2047 /// are handled by the user before they're persisted durably to disk). In that case, the second
2048 /// element in the tuple is set to `Some` with further details of the action.
2050 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2051 /// could be in the middle of being processed without the direct mutex held.
2053 /// See `ChannelManager` struct-level documentation for lock order requirements.
2054 #[cfg(not(any(test, feature = "_test_utils")))]
2055 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2056 #[cfg(any(test, feature = "_test_utils"))]
2057 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2059 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2060 pending_events_processor: AtomicBool,
2062 /// If we are running during init (either directly during the deserialization method or in
2063 /// block connection methods which run after deserialization but before normal operation) we
2064 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2065 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2066 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2068 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2070 /// See `ChannelManager` struct-level documentation for lock order requirements.
2072 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2073 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2074 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2075 /// Essentially just when we're serializing ourselves out.
2076 /// Taken first everywhere where we are making changes before any other locks.
2077 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2078 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2079 /// Notifier the lock contains sends out a notification when the lock is released.
2080 total_consistency_lock: RwLock<()>,
2081 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2082 /// received and the monitor has been persisted.
2084 /// This information does not need to be persisted as funding nodes can forget
2085 /// unfunded channels upon disconnection.
2086 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2088 background_events_processed_since_startup: AtomicBool,
2090 event_persist_notifier: Notifier,
2091 needs_persist_flag: AtomicBool,
2093 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2095 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2096 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2100 signer_provider: SP,
2105 /// Chain-related parameters used to construct a new `ChannelManager`.
2107 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2108 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2109 /// are not needed when deserializing a previously constructed `ChannelManager`.
2110 #[derive(Clone, Copy, PartialEq)]
2111 pub struct ChainParameters {
2112 /// The network for determining the `chain_hash` in Lightning messages.
2113 pub network: Network,
2115 /// The hash and height of the latest block successfully connected.
2117 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2118 pub best_block: BestBlock,
2121 #[derive(Copy, Clone, PartialEq)]
2125 SkipPersistHandleEvents,
2126 SkipPersistNoEvents,
2129 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2130 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2131 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2132 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2133 /// sending the aforementioned notification (since the lock being released indicates that the
2134 /// updates are ready for persistence).
2136 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2137 /// notify or not based on whether relevant changes have been made, providing a closure to
2138 /// `optionally_notify` which returns a `NotifyOption`.
2139 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2140 event_persist_notifier: &'a Notifier,
2141 needs_persist_flag: &'a AtomicBool,
2143 // We hold onto this result so the lock doesn't get released immediately.
2144 _read_guard: RwLockReadGuard<'a, ()>,
2147 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2148 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2149 /// events to handle.
2151 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2152 /// other cases where losing the changes on restart may result in a force-close or otherwise
2154 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2155 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2158 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2159 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2160 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2161 let force_notify = cm.get_cm().process_background_events();
2163 PersistenceNotifierGuard {
2164 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2165 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2166 should_persist: move || {
2167 // Pick the "most" action between `persist_check` and the background events
2168 // processing and return that.
2169 let notify = persist_check();
2170 match (notify, force_notify) {
2171 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2172 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2173 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2174 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2175 _ => NotifyOption::SkipPersistNoEvents,
2178 _read_guard: read_guard,
2182 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2183 /// [`ChannelManager::process_background_events`] MUST be called first (or
2184 /// [`Self::optionally_notify`] used).
2185 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2186 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2187 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2189 PersistenceNotifierGuard {
2190 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2191 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2192 should_persist: persist_check,
2193 _read_guard: read_guard,
2198 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2199 fn drop(&mut self) {
2200 match (self.should_persist)() {
2201 NotifyOption::DoPersist => {
2202 self.needs_persist_flag.store(true, Ordering::Release);
2203 self.event_persist_notifier.notify()
2205 NotifyOption::SkipPersistHandleEvents =>
2206 self.event_persist_notifier.notify(),
2207 NotifyOption::SkipPersistNoEvents => {},
2212 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2213 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2215 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2217 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2218 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2219 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2220 /// the maximum required amount in lnd as of March 2021.
2221 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2223 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2224 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2226 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2228 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2229 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2230 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2231 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2232 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2233 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2234 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2235 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2236 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2237 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2238 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2239 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2240 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2242 /// Minimum CLTV difference between the current block height and received inbound payments.
2243 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2245 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2246 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2247 // a payment was being routed, so we add an extra block to be safe.
2248 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2250 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2251 // ie that if the next-hop peer fails the HTLC within
2252 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2253 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2254 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2255 // LATENCY_GRACE_PERIOD_BLOCKS.
2257 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2259 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2260 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2262 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2264 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2265 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2267 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2268 /// until we mark the channel disabled and gossip the update.
2269 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2271 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2272 /// we mark the channel enabled and gossip the update.
2273 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2275 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2276 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2277 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2278 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2280 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2281 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2282 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2284 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2285 /// many peers we reject new (inbound) connections.
2286 const MAX_NO_CHANNEL_PEERS: usize = 250;
2288 /// Information needed for constructing an invoice route hint for this channel.
2289 #[derive(Clone, Debug, PartialEq)]
2290 pub struct CounterpartyForwardingInfo {
2291 /// Base routing fee in millisatoshis.
2292 pub fee_base_msat: u32,
2293 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2294 pub fee_proportional_millionths: u32,
2295 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2296 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2297 /// `cltv_expiry_delta` for more details.
2298 pub cltv_expiry_delta: u16,
2301 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2302 /// to better separate parameters.
2303 #[derive(Clone, Debug, PartialEq)]
2304 pub struct ChannelCounterparty {
2305 /// The node_id of our counterparty
2306 pub node_id: PublicKey,
2307 /// The Features the channel counterparty provided upon last connection.
2308 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2309 /// many routing-relevant features are present in the init context.
2310 pub features: InitFeatures,
2311 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2312 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2313 /// claiming at least this value on chain.
2315 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2317 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2318 pub unspendable_punishment_reserve: u64,
2319 /// Information on the fees and requirements that the counterparty requires when forwarding
2320 /// payments to us through this channel.
2321 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2322 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2323 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2324 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2325 pub outbound_htlc_minimum_msat: Option<u64>,
2326 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2327 pub outbound_htlc_maximum_msat: Option<u64>,
2330 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2331 #[derive(Clone, Debug, PartialEq)]
2332 pub struct ChannelDetails {
2333 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2334 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2335 /// Note that this means this value is *not* persistent - it can change once during the
2336 /// lifetime of the channel.
2337 pub channel_id: ChannelId,
2338 /// Parameters which apply to our counterparty. See individual fields for more information.
2339 pub counterparty: ChannelCounterparty,
2340 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2341 /// our counterparty already.
2342 pub funding_txo: Option<OutPoint>,
2343 /// The features which this channel operates with. See individual features for more info.
2345 /// `None` until negotiation completes and the channel type is finalized.
2346 pub channel_type: Option<ChannelTypeFeatures>,
2347 /// The position of the funding transaction in the chain. None if the funding transaction has
2348 /// not yet been confirmed and the channel fully opened.
2350 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2351 /// payments instead of this. See [`get_inbound_payment_scid`].
2353 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2354 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2356 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2357 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2358 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2359 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2360 /// [`confirmations_required`]: Self::confirmations_required
2361 pub short_channel_id: Option<u64>,
2362 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2363 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2364 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2367 /// This will be `None` as long as the channel is not available for routing outbound payments.
2369 /// [`short_channel_id`]: Self::short_channel_id
2370 /// [`confirmations_required`]: Self::confirmations_required
2371 pub outbound_scid_alias: Option<u64>,
2372 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2373 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2374 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2375 /// when they see a payment to be routed to us.
2377 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2378 /// previous values for inbound payment forwarding.
2380 /// [`short_channel_id`]: Self::short_channel_id
2381 pub inbound_scid_alias: Option<u64>,
2382 /// The value, in satoshis, of this channel as appears in the funding output
2383 pub channel_value_satoshis: u64,
2384 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2385 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2386 /// this value on chain.
2388 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2390 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2392 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2393 pub unspendable_punishment_reserve: Option<u64>,
2394 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2395 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2396 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2397 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2398 /// serialized with LDK versions prior to 0.0.113.
2400 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2401 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2402 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2403 pub user_channel_id: u128,
2404 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2405 /// which is applied to commitment and HTLC transactions.
2407 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2408 pub feerate_sat_per_1000_weight: Option<u32>,
2409 /// Our total balance. This is the amount we would get if we close the channel.
2410 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2411 /// amount is not likely to be recoverable on close.
2413 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2414 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2415 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2416 /// This does not consider any on-chain fees.
2418 /// See also [`ChannelDetails::outbound_capacity_msat`]
2419 pub balance_msat: u64,
2420 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2421 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2422 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2423 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2425 /// See also [`ChannelDetails::balance_msat`]
2427 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2428 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2429 /// should be able to spend nearly this amount.
2430 pub outbound_capacity_msat: u64,
2431 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2432 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2433 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2434 /// to use a limit as close as possible to the HTLC limit we can currently send.
2436 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2437 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2438 pub next_outbound_htlc_limit_msat: u64,
2439 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2440 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2441 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2442 /// route which is valid.
2443 pub next_outbound_htlc_minimum_msat: u64,
2444 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2445 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2446 /// available for inclusion in new inbound HTLCs).
2447 /// Note that there are some corner cases not fully handled here, so the actual available
2448 /// inbound capacity may be slightly higher than this.
2450 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2451 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2452 /// However, our counterparty should be able to spend nearly this amount.
2453 pub inbound_capacity_msat: u64,
2454 /// The number of required confirmations on the funding transaction before the funding will be
2455 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2456 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2457 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2458 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2460 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2462 /// [`is_outbound`]: ChannelDetails::is_outbound
2463 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2464 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2465 pub confirmations_required: Option<u32>,
2466 /// The current number of confirmations on the funding transaction.
2468 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2469 pub confirmations: Option<u32>,
2470 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2471 /// until we can claim our funds after we force-close the channel. During this time our
2472 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2473 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2474 /// time to claim our non-HTLC-encumbered funds.
2476 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2477 pub force_close_spend_delay: Option<u16>,
2478 /// True if the channel was initiated (and thus funded) by us.
2479 pub is_outbound: bool,
2480 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2481 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2482 /// required confirmation count has been reached (and we were connected to the peer at some
2483 /// point after the funding transaction received enough confirmations). The required
2484 /// confirmation count is provided in [`confirmations_required`].
2486 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2487 pub is_channel_ready: bool,
2488 /// The stage of the channel's shutdown.
2489 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2490 pub channel_shutdown_state: Option<ChannelShutdownState>,
2491 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2492 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2494 /// This is a strict superset of `is_channel_ready`.
2495 pub is_usable: bool,
2496 /// True if this channel is (or will be) publicly-announced.
2497 pub is_public: bool,
2498 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2499 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2500 pub inbound_htlc_minimum_msat: Option<u64>,
2501 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2502 pub inbound_htlc_maximum_msat: Option<u64>,
2503 /// Set of configurable parameters that affect channel operation.
2505 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2506 pub config: Option<ChannelConfig>,
2507 /// Pending inbound HTLCs.
2509 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2510 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2511 /// Pending outbound HTLCs.
2513 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2514 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2517 impl ChannelDetails {
2518 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2519 /// This should be used for providing invoice hints or in any other context where our
2520 /// counterparty will forward a payment to us.
2522 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2523 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2524 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2525 self.inbound_scid_alias.or(self.short_channel_id)
2528 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2529 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2530 /// we're sending or forwarding a payment outbound over this channel.
2532 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2533 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2534 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2535 self.short_channel_id.or(self.outbound_scid_alias)
2538 fn from_channel_context<SP: Deref, F: Deref>(
2539 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2540 fee_estimator: &LowerBoundedFeeEstimator<F>
2543 SP::Target: SignerProvider,
2544 F::Target: FeeEstimator
2546 let balance = context.get_available_balances(fee_estimator);
2547 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2548 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2550 channel_id: context.channel_id(),
2551 counterparty: ChannelCounterparty {
2552 node_id: context.get_counterparty_node_id(),
2553 features: latest_features,
2554 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2555 forwarding_info: context.counterparty_forwarding_info(),
2556 // Ensures that we have actually received the `htlc_minimum_msat` value
2557 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2558 // message (as they are always the first message from the counterparty).
2559 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2560 // default `0` value set by `Channel::new_outbound`.
2561 outbound_htlc_minimum_msat: if context.have_received_message() {
2562 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2563 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2565 funding_txo: context.get_funding_txo(),
2566 // Note that accept_channel (or open_channel) is always the first message, so
2567 // `have_received_message` indicates that type negotiation has completed.
2568 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2569 short_channel_id: context.get_short_channel_id(),
2570 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2571 inbound_scid_alias: context.latest_inbound_scid_alias(),
2572 channel_value_satoshis: context.get_value_satoshis(),
2573 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2574 unspendable_punishment_reserve: to_self_reserve_satoshis,
2575 balance_msat: balance.balance_msat,
2576 inbound_capacity_msat: balance.inbound_capacity_msat,
2577 outbound_capacity_msat: balance.outbound_capacity_msat,
2578 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2579 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2580 user_channel_id: context.get_user_id(),
2581 confirmations_required: context.minimum_depth(),
2582 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2583 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2584 is_outbound: context.is_outbound(),
2585 is_channel_ready: context.is_usable(),
2586 is_usable: context.is_live(),
2587 is_public: context.should_announce(),
2588 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2589 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2590 config: Some(context.config()),
2591 channel_shutdown_state: Some(context.shutdown_state()),
2592 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2593 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2598 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2599 /// Further information on the details of the channel shutdown.
2600 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2601 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2602 /// the channel will be removed shortly.
2603 /// Also note, that in normal operation, peers could disconnect at any of these states
2604 /// and require peer re-connection before making progress onto other states
2605 pub enum ChannelShutdownState {
2606 /// Channel has not sent or received a shutdown message.
2608 /// Local node has sent a shutdown message for this channel.
2610 /// Shutdown message exchanges have concluded and the channels are in the midst of
2611 /// resolving all existing open HTLCs before closing can continue.
2613 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2614 NegotiatingClosingFee,
2615 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2616 /// to drop the channel.
2620 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2621 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2622 #[derive(Debug, PartialEq)]
2623 pub enum RecentPaymentDetails {
2624 /// When an invoice was requested and thus a payment has not yet been sent.
2626 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2627 /// a payment and ensure idempotency in LDK.
2628 payment_id: PaymentId,
2630 /// When a payment is still being sent and awaiting successful delivery.
2632 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2633 /// a payment and ensure idempotency in LDK.
2634 payment_id: PaymentId,
2635 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2637 payment_hash: PaymentHash,
2638 /// Total amount (in msat, excluding fees) across all paths for this payment,
2639 /// not just the amount currently inflight.
2642 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2643 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2644 /// payment is removed from tracking.
2646 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2647 /// a payment and ensure idempotency in LDK.
2648 payment_id: PaymentId,
2649 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2650 /// made before LDK version 0.0.104.
2651 payment_hash: Option<PaymentHash>,
2653 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2654 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2655 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2657 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2658 /// a payment and ensure idempotency in LDK.
2659 payment_id: PaymentId,
2660 /// Hash of the payment that we have given up trying to send.
2661 payment_hash: PaymentHash,
2665 /// Route hints used in constructing invoices for [phantom node payents].
2667 /// [phantom node payments]: crate::sign::PhantomKeysManager
2669 pub struct PhantomRouteHints {
2670 /// The list of channels to be included in the invoice route hints.
2671 pub channels: Vec<ChannelDetails>,
2672 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2674 pub phantom_scid: u64,
2675 /// The pubkey of the real backing node that would ultimately receive the payment.
2676 pub real_node_pubkey: PublicKey,
2679 macro_rules! handle_error {
2680 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2681 // In testing, ensure there are no deadlocks where the lock is already held upon
2682 // entering the macro.
2683 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2684 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2688 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2689 let mut msg_event = None;
2691 if let Some((shutdown_res, update_option)) = shutdown_finish {
2692 let counterparty_node_id = shutdown_res.counterparty_node_id;
2693 let channel_id = shutdown_res.channel_id;
2694 let logger = WithContext::from(
2695 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2697 log_error!(logger, "Force-closing channel: {}", err.err);
2699 $self.finish_close_channel(shutdown_res);
2700 if let Some(update) = update_option {
2701 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2702 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2707 log_error!($self.logger, "Got non-closing error: {}", err.err);
2710 if let msgs::ErrorAction::IgnoreError = err.action {
2712 msg_event = Some(events::MessageSendEvent::HandleError {
2713 node_id: $counterparty_node_id,
2714 action: err.action.clone()
2718 if let Some(msg_event) = msg_event {
2719 let per_peer_state = $self.per_peer_state.read().unwrap();
2720 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2721 let mut peer_state = peer_state_mutex.lock().unwrap();
2722 peer_state.pending_msg_events.push(msg_event);
2726 // Return error in case higher-API need one
2733 macro_rules! update_maps_on_chan_removal {
2734 ($self: expr, $channel_context: expr) => {{
2735 if let Some(outpoint) = $channel_context.get_funding_txo() {
2736 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2738 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2739 if let Some(short_id) = $channel_context.get_short_channel_id() {
2740 short_to_chan_info.remove(&short_id);
2742 // If the channel was never confirmed on-chain prior to its closure, remove the
2743 // outbound SCID alias we used for it from the collision-prevention set. While we
2744 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2745 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2746 // opening a million channels with us which are closed before we ever reach the funding
2748 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2749 debug_assert!(alias_removed);
2751 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2755 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2756 macro_rules! convert_chan_phase_err {
2757 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2759 ChannelError::Warn(msg) => {
2760 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2762 ChannelError::Ignore(msg) => {
2763 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2765 ChannelError::Close(msg) => {
2766 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2767 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2768 update_maps_on_chan_removal!($self, $channel.context);
2769 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2770 let shutdown_res = $channel.context.force_shutdown(true, reason);
2772 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2777 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2778 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2780 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2781 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2783 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2784 match $channel_phase {
2785 ChannelPhase::Funded(channel) => {
2786 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2788 ChannelPhase::UnfundedOutboundV1(channel) => {
2789 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2791 ChannelPhase::UnfundedInboundV1(channel) => {
2792 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2794 #[cfg(any(dual_funding, splicing))]
2795 ChannelPhase::UnfundedOutboundV2(channel) => {
2796 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2798 #[cfg(any(dual_funding, splicing))]
2799 ChannelPhase::UnfundedInboundV2(channel) => {
2800 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2806 macro_rules! break_chan_phase_entry {
2807 ($self: ident, $res: expr, $entry: expr) => {
2811 let key = *$entry.key();
2812 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2814 $entry.remove_entry();
2822 macro_rules! try_chan_phase_entry {
2823 ($self: ident, $res: expr, $entry: expr) => {
2827 let key = *$entry.key();
2828 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2830 $entry.remove_entry();
2838 macro_rules! remove_channel_phase {
2839 ($self: expr, $entry: expr) => {
2841 let channel = $entry.remove_entry().1;
2842 update_maps_on_chan_removal!($self, &channel.context());
2848 macro_rules! send_channel_ready {
2849 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2850 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2851 node_id: $channel.context.get_counterparty_node_id(),
2852 msg: $channel_ready_msg,
2854 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2855 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2856 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2857 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2858 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2859 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2860 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2861 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2862 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2863 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2868 macro_rules! emit_channel_pending_event {
2869 ($locked_events: expr, $channel: expr) => {
2870 if $channel.context.should_emit_channel_pending_event() {
2871 $locked_events.push_back((events::Event::ChannelPending {
2872 channel_id: $channel.context.channel_id(),
2873 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2874 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2875 user_channel_id: $channel.context.get_user_id(),
2876 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2877 channel_type: Some($channel.context.get_channel_type().clone()),
2879 $channel.context.set_channel_pending_event_emitted();
2884 macro_rules! emit_channel_ready_event {
2885 ($locked_events: expr, $channel: expr) => {
2886 if $channel.context.should_emit_channel_ready_event() {
2887 debug_assert!($channel.context.channel_pending_event_emitted());
2888 $locked_events.push_back((events::Event::ChannelReady {
2889 channel_id: $channel.context.channel_id(),
2890 user_channel_id: $channel.context.get_user_id(),
2891 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2892 channel_type: $channel.context.get_channel_type().clone(),
2894 $channel.context.set_channel_ready_event_emitted();
2899 macro_rules! handle_monitor_update_completion {
2900 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2901 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2902 let mut updates = $chan.monitor_updating_restored(&&logger,
2903 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2904 $self.best_block.read().unwrap().height);
2905 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2906 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2907 // We only send a channel_update in the case where we are just now sending a
2908 // channel_ready and the channel is in a usable state. We may re-send a
2909 // channel_update later through the announcement_signatures process for public
2910 // channels, but there's no reason not to just inform our counterparty of our fees
2912 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2913 Some(events::MessageSendEvent::SendChannelUpdate {
2914 node_id: counterparty_node_id,
2920 let update_actions = $peer_state.monitor_update_blocked_actions
2921 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2923 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2924 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2925 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2926 updates.funding_broadcastable, updates.channel_ready,
2927 updates.announcement_sigs);
2928 if let Some(upd) = channel_update {
2929 $peer_state.pending_msg_events.push(upd);
2932 let channel_id = $chan.context.channel_id();
2933 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2934 core::mem::drop($peer_state_lock);
2935 core::mem::drop($per_peer_state_lock);
2937 // If the channel belongs to a batch funding transaction, the progress of the batch
2938 // should be updated as we have received funding_signed and persisted the monitor.
2939 if let Some(txid) = unbroadcasted_batch_funding_txid {
2940 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2941 let mut batch_completed = false;
2942 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2943 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2944 *chan_id == channel_id &&
2945 *pubkey == counterparty_node_id
2947 if let Some(channel_state) = channel_state {
2948 channel_state.2 = true;
2950 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2952 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2954 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2957 // When all channels in a batched funding transaction have become ready, it is not necessary
2958 // to track the progress of the batch anymore and the state of the channels can be updated.
2959 if batch_completed {
2960 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2961 let per_peer_state = $self.per_peer_state.read().unwrap();
2962 let mut batch_funding_tx = None;
2963 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2964 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2965 let mut peer_state = peer_state_mutex.lock().unwrap();
2966 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2967 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2968 chan.set_batch_ready();
2969 let mut pending_events = $self.pending_events.lock().unwrap();
2970 emit_channel_pending_event!(pending_events, chan);
2974 if let Some(tx) = batch_funding_tx {
2975 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2976 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2981 $self.handle_monitor_update_completion_actions(update_actions);
2983 if let Some(forwards) = htlc_forwards {
2984 $self.forward_htlcs(&mut [forwards][..]);
2986 if let Some(decode) = decode_update_add_htlcs {
2987 $self.push_decode_update_add_htlcs(decode);
2989 $self.finalize_claims(updates.finalized_claimed_htlcs);
2990 for failure in updates.failed_htlcs.drain(..) {
2991 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2992 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2997 macro_rules! handle_new_monitor_update {
2998 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2999 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
3000 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
3002 ChannelMonitorUpdateStatus::UnrecoverableError => {
3003 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
3004 log_error!(logger, "{}", err_str);
3005 panic!("{}", err_str);
3007 ChannelMonitorUpdateStatus::InProgress => {
3008 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
3009 &$chan.context.channel_id());
3012 ChannelMonitorUpdateStatus::Completed => {
3018 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3019 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3020 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3022 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3023 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3024 .or_insert_with(Vec::new);
3025 // During startup, we push monitor updates as background events through to here in
3026 // order to replay updates that were in-flight when we shut down. Thus, we have to
3027 // filter for uniqueness here.
3028 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3029 .unwrap_or_else(|| {
3030 in_flight_updates.push($update);
3031 in_flight_updates.len() - 1
3033 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3034 handle_new_monitor_update!($self, update_res, $chan, _internal,
3036 let _ = in_flight_updates.remove(idx);
3037 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3038 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3044 macro_rules! process_events_body {
3045 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3046 let mut processed_all_events = false;
3047 while !processed_all_events {
3048 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3055 // We'll acquire our total consistency lock so that we can be sure no other
3056 // persists happen while processing monitor events.
3057 let _read_guard = $self.total_consistency_lock.read().unwrap();
3059 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3060 // ensure any startup-generated background events are handled first.
3061 result = $self.process_background_events();
3063 // TODO: This behavior should be documented. It's unintuitive that we query
3064 // ChannelMonitors when clearing other events.
3065 if $self.process_pending_monitor_events() {
3066 result = NotifyOption::DoPersist;
3070 let pending_events = $self.pending_events.lock().unwrap().clone();
3071 let num_events = pending_events.len();
3072 if !pending_events.is_empty() {
3073 result = NotifyOption::DoPersist;
3076 let mut post_event_actions = Vec::new();
3078 for (event, action_opt) in pending_events {
3079 $event_to_handle = event;
3081 if let Some(action) = action_opt {
3082 post_event_actions.push(action);
3087 let mut pending_events = $self.pending_events.lock().unwrap();
3088 pending_events.drain(..num_events);
3089 processed_all_events = pending_events.is_empty();
3090 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3091 // updated here with the `pending_events` lock acquired.
3092 $self.pending_events_processor.store(false, Ordering::Release);
3095 if !post_event_actions.is_empty() {
3096 $self.handle_post_event_actions(post_event_actions);
3097 // If we had some actions, go around again as we may have more events now
3098 processed_all_events = false;
3102 NotifyOption::DoPersist => {
3103 $self.needs_persist_flag.store(true, Ordering::Release);
3104 $self.event_persist_notifier.notify();
3106 NotifyOption::SkipPersistHandleEvents =>
3107 $self.event_persist_notifier.notify(),
3108 NotifyOption::SkipPersistNoEvents => {},
3114 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3116 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3117 T::Target: BroadcasterInterface,
3118 ES::Target: EntropySource,
3119 NS::Target: NodeSigner,
3120 SP::Target: SignerProvider,
3121 F::Target: FeeEstimator,
3125 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3127 /// The current time or latest block header time can be provided as the `current_timestamp`.
3129 /// This is the main "logic hub" for all channel-related actions, and implements
3130 /// [`ChannelMessageHandler`].
3132 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3134 /// Users need to notify the new `ChannelManager` when a new block is connected or
3135 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3136 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3139 /// [`block_connected`]: chain::Listen::block_connected
3140 /// [`block_disconnected`]: chain::Listen::block_disconnected
3141 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3143 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3144 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3145 current_timestamp: u32,
3147 let mut secp_ctx = Secp256k1::new();
3148 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3149 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3150 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3152 default_configuration: config.clone(),
3153 chain_hash: ChainHash::using_genesis_block(params.network),
3154 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3159 best_block: RwLock::new(params.best_block),
3161 outbound_scid_aliases: Mutex::new(new_hash_set()),
3162 pending_inbound_payments: Mutex::new(new_hash_map()),
3163 pending_outbound_payments: OutboundPayments::new(),
3164 forward_htlcs: Mutex::new(new_hash_map()),
3165 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3166 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3167 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3168 outpoint_to_peer: Mutex::new(new_hash_map()),
3169 short_to_chan_info: FairRwLock::new(new_hash_map()),
3171 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3174 inbound_payment_key: expanded_inbound_key,
3175 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3177 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3179 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3181 per_peer_state: FairRwLock::new(new_hash_map()),
3183 pending_events: Mutex::new(VecDeque::new()),
3184 pending_events_processor: AtomicBool::new(false),
3185 pending_background_events: Mutex::new(Vec::new()),
3186 total_consistency_lock: RwLock::new(()),
3187 background_events_processed_since_startup: AtomicBool::new(false),
3188 event_persist_notifier: Notifier::new(),
3189 needs_persist_flag: AtomicBool::new(false),
3190 funding_batch_states: Mutex::new(BTreeMap::new()),
3192 pending_offers_messages: Mutex::new(Vec::new()),
3193 pending_broadcast_messages: Mutex::new(Vec::new()),
3203 /// Gets the current configuration applied to all new channels.
3204 pub fn get_current_default_configuration(&self) -> &UserConfig {
3205 &self.default_configuration
3208 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3209 let height = self.best_block.read().unwrap().height;
3210 let mut outbound_scid_alias = 0;
3213 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3214 outbound_scid_alias += 1;
3216 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3218 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3222 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3227 /// Creates a new outbound channel to the given remote node and with the given value.
3229 /// `user_channel_id` will be provided back as in
3230 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3231 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3232 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3233 /// is simply copied to events and otherwise ignored.
3235 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3236 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3238 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3239 /// generate a shutdown scriptpubkey or destination script set by
3240 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3242 /// Note that we do not check if you are currently connected to the given peer. If no
3243 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3244 /// the channel eventually being silently forgotten (dropped on reload).
3246 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3247 /// channel. Otherwise, a random one will be generated for you.
3249 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3250 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3251 /// [`ChannelDetails::channel_id`] until after
3252 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3253 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3254 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3256 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3257 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3258 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3259 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3260 if channel_value_satoshis < 1000 {
3261 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3264 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3265 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3266 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3268 let per_peer_state = self.per_peer_state.read().unwrap();
3270 let peer_state_mutex = per_peer_state.get(&their_network_key)
3271 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3273 let mut peer_state = peer_state_mutex.lock().unwrap();
3275 if let Some(temporary_channel_id) = temporary_channel_id {
3276 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3277 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3282 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3283 let their_features = &peer_state.latest_features;
3284 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3285 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3286 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3287 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3291 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3296 let res = channel.get_open_channel(self.chain_hash);
3298 let temporary_channel_id = channel.context.channel_id();
3299 match peer_state.channel_by_id.entry(temporary_channel_id) {
3300 hash_map::Entry::Occupied(_) => {
3302 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3304 panic!("RNG is bad???");
3307 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3310 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3311 node_id: their_network_key,
3314 Ok(temporary_channel_id)
3317 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3318 // Allocate our best estimate of the number of channels we have in the `res`
3319 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3320 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3321 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3322 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3323 // the same channel.
3324 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3326 let best_block_height = self.best_block.read().unwrap().height;
3327 let per_peer_state = self.per_peer_state.read().unwrap();
3328 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3329 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3330 let peer_state = &mut *peer_state_lock;
3331 res.extend(peer_state.channel_by_id.iter()
3332 .filter_map(|(chan_id, phase)| match phase {
3333 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3334 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3338 .map(|(_channel_id, channel)| {
3339 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3340 peer_state.latest_features.clone(), &self.fee_estimator)
3348 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3349 /// more information.
3350 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3351 // Allocate our best estimate of the number of channels we have in the `res`
3352 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3353 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3354 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3355 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3356 // the same channel.
3357 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3359 let best_block_height = self.best_block.read().unwrap().height;
3360 let per_peer_state = self.per_peer_state.read().unwrap();
3361 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3362 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3363 let peer_state = &mut *peer_state_lock;
3364 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3365 let details = ChannelDetails::from_channel_context(context, best_block_height,
3366 peer_state.latest_features.clone(), &self.fee_estimator);
3374 /// Gets the list of usable channels, in random order. Useful as an argument to
3375 /// [`Router::find_route`] to ensure non-announced channels are used.
3377 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3378 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3380 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3381 // Note we use is_live here instead of usable which leads to somewhat confused
3382 // internal/external nomenclature, but that's ok cause that's probably what the user
3383 // really wanted anyway.
3384 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3387 /// Gets the list of channels we have with a given counterparty, in random order.
3388 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3389 let best_block_height = self.best_block.read().unwrap().height;
3390 let per_peer_state = self.per_peer_state.read().unwrap();
3392 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3393 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3394 let peer_state = &mut *peer_state_lock;
3395 let features = &peer_state.latest_features;
3396 let context_to_details = |context| {
3397 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3399 return peer_state.channel_by_id
3401 .map(|(_, phase)| phase.context())
3402 .map(context_to_details)
3408 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3409 /// successful path, or have unresolved HTLCs.
3411 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3412 /// result of a crash. If such a payment exists, is not listed here, and an
3413 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3415 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3416 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3417 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3418 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3419 PendingOutboundPayment::AwaitingInvoice { .. } => {
3420 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3422 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3423 PendingOutboundPayment::InvoiceReceived { .. } => {
3424 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3426 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3427 Some(RecentPaymentDetails::Pending {
3428 payment_id: *payment_id,
3429 payment_hash: *payment_hash,
3430 total_msat: *total_msat,
3433 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3434 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3436 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3437 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3439 PendingOutboundPayment::Legacy { .. } => None
3444 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3445 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3447 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3448 let mut shutdown_result = None;
3451 let per_peer_state = self.per_peer_state.read().unwrap();
3453 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3454 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3456 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3457 let peer_state = &mut *peer_state_lock;
3459 match peer_state.channel_by_id.entry(channel_id.clone()) {
3460 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3461 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3462 let funding_txo_opt = chan.context.get_funding_txo();
3463 let their_features = &peer_state.latest_features;
3464 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3465 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3466 failed_htlcs = htlcs;
3468 // We can send the `shutdown` message before updating the `ChannelMonitor`
3469 // here as we don't need the monitor update to complete until we send a
3470 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3471 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3472 node_id: *counterparty_node_id,
3476 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3477 "We can't both complete shutdown and generate a monitor update");
3479 // Update the monitor with the shutdown script if necessary.
3480 if let Some(monitor_update) = monitor_update_opt.take() {
3481 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3482 peer_state_lock, peer_state, per_peer_state, chan);
3485 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3486 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3489 hash_map::Entry::Vacant(_) => {
3490 return Err(APIError::ChannelUnavailable {
3492 "Channel with id {} not found for the passed counterparty node_id {}",
3493 channel_id, counterparty_node_id,
3500 for htlc_source in failed_htlcs.drain(..) {
3501 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3502 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3503 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3506 if let Some(shutdown_result) = shutdown_result {
3507 self.finish_close_channel(shutdown_result);
3513 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3514 /// will be accepted on the given channel, and after additional timeout/the closing of all
3515 /// pending HTLCs, the channel will be closed on chain.
3517 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3518 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3520 /// * If our counterparty is the channel initiator, we will require a channel closing
3521 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3522 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3523 /// counterparty to pay as much fee as they'd like, however.
3525 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3527 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3528 /// generate a shutdown scriptpubkey or destination script set by
3529 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3532 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3533 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3534 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3535 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3536 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3537 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3540 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3541 /// will be accepted on the given channel, and after additional timeout/the closing of all
3542 /// pending HTLCs, the channel will be closed on chain.
3544 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3545 /// the channel being closed or not:
3546 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3547 /// transaction. The upper-bound is set by
3548 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3549 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3550 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3551 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3552 /// will appear on a force-closure transaction, whichever is lower).
3554 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3555 /// Will fail if a shutdown script has already been set for this channel by
3556 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3557 /// also be compatible with our and the counterparty's features.
3559 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3561 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3562 /// generate a shutdown scriptpubkey or destination script set by
3563 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3566 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3567 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3568 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3569 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3570 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3573 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3574 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3575 #[cfg(debug_assertions)]
3576 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3577 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3580 let logger = WithContext::from(
3581 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3584 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3585 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3586 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3587 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3588 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3589 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3590 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3592 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3593 // There isn't anything we can do if we get an update failure - we're already
3594 // force-closing. The monitor update on the required in-memory copy should broadcast
3595 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3596 // ignore the result here.
3597 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3599 let mut shutdown_results = Vec::new();
3600 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3601 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3602 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3603 let per_peer_state = self.per_peer_state.read().unwrap();
3604 let mut has_uncompleted_channel = None;
3605 for (channel_id, counterparty_node_id, state) in affected_channels {
3606 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3607 let mut peer_state = peer_state_mutex.lock().unwrap();
3608 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3609 update_maps_on_chan_removal!(self, &chan.context());
3610 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3613 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3616 has_uncompleted_channel.unwrap_or(true),
3617 "Closing a batch where all channels have completed initial monitor update",
3622 let mut pending_events = self.pending_events.lock().unwrap();
3623 pending_events.push_back((events::Event::ChannelClosed {
3624 channel_id: shutdown_res.channel_id,
3625 user_channel_id: shutdown_res.user_channel_id,
3626 reason: shutdown_res.closure_reason,
3627 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3628 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3629 channel_funding_txo: shutdown_res.channel_funding_txo,
3632 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3633 pending_events.push_back((events::Event::DiscardFunding {
3634 channel_id: shutdown_res.channel_id, transaction
3638 for shutdown_result in shutdown_results.drain(..) {
3639 self.finish_close_channel(shutdown_result);
3643 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3644 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3645 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3646 -> Result<PublicKey, APIError> {
3647 let per_peer_state = self.per_peer_state.read().unwrap();
3648 let peer_state_mutex = per_peer_state.get(peer_node_id)
3649 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3650 let (update_opt, counterparty_node_id) = {
3651 let mut peer_state = peer_state_mutex.lock().unwrap();
3652 let closure_reason = if let Some(peer_msg) = peer_msg {
3653 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3655 ClosureReason::HolderForceClosed
3657 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3658 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3659 log_error!(logger, "Force-closing channel {}", channel_id);
3660 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3661 mem::drop(peer_state);
3662 mem::drop(per_peer_state);
3664 ChannelPhase::Funded(mut chan) => {
3665 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3666 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3668 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3669 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3670 // Unfunded channel has no update
3671 (None, chan_phase.context().get_counterparty_node_id())
3673 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
3674 #[cfg(any(dual_funding, splicing))]
3675 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3676 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3677 // Unfunded channel has no update
3678 (None, chan_phase.context().get_counterparty_node_id())
3681 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3682 log_error!(logger, "Force-closing channel {}", &channel_id);
3683 // N.B. that we don't send any channel close event here: we
3684 // don't have a user_channel_id, and we never sent any opening
3686 (None, *peer_node_id)
3688 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3691 if let Some(update) = update_opt {
3692 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3693 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3694 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3699 Ok(counterparty_node_id)
3702 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3703 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3704 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3705 Ok(counterparty_node_id) => {
3706 let per_peer_state = self.per_peer_state.read().unwrap();
3707 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3708 let mut peer_state = peer_state_mutex.lock().unwrap();
3709 peer_state.pending_msg_events.push(
3710 events::MessageSendEvent::HandleError {
3711 node_id: counterparty_node_id,
3712 action: msgs::ErrorAction::DisconnectPeer {
3713 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3724 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3725 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3726 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3728 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3729 -> Result<(), APIError> {
3730 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3733 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3734 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3735 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3737 /// You can always broadcast the latest local transaction(s) via
3738 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3739 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3740 -> Result<(), APIError> {
3741 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3744 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3745 /// for each to the chain and rejecting new HTLCs on each.
3746 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3747 for chan in self.list_channels() {
3748 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3752 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3753 /// local transaction(s).
3754 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3755 for chan in self.list_channels() {
3756 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3760 fn can_forward_htlc_to_outgoing_channel(
3761 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3762 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3763 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3764 // Note that the behavior here should be identical to the above block - we
3765 // should NOT reveal the existence or non-existence of a private channel if
3766 // we don't allow forwards outbound over them.
3767 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3769 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3770 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3771 // "refuse to forward unless the SCID alias was used", so we pretend
3772 // we don't have the channel here.
3773 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3776 // Note that we could technically not return an error yet here and just hope
3777 // that the connection is reestablished or monitor updated by the time we get
3778 // around to doing the actual forward, but better to fail early if we can and
3779 // hopefully an attacker trying to path-trace payments cannot make this occur
3780 // on a small/per-node/per-channel scale.
3781 if !chan.context.is_live() { // channel_disabled
3782 // If the channel_update we're going to return is disabled (i.e. the
3783 // peer has been disabled for some time), return `channel_disabled`,
3784 // otherwise return `temporary_channel_failure`.
3785 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3786 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3787 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3789 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3792 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3793 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3794 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3796 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3797 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3798 return Err((err, code, chan_update_opt));
3804 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3805 /// `scid`. `None` is returned when the channel is not found.
3806 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3807 &self, scid: u64, callback: C,
3809 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3810 None => return None,
3811 Some((cp_id, id)) => (cp_id, id),
3813 let per_peer_state = self.per_peer_state.read().unwrap();
3814 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3815 if peer_state_mutex_opt.is_none() {
3818 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3819 let peer_state = &mut *peer_state_lock;
3820 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3821 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3824 Some(chan) => Some(callback(chan)),
3828 fn can_forward_htlc(
3829 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3830 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3831 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3832 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3835 Some(Err(e)) => return Err(e),
3837 // If we couldn't find the channel info for the scid, it may be a phantom or
3838 // intercept forward.
3839 if (self.default_configuration.accept_intercept_htlcs &&
3840 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3841 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3843 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3848 let cur_height = self.best_block.read().unwrap().height + 1;
3849 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3850 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3852 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3853 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3855 return Err((err_msg, err_code, chan_update_opt));
3861 fn htlc_failure_from_update_add_err(
3862 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3863 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3864 shared_secret: &[u8; 32]
3865 ) -> HTLCFailureMsg {
3866 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3867 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3868 let chan_update = chan_update.unwrap();
3869 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3870 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3872 else if err_code == 0x1000 | 13 {
3873 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3875 else if err_code == 0x1000 | 20 {
3876 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3877 0u16.write(&mut res).expect("Writes cannot fail");
3879 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3880 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3881 chan_update.write(&mut res).expect("Writes cannot fail");
3882 } else if err_code & 0x1000 == 0x1000 {
3883 // If we're trying to return an error that requires a `channel_update` but
3884 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3885 // generate an update), just use the generic "temporary_node_failure"
3887 err_code = 0x2000 | 2;
3891 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3892 "Failed to accept/forward incoming HTLC: {}", err_msg
3894 // If `msg.blinding_point` is set, we must always fail with malformed.
3895 if msg.blinding_point.is_some() {
3896 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3897 channel_id: msg.channel_id,
3898 htlc_id: msg.htlc_id,
3899 sha256_of_onion: [0; 32],
3900 failure_code: INVALID_ONION_BLINDING,
3904 let (err_code, err_data) = if is_intro_node_blinded_forward {
3905 (INVALID_ONION_BLINDING, &[0; 32][..])
3907 (err_code, &res.0[..])
3909 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3910 channel_id: msg.channel_id,
3911 htlc_id: msg.htlc_id,
3912 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3913 .get_encrypted_failure_packet(shared_secret, &None),
3917 fn decode_update_add_htlc_onion(
3918 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3920 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3922 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3923 msg, &self.node_signer, &self.logger, &self.secp_ctx
3926 let next_packet_details = match next_packet_details_opt {
3927 Some(next_packet_details) => next_packet_details,
3928 // it is a receive, so no need for outbound checks
3929 None => return Ok((next_hop, shared_secret, None)),
3932 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3933 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3934 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3935 let (err_msg, err_code, chan_update_opt) = e;
3936 self.htlc_failure_from_update_add_err(
3937 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3938 next_hop.is_intro_node_blinded_forward(), &shared_secret
3942 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3945 fn construct_pending_htlc_status<'a>(
3946 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3947 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3948 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3949 ) -> PendingHTLCStatus {
3950 macro_rules! return_err {
3951 ($msg: expr, $err_code: expr, $data: expr) => {
3953 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3954 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3955 if msg.blinding_point.is_some() {
3956 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3957 msgs::UpdateFailMalformedHTLC {
3958 channel_id: msg.channel_id,
3959 htlc_id: msg.htlc_id,
3960 sha256_of_onion: [0; 32],
3961 failure_code: INVALID_ONION_BLINDING,
3965 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3966 channel_id: msg.channel_id,
3967 htlc_id: msg.htlc_id,
3968 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3969 .get_encrypted_failure_packet(&shared_secret, &None),
3975 onion_utils::Hop::Receive(next_hop_data) => {
3977 let current_height: u32 = self.best_block.read().unwrap().height;
3978 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3979 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3980 current_height, self.default_configuration.accept_mpp_keysend)
3983 // Note that we could obviously respond immediately with an update_fulfill_htlc
3984 // message, however that would leak that we are the recipient of this payment, so
3985 // instead we stay symmetric with the forwarding case, only responding (after a
3986 // delay) once they've send us a commitment_signed!
3987 PendingHTLCStatus::Forward(info)
3989 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3992 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3993 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3994 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3995 Ok(info) => PendingHTLCStatus::Forward(info),
3996 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
4002 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
4003 /// public, and thus should be called whenever the result is going to be passed out in a
4004 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
4006 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
4007 /// corresponding to the channel's counterparty locked, as the channel been removed from the
4008 /// storage and the `peer_state` lock has been dropped.
4010 /// [`channel_update`]: msgs::ChannelUpdate
4011 /// [`internal_closing_signed`]: Self::internal_closing_signed
4012 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4013 if !chan.context.should_announce() {
4014 return Err(LightningError {
4015 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4016 action: msgs::ErrorAction::IgnoreError
4019 if chan.context.get_short_channel_id().is_none() {
4020 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4022 let logger = WithChannelContext::from(&self.logger, &chan.context);
4023 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4024 self.get_channel_update_for_unicast(chan)
4027 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4028 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4029 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4030 /// provided evidence that they know about the existence of the channel.
4032 /// Note that through [`internal_closing_signed`], this function is called without the
4033 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4034 /// removed from the storage and the `peer_state` lock has been dropped.
4036 /// [`channel_update`]: msgs::ChannelUpdate
4037 /// [`internal_closing_signed`]: Self::internal_closing_signed
4038 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4039 let logger = WithChannelContext::from(&self.logger, &chan.context);
4040 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4041 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4042 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4046 self.get_channel_update_for_onion(short_channel_id, chan)
4049 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4050 let logger = WithChannelContext::from(&self.logger, &chan.context);
4051 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4052 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4054 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4055 ChannelUpdateStatus::Enabled => true,
4056 ChannelUpdateStatus::DisabledStaged(_) => true,
4057 ChannelUpdateStatus::Disabled => false,
4058 ChannelUpdateStatus::EnabledStaged(_) => false,
4061 let unsigned = msgs::UnsignedChannelUpdate {
4062 chain_hash: self.chain_hash,
4064 timestamp: chan.context.get_update_time_counter(),
4065 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4066 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4067 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4068 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4069 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4070 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4071 excess_data: Vec::new(),
4073 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4074 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4075 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4077 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4079 Ok(msgs::ChannelUpdate {
4086 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4087 let _lck = self.total_consistency_lock.read().unwrap();
4088 self.send_payment_along_path(SendAlongPathArgs {
4089 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4094 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4095 let SendAlongPathArgs {
4096 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4099 // The top-level caller should hold the total_consistency_lock read lock.
4100 debug_assert!(self.total_consistency_lock.try_write().is_err());
4101 let prng_seed = self.entropy_source.get_secure_random_bytes();
4102 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4104 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4105 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4106 payment_hash, keysend_preimage, prng_seed
4108 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4109 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4113 let err: Result<(), _> = loop {
4114 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4116 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4117 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4118 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4120 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4123 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4125 "Attempting to send payment with payment hash {} along path with next hop {}",
4126 payment_hash, path.hops.first().unwrap().short_channel_id);
4128 let per_peer_state = self.per_peer_state.read().unwrap();
4129 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4130 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4131 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4132 let peer_state = &mut *peer_state_lock;
4133 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4134 match chan_phase_entry.get_mut() {
4135 ChannelPhase::Funded(chan) => {
4136 if !chan.context.is_live() {
4137 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4139 let funding_txo = chan.context.get_funding_txo().unwrap();
4140 let logger = WithChannelContext::from(&self.logger, &chan.context);
4141 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4142 htlc_cltv, HTLCSource::OutboundRoute {
4144 session_priv: session_priv.clone(),
4145 first_hop_htlc_msat: htlc_msat,
4147 }, onion_packet, None, &self.fee_estimator, &&logger);
4148 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4149 Some(monitor_update) => {
4150 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4152 // Note that MonitorUpdateInProgress here indicates (per function
4153 // docs) that we will resend the commitment update once monitor
4154 // updating completes. Therefore, we must return an error
4155 // indicating that it is unsafe to retry the payment wholesale,
4156 // which we do in the send_payment check for
4157 // MonitorUpdateInProgress, below.
4158 return Err(APIError::MonitorUpdateInProgress);
4166 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4169 // The channel was likely removed after we fetched the id from the
4170 // `short_to_chan_info` map, but before we successfully locked the
4171 // `channel_by_id` map.
4172 // This can occur as no consistency guarantees exists between the two maps.
4173 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4177 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4178 Ok(_) => unreachable!(),
4180 Err(APIError::ChannelUnavailable { err: e.err })
4185 /// Sends a payment along a given route.
4187 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4188 /// fields for more info.
4190 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4191 /// [`PeerManager::process_events`]).
4193 /// # Avoiding Duplicate Payments
4195 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4196 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4197 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4198 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4199 /// second payment with the same [`PaymentId`].
4201 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4202 /// tracking of payments, including state to indicate once a payment has completed. Because you
4203 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4204 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4205 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4207 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4208 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4209 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4210 /// [`ChannelManager::list_recent_payments`] for more information.
4212 /// # Possible Error States on [`PaymentSendFailure`]
4214 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4215 /// each entry matching the corresponding-index entry in the route paths, see
4216 /// [`PaymentSendFailure`] for more info.
4218 /// In general, a path may raise:
4219 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4220 /// node public key) is specified.
4221 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4222 /// closed, doesn't exist, or the peer is currently disconnected.
4223 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4224 /// relevant updates.
4226 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4227 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4228 /// different route unless you intend to pay twice!
4230 /// [`RouteHop`]: crate::routing::router::RouteHop
4231 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4232 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4233 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4234 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4235 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4236 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4237 let best_block_height = self.best_block.read().unwrap().height;
4238 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4239 self.pending_outbound_payments
4240 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4241 &self.entropy_source, &self.node_signer, best_block_height,
4242 |args| self.send_payment_along_path(args))
4245 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4246 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4247 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4248 let best_block_height = self.best_block.read().unwrap().height;
4249 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4250 self.pending_outbound_payments
4251 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4252 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4253 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4254 &self.pending_events, |args| self.send_payment_along_path(args))
4258 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4259 let best_block_height = self.best_block.read().unwrap().height;
4260 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4261 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4262 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4263 best_block_height, |args| self.send_payment_along_path(args))
4267 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4268 let best_block_height = self.best_block.read().unwrap().height;
4269 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4273 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4274 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4277 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4278 let best_block_height = self.best_block.read().unwrap().height;
4279 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4280 self.pending_outbound_payments
4281 .send_payment_for_bolt12_invoice(
4282 invoice, payment_id, &self.router, self.list_usable_channels(),
4283 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4284 best_block_height, &self.logger, &self.pending_events,
4285 |args| self.send_payment_along_path(args)
4289 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4290 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4291 /// retries are exhausted.
4293 /// # Event Generation
4295 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4296 /// as there are no remaining pending HTLCs for this payment.
4298 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4299 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4300 /// determine the ultimate status of a payment.
4302 /// # Requested Invoices
4304 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4305 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4306 /// and prevent any attempts at paying it once received. The other events may only be generated
4307 /// once the invoice has been received.
4309 /// # Restart Behavior
4311 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4312 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4313 /// [`Event::InvoiceRequestFailed`].
4315 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4316 pub fn abandon_payment(&self, payment_id: PaymentId) {
4317 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4318 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4321 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4322 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4323 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4324 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4325 /// never reach the recipient.
4327 /// See [`send_payment`] documentation for more details on the return value of this function
4328 /// and idempotency guarantees provided by the [`PaymentId`] key.
4330 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4331 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4333 /// [`send_payment`]: Self::send_payment
4334 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4335 let best_block_height = self.best_block.read().unwrap().height;
4336 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4337 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4338 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4339 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4342 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4343 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4345 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4348 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4349 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4350 let best_block_height = self.best_block.read().unwrap().height;
4351 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4352 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4353 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4354 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4355 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4358 /// Send a payment that is probing the given route for liquidity. We calculate the
4359 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4360 /// us to easily discern them from real payments.
4361 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4362 let best_block_height = self.best_block.read().unwrap().height;
4363 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4364 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4365 &self.entropy_source, &self.node_signer, best_block_height,
4366 |args| self.send_payment_along_path(args))
4369 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4372 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4373 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4376 /// Sends payment probes over all paths of a route that would be used to pay the given
4377 /// amount to the given `node_id`.
4379 /// See [`ChannelManager::send_preflight_probes`] for more information.
4380 pub fn send_spontaneous_preflight_probes(
4381 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4382 liquidity_limit_multiplier: Option<u64>,
4383 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4384 let payment_params =
4385 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4387 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4389 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4392 /// Sends payment probes over all paths of a route that would be used to pay a route found
4393 /// according to the given [`RouteParameters`].
4395 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4396 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4397 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4398 /// confirmation in a wallet UI.
4400 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4401 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4402 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4403 /// payment. To mitigate this issue, channels with available liquidity less than the required
4404 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4405 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4406 pub fn send_preflight_probes(
4407 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4408 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4409 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4411 let payer = self.get_our_node_id();
4412 let usable_channels = self.list_usable_channels();
4413 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4414 let inflight_htlcs = self.compute_inflight_htlcs();
4418 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4420 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4421 ProbeSendFailure::RouteNotFound
4424 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4426 let mut res = Vec::new();
4428 for mut path in route.paths {
4429 // If the last hop is probably an unannounced channel we refrain from probing all the
4430 // way through to the end and instead probe up to the second-to-last channel.
4431 while let Some(last_path_hop) = path.hops.last() {
4432 if last_path_hop.maybe_announced_channel {
4433 // We found a potentially announced last hop.
4436 // Drop the last hop, as it's likely unannounced.
4439 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4440 last_path_hop.short_channel_id
4442 let final_value_msat = path.final_value_msat();
4444 if let Some(new_last) = path.hops.last_mut() {
4445 new_last.fee_msat += final_value_msat;
4450 if path.hops.len() < 2 {
4453 "Skipped sending payment probe over path with less than two hops."
4458 if let Some(first_path_hop) = path.hops.first() {
4459 if let Some(first_hop) = first_hops.iter().find(|h| {
4460 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4462 let path_value = path.final_value_msat() + path.fee_msat();
4463 let used_liquidity =
4464 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4466 if first_hop.next_outbound_htlc_limit_msat
4467 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4469 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4472 *used_liquidity += path_value;
4477 res.push(self.send_probe(path).map_err(|e| {
4478 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4479 ProbeSendFailure::SendingFailed(e)
4486 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4487 /// which checks the correctness of the funding transaction given the associated channel.
4488 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
4489 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4490 mut find_funding_output: FundingOutput,
4491 ) -> Result<(), APIError> {
4492 let per_peer_state = self.per_peer_state.read().unwrap();
4493 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4494 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4496 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4497 let peer_state = &mut *peer_state_lock;
4499 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4500 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4501 funding_txo = find_funding_output(&chan, &funding_transaction)?;
4503 let logger = WithChannelContext::from(&self.logger, &chan.context);
4504 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
4505 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
4506 let channel_id = chan.context.channel_id();
4507 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4508 let shutdown_res = chan.context.force_shutdown(false, reason);
4509 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
4510 } else { unreachable!(); });
4512 Ok(funding_msg) => (chan, funding_msg),
4513 Err((chan, err)) => {
4514 mem::drop(peer_state_lock);
4515 mem::drop(per_peer_state);
4516 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
4517 return Err(APIError::ChannelUnavailable {
4518 err: "Signer refused to sign the initial commitment transaction".to_owned()
4524 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4525 return Err(APIError::APIMisuseError {
4527 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4528 temporary_channel_id, counterparty_node_id),
4531 None => return Err(APIError::ChannelUnavailable {err: format!(
4532 "Channel with id {} not found for the passed counterparty node_id {}",
4533 temporary_channel_id, counterparty_node_id),
4537 if let Some(msg) = msg_opt {
4538 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4539 node_id: chan.context.get_counterparty_node_id(),
4543 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4544 hash_map::Entry::Occupied(_) => {
4545 panic!("Generated duplicate funding txid?");
4547 hash_map::Entry::Vacant(e) => {
4548 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4549 match outpoint_to_peer.entry(funding_txo) {
4550 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4551 hash_map::Entry::Occupied(o) => {
4553 "An existing channel using outpoint {} is open with peer {}",
4554 funding_txo, o.get()
4556 mem::drop(outpoint_to_peer);
4557 mem::drop(peer_state_lock);
4558 mem::drop(per_peer_state);
4559 let reason = ClosureReason::ProcessingError { err: err.clone() };
4560 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4561 return Err(APIError::ChannelUnavailable { err });
4564 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4571 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4572 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4573 Ok(OutPoint { txid: tx.txid(), index: output_index })
4577 /// Call this upon creation of a funding transaction for the given channel.
4579 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4580 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4582 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4583 /// across the p2p network.
4585 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4586 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4588 /// May panic if the output found in the funding transaction is duplicative with some other
4589 /// channel (note that this should be trivially prevented by using unique funding transaction
4590 /// keys per-channel).
4592 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4593 /// counterparty's signature the funding transaction will automatically be broadcast via the
4594 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4596 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4597 /// not currently support replacing a funding transaction on an existing channel. Instead,
4598 /// create a new channel with a conflicting funding transaction.
4600 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4601 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4602 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4603 /// for more details.
4605 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4606 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4607 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4608 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4611 /// Call this upon creation of a batch funding transaction for the given channels.
4613 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4614 /// each individual channel and transaction output.
4616 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4617 /// will only be broadcast when we have safely received and persisted the counterparty's
4618 /// signature for each channel.
4620 /// If there is an error, all channels in the batch are to be considered closed.
4621 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4622 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4623 let mut result = Ok(());
4625 if !funding_transaction.is_coin_base() {
4626 for inp in funding_transaction.input.iter() {
4627 if inp.witness.is_empty() {
4628 result = result.and(Err(APIError::APIMisuseError {
4629 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4634 if funding_transaction.output.len() > u16::max_value() as usize {
4635 result = result.and(Err(APIError::APIMisuseError {
4636 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4640 let height = self.best_block.read().unwrap().height;
4641 // Transactions are evaluated as final by network mempools if their locktime is strictly
4642 // lower than the next block height. However, the modules constituting our Lightning
4643 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4644 // module is ahead of LDK, only allow one more block of headroom.
4645 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4646 funding_transaction.lock_time.is_block_height() &&
4647 funding_transaction.lock_time.to_consensus_u32() > height + 1
4649 result = result.and(Err(APIError::APIMisuseError {
4650 err: "Funding transaction absolute timelock is non-final".to_owned()
4655 let txid = funding_transaction.txid();
4656 let is_batch_funding = temporary_channels.len() > 1;
4657 let mut funding_batch_states = if is_batch_funding {
4658 Some(self.funding_batch_states.lock().unwrap())
4662 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4663 match states.entry(txid) {
4664 btree_map::Entry::Occupied(_) => {
4665 result = result.clone().and(Err(APIError::APIMisuseError {
4666 err: "Batch funding transaction with the same txid already exists".to_owned()
4670 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4673 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4674 result = result.and_then(|_| self.funding_transaction_generated_intern(
4675 temporary_channel_id,
4676 counterparty_node_id,
4677 funding_transaction.clone(),
4680 let mut output_index = None;
4681 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4682 for (idx, outp) in tx.output.iter().enumerate() {
4683 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4684 if output_index.is_some() {
4685 return Err(APIError::APIMisuseError {
4686 err: "Multiple outputs matched the expected script and value".to_owned()
4689 output_index = Some(idx as u16);
4692 if output_index.is_none() {
4693 return Err(APIError::APIMisuseError {
4694 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
4697 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4698 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4699 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4700 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4701 // want to support V2 batching here as well.
4702 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4708 if let Err(ref e) = result {
4709 // Remaining channels need to be removed on any error.
4710 let e = format!("Error in transaction funding: {:?}", e);
4711 let mut channels_to_remove = Vec::new();
4712 channels_to_remove.extend(funding_batch_states.as_mut()
4713 .and_then(|states| states.remove(&txid))
4714 .into_iter().flatten()
4715 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4717 channels_to_remove.extend(temporary_channels.iter()
4718 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4720 let mut shutdown_results = Vec::new();
4722 let per_peer_state = self.per_peer_state.read().unwrap();
4723 for (channel_id, counterparty_node_id) in channels_to_remove {
4724 per_peer_state.get(&counterparty_node_id)
4725 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4726 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4728 update_maps_on_chan_removal!(self, &chan.context());
4729 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4730 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4734 mem::drop(funding_batch_states);
4735 for shutdown_result in shutdown_results.drain(..) {
4736 self.finish_close_channel(shutdown_result);
4742 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4744 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4745 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4746 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4747 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4749 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4750 /// `counterparty_node_id` is provided.
4752 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4753 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4755 /// If an error is returned, none of the updates should be considered applied.
4757 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4758 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4759 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4760 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4761 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4762 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4763 /// [`APIMisuseError`]: APIError::APIMisuseError
4764 pub fn update_partial_channel_config(
4765 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4766 ) -> Result<(), APIError> {
4767 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4768 return Err(APIError::APIMisuseError {
4769 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4773 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4774 let per_peer_state = self.per_peer_state.read().unwrap();
4775 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4776 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4777 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4778 let peer_state = &mut *peer_state_lock;
4780 for channel_id in channel_ids {
4781 if !peer_state.has_channel(channel_id) {
4782 return Err(APIError::ChannelUnavailable {
4783 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4787 for channel_id in channel_ids {
4788 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4789 let mut config = channel_phase.context().config();
4790 config.apply(config_update);
4791 if !channel_phase.context_mut().update_config(&config) {
4794 if let ChannelPhase::Funded(channel) = channel_phase {
4795 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4796 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4797 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4798 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4799 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4800 node_id: channel.context.get_counterparty_node_id(),
4807 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4808 debug_assert!(false);
4809 return Err(APIError::ChannelUnavailable {
4811 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4812 channel_id, counterparty_node_id),
4819 /// Atomically updates the [`ChannelConfig`] for the given channels.
4821 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4822 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4823 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4824 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4826 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4827 /// `counterparty_node_id` is provided.
4829 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4830 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4832 /// If an error is returned, none of the updates should be considered applied.
4834 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4835 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4836 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4837 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4838 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4839 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4840 /// [`APIMisuseError`]: APIError::APIMisuseError
4841 pub fn update_channel_config(
4842 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4843 ) -> Result<(), APIError> {
4844 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4847 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4848 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4850 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4851 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4853 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4854 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4855 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4856 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4857 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4859 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4860 /// you from forwarding more than you received. See
4861 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4864 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4867 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4868 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4869 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4870 // TODO: when we move to deciding the best outbound channel at forward time, only take
4871 // `next_node_id` and not `next_hop_channel_id`
4872 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4873 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4875 let next_hop_scid = {
4876 let peer_state_lock = self.per_peer_state.read().unwrap();
4877 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4878 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4879 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4880 let peer_state = &mut *peer_state_lock;
4881 match peer_state.channel_by_id.get(next_hop_channel_id) {
4882 Some(ChannelPhase::Funded(chan)) => {
4883 if !chan.context.is_usable() {
4884 return Err(APIError::ChannelUnavailable {
4885 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4888 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4890 Some(_) => return Err(APIError::ChannelUnavailable {
4891 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4892 next_hop_channel_id, next_node_id)
4895 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4896 next_hop_channel_id, next_node_id);
4897 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4898 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4899 return Err(APIError::ChannelUnavailable {
4906 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4907 .ok_or_else(|| APIError::APIMisuseError {
4908 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4911 let routing = match payment.forward_info.routing {
4912 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4913 PendingHTLCRouting::Forward {
4914 onion_packet, blinded, short_channel_id: next_hop_scid
4917 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4919 let skimmed_fee_msat =
4920 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4921 let pending_htlc_info = PendingHTLCInfo {
4922 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4923 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4926 let mut per_source_pending_forward = [(
4927 payment.prev_short_channel_id,
4928 payment.prev_funding_outpoint,
4929 payment.prev_channel_id,
4930 payment.prev_user_channel_id,
4931 vec![(pending_htlc_info, payment.prev_htlc_id)]
4933 self.forward_htlcs(&mut per_source_pending_forward);
4937 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4938 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4940 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4943 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4944 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4945 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4947 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4948 .ok_or_else(|| APIError::APIMisuseError {
4949 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4952 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4953 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4954 short_channel_id: payment.prev_short_channel_id,
4955 user_channel_id: Some(payment.prev_user_channel_id),
4956 outpoint: payment.prev_funding_outpoint,
4957 channel_id: payment.prev_channel_id,
4958 htlc_id: payment.prev_htlc_id,
4959 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4960 phantom_shared_secret: None,
4961 blinded_failure: payment.forward_info.routing.blinded_failure(),
4964 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4965 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4966 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4967 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4972 fn process_pending_update_add_htlcs(&self) {
4973 let mut decode_update_add_htlcs = new_hash_map();
4974 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4976 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4977 if let Some(outgoing_scid) = outgoing_scid_opt {
4978 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4979 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4980 HTLCDestination::NextHopChannel {
4981 node_id: Some(*outgoing_counterparty_node_id),
4982 channel_id: *outgoing_channel_id,
4984 None => HTLCDestination::UnknownNextHop {
4985 requested_forward_scid: outgoing_scid,
4989 HTLCDestination::FailedPayment { payment_hash }
4993 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
4994 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
4995 let counterparty_node_id = chan.context.get_counterparty_node_id();
4996 let channel_id = chan.context.channel_id();
4997 let funding_txo = chan.context.get_funding_txo().unwrap();
4998 let user_channel_id = chan.context.get_user_id();
4999 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
5000 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
5003 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
5004 incoming_user_channel_id, incoming_accept_underpaying_htlcs
5005 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
5006 incoming_channel_details
5008 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5012 let mut htlc_forwards = Vec::new();
5013 let mut htlc_fails = Vec::new();
5014 for update_add_htlc in &update_add_htlcs {
5015 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5016 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5018 Ok(decoded_onion) => decoded_onion,
5020 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5025 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5026 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5028 // Process the HTLC on the incoming channel.
5029 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5030 let logger = WithChannelContext::from(&self.logger, &chan.context);
5031 chan.can_accept_incoming_htlc(
5032 update_add_htlc, &self.fee_estimator, &logger,
5036 Some(Err((err, code))) => {
5037 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5038 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5039 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5044 let htlc_fail = self.htlc_failure_from_update_add_err(
5045 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5046 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5048 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5049 htlc_fails.push((htlc_fail, htlc_destination));
5052 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5053 None => continue 'outer_loop,
5056 // Now process the HTLC on the outgoing channel if it's a forward.
5057 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5058 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5059 &update_add_htlc, next_packet_details
5061 let htlc_fail = self.htlc_failure_from_update_add_err(
5062 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5063 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5065 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5066 htlc_fails.push((htlc_fail, htlc_destination));
5071 match self.construct_pending_htlc_status(
5072 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5073 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5075 PendingHTLCStatus::Forward(htlc_forward) => {
5076 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5078 PendingHTLCStatus::Fail(htlc_fail) => {
5079 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5080 htlc_fails.push((htlc_fail, htlc_destination));
5085 // Process all of the forwards and failures for the channel in which the HTLCs were
5086 // proposed to as a batch.
5087 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5088 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5089 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5090 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5091 let failure = match htlc_fail {
5092 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5093 htlc_id: fail_htlc.htlc_id,
5094 err_packet: fail_htlc.reason,
5096 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5097 htlc_id: fail_malformed_htlc.htlc_id,
5098 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5099 failure_code: fail_malformed_htlc.failure_code,
5102 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5103 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5104 prev_channel_id: incoming_channel_id,
5105 failed_next_destination: htlc_destination,
5111 /// Processes HTLCs which are pending waiting on random forward delay.
5113 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5114 /// Will likely generate further events.
5115 pub fn process_pending_htlc_forwards(&self) {
5116 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5118 self.process_pending_update_add_htlcs();
5120 let mut new_events = VecDeque::new();
5121 let mut failed_forwards = Vec::new();
5122 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5124 let mut forward_htlcs = new_hash_map();
5125 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5127 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5128 if short_chan_id != 0 {
5129 let mut forwarding_counterparty = None;
5130 macro_rules! forwarding_channel_not_found {
5132 for forward_info in pending_forwards.drain(..) {
5133 match forward_info {
5134 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5135 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5136 prev_user_channel_id, forward_info: PendingHTLCInfo {
5137 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5138 outgoing_cltv_value, ..
5141 macro_rules! failure_handler {
5142 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5143 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5144 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5146 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5147 short_channel_id: prev_short_channel_id,
5148 user_channel_id: Some(prev_user_channel_id),
5149 channel_id: prev_channel_id,
5150 outpoint: prev_funding_outpoint,
5151 htlc_id: prev_htlc_id,
5152 incoming_packet_shared_secret: incoming_shared_secret,
5153 phantom_shared_secret: $phantom_ss,
5154 blinded_failure: routing.blinded_failure(),
5157 let reason = if $next_hop_unknown {
5158 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5160 HTLCDestination::FailedPayment{ payment_hash }
5163 failed_forwards.push((htlc_source, payment_hash,
5164 HTLCFailReason::reason($err_code, $err_data),
5170 macro_rules! fail_forward {
5171 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5173 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5177 macro_rules! failed_payment {
5178 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5180 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5184 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5185 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5186 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5187 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5188 let next_hop = match onion_utils::decode_next_payment_hop(
5189 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5190 payment_hash, None, &self.node_signer
5193 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5194 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5195 // In this scenario, the phantom would have sent us an
5196 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5197 // if it came from us (the second-to-last hop) but contains the sha256
5199 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5201 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5202 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5206 onion_utils::Hop::Receive(hop_data) => {
5207 let current_height: u32 = self.best_block.read().unwrap().height;
5208 match create_recv_pending_htlc_info(hop_data,
5209 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5210 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5211 current_height, self.default_configuration.accept_mpp_keysend)
5213 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5214 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5220 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5223 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5226 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5227 // Channel went away before we could fail it. This implies
5228 // the channel is now on chain and our counterparty is
5229 // trying to broadcast the HTLC-Timeout, but that's their
5230 // problem, not ours.
5236 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5237 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5238 Some((cp_id, chan_id)) => (cp_id, chan_id),
5240 forwarding_channel_not_found!();
5244 forwarding_counterparty = Some(counterparty_node_id);
5245 let per_peer_state = self.per_peer_state.read().unwrap();
5246 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5247 if peer_state_mutex_opt.is_none() {
5248 forwarding_channel_not_found!();
5251 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5252 let peer_state = &mut *peer_state_lock;
5253 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5254 let logger = WithChannelContext::from(&self.logger, &chan.context);
5255 for forward_info in pending_forwards.drain(..) {
5256 let queue_fail_htlc_res = match forward_info {
5257 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5258 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5259 prev_user_channel_id, forward_info: PendingHTLCInfo {
5260 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5261 routing: PendingHTLCRouting::Forward {
5262 onion_packet, blinded, ..
5263 }, skimmed_fee_msat, ..
5266 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5267 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5268 short_channel_id: prev_short_channel_id,
5269 user_channel_id: Some(prev_user_channel_id),
5270 channel_id: prev_channel_id,
5271 outpoint: prev_funding_outpoint,
5272 htlc_id: prev_htlc_id,
5273 incoming_packet_shared_secret: incoming_shared_secret,
5274 // Phantom payments are only PendingHTLCRouting::Receive.
5275 phantom_shared_secret: None,
5276 blinded_failure: blinded.map(|b| b.failure),
5278 let next_blinding_point = blinded.and_then(|b| {
5279 let encrypted_tlvs_ss = self.node_signer.ecdh(
5280 Recipient::Node, &b.inbound_blinding_point, None
5281 ).unwrap().secret_bytes();
5282 onion_utils::next_hop_pubkey(
5283 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5286 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5287 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5288 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5291 if let ChannelError::Ignore(msg) = e {
5292 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5294 panic!("Stated return value requirements in send_htlc() were not met");
5296 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5297 failed_forwards.push((htlc_source, payment_hash,
5298 HTLCFailReason::reason(failure_code, data),
5299 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5305 HTLCForwardInfo::AddHTLC { .. } => {
5306 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5308 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5309 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5310 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5312 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5313 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5314 let res = chan.queue_fail_malformed_htlc(
5315 htlc_id, failure_code, sha256_of_onion, &&logger
5317 Some((res, htlc_id))
5320 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5321 if let Err(e) = queue_fail_htlc_res {
5322 if let ChannelError::Ignore(msg) = e {
5323 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5325 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5327 // fail-backs are best-effort, we probably already have one
5328 // pending, and if not that's OK, if not, the channel is on
5329 // the chain and sending the HTLC-Timeout is their problem.
5335 forwarding_channel_not_found!();
5339 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5340 match forward_info {
5341 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5342 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5343 prev_user_channel_id, forward_info: PendingHTLCInfo {
5344 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5345 skimmed_fee_msat, ..
5348 let blinded_failure = routing.blinded_failure();
5349 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
5350 PendingHTLCRouting::Receive {
5351 payment_data, payment_metadata, payment_context,
5352 incoming_cltv_expiry, phantom_shared_secret, custom_tlvs,
5353 requires_blinded_error: _
5355 let _legacy_hop_data = Some(payment_data.clone());
5356 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5357 payment_metadata, custom_tlvs };
5358 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data, payment_context },
5359 Some(payment_data), phantom_shared_secret, onion_fields)
5361 PendingHTLCRouting::ReceiveKeysend {
5362 payment_data, payment_preimage, payment_metadata,
5363 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5365 let onion_fields = RecipientOnionFields {
5366 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5370 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5371 payment_data, None, onion_fields)
5374 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5377 let claimable_htlc = ClaimableHTLC {
5378 prev_hop: HTLCPreviousHopData {
5379 short_channel_id: prev_short_channel_id,
5380 user_channel_id: Some(prev_user_channel_id),
5381 channel_id: prev_channel_id,
5382 outpoint: prev_funding_outpoint,
5383 htlc_id: prev_htlc_id,
5384 incoming_packet_shared_secret: incoming_shared_secret,
5385 phantom_shared_secret,
5388 // We differentiate the received value from the sender intended value
5389 // if possible so that we don't prematurely mark MPP payments complete
5390 // if routing nodes overpay
5391 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5392 sender_intended_value: outgoing_amt_msat,
5394 total_value_received: None,
5395 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5398 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5401 let mut committed_to_claimable = false;
5403 macro_rules! fail_htlc {
5404 ($htlc: expr, $payment_hash: expr) => {
5405 debug_assert!(!committed_to_claimable);
5406 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5407 htlc_msat_height_data.extend_from_slice(
5408 &self.best_block.read().unwrap().height.to_be_bytes(),
5410 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5411 short_channel_id: $htlc.prev_hop.short_channel_id,
5412 user_channel_id: $htlc.prev_hop.user_channel_id,
5413 channel_id: prev_channel_id,
5414 outpoint: prev_funding_outpoint,
5415 htlc_id: $htlc.prev_hop.htlc_id,
5416 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5417 phantom_shared_secret,
5420 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5421 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5423 continue 'next_forwardable_htlc;
5426 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5427 let mut receiver_node_id = self.our_network_pubkey;
5428 if phantom_shared_secret.is_some() {
5429 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5430 .expect("Failed to get node_id for phantom node recipient");
5433 macro_rules! check_total_value {
5434 ($purpose: expr) => {{
5435 let mut payment_claimable_generated = false;
5436 let is_keysend = $purpose.is_keysend();
5437 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5438 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5439 fail_htlc!(claimable_htlc, payment_hash);
5441 let ref mut claimable_payment = claimable_payments.claimable_payments
5442 .entry(payment_hash)
5443 // Note that if we insert here we MUST NOT fail_htlc!()
5444 .or_insert_with(|| {
5445 committed_to_claimable = true;
5447 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5450 if $purpose != claimable_payment.purpose {
5451 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5452 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5453 fail_htlc!(claimable_htlc, payment_hash);
5455 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5456 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5457 fail_htlc!(claimable_htlc, payment_hash);
5459 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5460 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5461 fail_htlc!(claimable_htlc, payment_hash);
5464 claimable_payment.onion_fields = Some(onion_fields);
5466 let ref mut htlcs = &mut claimable_payment.htlcs;
5467 let mut total_value = claimable_htlc.sender_intended_value;
5468 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5469 for htlc in htlcs.iter() {
5470 total_value += htlc.sender_intended_value;
5471 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5472 if htlc.total_msat != claimable_htlc.total_msat {
5473 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5474 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5475 total_value = msgs::MAX_VALUE_MSAT;
5477 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5479 // The condition determining whether an MPP is complete must
5480 // match exactly the condition used in `timer_tick_occurred`
5481 if total_value >= msgs::MAX_VALUE_MSAT {
5482 fail_htlc!(claimable_htlc, payment_hash);
5483 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5484 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5486 fail_htlc!(claimable_htlc, payment_hash);
5487 } else if total_value >= claimable_htlc.total_msat {
5488 #[allow(unused_assignments)] {
5489 committed_to_claimable = true;
5491 htlcs.push(claimable_htlc);
5492 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5493 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5494 let counterparty_skimmed_fee_msat = htlcs.iter()
5495 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5496 debug_assert!(total_value.saturating_sub(amount_msat) <=
5497 counterparty_skimmed_fee_msat);
5498 new_events.push_back((events::Event::PaymentClaimable {
5499 receiver_node_id: Some(receiver_node_id),
5503 counterparty_skimmed_fee_msat,
5504 via_channel_id: Some(prev_channel_id),
5505 via_user_channel_id: Some(prev_user_channel_id),
5506 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5507 onion_fields: claimable_payment.onion_fields.clone(),
5509 payment_claimable_generated = true;
5511 // Nothing to do - we haven't reached the total
5512 // payment value yet, wait until we receive more
5514 htlcs.push(claimable_htlc);
5515 #[allow(unused_assignments)] {
5516 committed_to_claimable = true;
5519 payment_claimable_generated
5523 // Check that the payment hash and secret are known. Note that we
5524 // MUST take care to handle the "unknown payment hash" and
5525 // "incorrect payment secret" cases here identically or we'd expose
5526 // that we are the ultimate recipient of the given payment hash.
5527 // Further, we must not expose whether we have any other HTLCs
5528 // associated with the same payment_hash pending or not.
5529 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5530 match payment_secrets.entry(payment_hash) {
5531 hash_map::Entry::Vacant(_) => {
5532 match claimable_htlc.onion_payload {
5533 OnionPayload::Invoice { ref payment_context, .. } => {
5534 let payment_data = payment_data.unwrap();
5535 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5536 Ok(result) => result,
5538 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5539 fail_htlc!(claimable_htlc, payment_hash);
5542 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5543 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5544 if (cltv_expiry as u64) < expected_min_expiry_height {
5545 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5546 &payment_hash, cltv_expiry, expected_min_expiry_height);
5547 fail_htlc!(claimable_htlc, payment_hash);
5550 let purpose = events::PaymentPurpose::from_parts(
5551 payment_preimage.clone(),
5552 payment_data.payment_secret,
5553 payment_context.clone(),
5555 check_total_value!(purpose);
5557 OnionPayload::Spontaneous(preimage) => {
5558 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5559 check_total_value!(purpose);
5563 hash_map::Entry::Occupied(inbound_payment) => {
5564 let payment_context = match claimable_htlc.onion_payload {
5565 OnionPayload::Spontaneous(_) => {
5566 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5567 fail_htlc!(claimable_htlc, payment_hash);
5569 OnionPayload::Invoice { ref payment_context, .. } => payment_context,
5571 let payment_data = payment_data.unwrap();
5572 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5573 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5574 fail_htlc!(claimable_htlc, payment_hash);
5575 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5576 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5577 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5578 fail_htlc!(claimable_htlc, payment_hash);
5580 let purpose = events::PaymentPurpose::from_parts(
5581 inbound_payment.get().payment_preimage,
5582 payment_data.payment_secret,
5583 payment_context.clone(),
5585 let payment_claimable_generated = check_total_value!(purpose);
5586 if payment_claimable_generated {
5587 inbound_payment.remove_entry();
5593 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5594 panic!("Got pending fail of our own HTLC");
5602 let best_block_height = self.best_block.read().unwrap().height;
5603 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5604 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5605 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5607 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5608 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5610 self.forward_htlcs(&mut phantom_receives);
5612 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5613 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5614 // nice to do the work now if we can rather than while we're trying to get messages in the
5616 self.check_free_holding_cells();
5618 if new_events.is_empty() { return }
5619 let mut events = self.pending_events.lock().unwrap();
5620 events.append(&mut new_events);
5623 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5625 /// Expects the caller to have a total_consistency_lock read lock.
5626 fn process_background_events(&self) -> NotifyOption {
5627 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5629 self.background_events_processed_since_startup.store(true, Ordering::Release);
5631 let mut background_events = Vec::new();
5632 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5633 if background_events.is_empty() {
5634 return NotifyOption::SkipPersistNoEvents;
5637 for event in background_events.drain(..) {
5639 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5640 // The channel has already been closed, so no use bothering to care about the
5641 // monitor updating completing.
5642 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5644 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5645 let mut updated_chan = false;
5647 let per_peer_state = self.per_peer_state.read().unwrap();
5648 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5649 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5650 let peer_state = &mut *peer_state_lock;
5651 match peer_state.channel_by_id.entry(channel_id) {
5652 hash_map::Entry::Occupied(mut chan_phase) => {
5653 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5654 updated_chan = true;
5655 handle_new_monitor_update!(self, funding_txo, update.clone(),
5656 peer_state_lock, peer_state, per_peer_state, chan);
5658 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5661 hash_map::Entry::Vacant(_) => {},
5666 // TODO: Track this as in-flight even though the channel is closed.
5667 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5670 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5671 let per_peer_state = self.per_peer_state.read().unwrap();
5672 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5673 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5674 let peer_state = &mut *peer_state_lock;
5675 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5676 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5678 let update_actions = peer_state.monitor_update_blocked_actions
5679 .remove(&channel_id).unwrap_or(Vec::new());
5680 mem::drop(peer_state_lock);
5681 mem::drop(per_peer_state);
5682 self.handle_monitor_update_completion_actions(update_actions);
5688 NotifyOption::DoPersist
5691 #[cfg(any(test, feature = "_test_utils"))]
5692 /// Process background events, for functional testing
5693 pub fn test_process_background_events(&self) {
5694 let _lck = self.total_consistency_lock.read().unwrap();
5695 let _ = self.process_background_events();
5698 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5699 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5701 let logger = WithChannelContext::from(&self.logger, &chan.context);
5703 // If the feerate has decreased by less than half, don't bother
5704 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5705 return NotifyOption::SkipPersistNoEvents;
5707 if !chan.context.is_live() {
5708 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5709 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5710 return NotifyOption::SkipPersistNoEvents;
5712 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5713 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5715 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5716 NotifyOption::DoPersist
5720 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5721 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5722 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5723 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5724 pub fn maybe_update_chan_fees(&self) {
5725 PersistenceNotifierGuard::optionally_notify(self, || {
5726 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5728 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5729 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5731 let per_peer_state = self.per_peer_state.read().unwrap();
5732 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5733 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5734 let peer_state = &mut *peer_state_lock;
5735 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5736 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5738 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5743 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5744 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5752 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5754 /// This currently includes:
5755 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5756 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5757 /// than a minute, informing the network that they should no longer attempt to route over
5759 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5760 /// with the current [`ChannelConfig`].
5761 /// * Removing peers which have disconnected but and no longer have any channels.
5762 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5763 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5764 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5765 /// The latter is determined using the system clock in `std` and the highest seen block time
5766 /// minus two hours in `no-std`.
5768 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5769 /// estimate fetches.
5771 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5772 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5773 pub fn timer_tick_occurred(&self) {
5774 PersistenceNotifierGuard::optionally_notify(self, || {
5775 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5777 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5778 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5780 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5781 let mut timed_out_mpp_htlcs = Vec::new();
5782 let mut pending_peers_awaiting_removal = Vec::new();
5783 let mut shutdown_channels = Vec::new();
5785 let mut process_unfunded_channel_tick = |
5786 chan_id: &ChannelId,
5787 context: &mut ChannelContext<SP>,
5788 unfunded_context: &mut UnfundedChannelContext,
5789 pending_msg_events: &mut Vec<MessageSendEvent>,
5790 counterparty_node_id: PublicKey,
5792 context.maybe_expire_prev_config();
5793 if unfunded_context.should_expire_unfunded_channel() {
5794 let logger = WithChannelContext::from(&self.logger, context);
5796 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5797 update_maps_on_chan_removal!(self, &context);
5798 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5799 pending_msg_events.push(MessageSendEvent::HandleError {
5800 node_id: counterparty_node_id,
5801 action: msgs::ErrorAction::SendErrorMessage {
5802 msg: msgs::ErrorMessage {
5803 channel_id: *chan_id,
5804 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5815 let per_peer_state = self.per_peer_state.read().unwrap();
5816 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5817 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5818 let peer_state = &mut *peer_state_lock;
5819 let pending_msg_events = &mut peer_state.pending_msg_events;
5820 let counterparty_node_id = *counterparty_node_id;
5821 peer_state.channel_by_id.retain(|chan_id, phase| {
5823 ChannelPhase::Funded(chan) => {
5824 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5829 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5830 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5832 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5833 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5834 handle_errors.push((Err(err), counterparty_node_id));
5835 if needs_close { return false; }
5838 match chan.channel_update_status() {
5839 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5840 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5841 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5842 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5843 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5844 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5845 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5847 if n >= DISABLE_GOSSIP_TICKS {
5848 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5849 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5850 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5851 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5855 should_persist = NotifyOption::DoPersist;
5857 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5860 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5862 if n >= ENABLE_GOSSIP_TICKS {
5863 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5864 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5865 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5866 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5870 should_persist = NotifyOption::DoPersist;
5872 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5878 chan.context.maybe_expire_prev_config();
5880 if chan.should_disconnect_peer_awaiting_response() {
5881 let logger = WithChannelContext::from(&self.logger, &chan.context);
5882 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5883 counterparty_node_id, chan_id);
5884 pending_msg_events.push(MessageSendEvent::HandleError {
5885 node_id: counterparty_node_id,
5886 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5887 msg: msgs::WarningMessage {
5888 channel_id: *chan_id,
5889 data: "Disconnecting due to timeout awaiting response".to_owned(),
5897 ChannelPhase::UnfundedInboundV1(chan) => {
5898 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5899 pending_msg_events, counterparty_node_id)
5901 ChannelPhase::UnfundedOutboundV1(chan) => {
5902 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5903 pending_msg_events, counterparty_node_id)
5905 #[cfg(any(dual_funding, splicing))]
5906 ChannelPhase::UnfundedInboundV2(chan) => {
5907 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5908 pending_msg_events, counterparty_node_id)
5910 #[cfg(any(dual_funding, splicing))]
5911 ChannelPhase::UnfundedOutboundV2(chan) => {
5912 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5913 pending_msg_events, counterparty_node_id)
5918 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5919 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5920 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5921 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5922 peer_state.pending_msg_events.push(
5923 events::MessageSendEvent::HandleError {
5924 node_id: counterparty_node_id,
5925 action: msgs::ErrorAction::SendErrorMessage {
5926 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5932 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5934 if peer_state.ok_to_remove(true) {
5935 pending_peers_awaiting_removal.push(counterparty_node_id);
5940 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5941 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5942 // of to that peer is later closed while still being disconnected (i.e. force closed),
5943 // we therefore need to remove the peer from `peer_state` separately.
5944 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5945 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5946 // negative effects on parallelism as much as possible.
5947 if pending_peers_awaiting_removal.len() > 0 {
5948 let mut per_peer_state = self.per_peer_state.write().unwrap();
5949 for counterparty_node_id in pending_peers_awaiting_removal {
5950 match per_peer_state.entry(counterparty_node_id) {
5951 hash_map::Entry::Occupied(entry) => {
5952 // Remove the entry if the peer is still disconnected and we still
5953 // have no channels to the peer.
5954 let remove_entry = {
5955 let peer_state = entry.get().lock().unwrap();
5956 peer_state.ok_to_remove(true)
5959 entry.remove_entry();
5962 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5967 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5968 if payment.htlcs.is_empty() {
5969 // This should be unreachable
5970 debug_assert!(false);
5973 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5974 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5975 // In this case we're not going to handle any timeouts of the parts here.
5976 // This condition determining whether the MPP is complete here must match
5977 // exactly the condition used in `process_pending_htlc_forwards`.
5978 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5979 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5982 } else if payment.htlcs.iter_mut().any(|htlc| {
5983 htlc.timer_ticks += 1;
5984 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5986 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5987 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5994 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5995 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5996 let reason = HTLCFailReason::from_failure_code(23);
5997 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5998 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
6001 for (err, counterparty_node_id) in handle_errors.drain(..) {
6002 let _ = handle_error!(self, err, counterparty_node_id);
6005 for shutdown_res in shutdown_channels {
6006 self.finish_close_channel(shutdown_res);
6009 #[cfg(feature = "std")]
6010 let duration_since_epoch = std::time::SystemTime::now()
6011 .duration_since(std::time::SystemTime::UNIX_EPOCH)
6012 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
6013 #[cfg(not(feature = "std"))]
6014 let duration_since_epoch = Duration::from_secs(
6015 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6018 self.pending_outbound_payments.remove_stale_payments(
6019 duration_since_epoch, &self.pending_events
6022 // Technically we don't need to do this here, but if we have holding cell entries in a
6023 // channel that need freeing, it's better to do that here and block a background task
6024 // than block the message queueing pipeline.
6025 if self.check_free_holding_cells() {
6026 should_persist = NotifyOption::DoPersist;
6033 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6034 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6035 /// along the path (including in our own channel on which we received it).
6037 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6038 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6039 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6040 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6042 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6043 /// [`ChannelManager::claim_funds`]), you should still monitor for
6044 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6045 /// startup during which time claims that were in-progress at shutdown may be replayed.
6046 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6047 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6050 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6051 /// reason for the failure.
6053 /// See [`FailureCode`] for valid failure codes.
6054 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6055 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6057 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6058 if let Some(payment) = removed_source {
6059 for htlc in payment.htlcs {
6060 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6061 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6062 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6063 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6068 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6069 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6070 match failure_code {
6071 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6072 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6073 FailureCode::IncorrectOrUnknownPaymentDetails => {
6074 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6075 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6076 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6078 FailureCode::InvalidOnionPayload(data) => {
6079 let fail_data = match data {
6080 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6083 HTLCFailReason::reason(failure_code.into(), fail_data)
6088 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6089 /// that we want to return and a channel.
6091 /// This is for failures on the channel on which the HTLC was *received*, not failures
6093 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6094 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6095 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6096 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6097 // an inbound SCID alias before the real SCID.
6098 let scid_pref = if chan.context.should_announce() {
6099 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6101 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6103 if let Some(scid) = scid_pref {
6104 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6106 (0x4000|10, Vec::new())
6111 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6112 /// that we want to return and a channel.
6113 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6114 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6115 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6116 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6117 if desired_err_code == 0x1000 | 20 {
6118 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6119 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6120 0u16.write(&mut enc).expect("Writes cannot fail");
6122 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6123 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6124 upd.write(&mut enc).expect("Writes cannot fail");
6125 (desired_err_code, enc.0)
6127 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6128 // which means we really shouldn't have gotten a payment to be forwarded over this
6129 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6130 // PERM|no_such_channel should be fine.
6131 (0x4000|10, Vec::new())
6135 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6136 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6137 // be surfaced to the user.
6138 fn fail_holding_cell_htlcs(
6139 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6140 counterparty_node_id: &PublicKey
6142 let (failure_code, onion_failure_data) = {
6143 let per_peer_state = self.per_peer_state.read().unwrap();
6144 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6145 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6146 let peer_state = &mut *peer_state_lock;
6147 match peer_state.channel_by_id.entry(channel_id) {
6148 hash_map::Entry::Occupied(chan_phase_entry) => {
6149 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6150 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6152 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6153 debug_assert!(false);
6154 (0x4000|10, Vec::new())
6157 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6159 } else { (0x4000|10, Vec::new()) }
6162 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6163 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6164 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6165 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6169 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6170 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6171 if push_forward_event { self.push_pending_forwards_ev(); }
6174 /// Fails an HTLC backwards to the sender of it to us.
6175 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6176 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6177 // Ensure that no peer state channel storage lock is held when calling this function.
6178 // This ensures that future code doesn't introduce a lock-order requirement for
6179 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6180 // this function with any `per_peer_state` peer lock acquired would.
6181 #[cfg(debug_assertions)]
6182 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6183 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6186 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6187 //identify whether we sent it or not based on the (I presume) very different runtime
6188 //between the branches here. We should make this async and move it into the forward HTLCs
6191 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6192 // from block_connected which may run during initialization prior to the chain_monitor
6193 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6194 let mut push_forward_event;
6196 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6197 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6198 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6199 &self.pending_events, &self.logger);
6201 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6202 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6203 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6206 WithContext::from(&self.logger, None, Some(*channel_id)),
6207 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6208 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6210 let failure = match blinded_failure {
6211 Some(BlindedFailure::FromIntroductionNode) => {
6212 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6213 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6214 incoming_packet_shared_secret, phantom_shared_secret
6216 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6218 Some(BlindedFailure::FromBlindedNode) => {
6219 HTLCForwardInfo::FailMalformedHTLC {
6221 failure_code: INVALID_ONION_BLINDING,
6222 sha256_of_onion: [0; 32]
6226 let err_packet = onion_error.get_encrypted_failure_packet(
6227 incoming_packet_shared_secret, phantom_shared_secret
6229 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6233 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6234 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6235 push_forward_event &= forward_htlcs.is_empty();
6236 match forward_htlcs.entry(*short_channel_id) {
6237 hash_map::Entry::Occupied(mut entry) => {
6238 entry.get_mut().push(failure);
6240 hash_map::Entry::Vacant(entry) => {
6241 entry.insert(vec!(failure));
6244 mem::drop(forward_htlcs);
6245 let mut pending_events = self.pending_events.lock().unwrap();
6246 pending_events.push_back((events::Event::HTLCHandlingFailed {
6247 prev_channel_id: *channel_id,
6248 failed_next_destination: destination,
6255 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6256 /// [`MessageSendEvent`]s needed to claim the payment.
6258 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6259 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6260 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6261 /// successful. It will generally be available in the next [`process_pending_events`] call.
6263 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6264 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6265 /// event matches your expectation. If you fail to do so and call this method, you may provide
6266 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6268 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6269 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6270 /// [`claim_funds_with_known_custom_tlvs`].
6272 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6273 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6274 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6275 /// [`process_pending_events`]: EventsProvider::process_pending_events
6276 /// [`create_inbound_payment`]: Self::create_inbound_payment
6277 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6278 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6279 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6280 self.claim_payment_internal(payment_preimage, false);
6283 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6284 /// even type numbers.
6288 /// You MUST check you've understood all even TLVs before using this to
6289 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6291 /// [`claim_funds`]: Self::claim_funds
6292 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6293 self.claim_payment_internal(payment_preimage, true);
6296 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6297 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6299 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6302 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6303 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6304 let mut receiver_node_id = self.our_network_pubkey;
6305 for htlc in payment.htlcs.iter() {
6306 if htlc.prev_hop.phantom_shared_secret.is_some() {
6307 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6308 .expect("Failed to get node_id for phantom node recipient");
6309 receiver_node_id = phantom_pubkey;
6314 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6315 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6316 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6317 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6318 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6320 if dup_purpose.is_some() {
6321 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6322 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6326 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6327 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6328 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6329 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6330 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6331 mem::drop(claimable_payments);
6332 for htlc in payment.htlcs {
6333 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6334 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6335 let receiver = HTLCDestination::FailedPayment { payment_hash };
6336 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6345 debug_assert!(!sources.is_empty());
6347 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6348 // and when we got here we need to check that the amount we're about to claim matches the
6349 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6350 // the MPP parts all have the same `total_msat`.
6351 let mut claimable_amt_msat = 0;
6352 let mut prev_total_msat = None;
6353 let mut expected_amt_msat = None;
6354 let mut valid_mpp = true;
6355 let mut errs = Vec::new();
6356 let per_peer_state = self.per_peer_state.read().unwrap();
6357 for htlc in sources.iter() {
6358 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6359 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6360 debug_assert!(false);
6364 prev_total_msat = Some(htlc.total_msat);
6366 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6367 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6368 debug_assert!(false);
6372 expected_amt_msat = htlc.total_value_received;
6373 claimable_amt_msat += htlc.value;
6375 mem::drop(per_peer_state);
6376 if sources.is_empty() || expected_amt_msat.is_none() {
6377 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6378 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6381 if claimable_amt_msat != expected_amt_msat.unwrap() {
6382 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6383 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6384 expected_amt_msat.unwrap(), claimable_amt_msat);
6388 for htlc in sources.drain(..) {
6389 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6390 if let Err((pk, err)) = self.claim_funds_from_hop(
6391 htlc.prev_hop, payment_preimage,
6392 |_, definitely_duplicate| {
6393 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6394 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6397 if let msgs::ErrorAction::IgnoreError = err.err.action {
6398 // We got a temporary failure updating monitor, but will claim the
6399 // HTLC when the monitor updating is restored (or on chain).
6400 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6401 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6402 } else { errs.push((pk, err)); }
6407 for htlc in sources.drain(..) {
6408 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6409 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6410 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6411 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6412 let receiver = HTLCDestination::FailedPayment { payment_hash };
6413 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6415 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6418 // Now we can handle any errors which were generated.
6419 for (counterparty_node_id, err) in errs.drain(..) {
6420 let res: Result<(), _> = Err(err);
6421 let _ = handle_error!(self, res, counterparty_node_id);
6425 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6426 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6427 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6428 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6430 // If we haven't yet run background events assume we're still deserializing and shouldn't
6431 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6432 // `BackgroundEvent`s.
6433 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6435 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6436 // the required mutexes are not held before we start.
6437 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6438 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6441 let per_peer_state = self.per_peer_state.read().unwrap();
6442 let chan_id = prev_hop.channel_id;
6443 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6444 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6448 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6449 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6450 .map(|peer_mutex| peer_mutex.lock().unwrap())
6453 if peer_state_opt.is_some() {
6454 let mut peer_state_lock = peer_state_opt.unwrap();
6455 let peer_state = &mut *peer_state_lock;
6456 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6457 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6458 let counterparty_node_id = chan.context.get_counterparty_node_id();
6459 let logger = WithChannelContext::from(&self.logger, &chan.context);
6460 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6463 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6464 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6465 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6467 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6470 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6471 peer_state, per_peer_state, chan);
6473 // If we're running during init we cannot update a monitor directly -
6474 // they probably haven't actually been loaded yet. Instead, push the
6475 // monitor update as a background event.
6476 self.pending_background_events.lock().unwrap().push(
6477 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6478 counterparty_node_id,
6479 funding_txo: prev_hop.outpoint,
6480 channel_id: prev_hop.channel_id,
6481 update: monitor_update.clone(),
6485 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6486 let action = if let Some(action) = completion_action(None, true) {
6491 mem::drop(peer_state_lock);
6493 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6495 let (node_id, _funding_outpoint, channel_id, blocker) =
6496 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6497 downstream_counterparty_node_id: node_id,
6498 downstream_funding_outpoint: funding_outpoint,
6499 blocking_action: blocker, downstream_channel_id: channel_id,
6501 (node_id, funding_outpoint, channel_id, blocker)
6503 debug_assert!(false,
6504 "Duplicate claims should always free another channel immediately");
6507 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6508 let mut peer_state = peer_state_mtx.lock().unwrap();
6509 if let Some(blockers) = peer_state
6510 .actions_blocking_raa_monitor_updates
6511 .get_mut(&channel_id)
6513 let mut found_blocker = false;
6514 blockers.retain(|iter| {
6515 // Note that we could actually be blocked, in
6516 // which case we need to only remove the one
6517 // blocker which was added duplicatively.
6518 let first_blocker = !found_blocker;
6519 if *iter == blocker { found_blocker = true; }
6520 *iter != blocker || !first_blocker
6522 debug_assert!(found_blocker);
6525 debug_assert!(false);
6534 let preimage_update = ChannelMonitorUpdate {
6535 update_id: CLOSED_CHANNEL_UPDATE_ID,
6536 counterparty_node_id: None,
6537 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6540 channel_id: Some(prev_hop.channel_id),
6544 // We update the ChannelMonitor on the backward link, after
6545 // receiving an `update_fulfill_htlc` from the forward link.
6546 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6547 if update_res != ChannelMonitorUpdateStatus::Completed {
6548 // TODO: This needs to be handled somehow - if we receive a monitor update
6549 // with a preimage we *must* somehow manage to propagate it to the upstream
6550 // channel, or we must have an ability to receive the same event and try
6551 // again on restart.
6552 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6553 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6554 payment_preimage, update_res);
6557 // If we're running during init we cannot update a monitor directly - they probably
6558 // haven't actually been loaded yet. Instead, push the monitor update as a background
6560 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6561 // channel is already closed) we need to ultimately handle the monitor update
6562 // completion action only after we've completed the monitor update. This is the only
6563 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6564 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6565 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6566 // complete the monitor update completion action from `completion_action`.
6567 self.pending_background_events.lock().unwrap().push(
6568 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6569 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6572 // Note that we do process the completion action here. This totally could be a
6573 // duplicate claim, but we have no way of knowing without interrogating the
6574 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6575 // generally always allowed to be duplicative (and it's specifically noted in
6576 // `PaymentForwarded`).
6577 self.handle_monitor_update_completion_actions(completion_action(None, false));
6581 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6582 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6585 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6586 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6587 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6588 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6591 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6592 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6593 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6594 if let Some(pubkey) = next_channel_counterparty_node_id {
6595 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6597 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6598 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6599 counterparty_node_id: path.hops[0].pubkey,
6601 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6602 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6605 HTLCSource::PreviousHopData(hop_data) => {
6606 let prev_channel_id = hop_data.channel_id;
6607 let prev_user_channel_id = hop_data.user_channel_id;
6608 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6609 #[cfg(debug_assertions)]
6610 let claiming_chan_funding_outpoint = hop_data.outpoint;
6611 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6612 |htlc_claim_value_msat, definitely_duplicate| {
6613 let chan_to_release =
6614 if let Some(node_id) = next_channel_counterparty_node_id {
6615 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6617 // We can only get `None` here if we are processing a
6618 // `ChannelMonitor`-originated event, in which case we
6619 // don't care about ensuring we wake the downstream
6620 // channel's monitor updating - the channel is already
6625 if definitely_duplicate && startup_replay {
6626 // On startup we may get redundant claims which are related to
6627 // monitor updates still in flight. In that case, we shouldn't
6628 // immediately free, but instead let that monitor update complete
6629 // in the background.
6630 #[cfg(debug_assertions)] {
6631 let background_events = self.pending_background_events.lock().unwrap();
6632 // There should be a `BackgroundEvent` pending...
6633 assert!(background_events.iter().any(|ev| {
6635 // to apply a monitor update that blocked the claiming channel,
6636 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6637 funding_txo, update, ..
6639 if *funding_txo == claiming_chan_funding_outpoint {
6640 assert!(update.updates.iter().any(|upd|
6641 if let ChannelMonitorUpdateStep::PaymentPreimage {
6642 payment_preimage: update_preimage
6644 payment_preimage == *update_preimage
6650 // or the channel we'd unblock is already closed,
6651 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6652 (funding_txo, _channel_id, monitor_update)
6654 if *funding_txo == next_channel_outpoint {
6655 assert_eq!(monitor_update.updates.len(), 1);
6657 monitor_update.updates[0],
6658 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6663 // or the monitor update has completed and will unblock
6664 // immediately once we get going.
6665 BackgroundEvent::MonitorUpdatesComplete {
6668 *channel_id == prev_channel_id,
6670 }), "{:?}", *background_events);
6673 } else if definitely_duplicate {
6674 if let Some(other_chan) = chan_to_release {
6675 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6676 downstream_counterparty_node_id: other_chan.0,
6677 downstream_funding_outpoint: other_chan.1,
6678 downstream_channel_id: other_chan.2,
6679 blocking_action: other_chan.3,
6683 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6684 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6685 Some(claimed_htlc_value - forwarded_htlc_value)
6688 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6689 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6690 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6691 event: events::Event::PaymentForwarded {
6692 prev_channel_id: Some(prev_channel_id),
6693 next_channel_id: Some(next_channel_id),
6694 prev_user_channel_id,
6695 next_user_channel_id,
6696 total_fee_earned_msat,
6698 claim_from_onchain_tx: from_onchain,
6699 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6701 downstream_counterparty_and_funding_outpoint: chan_to_release,
6705 if let Err((pk, err)) = res {
6706 let result: Result<(), _> = Err(err);
6707 let _ = handle_error!(self, result, pk);
6713 /// Gets the node_id held by this ChannelManager
6714 pub fn get_our_node_id(&self) -> PublicKey {
6715 self.our_network_pubkey.clone()
6718 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6719 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6720 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6721 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6723 for action in actions.into_iter() {
6725 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6726 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6727 if let Some(ClaimingPayment {
6729 payment_purpose: purpose,
6732 sender_intended_value: sender_intended_total_msat,
6734 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6738 receiver_node_id: Some(receiver_node_id),
6740 sender_intended_total_msat,
6744 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6745 event, downstream_counterparty_and_funding_outpoint
6747 self.pending_events.lock().unwrap().push_back((event, None));
6748 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6749 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6752 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6753 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6755 self.handle_monitor_update_release(
6756 downstream_counterparty_node_id,
6757 downstream_funding_outpoint,
6758 downstream_channel_id,
6759 Some(blocking_action),
6766 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6767 /// update completion.
6768 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6769 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6770 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6771 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6772 funding_broadcastable: Option<Transaction>,
6773 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6774 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6775 let logger = WithChannelContext::from(&self.logger, &channel.context);
6776 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6777 &channel.context.channel_id(),
6778 if raa.is_some() { "an" } else { "no" },
6779 if commitment_update.is_some() { "a" } else { "no" },
6780 pending_forwards.len(), pending_update_adds.len(),
6781 if funding_broadcastable.is_some() { "" } else { "not " },
6782 if channel_ready.is_some() { "sending" } else { "without" },
6783 if announcement_sigs.is_some() { "sending" } else { "without" });
6785 let counterparty_node_id = channel.context.get_counterparty_node_id();
6786 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6788 let mut htlc_forwards = None;
6789 if !pending_forwards.is_empty() {
6790 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6791 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6793 let mut decode_update_add_htlcs = None;
6794 if !pending_update_adds.is_empty() {
6795 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6798 if let Some(msg) = channel_ready {
6799 send_channel_ready!(self, pending_msg_events, channel, msg);
6801 if let Some(msg) = announcement_sigs {
6802 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6803 node_id: counterparty_node_id,
6808 macro_rules! handle_cs { () => {
6809 if let Some(update) = commitment_update {
6810 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6811 node_id: counterparty_node_id,
6816 macro_rules! handle_raa { () => {
6817 if let Some(revoke_and_ack) = raa {
6818 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6819 node_id: counterparty_node_id,
6820 msg: revoke_and_ack,
6825 RAACommitmentOrder::CommitmentFirst => {
6829 RAACommitmentOrder::RevokeAndACKFirst => {
6835 if let Some(tx) = funding_broadcastable {
6836 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6837 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6841 let mut pending_events = self.pending_events.lock().unwrap();
6842 emit_channel_pending_event!(pending_events, channel);
6843 emit_channel_ready_event!(pending_events, channel);
6846 (htlc_forwards, decode_update_add_htlcs)
6849 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6850 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6852 let counterparty_node_id = match counterparty_node_id {
6853 Some(cp_id) => cp_id.clone(),
6855 // TODO: Once we can rely on the counterparty_node_id from the
6856 // monitor event, this and the outpoint_to_peer map should be removed.
6857 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6858 match outpoint_to_peer.get(funding_txo) {
6859 Some(cp_id) => cp_id.clone(),
6864 let per_peer_state = self.per_peer_state.read().unwrap();
6865 let mut peer_state_lock;
6866 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6867 if peer_state_mutex_opt.is_none() { return }
6868 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6869 let peer_state = &mut *peer_state_lock;
6871 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6874 let update_actions = peer_state.monitor_update_blocked_actions
6875 .remove(&channel_id).unwrap_or(Vec::new());
6876 mem::drop(peer_state_lock);
6877 mem::drop(per_peer_state);
6878 self.handle_monitor_update_completion_actions(update_actions);
6881 let remaining_in_flight =
6882 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6883 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6886 let logger = WithChannelContext::from(&self.logger, &channel.context);
6887 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6888 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6889 remaining_in_flight);
6890 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6893 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6896 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6898 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6899 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6902 /// The `user_channel_id` parameter will be provided back in
6903 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6904 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6906 /// Note that this method will return an error and reject the channel, if it requires support
6907 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6908 /// used to accept such channels.
6910 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6911 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6912 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6913 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6916 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6917 /// it as confirmed immediately.
6919 /// The `user_channel_id` parameter will be provided back in
6920 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6921 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6923 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6924 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6926 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6927 /// transaction and blindly assumes that it will eventually confirm.
6929 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6930 /// does not pay to the correct script the correct amount, *you will lose funds*.
6932 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6933 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6934 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6935 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6938 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6940 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6941 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6943 let peers_without_funded_channels =
6944 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6945 let per_peer_state = self.per_peer_state.read().unwrap();
6946 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6948 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6949 log_error!(logger, "{}", err_str);
6951 APIError::ChannelUnavailable { err: err_str }
6953 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6954 let peer_state = &mut *peer_state_lock;
6955 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6957 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6958 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6959 // that we can delay allocating the SCID until after we're sure that the checks below will
6961 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6962 Some(unaccepted_channel) => {
6963 let best_block_height = self.best_block.read().unwrap().height;
6964 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6965 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6966 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6967 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6970 let err_str = "No such channel awaiting to be accepted.".to_owned();
6971 log_error!(logger, "{}", err_str);
6973 return Err(APIError::APIMisuseError { err: err_str });
6979 mem::drop(peer_state_lock);
6980 mem::drop(per_peer_state);
6981 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6982 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6984 return Err(APIError::ChannelUnavailable { err: e.err });
6988 Ok(mut channel) => {
6990 // This should have been correctly configured by the call to InboundV1Channel::new.
6991 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6992 } else if channel.context.get_channel_type().requires_zero_conf() {
6993 let send_msg_err_event = events::MessageSendEvent::HandleError {
6994 node_id: channel.context.get_counterparty_node_id(),
6995 action: msgs::ErrorAction::SendErrorMessage{
6996 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6999 peer_state.pending_msg_events.push(send_msg_err_event);
7000 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
7001 log_error!(logger, "{}", err_str);
7003 return Err(APIError::APIMisuseError { err: err_str });
7005 // If this peer already has some channels, a new channel won't increase our number of peers
7006 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7007 // channels per-peer we can accept channels from a peer with existing ones.
7008 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
7009 let send_msg_err_event = events::MessageSendEvent::HandleError {
7010 node_id: channel.context.get_counterparty_node_id(),
7011 action: msgs::ErrorAction::SendErrorMessage{
7012 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7015 peer_state.pending_msg_events.push(send_msg_err_event);
7016 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7017 log_error!(logger, "{}", err_str);
7019 return Err(APIError::APIMisuseError { err: err_str });
7023 // Now that we know we have a channel, assign an outbound SCID alias.
7024 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7025 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7027 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7028 node_id: channel.context.get_counterparty_node_id(),
7029 msg: channel.accept_inbound_channel(),
7032 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7039 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7040 /// or 0-conf channels.
7042 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7043 /// non-0-conf channels we have with the peer.
7044 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7045 where Filter: Fn(&PeerState<SP>) -> bool {
7046 let mut peers_without_funded_channels = 0;
7047 let best_block_height = self.best_block.read().unwrap().height;
7049 let peer_state_lock = self.per_peer_state.read().unwrap();
7050 for (_, peer_mtx) in peer_state_lock.iter() {
7051 let peer = peer_mtx.lock().unwrap();
7052 if !maybe_count_peer(&*peer) { continue; }
7053 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7054 if num_unfunded_channels == peer.total_channel_count() {
7055 peers_without_funded_channels += 1;
7059 return peers_without_funded_channels;
7062 fn unfunded_channel_count(
7063 peer: &PeerState<SP>, best_block_height: u32
7065 let mut num_unfunded_channels = 0;
7066 for (_, phase) in peer.channel_by_id.iter() {
7068 ChannelPhase::Funded(chan) => {
7069 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7070 // which have not yet had any confirmations on-chain.
7071 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7072 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7074 num_unfunded_channels += 1;
7077 ChannelPhase::UnfundedInboundV1(chan) => {
7078 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7079 num_unfunded_channels += 1;
7082 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7083 #[cfg(any(dual_funding, splicing))]
7084 ChannelPhase::UnfundedInboundV2(chan) => {
7085 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7086 // included in the unfunded count.
7087 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7088 chan.dual_funding_context.our_funding_satoshis == 0 {
7089 num_unfunded_channels += 1;
7092 ChannelPhase::UnfundedOutboundV1(_) => {
7093 // Outbound channels don't contribute to the unfunded count in the DoS context.
7096 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7097 #[cfg(any(dual_funding, splicing))]
7098 ChannelPhase::UnfundedOutboundV2(_) => {
7099 // Outbound channels don't contribute to the unfunded count in the DoS context.
7104 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7107 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7108 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7109 // likely to be lost on restart!
7110 if msg.common_fields.chain_hash != self.chain_hash {
7111 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7112 msg.common_fields.temporary_channel_id.clone()));
7115 if !self.default_configuration.accept_inbound_channels {
7116 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7117 msg.common_fields.temporary_channel_id.clone()));
7120 // Get the number of peers with channels, but without funded ones. We don't care too much
7121 // about peers that never open a channel, so we filter by peers that have at least one
7122 // channel, and then limit the number of those with unfunded channels.
7123 let channeled_peers_without_funding =
7124 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7126 let per_peer_state = self.per_peer_state.read().unwrap();
7127 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7129 debug_assert!(false);
7130 MsgHandleErrInternal::send_err_msg_no_close(
7131 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7132 msg.common_fields.temporary_channel_id.clone())
7134 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7135 let peer_state = &mut *peer_state_lock;
7137 // If this peer already has some channels, a new channel won't increase our number of peers
7138 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7139 // channels per-peer we can accept channels from a peer with existing ones.
7140 if peer_state.total_channel_count() == 0 &&
7141 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7142 !self.default_configuration.manually_accept_inbound_channels
7144 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7145 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7146 msg.common_fields.temporary_channel_id.clone()));
7149 let best_block_height = self.best_block.read().unwrap().height;
7150 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7151 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7152 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7153 msg.common_fields.temporary_channel_id.clone()));
7156 let channel_id = msg.common_fields.temporary_channel_id;
7157 let channel_exists = peer_state.has_channel(&channel_id);
7159 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7160 "temporary_channel_id collision for the same peer!".to_owned(),
7161 msg.common_fields.temporary_channel_id.clone()));
7164 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7165 if self.default_configuration.manually_accept_inbound_channels {
7166 let channel_type = channel::channel_type_from_open_channel(
7167 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7169 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7171 let mut pending_events = self.pending_events.lock().unwrap();
7172 pending_events.push_back((events::Event::OpenChannelRequest {
7173 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7174 counterparty_node_id: counterparty_node_id.clone(),
7175 funding_satoshis: msg.common_fields.funding_satoshis,
7176 push_msat: msg.push_msat,
7179 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7180 open_channel_msg: msg.clone(),
7181 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7186 // Otherwise create the channel right now.
7187 let mut random_bytes = [0u8; 16];
7188 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7189 let user_channel_id = u128::from_be_bytes(random_bytes);
7190 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7191 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7192 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7195 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7200 let channel_type = channel.context.get_channel_type();
7201 if channel_type.requires_zero_conf() {
7202 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7203 "No zero confirmation channels accepted".to_owned(),
7204 msg.common_fields.temporary_channel_id.clone()));
7206 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7207 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7208 "No channels with anchor outputs accepted".to_owned(),
7209 msg.common_fields.temporary_channel_id.clone()));
7212 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7213 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7215 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7216 node_id: counterparty_node_id.clone(),
7217 msg: channel.accept_inbound_channel(),
7219 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7223 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7224 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7225 // likely to be lost on restart!
7226 let (value, output_script, user_id) = {
7227 let per_peer_state = self.per_peer_state.read().unwrap();
7228 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7230 debug_assert!(false);
7231 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7233 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7234 let peer_state = &mut *peer_state_lock;
7235 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7236 hash_map::Entry::Occupied(mut phase) => {
7237 match phase.get_mut() {
7238 ChannelPhase::UnfundedOutboundV1(chan) => {
7239 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7240 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7243 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7247 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7250 let mut pending_events = self.pending_events.lock().unwrap();
7251 pending_events.push_back((events::Event::FundingGenerationReady {
7252 temporary_channel_id: msg.common_fields.temporary_channel_id,
7253 counterparty_node_id: *counterparty_node_id,
7254 channel_value_satoshis: value,
7256 user_channel_id: user_id,
7261 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7262 let best_block = *self.best_block.read().unwrap();
7264 let per_peer_state = self.per_peer_state.read().unwrap();
7265 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7267 debug_assert!(false);
7268 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7271 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7272 let peer_state = &mut *peer_state_lock;
7273 let (mut chan, funding_msg_opt, monitor) =
7274 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7275 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7276 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7277 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7279 Err((inbound_chan, err)) => {
7280 // We've already removed this inbound channel from the map in `PeerState`
7281 // above so at this point we just need to clean up any lingering entries
7282 // concerning this channel as it is safe to do so.
7283 debug_assert!(matches!(err, ChannelError::Close(_)));
7284 // Really we should be returning the channel_id the peer expects based
7285 // on their funding info here, but they're horribly confused anyway, so
7286 // there's not a lot we can do to save them.
7287 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7291 Some(mut phase) => {
7292 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7293 let err = ChannelError::Close(err_msg);
7294 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7296 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7299 let funded_channel_id = chan.context.channel_id();
7301 macro_rules! fail_chan { ($err: expr) => { {
7302 // Note that at this point we've filled in the funding outpoint on our
7303 // channel, but its actually in conflict with another channel. Thus, if
7304 // we call `convert_chan_phase_err` immediately (thus calling
7305 // `update_maps_on_chan_removal`), we'll remove the existing channel
7306 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7308 let err = ChannelError::Close($err.to_owned());
7309 chan.unset_funding_info(msg.temporary_channel_id);
7310 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7313 match peer_state.channel_by_id.entry(funded_channel_id) {
7314 hash_map::Entry::Occupied(_) => {
7315 fail_chan!("Already had channel with the new channel_id");
7317 hash_map::Entry::Vacant(e) => {
7318 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7319 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7320 hash_map::Entry::Occupied(_) => {
7321 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7323 hash_map::Entry::Vacant(i_e) => {
7324 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7325 if let Ok(persist_state) = monitor_res {
7326 i_e.insert(chan.context.get_counterparty_node_id());
7327 mem::drop(outpoint_to_peer_lock);
7329 // There's no problem signing a counterparty's funding transaction if our monitor
7330 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7331 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7332 // until we have persisted our monitor.
7333 if let Some(msg) = funding_msg_opt {
7334 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7335 node_id: counterparty_node_id.clone(),
7340 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7341 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7342 per_peer_state, chan, INITIAL_MONITOR);
7344 unreachable!("This must be a funded channel as we just inserted it.");
7348 let logger = WithChannelContext::from(&self.logger, &chan.context);
7349 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7350 fail_chan!("Duplicate funding outpoint");
7358 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7359 let best_block = *self.best_block.read().unwrap();
7360 let per_peer_state = self.per_peer_state.read().unwrap();
7361 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7363 debug_assert!(false);
7364 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7367 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7368 let peer_state = &mut *peer_state_lock;
7369 match peer_state.channel_by_id.entry(msg.channel_id) {
7370 hash_map::Entry::Occupied(chan_phase_entry) => {
7371 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7372 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7373 let logger = WithContext::from(
7375 Some(chan.context.get_counterparty_node_id()),
7376 Some(chan.context.channel_id())
7379 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7381 Ok((mut chan, monitor)) => {
7382 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7383 // We really should be able to insert here without doing a second
7384 // lookup, but sadly rust stdlib doesn't currently allow keeping
7385 // the original Entry around with the value removed.
7386 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7387 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7388 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7389 } else { unreachable!(); }
7392 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7393 // We weren't able to watch the channel to begin with, so no
7394 // updates should be made on it. Previously, full_stack_target
7395 // found an (unreachable) panic when the monitor update contained
7396 // within `shutdown_finish` was applied.
7397 chan.unset_funding_info(msg.channel_id);
7398 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7402 debug_assert!(matches!(e, ChannelError::Close(_)),
7403 "We don't have a channel anymore, so the error better have expected close");
7404 // We've already removed this outbound channel from the map in
7405 // `PeerState` above so at this point we just need to clean up any
7406 // lingering entries concerning this channel as it is safe to do so.
7407 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7411 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7414 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7418 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7419 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7420 // closing a channel), so any changes are likely to be lost on restart!
7421 let per_peer_state = self.per_peer_state.read().unwrap();
7422 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7424 debug_assert!(false);
7425 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7427 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7428 let peer_state = &mut *peer_state_lock;
7429 match peer_state.channel_by_id.entry(msg.channel_id) {
7430 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7431 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7432 let logger = WithChannelContext::from(&self.logger, &chan.context);
7433 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7434 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7435 if let Some(announcement_sigs) = announcement_sigs_opt {
7436 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7437 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7438 node_id: counterparty_node_id.clone(),
7439 msg: announcement_sigs,
7441 } else if chan.context.is_usable() {
7442 // If we're sending an announcement_signatures, we'll send the (public)
7443 // channel_update after sending a channel_announcement when we receive our
7444 // counterparty's announcement_signatures. Thus, we only bother to send a
7445 // channel_update here if the channel is not public, i.e. we're not sending an
7446 // announcement_signatures.
7447 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7448 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7449 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7450 node_id: counterparty_node_id.clone(),
7457 let mut pending_events = self.pending_events.lock().unwrap();
7458 emit_channel_ready_event!(pending_events, chan);
7463 try_chan_phase_entry!(self, Err(ChannelError::Close(
7464 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7467 hash_map::Entry::Vacant(_) => {
7468 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7473 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7474 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7475 let mut finish_shutdown = None;
7477 let per_peer_state = self.per_peer_state.read().unwrap();
7478 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7480 debug_assert!(false);
7481 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7483 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7484 let peer_state = &mut *peer_state_lock;
7485 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7486 let phase = chan_phase_entry.get_mut();
7488 ChannelPhase::Funded(chan) => {
7489 if !chan.received_shutdown() {
7490 let logger = WithChannelContext::from(&self.logger, &chan.context);
7491 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7493 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7496 let funding_txo_opt = chan.context.get_funding_txo();
7497 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7498 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7499 dropped_htlcs = htlcs;
7501 if let Some(msg) = shutdown {
7502 // We can send the `shutdown` message before updating the `ChannelMonitor`
7503 // here as we don't need the monitor update to complete until we send a
7504 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7505 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7506 node_id: *counterparty_node_id,
7510 // Update the monitor with the shutdown script if necessary.
7511 if let Some(monitor_update) = monitor_update_opt {
7512 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7513 peer_state_lock, peer_state, per_peer_state, chan);
7516 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7517 let context = phase.context_mut();
7518 let logger = WithChannelContext::from(&self.logger, context);
7519 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7520 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7521 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7523 // TODO(dual_funding): Combine this match arm with above.
7524 #[cfg(any(dual_funding, splicing))]
7525 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7526 let context = phase.context_mut();
7527 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7528 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7529 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7533 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7536 for htlc_source in dropped_htlcs.drain(..) {
7537 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7538 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7539 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7541 if let Some(shutdown_res) = finish_shutdown {
7542 self.finish_close_channel(shutdown_res);
7548 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7549 let per_peer_state = self.per_peer_state.read().unwrap();
7550 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7552 debug_assert!(false);
7553 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7555 let (tx, chan_option, shutdown_result) = {
7556 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7557 let peer_state = &mut *peer_state_lock;
7558 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7559 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7560 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7561 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7562 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7563 if let Some(msg) = closing_signed {
7564 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7565 node_id: counterparty_node_id.clone(),
7570 // We're done with this channel, we've got a signed closing transaction and
7571 // will send the closing_signed back to the remote peer upon return. This
7572 // also implies there are no pending HTLCs left on the channel, so we can
7573 // fully delete it from tracking (the channel monitor is still around to
7574 // watch for old state broadcasts)!
7575 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7576 } else { (tx, None, shutdown_result) }
7578 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7579 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7582 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7585 if let Some(broadcast_tx) = tx {
7586 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7587 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7588 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7590 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7591 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7592 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7593 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7598 mem::drop(per_peer_state);
7599 if let Some(shutdown_result) = shutdown_result {
7600 self.finish_close_channel(shutdown_result);
7605 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7606 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7607 //determine the state of the payment based on our response/if we forward anything/the time
7608 //we take to respond. We should take care to avoid allowing such an attack.
7610 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7611 //us repeatedly garbled in different ways, and compare our error messages, which are
7612 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7613 //but we should prevent it anyway.
7615 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7616 // closing a channel), so any changes are likely to be lost on restart!
7618 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7619 let per_peer_state = self.per_peer_state.read().unwrap();
7620 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7622 debug_assert!(false);
7623 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7625 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7626 let peer_state = &mut *peer_state_lock;
7627 match peer_state.channel_by_id.entry(msg.channel_id) {
7628 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7629 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7630 let mut pending_forward_info = match decoded_hop_res {
7631 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7632 self.construct_pending_htlc_status(
7633 msg, counterparty_node_id, shared_secret, next_hop,
7634 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7636 Err(e) => PendingHTLCStatus::Fail(e)
7638 let logger = WithChannelContext::from(&self.logger, &chan.context);
7639 // If the update_add is completely bogus, the call will Err and we will close,
7640 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7641 // want to reject the new HTLC and fail it backwards instead of forwarding.
7642 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7643 if msg.blinding_point.is_some() {
7644 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7645 msgs::UpdateFailMalformedHTLC {
7646 channel_id: msg.channel_id,
7647 htlc_id: msg.htlc_id,
7648 sha256_of_onion: [0; 32],
7649 failure_code: INVALID_ONION_BLINDING,
7653 match pending_forward_info {
7654 PendingHTLCStatus::Forward(PendingHTLCInfo {
7655 ref incoming_shared_secret, ref routing, ..
7657 let reason = if routing.blinded_failure().is_some() {
7658 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7659 } else if (error_code & 0x1000) != 0 {
7660 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7661 HTLCFailReason::reason(real_code, error_data)
7663 HTLCFailReason::from_failure_code(error_code)
7664 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7665 let msg = msgs::UpdateFailHTLC {
7666 channel_id: msg.channel_id,
7667 htlc_id: msg.htlc_id,
7670 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7676 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7678 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7679 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7682 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7687 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7689 let next_user_channel_id;
7690 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7691 let per_peer_state = self.per_peer_state.read().unwrap();
7692 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7694 debug_assert!(false);
7695 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7697 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7698 let peer_state = &mut *peer_state_lock;
7699 match peer_state.channel_by_id.entry(msg.channel_id) {
7700 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7701 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7702 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7703 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7704 let logger = WithChannelContext::from(&self.logger, &chan.context);
7706 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7708 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7709 .or_insert_with(Vec::new)
7710 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7712 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7713 // entry here, even though we *do* need to block the next RAA monitor update.
7714 // We do this instead in the `claim_funds_internal` by attaching a
7715 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7716 // outbound HTLC is claimed. This is guaranteed to all complete before we
7717 // process the RAA as messages are processed from single peers serially.
7718 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7719 next_user_channel_id = chan.context.get_user_id();
7722 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7723 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7726 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7729 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7730 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7731 funding_txo, msg.channel_id, Some(next_user_channel_id),
7737 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7738 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7739 // closing a channel), so any changes are likely to be lost on restart!
7740 let per_peer_state = self.per_peer_state.read().unwrap();
7741 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7743 debug_assert!(false);
7744 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7746 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7747 let peer_state = &mut *peer_state_lock;
7748 match peer_state.channel_by_id.entry(msg.channel_id) {
7749 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7750 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7751 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7753 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7754 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7757 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7762 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7763 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7764 // closing a channel), so any changes are likely to be lost on restart!
7765 let per_peer_state = self.per_peer_state.read().unwrap();
7766 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7768 debug_assert!(false);
7769 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7771 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7772 let peer_state = &mut *peer_state_lock;
7773 match peer_state.channel_by_id.entry(msg.channel_id) {
7774 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7775 if (msg.failure_code & 0x8000) == 0 {
7776 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7777 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7779 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7780 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7782 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7783 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7787 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7791 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7792 let per_peer_state = self.per_peer_state.read().unwrap();
7793 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7795 debug_assert!(false);
7796 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7798 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7799 let peer_state = &mut *peer_state_lock;
7800 match peer_state.channel_by_id.entry(msg.channel_id) {
7801 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7802 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7803 let logger = WithChannelContext::from(&self.logger, &chan.context);
7804 let funding_txo = chan.context.get_funding_txo();
7805 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7806 if let Some(monitor_update) = monitor_update_opt {
7807 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7808 peer_state, per_peer_state, chan);
7812 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7813 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7816 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7820 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7821 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7822 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7823 push_forward_event &= decode_update_add_htlcs.is_empty();
7824 let scid = update_add_htlcs.0;
7825 match decode_update_add_htlcs.entry(scid) {
7826 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7827 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7829 if push_forward_event { self.push_pending_forwards_ev(); }
7833 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7834 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7835 if push_forward_event { self.push_pending_forwards_ev() }
7839 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7840 let mut push_forward_event = false;
7841 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7842 let mut new_intercept_events = VecDeque::new();
7843 let mut failed_intercept_forwards = Vec::new();
7844 if !pending_forwards.is_empty() {
7845 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7846 let scid = match forward_info.routing {
7847 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7848 PendingHTLCRouting::Receive { .. } => 0,
7849 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7851 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7852 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7854 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7855 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7856 let forward_htlcs_empty = forward_htlcs.is_empty();
7857 match forward_htlcs.entry(scid) {
7858 hash_map::Entry::Occupied(mut entry) => {
7859 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7860 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7862 hash_map::Entry::Vacant(entry) => {
7863 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7864 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7866 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7867 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7868 match pending_intercepts.entry(intercept_id) {
7869 hash_map::Entry::Vacant(entry) => {
7870 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7871 requested_next_hop_scid: scid,
7872 payment_hash: forward_info.payment_hash,
7873 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7874 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7877 entry.insert(PendingAddHTLCInfo {
7878 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7880 hash_map::Entry::Occupied(_) => {
7881 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7882 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7883 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7884 short_channel_id: prev_short_channel_id,
7885 user_channel_id: Some(prev_user_channel_id),
7886 outpoint: prev_funding_outpoint,
7887 channel_id: prev_channel_id,
7888 htlc_id: prev_htlc_id,
7889 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7890 phantom_shared_secret: None,
7891 blinded_failure: forward_info.routing.blinded_failure(),
7894 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7895 HTLCFailReason::from_failure_code(0x4000 | 10),
7896 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7901 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7902 // payments are being processed.
7903 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7904 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7905 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7912 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7913 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7916 if !new_intercept_events.is_empty() {
7917 let mut events = self.pending_events.lock().unwrap();
7918 events.append(&mut new_intercept_events);
7924 fn push_pending_forwards_ev(&self) {
7925 let mut pending_events = self.pending_events.lock().unwrap();
7926 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7927 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7928 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7930 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7931 // events is done in batches and they are not removed until we're done processing each
7932 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7933 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7934 // payments will need an additional forwarding event before being claimed to make them look
7935 // real by taking more time.
7936 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7937 pending_events.push_back((Event::PendingHTLCsForwardable {
7938 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7943 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7944 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7945 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7946 /// the [`ChannelMonitorUpdate`] in question.
7947 fn raa_monitor_updates_held(&self,
7948 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7949 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7951 actions_blocking_raa_monitor_updates
7952 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7953 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7954 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7955 channel_funding_outpoint,
7957 counterparty_node_id,
7962 #[cfg(any(test, feature = "_test_utils"))]
7963 pub(crate) fn test_raa_monitor_updates_held(&self,
7964 counterparty_node_id: PublicKey, channel_id: ChannelId
7966 let per_peer_state = self.per_peer_state.read().unwrap();
7967 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7968 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7969 let peer_state = &mut *peer_state_lck;
7971 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7972 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7973 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7979 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7980 let htlcs_to_fail = {
7981 let per_peer_state = self.per_peer_state.read().unwrap();
7982 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7984 debug_assert!(false);
7985 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7986 }).map(|mtx| mtx.lock().unwrap())?;
7987 let peer_state = &mut *peer_state_lock;
7988 match peer_state.channel_by_id.entry(msg.channel_id) {
7989 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7990 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7991 let logger = WithChannelContext::from(&self.logger, &chan.context);
7992 let funding_txo_opt = chan.context.get_funding_txo();
7993 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
7994 self.raa_monitor_updates_held(
7995 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
7996 *counterparty_node_id)
7998 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
7999 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
8000 if let Some(monitor_update) = monitor_update_opt {
8001 let funding_txo = funding_txo_opt
8002 .expect("Funding outpoint must have been set for RAA handling to succeed");
8003 handle_new_monitor_update!(self, funding_txo, monitor_update,
8004 peer_state_lock, peer_state, per_peer_state, chan);
8008 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8009 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
8012 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8015 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8019 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8020 let per_peer_state = self.per_peer_state.read().unwrap();
8021 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8023 debug_assert!(false);
8024 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8026 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8027 let peer_state = &mut *peer_state_lock;
8028 match peer_state.channel_by_id.entry(msg.channel_id) {
8029 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8030 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8031 let logger = WithChannelContext::from(&self.logger, &chan.context);
8032 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8034 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8035 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8038 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8043 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8044 let per_peer_state = self.per_peer_state.read().unwrap();
8045 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8047 debug_assert!(false);
8048 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8050 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8051 let peer_state = &mut *peer_state_lock;
8052 match peer_state.channel_by_id.entry(msg.channel_id) {
8053 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8054 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8055 if !chan.context.is_usable() {
8056 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8059 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8060 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8061 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8062 msg, &self.default_configuration
8063 ), chan_phase_entry),
8064 // Note that announcement_signatures fails if the channel cannot be announced,
8065 // so get_channel_update_for_broadcast will never fail by the time we get here.
8066 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8069 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8070 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8073 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8078 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8079 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8080 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8081 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8083 // It's not a local channel
8084 return Ok(NotifyOption::SkipPersistNoEvents)
8087 let per_peer_state = self.per_peer_state.read().unwrap();
8088 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8089 if peer_state_mutex_opt.is_none() {
8090 return Ok(NotifyOption::SkipPersistNoEvents)
8092 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8093 let peer_state = &mut *peer_state_lock;
8094 match peer_state.channel_by_id.entry(chan_id) {
8095 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8096 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8097 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8098 if chan.context.should_announce() {
8099 // If the announcement is about a channel of ours which is public, some
8100 // other peer may simply be forwarding all its gossip to us. Don't provide
8101 // a scary-looking error message and return Ok instead.
8102 return Ok(NotifyOption::SkipPersistNoEvents);
8104 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8106 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8107 let msg_from_node_one = msg.contents.flags & 1 == 0;
8108 if were_node_one == msg_from_node_one {
8109 return Ok(NotifyOption::SkipPersistNoEvents);
8111 let logger = WithChannelContext::from(&self.logger, &chan.context);
8112 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8113 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8114 // If nothing changed after applying their update, we don't need to bother
8117 return Ok(NotifyOption::SkipPersistNoEvents);
8121 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8122 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8125 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8127 Ok(NotifyOption::DoPersist)
8130 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8131 let need_lnd_workaround = {
8132 let per_peer_state = self.per_peer_state.read().unwrap();
8134 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8136 debug_assert!(false);
8137 MsgHandleErrInternal::send_err_msg_no_close(
8138 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8142 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8143 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8144 let peer_state = &mut *peer_state_lock;
8145 match peer_state.channel_by_id.entry(msg.channel_id) {
8146 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8147 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8148 // Currently, we expect all holding cell update_adds to be dropped on peer
8149 // disconnect, so Channel's reestablish will never hand us any holding cell
8150 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8151 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8152 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8153 msg, &&logger, &self.node_signer, self.chain_hash,
8154 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8155 let mut channel_update = None;
8156 if let Some(msg) = responses.shutdown_msg {
8157 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8158 node_id: counterparty_node_id.clone(),
8161 } else if chan.context.is_usable() {
8162 // If the channel is in a usable state (ie the channel is not being shut
8163 // down), send a unicast channel_update to our counterparty to make sure
8164 // they have the latest channel parameters.
8165 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8166 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8167 node_id: chan.context.get_counterparty_node_id(),
8172 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8173 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8174 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8175 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8176 debug_assert!(htlc_forwards.is_none());
8177 debug_assert!(decode_update_add_htlcs.is_none());
8178 if let Some(upd) = channel_update {
8179 peer_state.pending_msg_events.push(upd);
8183 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8184 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8187 hash_map::Entry::Vacant(_) => {
8188 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8190 // Unfortunately, lnd doesn't force close on errors
8191 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8192 // One of the few ways to get an lnd counterparty to force close is by
8193 // replicating what they do when restoring static channel backups (SCBs). They
8194 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8195 // invalid `your_last_per_commitment_secret`.
8197 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8198 // can assume it's likely the channel closed from our point of view, but it
8199 // remains open on the counterparty's side. By sending this bogus
8200 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8201 // force close broadcasting their latest state. If the closing transaction from
8202 // our point of view remains unconfirmed, it'll enter a race with the
8203 // counterparty's to-be-broadcast latest commitment transaction.
8204 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8205 node_id: *counterparty_node_id,
8206 msg: msgs::ChannelReestablish {
8207 channel_id: msg.channel_id,
8208 next_local_commitment_number: 0,
8209 next_remote_commitment_number: 0,
8210 your_last_per_commitment_secret: [1u8; 32],
8211 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8212 next_funding_txid: None,
8215 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8216 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8217 counterparty_node_id), msg.channel_id)
8223 if let Some(channel_ready_msg) = need_lnd_workaround {
8224 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8226 Ok(NotifyOption::SkipPersistHandleEvents)
8229 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8230 fn process_pending_monitor_events(&self) -> bool {
8231 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8233 let mut failed_channels = Vec::new();
8234 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8235 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8236 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8237 for monitor_event in monitor_events.drain(..) {
8238 match monitor_event {
8239 MonitorEvent::HTLCEvent(htlc_update) => {
8240 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8241 if let Some(preimage) = htlc_update.payment_preimage {
8242 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8243 self.claim_funds_internal(htlc_update.source, preimage,
8244 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8245 false, counterparty_node_id, funding_outpoint, channel_id, None);
8247 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8248 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8249 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8250 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8253 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8254 let counterparty_node_id_opt = match counterparty_node_id {
8255 Some(cp_id) => Some(cp_id),
8257 // TODO: Once we can rely on the counterparty_node_id from the
8258 // monitor event, this and the outpoint_to_peer map should be removed.
8259 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8260 outpoint_to_peer.get(&funding_outpoint).cloned()
8263 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8264 let per_peer_state = self.per_peer_state.read().unwrap();
8265 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8266 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8267 let peer_state = &mut *peer_state_lock;
8268 let pending_msg_events = &mut peer_state.pending_msg_events;
8269 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8270 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8271 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8274 ClosureReason::HolderForceClosed
8276 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8277 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8278 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8279 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8283 pending_msg_events.push(events::MessageSendEvent::HandleError {
8284 node_id: chan.context.get_counterparty_node_id(),
8285 action: msgs::ErrorAction::DisconnectPeer {
8286 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8294 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8295 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8301 for failure in failed_channels.drain(..) {
8302 self.finish_close_channel(failure);
8305 has_pending_monitor_events
8308 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8309 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8310 /// update events as a separate process method here.
8312 pub fn process_monitor_events(&self) {
8313 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8314 self.process_pending_monitor_events();
8317 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8318 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8319 /// update was applied.
8320 fn check_free_holding_cells(&self) -> bool {
8321 let mut has_monitor_update = false;
8322 let mut failed_htlcs = Vec::new();
8324 // Walk our list of channels and find any that need to update. Note that when we do find an
8325 // update, if it includes actions that must be taken afterwards, we have to drop the
8326 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8327 // manage to go through all our peers without finding a single channel to update.
8329 let per_peer_state = self.per_peer_state.read().unwrap();
8330 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8332 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8333 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8334 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8335 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8337 let counterparty_node_id = chan.context.get_counterparty_node_id();
8338 let funding_txo = chan.context.get_funding_txo();
8339 let (monitor_opt, holding_cell_failed_htlcs) =
8340 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8341 if !holding_cell_failed_htlcs.is_empty() {
8342 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8344 if let Some(monitor_update) = monitor_opt {
8345 has_monitor_update = true;
8347 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8348 peer_state_lock, peer_state, per_peer_state, chan);
8349 continue 'peer_loop;
8358 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8359 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8360 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8366 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8367 /// is (temporarily) unavailable, and the operation should be retried later.
8369 /// This method allows for that retry - either checking for any signer-pending messages to be
8370 /// attempted in every channel, or in the specifically provided channel.
8372 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8373 #[cfg(async_signing)]
8374 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8375 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8377 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8378 let node_id = phase.context().get_counterparty_node_id();
8380 ChannelPhase::Funded(chan) => {
8381 let msgs = chan.signer_maybe_unblocked(&self.logger);
8382 if let Some(updates) = msgs.commitment_update {
8383 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8388 if let Some(msg) = msgs.funding_signed {
8389 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8394 if let Some(msg) = msgs.channel_ready {
8395 send_channel_ready!(self, pending_msg_events, chan, msg);
8398 ChannelPhase::UnfundedOutboundV1(chan) => {
8399 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8400 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8406 ChannelPhase::UnfundedInboundV1(_) => {},
8410 let per_peer_state = self.per_peer_state.read().unwrap();
8411 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8412 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8413 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8414 let peer_state = &mut *peer_state_lock;
8415 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8416 unblock_chan(chan, &mut peer_state.pending_msg_events);
8420 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8421 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8422 let peer_state = &mut *peer_state_lock;
8423 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8424 unblock_chan(chan, &mut peer_state.pending_msg_events);
8430 /// Check whether any channels have finished removing all pending updates after a shutdown
8431 /// exchange and can now send a closing_signed.
8432 /// Returns whether any closing_signed messages were generated.
8433 fn maybe_generate_initial_closing_signed(&self) -> bool {
8434 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8435 let mut has_update = false;
8436 let mut shutdown_results = Vec::new();
8438 let per_peer_state = self.per_peer_state.read().unwrap();
8440 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8441 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8442 let peer_state = &mut *peer_state_lock;
8443 let pending_msg_events = &mut peer_state.pending_msg_events;
8444 peer_state.channel_by_id.retain(|channel_id, phase| {
8446 ChannelPhase::Funded(chan) => {
8447 let logger = WithChannelContext::from(&self.logger, &chan.context);
8448 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8449 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8450 if let Some(msg) = msg_opt {
8452 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8453 node_id: chan.context.get_counterparty_node_id(), msg,
8456 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8457 if let Some(shutdown_result) = shutdown_result_opt {
8458 shutdown_results.push(shutdown_result);
8460 if let Some(tx) = tx_opt {
8461 // We're done with this channel. We got a closing_signed and sent back
8462 // a closing_signed with a closing transaction to broadcast.
8463 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8464 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8465 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8470 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8471 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8472 update_maps_on_chan_removal!(self, &chan.context);
8478 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8479 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8484 _ => true, // Retain unfunded channels if present.
8490 for (counterparty_node_id, err) in handle_errors.drain(..) {
8491 let _ = handle_error!(self, err, counterparty_node_id);
8494 for shutdown_result in shutdown_results.drain(..) {
8495 self.finish_close_channel(shutdown_result);
8501 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8502 /// pushing the channel monitor update (if any) to the background events queue and removing the
8504 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8505 for mut failure in failed_channels.drain(..) {
8506 // Either a commitment transactions has been confirmed on-chain or
8507 // Channel::block_disconnected detected that the funding transaction has been
8508 // reorganized out of the main chain.
8509 // We cannot broadcast our latest local state via monitor update (as
8510 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8511 // so we track the update internally and handle it when the user next calls
8512 // timer_tick_occurred, guaranteeing we're running normally.
8513 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8514 assert_eq!(update.updates.len(), 1);
8515 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8516 assert!(should_broadcast);
8517 } else { unreachable!(); }
8518 self.pending_background_events.lock().unwrap().push(
8519 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8520 counterparty_node_id, funding_txo, update, channel_id,
8523 self.finish_close_channel(failure);
8528 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8529 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8530 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8531 /// not have an expiration unless otherwise set on the builder.
8535 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8536 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8537 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8538 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8539 /// order to send the [`InvoiceRequest`].
8541 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8545 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8550 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8552 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8554 /// [`Offer`]: crate::offers::offer::Offer
8555 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8556 pub fn create_offer_builder(
8557 &$self, description: String
8558 ) -> Result<$builder, Bolt12SemanticError> {
8559 let node_id = $self.get_our_node_id();
8560 let expanded_key = &$self.inbound_payment_key;
8561 let entropy = &*$self.entropy_source;
8562 let secp_ctx = &$self.secp_ctx;
8564 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8565 let builder = OfferBuilder::deriving_signing_pubkey(
8566 description, node_id, expanded_key, entropy, secp_ctx
8568 .chain_hash($self.chain_hash)
8575 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8576 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8577 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8581 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8582 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8584 /// The builder will have the provided expiration set. Any changes to the expiration on the
8585 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8586 /// block time minus two hours is used for the current time when determining if the refund has
8589 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8590 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8591 /// with an [`Event::InvoiceRequestFailed`].
8593 /// If `max_total_routing_fee_msat` is not specified, The default from
8594 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8598 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8599 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8600 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8601 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8602 /// order to send the [`Bolt12Invoice`].
8604 /// Also, uses a derived payer id in the refund for payer privacy.
8608 /// Requires a direct connection to an introduction node in the responding
8609 /// [`Bolt12Invoice::payment_paths`].
8614 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8615 /// - `amount_msats` is invalid, or
8616 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8618 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8620 /// [`Refund`]: crate::offers::refund::Refund
8621 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8622 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8623 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8624 pub fn create_refund_builder(
8625 &$self, description: String, amount_msats: u64, absolute_expiry: Duration,
8626 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8627 ) -> Result<$builder, Bolt12SemanticError> {
8628 let node_id = $self.get_our_node_id();
8629 let expanded_key = &$self.inbound_payment_key;
8630 let entropy = &*$self.entropy_source;
8631 let secp_ctx = &$self.secp_ctx;
8633 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8634 let builder = RefundBuilder::deriving_payer_id(
8635 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8637 .chain_hash($self.chain_hash)
8638 .absolute_expiry(absolute_expiry)
8641 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8643 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8644 $self.pending_outbound_payments
8645 .add_new_awaiting_invoice(
8646 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8648 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8654 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8656 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8657 T::Target: BroadcasterInterface,
8658 ES::Target: EntropySource,
8659 NS::Target: NodeSigner,
8660 SP::Target: SignerProvider,
8661 F::Target: FeeEstimator,
8665 #[cfg(not(c_bindings))]
8666 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8667 #[cfg(not(c_bindings))]
8668 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8671 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8673 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8675 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8676 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8677 /// [`Bolt12Invoice`] once it is received.
8679 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8680 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8681 /// The optional parameters are used in the builder, if `Some`:
8682 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8683 /// [`Offer::expects_quantity`] is `true`.
8684 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8685 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8687 /// If `max_total_routing_fee_msat` is not specified, The default from
8688 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8692 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8693 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8696 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8697 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8698 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8702 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8703 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8704 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8705 /// in order to send the [`Bolt12Invoice`].
8709 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8710 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8711 /// [`Bolt12Invoice::payment_paths`].
8716 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8717 /// - the provided parameters are invalid for the offer,
8718 /// - the offer is for an unsupported chain, or
8719 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8722 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8723 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8724 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8725 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8726 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8727 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8728 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8729 pub fn pay_for_offer(
8730 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8731 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8732 max_total_routing_fee_msat: Option<u64>
8733 ) -> Result<(), Bolt12SemanticError> {
8734 let expanded_key = &self.inbound_payment_key;
8735 let entropy = &*self.entropy_source;
8736 let secp_ctx = &self.secp_ctx;
8738 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8739 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8741 let builder = builder.chain_hash(self.chain_hash)?;
8743 let builder = match quantity {
8745 Some(quantity) => builder.quantity(quantity)?,
8747 let builder = match amount_msats {
8749 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8751 let builder = match payer_note {
8753 Some(payer_note) => builder.payer_note(payer_note),
8755 let invoice_request = builder.build_and_sign()?;
8756 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8758 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8760 let expiration = StaleExpiration::TimerTicks(1);
8761 self.pending_outbound_payments
8762 .add_new_awaiting_invoice(
8763 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8765 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8767 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8768 if !offer.paths().is_empty() {
8769 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8770 // Using only one path could result in a failure if the path no longer exists. But only
8771 // one invoice for a given payment id will be paid, even if more than one is received.
8772 const REQUEST_LIMIT: usize = 10;
8773 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8774 let message = new_pending_onion_message(
8775 OffersMessage::InvoiceRequest(invoice_request.clone()),
8776 Destination::BlindedPath(path.clone()),
8777 Some(reply_path.clone()),
8779 pending_offers_messages.push(message);
8781 } else if let Some(signing_pubkey) = offer.signing_pubkey() {
8782 let message = new_pending_onion_message(
8783 OffersMessage::InvoiceRequest(invoice_request),
8784 Destination::Node(signing_pubkey),
8787 pending_offers_messages.push(message);
8789 debug_assert!(false);
8790 return Err(Bolt12SemanticError::MissingSigningPubkey);
8796 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8799 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8800 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8801 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8805 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8806 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8807 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8808 /// received and no retries will be made.
8813 /// - the refund is for an unsupported chain, or
8814 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8817 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8818 pub fn request_refund_payment(
8819 &self, refund: &Refund
8820 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8821 let expanded_key = &self.inbound_payment_key;
8822 let entropy = &*self.entropy_source;
8823 let secp_ctx = &self.secp_ctx;
8825 let amount_msats = refund.amount_msats();
8826 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8828 if refund.chain() != self.chain_hash {
8829 return Err(Bolt12SemanticError::UnsupportedChain);
8832 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8834 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8835 Ok((payment_hash, payment_secret)) => {
8836 let payment_context = PaymentContext::Bolt12Refund(Bolt12RefundContext {});
8837 let payment_paths = self.create_blinded_payment_paths(
8838 amount_msats, payment_secret, payment_context
8840 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8842 #[cfg(feature = "std")]
8843 let builder = refund.respond_using_derived_keys(
8844 payment_paths, payment_hash, expanded_key, entropy
8846 #[cfg(not(feature = "std"))]
8847 let created_at = Duration::from_secs(
8848 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8850 #[cfg(not(feature = "std"))]
8851 let builder = refund.respond_using_derived_keys_no_std(
8852 payment_paths, payment_hash, created_at, expanded_key, entropy
8854 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8855 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8856 let reply_path = self.create_blinded_path()
8857 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8859 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8860 if refund.paths().is_empty() {
8861 let message = new_pending_onion_message(
8862 OffersMessage::Invoice(invoice.clone()),
8863 Destination::Node(refund.payer_id()),
8866 pending_offers_messages.push(message);
8868 for path in refund.paths() {
8869 let message = new_pending_onion_message(
8870 OffersMessage::Invoice(invoice.clone()),
8871 Destination::BlindedPath(path.clone()),
8872 Some(reply_path.clone()),
8874 pending_offers_messages.push(message);
8880 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8884 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8887 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8888 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8890 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`] event, which
8891 /// will have the [`PaymentClaimable::purpose`] return `Some` for [`PaymentPurpose::preimage`]. That
8892 /// should then be passed directly to [`claim_funds`].
8894 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8896 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8897 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8901 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8902 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8904 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8906 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8907 /// on versions of LDK prior to 0.0.114.
8909 /// [`claim_funds`]: Self::claim_funds
8910 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8911 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8912 /// [`PaymentPurpose::preimage`]: events::PaymentPurpose::preimage
8913 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8914 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8915 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8916 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8917 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8918 min_final_cltv_expiry_delta)
8921 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8922 /// stored external to LDK.
8924 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8925 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8926 /// the `min_value_msat` provided here, if one is provided.
8928 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8929 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8932 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8933 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8934 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8935 /// sender "proof-of-payment" unless they have paid the required amount.
8937 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8938 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8939 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8940 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8941 /// invoices when no timeout is set.
8943 /// Note that we use block header time to time-out pending inbound payments (with some margin
8944 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8945 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8946 /// If you need exact expiry semantics, you should enforce them upon receipt of
8947 /// [`PaymentClaimable`].
8949 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8950 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8952 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8953 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8957 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8958 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8960 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8962 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8963 /// on versions of LDK prior to 0.0.114.
8965 /// [`create_inbound_payment`]: Self::create_inbound_payment
8966 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8967 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8968 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8969 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8970 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8971 min_final_cltv_expiry)
8974 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8975 /// previously returned from [`create_inbound_payment`].
8977 /// [`create_inbound_payment`]: Self::create_inbound_payment
8978 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8979 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8982 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8984 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8985 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8986 let recipient = self.get_our_node_id();
8987 let secp_ctx = &self.secp_ctx;
8989 let peers = self.per_peer_state.read().unwrap()
8991 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
8992 .map(|(node_id, _)| *node_id)
8993 .collect::<Vec<_>>();
8996 .create_blinded_paths(recipient, peers, secp_ctx)
8997 .and_then(|paths| paths.into_iter().next().ok_or(()))
9000 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
9001 /// [`Router::create_blinded_payment_paths`].
9002 fn create_blinded_payment_paths(
9003 &self, amount_msats: u64, payment_secret: PaymentSecret, payment_context: PaymentContext
9004 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
9005 let secp_ctx = &self.secp_ctx;
9007 let first_hops = self.list_usable_channels();
9008 let payee_node_id = self.get_our_node_id();
9009 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
9010 + LATENCY_GRACE_PERIOD_BLOCKS;
9011 let payee_tlvs = ReceiveTlvs {
9013 payment_constraints: PaymentConstraints {
9015 htlc_minimum_msat: 1,
9019 self.router.create_blinded_payment_paths(
9020 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9024 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9025 /// are used when constructing the phantom invoice's route hints.
9027 /// [phantom node payments]: crate::sign::PhantomKeysManager
9028 pub fn get_phantom_scid(&self) -> u64 {
9029 let best_block_height = self.best_block.read().unwrap().height;
9030 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9032 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9033 // Ensure the generated scid doesn't conflict with a real channel.
9034 match short_to_chan_info.get(&scid_candidate) {
9035 Some(_) => continue,
9036 None => return scid_candidate
9041 /// Gets route hints for use in receiving [phantom node payments].
9043 /// [phantom node payments]: crate::sign::PhantomKeysManager
9044 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9046 channels: self.list_usable_channels(),
9047 phantom_scid: self.get_phantom_scid(),
9048 real_node_pubkey: self.get_our_node_id(),
9052 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9053 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9054 /// [`ChannelManager::forward_intercepted_htlc`].
9056 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9057 /// times to get a unique scid.
9058 pub fn get_intercept_scid(&self) -> u64 {
9059 let best_block_height = self.best_block.read().unwrap().height;
9060 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9062 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9063 // Ensure the generated scid doesn't conflict with a real channel.
9064 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9065 return scid_candidate
9069 /// Gets inflight HTLC information by processing pending outbound payments that are in
9070 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9071 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9072 let mut inflight_htlcs = InFlightHtlcs::new();
9074 let per_peer_state = self.per_peer_state.read().unwrap();
9075 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9076 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9077 let peer_state = &mut *peer_state_lock;
9078 for chan in peer_state.channel_by_id.values().filter_map(
9079 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9081 for (htlc_source, _) in chan.inflight_htlc_sources() {
9082 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9083 inflight_htlcs.process_path(path, self.get_our_node_id());
9092 #[cfg(any(test, feature = "_test_utils"))]
9093 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9094 let events = core::cell::RefCell::new(Vec::new());
9095 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9096 self.process_pending_events(&event_handler);
9100 #[cfg(feature = "_test_utils")]
9101 pub fn push_pending_event(&self, event: events::Event) {
9102 let mut events = self.pending_events.lock().unwrap();
9103 events.push_back((event, None));
9107 pub fn pop_pending_event(&self) -> Option<events::Event> {
9108 let mut events = self.pending_events.lock().unwrap();
9109 events.pop_front().map(|(e, _)| e)
9113 pub fn has_pending_payments(&self) -> bool {
9114 self.pending_outbound_payments.has_pending_payments()
9118 pub fn clear_pending_payments(&self) {
9119 self.pending_outbound_payments.clear_pending_payments()
9122 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9123 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9124 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9125 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9126 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9127 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9128 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9130 let logger = WithContext::from(
9131 &self.logger, Some(counterparty_node_id), Some(channel_id),
9134 let per_peer_state = self.per_peer_state.read().unwrap();
9135 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9136 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9137 let peer_state = &mut *peer_state_lck;
9138 if let Some(blocker) = completed_blocker.take() {
9139 // Only do this on the first iteration of the loop.
9140 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9141 .get_mut(&channel_id)
9143 blockers.retain(|iter| iter != &blocker);
9147 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9148 channel_funding_outpoint, channel_id, counterparty_node_id) {
9149 // Check that, while holding the peer lock, we don't have anything else
9150 // blocking monitor updates for this channel. If we do, release the monitor
9151 // update(s) when those blockers complete.
9152 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9157 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9159 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9160 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9161 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9162 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9164 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9165 peer_state_lck, peer_state, per_peer_state, chan);
9166 if further_update_exists {
9167 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9172 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9179 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9180 log_pubkey!(counterparty_node_id));
9186 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9187 for action in actions {
9189 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9190 channel_funding_outpoint, channel_id, counterparty_node_id
9192 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9198 /// Processes any events asynchronously in the order they were generated since the last call
9199 /// using the given event handler.
9201 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9202 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9206 process_events_body!(self, ev, { handler(ev).await });
9210 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9212 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9213 T::Target: BroadcasterInterface,
9214 ES::Target: EntropySource,
9215 NS::Target: NodeSigner,
9216 SP::Target: SignerProvider,
9217 F::Target: FeeEstimator,
9221 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9222 /// The returned array will contain `MessageSendEvent`s for different peers if
9223 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9224 /// is always placed next to each other.
9226 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9227 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9228 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9229 /// will randomly be placed first or last in the returned array.
9231 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9232 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9233 /// the `MessageSendEvent`s to the specific peer they were generated under.
9234 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9235 let events = RefCell::new(Vec::new());
9236 PersistenceNotifierGuard::optionally_notify(self, || {
9237 let mut result = NotifyOption::SkipPersistNoEvents;
9239 // TODO: This behavior should be documented. It's unintuitive that we query
9240 // ChannelMonitors when clearing other events.
9241 if self.process_pending_monitor_events() {
9242 result = NotifyOption::DoPersist;
9245 if self.check_free_holding_cells() {
9246 result = NotifyOption::DoPersist;
9248 if self.maybe_generate_initial_closing_signed() {
9249 result = NotifyOption::DoPersist;
9252 let mut is_any_peer_connected = false;
9253 let mut pending_events = Vec::new();
9254 let per_peer_state = self.per_peer_state.read().unwrap();
9255 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9256 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9257 let peer_state = &mut *peer_state_lock;
9258 if peer_state.pending_msg_events.len() > 0 {
9259 pending_events.append(&mut peer_state.pending_msg_events);
9261 if peer_state.is_connected {
9262 is_any_peer_connected = true
9266 // Ensure that we are connected to some peers before getting broadcast messages.
9267 if is_any_peer_connected {
9268 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9269 pending_events.append(&mut broadcast_msgs);
9272 if !pending_events.is_empty() {
9273 events.replace(pending_events);
9282 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9284 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9285 T::Target: BroadcasterInterface,
9286 ES::Target: EntropySource,
9287 NS::Target: NodeSigner,
9288 SP::Target: SignerProvider,
9289 F::Target: FeeEstimator,
9293 /// Processes events that must be periodically handled.
9295 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9296 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9297 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9299 process_events_body!(self, ev, handler.handle_event(ev));
9303 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9305 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9306 T::Target: BroadcasterInterface,
9307 ES::Target: EntropySource,
9308 NS::Target: NodeSigner,
9309 SP::Target: SignerProvider,
9310 F::Target: FeeEstimator,
9314 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9316 let best_block = self.best_block.read().unwrap();
9317 assert_eq!(best_block.block_hash, header.prev_blockhash,
9318 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9319 assert_eq!(best_block.height, height - 1,
9320 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9323 self.transactions_confirmed(header, txdata, height);
9324 self.best_block_updated(header, height);
9327 fn block_disconnected(&self, header: &Header, height: u32) {
9328 let _persistence_guard =
9329 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9330 self, || -> NotifyOption { NotifyOption::DoPersist });
9331 let new_height = height - 1;
9333 let mut best_block = self.best_block.write().unwrap();
9334 assert_eq!(best_block.block_hash, header.block_hash(),
9335 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9336 assert_eq!(best_block.height, height,
9337 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9338 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9341 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9345 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9347 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9348 T::Target: BroadcasterInterface,
9349 ES::Target: EntropySource,
9350 NS::Target: NodeSigner,
9351 SP::Target: SignerProvider,
9352 F::Target: FeeEstimator,
9356 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9357 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9358 // during initialization prior to the chain_monitor being fully configured in some cases.
9359 // See the docs for `ChannelManagerReadArgs` for more.
9361 let block_hash = header.block_hash();
9362 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9364 let _persistence_guard =
9365 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9366 self, || -> NotifyOption { NotifyOption::DoPersist });
9367 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9368 .map(|(a, b)| (a, Vec::new(), b)));
9370 let last_best_block_height = self.best_block.read().unwrap().height;
9371 if height < last_best_block_height {
9372 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9373 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9377 fn best_block_updated(&self, header: &Header, height: u32) {
9378 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9379 // during initialization prior to the chain_monitor being fully configured in some cases.
9380 // See the docs for `ChannelManagerReadArgs` for more.
9382 let block_hash = header.block_hash();
9383 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9385 let _persistence_guard =
9386 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9387 self, || -> NotifyOption { NotifyOption::DoPersist });
9388 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9390 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9392 macro_rules! max_time {
9393 ($timestamp: expr) => {
9395 // Update $timestamp to be the max of its current value and the block
9396 // timestamp. This should keep us close to the current time without relying on
9397 // having an explicit local time source.
9398 // Just in case we end up in a race, we loop until we either successfully
9399 // update $timestamp or decide we don't need to.
9400 let old_serial = $timestamp.load(Ordering::Acquire);
9401 if old_serial >= header.time as usize { break; }
9402 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9408 max_time!(self.highest_seen_timestamp);
9409 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9410 payment_secrets.retain(|_, inbound_payment| {
9411 inbound_payment.expiry_time > header.time as u64
9415 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9416 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9417 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9418 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9419 let peer_state = &mut *peer_state_lock;
9420 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9421 let txid_opt = chan.context.get_funding_txo();
9422 let height_opt = chan.context.get_funding_tx_confirmation_height();
9423 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9424 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9425 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9432 fn transaction_unconfirmed(&self, txid: &Txid) {
9433 let _persistence_guard =
9434 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9435 self, || -> NotifyOption { NotifyOption::DoPersist });
9436 self.do_chain_event(None, |channel| {
9437 if let Some(funding_txo) = channel.context.get_funding_txo() {
9438 if funding_txo.txid == *txid {
9439 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9440 } else { Ok((None, Vec::new(), None)) }
9441 } else { Ok((None, Vec::new(), None)) }
9446 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9448 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9449 T::Target: BroadcasterInterface,
9450 ES::Target: EntropySource,
9451 NS::Target: NodeSigner,
9452 SP::Target: SignerProvider,
9453 F::Target: FeeEstimator,
9457 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9458 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9460 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9461 (&self, height_opt: Option<u32>, f: FN) {
9462 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9463 // during initialization prior to the chain_monitor being fully configured in some cases.
9464 // See the docs for `ChannelManagerReadArgs` for more.
9466 let mut failed_channels = Vec::new();
9467 let mut timed_out_htlcs = Vec::new();
9469 let per_peer_state = self.per_peer_state.read().unwrap();
9470 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9471 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9472 let peer_state = &mut *peer_state_lock;
9473 let pending_msg_events = &mut peer_state.pending_msg_events;
9475 peer_state.channel_by_id.retain(|_, phase| {
9477 // Retain unfunded channels.
9478 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9479 // TODO(dual_funding): Combine this match arm with above.
9480 #[cfg(any(dual_funding, splicing))]
9481 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9482 ChannelPhase::Funded(channel) => {
9483 let res = f(channel);
9484 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9485 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9486 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9487 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9488 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9490 let logger = WithChannelContext::from(&self.logger, &channel.context);
9491 if let Some(channel_ready) = channel_ready_opt {
9492 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9493 if channel.context.is_usable() {
9494 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9495 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9496 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9497 node_id: channel.context.get_counterparty_node_id(),
9502 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9507 let mut pending_events = self.pending_events.lock().unwrap();
9508 emit_channel_ready_event!(pending_events, channel);
9511 if let Some(announcement_sigs) = announcement_sigs {
9512 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9513 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9514 node_id: channel.context.get_counterparty_node_id(),
9515 msg: announcement_sigs,
9517 if let Some(height) = height_opt {
9518 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9519 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9521 // Note that announcement_signatures fails if the channel cannot be announced,
9522 // so get_channel_update_for_broadcast will never fail by the time we get here.
9523 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9528 if channel.is_our_channel_ready() {
9529 if let Some(real_scid) = channel.context.get_short_channel_id() {
9530 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9531 // to the short_to_chan_info map here. Note that we check whether we
9532 // can relay using the real SCID at relay-time (i.e.
9533 // enforce option_scid_alias then), and if the funding tx is ever
9534 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9535 // is always consistent.
9536 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9537 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9538 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9539 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9540 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9543 } else if let Err(reason) = res {
9544 update_maps_on_chan_removal!(self, &channel.context);
9545 // It looks like our counterparty went on-chain or funding transaction was
9546 // reorged out of the main chain. Close the channel.
9547 let reason_message = format!("{}", reason);
9548 failed_channels.push(channel.context.force_shutdown(true, reason));
9549 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9550 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9551 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9555 pending_msg_events.push(events::MessageSendEvent::HandleError {
9556 node_id: channel.context.get_counterparty_node_id(),
9557 action: msgs::ErrorAction::DisconnectPeer {
9558 msg: Some(msgs::ErrorMessage {
9559 channel_id: channel.context.channel_id(),
9560 data: reason_message,
9573 if let Some(height) = height_opt {
9574 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9575 payment.htlcs.retain(|htlc| {
9576 // If height is approaching the number of blocks we think it takes us to get
9577 // our commitment transaction confirmed before the HTLC expires, plus the
9578 // number of blocks we generally consider it to take to do a commitment update,
9579 // just give up on it and fail the HTLC.
9580 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9581 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9582 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9584 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9585 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9586 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9590 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9593 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9594 intercepted_htlcs.retain(|_, htlc| {
9595 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9596 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9597 short_channel_id: htlc.prev_short_channel_id,
9598 user_channel_id: Some(htlc.prev_user_channel_id),
9599 htlc_id: htlc.prev_htlc_id,
9600 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9601 phantom_shared_secret: None,
9602 outpoint: htlc.prev_funding_outpoint,
9603 channel_id: htlc.prev_channel_id,
9604 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9607 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9608 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9609 _ => unreachable!(),
9611 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9612 HTLCFailReason::from_failure_code(0x2000 | 2),
9613 HTLCDestination::InvalidForward { requested_forward_scid }));
9614 let logger = WithContext::from(
9615 &self.logger, None, Some(htlc.prev_channel_id)
9617 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9623 self.handle_init_event_channel_failures(failed_channels);
9625 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9626 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9630 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9631 /// may have events that need processing.
9633 /// In order to check if this [`ChannelManager`] needs persisting, call
9634 /// [`Self::get_and_clear_needs_persistence`].
9636 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9637 /// [`ChannelManager`] and should instead register actions to be taken later.
9638 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9639 self.event_persist_notifier.get_future()
9642 /// Returns true if this [`ChannelManager`] needs to be persisted.
9644 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9645 /// indicates this should be checked.
9646 pub fn get_and_clear_needs_persistence(&self) -> bool {
9647 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9650 #[cfg(any(test, feature = "_test_utils"))]
9651 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9652 self.event_persist_notifier.notify_pending()
9655 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9656 /// [`chain::Confirm`] interfaces.
9657 pub fn current_best_block(&self) -> BestBlock {
9658 self.best_block.read().unwrap().clone()
9661 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9662 /// [`ChannelManager`].
9663 pub fn node_features(&self) -> NodeFeatures {
9664 provided_node_features(&self.default_configuration)
9667 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9668 /// [`ChannelManager`].
9670 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9671 /// or not. Thus, this method is not public.
9672 #[cfg(any(feature = "_test_utils", test))]
9673 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9674 provided_bolt11_invoice_features(&self.default_configuration)
9677 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9678 /// [`ChannelManager`].
9679 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9680 provided_bolt12_invoice_features(&self.default_configuration)
9683 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9684 /// [`ChannelManager`].
9685 pub fn channel_features(&self) -> ChannelFeatures {
9686 provided_channel_features(&self.default_configuration)
9689 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9690 /// [`ChannelManager`].
9691 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9692 provided_channel_type_features(&self.default_configuration)
9695 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9696 /// [`ChannelManager`].
9697 pub fn init_features(&self) -> InitFeatures {
9698 provided_init_features(&self.default_configuration)
9702 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9703 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9705 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9706 T::Target: BroadcasterInterface,
9707 ES::Target: EntropySource,
9708 NS::Target: NodeSigner,
9709 SP::Target: SignerProvider,
9710 F::Target: FeeEstimator,
9714 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9715 // Note that we never need to persist the updated ChannelManager for an inbound
9716 // open_channel message - pre-funded channels are never written so there should be no
9717 // change to the contents.
9718 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9719 let res = self.internal_open_channel(counterparty_node_id, msg);
9720 let persist = match &res {
9721 Err(e) if e.closes_channel() => {
9722 debug_assert!(false, "We shouldn't close a new channel");
9723 NotifyOption::DoPersist
9725 _ => NotifyOption::SkipPersistHandleEvents,
9727 let _ = handle_error!(self, res, *counterparty_node_id);
9732 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9733 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9734 "Dual-funded channels not supported".to_owned(),
9735 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9738 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9739 // Note that we never need to persist the updated ChannelManager for an inbound
9740 // accept_channel message - pre-funded channels are never written so there should be no
9741 // change to the contents.
9742 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9743 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9744 NotifyOption::SkipPersistHandleEvents
9748 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9749 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9750 "Dual-funded channels not supported".to_owned(),
9751 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9754 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9755 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9756 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9759 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9760 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9761 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9764 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9765 // Note that we never need to persist the updated ChannelManager for an inbound
9766 // channel_ready message - while the channel's state will change, any channel_ready message
9767 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9768 // will not force-close the channel on startup.
9769 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9770 let res = self.internal_channel_ready(counterparty_node_id, msg);
9771 let persist = match &res {
9772 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9773 _ => NotifyOption::SkipPersistHandleEvents,
9775 let _ = handle_error!(self, res, *counterparty_node_id);
9780 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9781 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9782 "Quiescence not supported".to_owned(),
9783 msg.channel_id.clone())), *counterparty_node_id);
9787 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9788 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9789 "Splicing not supported".to_owned(),
9790 msg.channel_id.clone())), *counterparty_node_id);
9794 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9795 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9796 "Splicing not supported (splice_ack)".to_owned(),
9797 msg.channel_id.clone())), *counterparty_node_id);
9801 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9802 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9803 "Splicing not supported (splice_locked)".to_owned(),
9804 msg.channel_id.clone())), *counterparty_node_id);
9807 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9808 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9809 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9812 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9813 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9814 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9817 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9818 // Note that we never need to persist the updated ChannelManager for an inbound
9819 // update_add_htlc message - the message itself doesn't change our channel state only the
9820 // `commitment_signed` message afterwards will.
9821 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9822 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9823 let persist = match &res {
9824 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9825 Err(_) => NotifyOption::SkipPersistHandleEvents,
9826 Ok(()) => NotifyOption::SkipPersistNoEvents,
9828 let _ = handle_error!(self, res, *counterparty_node_id);
9833 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9834 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9835 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9838 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9839 // Note that we never need to persist the updated ChannelManager for an inbound
9840 // update_fail_htlc message - the message itself doesn't change our channel state only the
9841 // `commitment_signed` message afterwards will.
9842 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9843 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9844 let persist = match &res {
9845 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9846 Err(_) => NotifyOption::SkipPersistHandleEvents,
9847 Ok(()) => NotifyOption::SkipPersistNoEvents,
9849 let _ = handle_error!(self, res, *counterparty_node_id);
9854 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9855 // Note that we never need to persist the updated ChannelManager for an inbound
9856 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9857 // only the `commitment_signed` message afterwards will.
9858 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9859 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9860 let persist = match &res {
9861 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9862 Err(_) => NotifyOption::SkipPersistHandleEvents,
9863 Ok(()) => NotifyOption::SkipPersistNoEvents,
9865 let _ = handle_error!(self, res, *counterparty_node_id);
9870 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9871 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9872 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9875 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9876 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9877 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9880 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9881 // Note that we never need to persist the updated ChannelManager for an inbound
9882 // update_fee message - the message itself doesn't change our channel state only the
9883 // `commitment_signed` message afterwards will.
9884 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9885 let res = self.internal_update_fee(counterparty_node_id, msg);
9886 let persist = match &res {
9887 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9888 Err(_) => NotifyOption::SkipPersistHandleEvents,
9889 Ok(()) => NotifyOption::SkipPersistNoEvents,
9891 let _ = handle_error!(self, res, *counterparty_node_id);
9896 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9897 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9898 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9901 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9902 PersistenceNotifierGuard::optionally_notify(self, || {
9903 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9906 NotifyOption::DoPersist
9911 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9912 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9913 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9914 let persist = match &res {
9915 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9916 Err(_) => NotifyOption::SkipPersistHandleEvents,
9917 Ok(persist) => *persist,
9919 let _ = handle_error!(self, res, *counterparty_node_id);
9924 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9925 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9926 self, || NotifyOption::SkipPersistHandleEvents);
9927 let mut failed_channels = Vec::new();
9928 let mut per_peer_state = self.per_peer_state.write().unwrap();
9931 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9932 "Marking channels with {} disconnected and generating channel_updates.",
9933 log_pubkey!(counterparty_node_id)
9935 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9936 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9937 let peer_state = &mut *peer_state_lock;
9938 let pending_msg_events = &mut peer_state.pending_msg_events;
9939 peer_state.channel_by_id.retain(|_, phase| {
9940 let context = match phase {
9941 ChannelPhase::Funded(chan) => {
9942 let logger = WithChannelContext::from(&self.logger, &chan.context);
9943 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9944 // We only retain funded channels that are not shutdown.
9949 // We retain UnfundedOutboundV1 channel for some time in case
9950 // peer unexpectedly disconnects, and intends to reconnect again.
9951 ChannelPhase::UnfundedOutboundV1(_) => {
9954 // Unfunded inbound channels will always be removed.
9955 ChannelPhase::UnfundedInboundV1(chan) => {
9958 #[cfg(any(dual_funding, splicing))]
9959 ChannelPhase::UnfundedOutboundV2(chan) => {
9962 #[cfg(any(dual_funding, splicing))]
9963 ChannelPhase::UnfundedInboundV2(chan) => {
9967 // Clean up for removal.
9968 update_maps_on_chan_removal!(self, &context);
9969 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9972 // Note that we don't bother generating any events for pre-accept channels -
9973 // they're not considered "channels" yet from the PoV of our events interface.
9974 peer_state.inbound_channel_request_by_id.clear();
9975 pending_msg_events.retain(|msg| {
9977 // V1 Channel Establishment
9978 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9979 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9980 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9981 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9982 // V2 Channel Establishment
9983 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9984 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9985 // Common Channel Establishment
9986 &events::MessageSendEvent::SendChannelReady { .. } => false,
9987 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9989 &events::MessageSendEvent::SendStfu { .. } => false,
9991 &events::MessageSendEvent::SendSplice { .. } => false,
9992 &events::MessageSendEvent::SendSpliceAck { .. } => false,
9993 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
9994 // Interactive Transaction Construction
9995 &events::MessageSendEvent::SendTxAddInput { .. } => false,
9996 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
9997 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
9998 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
9999 &events::MessageSendEvent::SendTxComplete { .. } => false,
10000 &events::MessageSendEvent::SendTxSignatures { .. } => false,
10001 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
10002 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
10003 &events::MessageSendEvent::SendTxAbort { .. } => false,
10004 // Channel Operations
10005 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
10006 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
10007 &events::MessageSendEvent::SendClosingSigned { .. } => false,
10008 &events::MessageSendEvent::SendShutdown { .. } => false,
10009 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
10010 &events::MessageSendEvent::HandleError { .. } => false,
10012 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
10013 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
10014 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
10015 // This check here is to ensure exhaustivity.
10016 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
10017 debug_assert!(false, "This event shouldn't have been here");
10020 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
10021 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
10022 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10023 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10024 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10025 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10028 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10029 peer_state.is_connected = false;
10030 peer_state.ok_to_remove(true)
10031 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10034 per_peer_state.remove(counterparty_node_id);
10036 mem::drop(per_peer_state);
10038 for failure in failed_channels.drain(..) {
10039 self.finish_close_channel(failure);
10043 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10044 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10045 if !init_msg.features.supports_static_remote_key() {
10046 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10050 let mut res = Ok(());
10052 PersistenceNotifierGuard::optionally_notify(self, || {
10053 // If we have too many peers connected which don't have funded channels, disconnect the
10054 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10055 // unfunded channels taking up space in memory for disconnected peers, we still let new
10056 // peers connect, but we'll reject new channels from them.
10057 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10058 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10061 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10062 match peer_state_lock.entry(counterparty_node_id.clone()) {
10063 hash_map::Entry::Vacant(e) => {
10064 if inbound_peer_limited {
10066 return NotifyOption::SkipPersistNoEvents;
10068 e.insert(Mutex::new(PeerState {
10069 channel_by_id: new_hash_map(),
10070 inbound_channel_request_by_id: new_hash_map(),
10071 latest_features: init_msg.features.clone(),
10072 pending_msg_events: Vec::new(),
10073 in_flight_monitor_updates: BTreeMap::new(),
10074 monitor_update_blocked_actions: BTreeMap::new(),
10075 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10076 is_connected: true,
10079 hash_map::Entry::Occupied(e) => {
10080 let mut peer_state = e.get().lock().unwrap();
10081 peer_state.latest_features = init_msg.features.clone();
10083 let best_block_height = self.best_block.read().unwrap().height;
10084 if inbound_peer_limited &&
10085 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10086 peer_state.channel_by_id.len()
10089 return NotifyOption::SkipPersistNoEvents;
10092 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10093 peer_state.is_connected = true;
10098 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10100 let per_peer_state = self.per_peer_state.read().unwrap();
10101 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10102 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10103 let peer_state = &mut *peer_state_lock;
10104 let pending_msg_events = &mut peer_state.pending_msg_events;
10106 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10108 ChannelPhase::Funded(chan) => {
10109 let logger = WithChannelContext::from(&self.logger, &chan.context);
10110 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10111 node_id: chan.context.get_counterparty_node_id(),
10112 msg: chan.get_channel_reestablish(&&logger),
10116 ChannelPhase::UnfundedOutboundV1(chan) => {
10117 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10118 node_id: chan.context.get_counterparty_node_id(),
10119 msg: chan.get_open_channel(self.chain_hash),
10123 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10124 #[cfg(any(dual_funding, splicing))]
10125 ChannelPhase::UnfundedOutboundV2(chan) => {
10126 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10127 node_id: chan.context.get_counterparty_node_id(),
10128 msg: chan.get_open_channel_v2(self.chain_hash),
10132 ChannelPhase::UnfundedInboundV1(_) => {
10133 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10134 // they are not persisted and won't be recovered after a crash.
10135 // Therefore, they shouldn't exist at this point.
10136 debug_assert!(false);
10139 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10140 #[cfg(any(dual_funding, splicing))]
10141 ChannelPhase::UnfundedInboundV2(channel) => {
10142 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10143 // they are not persisted and won't be recovered after a crash.
10144 // Therefore, they shouldn't exist at this point.
10145 debug_assert!(false);
10151 return NotifyOption::SkipPersistHandleEvents;
10152 //TODO: Also re-broadcast announcement_signatures
10157 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10158 match &msg.data as &str {
10159 "cannot co-op close channel w/ active htlcs"|
10160 "link failed to shutdown" =>
10162 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10163 // send one while HTLCs are still present. The issue is tracked at
10164 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10165 // to fix it but none so far have managed to land upstream. The issue appears to be
10166 // very low priority for the LND team despite being marked "P1".
10167 // We're not going to bother handling this in a sensible way, instead simply
10168 // repeating the Shutdown message on repeat until morale improves.
10169 if !msg.channel_id.is_zero() {
10170 PersistenceNotifierGuard::optionally_notify(
10172 || -> NotifyOption {
10173 let per_peer_state = self.per_peer_state.read().unwrap();
10174 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10175 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10176 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10177 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10178 if let Some(msg) = chan.get_outbound_shutdown() {
10179 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10180 node_id: *counterparty_node_id,
10184 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10185 node_id: *counterparty_node_id,
10186 action: msgs::ErrorAction::SendWarningMessage {
10187 msg: msgs::WarningMessage {
10188 channel_id: msg.channel_id,
10189 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10191 log_level: Level::Trace,
10194 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10195 // a `ChannelManager` write here.
10196 return NotifyOption::SkipPersistHandleEvents;
10198 NotifyOption::SkipPersistNoEvents
10207 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10209 if msg.channel_id.is_zero() {
10210 let channel_ids: Vec<ChannelId> = {
10211 let per_peer_state = self.per_peer_state.read().unwrap();
10212 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10213 if peer_state_mutex_opt.is_none() { return; }
10214 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10215 let peer_state = &mut *peer_state_lock;
10216 // Note that we don't bother generating any events for pre-accept channels -
10217 // they're not considered "channels" yet from the PoV of our events interface.
10218 peer_state.inbound_channel_request_by_id.clear();
10219 peer_state.channel_by_id.keys().cloned().collect()
10221 for channel_id in channel_ids {
10222 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10223 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10227 // First check if we can advance the channel type and try again.
10228 let per_peer_state = self.per_peer_state.read().unwrap();
10229 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10230 if peer_state_mutex_opt.is_none() { return; }
10231 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10232 let peer_state = &mut *peer_state_lock;
10233 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10234 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10235 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10236 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10237 node_id: *counterparty_node_id,
10243 #[cfg(any(dual_funding, splicing))]
10244 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10245 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10246 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10247 node_id: *counterparty_node_id,
10253 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10254 #[cfg(any(dual_funding, splicing))]
10255 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10259 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10260 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10264 fn provided_node_features(&self) -> NodeFeatures {
10265 provided_node_features(&self.default_configuration)
10268 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10269 provided_init_features(&self.default_configuration)
10272 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10273 Some(vec![self.chain_hash])
10276 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10277 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10278 "Dual-funded channels not supported".to_owned(),
10279 msg.channel_id.clone())), *counterparty_node_id);
10282 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10283 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10284 "Dual-funded channels not supported".to_owned(),
10285 msg.channel_id.clone())), *counterparty_node_id);
10288 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10289 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10290 "Dual-funded channels not supported".to_owned(),
10291 msg.channel_id.clone())), *counterparty_node_id);
10294 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10295 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10296 "Dual-funded channels not supported".to_owned(),
10297 msg.channel_id.clone())), *counterparty_node_id);
10300 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10301 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10302 "Dual-funded channels not supported".to_owned(),
10303 msg.channel_id.clone())), *counterparty_node_id);
10306 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10307 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10308 "Dual-funded channels not supported".to_owned(),
10309 msg.channel_id.clone())), *counterparty_node_id);
10312 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10313 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10314 "Dual-funded channels not supported".to_owned(),
10315 msg.channel_id.clone())), *counterparty_node_id);
10318 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10319 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10320 "Dual-funded channels not supported".to_owned(),
10321 msg.channel_id.clone())), *counterparty_node_id);
10324 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10325 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10326 "Dual-funded channels not supported".to_owned(),
10327 msg.channel_id.clone())), *counterparty_node_id);
10331 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10332 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10334 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10335 T::Target: BroadcasterInterface,
10336 ES::Target: EntropySource,
10337 NS::Target: NodeSigner,
10338 SP::Target: SignerProvider,
10339 F::Target: FeeEstimator,
10343 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
10344 let secp_ctx = &self.secp_ctx;
10345 let expanded_key = &self.inbound_payment_key;
10348 OffersMessage::InvoiceRequest(invoice_request) => {
10349 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10352 Ok(amount_msats) => amount_msats,
10353 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
10355 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10356 Ok(invoice_request) => invoice_request,
10358 let error = Bolt12SemanticError::InvalidMetadata;
10359 return Some(OffersMessage::InvoiceError(error.into()));
10363 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10364 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10365 Some(amount_msats), relative_expiry, None
10367 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10369 let error = Bolt12SemanticError::InvalidAmount;
10370 return Some(OffersMessage::InvoiceError(error.into()));
10374 let payment_context = PaymentContext::Bolt12Offer(Bolt12OfferContext {
10375 offer_id: invoice_request.offer_id,
10376 invoice_request: invoice_request.fields(),
10378 let payment_paths = match self.create_blinded_payment_paths(
10379 amount_msats, payment_secret, payment_context
10381 Ok(payment_paths) => payment_paths,
10383 let error = Bolt12SemanticError::MissingPaths;
10384 return Some(OffersMessage::InvoiceError(error.into()));
10388 #[cfg(not(feature = "std"))]
10389 let created_at = Duration::from_secs(
10390 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10393 let response = if invoice_request.keys.is_some() {
10394 #[cfg(feature = "std")]
10395 let builder = invoice_request.respond_using_derived_keys(
10396 payment_paths, payment_hash
10398 #[cfg(not(feature = "std"))]
10399 let builder = invoice_request.respond_using_derived_keys_no_std(
10400 payment_paths, payment_hash, created_at
10403 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10404 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10405 .map_err(InvoiceError::from)
10407 #[cfg(feature = "std")]
10408 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10409 #[cfg(not(feature = "std"))]
10410 let builder = invoice_request.respond_with_no_std(
10411 payment_paths, payment_hash, created_at
10414 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10415 .and_then(|builder| builder.allow_mpp().build())
10416 .map_err(InvoiceError::from)
10417 .and_then(|invoice| {
10419 let mut invoice = invoice;
10421 .sign(|invoice: &UnsignedBolt12Invoice|
10422 self.node_signer.sign_bolt12_invoice(invoice)
10424 .map_err(InvoiceError::from)
10429 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
10430 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
10433 OffersMessage::Invoice(invoice) => {
10434 let response = invoice
10435 .verify(expanded_key, secp_ctx)
10436 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10437 .and_then(|payment_id| {
10438 let features = self.bolt12_invoice_features();
10439 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10440 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10442 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10444 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10445 InvoiceError::from_string(format!("{:?}", e))
10452 Err(e) => Some(OffersMessage::InvoiceError(e)),
10455 OffersMessage::InvoiceError(invoice_error) => {
10456 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10462 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10463 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10467 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10468 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10470 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10471 T::Target: BroadcasterInterface,
10472 ES::Target: EntropySource,
10473 NS::Target: NodeSigner,
10474 SP::Target: SignerProvider,
10475 F::Target: FeeEstimator,
10479 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10480 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10484 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10485 /// [`ChannelManager`].
10486 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10487 let mut node_features = provided_init_features(config).to_context();
10488 node_features.set_keysend_optional();
10492 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10493 /// [`ChannelManager`].
10495 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10496 /// or not. Thus, this method is not public.
10497 #[cfg(any(feature = "_test_utils", test))]
10498 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10499 provided_init_features(config).to_context()
10502 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10503 /// [`ChannelManager`].
10504 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10505 provided_init_features(config).to_context()
10508 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10509 /// [`ChannelManager`].
10510 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10511 provided_init_features(config).to_context()
10514 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10515 /// [`ChannelManager`].
10516 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10517 ChannelTypeFeatures::from_init(&provided_init_features(config))
10520 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10521 /// [`ChannelManager`].
10522 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10523 // Note that if new features are added here which other peers may (eventually) require, we
10524 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10525 // [`ErroringMessageHandler`].
10526 let mut features = InitFeatures::empty();
10527 features.set_data_loss_protect_required();
10528 features.set_upfront_shutdown_script_optional();
10529 features.set_variable_length_onion_required();
10530 features.set_static_remote_key_required();
10531 features.set_payment_secret_required();
10532 features.set_basic_mpp_optional();
10533 features.set_wumbo_optional();
10534 features.set_shutdown_any_segwit_optional();
10535 features.set_channel_type_optional();
10536 features.set_scid_privacy_optional();
10537 features.set_zero_conf_optional();
10538 features.set_route_blinding_optional();
10539 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10540 features.set_anchors_zero_fee_htlc_tx_optional();
10545 const SERIALIZATION_VERSION: u8 = 1;
10546 const MIN_SERIALIZATION_VERSION: u8 = 1;
10548 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10549 (2, fee_base_msat, required),
10550 (4, fee_proportional_millionths, required),
10551 (6, cltv_expiry_delta, required),
10554 impl_writeable_tlv_based!(ChannelCounterparty, {
10555 (2, node_id, required),
10556 (4, features, required),
10557 (6, unspendable_punishment_reserve, required),
10558 (8, forwarding_info, option),
10559 (9, outbound_htlc_minimum_msat, option),
10560 (11, outbound_htlc_maximum_msat, option),
10563 impl Writeable for ChannelDetails {
10564 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10565 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10566 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10567 let user_channel_id_low = self.user_channel_id as u64;
10568 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10569 write_tlv_fields!(writer, {
10570 (1, self.inbound_scid_alias, option),
10571 (2, self.channel_id, required),
10572 (3, self.channel_type, option),
10573 (4, self.counterparty, required),
10574 (5, self.outbound_scid_alias, option),
10575 (6, self.funding_txo, option),
10576 (7, self.config, option),
10577 (8, self.short_channel_id, option),
10578 (9, self.confirmations, option),
10579 (10, self.channel_value_satoshis, required),
10580 (12, self.unspendable_punishment_reserve, option),
10581 (14, user_channel_id_low, required),
10582 (16, self.balance_msat, required),
10583 (18, self.outbound_capacity_msat, required),
10584 (19, self.next_outbound_htlc_limit_msat, required),
10585 (20, self.inbound_capacity_msat, required),
10586 (21, self.next_outbound_htlc_minimum_msat, required),
10587 (22, self.confirmations_required, option),
10588 (24, self.force_close_spend_delay, option),
10589 (26, self.is_outbound, required),
10590 (28, self.is_channel_ready, required),
10591 (30, self.is_usable, required),
10592 (32, self.is_public, required),
10593 (33, self.inbound_htlc_minimum_msat, option),
10594 (35, self.inbound_htlc_maximum_msat, option),
10595 (37, user_channel_id_high_opt, option),
10596 (39, self.feerate_sat_per_1000_weight, option),
10597 (41, self.channel_shutdown_state, option),
10598 (43, self.pending_inbound_htlcs, optional_vec),
10599 (45, self.pending_outbound_htlcs, optional_vec),
10605 impl Readable for ChannelDetails {
10606 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10607 _init_and_read_len_prefixed_tlv_fields!(reader, {
10608 (1, inbound_scid_alias, option),
10609 (2, channel_id, required),
10610 (3, channel_type, option),
10611 (4, counterparty, required),
10612 (5, outbound_scid_alias, option),
10613 (6, funding_txo, option),
10614 (7, config, option),
10615 (8, short_channel_id, option),
10616 (9, confirmations, option),
10617 (10, channel_value_satoshis, required),
10618 (12, unspendable_punishment_reserve, option),
10619 (14, user_channel_id_low, required),
10620 (16, balance_msat, required),
10621 (18, outbound_capacity_msat, required),
10622 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10623 // filled in, so we can safely unwrap it here.
10624 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10625 (20, inbound_capacity_msat, required),
10626 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10627 (22, confirmations_required, option),
10628 (24, force_close_spend_delay, option),
10629 (26, is_outbound, required),
10630 (28, is_channel_ready, required),
10631 (30, is_usable, required),
10632 (32, is_public, required),
10633 (33, inbound_htlc_minimum_msat, option),
10634 (35, inbound_htlc_maximum_msat, option),
10635 (37, user_channel_id_high_opt, option),
10636 (39, feerate_sat_per_1000_weight, option),
10637 (41, channel_shutdown_state, option),
10638 (43, pending_inbound_htlcs, optional_vec),
10639 (45, pending_outbound_htlcs, optional_vec),
10642 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10643 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10644 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10645 let user_channel_id = user_channel_id_low as u128 +
10646 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10649 inbound_scid_alias,
10650 channel_id: channel_id.0.unwrap(),
10652 counterparty: counterparty.0.unwrap(),
10653 outbound_scid_alias,
10657 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10658 unspendable_punishment_reserve,
10660 balance_msat: balance_msat.0.unwrap(),
10661 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10662 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10663 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10664 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10665 confirmations_required,
10667 force_close_spend_delay,
10668 is_outbound: is_outbound.0.unwrap(),
10669 is_channel_ready: is_channel_ready.0.unwrap(),
10670 is_usable: is_usable.0.unwrap(),
10671 is_public: is_public.0.unwrap(),
10672 inbound_htlc_minimum_msat,
10673 inbound_htlc_maximum_msat,
10674 feerate_sat_per_1000_weight,
10675 channel_shutdown_state,
10676 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10677 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10682 impl_writeable_tlv_based!(PhantomRouteHints, {
10683 (2, channels, required_vec),
10684 (4, phantom_scid, required),
10685 (6, real_node_pubkey, required),
10688 impl_writeable_tlv_based!(BlindedForward, {
10689 (0, inbound_blinding_point, required),
10690 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10693 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10695 (0, onion_packet, required),
10696 (1, blinded, option),
10697 (2, short_channel_id, required),
10700 (0, payment_data, required),
10701 (1, phantom_shared_secret, option),
10702 (2, incoming_cltv_expiry, required),
10703 (3, payment_metadata, option),
10704 (5, custom_tlvs, optional_vec),
10705 (7, requires_blinded_error, (default_value, false)),
10706 (9, payment_context, option),
10708 (2, ReceiveKeysend) => {
10709 (0, payment_preimage, required),
10710 (1, requires_blinded_error, (default_value, false)),
10711 (2, incoming_cltv_expiry, required),
10712 (3, payment_metadata, option),
10713 (4, payment_data, option), // Added in 0.0.116
10714 (5, custom_tlvs, optional_vec),
10718 impl_writeable_tlv_based!(PendingHTLCInfo, {
10719 (0, routing, required),
10720 (2, incoming_shared_secret, required),
10721 (4, payment_hash, required),
10722 (6, outgoing_amt_msat, required),
10723 (8, outgoing_cltv_value, required),
10724 (9, incoming_amt_msat, option),
10725 (10, skimmed_fee_msat, option),
10729 impl Writeable for HTLCFailureMsg {
10730 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10732 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10733 0u8.write(writer)?;
10734 channel_id.write(writer)?;
10735 htlc_id.write(writer)?;
10736 reason.write(writer)?;
10738 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10739 channel_id, htlc_id, sha256_of_onion, failure_code
10741 1u8.write(writer)?;
10742 channel_id.write(writer)?;
10743 htlc_id.write(writer)?;
10744 sha256_of_onion.write(writer)?;
10745 failure_code.write(writer)?;
10752 impl Readable for HTLCFailureMsg {
10753 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10754 let id: u8 = Readable::read(reader)?;
10757 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10758 channel_id: Readable::read(reader)?,
10759 htlc_id: Readable::read(reader)?,
10760 reason: Readable::read(reader)?,
10764 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10765 channel_id: Readable::read(reader)?,
10766 htlc_id: Readable::read(reader)?,
10767 sha256_of_onion: Readable::read(reader)?,
10768 failure_code: Readable::read(reader)?,
10771 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10772 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10773 // messages contained in the variants.
10774 // In version 0.0.101, support for reading the variants with these types was added, and
10775 // we should migrate to writing these variants when UpdateFailHTLC or
10776 // UpdateFailMalformedHTLC get TLV fields.
10778 let length: BigSize = Readable::read(reader)?;
10779 let mut s = FixedLengthReader::new(reader, length.0);
10780 let res = Readable::read(&mut s)?;
10781 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10782 Ok(HTLCFailureMsg::Relay(res))
10785 let length: BigSize = Readable::read(reader)?;
10786 let mut s = FixedLengthReader::new(reader, length.0);
10787 let res = Readable::read(&mut s)?;
10788 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10789 Ok(HTLCFailureMsg::Malformed(res))
10791 _ => Err(DecodeError::UnknownRequiredFeature),
10796 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10801 impl_writeable_tlv_based_enum!(BlindedFailure,
10802 (0, FromIntroductionNode) => {},
10803 (2, FromBlindedNode) => {}, ;
10806 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10807 (0, short_channel_id, required),
10808 (1, phantom_shared_secret, option),
10809 (2, outpoint, required),
10810 (3, blinded_failure, option),
10811 (4, htlc_id, required),
10812 (6, incoming_packet_shared_secret, required),
10813 (7, user_channel_id, option),
10814 // Note that by the time we get past the required read for type 2 above, outpoint will be
10815 // filled in, so we can safely unwrap it here.
10816 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10819 impl Writeable for ClaimableHTLC {
10820 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10821 let (payment_data, keysend_preimage, payment_context) = match &self.onion_payload {
10822 OnionPayload::Invoice { _legacy_hop_data, payment_context } => {
10823 (_legacy_hop_data.as_ref(), None, payment_context.as_ref())
10825 OnionPayload::Spontaneous(preimage) => (None, Some(preimage), None),
10827 write_tlv_fields!(writer, {
10828 (0, self.prev_hop, required),
10829 (1, self.total_msat, required),
10830 (2, self.value, required),
10831 (3, self.sender_intended_value, required),
10832 (4, payment_data, option),
10833 (5, self.total_value_received, option),
10834 (6, self.cltv_expiry, required),
10835 (8, keysend_preimage, option),
10836 (10, self.counterparty_skimmed_fee_msat, option),
10837 (11, payment_context, option),
10843 impl Readable for ClaimableHTLC {
10844 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10845 _init_and_read_len_prefixed_tlv_fields!(reader, {
10846 (0, prev_hop, required),
10847 (1, total_msat, option),
10848 (2, value_ser, required),
10849 (3, sender_intended_value, option),
10850 (4, payment_data_opt, option),
10851 (5, total_value_received, option),
10852 (6, cltv_expiry, required),
10853 (8, keysend_preimage, option),
10854 (10, counterparty_skimmed_fee_msat, option),
10855 (11, payment_context, option),
10857 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10858 let value = value_ser.0.unwrap();
10859 let onion_payload = match keysend_preimage {
10861 if payment_data.is_some() {
10862 return Err(DecodeError::InvalidValue)
10864 if total_msat.is_none() {
10865 total_msat = Some(value);
10867 OnionPayload::Spontaneous(p)
10870 if total_msat.is_none() {
10871 if payment_data.is_none() {
10872 return Err(DecodeError::InvalidValue)
10874 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10876 OnionPayload::Invoice { _legacy_hop_data: payment_data, payment_context }
10880 prev_hop: prev_hop.0.unwrap(),
10883 sender_intended_value: sender_intended_value.unwrap_or(value),
10884 total_value_received,
10885 total_msat: total_msat.unwrap(),
10887 cltv_expiry: cltv_expiry.0.unwrap(),
10888 counterparty_skimmed_fee_msat,
10893 impl Readable for HTLCSource {
10894 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10895 let id: u8 = Readable::read(reader)?;
10898 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10899 let mut first_hop_htlc_msat: u64 = 0;
10900 let mut path_hops = Vec::new();
10901 let mut payment_id = None;
10902 let mut payment_params: Option<PaymentParameters> = None;
10903 let mut blinded_tail: Option<BlindedTail> = None;
10904 read_tlv_fields!(reader, {
10905 (0, session_priv, required),
10906 (1, payment_id, option),
10907 (2, first_hop_htlc_msat, required),
10908 (4, path_hops, required_vec),
10909 (5, payment_params, (option: ReadableArgs, 0)),
10910 (6, blinded_tail, option),
10912 if payment_id.is_none() {
10913 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10915 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10917 let path = Path { hops: path_hops, blinded_tail };
10918 if path.hops.len() == 0 {
10919 return Err(DecodeError::InvalidValue);
10921 if let Some(params) = payment_params.as_mut() {
10922 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10923 if final_cltv_expiry_delta == &0 {
10924 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10928 Ok(HTLCSource::OutboundRoute {
10929 session_priv: session_priv.0.unwrap(),
10930 first_hop_htlc_msat,
10932 payment_id: payment_id.unwrap(),
10935 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10936 _ => Err(DecodeError::UnknownRequiredFeature),
10941 impl Writeable for HTLCSource {
10942 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10944 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10945 0u8.write(writer)?;
10946 let payment_id_opt = Some(payment_id);
10947 write_tlv_fields!(writer, {
10948 (0, session_priv, required),
10949 (1, payment_id_opt, option),
10950 (2, first_hop_htlc_msat, required),
10951 // 3 was previously used to write a PaymentSecret for the payment.
10952 (4, path.hops, required_vec),
10953 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10954 (6, path.blinded_tail, option),
10957 HTLCSource::PreviousHopData(ref field) => {
10958 1u8.write(writer)?;
10959 field.write(writer)?;
10966 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10967 (0, forward_info, required),
10968 (1, prev_user_channel_id, (default_value, 0)),
10969 (2, prev_short_channel_id, required),
10970 (4, prev_htlc_id, required),
10971 (6, prev_funding_outpoint, required),
10972 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10973 // filled in, so we can safely unwrap it here.
10974 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10977 impl Writeable for HTLCForwardInfo {
10978 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10979 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10981 Self::AddHTLC(info) => {
10985 Self::FailHTLC { htlc_id, err_packet } => {
10986 FAIL_HTLC_VARIANT_ID.write(w)?;
10987 write_tlv_fields!(w, {
10988 (0, htlc_id, required),
10989 (2, err_packet, required),
10992 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
10993 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
10994 // packet so older versions have something to fail back with, but serialize the real data as
10995 // optional TLVs for the benefit of newer versions.
10996 FAIL_HTLC_VARIANT_ID.write(w)?;
10997 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
10998 write_tlv_fields!(w, {
10999 (0, htlc_id, required),
11000 (1, failure_code, required),
11001 (2, dummy_err_packet, required),
11002 (3, sha256_of_onion, required),
11010 impl Readable for HTLCForwardInfo {
11011 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
11012 let id: u8 = Readable::read(r)?;
11014 0 => Self::AddHTLC(Readable::read(r)?),
11016 _init_and_read_len_prefixed_tlv_fields!(r, {
11017 (0, htlc_id, required),
11018 (1, malformed_htlc_failure_code, option),
11019 (2, err_packet, required),
11020 (3, sha256_of_onion, option),
11022 if let Some(failure_code) = malformed_htlc_failure_code {
11023 Self::FailMalformedHTLC {
11024 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11026 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
11030 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11031 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11035 _ => return Err(DecodeError::InvalidValue),
11040 impl_writeable_tlv_based!(PendingInboundPayment, {
11041 (0, payment_secret, required),
11042 (2, expiry_time, required),
11043 (4, user_payment_id, required),
11044 (6, payment_preimage, required),
11045 (8, min_value_msat, required),
11048 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11050 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11051 T::Target: BroadcasterInterface,
11052 ES::Target: EntropySource,
11053 NS::Target: NodeSigner,
11054 SP::Target: SignerProvider,
11055 F::Target: FeeEstimator,
11059 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11060 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11062 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11064 self.chain_hash.write(writer)?;
11066 let best_block = self.best_block.read().unwrap();
11067 best_block.height.write(writer)?;
11068 best_block.block_hash.write(writer)?;
11071 let per_peer_state = self.per_peer_state.write().unwrap();
11073 let mut serializable_peer_count: u64 = 0;
11075 let mut number_of_funded_channels = 0;
11076 for (_, peer_state_mutex) in per_peer_state.iter() {
11077 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11078 let peer_state = &mut *peer_state_lock;
11079 if !peer_state.ok_to_remove(false) {
11080 serializable_peer_count += 1;
11083 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11084 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11088 (number_of_funded_channels as u64).write(writer)?;
11090 for (_, peer_state_mutex) in per_peer_state.iter() {
11091 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11092 let peer_state = &mut *peer_state_lock;
11093 for channel in peer_state.channel_by_id.iter().filter_map(
11094 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11095 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11098 channel.write(writer)?;
11104 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11105 (forward_htlcs.len() as u64).write(writer)?;
11106 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11107 short_channel_id.write(writer)?;
11108 (pending_forwards.len() as u64).write(writer)?;
11109 for forward in pending_forwards {
11110 forward.write(writer)?;
11115 let mut decode_update_add_htlcs_opt = None;
11116 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11117 if !decode_update_add_htlcs.is_empty() {
11118 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11121 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11122 let claimable_payments = self.claimable_payments.lock().unwrap();
11123 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11125 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11126 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11127 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11128 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11129 payment_hash.write(writer)?;
11130 (payment.htlcs.len() as u64).write(writer)?;
11131 for htlc in payment.htlcs.iter() {
11132 htlc.write(writer)?;
11134 htlc_purposes.push(&payment.purpose);
11135 htlc_onion_fields.push(&payment.onion_fields);
11138 let mut monitor_update_blocked_actions_per_peer = None;
11139 let mut peer_states = Vec::new();
11140 for (_, peer_state_mutex) in per_peer_state.iter() {
11141 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11142 // of a lockorder violation deadlock - no other thread can be holding any
11143 // per_peer_state lock at all.
11144 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11147 (serializable_peer_count).write(writer)?;
11148 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11149 // Peers which we have no channels to should be dropped once disconnected. As we
11150 // disconnect all peers when shutting down and serializing the ChannelManager, we
11151 // consider all peers as disconnected here. There's therefore no need write peers with
11153 if !peer_state.ok_to_remove(false) {
11154 peer_pubkey.write(writer)?;
11155 peer_state.latest_features.write(writer)?;
11156 if !peer_state.monitor_update_blocked_actions.is_empty() {
11157 monitor_update_blocked_actions_per_peer
11158 .get_or_insert_with(Vec::new)
11159 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11164 let events = self.pending_events.lock().unwrap();
11165 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11166 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11167 // refuse to read the new ChannelManager.
11168 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11169 if events_not_backwards_compatible {
11170 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11171 // well save the space and not write any events here.
11172 0u64.write(writer)?;
11174 (events.len() as u64).write(writer)?;
11175 for (event, _) in events.iter() {
11176 event.write(writer)?;
11180 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11181 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11182 // the closing monitor updates were always effectively replayed on startup (either directly
11183 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11184 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11185 0u64.write(writer)?;
11187 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11188 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11189 // likely to be identical.
11190 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11191 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11193 (pending_inbound_payments.len() as u64).write(writer)?;
11194 for (hash, pending_payment) in pending_inbound_payments.iter() {
11195 hash.write(writer)?;
11196 pending_payment.write(writer)?;
11199 // For backwards compat, write the session privs and their total length.
11200 let mut num_pending_outbounds_compat: u64 = 0;
11201 for (_, outbound) in pending_outbound_payments.iter() {
11202 if !outbound.is_fulfilled() && !outbound.abandoned() {
11203 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11206 num_pending_outbounds_compat.write(writer)?;
11207 for (_, outbound) in pending_outbound_payments.iter() {
11209 PendingOutboundPayment::Legacy { session_privs } |
11210 PendingOutboundPayment::Retryable { session_privs, .. } => {
11211 for session_priv in session_privs.iter() {
11212 session_priv.write(writer)?;
11215 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11216 PendingOutboundPayment::InvoiceReceived { .. } => {},
11217 PendingOutboundPayment::Fulfilled { .. } => {},
11218 PendingOutboundPayment::Abandoned { .. } => {},
11222 // Encode without retry info for 0.0.101 compatibility.
11223 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11224 for (id, outbound) in pending_outbound_payments.iter() {
11226 PendingOutboundPayment::Legacy { session_privs } |
11227 PendingOutboundPayment::Retryable { session_privs, .. } => {
11228 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11234 let mut pending_intercepted_htlcs = None;
11235 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11236 if our_pending_intercepts.len() != 0 {
11237 pending_intercepted_htlcs = Some(our_pending_intercepts);
11240 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11241 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11242 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11243 // map. Thus, if there are no entries we skip writing a TLV for it.
11244 pending_claiming_payments = None;
11247 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11248 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11249 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11250 if !updates.is_empty() {
11251 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11252 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11257 write_tlv_fields!(writer, {
11258 (1, pending_outbound_payments_no_retry, required),
11259 (2, pending_intercepted_htlcs, option),
11260 (3, pending_outbound_payments, required),
11261 (4, pending_claiming_payments, option),
11262 (5, self.our_network_pubkey, required),
11263 (6, monitor_update_blocked_actions_per_peer, option),
11264 (7, self.fake_scid_rand_bytes, required),
11265 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11266 (9, htlc_purposes, required_vec),
11267 (10, in_flight_monitor_updates, option),
11268 (11, self.probing_cookie_secret, required),
11269 (13, htlc_onion_fields, optional_vec),
11270 (14, decode_update_add_htlcs_opt, option),
11277 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11278 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11279 (self.len() as u64).write(w)?;
11280 for (event, action) in self.iter() {
11283 #[cfg(debug_assertions)] {
11284 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11285 // be persisted and are regenerated on restart. However, if such an event has a
11286 // post-event-handling action we'll write nothing for the event and would have to
11287 // either forget the action or fail on deserialization (which we do below). Thus,
11288 // check that the event is sane here.
11289 let event_encoded = event.encode();
11290 let event_read: Option<Event> =
11291 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11292 if action.is_some() { assert!(event_read.is_some()); }
11298 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11299 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11300 let len: u64 = Readable::read(reader)?;
11301 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11302 let mut events: Self = VecDeque::with_capacity(cmp::min(
11303 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11306 let ev_opt = MaybeReadable::read(reader)?;
11307 let action = Readable::read(reader)?;
11308 if let Some(ev) = ev_opt {
11309 events.push_back((ev, action));
11310 } else if action.is_some() {
11311 return Err(DecodeError::InvalidValue);
11318 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11319 (0, NotShuttingDown) => {},
11320 (2, ShutdownInitiated) => {},
11321 (4, ResolvingHTLCs) => {},
11322 (6, NegotiatingClosingFee) => {},
11323 (8, ShutdownComplete) => {}, ;
11326 /// Arguments for the creation of a ChannelManager that are not deserialized.
11328 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11330 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11331 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11332 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11333 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11334 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11335 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11336 /// same way you would handle a [`chain::Filter`] call using
11337 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11338 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11339 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11340 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11341 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11342 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11344 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11345 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11347 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11348 /// call any other methods on the newly-deserialized [`ChannelManager`].
11350 /// Note that because some channels may be closed during deserialization, it is critical that you
11351 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11352 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11353 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11354 /// not force-close the same channels but consider them live), you may end up revoking a state for
11355 /// which you've already broadcasted the transaction.
11357 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11358 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11360 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11361 T::Target: BroadcasterInterface,
11362 ES::Target: EntropySource,
11363 NS::Target: NodeSigner,
11364 SP::Target: SignerProvider,
11365 F::Target: FeeEstimator,
11369 /// A cryptographically secure source of entropy.
11370 pub entropy_source: ES,
11372 /// A signer that is able to perform node-scoped cryptographic operations.
11373 pub node_signer: NS,
11375 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11376 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11378 pub signer_provider: SP,
11380 /// The fee_estimator for use in the ChannelManager in the future.
11382 /// No calls to the FeeEstimator will be made during deserialization.
11383 pub fee_estimator: F,
11384 /// The chain::Watch for use in the ChannelManager in the future.
11386 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11387 /// you have deserialized ChannelMonitors separately and will add them to your
11388 /// chain::Watch after deserializing this ChannelManager.
11389 pub chain_monitor: M,
11391 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11392 /// used to broadcast the latest local commitment transactions of channels which must be
11393 /// force-closed during deserialization.
11394 pub tx_broadcaster: T,
11395 /// The router which will be used in the ChannelManager in the future for finding routes
11396 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11398 /// No calls to the router will be made during deserialization.
11400 /// The Logger for use in the ChannelManager and which may be used to log information during
11401 /// deserialization.
11403 /// Default settings used for new channels. Any existing channels will continue to use the
11404 /// runtime settings which were stored when the ChannelManager was serialized.
11405 pub default_config: UserConfig,
11407 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11408 /// value.context.get_funding_txo() should be the key).
11410 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11411 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11412 /// is true for missing channels as well. If there is a monitor missing for which we find
11413 /// channel data Err(DecodeError::InvalidValue) will be returned.
11415 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11418 /// This is not exported to bindings users because we have no HashMap bindings
11419 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11422 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11423 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11425 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11426 T::Target: BroadcasterInterface,
11427 ES::Target: EntropySource,
11428 NS::Target: NodeSigner,
11429 SP::Target: SignerProvider,
11430 F::Target: FeeEstimator,
11434 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11435 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11436 /// populate a HashMap directly from C.
11437 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11438 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11440 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11441 channel_monitors: hash_map_from_iter(
11442 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11448 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11449 // SipmleArcChannelManager type:
11450 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11451 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11453 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11454 T::Target: BroadcasterInterface,
11455 ES::Target: EntropySource,
11456 NS::Target: NodeSigner,
11457 SP::Target: SignerProvider,
11458 F::Target: FeeEstimator,
11462 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11463 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11464 Ok((blockhash, Arc::new(chan_manager)))
11468 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11469 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11471 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11472 T::Target: BroadcasterInterface,
11473 ES::Target: EntropySource,
11474 NS::Target: NodeSigner,
11475 SP::Target: SignerProvider,
11476 F::Target: FeeEstimator,
11480 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11481 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11483 let chain_hash: ChainHash = Readable::read(reader)?;
11484 let best_block_height: u32 = Readable::read(reader)?;
11485 let best_block_hash: BlockHash = Readable::read(reader)?;
11487 let mut failed_htlcs = Vec::new();
11489 let channel_count: u64 = Readable::read(reader)?;
11490 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11491 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11492 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11493 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11494 let mut channel_closures = VecDeque::new();
11495 let mut close_background_events = Vec::new();
11496 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11497 for _ in 0..channel_count {
11498 let mut channel: Channel<SP> = Channel::read(reader, (
11499 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11501 let logger = WithChannelContext::from(&args.logger, &channel.context);
11502 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11503 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11504 funding_txo_set.insert(funding_txo.clone());
11505 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11506 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11507 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11508 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11509 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11510 // But if the channel is behind of the monitor, close the channel:
11511 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11512 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11513 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11514 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11515 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11517 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11518 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11519 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11521 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11522 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11523 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11525 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11526 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11527 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11529 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11530 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11531 return Err(DecodeError::InvalidValue);
11533 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11534 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11535 counterparty_node_id, funding_txo, channel_id, update
11538 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11539 channel_closures.push_back((events::Event::ChannelClosed {
11540 channel_id: channel.context.channel_id(),
11541 user_channel_id: channel.context.get_user_id(),
11542 reason: ClosureReason::OutdatedChannelManager,
11543 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11544 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11545 channel_funding_txo: channel.context.get_funding_txo(),
11547 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11548 let mut found_htlc = false;
11549 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11550 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11553 // If we have some HTLCs in the channel which are not present in the newer
11554 // ChannelMonitor, they have been removed and should be failed back to
11555 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11556 // were actually claimed we'd have generated and ensured the previous-hop
11557 // claim update ChannelMonitor updates were persisted prior to persising
11558 // the ChannelMonitor update for the forward leg, so attempting to fail the
11559 // backwards leg of the HTLC will simply be rejected.
11561 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11562 &channel.context.channel_id(), &payment_hash);
11563 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11567 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
11568 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11569 monitor.get_latest_update_id());
11570 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11571 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11573 if let Some(funding_txo) = channel.context.get_funding_txo() {
11574 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11576 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11577 hash_map::Entry::Occupied(mut entry) => {
11578 let by_id_map = entry.get_mut();
11579 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11581 hash_map::Entry::Vacant(entry) => {
11582 let mut by_id_map = new_hash_map();
11583 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11584 entry.insert(by_id_map);
11588 } else if channel.is_awaiting_initial_mon_persist() {
11589 // If we were persisted and shut down while the initial ChannelMonitor persistence
11590 // was in-progress, we never broadcasted the funding transaction and can still
11591 // safely discard the channel.
11592 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11593 channel_closures.push_back((events::Event::ChannelClosed {
11594 channel_id: channel.context.channel_id(),
11595 user_channel_id: channel.context.get_user_id(),
11596 reason: ClosureReason::DisconnectedPeer,
11597 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11598 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11599 channel_funding_txo: channel.context.get_funding_txo(),
11602 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11603 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11604 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11605 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11606 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11607 return Err(DecodeError::InvalidValue);
11611 for (funding_txo, monitor) in args.channel_monitors.iter() {
11612 if !funding_txo_set.contains(funding_txo) {
11613 let logger = WithChannelMonitor::from(&args.logger, monitor);
11614 let channel_id = monitor.channel_id();
11615 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11617 let monitor_update = ChannelMonitorUpdate {
11618 update_id: CLOSED_CHANNEL_UPDATE_ID,
11619 counterparty_node_id: None,
11620 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11621 channel_id: Some(monitor.channel_id()),
11623 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11627 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11628 let forward_htlcs_count: u64 = Readable::read(reader)?;
11629 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11630 for _ in 0..forward_htlcs_count {
11631 let short_channel_id = Readable::read(reader)?;
11632 let pending_forwards_count: u64 = Readable::read(reader)?;
11633 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11634 for _ in 0..pending_forwards_count {
11635 pending_forwards.push(Readable::read(reader)?);
11637 forward_htlcs.insert(short_channel_id, pending_forwards);
11640 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11641 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11642 for _ in 0..claimable_htlcs_count {
11643 let payment_hash = Readable::read(reader)?;
11644 let previous_hops_len: u64 = Readable::read(reader)?;
11645 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11646 for _ in 0..previous_hops_len {
11647 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11649 claimable_htlcs_list.push((payment_hash, previous_hops));
11652 let peer_state_from_chans = |channel_by_id| {
11655 inbound_channel_request_by_id: new_hash_map(),
11656 latest_features: InitFeatures::empty(),
11657 pending_msg_events: Vec::new(),
11658 in_flight_monitor_updates: BTreeMap::new(),
11659 monitor_update_blocked_actions: BTreeMap::new(),
11660 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11661 is_connected: false,
11665 let peer_count: u64 = Readable::read(reader)?;
11666 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11667 for _ in 0..peer_count {
11668 let peer_pubkey = Readable::read(reader)?;
11669 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11670 let mut peer_state = peer_state_from_chans(peer_chans);
11671 peer_state.latest_features = Readable::read(reader)?;
11672 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11675 let event_count: u64 = Readable::read(reader)?;
11676 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11677 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11678 for _ in 0..event_count {
11679 match MaybeReadable::read(reader)? {
11680 Some(event) => pending_events_read.push_back((event, None)),
11685 let background_event_count: u64 = Readable::read(reader)?;
11686 for _ in 0..background_event_count {
11687 match <u8 as Readable>::read(reader)? {
11689 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11690 // however we really don't (and never did) need them - we regenerate all
11691 // on-startup monitor updates.
11692 let _: OutPoint = Readable::read(reader)?;
11693 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11695 _ => return Err(DecodeError::InvalidValue),
11699 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11700 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11702 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11703 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11704 for _ in 0..pending_inbound_payment_count {
11705 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11706 return Err(DecodeError::InvalidValue);
11710 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11711 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11712 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11713 for _ in 0..pending_outbound_payments_count_compat {
11714 let session_priv = Readable::read(reader)?;
11715 let payment = PendingOutboundPayment::Legacy {
11716 session_privs: hash_set_from_iter([session_priv]),
11718 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11719 return Err(DecodeError::InvalidValue)
11723 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11724 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11725 let mut pending_outbound_payments = None;
11726 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11727 let mut received_network_pubkey: Option<PublicKey> = None;
11728 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11729 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11730 let mut claimable_htlc_purposes = None;
11731 let mut claimable_htlc_onion_fields = None;
11732 let mut pending_claiming_payments = Some(new_hash_map());
11733 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11734 let mut events_override = None;
11735 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11736 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11737 read_tlv_fields!(reader, {
11738 (1, pending_outbound_payments_no_retry, option),
11739 (2, pending_intercepted_htlcs, option),
11740 (3, pending_outbound_payments, option),
11741 (4, pending_claiming_payments, option),
11742 (5, received_network_pubkey, option),
11743 (6, monitor_update_blocked_actions_per_peer, option),
11744 (7, fake_scid_rand_bytes, option),
11745 (8, events_override, option),
11746 (9, claimable_htlc_purposes, optional_vec),
11747 (10, in_flight_monitor_updates, option),
11748 (11, probing_cookie_secret, option),
11749 (13, claimable_htlc_onion_fields, optional_vec),
11750 (14, decode_update_add_htlcs, option),
11752 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11753 if fake_scid_rand_bytes.is_none() {
11754 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11757 if probing_cookie_secret.is_none() {
11758 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11761 if let Some(events) = events_override {
11762 pending_events_read = events;
11765 if !channel_closures.is_empty() {
11766 pending_events_read.append(&mut channel_closures);
11769 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11770 pending_outbound_payments = Some(pending_outbound_payments_compat);
11771 } else if pending_outbound_payments.is_none() {
11772 let mut outbounds = new_hash_map();
11773 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11774 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11776 pending_outbound_payments = Some(outbounds);
11778 let pending_outbounds = OutboundPayments {
11779 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11780 retry_lock: Mutex::new(())
11783 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11784 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11785 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11786 // replayed, and for each monitor update we have to replay we have to ensure there's a
11787 // `ChannelMonitor` for it.
11789 // In order to do so we first walk all of our live channels (so that we can check their
11790 // state immediately after doing the update replays, when we have the `update_id`s
11791 // available) and then walk any remaining in-flight updates.
11793 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11794 let mut pending_background_events = Vec::new();
11795 macro_rules! handle_in_flight_updates {
11796 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11797 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11799 let mut max_in_flight_update_id = 0;
11800 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11801 for update in $chan_in_flight_upds.iter() {
11802 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11803 update.update_id, $channel_info_log, &$monitor.channel_id());
11804 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11805 pending_background_events.push(
11806 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11807 counterparty_node_id: $counterparty_node_id,
11808 funding_txo: $funding_txo,
11809 channel_id: $monitor.channel_id(),
11810 update: update.clone(),
11813 if $chan_in_flight_upds.is_empty() {
11814 // We had some updates to apply, but it turns out they had completed before we
11815 // were serialized, we just weren't notified of that. Thus, we may have to run
11816 // the completion actions for any monitor updates, but otherwise are done.
11817 pending_background_events.push(
11818 BackgroundEvent::MonitorUpdatesComplete {
11819 counterparty_node_id: $counterparty_node_id,
11820 channel_id: $monitor.channel_id(),
11823 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11824 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11825 return Err(DecodeError::InvalidValue);
11827 max_in_flight_update_id
11831 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11832 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11833 let peer_state = &mut *peer_state_lock;
11834 for phase in peer_state.channel_by_id.values() {
11835 if let ChannelPhase::Funded(chan) = phase {
11836 let logger = WithChannelContext::from(&args.logger, &chan.context);
11838 // Channels that were persisted have to be funded, otherwise they should have been
11840 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11841 let monitor = args.channel_monitors.get(&funding_txo)
11842 .expect("We already checked for monitor presence when loading channels");
11843 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11844 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11845 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11846 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11847 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11848 funding_txo, monitor, peer_state, logger, ""));
11851 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11852 // If the channel is ahead of the monitor, return DangerousValue:
11853 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11854 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11855 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11856 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11857 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11858 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11859 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11860 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11861 return Err(DecodeError::DangerousValue);
11864 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11865 // created in this `channel_by_id` map.
11866 debug_assert!(false);
11867 return Err(DecodeError::InvalidValue);
11872 if let Some(in_flight_upds) = in_flight_monitor_updates {
11873 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11874 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11875 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11876 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11877 // Now that we've removed all the in-flight monitor updates for channels that are
11878 // still open, we need to replay any monitor updates that are for closed channels,
11879 // creating the neccessary peer_state entries as we go.
11880 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11881 Mutex::new(peer_state_from_chans(new_hash_map()))
11883 let mut peer_state = peer_state_mutex.lock().unwrap();
11884 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11885 funding_txo, monitor, peer_state, logger, "closed ");
11887 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11888 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11889 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11890 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11891 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11892 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11893 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11894 return Err(DecodeError::InvalidValue);
11899 // Note that we have to do the above replays before we push new monitor updates.
11900 pending_background_events.append(&mut close_background_events);
11902 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11903 // should ensure we try them again on the inbound edge. We put them here and do so after we
11904 // have a fully-constructed `ChannelManager` at the end.
11905 let mut pending_claims_to_replay = Vec::new();
11908 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11909 // ChannelMonitor data for any channels for which we do not have authorative state
11910 // (i.e. those for which we just force-closed above or we otherwise don't have a
11911 // corresponding `Channel` at all).
11912 // This avoids several edge-cases where we would otherwise "forget" about pending
11913 // payments which are still in-flight via their on-chain state.
11914 // We only rebuild the pending payments map if we were most recently serialized by
11916 for (_, monitor) in args.channel_monitors.iter() {
11917 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11918 if counterparty_opt.is_none() {
11919 let logger = WithChannelMonitor::from(&args.logger, monitor);
11920 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11921 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11922 if path.hops.is_empty() {
11923 log_error!(logger, "Got an empty path for a pending payment");
11924 return Err(DecodeError::InvalidValue);
11927 let path_amt = path.final_value_msat();
11928 let mut session_priv_bytes = [0; 32];
11929 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11930 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11931 hash_map::Entry::Occupied(mut entry) => {
11932 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11933 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11934 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11936 hash_map::Entry::Vacant(entry) => {
11937 let path_fee = path.fee_msat();
11938 entry.insert(PendingOutboundPayment::Retryable {
11939 retry_strategy: None,
11940 attempts: PaymentAttempts::new(),
11941 payment_params: None,
11942 session_privs: hash_set_from_iter([session_priv_bytes]),
11943 payment_hash: htlc.payment_hash,
11944 payment_secret: None, // only used for retries, and we'll never retry on startup
11945 payment_metadata: None, // only used for retries, and we'll never retry on startup
11946 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11947 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11948 pending_amt_msat: path_amt,
11949 pending_fee_msat: Some(path_fee),
11950 total_msat: path_amt,
11951 starting_block_height: best_block_height,
11952 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11954 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11955 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11960 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11961 match htlc_source {
11962 HTLCSource::PreviousHopData(prev_hop_data) => {
11963 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11964 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11965 info.prev_htlc_id == prev_hop_data.htlc_id
11967 // The ChannelMonitor is now responsible for this HTLC's
11968 // failure/success and will let us know what its outcome is. If we
11969 // still have an entry for this HTLC in `forward_htlcs` or
11970 // `pending_intercepted_htlcs`, we were apparently not persisted after
11971 // the monitor was when forwarding the payment.
11972 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11973 update_add_htlcs.retain(|update_add_htlc| {
11974 let matches = *scid == prev_hop_data.short_channel_id &&
11975 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11977 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11978 &htlc.payment_hash, &monitor.channel_id());
11982 !update_add_htlcs.is_empty()
11984 forward_htlcs.retain(|_, forwards| {
11985 forwards.retain(|forward| {
11986 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11987 if pending_forward_matches_htlc(&htlc_info) {
11988 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11989 &htlc.payment_hash, &monitor.channel_id());
11994 !forwards.is_empty()
11996 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
11997 if pending_forward_matches_htlc(&htlc_info) {
11998 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
11999 &htlc.payment_hash, &monitor.channel_id());
12000 pending_events_read.retain(|(event, _)| {
12001 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
12002 intercepted_id != ev_id
12009 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
12010 if let Some(preimage) = preimage_opt {
12011 let pending_events = Mutex::new(pending_events_read);
12012 // Note that we set `from_onchain` to "false" here,
12013 // deliberately keeping the pending payment around forever.
12014 // Given it should only occur when we have a channel we're
12015 // force-closing for being stale that's okay.
12016 // The alternative would be to wipe the state when claiming,
12017 // generating a `PaymentPathSuccessful` event but regenerating
12018 // it and the `PaymentSent` on every restart until the
12019 // `ChannelMonitor` is removed.
12021 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
12022 channel_funding_outpoint: monitor.get_funding_txo().0,
12023 channel_id: monitor.channel_id(),
12024 counterparty_node_id: path.hops[0].pubkey,
12026 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
12027 path, false, compl_action, &pending_events, &&logger);
12028 pending_events_read = pending_events.into_inner().unwrap();
12035 // Whether the downstream channel was closed or not, try to re-apply any payment
12036 // preimages from it which may be needed in upstream channels for forwarded
12038 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12040 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12041 if let HTLCSource::PreviousHopData(_) = htlc_source {
12042 if let Some(payment_preimage) = preimage_opt {
12043 Some((htlc_source, payment_preimage, htlc.amount_msat,
12044 // Check if `counterparty_opt.is_none()` to see if the
12045 // downstream chan is closed (because we don't have a
12046 // channel_id -> peer map entry).
12047 counterparty_opt.is_none(),
12048 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12049 monitor.get_funding_txo().0, monitor.channel_id()))
12052 // If it was an outbound payment, we've handled it above - if a preimage
12053 // came in and we persisted the `ChannelManager` we either handled it and
12054 // are good to go or the channel force-closed - we don't have to handle the
12055 // channel still live case here.
12059 for tuple in outbound_claimed_htlcs_iter {
12060 pending_claims_to_replay.push(tuple);
12065 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12066 // If we have pending HTLCs to forward, assume we either dropped a
12067 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12068 // shut down before the timer hit. Either way, set the time_forwardable to a small
12069 // constant as enough time has likely passed that we should simply handle the forwards
12070 // now, or at least after the user gets a chance to reconnect to our peers.
12071 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12072 time_forwardable: Duration::from_secs(2),
12076 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12077 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12079 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12080 if let Some(purposes) = claimable_htlc_purposes {
12081 if purposes.len() != claimable_htlcs_list.len() {
12082 return Err(DecodeError::InvalidValue);
12084 if let Some(onion_fields) = claimable_htlc_onion_fields {
12085 if onion_fields.len() != claimable_htlcs_list.len() {
12086 return Err(DecodeError::InvalidValue);
12088 for (purpose, (onion, (payment_hash, htlcs))) in
12089 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12091 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12092 purpose, htlcs, onion_fields: onion,
12094 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12097 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12098 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12099 purpose, htlcs, onion_fields: None,
12101 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12105 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12106 // include a `_legacy_hop_data` in the `OnionPayload`.
12107 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12108 if htlcs.is_empty() {
12109 return Err(DecodeError::InvalidValue);
12111 let purpose = match &htlcs[0].onion_payload {
12112 OnionPayload::Invoice { _legacy_hop_data, payment_context: _ } => {
12113 if let Some(hop_data) = _legacy_hop_data {
12114 events::PaymentPurpose::Bolt11InvoicePayment {
12115 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12116 Some(inbound_payment) => inbound_payment.payment_preimage,
12117 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12118 Ok((payment_preimage, _)) => payment_preimage,
12120 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12121 return Err(DecodeError::InvalidValue);
12125 payment_secret: hop_data.payment_secret,
12127 } else { return Err(DecodeError::InvalidValue); }
12129 OnionPayload::Spontaneous(payment_preimage) =>
12130 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12132 claimable_payments.insert(payment_hash, ClaimablePayment {
12133 purpose, htlcs, onion_fields: None,
12138 let mut secp_ctx = Secp256k1::new();
12139 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12141 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12143 Err(()) => return Err(DecodeError::InvalidValue)
12145 if let Some(network_pubkey) = received_network_pubkey {
12146 if network_pubkey != our_network_pubkey {
12147 log_error!(args.logger, "Key that was generated does not match the existing key.");
12148 return Err(DecodeError::InvalidValue);
12152 let mut outbound_scid_aliases = new_hash_set();
12153 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12154 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12155 let peer_state = &mut *peer_state_lock;
12156 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12157 if let ChannelPhase::Funded(chan) = phase {
12158 let logger = WithChannelContext::from(&args.logger, &chan.context);
12159 if chan.context.outbound_scid_alias() == 0 {
12160 let mut outbound_scid_alias;
12162 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12163 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12164 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12166 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12167 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12168 // Note that in rare cases its possible to hit this while reading an older
12169 // channel if we just happened to pick a colliding outbound alias above.
12170 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12171 return Err(DecodeError::InvalidValue);
12173 if chan.context.is_usable() {
12174 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12175 // Note that in rare cases its possible to hit this while reading an older
12176 // channel if we just happened to pick a colliding outbound alias above.
12177 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12178 return Err(DecodeError::InvalidValue);
12182 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12183 // created in this `channel_by_id` map.
12184 debug_assert!(false);
12185 return Err(DecodeError::InvalidValue);
12190 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12192 for (_, monitor) in args.channel_monitors.iter() {
12193 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12194 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12195 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12196 let mut claimable_amt_msat = 0;
12197 let mut receiver_node_id = Some(our_network_pubkey);
12198 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12199 if phantom_shared_secret.is_some() {
12200 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12201 .expect("Failed to get node_id for phantom node recipient");
12202 receiver_node_id = Some(phantom_pubkey)
12204 for claimable_htlc in &payment.htlcs {
12205 claimable_amt_msat += claimable_htlc.value;
12207 // Add a holding-cell claim of the payment to the Channel, which should be
12208 // applied ~immediately on peer reconnection. Because it won't generate a
12209 // new commitment transaction we can just provide the payment preimage to
12210 // the corresponding ChannelMonitor and nothing else.
12212 // We do so directly instead of via the normal ChannelMonitor update
12213 // procedure as the ChainMonitor hasn't yet been initialized, implying
12214 // we're not allowed to call it directly yet. Further, we do the update
12215 // without incrementing the ChannelMonitor update ID as there isn't any
12217 // If we were to generate a new ChannelMonitor update ID here and then
12218 // crash before the user finishes block connect we'd end up force-closing
12219 // this channel as well. On the flip side, there's no harm in restarting
12220 // without the new monitor persisted - we'll end up right back here on
12222 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12223 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12224 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12225 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12226 let peer_state = &mut *peer_state_lock;
12227 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12228 let logger = WithChannelContext::from(&args.logger, &channel.context);
12229 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12232 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12233 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12236 pending_events_read.push_back((events::Event::PaymentClaimed {
12239 purpose: payment.purpose,
12240 amount_msat: claimable_amt_msat,
12241 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12242 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12248 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12249 if let Some(peer_state) = per_peer_state.get(&node_id) {
12250 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12251 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12252 for action in actions.iter() {
12253 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12254 downstream_counterparty_and_funding_outpoint:
12255 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12257 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12259 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12260 blocked_channel_id);
12261 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12262 .entry(*blocked_channel_id)
12263 .or_insert_with(Vec::new).push(blocking_action.clone());
12265 // If the channel we were blocking has closed, we don't need to
12266 // worry about it - the blocked monitor update should never have
12267 // been released from the `Channel` object so it can't have
12268 // completed, and if the channel closed there's no reason to bother
12272 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12273 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12277 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12279 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12280 return Err(DecodeError::InvalidValue);
12284 let channel_manager = ChannelManager {
12286 fee_estimator: bounded_fee_estimator,
12287 chain_monitor: args.chain_monitor,
12288 tx_broadcaster: args.tx_broadcaster,
12289 router: args.router,
12291 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12293 inbound_payment_key: expanded_inbound_key,
12294 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12295 pending_outbound_payments: pending_outbounds,
12296 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12298 forward_htlcs: Mutex::new(forward_htlcs),
12299 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12300 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12301 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12302 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12303 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12304 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12306 probing_cookie_secret: probing_cookie_secret.unwrap(),
12308 our_network_pubkey,
12311 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12313 per_peer_state: FairRwLock::new(per_peer_state),
12315 pending_events: Mutex::new(pending_events_read),
12316 pending_events_processor: AtomicBool::new(false),
12317 pending_background_events: Mutex::new(pending_background_events),
12318 total_consistency_lock: RwLock::new(()),
12319 background_events_processed_since_startup: AtomicBool::new(false),
12321 event_persist_notifier: Notifier::new(),
12322 needs_persist_flag: AtomicBool::new(false),
12324 funding_batch_states: Mutex::new(BTreeMap::new()),
12326 pending_offers_messages: Mutex::new(Vec::new()),
12328 pending_broadcast_messages: Mutex::new(Vec::new()),
12330 entropy_source: args.entropy_source,
12331 node_signer: args.node_signer,
12332 signer_provider: args.signer_provider,
12334 logger: args.logger,
12335 default_configuration: args.default_config,
12338 for htlc_source in failed_htlcs.drain(..) {
12339 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12340 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12341 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12342 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12345 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12346 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12347 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12348 // channel is closed we just assume that it probably came from an on-chain claim.
12349 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12350 downstream_closed, true, downstream_node_id, downstream_funding,
12351 downstream_channel_id, None
12355 //TODO: Broadcast channel update for closed channels, but only after we've made a
12356 //connection or two.
12358 Ok((best_block_hash.clone(), channel_manager))
12364 use bitcoin::hashes::Hash;
12365 use bitcoin::hashes::sha256::Hash as Sha256;
12366 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12367 use core::sync::atomic::Ordering;
12368 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12369 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12370 use crate::ln::ChannelId;
12371 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12372 use crate::ln::functional_test_utils::*;
12373 use crate::ln::msgs::{self, ErrorAction};
12374 use crate::ln::msgs::ChannelMessageHandler;
12375 use crate::prelude::*;
12376 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12377 use crate::util::errors::APIError;
12378 use crate::util::ser::Writeable;
12379 use crate::util::test_utils;
12380 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12381 use crate::sign::EntropySource;
12384 fn test_notify_limits() {
12385 // Check that a few cases which don't require the persistence of a new ChannelManager,
12386 // indeed, do not cause the persistence of a new ChannelManager.
12387 let chanmon_cfgs = create_chanmon_cfgs(3);
12388 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12389 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12390 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12392 // All nodes start with a persistable update pending as `create_network` connects each node
12393 // with all other nodes to make most tests simpler.
12394 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12395 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12396 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12398 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12400 // We check that the channel info nodes have doesn't change too early, even though we try
12401 // to connect messages with new values
12402 chan.0.contents.fee_base_msat *= 2;
12403 chan.1.contents.fee_base_msat *= 2;
12404 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12405 &nodes[1].node.get_our_node_id()).pop().unwrap();
12406 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12407 &nodes[0].node.get_our_node_id()).pop().unwrap();
12409 // The first two nodes (which opened a channel) should now require fresh persistence
12410 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12411 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12412 // ... but the last node should not.
12413 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12414 // After persisting the first two nodes they should no longer need fresh persistence.
12415 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12416 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12418 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12419 // about the channel.
12420 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12421 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12422 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12424 // The nodes which are a party to the channel should also ignore messages from unrelated
12426 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12427 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12428 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12429 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12430 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12431 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12433 // At this point the channel info given by peers should still be the same.
12434 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12435 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12437 // An earlier version of handle_channel_update didn't check the directionality of the
12438 // update message and would always update the local fee info, even if our peer was
12439 // (spuriously) forwarding us our own channel_update.
12440 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12441 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12442 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12444 // First deliver each peers' own message, checking that the node doesn't need to be
12445 // persisted and that its channel info remains the same.
12446 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12447 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12448 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12449 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12450 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12451 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12453 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12454 // the channel info has updated.
12455 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12456 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12457 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12458 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12459 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12460 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12464 fn test_keysend_dup_hash_partial_mpp() {
12465 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12467 let chanmon_cfgs = create_chanmon_cfgs(2);
12468 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12469 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12470 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12471 create_announced_chan_between_nodes(&nodes, 0, 1);
12473 // First, send a partial MPP payment.
12474 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12475 let mut mpp_route = route.clone();
12476 mpp_route.paths.push(mpp_route.paths[0].clone());
12478 let payment_id = PaymentId([42; 32]);
12479 // Use the utility function send_payment_along_path to send the payment with MPP data which
12480 // indicates there are more HTLCs coming.
12481 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12482 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12483 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12484 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12485 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12486 check_added_monitors!(nodes[0], 1);
12487 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12488 assert_eq!(events.len(), 1);
12489 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12491 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12492 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12493 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12494 check_added_monitors!(nodes[0], 1);
12495 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12496 assert_eq!(events.len(), 1);
12497 let ev = events.drain(..).next().unwrap();
12498 let payment_event = SendEvent::from_event(ev);
12499 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12500 check_added_monitors!(nodes[1], 0);
12501 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12502 expect_pending_htlcs_forwardable!(nodes[1]);
12503 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12504 check_added_monitors!(nodes[1], 1);
12505 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12506 assert!(updates.update_add_htlcs.is_empty());
12507 assert!(updates.update_fulfill_htlcs.is_empty());
12508 assert_eq!(updates.update_fail_htlcs.len(), 1);
12509 assert!(updates.update_fail_malformed_htlcs.is_empty());
12510 assert!(updates.update_fee.is_none());
12511 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12512 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12513 expect_payment_failed!(nodes[0], our_payment_hash, true);
12515 // Send the second half of the original MPP payment.
12516 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12517 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12518 check_added_monitors!(nodes[0], 1);
12519 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12520 assert_eq!(events.len(), 1);
12521 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12523 // Claim the full MPP payment. Note that we can't use a test utility like
12524 // claim_funds_along_route because the ordering of the messages causes the second half of the
12525 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12526 // lightning messages manually.
12527 nodes[1].node.claim_funds(payment_preimage);
12528 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12529 check_added_monitors!(nodes[1], 2);
12531 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12532 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12533 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12534 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12535 check_added_monitors!(nodes[0], 1);
12536 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12537 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12538 check_added_monitors!(nodes[1], 1);
12539 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12540 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12541 check_added_monitors!(nodes[1], 1);
12542 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12543 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12544 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12545 check_added_monitors!(nodes[0], 1);
12546 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12547 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12548 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12549 check_added_monitors!(nodes[0], 1);
12550 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12551 check_added_monitors!(nodes[1], 1);
12552 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12553 check_added_monitors!(nodes[1], 1);
12554 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12555 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12556 check_added_monitors!(nodes[0], 1);
12558 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12559 // path's success and a PaymentPathSuccessful event for each path's success.
12560 let events = nodes[0].node.get_and_clear_pending_events();
12561 assert_eq!(events.len(), 2);
12563 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12564 assert_eq!(payment_id, *actual_payment_id);
12565 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12566 assert_eq!(route.paths[0], *path);
12568 _ => panic!("Unexpected event"),
12571 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12572 assert_eq!(payment_id, *actual_payment_id);
12573 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12574 assert_eq!(route.paths[0], *path);
12576 _ => panic!("Unexpected event"),
12581 fn test_keysend_dup_payment_hash() {
12582 do_test_keysend_dup_payment_hash(false);
12583 do_test_keysend_dup_payment_hash(true);
12586 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12587 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12588 // outbound regular payment fails as expected.
12589 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12590 // fails as expected.
12591 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12592 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12593 // reject MPP keysend payments, since in this case where the payment has no payment
12594 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12595 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12596 // payment secrets and reject otherwise.
12597 let chanmon_cfgs = create_chanmon_cfgs(2);
12598 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12599 let mut mpp_keysend_cfg = test_default_channel_config();
12600 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12601 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12602 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12603 create_announced_chan_between_nodes(&nodes, 0, 1);
12604 let scorer = test_utils::TestScorer::new();
12605 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12607 // To start (1), send a regular payment but don't claim it.
12608 let expected_route = [&nodes[1]];
12609 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12611 // Next, attempt a keysend payment and make sure it fails.
12612 let route_params = RouteParameters::from_payment_params_and_value(
12613 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12614 TEST_FINAL_CLTV, false), 100_000);
12615 let route = find_route(
12616 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12617 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12619 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12620 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12621 check_added_monitors!(nodes[0], 1);
12622 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12623 assert_eq!(events.len(), 1);
12624 let ev = events.drain(..).next().unwrap();
12625 let payment_event = SendEvent::from_event(ev);
12626 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12627 check_added_monitors!(nodes[1], 0);
12628 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12629 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12630 // fails), the second will process the resulting failure and fail the HTLC backward
12631 expect_pending_htlcs_forwardable!(nodes[1]);
12632 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12633 check_added_monitors!(nodes[1], 1);
12634 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12635 assert!(updates.update_add_htlcs.is_empty());
12636 assert!(updates.update_fulfill_htlcs.is_empty());
12637 assert_eq!(updates.update_fail_htlcs.len(), 1);
12638 assert!(updates.update_fail_malformed_htlcs.is_empty());
12639 assert!(updates.update_fee.is_none());
12640 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12641 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12642 expect_payment_failed!(nodes[0], payment_hash, true);
12644 // Finally, claim the original payment.
12645 claim_payment(&nodes[0], &expected_route, payment_preimage);
12647 // To start (2), send a keysend payment but don't claim it.
12648 let payment_preimage = PaymentPreimage([42; 32]);
12649 let route = find_route(
12650 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12651 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12653 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12654 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12655 check_added_monitors!(nodes[0], 1);
12656 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12657 assert_eq!(events.len(), 1);
12658 let event = events.pop().unwrap();
12659 let path = vec![&nodes[1]];
12660 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12662 // Next, attempt a regular payment and make sure it fails.
12663 let payment_secret = PaymentSecret([43; 32]);
12664 nodes[0].node.send_payment_with_route(&route, payment_hash,
12665 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12666 check_added_monitors!(nodes[0], 1);
12667 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12668 assert_eq!(events.len(), 1);
12669 let ev = events.drain(..).next().unwrap();
12670 let payment_event = SendEvent::from_event(ev);
12671 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12672 check_added_monitors!(nodes[1], 0);
12673 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12674 expect_pending_htlcs_forwardable!(nodes[1]);
12675 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12676 check_added_monitors!(nodes[1], 1);
12677 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12678 assert!(updates.update_add_htlcs.is_empty());
12679 assert!(updates.update_fulfill_htlcs.is_empty());
12680 assert_eq!(updates.update_fail_htlcs.len(), 1);
12681 assert!(updates.update_fail_malformed_htlcs.is_empty());
12682 assert!(updates.update_fee.is_none());
12683 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12684 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12685 expect_payment_failed!(nodes[0], payment_hash, true);
12687 // Finally, succeed the keysend payment.
12688 claim_payment(&nodes[0], &expected_route, payment_preimage);
12690 // To start (3), send a keysend payment but don't claim it.
12691 let payment_id_1 = PaymentId([44; 32]);
12692 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12693 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12694 check_added_monitors!(nodes[0], 1);
12695 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12696 assert_eq!(events.len(), 1);
12697 let event = events.pop().unwrap();
12698 let path = vec![&nodes[1]];
12699 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12701 // Next, attempt a keysend payment and make sure it fails.
12702 let route_params = RouteParameters::from_payment_params_and_value(
12703 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12706 let route = find_route(
12707 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12708 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12710 let payment_id_2 = PaymentId([45; 32]);
12711 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12712 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12713 check_added_monitors!(nodes[0], 1);
12714 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12715 assert_eq!(events.len(), 1);
12716 let ev = events.drain(..).next().unwrap();
12717 let payment_event = SendEvent::from_event(ev);
12718 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12719 check_added_monitors!(nodes[1], 0);
12720 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12721 expect_pending_htlcs_forwardable!(nodes[1]);
12722 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12723 check_added_monitors!(nodes[1], 1);
12724 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12725 assert!(updates.update_add_htlcs.is_empty());
12726 assert!(updates.update_fulfill_htlcs.is_empty());
12727 assert_eq!(updates.update_fail_htlcs.len(), 1);
12728 assert!(updates.update_fail_malformed_htlcs.is_empty());
12729 assert!(updates.update_fee.is_none());
12730 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12731 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12732 expect_payment_failed!(nodes[0], payment_hash, true);
12734 // Finally, claim the original payment.
12735 claim_payment(&nodes[0], &expected_route, payment_preimage);
12739 fn test_keysend_hash_mismatch() {
12740 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12741 // preimage doesn't match the msg's payment hash.
12742 let chanmon_cfgs = create_chanmon_cfgs(2);
12743 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12744 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12745 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12747 let payer_pubkey = nodes[0].node.get_our_node_id();
12748 let payee_pubkey = nodes[1].node.get_our_node_id();
12750 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12751 let route_params = RouteParameters::from_payment_params_and_value(
12752 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12753 let network_graph = nodes[0].network_graph;
12754 let first_hops = nodes[0].node.list_usable_channels();
12755 let scorer = test_utils::TestScorer::new();
12756 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12757 let route = find_route(
12758 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12759 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12762 let test_preimage = PaymentPreimage([42; 32]);
12763 let mismatch_payment_hash = PaymentHash([43; 32]);
12764 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12765 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12766 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12767 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12768 check_added_monitors!(nodes[0], 1);
12770 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12771 assert_eq!(updates.update_add_htlcs.len(), 1);
12772 assert!(updates.update_fulfill_htlcs.is_empty());
12773 assert!(updates.update_fail_htlcs.is_empty());
12774 assert!(updates.update_fail_malformed_htlcs.is_empty());
12775 assert!(updates.update_fee.is_none());
12776 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12778 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12782 fn test_keysend_msg_with_secret_err() {
12783 // Test that we error as expected if we receive a keysend payment that includes a payment
12784 // secret when we don't support MPP keysend.
12785 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12786 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12787 let chanmon_cfgs = create_chanmon_cfgs(2);
12788 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12789 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12790 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12792 let payer_pubkey = nodes[0].node.get_our_node_id();
12793 let payee_pubkey = nodes[1].node.get_our_node_id();
12795 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12796 let route_params = RouteParameters::from_payment_params_and_value(
12797 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12798 let network_graph = nodes[0].network_graph;
12799 let first_hops = nodes[0].node.list_usable_channels();
12800 let scorer = test_utils::TestScorer::new();
12801 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12802 let route = find_route(
12803 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12804 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12807 let test_preimage = PaymentPreimage([42; 32]);
12808 let test_secret = PaymentSecret([43; 32]);
12809 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12810 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12811 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12812 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12813 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12814 PaymentId(payment_hash.0), None, session_privs).unwrap();
12815 check_added_monitors!(nodes[0], 1);
12817 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12818 assert_eq!(updates.update_add_htlcs.len(), 1);
12819 assert!(updates.update_fulfill_htlcs.is_empty());
12820 assert!(updates.update_fail_htlcs.is_empty());
12821 assert!(updates.update_fail_malformed_htlcs.is_empty());
12822 assert!(updates.update_fee.is_none());
12823 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12825 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12829 fn test_multi_hop_missing_secret() {
12830 let chanmon_cfgs = create_chanmon_cfgs(4);
12831 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12832 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12833 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12835 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12836 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12837 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12838 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12840 // Marshall an MPP route.
12841 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12842 let path = route.paths[0].clone();
12843 route.paths.push(path);
12844 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12845 route.paths[0].hops[0].short_channel_id = chan_1_id;
12846 route.paths[0].hops[1].short_channel_id = chan_3_id;
12847 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12848 route.paths[1].hops[0].short_channel_id = chan_2_id;
12849 route.paths[1].hops[1].short_channel_id = chan_4_id;
12851 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12852 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12854 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12855 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12857 _ => panic!("unexpected error")
12862 fn test_channel_update_cached() {
12863 let chanmon_cfgs = create_chanmon_cfgs(3);
12864 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12865 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12866 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12868 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12870 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12871 check_added_monitors!(nodes[0], 1);
12872 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12874 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12875 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12876 assert_eq!(node_1_events.len(), 0);
12879 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12880 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12881 assert_eq!(pending_broadcast_messages.len(), 1);
12884 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12885 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12886 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12888 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12889 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12891 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12892 assert_eq!(node_0_events.len(), 0);
12894 // Now we reconnect to a peer
12895 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12896 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12898 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12899 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12900 }, false).unwrap();
12902 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12903 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12904 assert_eq!(node_0_events.len(), 1);
12905 match &node_0_events[0] {
12906 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12907 _ => panic!("Unexpected event"),
12910 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12911 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12912 assert_eq!(pending_broadcast_messages.len(), 0);
12917 fn test_drop_disconnected_peers_when_removing_channels() {
12918 let chanmon_cfgs = create_chanmon_cfgs(2);
12919 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12920 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12921 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12923 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12925 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12926 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12928 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12929 check_closed_broadcast!(nodes[0], true);
12930 check_added_monitors!(nodes[0], 1);
12931 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12934 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12935 // disconnected and the channel between has been force closed.
12936 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12937 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12938 assert_eq!(nodes_0_per_peer_state.len(), 1);
12939 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12942 nodes[0].node.timer_tick_occurred();
12945 // Assert that nodes[1] has now been removed.
12946 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12951 fn bad_inbound_payment_hash() {
12952 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12953 let chanmon_cfgs = create_chanmon_cfgs(2);
12954 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12955 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12956 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12958 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12959 let payment_data = msgs::FinalOnionHopData {
12961 total_msat: 100_000,
12964 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12965 // payment verification fails as expected.
12966 let mut bad_payment_hash = payment_hash.clone();
12967 bad_payment_hash.0[0] += 1;
12968 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12969 Ok(_) => panic!("Unexpected ok"),
12971 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12975 // Check that using the original payment hash succeeds.
12976 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12980 fn test_outpoint_to_peer_coverage() {
12981 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12982 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12983 // the channel is successfully closed.
12984 let chanmon_cfgs = create_chanmon_cfgs(2);
12985 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12986 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12987 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12989 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12990 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12991 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
12992 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12993 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
12995 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
12996 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
12998 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
12999 // funding transaction, and have the real `channel_id`.
13000 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13001 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13004 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
13006 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
13007 // as it has the funding transaction.
13008 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13009 assert_eq!(nodes_0_lock.len(), 1);
13010 assert!(nodes_0_lock.contains_key(&funding_output));
13013 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13015 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13017 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13019 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13020 assert_eq!(nodes_0_lock.len(), 1);
13021 assert!(nodes_0_lock.contains_key(&funding_output));
13023 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13026 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
13027 // soon as it has the funding transaction.
13028 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13029 assert_eq!(nodes_1_lock.len(), 1);
13030 assert!(nodes_1_lock.contains_key(&funding_output));
13032 check_added_monitors!(nodes[1], 1);
13033 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13034 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13035 check_added_monitors!(nodes[0], 1);
13036 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13037 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13038 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13039 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13041 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13042 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13043 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13044 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13046 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13047 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13049 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13050 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13051 // fee for the closing transaction has been negotiated and the parties has the other
13052 // party's signature for the fee negotiated closing transaction.)
13053 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13054 assert_eq!(nodes_0_lock.len(), 1);
13055 assert!(nodes_0_lock.contains_key(&funding_output));
13059 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13060 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13061 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13062 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13063 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13064 assert_eq!(nodes_1_lock.len(), 1);
13065 assert!(nodes_1_lock.contains_key(&funding_output));
13068 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13070 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13071 // therefore has all it needs to fully close the channel (both signatures for the
13072 // closing transaction).
13073 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13074 // fully closed by `nodes[0]`.
13075 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13077 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13078 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13079 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13080 assert_eq!(nodes_1_lock.len(), 1);
13081 assert!(nodes_1_lock.contains_key(&funding_output));
13084 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13086 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13088 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13089 // they both have everything required to fully close the channel.
13090 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13092 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13094 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13095 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13098 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13099 let expected_message = format!("Not connected to node: {}", expected_public_key);
13100 check_api_error_message(expected_message, res_err)
13103 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13104 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13105 check_api_error_message(expected_message, res_err)
13108 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13109 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13110 check_api_error_message(expected_message, res_err)
13113 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13114 let expected_message = "No such channel awaiting to be accepted.".to_string();
13115 check_api_error_message(expected_message, res_err)
13118 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13120 Err(APIError::APIMisuseError { err }) => {
13121 assert_eq!(err, expected_err_message);
13123 Err(APIError::ChannelUnavailable { err }) => {
13124 assert_eq!(err, expected_err_message);
13126 Ok(_) => panic!("Unexpected Ok"),
13127 Err(_) => panic!("Unexpected Error"),
13132 fn test_api_calls_with_unkown_counterparty_node() {
13133 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13134 // expected if the `counterparty_node_id` is an unkown peer in the
13135 // `ChannelManager::per_peer_state` map.
13136 let chanmon_cfg = create_chanmon_cfgs(2);
13137 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13138 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13139 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13142 let channel_id = ChannelId::from_bytes([4; 32]);
13143 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13144 let intercept_id = InterceptId([0; 32]);
13146 // Test the API functions.
13147 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13149 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13151 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13153 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13155 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13157 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13159 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13163 fn test_api_calls_with_unavailable_channel() {
13164 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13165 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13166 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13167 // the given `channel_id`.
13168 let chanmon_cfg = create_chanmon_cfgs(2);
13169 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13170 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13171 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13173 let counterparty_node_id = nodes[1].node.get_our_node_id();
13176 let channel_id = ChannelId::from_bytes([4; 32]);
13178 // Test the API functions.
13179 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13181 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13183 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13185 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13187 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13189 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13193 fn test_connection_limiting() {
13194 // Test that we limit un-channel'd peers and un-funded channels properly.
13195 let chanmon_cfgs = create_chanmon_cfgs(2);
13196 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13197 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13198 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13200 // Note that create_network connects the nodes together for us
13202 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13203 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13205 let mut funding_tx = None;
13206 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13207 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13208 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13211 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13212 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13213 funding_tx = Some(tx.clone());
13214 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13215 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13217 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13218 check_added_monitors!(nodes[1], 1);
13219 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13221 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13223 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13224 check_added_monitors!(nodes[0], 1);
13225 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13227 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13230 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13231 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13232 &nodes[0].keys_manager);
13233 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13234 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13235 open_channel_msg.common_fields.temporary_channel_id);
13237 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13238 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13240 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13241 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13242 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13243 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13244 peer_pks.push(random_pk);
13245 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13246 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13249 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13250 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13251 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13252 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13253 }, true).unwrap_err();
13255 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13256 // them if we have too many un-channel'd peers.
13257 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13258 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13259 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13260 for ev in chan_closed_events {
13261 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13263 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13264 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13266 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13267 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13268 }, true).unwrap_err();
13270 // but of course if the connection is outbound its allowed...
13271 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13272 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13273 }, false).unwrap();
13274 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13276 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13277 // Even though we accept one more connection from new peers, we won't actually let them
13279 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13280 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13281 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13282 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13283 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13285 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13286 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13287 open_channel_msg.common_fields.temporary_channel_id);
13289 // Of course, however, outbound channels are always allowed
13290 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13291 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13293 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13294 // "protected" and can connect again.
13295 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13296 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13297 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13299 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13301 // Further, because the first channel was funded, we can open another channel with
13303 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13304 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13308 fn test_outbound_chans_unlimited() {
13309 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13310 let chanmon_cfgs = create_chanmon_cfgs(2);
13311 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13312 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13313 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13315 // Note that create_network connects the nodes together for us
13317 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13318 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13320 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13321 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13322 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13323 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13326 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13328 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13329 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13330 open_channel_msg.common_fields.temporary_channel_id);
13332 // but we can still open an outbound channel.
13333 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13334 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13336 // but even with such an outbound channel, additional inbound channels will still fail.
13337 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13338 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13339 open_channel_msg.common_fields.temporary_channel_id);
13343 fn test_0conf_limiting() {
13344 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13345 // flag set and (sometimes) accept channels as 0conf.
13346 let chanmon_cfgs = create_chanmon_cfgs(2);
13347 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13348 let mut settings = test_default_channel_config();
13349 settings.manually_accept_inbound_channels = true;
13350 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13351 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13353 // Note that create_network connects the nodes together for us
13355 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13356 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13358 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13359 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13360 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13361 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13362 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13363 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13366 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13367 let events = nodes[1].node.get_and_clear_pending_events();
13369 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13370 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13372 _ => panic!("Unexpected event"),
13374 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13375 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13378 // If we try to accept a channel from another peer non-0conf it will fail.
13379 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13380 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13381 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13382 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13384 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13385 let events = nodes[1].node.get_and_clear_pending_events();
13387 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13388 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13389 Err(APIError::APIMisuseError { err }) =>
13390 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13394 _ => panic!("Unexpected event"),
13396 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13397 open_channel_msg.common_fields.temporary_channel_id);
13399 // ...however if we accept the same channel 0conf it should work just fine.
13400 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13401 let events = nodes[1].node.get_and_clear_pending_events();
13403 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13404 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13406 _ => panic!("Unexpected event"),
13408 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13412 fn reject_excessively_underpaying_htlcs() {
13413 let chanmon_cfg = create_chanmon_cfgs(1);
13414 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13415 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13416 let node = create_network(1, &node_cfg, &node_chanmgr);
13417 let sender_intended_amt_msat = 100;
13418 let extra_fee_msat = 10;
13419 let hop_data = msgs::InboundOnionPayload::Receive {
13420 sender_intended_htlc_amt_msat: 100,
13421 cltv_expiry_height: 42,
13422 payment_metadata: None,
13423 keysend_preimage: None,
13424 payment_data: Some(msgs::FinalOnionHopData {
13425 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13427 custom_tlvs: Vec::new(),
13429 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13430 // intended amount, we fail the payment.
13431 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13432 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13433 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13434 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13435 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13437 assert_eq!(err_code, 19);
13438 } else { panic!(); }
13440 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13441 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13442 sender_intended_htlc_amt_msat: 100,
13443 cltv_expiry_height: 42,
13444 payment_metadata: None,
13445 keysend_preimage: None,
13446 payment_data: Some(msgs::FinalOnionHopData {
13447 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13449 custom_tlvs: Vec::new(),
13451 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13452 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13453 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13454 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13458 fn test_final_incorrect_cltv(){
13459 let chanmon_cfg = create_chanmon_cfgs(1);
13460 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13461 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13462 let node = create_network(1, &node_cfg, &node_chanmgr);
13464 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13465 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13466 sender_intended_htlc_amt_msat: 100,
13467 cltv_expiry_height: 22,
13468 payment_metadata: None,
13469 keysend_preimage: None,
13470 payment_data: Some(msgs::FinalOnionHopData {
13471 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13473 custom_tlvs: Vec::new(),
13474 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13475 node[0].node.default_configuration.accept_mpp_keysend);
13477 // Should not return an error as this condition:
13478 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13479 // is not satisfied.
13480 assert!(result.is_ok());
13484 fn test_inbound_anchors_manual_acceptance() {
13485 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13486 // flag set and (sometimes) accept channels as 0conf.
13487 let mut anchors_cfg = test_default_channel_config();
13488 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13490 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13491 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13493 let chanmon_cfgs = create_chanmon_cfgs(3);
13494 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13495 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13496 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13497 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13499 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13500 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13502 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13503 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13504 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13505 match &msg_events[0] {
13506 MessageSendEvent::HandleError { node_id, action } => {
13507 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13509 ErrorAction::SendErrorMessage { msg } =>
13510 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13511 _ => panic!("Unexpected error action"),
13514 _ => panic!("Unexpected event"),
13517 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13518 let events = nodes[2].node.get_and_clear_pending_events();
13520 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13521 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13522 _ => panic!("Unexpected event"),
13524 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13528 fn test_anchors_zero_fee_htlc_tx_fallback() {
13529 // Tests that if both nodes support anchors, but the remote node does not want to accept
13530 // anchor channels at the moment, an error it sent to the local node such that it can retry
13531 // the channel without the anchors feature.
13532 let chanmon_cfgs = create_chanmon_cfgs(2);
13533 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13534 let mut anchors_config = test_default_channel_config();
13535 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13536 anchors_config.manually_accept_inbound_channels = true;
13537 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13538 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13540 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13541 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13542 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13544 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13545 let events = nodes[1].node.get_and_clear_pending_events();
13547 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13548 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13550 _ => panic!("Unexpected event"),
13553 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13554 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13556 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13557 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13559 // Since nodes[1] should not have accepted the channel, it should
13560 // not have generated any events.
13561 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13565 fn test_update_channel_config() {
13566 let chanmon_cfg = create_chanmon_cfgs(2);
13567 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13568 let mut user_config = test_default_channel_config();
13569 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13570 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13571 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13572 let channel = &nodes[0].node.list_channels()[0];
13574 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13575 let events = nodes[0].node.get_and_clear_pending_msg_events();
13576 assert_eq!(events.len(), 0);
13578 user_config.channel_config.forwarding_fee_base_msat += 10;
13579 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13580 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13581 let events = nodes[0].node.get_and_clear_pending_msg_events();
13582 assert_eq!(events.len(), 1);
13584 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13585 _ => panic!("expected BroadcastChannelUpdate event"),
13588 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13589 let events = nodes[0].node.get_and_clear_pending_msg_events();
13590 assert_eq!(events.len(), 0);
13592 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13593 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13594 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13595 ..Default::default()
13597 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13598 let events = nodes[0].node.get_and_clear_pending_msg_events();
13599 assert_eq!(events.len(), 1);
13601 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13602 _ => panic!("expected BroadcastChannelUpdate event"),
13605 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13606 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13607 forwarding_fee_proportional_millionths: Some(new_fee),
13608 ..Default::default()
13610 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13611 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13612 let events = nodes[0].node.get_and_clear_pending_msg_events();
13613 assert_eq!(events.len(), 1);
13615 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13616 _ => panic!("expected BroadcastChannelUpdate event"),
13619 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13620 // should be applied to ensure update atomicity as specified in the API docs.
13621 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13622 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13623 let new_fee = current_fee + 100;
13626 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13627 forwarding_fee_proportional_millionths: Some(new_fee),
13628 ..Default::default()
13630 Err(APIError::ChannelUnavailable { err: _ }),
13633 // Check that the fee hasn't changed for the channel that exists.
13634 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13635 let events = nodes[0].node.get_and_clear_pending_msg_events();
13636 assert_eq!(events.len(), 0);
13640 fn test_payment_display() {
13641 let payment_id = PaymentId([42; 32]);
13642 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13643 let payment_hash = PaymentHash([42; 32]);
13644 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13645 let payment_preimage = PaymentPreimage([42; 32]);
13646 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13650 fn test_trigger_lnd_force_close() {
13651 let chanmon_cfg = create_chanmon_cfgs(2);
13652 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13653 let user_config = test_default_channel_config();
13654 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13655 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13657 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13658 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13659 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13660 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13661 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13662 check_closed_broadcast(&nodes[0], 1, true);
13663 check_added_monitors(&nodes[0], 1);
13664 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13666 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13667 assert_eq!(txn.len(), 1);
13668 check_spends!(txn[0], funding_tx);
13671 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13672 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13674 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13675 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13677 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13678 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13679 }, false).unwrap();
13680 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13681 let channel_reestablish = get_event_msg!(
13682 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13684 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13686 // Alice should respond with an error since the channel isn't known, but a bogus
13687 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13688 // close even if it was an lnd node.
13689 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13690 assert_eq!(msg_events.len(), 2);
13691 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13692 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13693 assert_eq!(msg.next_local_commitment_number, 0);
13694 assert_eq!(msg.next_remote_commitment_number, 0);
13695 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13696 } else { panic!() };
13697 check_closed_broadcast(&nodes[1], 1, true);
13698 check_added_monitors(&nodes[1], 1);
13699 let expected_close_reason = ClosureReason::ProcessingError {
13700 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13702 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13704 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13705 assert_eq!(txn.len(), 1);
13706 check_spends!(txn[0], funding_tx);
13711 fn test_malformed_forward_htlcs_ser() {
13712 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13713 let chanmon_cfg = create_chanmon_cfgs(1);
13714 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13717 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13718 let deserialized_chanmgr;
13719 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13721 let dummy_failed_htlc = |htlc_id| {
13722 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13724 let dummy_malformed_htlc = |htlc_id| {
13725 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13728 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13729 if htlc_id % 2 == 0 {
13730 dummy_failed_htlc(htlc_id)
13732 dummy_malformed_htlc(htlc_id)
13736 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13737 if htlc_id % 2 == 1 {
13738 dummy_failed_htlc(htlc_id)
13740 dummy_malformed_htlc(htlc_id)
13745 let (scid_1, scid_2) = (42, 43);
13746 let mut forward_htlcs = new_hash_map();
13747 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13748 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13750 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13751 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13752 core::mem::drop(chanmgr_fwd_htlcs);
13754 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13756 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13757 for scid in [scid_1, scid_2].iter() {
13758 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13759 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13761 assert!(deserialized_fwd_htlcs.is_empty());
13762 core::mem::drop(deserialized_fwd_htlcs);
13764 expect_pending_htlcs_forwardable!(nodes[0]);
13770 use crate::chain::Listen;
13771 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13772 use crate::sign::{KeysManager, InMemorySigner};
13773 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13774 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13775 use crate::ln::functional_test_utils::*;
13776 use crate::ln::msgs::{ChannelMessageHandler, Init};
13777 use crate::routing::gossip::NetworkGraph;
13778 use crate::routing::router::{PaymentParameters, RouteParameters};
13779 use crate::util::test_utils;
13780 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13782 use bitcoin::blockdata::locktime::absolute::LockTime;
13783 use bitcoin::hashes::Hash;
13784 use bitcoin::hashes::sha256::Hash as Sha256;
13785 use bitcoin::{Transaction, TxOut};
13787 use crate::sync::{Arc, Mutex, RwLock};
13789 use criterion::Criterion;
13791 type Manager<'a, P> = ChannelManager<
13792 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13793 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13794 &'a test_utils::TestLogger, &'a P>,
13795 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13796 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13797 &'a test_utils::TestLogger>;
13799 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13800 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13802 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13803 type CM = Manager<'chan_mon_cfg, P>;
13805 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13807 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13810 pub fn bench_sends(bench: &mut Criterion) {
13811 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13814 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13815 // Do a simple benchmark of sending a payment back and forth between two nodes.
13816 // Note that this is unrealistic as each payment send will require at least two fsync
13818 let network = bitcoin::Network::Testnet;
13819 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13821 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13822 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13823 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13824 let scorer = RwLock::new(test_utils::TestScorer::new());
13825 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13827 let mut config: UserConfig = Default::default();
13828 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13829 config.channel_handshake_config.minimum_depth = 1;
13831 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13832 let seed_a = [1u8; 32];
13833 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13834 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13836 best_block: BestBlock::from_network(network),
13837 }, genesis_block.header.time);
13838 let node_a_holder = ANodeHolder { node: &node_a };
13840 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13841 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13842 let seed_b = [2u8; 32];
13843 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13844 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13846 best_block: BestBlock::from_network(network),
13847 }, genesis_block.header.time);
13848 let node_b_holder = ANodeHolder { node: &node_b };
13850 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13851 features: node_b.init_features(), networks: None, remote_network_address: None
13853 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13854 features: node_a.init_features(), networks: None, remote_network_address: None
13855 }, false).unwrap();
13856 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13857 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13858 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13861 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13862 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13863 value: 8_000_000, script_pubkey: output_script,
13865 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13866 } else { panic!(); }
13868 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13869 let events_b = node_b.get_and_clear_pending_events();
13870 assert_eq!(events_b.len(), 1);
13871 match events_b[0] {
13872 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13873 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13875 _ => panic!("Unexpected event"),
13878 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13879 let events_a = node_a.get_and_clear_pending_events();
13880 assert_eq!(events_a.len(), 1);
13881 match events_a[0] {
13882 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13883 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13885 _ => panic!("Unexpected event"),
13888 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13890 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13891 Listen::block_connected(&node_a, &block, 1);
13892 Listen::block_connected(&node_b, &block, 1);
13894 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13895 let msg_events = node_a.get_and_clear_pending_msg_events();
13896 assert_eq!(msg_events.len(), 2);
13897 match msg_events[0] {
13898 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13899 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13900 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13904 match msg_events[1] {
13905 MessageSendEvent::SendChannelUpdate { .. } => {},
13909 let events_a = node_a.get_and_clear_pending_events();
13910 assert_eq!(events_a.len(), 1);
13911 match events_a[0] {
13912 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13913 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13915 _ => panic!("Unexpected event"),
13918 let events_b = node_b.get_and_clear_pending_events();
13919 assert_eq!(events_b.len(), 1);
13920 match events_b[0] {
13921 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13922 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13924 _ => panic!("Unexpected event"),
13927 let mut payment_count: u64 = 0;
13928 macro_rules! send_payment {
13929 ($node_a: expr, $node_b: expr) => {
13930 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13931 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13932 let mut payment_preimage = PaymentPreimage([0; 32]);
13933 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13934 payment_count += 1;
13935 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13936 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13938 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13939 PaymentId(payment_hash.0),
13940 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13941 Retry::Attempts(0)).unwrap();
13942 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13943 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13944 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13945 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13946 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13947 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13948 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13950 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13951 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13952 $node_b.claim_funds(payment_preimage);
13953 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13955 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13956 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13957 assert_eq!(node_id, $node_a.get_our_node_id());
13958 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13959 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13961 _ => panic!("Failed to generate claim event"),
13964 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13965 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13966 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13967 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13969 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13973 bench.bench_function(bench_name, |b| b.iter(|| {
13974 send_payment!(node_a, node_b);
13975 send_payment!(node_b, node_a);