Correct MIN_FINAL_CLTV_EXPIRY to match our enforced requirements
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use std::{cmp, mem};
65 use std::collections::{HashMap, hash_map, HashSet};
66 use std::io::{Cursor, Read};
67 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use std::sync::atomic::{AtomicUsize, Ordering};
69 use std::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
72 use std::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
201
202 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
203 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
204 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
205 /// channel_state lock. We then return the set of things that need to be done outside the lock in
206 /// this struct and call handle_error!() on it.
207
208 struct MsgHandleErrInternal {
209         err: msgs::LightningError,
210         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
211 }
212 impl MsgHandleErrInternal {
213         #[inline]
214         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
215                 Self {
216                         err: LightningError {
217                                 err: err.clone(),
218                                 action: msgs::ErrorAction::SendErrorMessage {
219                                         msg: msgs::ErrorMessage {
220                                                 channel_id,
221                                                 data: err
222                                         },
223                                 },
224                         },
225                         shutdown_finish: None,
226                 }
227         }
228         #[inline]
229         fn ignore_no_close(err: String) -> Self {
230                 Self {
231                         err: LightningError {
232                                 err,
233                                 action: msgs::ErrorAction::IgnoreError,
234                         },
235                         shutdown_finish: None,
236                 }
237         }
238         #[inline]
239         fn from_no_close(err: msgs::LightningError) -> Self {
240                 Self { err, shutdown_finish: None }
241         }
242         #[inline]
243         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
244                 Self {
245                         err: LightningError {
246                                 err: err.clone(),
247                                 action: msgs::ErrorAction::SendErrorMessage {
248                                         msg: msgs::ErrorMessage {
249                                                 channel_id,
250                                                 data: err
251                                         },
252                                 },
253                         },
254                         shutdown_finish: Some((shutdown_res, channel_update)),
255                 }
256         }
257         #[inline]
258         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
259                 Self {
260                         err: match err {
261                                 ChannelError::Ignore(msg) => LightningError {
262                                         err: msg,
263                                         action: msgs::ErrorAction::IgnoreError,
264                                 },
265                                 ChannelError::Close(msg) => LightningError {
266                                         err: msg.clone(),
267                                         action: msgs::ErrorAction::SendErrorMessage {
268                                                 msg: msgs::ErrorMessage {
269                                                         channel_id,
270                                                         data: msg
271                                                 },
272                                         },
273                                 },
274                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                         },
284                         shutdown_finish: None,
285                 }
286         }
287 }
288
289 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
290 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
291 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
292 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
293 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
294
295 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
296 /// be sent in the order they appear in the return value, however sometimes the order needs to be
297 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
298 /// they were originally sent). In those cases, this enum is also returned.
299 #[derive(Clone, PartialEq)]
300 pub(super) enum RAACommitmentOrder {
301         /// Send the CommitmentUpdate messages first
302         CommitmentFirst,
303         /// Send the RevokeAndACK message first
304         RevokeAndACKFirst,
305 }
306
307 // Note this is only exposed in cfg(test):
308 pub(super) struct ChannelHolder<Signer: Sign> {
309         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
310         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
311         /// short channel id -> forward infos. Key of 0 means payments received
312         /// Note that while this is held in the same mutex as the channels themselves, no consistency
313         /// guarantees are made about the existence of a channel with the short id here, nor the short
314         /// ids in the PendingHTLCInfo!
315         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
316         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
317         /// Note that while this is held in the same mutex as the channels themselves, no consistency
318         /// guarantees are made about the channels given here actually existing anymore by the time you
319         /// go to read them!
320         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
321         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
322         /// for broadcast messages, where ordering isn't as strict).
323         pub(super) pending_msg_events: Vec<MessageSendEvent>,
324 }
325
326 /// Events which we process internally but cannot be procsesed immediately at the generation site
327 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
328 /// quite some time lag.
329 enum BackgroundEvent {
330         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
331         /// commitment transaction.
332         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
333 }
334
335 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
336 /// the latest Init features we heard from the peer.
337 struct PeerState {
338         latest_features: InitFeatures,
339 }
340
341 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
342 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
343 ///
344 /// For users who don't want to bother doing their own payment preimage storage, we also store that
345 /// here.
346 struct PendingInboundPayment {
347         /// The payment secret that the sender must use for us to accept this payment
348         payment_secret: PaymentSecret,
349         /// Time at which this HTLC expires - blocks with a header time above this value will result in
350         /// this payment being removed.
351         expiry_time: u64,
352         /// Arbitrary identifier the user specifies (or not)
353         user_payment_id: u64,
354         // Other required attributes of the payment, optionally enforced:
355         payment_preimage: Option<PaymentPreimage>,
356         min_value_msat: Option<u64>,
357 }
358
359 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
360 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
361 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
362 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
363 /// issues such as overly long function definitions. Note that the ChannelManager can take any
364 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
365 /// concrete type of the KeysManager.
366 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
367
368 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
369 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
370 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
371 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
372 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
373 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
374 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
375 /// concrete type of the KeysManager.
376 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
377
378 /// Manager which keeps track of a number of channels and sends messages to the appropriate
379 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
380 ///
381 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
382 /// to individual Channels.
383 ///
384 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
385 /// all peers during write/read (though does not modify this instance, only the instance being
386 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
387 /// called funding_transaction_generated for outbound channels).
388 ///
389 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
390 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
391 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
392 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
393 /// the serialization process). If the deserialized version is out-of-date compared to the
394 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
395 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
396 ///
397 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
398 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
399 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
400 /// block_connected() to step towards your best block) upon deserialization before using the
401 /// object!
402 ///
403 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
404 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
405 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
406 /// offline for a full minute. In order to track this, you must call
407 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
408 ///
409 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
410 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
411 /// essentially you should default to using a SimpleRefChannelManager, and use a
412 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
413 /// you're using lightning-net-tokio.
414 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
415         where M::Target: chain::Watch<Signer>,
416         T::Target: BroadcasterInterface,
417         K::Target: KeysInterface<Signer = Signer>,
418         F::Target: FeeEstimator,
419                                 L::Target: Logger,
420 {
421         default_configuration: UserConfig,
422         genesis_hash: BlockHash,
423         fee_estimator: F,
424         chain_monitor: M,
425         tx_broadcaster: T,
426
427         #[cfg(test)]
428         pub(super) best_block: RwLock<BestBlock>,
429         #[cfg(not(test))]
430         best_block: RwLock<BestBlock>,
431         secp_ctx: Secp256k1<secp256k1::All>,
432
433         #[cfg(any(test, feature = "_test_utils"))]
434         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
435         #[cfg(not(any(test, feature = "_test_utils")))]
436         channel_state: Mutex<ChannelHolder<Signer>>,
437
438         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
439         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
440         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
441         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
442         /// Locked *after* channel_state.
443         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
444
445         our_network_key: SecretKey,
446         our_network_pubkey: PublicKey,
447
448         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
449         /// value increases strictly since we don't assume access to a time source.
450         last_node_announcement_serial: AtomicUsize,
451
452         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
453         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
454         /// very far in the past, and can only ever be up to two hours in the future.
455         highest_seen_timestamp: AtomicUsize,
456
457         /// The bulk of our storage will eventually be here (channels and message queues and the like).
458         /// If we are connected to a peer we always at least have an entry here, even if no channels
459         /// are currently open with that peer.
460         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
461         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
462         /// new channel.
463         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
464
465         pending_events: Mutex<Vec<events::Event>>,
466         pending_background_events: Mutex<Vec<BackgroundEvent>>,
467         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
468         /// Essentially just when we're serializing ourselves out.
469         /// Taken first everywhere where we are making changes before any other locks.
470         /// When acquiring this lock in read mode, rather than acquiring it directly, call
471         /// `PersistenceNotifierGuard::new(..)` and pass the lock to it, to ensure the PersistenceNotifier
472         /// the lock contains sends out a notification when the lock is released.
473         total_consistency_lock: RwLock<()>,
474
475         persistence_notifier: PersistenceNotifier,
476
477         keys_manager: K,
478
479         logger: L,
480 }
481
482 /// Chain-related parameters used to construct a new `ChannelManager`.
483 ///
484 /// Typically, the block-specific parameters are derived from the best block hash for the network,
485 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
486 /// are not needed when deserializing a previously constructed `ChannelManager`.
487 pub struct ChainParameters {
488         /// The network for determining the `chain_hash` in Lightning messages.
489         pub network: Network,
490
491         /// The hash and height of the latest block successfully connected.
492         ///
493         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
494         pub best_block: BestBlock,
495 }
496
497 /// The best known block as identified by its hash and height.
498 #[derive(Clone, Copy)]
499 pub struct BestBlock {
500         block_hash: BlockHash,
501         height: u32,
502 }
503
504 impl BestBlock {
505         /// Returns the best block from the genesis of the given network.
506         pub fn from_genesis(network: Network) -> Self {
507                 BestBlock {
508                         block_hash: genesis_block(network).header.block_hash(),
509                         height: 0,
510                 }
511         }
512
513         /// Returns the best block as identified by the given block hash and height.
514         pub fn new(block_hash: BlockHash, height: u32) -> Self {
515                 BestBlock { block_hash, height }
516         }
517
518         /// Returns the best block hash.
519         pub fn block_hash(&self) -> BlockHash { self.block_hash }
520
521         /// Returns the best block height.
522         pub fn height(&self) -> u32 { self.height }
523 }
524
525 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
526 /// desirable to notify any listeners on `await_persistable_update_timeout`/
527 /// `await_persistable_update` that new updates are available for persistence. Therefore, this
528 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
529 /// sending the aforementioned notification (since the lock being released indicates that the
530 /// updates are ready for persistence).
531 struct PersistenceNotifierGuard<'a> {
532         persistence_notifier: &'a PersistenceNotifier,
533         // We hold onto this result so the lock doesn't get released immediately.
534         _read_guard: RwLockReadGuard<'a, ()>,
535 }
536
537 impl<'a> PersistenceNotifierGuard<'a> {
538         fn new(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> Self {
539                 let read_guard = lock.read().unwrap();
540
541                 Self {
542                         persistence_notifier: notifier,
543                         _read_guard: read_guard,
544                 }
545         }
546 }
547
548 impl<'a> Drop for PersistenceNotifierGuard<'a> {
549         fn drop(&mut self) {
550                 self.persistence_notifier.notify();
551         }
552 }
553
554 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
555 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
556 ///
557 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
558 ///
559 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
560 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
561 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
562 /// the maximum required amount in lnd as of March 2021.
563 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
564
565 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
566 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
567 ///
568 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
569 ///
570 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
571 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
572 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
573 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
574 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
575 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
576 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
577
578 /// Minimum CLTV difference between the current block height and received inbound payments.
579 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
580 /// this value.
581 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
582 // any payments to succeed. Further, we don't want payments to fail if a block was found while
583 // a payment was being routed, so we add an extra block to be safe.
584 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
585
586 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
587 // ie that if the next-hop peer fails the HTLC within
588 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
589 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
590 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
591 // LATENCY_GRACE_PERIOD_BLOCKS.
592 #[deny(const_err)]
593 #[allow(dead_code)]
594 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
595
596 // Check for ability of an attacker to make us fail on-chain by delaying inbound claim. See
597 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
598 #[deny(const_err)]
599 #[allow(dead_code)]
600 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
601
602 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
603 #[derive(Clone)]
604 pub struct ChannelDetails {
605         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
606         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
607         /// Note that this means this value is *not* persistent - it can change once during the
608         /// lifetime of the channel.
609         pub channel_id: [u8; 32],
610         /// The position of the funding transaction in the chain. None if the funding transaction has
611         /// not yet been confirmed and the channel fully opened.
612         pub short_channel_id: Option<u64>,
613         /// The node_id of our counterparty
614         pub remote_network_id: PublicKey,
615         /// The Features the channel counterparty provided upon last connection.
616         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
617         /// many routing-relevant features are present in the init context.
618         pub counterparty_features: InitFeatures,
619         /// The value, in satoshis, of this channel as appears in the funding output
620         pub channel_value_satoshis: u64,
621         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
622         pub user_id: u64,
623         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
624         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
625         /// available for inclusion in new outbound HTLCs). This further does not include any pending
626         /// outgoing HTLCs which are awaiting some other resolution to be sent.
627         pub outbound_capacity_msat: u64,
628         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
629         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
630         /// available for inclusion in new inbound HTLCs).
631         /// Note that there are some corner cases not fully handled here, so the actual available
632         /// inbound capacity may be slightly higher than this.
633         pub inbound_capacity_msat: u64,
634         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
635         /// the peer is connected, and (c) no monitor update failure is pending resolution.
636         pub is_live: bool,
637
638         /// Information on the fees and requirements that the counterparty requires when forwarding
639         /// payments to us through this channel.
640         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
641 }
642
643 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
644 /// Err() type describing which state the payment is in, see the description of individual enum
645 /// states for more.
646 #[derive(Clone, Debug)]
647 pub enum PaymentSendFailure {
648         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
649         /// send the payment at all. No channel state has been changed or messages sent to peers, and
650         /// once you've changed the parameter at error, you can freely retry the payment in full.
651         ParameterError(APIError),
652         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
653         /// from attempting to send the payment at all. No channel state has been changed or messages
654         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
655         /// payment in full.
656         ///
657         /// The results here are ordered the same as the paths in the route object which was passed to
658         /// send_payment.
659         PathParameterError(Vec<Result<(), APIError>>),
660         /// All paths which were attempted failed to send, with no channel state change taking place.
661         /// You can freely retry the payment in full (though you probably want to do so over different
662         /// paths than the ones selected).
663         AllFailedRetrySafe(Vec<APIError>),
664         /// Some paths which were attempted failed to send, though possibly not all. At least some
665         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
666         /// in over-/re-payment.
667         ///
668         /// The results here are ordered the same as the paths in the route object which was passed to
669         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
670         /// retried (though there is currently no API with which to do so).
671         ///
672         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
673         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
674         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
675         /// with the latest update_id.
676         PartialFailure(Vec<Result<(), APIError>>),
677 }
678
679 macro_rules! handle_error {
680         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
681                 match $internal {
682                         Ok(msg) => Ok(msg),
683                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
684                                 #[cfg(debug_assertions)]
685                                 {
686                                         // In testing, ensure there are no deadlocks where the lock is already held upon
687                                         // entering the macro.
688                                         assert!($self.channel_state.try_lock().is_ok());
689                                 }
690
691                                 let mut msg_events = Vec::with_capacity(2);
692
693                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
694                                         $self.finish_force_close_channel(shutdown_res);
695                                         if let Some(update) = update_option {
696                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
697                                                         msg: update
698                                                 });
699                                         }
700                                 }
701
702                                 log_error!($self.logger, "{}", err.err);
703                                 if let msgs::ErrorAction::IgnoreError = err.action {
704                                 } else {
705                                         msg_events.push(events::MessageSendEvent::HandleError {
706                                                 node_id: $counterparty_node_id,
707                                                 action: err.action.clone()
708                                         });
709                                 }
710
711                                 if !msg_events.is_empty() {
712                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
713                                 }
714
715                                 // Return error in case higher-API need one
716                                 Err(err)
717                         },
718                 }
719         }
720 }
721
722 macro_rules! break_chan_entry {
723         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
724                 match $res {
725                         Ok(res) => res,
726                         Err(ChannelError::Ignore(msg)) => {
727                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
728                         },
729                         Err(ChannelError::Close(msg)) => {
730                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
731                                 let (channel_id, mut chan) = $entry.remove_entry();
732                                 if let Some(short_id) = chan.get_short_channel_id() {
733                                         $channel_state.short_to_id.remove(&short_id);
734                                 }
735                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
736                         },
737                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
738                 }
739         }
740 }
741
742 macro_rules! try_chan_entry {
743         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
744                 match $res {
745                         Ok(res) => res,
746                         Err(ChannelError::Ignore(msg)) => {
747                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
748                         },
749                         Err(ChannelError::Close(msg)) => {
750                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
751                                 let (channel_id, mut chan) = $entry.remove_entry();
752                                 if let Some(short_id) = chan.get_short_channel_id() {
753                                         $channel_state.short_to_id.remove(&short_id);
754                                 }
755                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
756                         },
757                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
758                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
759                                 let (channel_id, mut chan) = $entry.remove_entry();
760                                 if let Some(short_id) = chan.get_short_channel_id() {
761                                         $channel_state.short_to_id.remove(&short_id);
762                                 }
763                                 let shutdown_res = chan.force_shutdown(false);
764                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
765                         }
766                 }
767         }
768 }
769
770 macro_rules! handle_monitor_err {
771         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
772                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
773         };
774         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
775                 match $err {
776                         ChannelMonitorUpdateErr::PermanentFailure => {
777                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
778                                 let (channel_id, mut chan) = $entry.remove_entry();
779                                 if let Some(short_id) = chan.get_short_channel_id() {
780                                         $channel_state.short_to_id.remove(&short_id);
781                                 }
782                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
783                                 // chain in a confused state! We need to move them into the ChannelMonitor which
784                                 // will be responsible for failing backwards once things confirm on-chain.
785                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
786                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
787                                 // us bother trying to claim it just to forward on to another peer. If we're
788                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
789                                 // given up the preimage yet, so might as well just wait until the payment is
790                                 // retried, avoiding the on-chain fees.
791                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
792                                 res
793                         },
794                         ChannelMonitorUpdateErr::TemporaryFailure => {
795                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
796                                                 log_bytes!($entry.key()[..]),
797                                                 if $resend_commitment && $resend_raa {
798                                                                 match $action_type {
799                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
800                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
801                                                                 }
802                                                         } else if $resend_commitment { "commitment" }
803                                                         else if $resend_raa { "RAA" }
804                                                         else { "nothing" },
805                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
806                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
807                                 if !$resend_commitment {
808                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
809                                 }
810                                 if !$resend_raa {
811                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
812                                 }
813                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
814                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
815                         },
816                 }
817         }
818 }
819
820 macro_rules! return_monitor_err {
821         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
822                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
823         };
824         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
825                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
826         }
827 }
828
829 // Does not break in case of TemporaryFailure!
830 macro_rules! maybe_break_monitor_err {
831         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
832                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
833                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
834                                 break e;
835                         },
836                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
837                 }
838         }
839 }
840
841 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
842         where M::Target: chain::Watch<Signer>,
843         T::Target: BroadcasterInterface,
844         K::Target: KeysInterface<Signer = Signer>,
845         F::Target: FeeEstimator,
846         L::Target: Logger,
847 {
848         /// Constructs a new ChannelManager to hold several channels and route between them.
849         ///
850         /// This is the main "logic hub" for all channel-related actions, and implements
851         /// ChannelMessageHandler.
852         ///
853         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
854         ///
855         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
856         ///
857         /// Users need to notify the new ChannelManager when a new block is connected or
858         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
859         /// from after `params.latest_hash`.
860         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
861                 let mut secp_ctx = Secp256k1::new();
862                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
863
864                 ChannelManager {
865                         default_configuration: config.clone(),
866                         genesis_hash: genesis_block(params.network).header.block_hash(),
867                         fee_estimator: fee_est,
868                         chain_monitor,
869                         tx_broadcaster,
870
871                         best_block: RwLock::new(params.best_block),
872
873                         channel_state: Mutex::new(ChannelHolder{
874                                 by_id: HashMap::new(),
875                                 short_to_id: HashMap::new(),
876                                 forward_htlcs: HashMap::new(),
877                                 claimable_htlcs: HashMap::new(),
878                                 pending_msg_events: Vec::new(),
879                         }),
880                         pending_inbound_payments: Mutex::new(HashMap::new()),
881
882                         our_network_key: keys_manager.get_node_secret(),
883                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
884                         secp_ctx,
885
886                         last_node_announcement_serial: AtomicUsize::new(0),
887                         highest_seen_timestamp: AtomicUsize::new(0),
888
889                         per_peer_state: RwLock::new(HashMap::new()),
890
891                         pending_events: Mutex::new(Vec::new()),
892                         pending_background_events: Mutex::new(Vec::new()),
893                         total_consistency_lock: RwLock::new(()),
894                         persistence_notifier: PersistenceNotifier::new(),
895
896                         keys_manager,
897
898                         logger,
899                 }
900         }
901
902         /// Gets the current configuration applied to all new channels,  as
903         pub fn get_current_default_configuration(&self) -> &UserConfig {
904                 &self.default_configuration
905         }
906
907         /// Creates a new outbound channel to the given remote node and with the given value.
908         ///
909         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
910         /// tracking of which events correspond with which create_channel call. Note that the
911         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
912         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
913         /// otherwise ignored.
914         ///
915         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
916         /// PeerManager::process_events afterwards.
917         ///
918         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
919         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
920         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
921                 if channel_value_satoshis < 1000 {
922                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
923                 }
924
925                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
926                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
927                 let res = channel.get_open_channel(self.genesis_hash.clone());
928
929                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
930                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
931                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
932
933                 let mut channel_state = self.channel_state.lock().unwrap();
934                 match channel_state.by_id.entry(channel.channel_id()) {
935                         hash_map::Entry::Occupied(_) => {
936                                 if cfg!(feature = "fuzztarget") {
937                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
938                                 } else {
939                                         panic!("RNG is bad???");
940                                 }
941                         },
942                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
943                 }
944                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
945                         node_id: their_network_key,
946                         msg: res,
947                 });
948                 Ok(())
949         }
950
951         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
952                 let mut res = Vec::new();
953                 {
954                         let channel_state = self.channel_state.lock().unwrap();
955                         res.reserve(channel_state.by_id.len());
956                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
957                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
958                                 res.push(ChannelDetails {
959                                         channel_id: (*channel_id).clone(),
960                                         short_channel_id: channel.get_short_channel_id(),
961                                         remote_network_id: channel.get_counterparty_node_id(),
962                                         counterparty_features: InitFeatures::empty(),
963                                         channel_value_satoshis: channel.get_value_satoshis(),
964                                         inbound_capacity_msat,
965                                         outbound_capacity_msat,
966                                         user_id: channel.get_user_id(),
967                                         is_live: channel.is_live(),
968                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
969                                 });
970                         }
971                 }
972                 let per_peer_state = self.per_peer_state.read().unwrap();
973                 for chan in res.iter_mut() {
974                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
975                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
976                         }
977                 }
978                 res
979         }
980
981         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
982         /// more information.
983         pub fn list_channels(&self) -> Vec<ChannelDetails> {
984                 self.list_channels_with_filter(|_| true)
985         }
986
987         /// Gets the list of usable channels, in random order. Useful as an argument to
988         /// get_route to ensure non-announced channels are used.
989         ///
990         /// These are guaranteed to have their is_live value set to true, see the documentation for
991         /// ChannelDetails::is_live for more info on exactly what the criteria are.
992         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
993                 // Note we use is_live here instead of usable which leads to somewhat confused
994                 // internal/external nomenclature, but that's ok cause that's probably what the user
995                 // really wanted anyway.
996                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
997         }
998
999         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1000         /// will be accepted on the given channel, and after additional timeout/the closing of all
1001         /// pending HTLCs, the channel will be closed on chain.
1002         ///
1003         /// May generate a SendShutdown message event on success, which should be relayed.
1004         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1005                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1006
1007                 let (mut failed_htlcs, chan_option) = {
1008                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1009                         let channel_state = &mut *channel_state_lock;
1010                         match channel_state.by_id.entry(channel_id.clone()) {
1011                                 hash_map::Entry::Occupied(mut chan_entry) => {
1012                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1013                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1014                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1015                                                 msg: shutdown_msg
1016                                         });
1017                                         if chan_entry.get().is_shutdown() {
1018                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1019                                                         channel_state.short_to_id.remove(&short_id);
1020                                                 }
1021                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1022                                         } else { (failed_htlcs, None) }
1023                                 },
1024                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1025                         }
1026                 };
1027                 for htlc_source in failed_htlcs.drain(..) {
1028                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1029                 }
1030                 let chan_update = if let Some(chan) = chan_option {
1031                         if let Ok(update) = self.get_channel_update(&chan) {
1032                                 Some(update)
1033                         } else { None }
1034                 } else { None };
1035
1036                 if let Some(update) = chan_update {
1037                         let mut channel_state = self.channel_state.lock().unwrap();
1038                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1039                                 msg: update
1040                         });
1041                 }
1042
1043                 Ok(())
1044         }
1045
1046         #[inline]
1047         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1048                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1049                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1050                 for htlc_source in failed_htlcs.drain(..) {
1051                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1052                 }
1053                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1054                         // There isn't anything we can do if we get an update failure - we're already
1055                         // force-closing. The monitor update on the required in-memory copy should broadcast
1056                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1057                         // ignore the result here.
1058                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1059                 }
1060         }
1061
1062         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1063                 let mut chan = {
1064                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1065                         let channel_state = &mut *channel_state_lock;
1066                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1067                                 if let Some(node_id) = peer_node_id {
1068                                         if chan.get().get_counterparty_node_id() != *node_id {
1069                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1070                                         }
1071                                 }
1072                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1073                                         channel_state.short_to_id.remove(&short_id);
1074                                 }
1075                                 chan.remove_entry().1
1076                         } else {
1077                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1078                         }
1079                 };
1080                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1081                 self.finish_force_close_channel(chan.force_shutdown(true));
1082                 if let Ok(update) = self.get_channel_update(&chan) {
1083                         let mut channel_state = self.channel_state.lock().unwrap();
1084                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1085                                 msg: update
1086                         });
1087                 }
1088
1089                 Ok(chan.get_counterparty_node_id())
1090         }
1091
1092         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1093         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1094         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1095                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1096                 match self.force_close_channel_with_peer(channel_id, None) {
1097                         Ok(counterparty_node_id) => {
1098                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1099                                         events::MessageSendEvent::HandleError {
1100                                                 node_id: counterparty_node_id,
1101                                                 action: msgs::ErrorAction::SendErrorMessage {
1102                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1103                                                 },
1104                                         }
1105                                 );
1106                                 Ok(())
1107                         },
1108                         Err(e) => Err(e)
1109                 }
1110         }
1111
1112         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1113         /// for each to the chain and rejecting new HTLCs on each.
1114         pub fn force_close_all_channels(&self) {
1115                 for chan in self.list_channels() {
1116                         let _ = self.force_close_channel(&chan.channel_id);
1117                 }
1118         }
1119
1120         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1121                 macro_rules! return_malformed_err {
1122                         ($msg: expr, $err_code: expr) => {
1123                                 {
1124                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1125                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1126                                                 channel_id: msg.channel_id,
1127                                                 htlc_id: msg.htlc_id,
1128                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1129                                                 failure_code: $err_code,
1130                                         })), self.channel_state.lock().unwrap());
1131                                 }
1132                         }
1133                 }
1134
1135                 if let Err(_) = msg.onion_routing_packet.public_key {
1136                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1137                 }
1138
1139                 let shared_secret = {
1140                         let mut arr = [0; 32];
1141                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1142                         arr
1143                 };
1144                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1145
1146                 if msg.onion_routing_packet.version != 0 {
1147                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1148                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1149                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1150                         //receiving node would have to brute force to figure out which version was put in the
1151                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1152                         //node knows the HMAC matched, so they already know what is there...
1153                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1154                 }
1155
1156                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1157                 hmac.input(&msg.onion_routing_packet.hop_data);
1158                 hmac.input(&msg.payment_hash.0[..]);
1159                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1160                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1161                 }
1162
1163                 let mut channel_state = None;
1164                 macro_rules! return_err {
1165                         ($msg: expr, $err_code: expr, $data: expr) => {
1166                                 {
1167                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1168                                         if channel_state.is_none() {
1169                                                 channel_state = Some(self.channel_state.lock().unwrap());
1170                                         }
1171                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1172                                                 channel_id: msg.channel_id,
1173                                                 htlc_id: msg.htlc_id,
1174                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1175                                         })), channel_state.unwrap());
1176                                 }
1177                         }
1178                 }
1179
1180                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1181                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1182                 let (next_hop_data, next_hop_hmac) = {
1183                         match msgs::OnionHopData::read(&mut chacha_stream) {
1184                                 Err(err) => {
1185                                         let error_code = match err {
1186                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1187                                                 msgs::DecodeError::UnknownRequiredFeature|
1188                                                 msgs::DecodeError::InvalidValue|
1189                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1190                                                 _ => 0x2000 | 2, // Should never happen
1191                                         };
1192                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1193                                 },
1194                                 Ok(msg) => {
1195                                         let mut hmac = [0; 32];
1196                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1197                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1198                                         }
1199                                         (msg, hmac)
1200                                 },
1201                         }
1202                 };
1203
1204                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1205                                 #[cfg(test)]
1206                                 {
1207                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1208                                         // We could do some fancy randomness test here, but, ehh, whatever.
1209                                         // This checks for the issue where you can calculate the path length given the
1210                                         // onion data as all the path entries that the originator sent will be here
1211                                         // as-is (and were originally 0s).
1212                                         // Of course reverse path calculation is still pretty easy given naive routing
1213                                         // algorithms, but this fixes the most-obvious case.
1214                                         let mut next_bytes = [0; 32];
1215                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1216                                         assert_ne!(next_bytes[..], [0; 32][..]);
1217                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1218                                         assert_ne!(next_bytes[..], [0; 32][..]);
1219                                 }
1220
1221                                 // OUR PAYMENT!
1222                                 // final_expiry_too_soon
1223                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1224                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1225                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1226                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1227                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1228                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1229                                 }
1230                                 // final_incorrect_htlc_amount
1231                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1232                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1233                                 }
1234                                 // final_incorrect_cltv_expiry
1235                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1236                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1237                                 }
1238
1239                                 let payment_data = match next_hop_data.format {
1240                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1241                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1242                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1243                                 };
1244
1245                                 if payment_data.is_none() {
1246                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1247                                 }
1248
1249                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1250                                 // message, however that would leak that we are the recipient of this payment, so
1251                                 // instead we stay symmetric with the forwarding case, only responding (after a
1252                                 // delay) once they've send us a commitment_signed!
1253
1254                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1255                                         routing: PendingHTLCRouting::Receive {
1256                                                 payment_data: payment_data.unwrap(),
1257                                                 incoming_cltv_expiry: msg.cltv_expiry,
1258                                         },
1259                                         payment_hash: msg.payment_hash.clone(),
1260                                         incoming_shared_secret: shared_secret,
1261                                         amt_to_forward: next_hop_data.amt_to_forward,
1262                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1263                                 })
1264                         } else {
1265                                 let mut new_packet_data = [0; 20*65];
1266                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1267                                 #[cfg(debug_assertions)]
1268                                 {
1269                                         // Check two things:
1270                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1271                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1272                                         // b) that we didn't somehow magically end up with extra data.
1273                                         let mut t = [0; 1];
1274                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1275                                 }
1276                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1277                                 // fill the onion hop data we'll forward to our next-hop peer.
1278                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1279
1280                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1281
1282                                 let blinding_factor = {
1283                                         let mut sha = Sha256::engine();
1284                                         sha.input(&new_pubkey.serialize()[..]);
1285                                         sha.input(&shared_secret);
1286                                         Sha256::from_engine(sha).into_inner()
1287                                 };
1288
1289                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1290                                         Err(e)
1291                                 } else { Ok(new_pubkey) };
1292
1293                                 let outgoing_packet = msgs::OnionPacket {
1294                                         version: 0,
1295                                         public_key,
1296                                         hop_data: new_packet_data,
1297                                         hmac: next_hop_hmac.clone(),
1298                                 };
1299
1300                                 let short_channel_id = match next_hop_data.format {
1301                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1302                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1303                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1304                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1305                                         },
1306                                 };
1307
1308                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1309                                         routing: PendingHTLCRouting::Forward {
1310                                                 onion_packet: outgoing_packet,
1311                                                 short_channel_id,
1312                                         },
1313                                         payment_hash: msg.payment_hash.clone(),
1314                                         incoming_shared_secret: shared_secret,
1315                                         amt_to_forward: next_hop_data.amt_to_forward,
1316                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1317                                 })
1318                         };
1319
1320                 channel_state = Some(self.channel_state.lock().unwrap());
1321                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1322                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1323                         // with a short_channel_id of 0. This is important as various things later assume
1324                         // short_channel_id is non-0 in any ::Forward.
1325                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1326                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1327                                 let forwarding_id = match id_option {
1328                                         None => { // unknown_next_peer
1329                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1330                                         },
1331                                         Some(id) => id.clone(),
1332                                 };
1333                                 if let Some((err, code, chan_update)) = loop {
1334                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1335
1336                                         // Note that we could technically not return an error yet here and just hope
1337                                         // that the connection is reestablished or monitor updated by the time we get
1338                                         // around to doing the actual forward, but better to fail early if we can and
1339                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1340                                         // on a small/per-node/per-channel scale.
1341                                         if !chan.is_live() { // channel_disabled
1342                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1343                                         }
1344                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1345                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1346                                         }
1347                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1348                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1349                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1350                                         }
1351                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1352                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1353                                         }
1354                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1355                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1356                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1357                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1358                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1359                                         }
1360                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1361                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1362                                         }
1363                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1364                                         // But, to be safe against policy reception, we use a longuer delay.
1365                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1366                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1367                                         }
1368
1369                                         break None;
1370                                 }
1371                                 {
1372                                         let mut res = Vec::with_capacity(8 + 128);
1373                                         if let Some(chan_update) = chan_update {
1374                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1375                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1376                                                 }
1377                                                 else if code == 0x1000 | 13 {
1378                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1379                                                 }
1380                                                 else if code == 0x1000 | 20 {
1381                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1382                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1383                                                 }
1384                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1385                                         }
1386                                         return_err!(err, code, &res[..]);
1387                                 }
1388                         }
1389                 }
1390
1391                 (pending_forward_info, channel_state.unwrap())
1392         }
1393
1394         /// only fails if the channel does not yet have an assigned short_id
1395         /// May be called with channel_state already locked!
1396         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1397                 let short_channel_id = match chan.get_short_channel_id() {
1398                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1399                         Some(id) => id,
1400                 };
1401
1402                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1403
1404                 let unsigned = msgs::UnsignedChannelUpdate {
1405                         chain_hash: self.genesis_hash,
1406                         short_channel_id,
1407                         timestamp: chan.get_update_time_counter(),
1408                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1409                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1410                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1411                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1412                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1413                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1414                         excess_data: Vec::new(),
1415                 };
1416
1417                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1418                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1419
1420                 Ok(msgs::ChannelUpdate {
1421                         signature: sig,
1422                         contents: unsigned
1423                 })
1424         }
1425
1426         // Only public for testing, this should otherwise never be called direcly
1427         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1428                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1429                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1430                 let session_priv = SecretKey::from_slice(&self.keys_manager.get_secure_random_bytes()[..]).expect("RNG is busted");
1431
1432                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1433                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1434                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1435                 if onion_utils::route_size_insane(&onion_payloads) {
1436                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1437                 }
1438                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1439
1440                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1441
1442                 let err: Result<(), _> = loop {
1443                         let mut channel_lock = self.channel_state.lock().unwrap();
1444                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1445                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1446                                 Some(id) => id.clone(),
1447                         };
1448
1449                         let channel_state = &mut *channel_lock;
1450                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1451                                 match {
1452                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1453                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1454                                         }
1455                                         if !chan.get().is_live() {
1456                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1457                                         }
1458                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1459                                                 path: path.clone(),
1460                                                 session_priv: session_priv.clone(),
1461                                                 first_hop_htlc_msat: htlc_msat,
1462                                         }, onion_packet, &self.logger), channel_state, chan)
1463                                 } {
1464                                         Some((update_add, commitment_signed, monitor_update)) => {
1465                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1466                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1467                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1468                                                         // that we will resend the commitment update once monitor updating
1469                                                         // is restored. Therefore, we must return an error indicating that
1470                                                         // it is unsafe to retry the payment wholesale, which we do in the
1471                                                         // send_payment check for MonitorUpdateFailed, below.
1472                                                         return Err(APIError::MonitorUpdateFailed);
1473                                                 }
1474
1475                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1476                                                         node_id: path.first().unwrap().pubkey,
1477                                                         updates: msgs::CommitmentUpdate {
1478                                                                 update_add_htlcs: vec![update_add],
1479                                                                 update_fulfill_htlcs: Vec::new(),
1480                                                                 update_fail_htlcs: Vec::new(),
1481                                                                 update_fail_malformed_htlcs: Vec::new(),
1482                                                                 update_fee: None,
1483                                                                 commitment_signed,
1484                                                         },
1485                                                 });
1486                                         },
1487                                         None => {},
1488                                 }
1489                         } else { unreachable!(); }
1490                         return Ok(());
1491                 };
1492
1493                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1494                         Ok(_) => unreachable!(),
1495                         Err(e) => {
1496                                 Err(APIError::ChannelUnavailable { err: e.err })
1497                         },
1498                 }
1499         }
1500
1501         /// Sends a payment along a given route.
1502         ///
1503         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1504         /// fields for more info.
1505         ///
1506         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1507         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1508         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1509         /// specified in the last hop in the route! Thus, you should probably do your own
1510         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1511         /// payment") and prevent double-sends yourself.
1512         ///
1513         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1514         ///
1515         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1516         /// each entry matching the corresponding-index entry in the route paths, see
1517         /// PaymentSendFailure for more info.
1518         ///
1519         /// In general, a path may raise:
1520         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1521         ///    node public key) is specified.
1522         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1523         ///    (including due to previous monitor update failure or new permanent monitor update
1524         ///    failure).
1525         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1526         ///    relevant updates.
1527         ///
1528         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1529         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1530         /// different route unless you intend to pay twice!
1531         ///
1532         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1533         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1534         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1535         /// must not contain multiple paths as multi-path payments require a recipient-provided
1536         /// payment_secret.
1537         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1538         /// bit set (either as required or as available). If multiple paths are present in the Route,
1539         /// we assume the invoice had the basic_mpp feature set.
1540         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1541                 if route.paths.len() < 1 {
1542                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1543                 }
1544                 if route.paths.len() > 10 {
1545                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1546                         // limits. After we support retrying individual paths we should likely bump this, but
1547                         // for now more than 10 paths likely carries too much one-path failure.
1548                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1549                 }
1550                 let mut total_value = 0;
1551                 let our_node_id = self.get_our_node_id();
1552                 let mut path_errs = Vec::with_capacity(route.paths.len());
1553                 'path_check: for path in route.paths.iter() {
1554                         if path.len() < 1 || path.len() > 20 {
1555                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1556                                 continue 'path_check;
1557                         }
1558                         for (idx, hop) in path.iter().enumerate() {
1559                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1560                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1561                                         continue 'path_check;
1562                                 }
1563                         }
1564                         total_value += path.last().unwrap().fee_msat;
1565                         path_errs.push(Ok(()));
1566                 }
1567                 if path_errs.iter().any(|e| e.is_err()) {
1568                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1569                 }
1570
1571                 let cur_height = self.best_block.read().unwrap().height() + 1;
1572                 let mut results = Vec::new();
1573                 for path in route.paths.iter() {
1574                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1575                 }
1576                 let mut has_ok = false;
1577                 let mut has_err = false;
1578                 for res in results.iter() {
1579                         if res.is_ok() { has_ok = true; }
1580                         if res.is_err() { has_err = true; }
1581                         if let &Err(APIError::MonitorUpdateFailed) = res {
1582                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1583                                 // PartialFailure.
1584                                 has_err = true;
1585                                 has_ok = true;
1586                                 break;
1587                         }
1588                 }
1589                 if has_err && has_ok {
1590                         Err(PaymentSendFailure::PartialFailure(results))
1591                 } else if has_err {
1592                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1593                 } else {
1594                         Ok(())
1595                 }
1596         }
1597
1598         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1599         /// which checks the correctness of the funding transaction given the associated channel.
1600         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1601                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1602                 let (chan, msg) = {
1603                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1604                                 Some(mut chan) => {
1605                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1606
1607                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1608                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1609                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1610                                                 } else { unreachable!(); })
1611                                         , chan)
1612                                 },
1613                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1614                         };
1615                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1616                                 Ok(funding_msg) => {
1617                                         (chan, funding_msg)
1618                                 },
1619                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1620                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1621                                 }) },
1622                         }
1623                 };
1624
1625                 let mut channel_state = self.channel_state.lock().unwrap();
1626                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1627                         node_id: chan.get_counterparty_node_id(),
1628                         msg,
1629                 });
1630                 match channel_state.by_id.entry(chan.channel_id()) {
1631                         hash_map::Entry::Occupied(_) => {
1632                                 panic!("Generated duplicate funding txid?");
1633                         },
1634                         hash_map::Entry::Vacant(e) => {
1635                                 e.insert(chan);
1636                         }
1637                 }
1638                 Ok(())
1639         }
1640
1641         #[cfg(test)]
1642         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1643                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1644                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1645                 })
1646         }
1647
1648         /// Call this upon creation of a funding transaction for the given channel.
1649         ///
1650         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1651         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1652         ///
1653         /// Panics if a funding transaction has already been provided for this channel.
1654         ///
1655         /// May panic if the output found in the funding transaction is duplicative with some other
1656         /// channel (note that this should be trivially prevented by using unique funding transaction
1657         /// keys per-channel).
1658         ///
1659         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1660         /// counterparty's signature the funding transaction will automatically be broadcast via the
1661         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1662         ///
1663         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1664         /// not currently support replacing a funding transaction on an existing channel. Instead,
1665         /// create a new channel with a conflicting funding transaction.
1666         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1667                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1668
1669                 for inp in funding_transaction.input.iter() {
1670                         if inp.witness.is_empty() {
1671                                 return Err(APIError::APIMisuseError {
1672                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1673                                 });
1674                         }
1675                 }
1676                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1677                         let mut output_index = None;
1678                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1679                         for (idx, outp) in tx.output.iter().enumerate() {
1680                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1681                                         if output_index.is_some() {
1682                                                 return Err(APIError::APIMisuseError {
1683                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1684                                                 });
1685                                         }
1686                                         if idx > u16::max_value() as usize {
1687                                                 return Err(APIError::APIMisuseError {
1688                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1689                                                 });
1690                                         }
1691                                         output_index = Some(idx as u16);
1692                                 }
1693                         }
1694                         if output_index.is_none() {
1695                                 return Err(APIError::APIMisuseError {
1696                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1697                                 });
1698                         }
1699                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1700                 })
1701         }
1702
1703         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1704                 if !chan.should_announce() {
1705                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1706                         return None
1707                 }
1708
1709                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1710                         Ok(res) => res,
1711                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1712                 };
1713                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1714                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1715
1716                 Some(msgs::AnnouncementSignatures {
1717                         channel_id: chan.channel_id(),
1718                         short_channel_id: chan.get_short_channel_id().unwrap(),
1719                         node_signature: our_node_sig,
1720                         bitcoin_signature: our_bitcoin_sig,
1721                 })
1722         }
1723
1724         #[allow(dead_code)]
1725         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1726         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1727         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1728         // message...
1729         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1730         #[deny(const_err)]
1731         #[allow(dead_code)]
1732         // ...by failing to compile if the number of addresses that would be half of a message is
1733         // smaller than 500:
1734         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1735
1736         /// Generates a signed node_announcement from the given arguments and creates a
1737         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1738         /// seen a channel_announcement from us (ie unless we have public channels open).
1739         ///
1740         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1741         /// to humans. They carry no in-protocol meaning.
1742         ///
1743         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1744         /// incoming connections. These will be broadcast to the network, publicly tying these
1745         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1746         /// only Tor Onion addresses.
1747         ///
1748         /// Panics if addresses is absurdly large (more than 500).
1749         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], addresses: Vec<NetAddress>) {
1750                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1751
1752                 if addresses.len() > 500 {
1753                         panic!("More than half the message size was taken up by public addresses!");
1754                 }
1755
1756                 let announcement = msgs::UnsignedNodeAnnouncement {
1757                         features: NodeFeatures::known(),
1758                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1759                         node_id: self.get_our_node_id(),
1760                         rgb, alias, addresses,
1761                         excess_address_data: Vec::new(),
1762                         excess_data: Vec::new(),
1763                 };
1764                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1765
1766                 let mut channel_state = self.channel_state.lock().unwrap();
1767                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1768                         msg: msgs::NodeAnnouncement {
1769                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1770                                 contents: announcement
1771                         },
1772                 });
1773         }
1774
1775         /// Processes HTLCs which are pending waiting on random forward delay.
1776         ///
1777         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1778         /// Will likely generate further events.
1779         pub fn process_pending_htlc_forwards(&self) {
1780                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
1781
1782                 let mut new_events = Vec::new();
1783                 let mut failed_forwards = Vec::new();
1784                 let mut handle_errors = Vec::new();
1785                 {
1786                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1787                         let channel_state = &mut *channel_state_lock;
1788
1789                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1790                                 if short_chan_id != 0 {
1791                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1792                                                 Some(chan_id) => chan_id.clone(),
1793                                                 None => {
1794                                                         failed_forwards.reserve(pending_forwards.len());
1795                                                         for forward_info in pending_forwards.drain(..) {
1796                                                                 match forward_info {
1797                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1798                                                                                                    prev_funding_outpoint } => {
1799                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1800                                                                                         short_channel_id: prev_short_channel_id,
1801                                                                                         outpoint: prev_funding_outpoint,
1802                                                                                         htlc_id: prev_htlc_id,
1803                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1804                                                                                 });
1805                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1806                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1807                                                                                 ));
1808                                                                         },
1809                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1810                                                                                 // Channel went away before we could fail it. This implies
1811                                                                                 // the channel is now on chain and our counterparty is
1812                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1813                                                                                 // problem, not ours.
1814                                                                         }
1815                                                                 }
1816                                                         }
1817                                                         continue;
1818                                                 }
1819                                         };
1820                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1821                                                 let mut add_htlc_msgs = Vec::new();
1822                                                 let mut fail_htlc_msgs = Vec::new();
1823                                                 for forward_info in pending_forwards.drain(..) {
1824                                                         match forward_info {
1825                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1826                                                                                 routing: PendingHTLCRouting::Forward {
1827                                                                                         onion_packet, ..
1828                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1829                                                                                 prev_funding_outpoint } => {
1830                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1831                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1832                                                                                 short_channel_id: prev_short_channel_id,
1833                                                                                 outpoint: prev_funding_outpoint,
1834                                                                                 htlc_id: prev_htlc_id,
1835                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1836                                                                         });
1837                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1838                                                                                 Err(e) => {
1839                                                                                         if let ChannelError::Ignore(msg) = e {
1840                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1841                                                                                         } else {
1842                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1843                                                                                         }
1844                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1845                                                                                         failed_forwards.push((htlc_source, payment_hash,
1846                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1847                                                                                         ));
1848                                                                                         continue;
1849                                                                                 },
1850                                                                                 Ok(update_add) => {
1851                                                                                         match update_add {
1852                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1853                                                                                                 None => {
1854                                                                                                         // Nothing to do here...we're waiting on a remote
1855                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1856                                                                                                         // will automatically handle building the update_add_htlc and
1857                                                                                                         // commitment_signed messages when we can.
1858                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1859                                                                                                         // as we don't really want others relying on us relaying through
1860                                                                                                         // this channel currently :/.
1861                                                                                                 }
1862                                                                                         }
1863                                                                                 }
1864                                                                         }
1865                                                                 },
1866                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1867                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1868                                                                 },
1869                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
1870                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
1871                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
1872                                                                                 Err(e) => {
1873                                                                                         if let ChannelError::Ignore(msg) = e {
1874                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
1875                                                                                         } else {
1876                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
1877                                                                                         }
1878                                                                                         // fail-backs are best-effort, we probably already have one
1879                                                                                         // pending, and if not that's OK, if not, the channel is on
1880                                                                                         // the chain and sending the HTLC-Timeout is their problem.
1881                                                                                         continue;
1882                                                                                 },
1883                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
1884                                                                                 Ok(None) => {
1885                                                                                         // Nothing to do here...we're waiting on a remote
1886                                                                                         // revoke_and_ack before we can update the commitment
1887                                                                                         // transaction. The Channel will automatically handle
1888                                                                                         // building the update_fail_htlc and commitment_signed
1889                                                                                         // messages when we can.
1890                                                                                         // We don't need any kind of timer here as they should fail
1891                                                                                         // the channel onto the chain if they can't get our
1892                                                                                         // update_fail_htlc in time, it's not our problem.
1893                                                                                 }
1894                                                                         }
1895                                                                 },
1896                                                         }
1897                                                 }
1898
1899                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
1900                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
1901                                                                 Ok(res) => res,
1902                                                                 Err(e) => {
1903                                                                         // We surely failed send_commitment due to bad keys, in that case
1904                                                                         // close channel and then send error message to peer.
1905                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
1906                                                                         let err: Result<(), _>  = match e {
1907                                                                                 ChannelError::Ignore(_) => {
1908                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
1909                                                                                 },
1910                                                                                 ChannelError::Close(msg) => {
1911                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
1912                                                                                         let (channel_id, mut channel) = chan.remove_entry();
1913                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
1914                                                                                                 channel_state.short_to_id.remove(&short_id);
1915                                                                                         }
1916                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
1917                                                                                 },
1918                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
1919                                                                         };
1920                                                                         handle_errors.push((counterparty_node_id, err));
1921                                                                         continue;
1922                                                                 }
1923                                                         };
1924                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1925                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
1926                                                                 continue;
1927                                                         }
1928                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1929                                                                 node_id: chan.get().get_counterparty_node_id(),
1930                                                                 updates: msgs::CommitmentUpdate {
1931                                                                         update_add_htlcs: add_htlc_msgs,
1932                                                                         update_fulfill_htlcs: Vec::new(),
1933                                                                         update_fail_htlcs: fail_htlc_msgs,
1934                                                                         update_fail_malformed_htlcs: Vec::new(),
1935                                                                         update_fee: None,
1936                                                                         commitment_signed: commitment_msg,
1937                                                                 },
1938                                                         });
1939                                                 }
1940                                         } else {
1941                                                 unreachable!();
1942                                         }
1943                                 } else {
1944                                         for forward_info in pending_forwards.drain(..) {
1945                                                 match forward_info {
1946                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1947                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
1948                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
1949                                                                         prev_funding_outpoint } => {
1950                                                                 let claimable_htlc = ClaimableHTLC {
1951                                                                         prev_hop: HTLCPreviousHopData {
1952                                                                                 short_channel_id: prev_short_channel_id,
1953                                                                                 outpoint: prev_funding_outpoint,
1954                                                                                 htlc_id: prev_htlc_id,
1955                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1956                                                                         },
1957                                                                         value: amt_to_forward,
1958                                                                         payment_data: payment_data.clone(),
1959                                                                         cltv_expiry: incoming_cltv_expiry,
1960                                                                 };
1961
1962                                                                 macro_rules! fail_htlc {
1963                                                                         ($htlc: expr) => {
1964                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
1965                                                                                 htlc_msat_height_data.extend_from_slice(
1966                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
1967                                                                                 );
1968                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
1969                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
1970                                                                                                 outpoint: prev_funding_outpoint,
1971                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
1972                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
1973                                                                                         }), payment_hash,
1974                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
1975                                                                                 ));
1976                                                                         }
1977                                                                 }
1978
1979                                                                 // Check that the payment hash and secret are known. Note that we
1980                                                                 // MUST take care to handle the "unknown payment hash" and
1981                                                                 // "incorrect payment secret" cases here identically or we'd expose
1982                                                                 // that we are the ultimate recipient of the given payment hash.
1983                                                                 // Further, we must not expose whether we have any other HTLCs
1984                                                                 // associated with the same payment_hash pending or not.
1985                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
1986                                                                 match payment_secrets.entry(payment_hash) {
1987                                                                         hash_map::Entry::Vacant(_) => {
1988                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
1989                                                                                 fail_htlc!(claimable_htlc);
1990                                                                         },
1991                                                                         hash_map::Entry::Occupied(inbound_payment) => {
1992                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
1993                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
1994                                                                                         fail_htlc!(claimable_htlc);
1995                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
1996                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
1997                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
1998                                                                                         fail_htlc!(claimable_htlc);
1999                                                                                 } else {
2000                                                                                         let mut total_value = 0;
2001                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2002                                                                                                 .or_insert(Vec::new());
2003                                                                                         htlcs.push(claimable_htlc);
2004                                                                                         for htlc in htlcs.iter() {
2005                                                                                                 total_value += htlc.value;
2006                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2007                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2008                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2009                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2010                                                                                                 }
2011                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2012                                                                                         }
2013                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2014                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2015                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2016                                                                                                 for htlc in htlcs.iter() {
2017                                                                                                         fail_htlc!(htlc);
2018                                                                                                 }
2019                                                                                         } else if total_value == payment_data.total_msat {
2020                                                                                                 new_events.push(events::Event::PaymentReceived {
2021                                                                                                         payment_hash,
2022                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2023                                                                                                         payment_secret: payment_data.payment_secret,
2024                                                                                                         amt: total_value,
2025                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2026                                                                                                 });
2027                                                                                                 // Only ever generate at most one PaymentReceived
2028                                                                                                 // per registered payment_hash, even if it isn't
2029                                                                                                 // claimed.
2030                                                                                                 inbound_payment.remove_entry();
2031                                                                                         } else {
2032                                                                                                 // Nothing to do - we haven't reached the total
2033                                                                                                 // payment value yet, wait until we receive more
2034                                                                                                 // MPP parts.
2035                                                                                         }
2036                                                                                 }
2037                                                                         },
2038                                                                 };
2039                                                         },
2040                                                         HTLCForwardInfo::AddHTLC { .. } => {
2041                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2042                                                         },
2043                                                         HTLCForwardInfo::FailHTLC { .. } => {
2044                                                                 panic!("Got pending fail of our own HTLC");
2045                                                         }
2046                                                 }
2047                                         }
2048                                 }
2049                         }
2050                 }
2051
2052                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2053                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2054                 }
2055
2056                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2057                         let _ = handle_error!(self, err, counterparty_node_id);
2058                 }
2059
2060                 if new_events.is_empty() { return }
2061                 let mut events = self.pending_events.lock().unwrap();
2062                 events.append(&mut new_events);
2063         }
2064
2065         /// Free the background events, generally called from timer_tick_occurred.
2066         ///
2067         /// Exposed for testing to allow us to process events quickly without generating accidental
2068         /// BroadcastChannelUpdate events in timer_tick_occurred.
2069         ///
2070         /// Expects the caller to have a total_consistency_lock read lock.
2071         fn process_background_events(&self) {
2072                 let mut background_events = Vec::new();
2073                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2074                 for event in background_events.drain(..) {
2075                         match event {
2076                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2077                                         // The channel has already been closed, so no use bothering to care about the
2078                                         // monitor updating completing.
2079                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2080                                 },
2081                         }
2082                 }
2083         }
2084
2085         #[cfg(any(test, feature = "_test_utils"))]
2086         pub(crate) fn test_process_background_events(&self) {
2087                 self.process_background_events();
2088         }
2089
2090         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2091         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2092         /// to inform the network about the uselessness of these channels.
2093         ///
2094         /// This method handles all the details, and must be called roughly once per minute.
2095         ///
2096         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2097         pub fn timer_tick_occurred(&self) {
2098                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2099                 self.process_background_events();
2100
2101                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2102                 let channel_state = &mut *channel_state_lock;
2103                 for (_, chan) in channel_state.by_id.iter_mut() {
2104                         if chan.is_disabled_staged() && !chan.is_live() {
2105                                 if let Ok(update) = self.get_channel_update(&chan) {
2106                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2107                                                 msg: update
2108                                         });
2109                                 }
2110                                 chan.to_fresh();
2111                         } else if chan.is_disabled_staged() && chan.is_live() {
2112                                 chan.to_fresh();
2113                         } else if chan.is_disabled_marked() {
2114                                 chan.to_disabled_staged();
2115                         }
2116                 }
2117         }
2118
2119         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2120         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2121         /// along the path (including in our own channel on which we received it).
2122         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2123         /// HTLC backwards has been started.
2124         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2125                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2126
2127                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2128                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2129                 if let Some(mut sources) = removed_source {
2130                         for htlc in sources.drain(..) {
2131                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2132                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2133                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2134                                                 self.best_block.read().unwrap().height()));
2135                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2136                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2137                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2138                         }
2139                         true
2140                 } else { false }
2141         }
2142
2143         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2144         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2145         // be surfaced to the user.
2146         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2147                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2148                         match htlc_src {
2149                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2150                                         let (failure_code, onion_failure_data) =
2151                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2152                                                         hash_map::Entry::Occupied(chan_entry) => {
2153                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2154                                                                         (0x1000|7, upd.encode_with_len())
2155                                                                 } else {
2156                                                                         (0x4000|10, Vec::new())
2157                                                                 }
2158                                                         },
2159                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2160                                                 };
2161                                         let channel_state = self.channel_state.lock().unwrap();
2162                                         self.fail_htlc_backwards_internal(channel_state,
2163                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2164                                 },
2165                                 HTLCSource::OutboundRoute { .. } => {
2166                                         self.pending_events.lock().unwrap().push(
2167                                                 events::Event::PaymentFailed {
2168                                                         payment_hash,
2169                                                         rejected_by_dest: false,
2170 #[cfg(test)]
2171                                                         error_code: None,
2172 #[cfg(test)]
2173                                                         error_data: None,
2174                                                 }
2175                                         )
2176                                 },
2177                         };
2178                 }
2179         }
2180
2181         /// Fails an HTLC backwards to the sender of it to us.
2182         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2183         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2184         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2185         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2186         /// still-available channels.
2187         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2188                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2189                 //identify whether we sent it or not based on the (I presume) very different runtime
2190                 //between the branches here. We should make this async and move it into the forward HTLCs
2191                 //timer handling.
2192
2193                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2194                 // from block_connected which may run during initialization prior to the chain_monitor
2195                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2196                 match source {
2197                         HTLCSource::OutboundRoute { ref path, .. } => {
2198                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2199                                 mem::drop(channel_state_lock);
2200                                 match &onion_error {
2201                                         &HTLCFailReason::LightningError { ref err } => {
2202 #[cfg(test)]
2203                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2204 #[cfg(not(test))]
2205                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2206                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2207                                                 // process_onion_failure we should close that channel as it implies our
2208                                                 // next-hop is needlessly blaming us!
2209                                                 if let Some(update) = channel_update {
2210                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2211                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2212                                                                         update,
2213                                                                 }
2214                                                         );
2215                                                 }
2216                                                 self.pending_events.lock().unwrap().push(
2217                                                         events::Event::PaymentFailed {
2218                                                                 payment_hash: payment_hash.clone(),
2219                                                                 rejected_by_dest: !payment_retryable,
2220 #[cfg(test)]
2221                                                                 error_code: onion_error_code,
2222 #[cfg(test)]
2223                                                                 error_data: onion_error_data
2224                                                         }
2225                                                 );
2226                                         },
2227                                         &HTLCFailReason::Reason {
2228 #[cfg(test)]
2229                                                         ref failure_code,
2230 #[cfg(test)]
2231                                                         ref data,
2232                                                         .. } => {
2233                                                 // we get a fail_malformed_htlc from the first hop
2234                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2235                                                 // failures here, but that would be insufficient as get_route
2236                                                 // generally ignores its view of our own channels as we provide them via
2237                                                 // ChannelDetails.
2238                                                 // TODO: For non-temporary failures, we really should be closing the
2239                                                 // channel here as we apparently can't relay through them anyway.
2240                                                 self.pending_events.lock().unwrap().push(
2241                                                         events::Event::PaymentFailed {
2242                                                                 payment_hash: payment_hash.clone(),
2243                                                                 rejected_by_dest: path.len() == 1,
2244 #[cfg(test)]
2245                                                                 error_code: Some(*failure_code),
2246 #[cfg(test)]
2247                                                                 error_data: Some(data.clone()),
2248                                                         }
2249                                                 );
2250                                         }
2251                                 }
2252                         },
2253                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2254                                 let err_packet = match onion_error {
2255                                         HTLCFailReason::Reason { failure_code, data } => {
2256                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2257                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2258                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2259                                         },
2260                                         HTLCFailReason::LightningError { err } => {
2261                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2262                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2263                                         }
2264                                 };
2265
2266                                 let mut forward_event = None;
2267                                 if channel_state_lock.forward_htlcs.is_empty() {
2268                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2269                                 }
2270                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2271                                         hash_map::Entry::Occupied(mut entry) => {
2272                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2273                                         },
2274                                         hash_map::Entry::Vacant(entry) => {
2275                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2276                                         }
2277                                 }
2278                                 mem::drop(channel_state_lock);
2279                                 if let Some(time) = forward_event {
2280                                         let mut pending_events = self.pending_events.lock().unwrap();
2281                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2282                                                 time_forwardable: time
2283                                         });
2284                                 }
2285                         },
2286                 }
2287         }
2288
2289         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2290         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2291         /// should probably kick the net layer to go send messages if this returns true!
2292         ///
2293         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2294         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2295         /// event matches your expectation. If you fail to do so and call this method, you may provide
2296         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2297         ///
2298         /// May panic if called except in response to a PaymentReceived event.
2299         ///
2300         /// [`create_inbound_payment`]: Self::create_inbound_payment
2301         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2302         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2303                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2304
2305                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2306
2307                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2308                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2309                 if let Some(mut sources) = removed_source {
2310                         assert!(!sources.is_empty());
2311
2312                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2313                         // channel exists before claiming all of the payments (inside one lock).
2314                         // Note that channel existance is sufficient as we should always get a monitor update
2315                         // which will take care of the real HTLC claim enforcement.
2316                         //
2317                         // If we find an HTLC which we would need to claim but for which we do not have a
2318                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2319                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2320                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2321                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2322                         // it.
2323                         let mut valid_mpp = true;
2324                         for htlc in sources.iter() {
2325                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2326                                         valid_mpp = false;
2327                                         break;
2328                                 }
2329                         }
2330
2331                         let mut errs = Vec::new();
2332                         let mut claimed_any_htlcs = false;
2333                         for htlc in sources.drain(..) {
2334                                 if !valid_mpp {
2335                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2336                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2337                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2338                                                         self.best_block.read().unwrap().height()));
2339                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2340                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2341                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2342                                 } else {
2343                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2344                                                 Err(Some(e)) => {
2345                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2346                                                                 // We got a temporary failure updating monitor, but will claim the
2347                                                                 // HTLC when the monitor updating is restored (or on chain).
2348                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2349                                                                 claimed_any_htlcs = true;
2350                                                         } else { errs.push(e); }
2351                                                 },
2352                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2353                                                 Ok(()) => claimed_any_htlcs = true,
2354                                         }
2355                                 }
2356                         }
2357
2358                         // Now that we've done the entire above loop in one lock, we can handle any errors
2359                         // which were generated.
2360                         channel_state.take();
2361
2362                         for (counterparty_node_id, err) in errs.drain(..) {
2363                                 let res: Result<(), _> = Err(err);
2364                                 let _ = handle_error!(self, res, counterparty_node_id);
2365                         }
2366
2367                         claimed_any_htlcs
2368                 } else { false }
2369         }
2370
2371         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2372                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2373                 let channel_state = &mut **channel_state_lock;
2374                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2375                         Some(chan_id) => chan_id.clone(),
2376                         None => {
2377                                 return Err(None)
2378                         }
2379                 };
2380
2381                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2382                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2383                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2384                                 Ok((msgs, monitor_option)) => {
2385                                         if let Some(monitor_update) = monitor_option {
2386                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2387                                                         if was_frozen_for_monitor {
2388                                                                 assert!(msgs.is_none());
2389                                                         } else {
2390                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2391                                                         }
2392                                                 }
2393                                         }
2394                                         if let Some((msg, commitment_signed)) = msgs {
2395                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2396                                                         node_id: chan.get().get_counterparty_node_id(),
2397                                                         updates: msgs::CommitmentUpdate {
2398                                                                 update_add_htlcs: Vec::new(),
2399                                                                 update_fulfill_htlcs: vec![msg],
2400                                                                 update_fail_htlcs: Vec::new(),
2401                                                                 update_fail_malformed_htlcs: Vec::new(),
2402                                                                 update_fee: None,
2403                                                                 commitment_signed,
2404                                                         }
2405                                                 });
2406                                         }
2407                                         return Ok(())
2408                                 },
2409                                 Err(e) => {
2410                                         // TODO: Do something with e?
2411                                         // This should only occur if we are claiming an HTLC at the same time as the
2412                                         // HTLC is being failed (eg because a block is being connected and this caused
2413                                         // an HTLC to time out). This should, of course, only occur if the user is the
2414                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2415                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2416                                         // previous HTLC was failed (thus not for an MPP payment).
2417                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2418                                         return Err(None)
2419                                 },
2420                         }
2421                 } else { unreachable!(); }
2422         }
2423
2424         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2425                 match source {
2426                         HTLCSource::OutboundRoute { .. } => {
2427                                 mem::drop(channel_state_lock);
2428                                 let mut pending_events = self.pending_events.lock().unwrap();
2429                                 pending_events.push(events::Event::PaymentSent {
2430                                         payment_preimage
2431                                 });
2432                         },
2433                         HTLCSource::PreviousHopData(hop_data) => {
2434                                 let prev_outpoint = hop_data.outpoint;
2435                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2436                                         Ok(()) => Ok(()),
2437                                         Err(None) => {
2438                                                 let preimage_update = ChannelMonitorUpdate {
2439                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2440                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2441                                                                 payment_preimage: payment_preimage.clone(),
2442                                                         }],
2443                                                 };
2444                                                 // We update the ChannelMonitor on the backward link, after
2445                                                 // receiving an offchain preimage event from the forward link (the
2446                                                 // event being update_fulfill_htlc).
2447                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2448                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2449                                                                    payment_preimage, e);
2450                                                 }
2451                                                 Ok(())
2452                                         },
2453                                         Err(Some(res)) => Err(res),
2454                                 } {
2455                                         mem::drop(channel_state_lock);
2456                                         let res: Result<(), _> = Err(err);
2457                                         let _ = handle_error!(self, res, counterparty_node_id);
2458                                 }
2459                         },
2460                 }
2461         }
2462
2463         /// Gets the node_id held by this ChannelManager
2464         pub fn get_our_node_id(&self) -> PublicKey {
2465                 self.our_network_pubkey.clone()
2466         }
2467
2468         /// Restores a single, given channel to normal operation after a
2469         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2470         /// operation.
2471         ///
2472         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2473         /// fully committed in every copy of the given channels' ChannelMonitors.
2474         ///
2475         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2476         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2477         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2478         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2479         ///
2480         /// Thus, the anticipated use is, at a high level:
2481         ///  1) You register a chain::Watch with this ChannelManager,
2482         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2483         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2484         ///     any time it cannot do so instantly,
2485         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2486         ///  4) once all remote copies are updated, you call this function with the update_id that
2487         ///     completed, and once it is the latest the Channel will be re-enabled.
2488         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2489                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
2490
2491                 let mut close_results = Vec::new();
2492                 let mut htlc_forwards = Vec::new();
2493                 let mut htlc_failures = Vec::new();
2494                 let mut pending_events = Vec::new();
2495
2496                 {
2497                         let mut channel_lock = self.channel_state.lock().unwrap();
2498                         let channel_state = &mut *channel_lock;
2499                         let short_to_id = &mut channel_state.short_to_id;
2500                         let pending_msg_events = &mut channel_state.pending_msg_events;
2501                         let channel = match channel_state.by_id.get_mut(&funding_txo.to_channel_id()) {
2502                                 Some(chan) => chan,
2503                                 None => return,
2504                         };
2505                         if !channel.is_awaiting_monitor_update() || channel.get_latest_monitor_update_id() != highest_applied_update_id {
2506                                 return;
2507                         }
2508
2509                         let (raa, commitment_update, order, pending_forwards, mut pending_failures, funding_broadcastable, funding_locked) = channel.monitor_updating_restored(&self.logger);
2510                         if !pending_forwards.is_empty() {
2511                                 htlc_forwards.push((channel.get_short_channel_id().expect("We can't have pending forwards before funding confirmation"), funding_txo.clone(), pending_forwards));
2512                         }
2513                         htlc_failures.append(&mut pending_failures);
2514
2515                         macro_rules! handle_cs { () => {
2516                                 if let Some(update) = commitment_update {
2517                                         pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2518                                                 node_id: channel.get_counterparty_node_id(),
2519                                                 updates: update,
2520                                         });
2521                                 }
2522                         } }
2523                         macro_rules! handle_raa { () => {
2524                                 if let Some(revoke_and_ack) = raa {
2525                                         pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2526                                                 node_id: channel.get_counterparty_node_id(),
2527                                                 msg: revoke_and_ack,
2528                                         });
2529                                 }
2530                         } }
2531                         match order {
2532                                 RAACommitmentOrder::CommitmentFirst => {
2533                                         handle_cs!();
2534                                         handle_raa!();
2535                                 },
2536                                 RAACommitmentOrder::RevokeAndACKFirst => {
2537                                         handle_raa!();
2538                                         handle_cs!();
2539                                 },
2540                         }
2541                         if let Some(tx) = funding_broadcastable {
2542                                 self.tx_broadcaster.broadcast_transaction(&tx);
2543                         }
2544                         if let Some(msg) = funding_locked {
2545                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
2546                                         node_id: channel.get_counterparty_node_id(),
2547                                         msg,
2548                                 });
2549                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
2550                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2551                                                 node_id: channel.get_counterparty_node_id(),
2552                                                 msg: announcement_sigs,
2553                                         });
2554                                 }
2555                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
2556                         }
2557                 }
2558
2559                 self.pending_events.lock().unwrap().append(&mut pending_events);
2560
2561                 for failure in htlc_failures.drain(..) {
2562                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2563                 }
2564                 self.forward_htlcs(&mut htlc_forwards[..]);
2565
2566                 for res in close_results.drain(..) {
2567                         self.finish_force_close_channel(res);
2568                 }
2569         }
2570
2571         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2572                 if msg.chain_hash != self.genesis_hash {
2573                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2574                 }
2575
2576                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2577                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2578                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2579                 let channel_state = &mut *channel_state_lock;
2580                 match channel_state.by_id.entry(channel.channel_id()) {
2581                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2582                         hash_map::Entry::Vacant(entry) => {
2583                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2584                                         node_id: counterparty_node_id.clone(),
2585                                         msg: channel.get_accept_channel(),
2586                                 });
2587                                 entry.insert(channel);
2588                         }
2589                 }
2590                 Ok(())
2591         }
2592
2593         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2594                 let (value, output_script, user_id) = {
2595                         let mut channel_lock = self.channel_state.lock().unwrap();
2596                         let channel_state = &mut *channel_lock;
2597                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2598                                 hash_map::Entry::Occupied(mut chan) => {
2599                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2600                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2601                                         }
2602                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2603                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2604                                 },
2605                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2606                         }
2607                 };
2608                 let mut pending_events = self.pending_events.lock().unwrap();
2609                 pending_events.push(events::Event::FundingGenerationReady {
2610                         temporary_channel_id: msg.temporary_channel_id,
2611                         channel_value_satoshis: value,
2612                         output_script,
2613                         user_channel_id: user_id,
2614                 });
2615                 Ok(())
2616         }
2617
2618         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2619                 let ((funding_msg, monitor), mut chan) = {
2620                         let best_block = *self.best_block.read().unwrap();
2621                         let mut channel_lock = self.channel_state.lock().unwrap();
2622                         let channel_state = &mut *channel_lock;
2623                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2624                                 hash_map::Entry::Occupied(mut chan) => {
2625                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2626                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2627                                         }
2628                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2629                                 },
2630                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2631                         }
2632                 };
2633                 // Because we have exclusive ownership of the channel here we can release the channel_state
2634                 // lock before watch_channel
2635                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2636                         match e {
2637                                 ChannelMonitorUpdateErr::PermanentFailure => {
2638                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2639                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2640                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2641                                         // any messages referencing a previously-closed channel anyway.
2642                                         // We do not do a force-close here as that would generate a monitor update for
2643                                         // a monitor that we didn't manage to store (and that we don't care about - we
2644                                         // don't respond with the funding_signed so the channel can never go on chain).
2645                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2646                                         assert!(failed_htlcs.is_empty());
2647                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2648                                 },
2649                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2650                                         // There's no problem signing a counterparty's funding transaction if our monitor
2651                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2652                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2653                                         // until we have persisted our monitor.
2654                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2655                                 },
2656                         }
2657                 }
2658                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2659                 let channel_state = &mut *channel_state_lock;
2660                 match channel_state.by_id.entry(funding_msg.channel_id) {
2661                         hash_map::Entry::Occupied(_) => {
2662                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2663                         },
2664                         hash_map::Entry::Vacant(e) => {
2665                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2666                                         node_id: counterparty_node_id.clone(),
2667                                         msg: funding_msg,
2668                                 });
2669                                 e.insert(chan);
2670                         }
2671                 }
2672                 Ok(())
2673         }
2674
2675         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2676                 let funding_tx = {
2677                         let best_block = *self.best_block.read().unwrap();
2678                         let mut channel_lock = self.channel_state.lock().unwrap();
2679                         let channel_state = &mut *channel_lock;
2680                         match channel_state.by_id.entry(msg.channel_id) {
2681                                 hash_map::Entry::Occupied(mut chan) => {
2682                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2683                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2684                                         }
2685                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2686                                                 Ok(update) => update,
2687                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2688                                         };
2689                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2690                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2691                                         }
2692                                         funding_tx
2693                                 },
2694                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2695                         }
2696                 };
2697                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2698                 Ok(())
2699         }
2700
2701         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2702                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2703                 let channel_state = &mut *channel_state_lock;
2704                 match channel_state.by_id.entry(msg.channel_id) {
2705                         hash_map::Entry::Occupied(mut chan) => {
2706                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2707                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2708                                 }
2709                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2710                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2711                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2712                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2713                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2714                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2715                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2716                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2717                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2718                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2719                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2720                                         // to be received, from then sigs are going to be flood to the whole network.
2721                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2722                                                 node_id: counterparty_node_id.clone(),
2723                                                 msg: announcement_sigs,
2724                                         });
2725                                 }
2726                                 Ok(())
2727                         },
2728                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2729                 }
2730         }
2731
2732         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2733                 let (mut dropped_htlcs, chan_option) = {
2734                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2735                         let channel_state = &mut *channel_state_lock;
2736
2737                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2738                                 hash_map::Entry::Occupied(mut chan_entry) => {
2739                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2740                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2741                                         }
2742                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2743                                         if let Some(msg) = shutdown {
2744                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2745                                                         node_id: counterparty_node_id.clone(),
2746                                                         msg,
2747                                                 });
2748                                         }
2749                                         if let Some(msg) = closing_signed {
2750                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2751                                                         node_id: counterparty_node_id.clone(),
2752                                                         msg,
2753                                                 });
2754                                         }
2755                                         if chan_entry.get().is_shutdown() {
2756                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2757                                                         channel_state.short_to_id.remove(&short_id);
2758                                                 }
2759                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2760                                         } else { (dropped_htlcs, None) }
2761                                 },
2762                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2763                         }
2764                 };
2765                 for htlc_source in dropped_htlcs.drain(..) {
2766                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2767                 }
2768                 if let Some(chan) = chan_option {
2769                         if let Ok(update) = self.get_channel_update(&chan) {
2770                                 let mut channel_state = self.channel_state.lock().unwrap();
2771                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2772                                         msg: update
2773                                 });
2774                         }
2775                 }
2776                 Ok(())
2777         }
2778
2779         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2780                 let (tx, chan_option) = {
2781                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2782                         let channel_state = &mut *channel_state_lock;
2783                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2784                                 hash_map::Entry::Occupied(mut chan_entry) => {
2785                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2786                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2787                                         }
2788                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2789                                         if let Some(msg) = closing_signed {
2790                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2791                                                         node_id: counterparty_node_id.clone(),
2792                                                         msg,
2793                                                 });
2794                                         }
2795                                         if tx.is_some() {
2796                                                 // We're done with this channel, we've got a signed closing transaction and
2797                                                 // will send the closing_signed back to the remote peer upon return. This
2798                                                 // also implies there are no pending HTLCs left on the channel, so we can
2799                                                 // fully delete it from tracking (the channel monitor is still around to
2800                                                 // watch for old state broadcasts)!
2801                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2802                                                         channel_state.short_to_id.remove(&short_id);
2803                                                 }
2804                                                 (tx, Some(chan_entry.remove_entry().1))
2805                                         } else { (tx, None) }
2806                                 },
2807                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2808                         }
2809                 };
2810                 if let Some(broadcast_tx) = tx {
2811                         log_trace!(self.logger, "Broadcast onchain {}", log_tx!(broadcast_tx));
2812                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2813                 }
2814                 if let Some(chan) = chan_option {
2815                         if let Ok(update) = self.get_channel_update(&chan) {
2816                                 let mut channel_state = self.channel_state.lock().unwrap();
2817                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2818                                         msg: update
2819                                 });
2820                         }
2821                 }
2822                 Ok(())
2823         }
2824
2825         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2826                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2827                 //determine the state of the payment based on our response/if we forward anything/the time
2828                 //we take to respond. We should take care to avoid allowing such an attack.
2829                 //
2830                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2831                 //us repeatedly garbled in different ways, and compare our error messages, which are
2832                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2833                 //but we should prevent it anyway.
2834
2835                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2836                 let channel_state = &mut *channel_state_lock;
2837
2838                 match channel_state.by_id.entry(msg.channel_id) {
2839                         hash_map::Entry::Occupied(mut chan) => {
2840                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2841                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2842                                 }
2843
2844                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2845                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2846                                         // channel update along as part of failing the HTLC.
2847                                         assert!((error_code & 0x1000) != 0);
2848                                         // If the update_add is completely bogus, the call will Err and we will close,
2849                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2850                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2851                                         match pending_forward_info {
2852                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2853                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2854                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2855                                                                         let mut res = Vec::with_capacity(8 + 128);
2856                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2857                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2858                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2859                                                                         res
2860                                                                 }[..])
2861                                                         } else {
2862                                                                 // The only case where we'd be unable to
2863                                                                 // successfully get a channel update is if the
2864                                                                 // channel isn't in the fully-funded state yet,
2865                                                                 // implying our counterparty is trying to route
2866                                                                 // payments over the channel back to themselves
2867                                                                 // (cause no one else should know the short_id
2868                                                                 // is a lightning channel yet). We should have
2869                                                                 // no problem just calling this
2870                                                                 // unknown_next_peer (0x4000|10).
2871                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2872                                                         };
2873                                                         let msg = msgs::UpdateFailHTLC {
2874                                                                 channel_id: msg.channel_id,
2875                                                                 htlc_id: msg.htlc_id,
2876                                                                 reason
2877                                                         };
2878                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2879                                                 },
2880                                                 _ => pending_forward_info
2881                                         }
2882                                 };
2883                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
2884                         },
2885                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2886                 }
2887                 Ok(())
2888         }
2889
2890         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
2891                 let mut channel_lock = self.channel_state.lock().unwrap();
2892                 let htlc_source = {
2893                         let channel_state = &mut *channel_lock;
2894                         match channel_state.by_id.entry(msg.channel_id) {
2895                                 hash_map::Entry::Occupied(mut chan) => {
2896                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2897                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2898                                         }
2899                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
2900                                 },
2901                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2902                         }
2903                 };
2904                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
2905                 Ok(())
2906         }
2907
2908         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
2909                 let mut channel_lock = self.channel_state.lock().unwrap();
2910                 let channel_state = &mut *channel_lock;
2911                 match channel_state.by_id.entry(msg.channel_id) {
2912                         hash_map::Entry::Occupied(mut chan) => {
2913                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2914                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2915                                 }
2916                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
2917                         },
2918                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2919                 }
2920                 Ok(())
2921         }
2922
2923         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
2924                 let mut channel_lock = self.channel_state.lock().unwrap();
2925                 let channel_state = &mut *channel_lock;
2926                 match channel_state.by_id.entry(msg.channel_id) {
2927                         hash_map::Entry::Occupied(mut chan) => {
2928                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2929                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2930                                 }
2931                                 if (msg.failure_code & 0x8000) == 0 {
2932                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
2933                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
2934                                 }
2935                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
2936                                 Ok(())
2937                         },
2938                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2939                 }
2940         }
2941
2942         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
2943                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2944                 let channel_state = &mut *channel_state_lock;
2945                 match channel_state.by_id.entry(msg.channel_id) {
2946                         hash_map::Entry::Occupied(mut chan) => {
2947                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2948                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2949                                 }
2950                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
2951                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
2952                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
2953                                                 Err((Some(update), e)) => {
2954                                                         assert!(chan.get().is_awaiting_monitor_update());
2955                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
2956                                                         try_chan_entry!(self, Err(e), channel_state, chan);
2957                                                         unreachable!();
2958                                                 },
2959                                                 Ok(res) => res
2960                                         };
2961                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2962                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
2963                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
2964                                 }
2965                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
2966                                         node_id: counterparty_node_id.clone(),
2967                                         msg: revoke_and_ack,
2968                                 });
2969                                 if let Some(msg) = commitment_signed {
2970                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2971                                                 node_id: counterparty_node_id.clone(),
2972                                                 updates: msgs::CommitmentUpdate {
2973                                                         update_add_htlcs: Vec::new(),
2974                                                         update_fulfill_htlcs: Vec::new(),
2975                                                         update_fail_htlcs: Vec::new(),
2976                                                         update_fail_malformed_htlcs: Vec::new(),
2977                                                         update_fee: None,
2978                                                         commitment_signed: msg,
2979                                                 },
2980                                         });
2981                                 }
2982                                 if let Some(msg) = closing_signed {
2983                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2984                                                 node_id: counterparty_node_id.clone(),
2985                                                 msg,
2986                                         });
2987                                 }
2988                                 Ok(())
2989                         },
2990                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2991                 }
2992         }
2993
2994         #[inline]
2995         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
2996                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
2997                         let mut forward_event = None;
2998                         if !pending_forwards.is_empty() {
2999                                 let mut channel_state = self.channel_state.lock().unwrap();
3000                                 if channel_state.forward_htlcs.is_empty() {
3001                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3002                                 }
3003                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3004                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3005                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3006                                                         PendingHTLCRouting::Receive { .. } => 0,
3007                                         }) {
3008                                                 hash_map::Entry::Occupied(mut entry) => {
3009                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3010                                                                                                         prev_htlc_id, forward_info });
3011                                                 },
3012                                                 hash_map::Entry::Vacant(entry) => {
3013                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3014                                                                                                      prev_htlc_id, forward_info }));
3015                                                 }
3016                                         }
3017                                 }
3018                         }
3019                         match forward_event {
3020                                 Some(time) => {
3021                                         let mut pending_events = self.pending_events.lock().unwrap();
3022                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3023                                                 time_forwardable: time
3024                                         });
3025                                 }
3026                                 None => {},
3027                         }
3028                 }
3029         }
3030
3031         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3032                 let mut htlcs_to_fail = Vec::new();
3033                 let res = loop {
3034                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3035                         let channel_state = &mut *channel_state_lock;
3036                         match channel_state.by_id.entry(msg.channel_id) {
3037                                 hash_map::Entry::Occupied(mut chan) => {
3038                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3039                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3040                                         }
3041                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3042                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3043                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3044                                         htlcs_to_fail = htlcs_to_fail_in;
3045                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3046                                                 if was_frozen_for_monitor {
3047                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3048                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3049                                                 } else {
3050                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3051                                                                 break Err(e);
3052                                                         } else { unreachable!(); }
3053                                                 }
3054                                         }
3055                                         if let Some(updates) = commitment_update {
3056                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3057                                                         node_id: counterparty_node_id.clone(),
3058                                                         updates,
3059                                                 });
3060                                         }
3061                                         if let Some(msg) = closing_signed {
3062                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3063                                                         node_id: counterparty_node_id.clone(),
3064                                                         msg,
3065                                                 });
3066                                         }
3067                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3068                                 },
3069                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3070                         }
3071                 };
3072                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3073                 match res {
3074                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3075                                 for failure in pending_failures.drain(..) {
3076                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3077                                 }
3078                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3079                                 Ok(())
3080                         },
3081                         Err(e) => Err(e)
3082                 }
3083         }
3084
3085         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3086                 let mut channel_lock = self.channel_state.lock().unwrap();
3087                 let channel_state = &mut *channel_lock;
3088                 match channel_state.by_id.entry(msg.channel_id) {
3089                         hash_map::Entry::Occupied(mut chan) => {
3090                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3091                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3092                                 }
3093                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3094                         },
3095                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3096                 }
3097                 Ok(())
3098         }
3099
3100         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3101                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3102                 let channel_state = &mut *channel_state_lock;
3103
3104                 match channel_state.by_id.entry(msg.channel_id) {
3105                         hash_map::Entry::Occupied(mut chan) => {
3106                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3107                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3108                                 }
3109                                 if !chan.get().is_usable() {
3110                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3111                                 }
3112
3113                                 let our_node_id = self.get_our_node_id();
3114                                 let (announcement, our_bitcoin_sig) =
3115                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3116
3117                                 let were_node_one = announcement.node_id_1 == our_node_id;
3118                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3119                                 {
3120                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3121                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3122                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3123                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3124                                                 (Err(e), _) => {
3125                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3126                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3127                                                 },
3128                                                 (_, Err(e)) => {
3129                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3130                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3131                                                 },
3132                                                 _ => {}
3133                                         }
3134                                 }
3135
3136                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3137
3138                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3139                                         msg: msgs::ChannelAnnouncement {
3140                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3141                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3142                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3143                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3144                                                 contents: announcement,
3145                                         },
3146                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3147                                 });
3148                         },
3149                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3150                 }
3151                 Ok(())
3152         }
3153
3154         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3155                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3156                 let channel_state = &mut *channel_state_lock;
3157                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3158                         Some(chan_id) => chan_id.clone(),
3159                         None => {
3160                                 // It's not a local channel
3161                                 return Ok(())
3162                         }
3163                 };
3164                 match channel_state.by_id.entry(chan_id) {
3165                         hash_map::Entry::Occupied(mut chan) => {
3166                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3167                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3168                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3169                                 }
3170                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3171                         },
3172                         hash_map::Entry::Vacant(_) => unreachable!()
3173                 }
3174                 Ok(())
3175         }
3176
3177         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3178                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3179                 let channel_state = &mut *channel_state_lock;
3180
3181                 match channel_state.by_id.entry(msg.channel_id) {
3182                         hash_map::Entry::Occupied(mut chan) => {
3183                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3184                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3185                                 }
3186                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3187                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3188                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3189                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3190                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3191                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3192                                 if let Some(monitor_update) = monitor_update_opt {
3193                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3194                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3195                                                 // for the messages it returns, but if we're setting what messages to
3196                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3197                                                 if revoke_and_ack.is_none() {
3198                                                         order = RAACommitmentOrder::CommitmentFirst;
3199                                                 }
3200                                                 if commitment_update.is_none() {
3201                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3202                                                 }
3203                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3204                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3205                                         }
3206                                 }
3207                                 if let Some(msg) = funding_locked {
3208                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3209                                                 node_id: counterparty_node_id.clone(),
3210                                                 msg
3211                                         });
3212                                 }
3213                                 macro_rules! send_raa { () => {
3214                                         if let Some(msg) = revoke_and_ack {
3215                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3216                                                         node_id: counterparty_node_id.clone(),
3217                                                         msg
3218                                                 });
3219                                         }
3220                                 } }
3221                                 macro_rules! send_cu { () => {
3222                                         if let Some(updates) = commitment_update {
3223                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3224                                                         node_id: counterparty_node_id.clone(),
3225                                                         updates
3226                                                 });
3227                                         }
3228                                 } }
3229                                 match order {
3230                                         RAACommitmentOrder::RevokeAndACKFirst => {
3231                                                 send_raa!();
3232                                                 send_cu!();
3233                                         },
3234                                         RAACommitmentOrder::CommitmentFirst => {
3235                                                 send_cu!();
3236                                                 send_raa!();
3237                                         },
3238                                 }
3239                                 if let Some(msg) = shutdown {
3240                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3241                                                 node_id: counterparty_node_id.clone(),
3242                                                 msg,
3243                                         });
3244                                 }
3245                                 Ok(())
3246                         },
3247                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3248                 }
3249         }
3250
3251         /// Begin Update fee process. Allowed only on an outbound channel.
3252         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3253         /// PeerManager::process_events afterwards.
3254         /// Note: This API is likely to change!
3255         /// (C-not exported) Cause its doc(hidden) anyway
3256         #[doc(hidden)]
3257         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3258                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3259                 let counterparty_node_id;
3260                 let err: Result<(), _> = loop {
3261                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3262                         let channel_state = &mut *channel_state_lock;
3263
3264                         match channel_state.by_id.entry(channel_id) {
3265                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3266                                 hash_map::Entry::Occupied(mut chan) => {
3267                                         if !chan.get().is_outbound() {
3268                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3269                                         }
3270                                         if chan.get().is_awaiting_monitor_update() {
3271                                                 return Err(APIError::MonitorUpdateFailed);
3272                                         }
3273                                         if !chan.get().is_live() {
3274                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3275                                         }
3276                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3277                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3278                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3279                                         {
3280                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3281                                                         unimplemented!();
3282                                                 }
3283                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3284                                                         node_id: chan.get().get_counterparty_node_id(),
3285                                                         updates: msgs::CommitmentUpdate {
3286                                                                 update_add_htlcs: Vec::new(),
3287                                                                 update_fulfill_htlcs: Vec::new(),
3288                                                                 update_fail_htlcs: Vec::new(),
3289                                                                 update_fail_malformed_htlcs: Vec::new(),
3290                                                                 update_fee: Some(update_fee),
3291                                                                 commitment_signed,
3292                                                         },
3293                                                 });
3294                                         }
3295                                 },
3296                         }
3297                         return Ok(())
3298                 };
3299
3300                 match handle_error!(self, err, counterparty_node_id) {
3301                         Ok(_) => unreachable!(),
3302                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3303                 }
3304         }
3305
3306         /// Process pending events from the `chain::Watch`.
3307         fn process_pending_monitor_events(&self) {
3308                 let mut failed_channels = Vec::new();
3309                 {
3310                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3311                                 match monitor_event {
3312                                         MonitorEvent::HTLCEvent(htlc_update) => {
3313                                                 if let Some(preimage) = htlc_update.payment_preimage {
3314                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3315                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3316                                                 } else {
3317                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3318                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3319                                                 }
3320                                         },
3321                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3322                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3323                                                 let channel_state = &mut *channel_lock;
3324                                                 let by_id = &mut channel_state.by_id;
3325                                                 let short_to_id = &mut channel_state.short_to_id;
3326                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3327                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3328                                                         if let Some(short_id) = chan.get_short_channel_id() {
3329                                                                 short_to_id.remove(&short_id);
3330                                                         }
3331                                                         failed_channels.push(chan.force_shutdown(false));
3332                                                         if let Ok(update) = self.get_channel_update(&chan) {
3333                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3334                                                                         msg: update
3335                                                                 });
3336                                                         }
3337                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3338                                                                 node_id: chan.get_counterparty_node_id(),
3339                                                                 action: msgs::ErrorAction::SendErrorMessage {
3340                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3341                                                                 },
3342                                                         });
3343                                                 }
3344                                         },
3345                                 }
3346                         }
3347                 }
3348
3349                 for failure in failed_channels.drain(..) {
3350                         self.finish_force_close_channel(failure);
3351                 }
3352         }
3353
3354         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3355         /// pushing the channel monitor update (if any) to the background events queue and removing the
3356         /// Channel object.
3357         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3358                 for mut failure in failed_channels.drain(..) {
3359                         // Either a commitment transactions has been confirmed on-chain or
3360                         // Channel::block_disconnected detected that the funding transaction has been
3361                         // reorganized out of the main chain.
3362                         // We cannot broadcast our latest local state via monitor update (as
3363                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3364                         // so we track the update internally and handle it when the user next calls
3365                         // timer_tick_occurred, guaranteeing we're running normally.
3366                         if let Some((funding_txo, update)) = failure.0.take() {
3367                                 assert_eq!(update.updates.len(), 1);
3368                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3369                                         assert!(should_broadcast);
3370                                 } else { unreachable!(); }
3371                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3372                         }
3373                         self.finish_force_close_channel(failure);
3374                 }
3375         }
3376
3377         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3378                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3379
3380                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3381
3382                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3383                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3384                 match payment_secrets.entry(payment_hash) {
3385                         hash_map::Entry::Vacant(e) => {
3386                                 e.insert(PendingInboundPayment {
3387                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3388                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3389                                         // its updated when we receive a new block with the maximum time we've seen in
3390                                         // a header. It should never be more than two hours in the future.
3391                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3392                                         // never fail a payment too early.
3393                                         // Note that we assume that received blocks have reasonably up-to-date
3394                                         // timestamps.
3395                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3396                                 });
3397                         },
3398                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3399                 }
3400                 Ok(payment_secret)
3401         }
3402
3403         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3404         /// to pay us.
3405         ///
3406         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3407         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3408         ///
3409         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3410         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3411         /// passed directly to [`claim_funds`].
3412         ///
3413         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3414         ///
3415         /// [`claim_funds`]: Self::claim_funds
3416         /// [`PaymentReceived`]: events::Event::PaymentReceived
3417         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3418         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3419         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3420                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3421                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3422
3423                 (payment_hash,
3424                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3425                                 .expect("RNG Generated Duplicate PaymentHash"))
3426         }
3427
3428         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3429         /// stored external to LDK.
3430         ///
3431         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3432         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3433         /// the `min_value_msat` provided here, if one is provided.
3434         ///
3435         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3436         /// method may return an Err if another payment with the same payment_hash is still pending.
3437         ///
3438         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3439         /// allow tracking of which events correspond with which calls to this and
3440         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3441         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3442         /// with invoice metadata stored elsewhere.
3443         ///
3444         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3445         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3446         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3447         /// sender "proof-of-payment" unless they have paid the required amount.
3448         ///
3449         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3450         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3451         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3452         /// pay the invoice failing. The BOLT spec suggests 7,200 secs as a default validity time for
3453         /// invoices when no timeout is set.
3454         ///
3455         /// Note that we use block header time to time-out pending inbound payments (with some margin
3456         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3457         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3458         /// If you need exact expiry semantics, you should enforce them upon receipt of
3459         /// [`PaymentReceived`].
3460         ///
3461         /// Pending inbound payments are stored in memory and in serialized versions of this
3462         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3463         /// space is limited, you may wish to rate-limit inbound payment creation.
3464         ///
3465         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3466         ///
3467         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3468         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3469         ///
3470         /// [`create_inbound_payment`]: Self::create_inbound_payment
3471         /// [`PaymentReceived`]: events::Event::PaymentReceived
3472         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3473         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3474                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3475         }
3476 }
3477
3478 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3479         where M::Target: chain::Watch<Signer>,
3480         T::Target: BroadcasterInterface,
3481         K::Target: KeysInterface<Signer = Signer>,
3482         F::Target: FeeEstimator,
3483                                 L::Target: Logger,
3484 {
3485         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3486                 //TODO: This behavior should be documented. It's non-intuitive that we query
3487                 // ChannelMonitors when clearing other events.
3488                 self.process_pending_monitor_events();
3489
3490                 let mut ret = Vec::new();
3491                 let mut channel_state = self.channel_state.lock().unwrap();
3492                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3493                 ret
3494         }
3495 }
3496
3497 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3498         where M::Target: chain::Watch<Signer>,
3499         T::Target: BroadcasterInterface,
3500         K::Target: KeysInterface<Signer = Signer>,
3501         F::Target: FeeEstimator,
3502                                 L::Target: Logger,
3503 {
3504         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3505                 //TODO: This behavior should be documented. It's non-intuitive that we query
3506                 // ChannelMonitors when clearing other events.
3507                 self.process_pending_monitor_events();
3508
3509                 let mut ret = Vec::new();
3510                 let mut pending_events = self.pending_events.lock().unwrap();
3511                 mem::swap(&mut ret, &mut *pending_events);
3512                 ret
3513         }
3514 }
3515
3516 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3517 where
3518         M::Target: chain::Watch<Signer>,
3519         T::Target: BroadcasterInterface,
3520         K::Target: KeysInterface<Signer = Signer>,
3521         F::Target: FeeEstimator,
3522         L::Target: Logger,
3523 {
3524         fn block_connected(&self, block: &Block, height: u32) {
3525                 {
3526                         let best_block = self.best_block.read().unwrap();
3527                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3528                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3529                         assert_eq!(best_block.height(), height - 1,
3530                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3531                 }
3532
3533                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3534                 self.transactions_confirmed(&block.header, &txdata, height);
3535                 self.best_block_updated(&block.header, height);
3536         }
3537
3538         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3539                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3540                 let new_height = height - 1;
3541                 {
3542                         let mut best_block = self.best_block.write().unwrap();
3543                         assert_eq!(best_block.block_hash(), header.block_hash(),
3544                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3545                         assert_eq!(best_block.height(), height,
3546                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3547                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3548                 }
3549
3550                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3551         }
3552 }
3553
3554 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3555 where
3556         M::Target: chain::Watch<Signer>,
3557         T::Target: BroadcasterInterface,
3558         K::Target: KeysInterface<Signer = Signer>,
3559         F::Target: FeeEstimator,
3560         L::Target: Logger,
3561 {
3562         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3563                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3564                 // during initialization prior to the chain_monitor being fully configured in some cases.
3565                 // See the docs for `ChannelManagerReadArgs` for more.
3566
3567                 let block_hash = header.block_hash();
3568                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3569
3570                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3571                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3572         }
3573
3574         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3575                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3576                 // during initialization prior to the chain_monitor being fully configured in some cases.
3577                 // See the docs for `ChannelManagerReadArgs` for more.
3578
3579                 let block_hash = header.block_hash();
3580                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3581
3582                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3583
3584                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3585
3586                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3587
3588                 macro_rules! max_time {
3589                         ($timestamp: expr) => {
3590                                 loop {
3591                                         // Update $timestamp to be the max of its current value and the block
3592                                         // timestamp. This should keep us close to the current time without relying on
3593                                         // having an explicit local time source.
3594                                         // Just in case we end up in a race, we loop until we either successfully
3595                                         // update $timestamp or decide we don't need to.
3596                                         let old_serial = $timestamp.load(Ordering::Acquire);
3597                                         if old_serial >= header.time as usize { break; }
3598                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3599                                                 break;
3600                                         }
3601                                 }
3602                         }
3603                 }
3604                 max_time!(self.last_node_announcement_serial);
3605                 max_time!(self.highest_seen_timestamp);
3606                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3607                 payment_secrets.retain(|_, inbound_payment| {
3608                         inbound_payment.expiry_time > header.time as u64
3609                 });
3610         }
3611
3612         fn get_relevant_txids(&self) -> Vec<Txid> {
3613                 let channel_state = self.channel_state.lock().unwrap();
3614                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3615                 for chan in channel_state.by_id.values() {
3616                         if let Some(funding_txo) = chan.get_funding_txo() {
3617                                 res.push(funding_txo.txid);
3618                         }
3619                 }
3620                 res
3621         }
3622
3623         fn transaction_unconfirmed(&self, txid: &Txid) {
3624                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3625                 self.do_chain_event(None, |channel| {
3626                         if let Some(funding_txo) = channel.get_funding_txo() {
3627                                 if funding_txo.txid == *txid {
3628                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3629                                 } else { Ok((None, Vec::new())) }
3630                         } else { Ok((None, Vec::new())) }
3631                 });
3632         }
3633 }
3634
3635 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3636 where
3637         M::Target: chain::Watch<Signer>,
3638         T::Target: BroadcasterInterface,
3639         K::Target: KeysInterface<Signer = Signer>,
3640         F::Target: FeeEstimator,
3641         L::Target: Logger,
3642 {
3643         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3644         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3645         /// the function.
3646         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3647                         (&self, height_opt: Option<u32>, f: FN) {
3648                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3649                 // during initialization prior to the chain_monitor being fully configured in some cases.
3650                 // See the docs for `ChannelManagerReadArgs` for more.
3651
3652                 let mut failed_channels = Vec::new();
3653                 let mut timed_out_htlcs = Vec::new();
3654                 {
3655                         let mut channel_lock = self.channel_state.lock().unwrap();
3656                         let channel_state = &mut *channel_lock;
3657                         let short_to_id = &mut channel_state.short_to_id;
3658                         let pending_msg_events = &mut channel_state.pending_msg_events;
3659                         channel_state.by_id.retain(|_, channel| {
3660                                 let res = f(channel);
3661                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3662                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3663                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3664                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3665                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3666                                                         data: chan_update,
3667                                                 }));
3668                                         }
3669                                         if let Some(funding_locked) = chan_res {
3670                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3671                                                         node_id: channel.get_counterparty_node_id(),
3672                                                         msg: funding_locked,
3673                                                 });
3674                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3675                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3676                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3677                                                                 node_id: channel.get_counterparty_node_id(),
3678                                                                 msg: announcement_sigs,
3679                                                         });
3680                                                 } else {
3681                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3682                                                 }
3683                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3684                                         }
3685                                 } else if let Err(e) = res {
3686                                         if let Some(short_id) = channel.get_short_channel_id() {
3687                                                 short_to_id.remove(&short_id);
3688                                         }
3689                                         // It looks like our counterparty went on-chain or funding transaction was
3690                                         // reorged out of the main chain. Close the channel.
3691                                         failed_channels.push(channel.force_shutdown(true));
3692                                         if let Ok(update) = self.get_channel_update(&channel) {
3693                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3694                                                         msg: update
3695                                                 });
3696                                         }
3697                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3698                                                 node_id: channel.get_counterparty_node_id(),
3699                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3700                                         });
3701                                         return false;
3702                                 }
3703                                 true
3704                         });
3705
3706                         if let Some(height) = height_opt {
3707                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3708                                         htlcs.retain(|htlc| {
3709                                                 // If height is approaching the number of blocks we think it takes us to get
3710                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3711                                                 // number of blocks we generally consider it to take to do a commitment update,
3712                                                 // just give up on it and fail the HTLC.
3713                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3714                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3715                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3716                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3717                                                                 failure_code: 0x4000 | 15,
3718                                                                 data: htlc_msat_height_data
3719                                                         }));
3720                                                         false
3721                                                 } else { true }
3722                                         });
3723                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3724                                 });
3725                         }
3726                 }
3727
3728                 self.handle_init_event_channel_failures(failed_channels);
3729
3730                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3731                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3732                 }
3733         }
3734
3735         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3736         /// indicating whether persistence is necessary. Only one listener on
3737         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3738         /// up.
3739         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3740         #[cfg(any(test, feature = "allow_wallclock_use"))]
3741         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3742                 self.persistence_notifier.wait_timeout(max_wait)
3743         }
3744
3745         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3746         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3747         /// up.
3748         pub fn await_persistable_update(&self) {
3749                 self.persistence_notifier.wait()
3750         }
3751
3752         #[cfg(any(test, feature = "_test_utils"))]
3753         pub fn get_persistence_condvar_value(&self) -> bool {
3754                 let mutcond = &self.persistence_notifier.persistence_lock;
3755                 let &(ref mtx, _) = mutcond;
3756                 let guard = mtx.lock().unwrap();
3757                 *guard
3758         }
3759 }
3760
3761 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3762         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3763         where M::Target: chain::Watch<Signer>,
3764         T::Target: BroadcasterInterface,
3765         K::Target: KeysInterface<Signer = Signer>,
3766         F::Target: FeeEstimator,
3767         L::Target: Logger,
3768 {
3769         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3770                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3771                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3772         }
3773
3774         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3775                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3776                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3777         }
3778
3779         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3780                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3781                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3782         }
3783
3784         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3785                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3786                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3787         }
3788
3789         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3790                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3791                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3792         }
3793
3794         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3795                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3796                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3797         }
3798
3799         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3800                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3801                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3802         }
3803
3804         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3805                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3806                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3807         }
3808
3809         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3810                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3811                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3812         }
3813
3814         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3815                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3816                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3817         }
3818
3819         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3820                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3821                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3822         }
3823
3824         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3825                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3826                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3827         }
3828
3829         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3830                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3831                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3832         }
3833
3834         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3835                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3836                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3837         }
3838
3839         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3840                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3841                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3842         }
3843
3844         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3845                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3846                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3847         }
3848
3849         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3850                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3851                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3852         }
3853
3854         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3855                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3856                 let mut failed_channels = Vec::new();
3857                 let mut failed_payments = Vec::new();
3858                 let mut no_channels_remain = true;
3859                 {
3860                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3861                         let channel_state = &mut *channel_state_lock;
3862                         let short_to_id = &mut channel_state.short_to_id;
3863                         let pending_msg_events = &mut channel_state.pending_msg_events;
3864                         if no_connection_possible {
3865                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3866                                 channel_state.by_id.retain(|_, chan| {
3867                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3868                                                 if let Some(short_id) = chan.get_short_channel_id() {
3869                                                         short_to_id.remove(&short_id);
3870                                                 }
3871                                                 failed_channels.push(chan.force_shutdown(true));
3872                                                 if let Ok(update) = self.get_channel_update(&chan) {
3873                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3874                                                                 msg: update
3875                                                         });
3876                                                 }
3877                                                 false
3878                                         } else {
3879                                                 true
3880                                         }
3881                                 });
3882                         } else {
3883                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
3884                                 channel_state.by_id.retain(|_, chan| {
3885                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3886                                                 // Note that currently on channel reestablish we assert that there are no
3887                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
3888                                                 // on peer disconnect here, there will need to be corresponding changes in
3889                                                 // reestablish logic.
3890                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
3891                                                 chan.to_disabled_marked();
3892                                                 if !failed_adds.is_empty() {
3893                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3894                                                         failed_payments.push((chan_update, failed_adds));
3895                                                 }
3896                                                 if chan.is_shutdown() {
3897                                                         if let Some(short_id) = chan.get_short_channel_id() {
3898                                                                 short_to_id.remove(&short_id);
3899                                                         }
3900                                                         return false;
3901                                                 } else {
3902                                                         no_channels_remain = false;
3903                                                 }
3904                                         }
3905                                         true
3906                                 })
3907                         }
3908                         pending_msg_events.retain(|msg| {
3909                                 match msg {
3910                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
3911                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
3912                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
3913                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3914                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
3915                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
3916                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
3917                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
3918                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
3919                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
3920                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
3921                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
3922                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
3923                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
3924                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
3925                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
3926                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
3927                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
3928                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
3929                                 }
3930                         });
3931                 }
3932                 if no_channels_remain {
3933                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
3934                 }
3935
3936                 for failure in failed_channels.drain(..) {
3937                         self.finish_force_close_channel(failure);
3938                 }
3939                 for (chan_update, mut htlc_sources) in failed_payments {
3940                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
3941                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
3942                         }
3943                 }
3944         }
3945
3946         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
3947                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
3948
3949                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3950
3951                 {
3952                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
3953                         match peer_state_lock.entry(counterparty_node_id.clone()) {
3954                                 hash_map::Entry::Vacant(e) => {
3955                                         e.insert(Mutex::new(PeerState {
3956                                                 latest_features: init_msg.features.clone(),
3957                                         }));
3958                                 },
3959                                 hash_map::Entry::Occupied(e) => {
3960                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
3961                                 },
3962                         }
3963                 }
3964
3965                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3966                 let channel_state = &mut *channel_state_lock;
3967                 let pending_msg_events = &mut channel_state.pending_msg_events;
3968                 channel_state.by_id.retain(|_, chan| {
3969                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3970                                 if !chan.have_received_message() {
3971                                         // If we created this (outbound) channel while we were disconnected from the
3972                                         // peer we probably failed to send the open_channel message, which is now
3973                                         // lost. We can't have had anything pending related to this channel, so we just
3974                                         // drop it.
3975                                         false
3976                                 } else {
3977                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
3978                                                 node_id: chan.get_counterparty_node_id(),
3979                                                 msg: chan.get_channel_reestablish(&self.logger),
3980                                         });
3981                                         true
3982                                 }
3983                         } else { true }
3984                 });
3985                 //TODO: Also re-broadcast announcement_signatures
3986         }
3987
3988         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
3989                 let _persistence_guard = PersistenceNotifierGuard::new(&self.total_consistency_lock, &self.persistence_notifier);
3990
3991                 if msg.channel_id == [0; 32] {
3992                         for chan in self.list_channels() {
3993                                 if chan.remote_network_id == *counterparty_node_id {
3994                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
3995                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
3996                                 }
3997                         }
3998                 } else {
3999                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4000                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4001                 }
4002         }
4003 }
4004
4005 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4006 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4007 struct PersistenceNotifier {
4008         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4009         /// `wait_timeout` and `wait`.
4010         persistence_lock: (Mutex<bool>, Condvar),
4011 }
4012
4013 impl PersistenceNotifier {
4014         fn new() -> Self {
4015                 Self {
4016                         persistence_lock: (Mutex::new(false), Condvar::new()),
4017                 }
4018         }
4019
4020         fn wait(&self) {
4021                 loop {
4022                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4023                         let mut guard = mtx.lock().unwrap();
4024                         guard = cvar.wait(guard).unwrap();
4025                         let result = *guard;
4026                         if result {
4027                                 *guard = false;
4028                                 return
4029                         }
4030                 }
4031         }
4032
4033         #[cfg(any(test, feature = "allow_wallclock_use"))]
4034         fn wait_timeout(&self, max_wait: Duration) -> bool {
4035                 let current_time = Instant::now();
4036                 loop {
4037                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4038                         let mut guard = mtx.lock().unwrap();
4039                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4040                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4041                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4042                         // time. Note that this logic can be highly simplified through the use of
4043                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4044                         // 1.42.0.
4045                         let elapsed = current_time.elapsed();
4046                         let result = *guard;
4047                         if result || elapsed >= max_wait {
4048                                 *guard = false;
4049                                 return result;
4050                         }
4051                         match max_wait.checked_sub(elapsed) {
4052                                 None => return result,
4053                                 Some(_) => continue
4054                         }
4055                 }
4056         }
4057
4058         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4059         fn notify(&self) {
4060                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4061                 let mut persistence_lock = persist_mtx.lock().unwrap();
4062                 *persistence_lock = true;
4063                 mem::drop(persistence_lock);
4064                 cnd.notify_all();
4065         }
4066 }
4067
4068 const SERIALIZATION_VERSION: u8 = 1;
4069 const MIN_SERIALIZATION_VERSION: u8 = 1;
4070
4071 impl Writeable for PendingHTLCInfo {
4072         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4073                 match &self.routing {
4074                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4075                                 0u8.write(writer)?;
4076                                 onion_packet.write(writer)?;
4077                                 short_channel_id.write(writer)?;
4078                         },
4079                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4080                                 1u8.write(writer)?;
4081                                 payment_data.payment_secret.write(writer)?;
4082                                 payment_data.total_msat.write(writer)?;
4083                                 incoming_cltv_expiry.write(writer)?;
4084                         },
4085                 }
4086                 self.incoming_shared_secret.write(writer)?;
4087                 self.payment_hash.write(writer)?;
4088                 self.amt_to_forward.write(writer)?;
4089                 self.outgoing_cltv_value.write(writer)?;
4090                 Ok(())
4091         }
4092 }
4093
4094 impl Readable for PendingHTLCInfo {
4095         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4096                 Ok(PendingHTLCInfo {
4097                         routing: match Readable::read(reader)? {
4098                                 0u8 => PendingHTLCRouting::Forward {
4099                                         onion_packet: Readable::read(reader)?,
4100                                         short_channel_id: Readable::read(reader)?,
4101                                 },
4102                                 1u8 => PendingHTLCRouting::Receive {
4103                                         payment_data: msgs::FinalOnionHopData {
4104                                                 payment_secret: Readable::read(reader)?,
4105                                                 total_msat: Readable::read(reader)?,
4106                                         },
4107                                         incoming_cltv_expiry: Readable::read(reader)?,
4108                                 },
4109                                 _ => return Err(DecodeError::InvalidValue),
4110                         },
4111                         incoming_shared_secret: Readable::read(reader)?,
4112                         payment_hash: Readable::read(reader)?,
4113                         amt_to_forward: Readable::read(reader)?,
4114                         outgoing_cltv_value: Readable::read(reader)?,
4115                 })
4116         }
4117 }
4118
4119 impl Writeable for HTLCFailureMsg {
4120         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4121                 match self {
4122                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4123                                 0u8.write(writer)?;
4124                                 fail_msg.write(writer)?;
4125                         },
4126                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4127                                 1u8.write(writer)?;
4128                                 fail_msg.write(writer)?;
4129                         }
4130                 }
4131                 Ok(())
4132         }
4133 }
4134
4135 impl Readable for HTLCFailureMsg {
4136         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4137                 match <u8 as Readable>::read(reader)? {
4138                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4139                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4140                         _ => Err(DecodeError::InvalidValue),
4141                 }
4142         }
4143 }
4144
4145 impl Writeable for PendingHTLCStatus {
4146         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4147                 match self {
4148                         &PendingHTLCStatus::Forward(ref forward_info) => {
4149                                 0u8.write(writer)?;
4150                                 forward_info.write(writer)?;
4151                         },
4152                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4153                                 1u8.write(writer)?;
4154                                 fail_msg.write(writer)?;
4155                         }
4156                 }
4157                 Ok(())
4158         }
4159 }
4160
4161 impl Readable for PendingHTLCStatus {
4162         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4163                 match <u8 as Readable>::read(reader)? {
4164                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4165                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4166                         _ => Err(DecodeError::InvalidValue),
4167                 }
4168         }
4169 }
4170
4171 impl_writeable!(HTLCPreviousHopData, 0, {
4172         short_channel_id,
4173         outpoint,
4174         htlc_id,
4175         incoming_packet_shared_secret
4176 });
4177
4178 impl Writeable for ClaimableHTLC {
4179         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4180                 self.prev_hop.write(writer)?;
4181                 self.value.write(writer)?;
4182                 self.payment_data.payment_secret.write(writer)?;
4183                 self.payment_data.total_msat.write(writer)?;
4184                 self.cltv_expiry.write(writer)
4185         }
4186 }
4187
4188 impl Readable for ClaimableHTLC {
4189         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4190                 Ok(ClaimableHTLC {
4191                         prev_hop: Readable::read(reader)?,
4192                         value: Readable::read(reader)?,
4193                         payment_data: msgs::FinalOnionHopData {
4194                                 payment_secret: Readable::read(reader)?,
4195                                 total_msat: Readable::read(reader)?,
4196                         },
4197                         cltv_expiry: Readable::read(reader)?,
4198                 })
4199         }
4200 }
4201
4202 impl Writeable for HTLCSource {
4203         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4204                 match self {
4205                         &HTLCSource::PreviousHopData(ref hop_data) => {
4206                                 0u8.write(writer)?;
4207                                 hop_data.write(writer)?;
4208                         },
4209                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4210                                 1u8.write(writer)?;
4211                                 path.write(writer)?;
4212                                 session_priv.write(writer)?;
4213                                 first_hop_htlc_msat.write(writer)?;
4214                         }
4215                 }
4216                 Ok(())
4217         }
4218 }
4219
4220 impl Readable for HTLCSource {
4221         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4222                 match <u8 as Readable>::read(reader)? {
4223                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4224                         1 => Ok(HTLCSource::OutboundRoute {
4225                                 path: Readable::read(reader)?,
4226                                 session_priv: Readable::read(reader)?,
4227                                 first_hop_htlc_msat: Readable::read(reader)?,
4228                         }),
4229                         _ => Err(DecodeError::InvalidValue),
4230                 }
4231         }
4232 }
4233
4234 impl Writeable for HTLCFailReason {
4235         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4236                 match self {
4237                         &HTLCFailReason::LightningError { ref err } => {
4238                                 0u8.write(writer)?;
4239                                 err.write(writer)?;
4240                         },
4241                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4242                                 1u8.write(writer)?;
4243                                 failure_code.write(writer)?;
4244                                 data.write(writer)?;
4245                         }
4246                 }
4247                 Ok(())
4248         }
4249 }
4250
4251 impl Readable for HTLCFailReason {
4252         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4253                 match <u8 as Readable>::read(reader)? {
4254                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4255                         1 => Ok(HTLCFailReason::Reason {
4256                                 failure_code: Readable::read(reader)?,
4257                                 data: Readable::read(reader)?,
4258                         }),
4259                         _ => Err(DecodeError::InvalidValue),
4260                 }
4261         }
4262 }
4263
4264 impl Writeable for HTLCForwardInfo {
4265         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4266                 match self {
4267                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4268                                 0u8.write(writer)?;
4269                                 prev_short_channel_id.write(writer)?;
4270                                 prev_funding_outpoint.write(writer)?;
4271                                 prev_htlc_id.write(writer)?;
4272                                 forward_info.write(writer)?;
4273                         },
4274                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4275                                 1u8.write(writer)?;
4276                                 htlc_id.write(writer)?;
4277                                 err_packet.write(writer)?;
4278                         },
4279                 }
4280                 Ok(())
4281         }
4282 }
4283
4284 impl Readable for HTLCForwardInfo {
4285         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4286                 match <u8 as Readable>::read(reader)? {
4287                         0 => Ok(HTLCForwardInfo::AddHTLC {
4288                                 prev_short_channel_id: Readable::read(reader)?,
4289                                 prev_funding_outpoint: Readable::read(reader)?,
4290                                 prev_htlc_id: Readable::read(reader)?,
4291                                 forward_info: Readable::read(reader)?,
4292                         }),
4293                         1 => Ok(HTLCForwardInfo::FailHTLC {
4294                                 htlc_id: Readable::read(reader)?,
4295                                 err_packet: Readable::read(reader)?,
4296                         }),
4297                         _ => Err(DecodeError::InvalidValue),
4298                 }
4299         }
4300 }
4301
4302 impl_writeable!(PendingInboundPayment, 0, {
4303         payment_secret,
4304         expiry_time,
4305         user_payment_id,
4306         payment_preimage,
4307         min_value_msat
4308 });
4309
4310 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4311         where M::Target: chain::Watch<Signer>,
4312         T::Target: BroadcasterInterface,
4313         K::Target: KeysInterface<Signer = Signer>,
4314         F::Target: FeeEstimator,
4315         L::Target: Logger,
4316 {
4317         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4318                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4319
4320                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4321                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4322
4323                 self.genesis_hash.write(writer)?;
4324                 {
4325                         let best_block = self.best_block.read().unwrap();
4326                         best_block.height().write(writer)?;
4327                         best_block.block_hash().write(writer)?;
4328                 }
4329
4330                 let channel_state = self.channel_state.lock().unwrap();
4331                 let mut unfunded_channels = 0;
4332                 for (_, channel) in channel_state.by_id.iter() {
4333                         if !channel.is_funding_initiated() {
4334                                 unfunded_channels += 1;
4335                         }
4336                 }
4337                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4338                 for (_, channel) in channel_state.by_id.iter() {
4339                         if channel.is_funding_initiated() {
4340                                 channel.write(writer)?;
4341                         }
4342                 }
4343
4344                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4345                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4346                         short_channel_id.write(writer)?;
4347                         (pending_forwards.len() as u64).write(writer)?;
4348                         for forward in pending_forwards {
4349                                 forward.write(writer)?;
4350                         }
4351                 }
4352
4353                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4354                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4355                         payment_hash.write(writer)?;
4356                         (previous_hops.len() as u64).write(writer)?;
4357                         for htlc in previous_hops.iter() {
4358                                 htlc.write(writer)?;
4359                         }
4360                 }
4361
4362                 let per_peer_state = self.per_peer_state.write().unwrap();
4363                 (per_peer_state.len() as u64).write(writer)?;
4364                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4365                         peer_pubkey.write(writer)?;
4366                         let peer_state = peer_state_mutex.lock().unwrap();
4367                         peer_state.latest_features.write(writer)?;
4368                 }
4369
4370                 let events = self.pending_events.lock().unwrap();
4371                 (events.len() as u64).write(writer)?;
4372                 for event in events.iter() {
4373                         event.write(writer)?;
4374                 }
4375
4376                 let background_events = self.pending_background_events.lock().unwrap();
4377                 (background_events.len() as u64).write(writer)?;
4378                 for event in background_events.iter() {
4379                         match event {
4380                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4381                                         0u8.write(writer)?;
4382                                         funding_txo.write(writer)?;
4383                                         monitor_update.write(writer)?;
4384                                 },
4385                         }
4386                 }
4387
4388                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4389                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4390
4391                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4392                 (pending_inbound_payments.len() as u64).write(writer)?;
4393                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4394                         hash.write(writer)?;
4395                         pending_payment.write(writer)?;
4396                 }
4397
4398                 Ok(())
4399         }
4400 }
4401
4402 /// Arguments for the creation of a ChannelManager that are not deserialized.
4403 ///
4404 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4405 /// is:
4406 /// 1) Deserialize all stored ChannelMonitors.
4407 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4408 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4409 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4410 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4411 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4412 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4413 ///    ChannelMonitor::get_funding_txo().
4414 /// 4) Reconnect blocks on your ChannelMonitors.
4415 /// 5) Disconnect/connect blocks on the ChannelManager.
4416 /// 6) Move the ChannelMonitors into your local chain::Watch.
4417 ///
4418 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4419 /// call any other methods on the newly-deserialized ChannelManager.
4420 ///
4421 /// Note that because some channels may be closed during deserialization, it is critical that you
4422 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4423 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4424 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4425 /// not force-close the same channels but consider them live), you may end up revoking a state for
4426 /// which you've already broadcasted the transaction.
4427 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4428         where M::Target: chain::Watch<Signer>,
4429         T::Target: BroadcasterInterface,
4430         K::Target: KeysInterface<Signer = Signer>,
4431         F::Target: FeeEstimator,
4432         L::Target: Logger,
4433 {
4434         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4435         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4436         /// signing data.
4437         pub keys_manager: K,
4438
4439         /// The fee_estimator for use in the ChannelManager in the future.
4440         ///
4441         /// No calls to the FeeEstimator will be made during deserialization.
4442         pub fee_estimator: F,
4443         /// The chain::Watch for use in the ChannelManager in the future.
4444         ///
4445         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4446         /// you have deserialized ChannelMonitors separately and will add them to your
4447         /// chain::Watch after deserializing this ChannelManager.
4448         pub chain_monitor: M,
4449
4450         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4451         /// used to broadcast the latest local commitment transactions of channels which must be
4452         /// force-closed during deserialization.
4453         pub tx_broadcaster: T,
4454         /// The Logger for use in the ChannelManager and which may be used to log information during
4455         /// deserialization.
4456         pub logger: L,
4457         /// Default settings used for new channels. Any existing channels will continue to use the
4458         /// runtime settings which were stored when the ChannelManager was serialized.
4459         pub default_config: UserConfig,
4460
4461         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4462         /// value.get_funding_txo() should be the key).
4463         ///
4464         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4465         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4466         /// is true for missing channels as well. If there is a monitor missing for which we find
4467         /// channel data Err(DecodeError::InvalidValue) will be returned.
4468         ///
4469         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4470         /// this struct.
4471         ///
4472         /// (C-not exported) because we have no HashMap bindings
4473         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4474 }
4475
4476 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4477                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4478         where M::Target: chain::Watch<Signer>,
4479                 T::Target: BroadcasterInterface,
4480                 K::Target: KeysInterface<Signer = Signer>,
4481                 F::Target: FeeEstimator,
4482                 L::Target: Logger,
4483         {
4484         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4485         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4486         /// populate a HashMap directly from C.
4487         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4488                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4489                 Self {
4490                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4491                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4492                 }
4493         }
4494 }
4495
4496 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4497 // SipmleArcChannelManager type:
4498 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4499         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4500         where M::Target: chain::Watch<Signer>,
4501         T::Target: BroadcasterInterface,
4502         K::Target: KeysInterface<Signer = Signer>,
4503         F::Target: FeeEstimator,
4504         L::Target: Logger,
4505 {
4506         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4507                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4508                 Ok((blockhash, Arc::new(chan_manager)))
4509         }
4510 }
4511
4512 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4513         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4514         where M::Target: chain::Watch<Signer>,
4515         T::Target: BroadcasterInterface,
4516         K::Target: KeysInterface<Signer = Signer>,
4517         F::Target: FeeEstimator,
4518         L::Target: Logger,
4519 {
4520         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4521                 let _ver: u8 = Readable::read(reader)?;
4522                 let min_ver: u8 = Readable::read(reader)?;
4523                 if min_ver > SERIALIZATION_VERSION {
4524                         return Err(DecodeError::UnknownVersion);
4525                 }
4526
4527                 let genesis_hash: BlockHash = Readable::read(reader)?;
4528                 let best_block_height: u32 = Readable::read(reader)?;
4529                 let best_block_hash: BlockHash = Readable::read(reader)?;
4530
4531                 let mut failed_htlcs = Vec::new();
4532
4533                 let channel_count: u64 = Readable::read(reader)?;
4534                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4535                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4536                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4537                 for _ in 0..channel_count {
4538                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4539                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4540                         funding_txo_set.insert(funding_txo.clone());
4541                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4542                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4543                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4544                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4545                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4546                                         // If the channel is ahead of the monitor, return InvalidValue:
4547                                         return Err(DecodeError::InvalidValue);
4548                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4549                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4550                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4551                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4552                                         // But if the channel is behind of the monitor, close the channel:
4553                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4554                                         failed_htlcs.append(&mut new_failed_htlcs);
4555                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4556                                 } else {
4557                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4558                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4559                                         }
4560                                         by_id.insert(channel.channel_id(), channel);
4561                                 }
4562                         } else {
4563                                 return Err(DecodeError::InvalidValue);
4564                         }
4565                 }
4566
4567                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4568                         if !funding_txo_set.contains(funding_txo) {
4569                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4570                         }
4571                 }
4572
4573                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4574                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4575                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4576                 for _ in 0..forward_htlcs_count {
4577                         let short_channel_id = Readable::read(reader)?;
4578                         let pending_forwards_count: u64 = Readable::read(reader)?;
4579                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4580                         for _ in 0..pending_forwards_count {
4581                                 pending_forwards.push(Readable::read(reader)?);
4582                         }
4583                         forward_htlcs.insert(short_channel_id, pending_forwards);
4584                 }
4585
4586                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4587                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4588                 for _ in 0..claimable_htlcs_count {
4589                         let payment_hash = Readable::read(reader)?;
4590                         let previous_hops_len: u64 = Readable::read(reader)?;
4591                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4592                         for _ in 0..previous_hops_len {
4593                                 previous_hops.push(Readable::read(reader)?);
4594                         }
4595                         claimable_htlcs.insert(payment_hash, previous_hops);
4596                 }
4597
4598                 let peer_count: u64 = Readable::read(reader)?;
4599                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4600                 for _ in 0..peer_count {
4601                         let peer_pubkey = Readable::read(reader)?;
4602                         let peer_state = PeerState {
4603                                 latest_features: Readable::read(reader)?,
4604                         };
4605                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4606                 }
4607
4608                 let event_count: u64 = Readable::read(reader)?;
4609                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4610                 for _ in 0..event_count {
4611                         match MaybeReadable::read(reader)? {
4612                                 Some(event) => pending_events_read.push(event),
4613                                 None => continue,
4614                         }
4615                 }
4616
4617                 let background_event_count: u64 = Readable::read(reader)?;
4618                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4619                 for _ in 0..background_event_count {
4620                         match <u8 as Readable>::read(reader)? {
4621                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4622                                 _ => return Err(DecodeError::InvalidValue),
4623                         }
4624                 }
4625
4626                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4627                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4628
4629                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4630                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4631                 for _ in 0..pending_inbound_payment_count {
4632                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4633                                 return Err(DecodeError::InvalidValue);
4634                         }
4635                 }
4636
4637                 let mut secp_ctx = Secp256k1::new();
4638                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4639
4640                 let channel_manager = ChannelManager {
4641                         genesis_hash,
4642                         fee_estimator: args.fee_estimator,
4643                         chain_monitor: args.chain_monitor,
4644                         tx_broadcaster: args.tx_broadcaster,
4645
4646                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4647
4648                         channel_state: Mutex::new(ChannelHolder {
4649                                 by_id,
4650                                 short_to_id,
4651                                 forward_htlcs,
4652                                 claimable_htlcs,
4653                                 pending_msg_events: Vec::new(),
4654                         }),
4655                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4656
4657                         our_network_key: args.keys_manager.get_node_secret(),
4658                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4659                         secp_ctx,
4660
4661                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4662                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4663
4664                         per_peer_state: RwLock::new(per_peer_state),
4665
4666                         pending_events: Mutex::new(pending_events_read),
4667                         pending_background_events: Mutex::new(pending_background_events_read),
4668                         total_consistency_lock: RwLock::new(()),
4669                         persistence_notifier: PersistenceNotifier::new(),
4670
4671                         keys_manager: args.keys_manager,
4672                         logger: args.logger,
4673                         default_configuration: args.default_config,
4674                 };
4675
4676                 for htlc_source in failed_htlcs.drain(..) {
4677                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4678                 }
4679
4680                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4681                 //connection or two.
4682
4683                 Ok((best_block_hash.clone(), channel_manager))
4684         }
4685 }
4686
4687 #[cfg(test)]
4688 mod tests {
4689         use ln::channelmanager::PersistenceNotifier;
4690         use std::sync::Arc;
4691         use std::sync::atomic::{AtomicBool, Ordering};
4692         use std::thread;
4693         use std::time::Duration;
4694
4695         #[test]
4696         fn test_wait_timeout() {
4697                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4698                 let thread_notifier = Arc::clone(&persistence_notifier);
4699
4700                 let exit_thread = Arc::new(AtomicBool::new(false));
4701                 let exit_thread_clone = exit_thread.clone();
4702                 thread::spawn(move || {
4703                         loop {
4704                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4705                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4706                                 *persistence_lock = true;
4707                                 cnd.notify_all();
4708
4709                                 if exit_thread_clone.load(Ordering::SeqCst) {
4710                                         break
4711                                 }
4712                         }
4713                 });
4714
4715                 // Check that we can block indefinitely until updates are available.
4716                 let _ = persistence_notifier.wait();
4717
4718                 // Check that the PersistenceNotifier will return after the given duration if updates are
4719                 // available.
4720                 loop {
4721                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4722                                 break
4723                         }
4724                 }
4725
4726                 exit_thread.store(true, Ordering::SeqCst);
4727
4728                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4729                 // are available.
4730                 loop {
4731                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4732                                 break
4733                         }
4734                 }
4735         }
4736 }
4737
4738 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4739 pub mod bench {
4740         use chain::Listen;
4741         use chain::chainmonitor::ChainMonitor;
4742         use chain::channelmonitor::Persist;
4743         use chain::keysinterface::{KeysManager, InMemorySigner};
4744         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4745         use ln::features::{InitFeatures, InvoiceFeatures};
4746         use ln::functional_test_utils::*;
4747         use ln::msgs::ChannelMessageHandler;
4748         use routing::network_graph::NetworkGraph;
4749         use routing::router::get_route;
4750         use util::test_utils;
4751         use util::config::UserConfig;
4752         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4753
4754         use bitcoin::hashes::Hash;
4755         use bitcoin::hashes::sha256::Hash as Sha256;
4756         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4757
4758         use std::sync::Mutex;
4759
4760         use test::Bencher;
4761
4762         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4763                 node: &'a ChannelManager<InMemorySigner,
4764                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4765                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4766                                 &'a test_utils::TestLogger, &'a P>,
4767                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4768                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4769         }
4770
4771         #[cfg(test)]
4772         #[bench]
4773         fn bench_sends(bench: &mut Bencher) {
4774                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4775         }
4776
4777         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4778                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4779                 // Note that this is unrealistic as each payment send will require at least two fsync
4780                 // calls per node.
4781                 let network = bitcoin::Network::Testnet;
4782                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4783
4784                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4785                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4786
4787                 let mut config: UserConfig = Default::default();
4788                 config.own_channel_config.minimum_depth = 1;
4789
4790                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4791                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4792                 let seed_a = [1u8; 32];
4793                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4794                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4795                         network,
4796                         best_block: BestBlock::from_genesis(network),
4797                 });
4798                 let node_a_holder = NodeHolder { node: &node_a };
4799
4800                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4801                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4802                 let seed_b = [2u8; 32];
4803                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4804                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4805                         network,
4806                         best_block: BestBlock::from_genesis(network),
4807                 });
4808                 let node_b_holder = NodeHolder { node: &node_b };
4809
4810                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4811                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4812                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4813
4814                 let tx;
4815                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4816                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4817                                 value: 8_000_000, script_pubkey: output_script,
4818                         }]};
4819                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4820                 } else { panic!(); }
4821
4822                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4823                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4824
4825                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4826
4827                 let block = Block {
4828                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4829                         txdata: vec![tx],
4830                 };
4831                 Listen::block_connected(&node_a, &block, 1);
4832                 Listen::block_connected(&node_b, &block, 1);
4833
4834                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4835                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4836
4837                 let dummy_graph = NetworkGraph::new(genesis_hash);
4838
4839                 let mut payment_count: u64 = 0;
4840                 macro_rules! send_payment {
4841                         ($node_a: expr, $node_b: expr) => {
4842                                 let usable_channels = $node_a.list_usable_channels();
4843                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4844                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4845
4846                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4847                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4848                                 payment_count += 1;
4849                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4850                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4851
4852                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4853                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4854                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4855                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4856                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4857                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4858                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4859                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4860
4861                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
4862                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
4863                                 assert!($node_b.claim_funds(payment_preimage));
4864
4865                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
4866                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
4867                                                 assert_eq!(node_id, $node_a.get_our_node_id());
4868                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
4869                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
4870                                         },
4871                                         _ => panic!("Failed to generate claim event"),
4872                                 }
4873
4874                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
4875                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
4876                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
4877                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
4878
4879                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
4880                         }
4881                 }
4882
4883                 bench.iter(|| {
4884                         send_payment!(node_a, node_b);
4885                         send_payment!(node_b, node_a);
4886                 });
4887         }
4888 }