1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{Bolt12OfferContext, Bolt12RefundContext, PaymentConstraints, PaymentContext, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::offer::{Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
78 #[cfg(not(c_bindings))]
80 crate::offers::offer::DerivedMetadata,
81 crate::routing::router::DefaultRouter,
82 crate::routing::gossip::NetworkGraph,
83 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
84 crate::sign::KeysManager,
88 crate::offers::offer::OfferWithDerivedMetadataBuilder,
89 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
92 use alloc::collections::{btree_map, BTreeMap};
95 use crate::prelude::*;
97 use core::cell::RefCell;
99 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
100 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
101 use core::time::Duration;
102 use core::ops::Deref;
104 // Re-export this for use in the public API.
105 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
106 use crate::ln::script::ShutdownScript;
108 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
110 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
111 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
112 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
114 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
115 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
116 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
117 // before we forward it.
119 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
120 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
121 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
122 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
123 // our payment, which we can use to decode errors or inform the user that the payment was sent.
125 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
126 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
127 #[cfg_attr(test, derive(Debug, PartialEq))]
128 pub enum PendingHTLCRouting {
129 /// An HTLC which should be forwarded on to another node.
131 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
132 /// do with the HTLC.
133 onion_packet: msgs::OnionPacket,
134 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
136 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
137 /// to the receiving node, such as one returned from
138 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
139 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
140 /// Set if this HTLC is being forwarded within a blinded path.
141 blinded: Option<BlindedForward>,
143 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
145 /// Note that at this point, we have not checked that the invoice being paid was actually
146 /// generated by us, but rather it's claiming to pay an invoice of ours.
148 /// Information about the amount the sender intended to pay and (potential) proof that this
149 /// is a payment for an invoice we generated. This proof of payment is is also used for
150 /// linking MPP parts of a larger payment.
151 payment_data: msgs::FinalOnionHopData,
152 /// Additional data which we (allegedly) instructed the sender to include in the onion.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::payment_metadata`].
157 payment_metadata: Option<Vec<u8>>,
158 /// The context of the payment included by the recipient in a blinded path, or `None` if a
159 /// blinded path was not used.
161 /// Used in part to determine the [`events::PaymentPurpose`].
162 payment_context: Option<PaymentContext>,
163 /// CLTV expiry of the received HTLC.
165 /// Used to track when we should expire pending HTLCs that go unclaimed.
166 incoming_cltv_expiry: u32,
167 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
168 /// provide the onion shared secret used to decrypt the next level of forwarding
170 phantom_shared_secret: Option<[u8; 32]>,
171 /// Custom TLVs which were set by the sender.
173 /// For HTLCs received by LDK, this will ultimately be exposed in
174 /// [`Event::PaymentClaimable::onion_fields`] as
175 /// [`RecipientOnionFields::custom_tlvs`].
176 custom_tlvs: Vec<(u64, Vec<u8>)>,
177 /// Set if this HTLC is the final hop in a multi-hop blinded path.
178 requires_blinded_error: bool,
180 /// The onion indicates that this is for payment to us but which contains the preimage for
181 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
182 /// "keysend" or "spontaneous" payment).
184 /// Information about the amount the sender intended to pay and possibly a token to
185 /// associate MPP parts of a larger payment.
187 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
188 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
189 payment_data: Option<msgs::FinalOnionHopData>,
190 /// Preimage for this onion payment. This preimage is provided by the sender and will be
191 /// used to settle the spontaneous payment.
192 payment_preimage: PaymentPreimage,
193 /// Additional data which we (allegedly) instructed the sender to include in the onion.
195 /// For HTLCs received by LDK, this will ultimately bubble back up as
196 /// [`RecipientOnionFields::payment_metadata`].
197 payment_metadata: Option<Vec<u8>>,
198 /// CLTV expiry of the received HTLC.
200 /// Used to track when we should expire pending HTLCs that go unclaimed.
201 incoming_cltv_expiry: u32,
202 /// Custom TLVs which were set by the sender.
204 /// For HTLCs received by LDK, these will ultimately bubble back up as
205 /// [`RecipientOnionFields::custom_tlvs`].
206 custom_tlvs: Vec<(u64, Vec<u8>)>,
207 /// Set if this HTLC is the final hop in a multi-hop blinded path.
208 requires_blinded_error: bool,
212 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
213 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
214 pub struct BlindedForward {
215 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
216 /// onion payload if we're the introduction node. Useful for calculating the next hop's
217 /// [`msgs::UpdateAddHTLC::blinding_point`].
218 pub inbound_blinding_point: PublicKey,
219 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
220 /// the introduction node.
221 pub failure: BlindedFailure,
224 impl PendingHTLCRouting {
225 // Used to override the onion failure code and data if the HTLC is blinded.
226 fn blinded_failure(&self) -> Option<BlindedFailure> {
228 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
229 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
230 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
236 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
238 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
239 #[cfg_attr(test, derive(Debug, PartialEq))]
240 pub struct PendingHTLCInfo {
241 /// Further routing details based on whether the HTLC is being forwarded or received.
242 pub routing: PendingHTLCRouting,
243 /// The onion shared secret we build with the sender used to decrypt the onion.
245 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
246 pub incoming_shared_secret: [u8; 32],
247 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
248 pub payment_hash: PaymentHash,
249 /// Amount received in the incoming HTLC.
251 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
253 pub incoming_amt_msat: Option<u64>,
254 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
255 /// intended for us to receive for received payments.
257 /// If the received amount is less than this for received payments, an intermediary hop has
258 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
259 /// it along another path).
261 /// Because nodes can take less than their required fees, and because senders may wish to
262 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
263 /// received payments. In such cases, recipients must handle this HTLC as if it had received
264 /// [`Self::outgoing_amt_msat`].
265 pub outgoing_amt_msat: u64,
266 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
267 /// should have been set on the received HTLC for received payments).
268 pub outgoing_cltv_value: u32,
269 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
271 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
274 /// If this is a received payment, this is the fee that our counterparty took.
276 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
278 pub skimmed_fee_msat: Option<u64>,
281 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
282 pub(super) enum HTLCFailureMsg {
283 Relay(msgs::UpdateFailHTLC),
284 Malformed(msgs::UpdateFailMalformedHTLC),
287 /// Stores whether we can't forward an HTLC or relevant forwarding info
288 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
289 pub(super) enum PendingHTLCStatus {
290 Forward(PendingHTLCInfo),
291 Fail(HTLCFailureMsg),
294 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
295 pub(super) struct PendingAddHTLCInfo {
296 pub(super) forward_info: PendingHTLCInfo,
298 // These fields are produced in `forward_htlcs()` and consumed in
299 // `process_pending_htlc_forwards()` for constructing the
300 // `HTLCSource::PreviousHopData` for failed and forwarded
303 // Note that this may be an outbound SCID alias for the associated channel.
304 prev_short_channel_id: u64,
306 prev_channel_id: ChannelId,
307 prev_funding_outpoint: OutPoint,
308 prev_user_channel_id: u128,
311 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
312 pub(super) enum HTLCForwardInfo {
313 AddHTLC(PendingAddHTLCInfo),
316 err_packet: msgs::OnionErrorPacket,
321 sha256_of_onion: [u8; 32],
325 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
326 /// which determines the failure message that should be used.
327 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
328 pub enum BlindedFailure {
329 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
330 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
331 FromIntroductionNode,
332 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
333 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
337 /// Tracks the inbound corresponding to an outbound HTLC
338 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
339 pub(crate) struct HTLCPreviousHopData {
340 // Note that this may be an outbound SCID alias for the associated channel.
341 short_channel_id: u64,
342 user_channel_id: Option<u128>,
344 incoming_packet_shared_secret: [u8; 32],
345 phantom_shared_secret: Option<[u8; 32]>,
346 blinded_failure: Option<BlindedFailure>,
347 channel_id: ChannelId,
349 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
350 // channel with a preimage provided by the forward channel.
355 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
357 /// This is only here for backwards-compatibility in serialization, in the future it can be
358 /// removed, breaking clients running 0.0.106 and earlier.
359 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
361 /// Contains the payer-provided preimage.
362 Spontaneous(PaymentPreimage),
365 /// HTLCs that are to us and can be failed/claimed by the user
366 struct ClaimableHTLC {
367 prev_hop: HTLCPreviousHopData,
369 /// The amount (in msats) of this MPP part
371 /// The amount (in msats) that the sender intended to be sent in this MPP
372 /// part (used for validating total MPP amount)
373 sender_intended_value: u64,
374 onion_payload: OnionPayload,
376 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
377 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
378 total_value_received: Option<u64>,
379 /// The sender intended sum total of all MPP parts specified in the onion
381 /// The extra fee our counterparty skimmed off the top of this HTLC.
382 counterparty_skimmed_fee_msat: Option<u64>,
385 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
386 fn from(val: &ClaimableHTLC) -> Self {
387 events::ClaimedHTLC {
388 channel_id: val.prev_hop.channel_id,
389 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
390 cltv_expiry: val.cltv_expiry,
391 value_msat: val.value,
392 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
397 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
398 /// a payment and ensure idempotency in LDK.
400 /// This is not exported to bindings users as we just use [u8; 32] directly
401 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
402 pub struct PaymentId(pub [u8; Self::LENGTH]);
405 /// Number of bytes in the id.
406 pub const LENGTH: usize = 32;
409 impl Writeable for PaymentId {
410 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
415 impl Readable for PaymentId {
416 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
417 let buf: [u8; 32] = Readable::read(r)?;
422 impl core::fmt::Display for PaymentId {
423 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
424 crate::util::logger::DebugBytes(&self.0).fmt(f)
428 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
430 /// This is not exported to bindings users as we just use [u8; 32] directly
431 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
432 pub struct InterceptId(pub [u8; 32]);
434 impl Writeable for InterceptId {
435 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
440 impl Readable for InterceptId {
441 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
442 let buf: [u8; 32] = Readable::read(r)?;
447 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
448 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
449 pub(crate) enum SentHTLCId {
450 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
451 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
454 pub(crate) fn from_source(source: &HTLCSource) -> Self {
456 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
457 short_channel_id: hop_data.short_channel_id,
458 htlc_id: hop_data.htlc_id,
460 HTLCSource::OutboundRoute { session_priv, .. } =>
461 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
465 impl_writeable_tlv_based_enum!(SentHTLCId,
466 (0, PreviousHopData) => {
467 (0, short_channel_id, required),
468 (2, htlc_id, required),
470 (2, OutboundRoute) => {
471 (0, session_priv, required),
476 /// Tracks the inbound corresponding to an outbound HTLC
477 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
478 #[derive(Clone, Debug, PartialEq, Eq)]
479 pub(crate) enum HTLCSource {
480 PreviousHopData(HTLCPreviousHopData),
483 session_priv: SecretKey,
484 /// Technically we can recalculate this from the route, but we cache it here to avoid
485 /// doing a double-pass on route when we get a failure back
486 first_hop_htlc_msat: u64,
487 payment_id: PaymentId,
490 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
491 impl core::hash::Hash for HTLCSource {
492 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
494 HTLCSource::PreviousHopData(prev_hop_data) => {
496 prev_hop_data.hash(hasher);
498 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
501 session_priv[..].hash(hasher);
502 payment_id.hash(hasher);
503 first_hop_htlc_msat.hash(hasher);
509 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
511 pub fn dummy() -> Self {
512 HTLCSource::OutboundRoute {
513 path: Path { hops: Vec::new(), blinded_tail: None },
514 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
515 first_hop_htlc_msat: 0,
516 payment_id: PaymentId([2; 32]),
520 #[cfg(debug_assertions)]
521 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
522 /// transaction. Useful to ensure different datastructures match up.
523 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
524 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
525 *first_hop_htlc_msat == htlc.amount_msat
527 // There's nothing we can check for forwarded HTLCs
533 /// This enum is used to specify which error data to send to peers when failing back an HTLC
534 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
536 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
537 #[derive(Clone, Copy)]
538 pub enum FailureCode {
539 /// We had a temporary error processing the payment. Useful if no other error codes fit
540 /// and you want to indicate that the payer may want to retry.
541 TemporaryNodeFailure,
542 /// We have a required feature which was not in this onion. For example, you may require
543 /// some additional metadata that was not provided with this payment.
544 RequiredNodeFeatureMissing,
545 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
546 /// the HTLC is too close to the current block height for safe handling.
547 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
548 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
549 IncorrectOrUnknownPaymentDetails,
550 /// We failed to process the payload after the onion was decrypted. You may wish to
551 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
553 /// If available, the tuple data may include the type number and byte offset in the
554 /// decrypted byte stream where the failure occurred.
555 InvalidOnionPayload(Option<(u64, u16)>),
558 impl Into<u16> for FailureCode {
559 fn into(self) -> u16 {
561 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
562 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
563 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
564 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
569 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
570 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
571 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
572 /// peer_state lock. We then return the set of things that need to be done outside the lock in
573 /// this struct and call handle_error!() on it.
575 struct MsgHandleErrInternal {
576 err: msgs::LightningError,
577 closes_channel: bool,
578 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
580 impl MsgHandleErrInternal {
582 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
584 err: LightningError {
586 action: msgs::ErrorAction::SendErrorMessage {
587 msg: msgs::ErrorMessage {
593 closes_channel: false,
594 shutdown_finish: None,
598 fn from_no_close(err: msgs::LightningError) -> Self {
599 Self { err, closes_channel: false, shutdown_finish: None }
602 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
603 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
604 let action = if shutdown_res.monitor_update.is_some() {
605 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
606 // should disconnect our peer such that we force them to broadcast their latest
607 // commitment upon reconnecting.
608 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
610 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
613 err: LightningError { err, action },
614 closes_channel: true,
615 shutdown_finish: Some((shutdown_res, channel_update)),
619 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
622 ChannelError::Warn(msg) => LightningError {
624 action: msgs::ErrorAction::SendWarningMessage {
625 msg: msgs::WarningMessage {
629 log_level: Level::Warn,
632 ChannelError::Ignore(msg) => LightningError {
634 action: msgs::ErrorAction::IgnoreError,
636 ChannelError::Close(msg) => LightningError {
638 action: msgs::ErrorAction::SendErrorMessage {
639 msg: msgs::ErrorMessage {
646 closes_channel: false,
647 shutdown_finish: None,
651 fn closes_channel(&self) -> bool {
656 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
657 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
658 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
659 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
660 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
662 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
663 /// be sent in the order they appear in the return value, however sometimes the order needs to be
664 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
665 /// they were originally sent). In those cases, this enum is also returned.
666 #[derive(Clone, PartialEq)]
667 pub(super) enum RAACommitmentOrder {
668 /// Send the CommitmentUpdate messages first
670 /// Send the RevokeAndACK message first
674 /// Information about a payment which is currently being claimed.
675 struct ClaimingPayment {
677 payment_purpose: events::PaymentPurpose,
678 receiver_node_id: PublicKey,
679 htlcs: Vec<events::ClaimedHTLC>,
680 sender_intended_value: Option<u64>,
682 impl_writeable_tlv_based!(ClaimingPayment, {
683 (0, amount_msat, required),
684 (2, payment_purpose, required),
685 (4, receiver_node_id, required),
686 (5, htlcs, optional_vec),
687 (7, sender_intended_value, option),
690 struct ClaimablePayment {
691 purpose: events::PaymentPurpose,
692 onion_fields: Option<RecipientOnionFields>,
693 htlcs: Vec<ClaimableHTLC>,
696 /// Information about claimable or being-claimed payments
697 struct ClaimablePayments {
698 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
699 /// failed/claimed by the user.
701 /// Note that, no consistency guarantees are made about the channels given here actually
702 /// existing anymore by the time you go to read them!
704 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
705 /// we don't get a duplicate payment.
706 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
708 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
709 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
710 /// as an [`events::Event::PaymentClaimed`].
711 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
714 /// Events which we process internally but cannot be processed immediately at the generation site
715 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
716 /// running normally, and specifically must be processed before any other non-background
717 /// [`ChannelMonitorUpdate`]s are applied.
719 enum BackgroundEvent {
720 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
721 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
722 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
723 /// channel has been force-closed we do not need the counterparty node_id.
725 /// Note that any such events are lost on shutdown, so in general they must be updates which
726 /// are regenerated on startup.
727 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
728 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
729 /// channel to continue normal operation.
731 /// In general this should be used rather than
732 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
733 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
734 /// error the other variant is acceptable.
736 /// Note that any such events are lost on shutdown, so in general they must be updates which
737 /// are regenerated on startup.
738 MonitorUpdateRegeneratedOnStartup {
739 counterparty_node_id: PublicKey,
740 funding_txo: OutPoint,
741 channel_id: ChannelId,
742 update: ChannelMonitorUpdate
744 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
745 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
747 MonitorUpdatesComplete {
748 counterparty_node_id: PublicKey,
749 channel_id: ChannelId,
754 pub(crate) enum MonitorUpdateCompletionAction {
755 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
756 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
757 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
758 /// event can be generated.
759 PaymentClaimed { payment_hash: PaymentHash },
760 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
761 /// operation of another channel.
763 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
764 /// from completing a monitor update which removes the payment preimage until the inbound edge
765 /// completes a monitor update containing the payment preimage. In that case, after the inbound
766 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
768 EmitEventAndFreeOtherChannel {
769 event: events::Event,
770 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
772 /// Indicates we should immediately resume the operation of another channel, unless there is
773 /// some other reason why the channel is blocked. In practice this simply means immediately
774 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
776 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
777 /// from completing a monitor update which removes the payment preimage until the inbound edge
778 /// completes a monitor update containing the payment preimage. However, we use this variant
779 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
780 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
782 /// This variant should thus never be written to disk, as it is processed inline rather than
783 /// stored for later processing.
784 FreeOtherChannelImmediately {
785 downstream_counterparty_node_id: PublicKey,
786 downstream_funding_outpoint: OutPoint,
787 blocking_action: RAAMonitorUpdateBlockingAction,
788 downstream_channel_id: ChannelId,
792 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
793 (0, PaymentClaimed) => { (0, payment_hash, required) },
794 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
795 // *immediately*. However, for simplicity we implement read/write here.
796 (1, FreeOtherChannelImmediately) => {
797 (0, downstream_counterparty_node_id, required),
798 (2, downstream_funding_outpoint, required),
799 (4, blocking_action, required),
800 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
801 // filled in, so we can safely unwrap it here.
802 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
804 (2, EmitEventAndFreeOtherChannel) => {
805 (0, event, upgradable_required),
806 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
807 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
808 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
809 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
810 // downgrades to prior versions.
811 (1, downstream_counterparty_and_funding_outpoint, option),
815 #[derive(Clone, Debug, PartialEq, Eq)]
816 pub(crate) enum EventCompletionAction {
817 ReleaseRAAChannelMonitorUpdate {
818 counterparty_node_id: PublicKey,
819 channel_funding_outpoint: OutPoint,
820 channel_id: ChannelId,
823 impl_writeable_tlv_based_enum!(EventCompletionAction,
824 (0, ReleaseRAAChannelMonitorUpdate) => {
825 (0, channel_funding_outpoint, required),
826 (2, counterparty_node_id, required),
827 // Note that by the time we get past the required read above, channel_funding_outpoint will be
828 // filled in, so we can safely unwrap it here.
829 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
833 #[derive(Clone, PartialEq, Eq, Debug)]
834 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
835 /// the blocked action here. See enum variants for more info.
836 pub(crate) enum RAAMonitorUpdateBlockingAction {
837 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
838 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
840 ForwardedPaymentInboundClaim {
841 /// The upstream channel ID (i.e. the inbound edge).
842 channel_id: ChannelId,
843 /// The HTLC ID on the inbound edge.
848 impl RAAMonitorUpdateBlockingAction {
849 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
850 Self::ForwardedPaymentInboundClaim {
851 channel_id: prev_hop.channel_id,
852 htlc_id: prev_hop.htlc_id,
857 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
858 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
862 /// State we hold per-peer.
863 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
864 /// `channel_id` -> `ChannelPhase`
866 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
867 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
868 /// `temporary_channel_id` -> `InboundChannelRequest`.
870 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
871 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
872 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
873 /// the channel is rejected, then the entry is simply removed.
874 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
875 /// The latest `InitFeatures` we heard from the peer.
876 latest_features: InitFeatures,
877 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
878 /// for broadcast messages, where ordering isn't as strict).
879 pub(super) pending_msg_events: Vec<MessageSendEvent>,
880 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
881 /// user but which have not yet completed.
883 /// Note that the channel may no longer exist. For example if the channel was closed but we
884 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
885 /// for a missing channel.
886 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
887 /// Map from a specific channel to some action(s) that should be taken when all pending
888 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
890 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
891 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
892 /// channels with a peer this will just be one allocation and will amount to a linear list of
893 /// channels to walk, avoiding the whole hashing rigmarole.
895 /// Note that the channel may no longer exist. For example, if a channel was closed but we
896 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
897 /// for a missing channel. While a malicious peer could construct a second channel with the
898 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
899 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
900 /// duplicates do not occur, so such channels should fail without a monitor update completing.
901 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
902 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
903 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
904 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
905 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
906 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
907 /// The peer is currently connected (i.e. we've seen a
908 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
909 /// [`ChannelMessageHandler::peer_disconnected`].
910 pub is_connected: bool,
913 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
914 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
915 /// If true is passed for `require_disconnected`, the function will return false if we haven't
916 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
917 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
918 if require_disconnected && self.is_connected {
921 !self.channel_by_id.iter().any(|(_, phase)|
923 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
924 ChannelPhase::UnfundedInboundV1(_) => false,
925 #[cfg(any(dual_funding, splicing))]
926 ChannelPhase::UnfundedOutboundV2(_) => true,
927 #[cfg(any(dual_funding, splicing))]
928 ChannelPhase::UnfundedInboundV2(_) => false,
931 && self.monitor_update_blocked_actions.is_empty()
932 && self.in_flight_monitor_updates.is_empty()
935 // Returns a count of all channels we have with this peer, including unfunded channels.
936 fn total_channel_count(&self) -> usize {
937 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
940 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
941 fn has_channel(&self, channel_id: &ChannelId) -> bool {
942 self.channel_by_id.contains_key(channel_id) ||
943 self.inbound_channel_request_by_id.contains_key(channel_id)
947 /// A not-yet-accepted inbound (from counterparty) channel. Once
948 /// accepted, the parameters will be used to construct a channel.
949 pub(super) struct InboundChannelRequest {
950 /// The original OpenChannel message.
951 pub open_channel_msg: msgs::OpenChannel,
952 /// The number of ticks remaining before the request expires.
953 pub ticks_remaining: i32,
956 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
957 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
958 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
960 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
961 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
963 /// For users who don't want to bother doing their own payment preimage storage, we also store that
966 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
967 /// and instead encoding it in the payment secret.
968 struct PendingInboundPayment {
969 /// The payment secret that the sender must use for us to accept this payment
970 payment_secret: PaymentSecret,
971 /// Time at which this HTLC expires - blocks with a header time above this value will result in
972 /// this payment being removed.
974 /// Arbitrary identifier the user specifies (or not)
975 user_payment_id: u64,
976 // Other required attributes of the payment, optionally enforced:
977 payment_preimage: Option<PaymentPreimage>,
978 min_value_msat: Option<u64>,
981 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
982 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
983 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
984 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
985 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
986 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
987 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
988 /// of [`KeysManager`] and [`DefaultRouter`].
990 /// This is not exported to bindings users as type aliases aren't supported in most languages.
991 #[cfg(not(c_bindings))]
992 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
1000 Arc<NetworkGraph<Arc<L>>>,
1003 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1004 ProbabilisticScoringFeeParameters,
1005 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1010 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1011 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1012 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1013 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1014 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1015 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1016 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1017 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1018 /// of [`KeysManager`] and [`DefaultRouter`].
1020 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1021 #[cfg(not(c_bindings))]
1022 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1031 &'f NetworkGraph<&'g L>,
1034 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1035 ProbabilisticScoringFeeParameters,
1036 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1041 /// A trivial trait which describes any [`ChannelManager`].
1043 /// This is not exported to bindings users as general cover traits aren't useful in other
1045 pub trait AChannelManager {
1046 /// A type implementing [`chain::Watch`].
1047 type Watch: chain::Watch<Self::Signer> + ?Sized;
1048 /// A type that may be dereferenced to [`Self::Watch`].
1049 type M: Deref<Target = Self::Watch>;
1050 /// A type implementing [`BroadcasterInterface`].
1051 type Broadcaster: BroadcasterInterface + ?Sized;
1052 /// A type that may be dereferenced to [`Self::Broadcaster`].
1053 type T: Deref<Target = Self::Broadcaster>;
1054 /// A type implementing [`EntropySource`].
1055 type EntropySource: EntropySource + ?Sized;
1056 /// A type that may be dereferenced to [`Self::EntropySource`].
1057 type ES: Deref<Target = Self::EntropySource>;
1058 /// A type implementing [`NodeSigner`].
1059 type NodeSigner: NodeSigner + ?Sized;
1060 /// A type that may be dereferenced to [`Self::NodeSigner`].
1061 type NS: Deref<Target = Self::NodeSigner>;
1062 /// A type implementing [`WriteableEcdsaChannelSigner`].
1063 type Signer: WriteableEcdsaChannelSigner + Sized;
1064 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1065 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1066 /// A type that may be dereferenced to [`Self::SignerProvider`].
1067 type SP: Deref<Target = Self::SignerProvider>;
1068 /// A type implementing [`FeeEstimator`].
1069 type FeeEstimator: FeeEstimator + ?Sized;
1070 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1071 type F: Deref<Target = Self::FeeEstimator>;
1072 /// A type implementing [`Router`].
1073 type Router: Router + ?Sized;
1074 /// A type that may be dereferenced to [`Self::Router`].
1075 type R: Deref<Target = Self::Router>;
1076 /// A type implementing [`Logger`].
1077 type Logger: Logger + ?Sized;
1078 /// A type that may be dereferenced to [`Self::Logger`].
1079 type L: Deref<Target = Self::Logger>;
1080 /// Returns a reference to the actual [`ChannelManager`] object.
1081 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1084 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1085 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1087 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1088 T::Target: BroadcasterInterface,
1089 ES::Target: EntropySource,
1090 NS::Target: NodeSigner,
1091 SP::Target: SignerProvider,
1092 F::Target: FeeEstimator,
1096 type Watch = M::Target;
1098 type Broadcaster = T::Target;
1100 type EntropySource = ES::Target;
1102 type NodeSigner = NS::Target;
1104 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1105 type SignerProvider = SP::Target;
1107 type FeeEstimator = F::Target;
1109 type Router = R::Target;
1111 type Logger = L::Target;
1113 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1116 /// A lightning node's channel state machine and payment management logic, which facilitates
1117 /// sending, forwarding, and receiving payments through lightning channels.
1119 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1120 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1122 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1123 /// closing channels
1124 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1125 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1126 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1127 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1129 /// - [`Router`] for finding payment paths when initiating and retrying payments
1130 /// - [`Logger`] for logging operational information of varying degrees
1132 /// Additionally, it implements the following traits:
1133 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1134 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1135 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1136 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1137 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1139 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1140 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1142 /// # `ChannelManager` vs `ChannelMonitor`
1144 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1145 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1146 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1147 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1148 /// [`chain::Watch`] of them.
1150 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1151 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1152 /// for any pertinent on-chain activity, enforcing claims as needed.
1154 /// This division of off-chain management and on-chain enforcement allows for interesting node
1155 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1156 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1158 /// # Initialization
1160 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1161 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1162 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1163 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1164 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1167 /// use bitcoin::BlockHash;
1168 /// use bitcoin::network::constants::Network;
1169 /// use lightning::chain::BestBlock;
1170 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1171 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1172 /// # use lightning::routing::gossip::NetworkGraph;
1173 /// use lightning::util::config::UserConfig;
1174 /// use lightning::util::ser::ReadableArgs;
1176 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1179 /// # L: lightning::util::logger::Logger,
1180 /// # ES: lightning::sign::EntropySource,
1181 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1182 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1184 /// # R: lightning::io::Read,
1186 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1187 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1188 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1189 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1191 /// # entropy_source: &ES,
1192 /// # node_signer: &dyn lightning::sign::NodeSigner,
1193 /// # signer_provider: &lightning::sign::DynSignerProvider,
1194 /// # best_block: lightning::chain::BestBlock,
1195 /// # current_timestamp: u32,
1196 /// # mut reader: R,
1197 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1198 /// // Fresh start with no channels
1199 /// let params = ChainParameters {
1200 /// network: Network::Bitcoin,
1203 /// let default_config = UserConfig::default();
1204 /// let channel_manager = ChannelManager::new(
1205 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1206 /// signer_provider, default_config, params, current_timestamp
1209 /// // Restart from deserialized data
1210 /// let mut channel_monitors = read_channel_monitors();
1211 /// let args = ChannelManagerReadArgs::new(
1212 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1213 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1215 /// let (block_hash, channel_manager) =
1216 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1218 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1221 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1222 /// for monitor in channel_monitors {
1223 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1231 /// The following is required for [`ChannelManager`] to function properly:
1232 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1233 /// called by [`PeerManager::read_event`] when processing network I/O)
1234 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1235 /// (typically initiated when [`PeerManager::process_events`] is called)
1236 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1237 /// as documented by those traits
1238 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1240 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1241 /// [`Persister`] such as a [`KVStore`] implementation
1242 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1244 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1245 /// when the last two requirements need to be checked.
1247 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1248 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1249 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1250 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1254 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1255 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1256 /// currently open channels.
1259 /// # use lightning::ln::channelmanager::AChannelManager;
1261 /// # fn example<T: AChannelManager>(channel_manager: T) {
1262 /// # let channel_manager = channel_manager.get_cm();
1263 /// let channels = channel_manager.list_usable_channels();
1264 /// for details in channels {
1265 /// println!("{:?}", details);
1270 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1271 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1272 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1273 /// by [`ChannelManager`].
1275 /// ## Opening Channels
1277 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1278 /// opening an outbound channel, which requires self-funding when handling
1279 /// [`Event::FundingGenerationReady`].
1282 /// # use bitcoin::{ScriptBuf, Transaction};
1283 /// # use bitcoin::secp256k1::PublicKey;
1284 /// # use lightning::ln::channelmanager::AChannelManager;
1285 /// # use lightning::events::{Event, EventsProvider};
1287 /// # trait Wallet {
1288 /// # fn create_funding_transaction(
1289 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1290 /// # ) -> Transaction;
1293 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1294 /// # let channel_manager = channel_manager.get_cm();
1295 /// let value_sats = 1_000_000;
1296 /// let push_msats = 10_000_000;
1297 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1298 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1299 /// Err(e) => println!("Error opening channel: {:?}", e),
1302 /// // On the event processing thread once the peer has responded
1303 /// channel_manager.process_pending_events(&|event| match event {
1304 /// Event::FundingGenerationReady {
1305 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1306 /// user_channel_id, ..
1308 /// assert_eq!(user_channel_id, 42);
1309 /// let funding_transaction = wallet.create_funding_transaction(
1310 /// channel_value_satoshis, output_script
1312 /// match channel_manager.funding_transaction_generated(
1313 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1315 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1316 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1319 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1320 /// assert_eq!(user_channel_id, 42);
1322 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1323 /// former_temporary_channel_id.unwrap()
1326 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1327 /// assert_eq!(user_channel_id, 42);
1328 /// println!("Channel {} ready", channel_id);
1336 /// ## Accepting Channels
1338 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1339 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1340 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1343 /// # use bitcoin::secp256k1::PublicKey;
1344 /// # use lightning::ln::channelmanager::AChannelManager;
1345 /// # use lightning::events::{Event, EventsProvider};
1347 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1349 /// # unimplemented!()
1352 /// # fn example<T: AChannelManager>(channel_manager: T) {
1353 /// # let channel_manager = channel_manager.get_cm();
1354 /// channel_manager.process_pending_events(&|event| match event {
1355 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1356 /// if !is_trusted(counterparty_node_id) {
1357 /// match channel_manager.force_close_without_broadcasting_txn(
1358 /// &temporary_channel_id, &counterparty_node_id
1360 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1361 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1366 /// let user_channel_id = 43;
1367 /// match channel_manager.accept_inbound_channel(
1368 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1370 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1371 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1380 /// ## Closing Channels
1382 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1383 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1384 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1385 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1386 /// once the channel has been closed successfully.
1389 /// # use bitcoin::secp256k1::PublicKey;
1390 /// # use lightning::ln::ChannelId;
1391 /// # use lightning::ln::channelmanager::AChannelManager;
1392 /// # use lightning::events::{Event, EventsProvider};
1394 /// # fn example<T: AChannelManager>(
1395 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1397 /// # let channel_manager = channel_manager.get_cm();
1398 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1399 /// Ok(()) => println!("Closing channel {}", channel_id),
1400 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1403 /// // On the event processing thread
1404 /// channel_manager.process_pending_events(&|event| match event {
1405 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1406 /// assert_eq!(user_channel_id, 42);
1407 /// println!("Channel {} closed", channel_id);
1417 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1418 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1419 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1420 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1421 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1424 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1425 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1426 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1427 /// [`abandon_payment`] is called.
1429 /// ## BOLT 11 Invoices
1431 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1432 /// functions in its `utils` module for constructing invoices that are compatible with
1433 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1434 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1435 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1436 /// the [`lightning-invoice`] `utils` module.
1438 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1439 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1440 /// an [`Event::PaymentClaimed`].
1443 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1444 /// # use lightning::ln::channelmanager::AChannelManager;
1446 /// # fn example<T: AChannelManager>(channel_manager: T) {
1447 /// # let channel_manager = channel_manager.get_cm();
1448 /// // Or use utils::create_invoice_from_channelmanager
1449 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1450 /// Some(10_000_000), 3600, None
1452 /// Ok((payment_hash, _payment_secret)) => {
1453 /// println!("Creating inbound payment {}", payment_hash);
1456 /// Err(()) => panic!("Error creating inbound payment"),
1459 /// // On the event processing thread
1460 /// channel_manager.process_pending_events(&|event| match event {
1461 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1462 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1463 /// assert_eq!(payment_hash, known_payment_hash);
1464 /// println!("Claiming payment {}", payment_hash);
1465 /// channel_manager.claim_funds(payment_preimage);
1467 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: None, .. } => {
1468 /// println!("Unknown payment hash: {}", payment_hash);
1470 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1471 /// assert_ne!(payment_hash, known_payment_hash);
1472 /// println!("Claiming spontaneous payment {}", payment_hash);
1473 /// channel_manager.claim_funds(payment_preimage);
1478 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1479 /// assert_eq!(payment_hash, known_payment_hash);
1480 /// println!("Claimed {} msats", amount_msat);
1488 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1489 /// functions for use with [`send_payment`].
1492 /// # use lightning::events::{Event, EventsProvider};
1493 /// # use lightning::ln::PaymentHash;
1494 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1495 /// # use lightning::routing::router::RouteParameters;
1497 /// # fn example<T: AChannelManager>(
1498 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1499 /// # route_params: RouteParameters, retry: Retry
1501 /// # let channel_manager = channel_manager.get_cm();
1502 /// // let (payment_hash, recipient_onion, route_params) =
1503 /// // payment::payment_parameters_from_invoice(&invoice);
1504 /// let payment_id = PaymentId([42; 32]);
1505 /// match channel_manager.send_payment(
1506 /// payment_hash, recipient_onion, payment_id, route_params, retry
1508 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1509 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1512 /// let expected_payment_id = payment_id;
1513 /// let expected_payment_hash = payment_hash;
1515 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1517 /// RecentPaymentDetails::Pending {
1518 /// payment_id: expected_payment_id,
1519 /// payment_hash: expected_payment_hash,
1525 /// // On the event processing thread
1526 /// channel_manager.process_pending_events(&|event| match event {
1527 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1528 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1535 /// ## BOLT 12 Offers
1537 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1538 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1539 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1540 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1541 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1542 /// stateless just as BOLT 11 invoices are.
1545 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1546 /// # use lightning::ln::channelmanager::AChannelManager;
1547 /// # use lightning::offers::parse::Bolt12SemanticError;
1549 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1550 /// # let channel_manager = channel_manager.get_cm();
1551 /// let offer = channel_manager
1552 /// .create_offer_builder()?
1554 /// # // Needed for compiling for c_bindings
1555 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1556 /// # let offer = builder
1557 /// .description("coffee".to_string())
1558 /// .amount_msats(10_000_000)
1560 /// let bech32_offer = offer.to_string();
1562 /// // On the event processing thread
1563 /// channel_manager.process_pending_events(&|event| match event {
1564 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1565 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: Some(payment_preimage), .. } => {
1566 /// println!("Claiming payment {}", payment_hash);
1567 /// channel_manager.claim_funds(payment_preimage);
1569 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: None, .. } => {
1570 /// println!("Unknown payment hash: {}", payment_hash);
1575 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1576 /// println!("Claimed {} msats", amount_msat);
1585 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1586 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1587 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1590 /// # use lightning::events::{Event, EventsProvider};
1591 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1592 /// # use lightning::offers::offer::Offer;
1594 /// # fn example<T: AChannelManager>(
1595 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1596 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1598 /// # let channel_manager = channel_manager.get_cm();
1599 /// let payment_id = PaymentId([42; 32]);
1600 /// match channel_manager.pay_for_offer(
1601 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1603 /// Ok(()) => println!("Requesting invoice for offer"),
1604 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1607 /// // First the payment will be waiting on an invoice
1608 /// let expected_payment_id = payment_id;
1610 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1612 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1616 /// // Once the invoice is received, a payment will be sent
1618 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1620 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1624 /// // On the event processing thread
1625 /// channel_manager.process_pending_events(&|event| match event {
1626 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1627 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1628 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1635 /// ## BOLT 12 Refunds
1637 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1638 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1639 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1640 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1643 /// # use core::time::Duration;
1644 /// # use lightning::events::{Event, EventsProvider};
1645 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1646 /// # use lightning::offers::parse::Bolt12SemanticError;
1648 /// # fn example<T: AChannelManager>(
1649 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1650 /// # max_total_routing_fee_msat: Option<u64>
1651 /// # ) -> Result<(), Bolt12SemanticError> {
1652 /// # let channel_manager = channel_manager.get_cm();
1653 /// let payment_id = PaymentId([42; 32]);
1654 /// let refund = channel_manager
1655 /// .create_refund_builder(
1656 /// amount_msats, absolute_expiry, payment_id, retry, max_total_routing_fee_msat
1659 /// # // Needed for compiling for c_bindings
1660 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1661 /// # let refund = builder
1662 /// .description("coffee".to_string())
1663 /// .payer_note("refund for order 1234".to_string())
1665 /// let bech32_refund = refund.to_string();
1667 /// // First the payment will be waiting on an invoice
1668 /// let expected_payment_id = payment_id;
1670 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1672 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1676 /// // Once the invoice is received, a payment will be sent
1678 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1680 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1684 /// // On the event processing thread
1685 /// channel_manager.process_pending_events(&|event| match event {
1686 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1687 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1695 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1696 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1699 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1700 /// # use lightning::ln::channelmanager::AChannelManager;
1701 /// # use lightning::offers::refund::Refund;
1703 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1704 /// # let channel_manager = channel_manager.get_cm();
1705 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1706 /// Ok(invoice) => {
1707 /// let payment_hash = invoice.payment_hash();
1708 /// println!("Requesting refund payment {}", payment_hash);
1711 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1714 /// // On the event processing thread
1715 /// channel_manager.process_pending_events(&|event| match event {
1716 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1717 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: Some(payment_preimage), .. } => {
1718 /// assert_eq!(payment_hash, known_payment_hash);
1719 /// println!("Claiming payment {}", payment_hash);
1720 /// channel_manager.claim_funds(payment_preimage);
1722 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: None, .. } => {
1723 /// println!("Unknown payment hash: {}", payment_hash);
1728 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1729 /// assert_eq!(payment_hash, known_payment_hash);
1730 /// println!("Claimed {} msats", amount_msat);
1740 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1741 /// all peers during write/read (though does not modify this instance, only the instance being
1742 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1743 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1745 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1746 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1747 /// [`ChannelMonitorUpdate`] before returning from
1748 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1749 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1750 /// `ChannelManager` operations from occurring during the serialization process). If the
1751 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1752 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1753 /// will be lost (modulo on-chain transaction fees).
1755 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1756 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1757 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1759 /// # `ChannelUpdate` Messages
1761 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1762 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1763 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1764 /// offline for a full minute. In order to track this, you must call
1765 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1767 /// # DoS Mitigation
1769 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1770 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1771 /// not have a channel with being unable to connect to us or open new channels with us if we have
1772 /// many peers with unfunded channels.
1774 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1775 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1776 /// never limited. Please ensure you limit the count of such channels yourself.
1780 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1781 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1782 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1783 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1784 /// you're using lightning-net-tokio.
1786 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1787 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1788 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1789 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1790 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1791 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1792 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1793 /// [`Persister`]: crate::util::persist::Persister
1794 /// [`KVStore`]: crate::util::persist::KVStore
1795 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1796 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1797 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1798 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1799 /// [`list_channels`]: Self::list_channels
1800 /// [`list_usable_channels`]: Self::list_usable_channels
1801 /// [`create_channel`]: Self::create_channel
1802 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1803 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1804 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1805 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1806 /// [`list_recent_payments`]: Self::list_recent_payments
1807 /// [`abandon_payment`]: Self::abandon_payment
1808 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1809 /// [`create_inbound_payment`]: Self::create_inbound_payment
1810 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1811 /// [`claim_funds`]: Self::claim_funds
1812 /// [`send_payment`]: Self::send_payment
1813 /// [`offers`]: crate::offers
1814 /// [`create_offer_builder`]: Self::create_offer_builder
1815 /// [`pay_for_offer`]: Self::pay_for_offer
1816 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1817 /// [`create_refund_builder`]: Self::create_refund_builder
1818 /// [`request_refund_payment`]: Self::request_refund_payment
1819 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1820 /// [`funding_created`]: msgs::FundingCreated
1821 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1822 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1823 /// [`update_channel`]: chain::Watch::update_channel
1824 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1825 /// [`read`]: ReadableArgs::read
1828 // The tree structure below illustrates the lock order requirements for the different locks of the
1829 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1830 // and should then be taken in the order of the lowest to the highest level in the tree.
1831 // Note that locks on different branches shall not be taken at the same time, as doing so will
1832 // create a new lock order for those specific locks in the order they were taken.
1836 // `pending_offers_messages`
1838 // `total_consistency_lock`
1840 // |__`forward_htlcs`
1842 // | |__`pending_intercepted_htlcs`
1844 // |__`decode_update_add_htlcs`
1846 // |__`per_peer_state`
1848 // |__`pending_inbound_payments`
1850 // |__`claimable_payments`
1852 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1856 // |__`outpoint_to_peer`
1858 // |__`short_to_chan_info`
1860 // |__`outbound_scid_aliases`
1864 // |__`pending_events`
1866 // |__`pending_background_events`
1868 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1870 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1871 T::Target: BroadcasterInterface,
1872 ES::Target: EntropySource,
1873 NS::Target: NodeSigner,
1874 SP::Target: SignerProvider,
1875 F::Target: FeeEstimator,
1879 default_configuration: UserConfig,
1880 chain_hash: ChainHash,
1881 fee_estimator: LowerBoundedFeeEstimator<F>,
1887 /// See `ChannelManager` struct-level documentation for lock order requirements.
1889 pub(super) best_block: RwLock<BestBlock>,
1891 best_block: RwLock<BestBlock>,
1892 secp_ctx: Secp256k1<secp256k1::All>,
1894 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1895 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1896 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1897 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1899 /// See `ChannelManager` struct-level documentation for lock order requirements.
1900 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1902 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1903 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1904 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1905 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1906 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1907 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1908 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1909 /// after reloading from disk while replaying blocks against ChannelMonitors.
1911 /// See `PendingOutboundPayment` documentation for more info.
1913 /// See `ChannelManager` struct-level documentation for lock order requirements.
1914 pending_outbound_payments: OutboundPayments,
1916 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1918 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1919 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1920 /// and via the classic SCID.
1922 /// Note that no consistency guarantees are made about the existence of a channel with the
1923 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1925 /// See `ChannelManager` struct-level documentation for lock order requirements.
1927 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1929 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1930 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1931 /// until the user tells us what we should do with them.
1933 /// See `ChannelManager` struct-level documentation for lock order requirements.
1934 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1936 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1938 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1939 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1940 /// and via the classic SCID.
1942 /// Note that no consistency guarantees are made about the existence of a channel with the
1943 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1945 /// See `ChannelManager` struct-level documentation for lock order requirements.
1946 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1948 /// The sets of payments which are claimable or currently being claimed. See
1949 /// [`ClaimablePayments`]' individual field docs for more info.
1951 /// See `ChannelManager` struct-level documentation for lock order requirements.
1952 claimable_payments: Mutex<ClaimablePayments>,
1954 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1955 /// and some closed channels which reached a usable state prior to being closed. This is used
1956 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1957 /// active channel list on load.
1959 /// See `ChannelManager` struct-level documentation for lock order requirements.
1960 outbound_scid_aliases: Mutex<HashSet<u64>>,
1962 /// Channel funding outpoint -> `counterparty_node_id`.
1964 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1965 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1966 /// the handling of the events.
1968 /// Note that no consistency guarantees are made about the existence of a peer with the
1969 /// `counterparty_node_id` in our other maps.
1972 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1973 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1974 /// would break backwards compatability.
1975 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1976 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1977 /// required to access the channel with the `counterparty_node_id`.
1979 /// See `ChannelManager` struct-level documentation for lock order requirements.
1981 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1983 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1985 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1987 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1988 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1989 /// confirmation depth.
1991 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1992 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1993 /// channel with the `channel_id` in our other maps.
1995 /// See `ChannelManager` struct-level documentation for lock order requirements.
1997 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1999 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2001 our_network_pubkey: PublicKey,
2003 inbound_payment_key: inbound_payment::ExpandedKey,
2005 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
2006 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
2007 /// we encrypt the namespace identifier using these bytes.
2009 /// [fake scids]: crate::util::scid_utils::fake_scid
2010 fake_scid_rand_bytes: [u8; 32],
2012 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2013 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2014 /// keeping additional state.
2015 probing_cookie_secret: [u8; 32],
2017 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2018 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2019 /// very far in the past, and can only ever be up to two hours in the future.
2020 highest_seen_timestamp: AtomicUsize,
2022 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2023 /// basis, as well as the peer's latest features.
2025 /// If we are connected to a peer we always at least have an entry here, even if no channels
2026 /// are currently open with that peer.
2028 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2029 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2032 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2034 /// See `ChannelManager` struct-level documentation for lock order requirements.
2035 #[cfg(not(any(test, feature = "_test_utils")))]
2036 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2037 #[cfg(any(test, feature = "_test_utils"))]
2038 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2040 /// The set of events which we need to give to the user to handle. In some cases an event may
2041 /// require some further action after the user handles it (currently only blocking a monitor
2042 /// update from being handed to the user to ensure the included changes to the channel state
2043 /// are handled by the user before they're persisted durably to disk). In that case, the second
2044 /// element in the tuple is set to `Some` with further details of the action.
2046 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2047 /// could be in the middle of being processed without the direct mutex held.
2049 /// See `ChannelManager` struct-level documentation for lock order requirements.
2050 #[cfg(not(any(test, feature = "_test_utils")))]
2051 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2052 #[cfg(any(test, feature = "_test_utils"))]
2053 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2055 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2056 pending_events_processor: AtomicBool,
2058 /// If we are running during init (either directly during the deserialization method or in
2059 /// block connection methods which run after deserialization but before normal operation) we
2060 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2061 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2062 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2064 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2066 /// See `ChannelManager` struct-level documentation for lock order requirements.
2068 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2069 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2070 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2071 /// Essentially just when we're serializing ourselves out.
2072 /// Taken first everywhere where we are making changes before any other locks.
2073 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2074 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2075 /// Notifier the lock contains sends out a notification when the lock is released.
2076 total_consistency_lock: RwLock<()>,
2077 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2078 /// received and the monitor has been persisted.
2080 /// This information does not need to be persisted as funding nodes can forget
2081 /// unfunded channels upon disconnection.
2082 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2084 background_events_processed_since_startup: AtomicBool,
2086 event_persist_notifier: Notifier,
2087 needs_persist_flag: AtomicBool,
2089 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2091 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2092 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2096 signer_provider: SP,
2101 /// Chain-related parameters used to construct a new `ChannelManager`.
2103 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2104 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2105 /// are not needed when deserializing a previously constructed `ChannelManager`.
2106 #[derive(Clone, Copy, PartialEq)]
2107 pub struct ChainParameters {
2108 /// The network for determining the `chain_hash` in Lightning messages.
2109 pub network: Network,
2111 /// The hash and height of the latest block successfully connected.
2113 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2114 pub best_block: BestBlock,
2117 #[derive(Copy, Clone, PartialEq)]
2121 SkipPersistHandleEvents,
2122 SkipPersistNoEvents,
2125 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2126 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2127 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2128 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2129 /// sending the aforementioned notification (since the lock being released indicates that the
2130 /// updates are ready for persistence).
2132 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2133 /// notify or not based on whether relevant changes have been made, providing a closure to
2134 /// `optionally_notify` which returns a `NotifyOption`.
2135 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2136 event_persist_notifier: &'a Notifier,
2137 needs_persist_flag: &'a AtomicBool,
2139 // We hold onto this result so the lock doesn't get released immediately.
2140 _read_guard: RwLockReadGuard<'a, ()>,
2143 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2144 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2145 /// events to handle.
2147 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2148 /// other cases where losing the changes on restart may result in a force-close or otherwise
2150 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2151 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2154 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2155 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2156 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2157 let force_notify = cm.get_cm().process_background_events();
2159 PersistenceNotifierGuard {
2160 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2161 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2162 should_persist: move || {
2163 // Pick the "most" action between `persist_check` and the background events
2164 // processing and return that.
2165 let notify = persist_check();
2166 match (notify, force_notify) {
2167 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2168 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2169 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2170 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2171 _ => NotifyOption::SkipPersistNoEvents,
2174 _read_guard: read_guard,
2178 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2179 /// [`ChannelManager::process_background_events`] MUST be called first (or
2180 /// [`Self::optionally_notify`] used).
2181 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2182 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2183 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2185 PersistenceNotifierGuard {
2186 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2187 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2188 should_persist: persist_check,
2189 _read_guard: read_guard,
2194 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2195 fn drop(&mut self) {
2196 match (self.should_persist)() {
2197 NotifyOption::DoPersist => {
2198 self.needs_persist_flag.store(true, Ordering::Release);
2199 self.event_persist_notifier.notify()
2201 NotifyOption::SkipPersistHandleEvents =>
2202 self.event_persist_notifier.notify(),
2203 NotifyOption::SkipPersistNoEvents => {},
2208 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2209 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2211 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2213 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2214 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2215 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2216 /// the maximum required amount in lnd as of March 2021.
2217 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2219 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2220 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2222 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2224 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2225 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2226 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2227 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2228 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2229 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2230 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2231 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2232 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2233 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2234 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2235 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2236 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2238 /// Minimum CLTV difference between the current block height and received inbound payments.
2239 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2241 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2242 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2243 // a payment was being routed, so we add an extra block to be safe.
2244 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2246 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2247 // ie that if the next-hop peer fails the HTLC within
2248 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2249 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2250 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2251 // LATENCY_GRACE_PERIOD_BLOCKS.
2253 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2255 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2256 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2258 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2260 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2261 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2263 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2264 /// until we mark the channel disabled and gossip the update.
2265 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2267 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2268 /// we mark the channel enabled and gossip the update.
2269 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2271 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2272 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2273 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2274 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2276 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2277 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2278 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2280 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2281 /// many peers we reject new (inbound) connections.
2282 const MAX_NO_CHANNEL_PEERS: usize = 250;
2284 /// Information needed for constructing an invoice route hint for this channel.
2285 #[derive(Clone, Debug, PartialEq)]
2286 pub struct CounterpartyForwardingInfo {
2287 /// Base routing fee in millisatoshis.
2288 pub fee_base_msat: u32,
2289 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2290 pub fee_proportional_millionths: u32,
2291 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2292 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2293 /// `cltv_expiry_delta` for more details.
2294 pub cltv_expiry_delta: u16,
2297 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2298 /// to better separate parameters.
2299 #[derive(Clone, Debug, PartialEq)]
2300 pub struct ChannelCounterparty {
2301 /// The node_id of our counterparty
2302 pub node_id: PublicKey,
2303 /// The Features the channel counterparty provided upon last connection.
2304 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2305 /// many routing-relevant features are present in the init context.
2306 pub features: InitFeatures,
2307 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2308 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2309 /// claiming at least this value on chain.
2311 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2313 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2314 pub unspendable_punishment_reserve: u64,
2315 /// Information on the fees and requirements that the counterparty requires when forwarding
2316 /// payments to us through this channel.
2317 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2318 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2319 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2320 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2321 pub outbound_htlc_minimum_msat: Option<u64>,
2322 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2323 pub outbound_htlc_maximum_msat: Option<u64>,
2326 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2327 #[derive(Clone, Debug, PartialEq)]
2328 pub struct ChannelDetails {
2329 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2330 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2331 /// Note that this means this value is *not* persistent - it can change once during the
2332 /// lifetime of the channel.
2333 pub channel_id: ChannelId,
2334 /// Parameters which apply to our counterparty. See individual fields for more information.
2335 pub counterparty: ChannelCounterparty,
2336 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2337 /// our counterparty already.
2338 pub funding_txo: Option<OutPoint>,
2339 /// The features which this channel operates with. See individual features for more info.
2341 /// `None` until negotiation completes and the channel type is finalized.
2342 pub channel_type: Option<ChannelTypeFeatures>,
2343 /// The position of the funding transaction in the chain. None if the funding transaction has
2344 /// not yet been confirmed and the channel fully opened.
2346 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2347 /// payments instead of this. See [`get_inbound_payment_scid`].
2349 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2350 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2352 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2353 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2354 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2355 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2356 /// [`confirmations_required`]: Self::confirmations_required
2357 pub short_channel_id: Option<u64>,
2358 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2359 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2360 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2363 /// This will be `None` as long as the channel is not available for routing outbound payments.
2365 /// [`short_channel_id`]: Self::short_channel_id
2366 /// [`confirmations_required`]: Self::confirmations_required
2367 pub outbound_scid_alias: Option<u64>,
2368 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2369 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2370 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2371 /// when they see a payment to be routed to us.
2373 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2374 /// previous values for inbound payment forwarding.
2376 /// [`short_channel_id`]: Self::short_channel_id
2377 pub inbound_scid_alias: Option<u64>,
2378 /// The value, in satoshis, of this channel as appears in the funding output
2379 pub channel_value_satoshis: u64,
2380 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2381 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2382 /// this value on chain.
2384 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2386 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2388 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2389 pub unspendable_punishment_reserve: Option<u64>,
2390 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2391 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2392 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2393 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2394 /// serialized with LDK versions prior to 0.0.113.
2396 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2397 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2398 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2399 pub user_channel_id: u128,
2400 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2401 /// which is applied to commitment and HTLC transactions.
2403 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2404 pub feerate_sat_per_1000_weight: Option<u32>,
2405 /// Our total balance. This is the amount we would get if we close the channel.
2406 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2407 /// amount is not likely to be recoverable on close.
2409 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2410 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2411 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2412 /// This does not consider any on-chain fees.
2414 /// See also [`ChannelDetails::outbound_capacity_msat`]
2415 pub balance_msat: u64,
2416 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2417 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2418 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2419 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2421 /// See also [`ChannelDetails::balance_msat`]
2423 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2424 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2425 /// should be able to spend nearly this amount.
2426 pub outbound_capacity_msat: u64,
2427 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2428 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2429 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2430 /// to use a limit as close as possible to the HTLC limit we can currently send.
2432 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2433 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2434 pub next_outbound_htlc_limit_msat: u64,
2435 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2436 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2437 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2438 /// route which is valid.
2439 pub next_outbound_htlc_minimum_msat: u64,
2440 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2441 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2442 /// available for inclusion in new inbound HTLCs).
2443 /// Note that there are some corner cases not fully handled here, so the actual available
2444 /// inbound capacity may be slightly higher than this.
2446 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2447 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2448 /// However, our counterparty should be able to spend nearly this amount.
2449 pub inbound_capacity_msat: u64,
2450 /// The number of required confirmations on the funding transaction before the funding will be
2451 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2452 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2453 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2454 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2456 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2458 /// [`is_outbound`]: ChannelDetails::is_outbound
2459 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2460 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2461 pub confirmations_required: Option<u32>,
2462 /// The current number of confirmations on the funding transaction.
2464 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2465 pub confirmations: Option<u32>,
2466 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2467 /// until we can claim our funds after we force-close the channel. During this time our
2468 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2469 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2470 /// time to claim our non-HTLC-encumbered funds.
2472 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2473 pub force_close_spend_delay: Option<u16>,
2474 /// True if the channel was initiated (and thus funded) by us.
2475 pub is_outbound: bool,
2476 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2477 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2478 /// required confirmation count has been reached (and we were connected to the peer at some
2479 /// point after the funding transaction received enough confirmations). The required
2480 /// confirmation count is provided in [`confirmations_required`].
2482 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2483 pub is_channel_ready: bool,
2484 /// The stage of the channel's shutdown.
2485 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2486 pub channel_shutdown_state: Option<ChannelShutdownState>,
2487 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2488 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2490 /// This is a strict superset of `is_channel_ready`.
2491 pub is_usable: bool,
2492 /// True if this channel is (or will be) publicly-announced.
2493 pub is_public: bool,
2494 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2495 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2496 pub inbound_htlc_minimum_msat: Option<u64>,
2497 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2498 pub inbound_htlc_maximum_msat: Option<u64>,
2499 /// Set of configurable parameters that affect channel operation.
2501 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2502 pub config: Option<ChannelConfig>,
2503 /// Pending inbound HTLCs.
2505 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2506 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2507 /// Pending outbound HTLCs.
2509 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2510 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2513 impl ChannelDetails {
2514 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2515 /// This should be used for providing invoice hints or in any other context where our
2516 /// counterparty will forward a payment to us.
2518 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2519 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2520 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2521 self.inbound_scid_alias.or(self.short_channel_id)
2524 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2525 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2526 /// we're sending or forwarding a payment outbound over this channel.
2528 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2529 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2530 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2531 self.short_channel_id.or(self.outbound_scid_alias)
2534 fn from_channel_context<SP: Deref, F: Deref>(
2535 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2536 fee_estimator: &LowerBoundedFeeEstimator<F>
2539 SP::Target: SignerProvider,
2540 F::Target: FeeEstimator
2542 let balance = context.get_available_balances(fee_estimator);
2543 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2544 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2546 channel_id: context.channel_id(),
2547 counterparty: ChannelCounterparty {
2548 node_id: context.get_counterparty_node_id(),
2549 features: latest_features,
2550 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2551 forwarding_info: context.counterparty_forwarding_info(),
2552 // Ensures that we have actually received the `htlc_minimum_msat` value
2553 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2554 // message (as they are always the first message from the counterparty).
2555 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2556 // default `0` value set by `Channel::new_outbound`.
2557 outbound_htlc_minimum_msat: if context.have_received_message() {
2558 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2559 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2561 funding_txo: context.get_funding_txo(),
2562 // Note that accept_channel (or open_channel) is always the first message, so
2563 // `have_received_message` indicates that type negotiation has completed.
2564 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2565 short_channel_id: context.get_short_channel_id(),
2566 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2567 inbound_scid_alias: context.latest_inbound_scid_alias(),
2568 channel_value_satoshis: context.get_value_satoshis(),
2569 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2570 unspendable_punishment_reserve: to_self_reserve_satoshis,
2571 balance_msat: balance.balance_msat,
2572 inbound_capacity_msat: balance.inbound_capacity_msat,
2573 outbound_capacity_msat: balance.outbound_capacity_msat,
2574 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2575 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2576 user_channel_id: context.get_user_id(),
2577 confirmations_required: context.minimum_depth(),
2578 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2579 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2580 is_outbound: context.is_outbound(),
2581 is_channel_ready: context.is_usable(),
2582 is_usable: context.is_live(),
2583 is_public: context.should_announce(),
2584 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2585 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2586 config: Some(context.config()),
2587 channel_shutdown_state: Some(context.shutdown_state()),
2588 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2589 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2594 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2595 /// Further information on the details of the channel shutdown.
2596 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2597 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2598 /// the channel will be removed shortly.
2599 /// Also note, that in normal operation, peers could disconnect at any of these states
2600 /// and require peer re-connection before making progress onto other states
2601 pub enum ChannelShutdownState {
2602 /// Channel has not sent or received a shutdown message.
2604 /// Local node has sent a shutdown message for this channel.
2606 /// Shutdown message exchanges have concluded and the channels are in the midst of
2607 /// resolving all existing open HTLCs before closing can continue.
2609 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2610 NegotiatingClosingFee,
2611 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2612 /// to drop the channel.
2616 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2617 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2618 #[derive(Debug, PartialEq)]
2619 pub enum RecentPaymentDetails {
2620 /// When an invoice was requested and thus a payment has not yet been sent.
2622 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2623 /// a payment and ensure idempotency in LDK.
2624 payment_id: PaymentId,
2626 /// When a payment is still being sent and awaiting successful delivery.
2628 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2629 /// a payment and ensure idempotency in LDK.
2630 payment_id: PaymentId,
2631 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2633 payment_hash: PaymentHash,
2634 /// Total amount (in msat, excluding fees) across all paths for this payment,
2635 /// not just the amount currently inflight.
2638 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2639 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2640 /// payment is removed from tracking.
2642 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2643 /// a payment and ensure idempotency in LDK.
2644 payment_id: PaymentId,
2645 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2646 /// made before LDK version 0.0.104.
2647 payment_hash: Option<PaymentHash>,
2649 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2650 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2651 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2653 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2654 /// a payment and ensure idempotency in LDK.
2655 payment_id: PaymentId,
2656 /// Hash of the payment that we have given up trying to send.
2657 payment_hash: PaymentHash,
2661 /// Route hints used in constructing invoices for [phantom node payents].
2663 /// [phantom node payments]: crate::sign::PhantomKeysManager
2665 pub struct PhantomRouteHints {
2666 /// The list of channels to be included in the invoice route hints.
2667 pub channels: Vec<ChannelDetails>,
2668 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2670 pub phantom_scid: u64,
2671 /// The pubkey of the real backing node that would ultimately receive the payment.
2672 pub real_node_pubkey: PublicKey,
2675 macro_rules! handle_error {
2676 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2677 // In testing, ensure there are no deadlocks where the lock is already held upon
2678 // entering the macro.
2679 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2680 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2684 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2685 let mut msg_event = None;
2687 if let Some((shutdown_res, update_option)) = shutdown_finish {
2688 let counterparty_node_id = shutdown_res.counterparty_node_id;
2689 let channel_id = shutdown_res.channel_id;
2690 let logger = WithContext::from(
2691 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2693 log_error!(logger, "Force-closing channel: {}", err.err);
2695 $self.finish_close_channel(shutdown_res);
2696 if let Some(update) = update_option {
2697 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2698 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2703 log_error!($self.logger, "Got non-closing error: {}", err.err);
2706 if let msgs::ErrorAction::IgnoreError = err.action {
2708 msg_event = Some(events::MessageSendEvent::HandleError {
2709 node_id: $counterparty_node_id,
2710 action: err.action.clone()
2714 if let Some(msg_event) = msg_event {
2715 let per_peer_state = $self.per_peer_state.read().unwrap();
2716 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2717 let mut peer_state = peer_state_mutex.lock().unwrap();
2718 peer_state.pending_msg_events.push(msg_event);
2722 // Return error in case higher-API need one
2729 macro_rules! update_maps_on_chan_removal {
2730 ($self: expr, $channel_context: expr) => {{
2731 if let Some(outpoint) = $channel_context.get_funding_txo() {
2732 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2734 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2735 if let Some(short_id) = $channel_context.get_short_channel_id() {
2736 short_to_chan_info.remove(&short_id);
2738 // If the channel was never confirmed on-chain prior to its closure, remove the
2739 // outbound SCID alias we used for it from the collision-prevention set. While we
2740 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2741 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2742 // opening a million channels with us which are closed before we ever reach the funding
2744 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2745 debug_assert!(alias_removed);
2747 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2751 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2752 macro_rules! convert_chan_phase_err {
2753 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2755 ChannelError::Warn(msg) => {
2756 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2758 ChannelError::Ignore(msg) => {
2759 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2761 ChannelError::Close(msg) => {
2762 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2763 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2764 update_maps_on_chan_removal!($self, $channel.context);
2765 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2766 let shutdown_res = $channel.context.force_shutdown(true, reason);
2768 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2773 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2774 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2776 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2777 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2779 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2780 match $channel_phase {
2781 ChannelPhase::Funded(channel) => {
2782 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2784 ChannelPhase::UnfundedOutboundV1(channel) => {
2785 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2787 ChannelPhase::UnfundedInboundV1(channel) => {
2788 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2790 #[cfg(any(dual_funding, splicing))]
2791 ChannelPhase::UnfundedOutboundV2(channel) => {
2792 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2794 #[cfg(any(dual_funding, splicing))]
2795 ChannelPhase::UnfundedInboundV2(channel) => {
2796 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2802 macro_rules! break_chan_phase_entry {
2803 ($self: ident, $res: expr, $entry: expr) => {
2807 let key = *$entry.key();
2808 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2810 $entry.remove_entry();
2818 macro_rules! try_chan_phase_entry {
2819 ($self: ident, $res: expr, $entry: expr) => {
2823 let key = *$entry.key();
2824 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2826 $entry.remove_entry();
2834 macro_rules! remove_channel_phase {
2835 ($self: expr, $entry: expr) => {
2837 let channel = $entry.remove_entry().1;
2838 update_maps_on_chan_removal!($self, &channel.context());
2844 macro_rules! send_channel_ready {
2845 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2846 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2847 node_id: $channel.context.get_counterparty_node_id(),
2848 msg: $channel_ready_msg,
2850 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2851 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2852 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2853 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2854 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2855 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2856 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2857 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2858 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2859 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2864 macro_rules! emit_channel_pending_event {
2865 ($locked_events: expr, $channel: expr) => {
2866 if $channel.context.should_emit_channel_pending_event() {
2867 $locked_events.push_back((events::Event::ChannelPending {
2868 channel_id: $channel.context.channel_id(),
2869 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2870 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2871 user_channel_id: $channel.context.get_user_id(),
2872 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2873 channel_type: Some($channel.context.get_channel_type().clone()),
2875 $channel.context.set_channel_pending_event_emitted();
2880 macro_rules! emit_channel_ready_event {
2881 ($locked_events: expr, $channel: expr) => {
2882 if $channel.context.should_emit_channel_ready_event() {
2883 debug_assert!($channel.context.channel_pending_event_emitted());
2884 $locked_events.push_back((events::Event::ChannelReady {
2885 channel_id: $channel.context.channel_id(),
2886 user_channel_id: $channel.context.get_user_id(),
2887 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2888 channel_type: $channel.context.get_channel_type().clone(),
2890 $channel.context.set_channel_ready_event_emitted();
2895 macro_rules! handle_monitor_update_completion {
2896 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2897 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2898 let mut updates = $chan.monitor_updating_restored(&&logger,
2899 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2900 $self.best_block.read().unwrap().height);
2901 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2902 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2903 // We only send a channel_update in the case where we are just now sending a
2904 // channel_ready and the channel is in a usable state. We may re-send a
2905 // channel_update later through the announcement_signatures process for public
2906 // channels, but there's no reason not to just inform our counterparty of our fees
2908 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2909 Some(events::MessageSendEvent::SendChannelUpdate {
2910 node_id: counterparty_node_id,
2916 let update_actions = $peer_state.monitor_update_blocked_actions
2917 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2919 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2920 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2921 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2922 updates.funding_broadcastable, updates.channel_ready,
2923 updates.announcement_sigs);
2924 if let Some(upd) = channel_update {
2925 $peer_state.pending_msg_events.push(upd);
2928 let channel_id = $chan.context.channel_id();
2929 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2930 core::mem::drop($peer_state_lock);
2931 core::mem::drop($per_peer_state_lock);
2933 // If the channel belongs to a batch funding transaction, the progress of the batch
2934 // should be updated as we have received funding_signed and persisted the monitor.
2935 if let Some(txid) = unbroadcasted_batch_funding_txid {
2936 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2937 let mut batch_completed = false;
2938 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2939 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2940 *chan_id == channel_id &&
2941 *pubkey == counterparty_node_id
2943 if let Some(channel_state) = channel_state {
2944 channel_state.2 = true;
2946 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2948 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2950 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2953 // When all channels in a batched funding transaction have become ready, it is not necessary
2954 // to track the progress of the batch anymore and the state of the channels can be updated.
2955 if batch_completed {
2956 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2957 let per_peer_state = $self.per_peer_state.read().unwrap();
2958 let mut batch_funding_tx = None;
2959 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2960 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2961 let mut peer_state = peer_state_mutex.lock().unwrap();
2962 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2963 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2964 chan.set_batch_ready();
2965 let mut pending_events = $self.pending_events.lock().unwrap();
2966 emit_channel_pending_event!(pending_events, chan);
2970 if let Some(tx) = batch_funding_tx {
2971 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2972 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2977 $self.handle_monitor_update_completion_actions(update_actions);
2979 if let Some(forwards) = htlc_forwards {
2980 $self.forward_htlcs(&mut [forwards][..]);
2982 if let Some(decode) = decode_update_add_htlcs {
2983 $self.push_decode_update_add_htlcs(decode);
2985 $self.finalize_claims(updates.finalized_claimed_htlcs);
2986 for failure in updates.failed_htlcs.drain(..) {
2987 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2988 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2993 macro_rules! handle_new_monitor_update {
2994 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2995 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2996 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2998 ChannelMonitorUpdateStatus::UnrecoverableError => {
2999 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
3000 log_error!(logger, "{}", err_str);
3001 panic!("{}", err_str);
3003 ChannelMonitorUpdateStatus::InProgress => {
3004 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
3005 &$chan.context.channel_id());
3008 ChannelMonitorUpdateStatus::Completed => {
3014 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3015 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3016 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3018 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3019 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3020 .or_insert_with(Vec::new);
3021 // During startup, we push monitor updates as background events through to here in
3022 // order to replay updates that were in-flight when we shut down. Thus, we have to
3023 // filter for uniqueness here.
3024 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3025 .unwrap_or_else(|| {
3026 in_flight_updates.push($update);
3027 in_flight_updates.len() - 1
3029 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3030 handle_new_monitor_update!($self, update_res, $chan, _internal,
3032 let _ = in_flight_updates.remove(idx);
3033 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3034 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3040 macro_rules! process_events_body {
3041 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3042 let mut processed_all_events = false;
3043 while !processed_all_events {
3044 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3051 // We'll acquire our total consistency lock so that we can be sure no other
3052 // persists happen while processing monitor events.
3053 let _read_guard = $self.total_consistency_lock.read().unwrap();
3055 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3056 // ensure any startup-generated background events are handled first.
3057 result = $self.process_background_events();
3059 // TODO: This behavior should be documented. It's unintuitive that we query
3060 // ChannelMonitors when clearing other events.
3061 if $self.process_pending_monitor_events() {
3062 result = NotifyOption::DoPersist;
3066 let pending_events = $self.pending_events.lock().unwrap().clone();
3067 let num_events = pending_events.len();
3068 if !pending_events.is_empty() {
3069 result = NotifyOption::DoPersist;
3072 let mut post_event_actions = Vec::new();
3074 for (event, action_opt) in pending_events {
3075 $event_to_handle = event;
3077 if let Some(action) = action_opt {
3078 post_event_actions.push(action);
3083 let mut pending_events = $self.pending_events.lock().unwrap();
3084 pending_events.drain(..num_events);
3085 processed_all_events = pending_events.is_empty();
3086 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3087 // updated here with the `pending_events` lock acquired.
3088 $self.pending_events_processor.store(false, Ordering::Release);
3091 if !post_event_actions.is_empty() {
3092 $self.handle_post_event_actions(post_event_actions);
3093 // If we had some actions, go around again as we may have more events now
3094 processed_all_events = false;
3098 NotifyOption::DoPersist => {
3099 $self.needs_persist_flag.store(true, Ordering::Release);
3100 $self.event_persist_notifier.notify();
3102 NotifyOption::SkipPersistHandleEvents =>
3103 $self.event_persist_notifier.notify(),
3104 NotifyOption::SkipPersistNoEvents => {},
3110 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3112 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3113 T::Target: BroadcasterInterface,
3114 ES::Target: EntropySource,
3115 NS::Target: NodeSigner,
3116 SP::Target: SignerProvider,
3117 F::Target: FeeEstimator,
3121 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3123 /// The current time or latest block header time can be provided as the `current_timestamp`.
3125 /// This is the main "logic hub" for all channel-related actions, and implements
3126 /// [`ChannelMessageHandler`].
3128 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3130 /// Users need to notify the new `ChannelManager` when a new block is connected or
3131 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3132 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3135 /// [`block_connected`]: chain::Listen::block_connected
3136 /// [`block_disconnected`]: chain::Listen::block_disconnected
3137 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3139 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3140 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3141 current_timestamp: u32,
3143 let mut secp_ctx = Secp256k1::new();
3144 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3145 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3146 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3148 default_configuration: config.clone(),
3149 chain_hash: ChainHash::using_genesis_block(params.network),
3150 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3155 best_block: RwLock::new(params.best_block),
3157 outbound_scid_aliases: Mutex::new(new_hash_set()),
3158 pending_inbound_payments: Mutex::new(new_hash_map()),
3159 pending_outbound_payments: OutboundPayments::new(),
3160 forward_htlcs: Mutex::new(new_hash_map()),
3161 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3162 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3163 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3164 outpoint_to_peer: Mutex::new(new_hash_map()),
3165 short_to_chan_info: FairRwLock::new(new_hash_map()),
3167 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3170 inbound_payment_key: expanded_inbound_key,
3171 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3173 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3175 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3177 per_peer_state: FairRwLock::new(new_hash_map()),
3179 pending_events: Mutex::new(VecDeque::new()),
3180 pending_events_processor: AtomicBool::new(false),
3181 pending_background_events: Mutex::new(Vec::new()),
3182 total_consistency_lock: RwLock::new(()),
3183 background_events_processed_since_startup: AtomicBool::new(false),
3184 event_persist_notifier: Notifier::new(),
3185 needs_persist_flag: AtomicBool::new(false),
3186 funding_batch_states: Mutex::new(BTreeMap::new()),
3188 pending_offers_messages: Mutex::new(Vec::new()),
3189 pending_broadcast_messages: Mutex::new(Vec::new()),
3199 /// Gets the current configuration applied to all new channels.
3200 pub fn get_current_default_configuration(&self) -> &UserConfig {
3201 &self.default_configuration
3204 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3205 let height = self.best_block.read().unwrap().height;
3206 let mut outbound_scid_alias = 0;
3209 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3210 outbound_scid_alias += 1;
3212 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3214 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3218 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3223 /// Creates a new outbound channel to the given remote node and with the given value.
3225 /// `user_channel_id` will be provided back as in
3226 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3227 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3228 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3229 /// is simply copied to events and otherwise ignored.
3231 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3232 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3234 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3235 /// generate a shutdown scriptpubkey or destination script set by
3236 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3238 /// Note that we do not check if you are currently connected to the given peer. If no
3239 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3240 /// the channel eventually being silently forgotten (dropped on reload).
3242 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3243 /// channel. Otherwise, a random one will be generated for you.
3245 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3246 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3247 /// [`ChannelDetails::channel_id`] until after
3248 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3249 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3250 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3252 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3253 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3254 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3255 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3256 if channel_value_satoshis < 1000 {
3257 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3260 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3261 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3262 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3264 let per_peer_state = self.per_peer_state.read().unwrap();
3266 let peer_state_mutex = per_peer_state.get(&their_network_key)
3267 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3269 let mut peer_state = peer_state_mutex.lock().unwrap();
3271 if let Some(temporary_channel_id) = temporary_channel_id {
3272 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3273 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3278 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3279 let their_features = &peer_state.latest_features;
3280 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3281 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3282 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3283 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3287 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3292 let res = channel.get_open_channel(self.chain_hash);
3294 let temporary_channel_id = channel.context.channel_id();
3295 match peer_state.channel_by_id.entry(temporary_channel_id) {
3296 hash_map::Entry::Occupied(_) => {
3298 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3300 panic!("RNG is bad???");
3303 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3306 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3307 node_id: their_network_key,
3310 Ok(temporary_channel_id)
3313 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3314 // Allocate our best estimate of the number of channels we have in the `res`
3315 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3316 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3317 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3318 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3319 // the same channel.
3320 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3322 let best_block_height = self.best_block.read().unwrap().height;
3323 let per_peer_state = self.per_peer_state.read().unwrap();
3324 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3325 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3326 let peer_state = &mut *peer_state_lock;
3327 res.extend(peer_state.channel_by_id.iter()
3328 .filter_map(|(chan_id, phase)| match phase {
3329 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3330 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3334 .map(|(_channel_id, channel)| {
3335 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3336 peer_state.latest_features.clone(), &self.fee_estimator)
3344 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3345 /// more information.
3346 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3347 // Allocate our best estimate of the number of channels we have in the `res`
3348 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3349 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3350 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3351 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3352 // the same channel.
3353 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3355 let best_block_height = self.best_block.read().unwrap().height;
3356 let per_peer_state = self.per_peer_state.read().unwrap();
3357 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3358 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3359 let peer_state = &mut *peer_state_lock;
3360 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3361 let details = ChannelDetails::from_channel_context(context, best_block_height,
3362 peer_state.latest_features.clone(), &self.fee_estimator);
3370 /// Gets the list of usable channels, in random order. Useful as an argument to
3371 /// [`Router::find_route`] to ensure non-announced channels are used.
3373 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3374 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3376 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3377 // Note we use is_live here instead of usable which leads to somewhat confused
3378 // internal/external nomenclature, but that's ok cause that's probably what the user
3379 // really wanted anyway.
3380 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3383 /// Gets the list of channels we have with a given counterparty, in random order.
3384 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3385 let best_block_height = self.best_block.read().unwrap().height;
3386 let per_peer_state = self.per_peer_state.read().unwrap();
3388 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3389 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3390 let peer_state = &mut *peer_state_lock;
3391 let features = &peer_state.latest_features;
3392 let context_to_details = |context| {
3393 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3395 return peer_state.channel_by_id
3397 .map(|(_, phase)| phase.context())
3398 .map(context_to_details)
3404 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3405 /// successful path, or have unresolved HTLCs.
3407 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3408 /// result of a crash. If such a payment exists, is not listed here, and an
3409 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3411 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3412 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3413 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3414 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3415 PendingOutboundPayment::AwaitingInvoice { .. } => {
3416 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3418 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3419 PendingOutboundPayment::InvoiceReceived { .. } => {
3420 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3422 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3423 Some(RecentPaymentDetails::Pending {
3424 payment_id: *payment_id,
3425 payment_hash: *payment_hash,
3426 total_msat: *total_msat,
3429 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3430 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3432 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3433 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3435 PendingOutboundPayment::Legacy { .. } => None
3440 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3441 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3443 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3444 let mut shutdown_result = None;
3447 let per_peer_state = self.per_peer_state.read().unwrap();
3449 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3450 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3452 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3453 let peer_state = &mut *peer_state_lock;
3455 match peer_state.channel_by_id.entry(channel_id.clone()) {
3456 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3457 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3458 let funding_txo_opt = chan.context.get_funding_txo();
3459 let their_features = &peer_state.latest_features;
3460 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3461 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3462 failed_htlcs = htlcs;
3464 // We can send the `shutdown` message before updating the `ChannelMonitor`
3465 // here as we don't need the monitor update to complete until we send a
3466 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3467 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3468 node_id: *counterparty_node_id,
3472 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3473 "We can't both complete shutdown and generate a monitor update");
3475 // Update the monitor with the shutdown script if necessary.
3476 if let Some(monitor_update) = monitor_update_opt.take() {
3477 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3478 peer_state_lock, peer_state, per_peer_state, chan);
3481 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3482 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3485 hash_map::Entry::Vacant(_) => {
3486 return Err(APIError::ChannelUnavailable {
3488 "Channel with id {} not found for the passed counterparty node_id {}",
3489 channel_id, counterparty_node_id,
3496 for htlc_source in failed_htlcs.drain(..) {
3497 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3498 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3499 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3502 if let Some(shutdown_result) = shutdown_result {
3503 self.finish_close_channel(shutdown_result);
3509 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3510 /// will be accepted on the given channel, and after additional timeout/the closing of all
3511 /// pending HTLCs, the channel will be closed on chain.
3513 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3514 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3516 /// * If our counterparty is the channel initiator, we will require a channel closing
3517 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3518 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3519 /// counterparty to pay as much fee as they'd like, however.
3521 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3523 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3524 /// generate a shutdown scriptpubkey or destination script set by
3525 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3528 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3529 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3530 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3531 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3532 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3533 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3536 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3537 /// will be accepted on the given channel, and after additional timeout/the closing of all
3538 /// pending HTLCs, the channel will be closed on chain.
3540 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3541 /// the channel being closed or not:
3542 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3543 /// transaction. The upper-bound is set by
3544 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3545 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3546 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3547 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3548 /// will appear on a force-closure transaction, whichever is lower).
3550 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3551 /// Will fail if a shutdown script has already been set for this channel by
3552 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3553 /// also be compatible with our and the counterparty's features.
3555 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3557 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3558 /// generate a shutdown scriptpubkey or destination script set by
3559 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3562 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3563 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3564 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3565 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3566 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3569 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3570 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3571 #[cfg(debug_assertions)]
3572 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3573 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3576 let logger = WithContext::from(
3577 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3580 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3581 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3582 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3583 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3584 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3585 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3586 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3588 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3589 // There isn't anything we can do if we get an update failure - we're already
3590 // force-closing. The monitor update on the required in-memory copy should broadcast
3591 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3592 // ignore the result here.
3593 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3595 let mut shutdown_results = Vec::new();
3596 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3597 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3598 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3599 let per_peer_state = self.per_peer_state.read().unwrap();
3600 let mut has_uncompleted_channel = None;
3601 for (channel_id, counterparty_node_id, state) in affected_channels {
3602 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3603 let mut peer_state = peer_state_mutex.lock().unwrap();
3604 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3605 update_maps_on_chan_removal!(self, &chan.context());
3606 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3609 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3612 has_uncompleted_channel.unwrap_or(true),
3613 "Closing a batch where all channels have completed initial monitor update",
3618 let mut pending_events = self.pending_events.lock().unwrap();
3619 pending_events.push_back((events::Event::ChannelClosed {
3620 channel_id: shutdown_res.channel_id,
3621 user_channel_id: shutdown_res.user_channel_id,
3622 reason: shutdown_res.closure_reason,
3623 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3624 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3625 channel_funding_txo: shutdown_res.channel_funding_txo,
3628 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3629 pending_events.push_back((events::Event::DiscardFunding {
3630 channel_id: shutdown_res.channel_id, transaction
3634 for shutdown_result in shutdown_results.drain(..) {
3635 self.finish_close_channel(shutdown_result);
3639 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3640 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3641 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3642 -> Result<PublicKey, APIError> {
3643 let per_peer_state = self.per_peer_state.read().unwrap();
3644 let peer_state_mutex = per_peer_state.get(peer_node_id)
3645 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3646 let (update_opt, counterparty_node_id) = {
3647 let mut peer_state = peer_state_mutex.lock().unwrap();
3648 let closure_reason = if let Some(peer_msg) = peer_msg {
3649 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3651 ClosureReason::HolderForceClosed
3653 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3654 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3655 log_error!(logger, "Force-closing channel {}", channel_id);
3656 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3657 mem::drop(peer_state);
3658 mem::drop(per_peer_state);
3660 ChannelPhase::Funded(mut chan) => {
3661 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3662 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3664 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3665 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3666 // Unfunded channel has no update
3667 (None, chan_phase.context().get_counterparty_node_id())
3669 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
3670 #[cfg(any(dual_funding, splicing))]
3671 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3672 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3673 // Unfunded channel has no update
3674 (None, chan_phase.context().get_counterparty_node_id())
3677 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3678 log_error!(logger, "Force-closing channel {}", &channel_id);
3679 // N.B. that we don't send any channel close event here: we
3680 // don't have a user_channel_id, and we never sent any opening
3682 (None, *peer_node_id)
3684 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3687 if let Some(update) = update_opt {
3688 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3689 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3690 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3695 Ok(counterparty_node_id)
3698 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3699 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3700 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3701 Ok(counterparty_node_id) => {
3702 let per_peer_state = self.per_peer_state.read().unwrap();
3703 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3704 let mut peer_state = peer_state_mutex.lock().unwrap();
3705 peer_state.pending_msg_events.push(
3706 events::MessageSendEvent::HandleError {
3707 node_id: counterparty_node_id,
3708 action: msgs::ErrorAction::DisconnectPeer {
3709 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3720 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3721 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3722 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3724 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3725 -> Result<(), APIError> {
3726 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3729 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3730 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3731 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3733 /// You can always broadcast the latest local transaction(s) via
3734 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3735 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3736 -> Result<(), APIError> {
3737 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3740 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3741 /// for each to the chain and rejecting new HTLCs on each.
3742 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3743 for chan in self.list_channels() {
3744 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3748 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3749 /// local transaction(s).
3750 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3751 for chan in self.list_channels() {
3752 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3756 fn can_forward_htlc_to_outgoing_channel(
3757 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3758 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3759 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3760 // Note that the behavior here should be identical to the above block - we
3761 // should NOT reveal the existence or non-existence of a private channel if
3762 // we don't allow forwards outbound over them.
3763 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3765 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3766 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3767 // "refuse to forward unless the SCID alias was used", so we pretend
3768 // we don't have the channel here.
3769 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3772 // Note that we could technically not return an error yet here and just hope
3773 // that the connection is reestablished or monitor updated by the time we get
3774 // around to doing the actual forward, but better to fail early if we can and
3775 // hopefully an attacker trying to path-trace payments cannot make this occur
3776 // on a small/per-node/per-channel scale.
3777 if !chan.context.is_live() { // channel_disabled
3778 // If the channel_update we're going to return is disabled (i.e. the
3779 // peer has been disabled for some time), return `channel_disabled`,
3780 // otherwise return `temporary_channel_failure`.
3781 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3782 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3783 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3785 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3788 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3789 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3790 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3792 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3793 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3794 return Err((err, code, chan_update_opt));
3800 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3801 /// `scid`. `None` is returned when the channel is not found.
3802 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3803 &self, scid: u64, callback: C,
3805 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3806 None => return None,
3807 Some((cp_id, id)) => (cp_id, id),
3809 let per_peer_state = self.per_peer_state.read().unwrap();
3810 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3811 if peer_state_mutex_opt.is_none() {
3814 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3815 let peer_state = &mut *peer_state_lock;
3816 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3817 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3820 Some(chan) => Some(callback(chan)),
3824 fn can_forward_htlc(
3825 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3826 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3827 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3828 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3831 Some(Err(e)) => return Err(e),
3833 // If we couldn't find the channel info for the scid, it may be a phantom or
3834 // intercept forward.
3835 if (self.default_configuration.accept_intercept_htlcs &&
3836 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3837 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3839 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3844 let cur_height = self.best_block.read().unwrap().height + 1;
3845 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3846 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3848 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3849 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3851 return Err((err_msg, err_code, chan_update_opt));
3857 fn htlc_failure_from_update_add_err(
3858 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3859 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3860 shared_secret: &[u8; 32]
3861 ) -> HTLCFailureMsg {
3862 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3863 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3864 let chan_update = chan_update.unwrap();
3865 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3866 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3868 else if err_code == 0x1000 | 13 {
3869 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3871 else if err_code == 0x1000 | 20 {
3872 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3873 0u16.write(&mut res).expect("Writes cannot fail");
3875 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3876 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3877 chan_update.write(&mut res).expect("Writes cannot fail");
3878 } else if err_code & 0x1000 == 0x1000 {
3879 // If we're trying to return an error that requires a `channel_update` but
3880 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3881 // generate an update), just use the generic "temporary_node_failure"
3883 err_code = 0x2000 | 2;
3887 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3888 "Failed to accept/forward incoming HTLC: {}", err_msg
3890 // If `msg.blinding_point` is set, we must always fail with malformed.
3891 if msg.blinding_point.is_some() {
3892 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3893 channel_id: msg.channel_id,
3894 htlc_id: msg.htlc_id,
3895 sha256_of_onion: [0; 32],
3896 failure_code: INVALID_ONION_BLINDING,
3900 let (err_code, err_data) = if is_intro_node_blinded_forward {
3901 (INVALID_ONION_BLINDING, &[0; 32][..])
3903 (err_code, &res.0[..])
3905 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3906 channel_id: msg.channel_id,
3907 htlc_id: msg.htlc_id,
3908 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3909 .get_encrypted_failure_packet(shared_secret, &None),
3913 fn decode_update_add_htlc_onion(
3914 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3916 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3918 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3919 msg, &self.node_signer, &self.logger, &self.secp_ctx
3922 let next_packet_details = match next_packet_details_opt {
3923 Some(next_packet_details) => next_packet_details,
3924 // it is a receive, so no need for outbound checks
3925 None => return Ok((next_hop, shared_secret, None)),
3928 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3929 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3930 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3931 let (err_msg, err_code, chan_update_opt) = e;
3932 self.htlc_failure_from_update_add_err(
3933 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3934 next_hop.is_intro_node_blinded_forward(), &shared_secret
3938 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3941 fn construct_pending_htlc_status<'a>(
3942 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3943 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3944 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3945 ) -> PendingHTLCStatus {
3946 macro_rules! return_err {
3947 ($msg: expr, $err_code: expr, $data: expr) => {
3949 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3950 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3951 if msg.blinding_point.is_some() {
3952 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3953 msgs::UpdateFailMalformedHTLC {
3954 channel_id: msg.channel_id,
3955 htlc_id: msg.htlc_id,
3956 sha256_of_onion: [0; 32],
3957 failure_code: INVALID_ONION_BLINDING,
3961 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3962 channel_id: msg.channel_id,
3963 htlc_id: msg.htlc_id,
3964 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3965 .get_encrypted_failure_packet(&shared_secret, &None),
3971 onion_utils::Hop::Receive(next_hop_data) => {
3973 let current_height: u32 = self.best_block.read().unwrap().height;
3974 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3975 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3976 current_height, self.default_configuration.accept_mpp_keysend)
3979 // Note that we could obviously respond immediately with an update_fulfill_htlc
3980 // message, however that would leak that we are the recipient of this payment, so
3981 // instead we stay symmetric with the forwarding case, only responding (after a
3982 // delay) once they've send us a commitment_signed!
3983 PendingHTLCStatus::Forward(info)
3985 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3988 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3989 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3990 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3991 Ok(info) => PendingHTLCStatus::Forward(info),
3992 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3998 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3999 /// public, and thus should be called whenever the result is going to be passed out in a
4000 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
4002 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
4003 /// corresponding to the channel's counterparty locked, as the channel been removed from the
4004 /// storage and the `peer_state` lock has been dropped.
4006 /// [`channel_update`]: msgs::ChannelUpdate
4007 /// [`internal_closing_signed`]: Self::internal_closing_signed
4008 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4009 if !chan.context.should_announce() {
4010 return Err(LightningError {
4011 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4012 action: msgs::ErrorAction::IgnoreError
4015 if chan.context.get_short_channel_id().is_none() {
4016 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4018 let logger = WithChannelContext::from(&self.logger, &chan.context);
4019 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4020 self.get_channel_update_for_unicast(chan)
4023 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4024 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4025 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4026 /// provided evidence that they know about the existence of the channel.
4028 /// Note that through [`internal_closing_signed`], this function is called without the
4029 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4030 /// removed from the storage and the `peer_state` lock has been dropped.
4032 /// [`channel_update`]: msgs::ChannelUpdate
4033 /// [`internal_closing_signed`]: Self::internal_closing_signed
4034 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4035 let logger = WithChannelContext::from(&self.logger, &chan.context);
4036 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4037 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4038 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4042 self.get_channel_update_for_onion(short_channel_id, chan)
4045 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4046 let logger = WithChannelContext::from(&self.logger, &chan.context);
4047 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4048 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4050 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4051 ChannelUpdateStatus::Enabled => true,
4052 ChannelUpdateStatus::DisabledStaged(_) => true,
4053 ChannelUpdateStatus::Disabled => false,
4054 ChannelUpdateStatus::EnabledStaged(_) => false,
4057 let unsigned = msgs::UnsignedChannelUpdate {
4058 chain_hash: self.chain_hash,
4060 timestamp: chan.context.get_update_time_counter(),
4061 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4062 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4063 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4064 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4065 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4066 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4067 excess_data: Vec::new(),
4069 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4070 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4071 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4073 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4075 Ok(msgs::ChannelUpdate {
4082 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4083 let _lck = self.total_consistency_lock.read().unwrap();
4084 self.send_payment_along_path(SendAlongPathArgs {
4085 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4090 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4091 let SendAlongPathArgs {
4092 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4095 // The top-level caller should hold the total_consistency_lock read lock.
4096 debug_assert!(self.total_consistency_lock.try_write().is_err());
4097 let prng_seed = self.entropy_source.get_secure_random_bytes();
4098 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4100 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4101 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4102 payment_hash, keysend_preimage, prng_seed
4104 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4105 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4109 let err: Result<(), _> = loop {
4110 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4112 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4113 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4114 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4116 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4119 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4121 "Attempting to send payment with payment hash {} along path with next hop {}",
4122 payment_hash, path.hops.first().unwrap().short_channel_id);
4124 let per_peer_state = self.per_peer_state.read().unwrap();
4125 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4126 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4127 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4128 let peer_state = &mut *peer_state_lock;
4129 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4130 match chan_phase_entry.get_mut() {
4131 ChannelPhase::Funded(chan) => {
4132 if !chan.context.is_live() {
4133 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4135 let funding_txo = chan.context.get_funding_txo().unwrap();
4136 let logger = WithChannelContext::from(&self.logger, &chan.context);
4137 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4138 htlc_cltv, HTLCSource::OutboundRoute {
4140 session_priv: session_priv.clone(),
4141 first_hop_htlc_msat: htlc_msat,
4143 }, onion_packet, None, &self.fee_estimator, &&logger);
4144 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4145 Some(monitor_update) => {
4146 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4148 // Note that MonitorUpdateInProgress here indicates (per function
4149 // docs) that we will resend the commitment update once monitor
4150 // updating completes. Therefore, we must return an error
4151 // indicating that it is unsafe to retry the payment wholesale,
4152 // which we do in the send_payment check for
4153 // MonitorUpdateInProgress, below.
4154 return Err(APIError::MonitorUpdateInProgress);
4162 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4165 // The channel was likely removed after we fetched the id from the
4166 // `short_to_chan_info` map, but before we successfully locked the
4167 // `channel_by_id` map.
4168 // This can occur as no consistency guarantees exists between the two maps.
4169 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4173 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4174 Ok(_) => unreachable!(),
4176 Err(APIError::ChannelUnavailable { err: e.err })
4181 /// Sends a payment along a given route.
4183 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4184 /// fields for more info.
4186 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4187 /// [`PeerManager::process_events`]).
4189 /// # Avoiding Duplicate Payments
4191 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4192 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4193 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4194 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4195 /// second payment with the same [`PaymentId`].
4197 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4198 /// tracking of payments, including state to indicate once a payment has completed. Because you
4199 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4200 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4201 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4203 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4204 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4205 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4206 /// [`ChannelManager::list_recent_payments`] for more information.
4208 /// # Possible Error States on [`PaymentSendFailure`]
4210 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4211 /// each entry matching the corresponding-index entry in the route paths, see
4212 /// [`PaymentSendFailure`] for more info.
4214 /// In general, a path may raise:
4215 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4216 /// node public key) is specified.
4217 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4218 /// closed, doesn't exist, or the peer is currently disconnected.
4219 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4220 /// relevant updates.
4222 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4223 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4224 /// different route unless you intend to pay twice!
4226 /// [`RouteHop`]: crate::routing::router::RouteHop
4227 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4228 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4229 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4230 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4231 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4232 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4233 let best_block_height = self.best_block.read().unwrap().height;
4234 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4235 self.pending_outbound_payments
4236 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4237 &self.entropy_source, &self.node_signer, best_block_height,
4238 |args| self.send_payment_along_path(args))
4241 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4242 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4243 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4244 let best_block_height = self.best_block.read().unwrap().height;
4245 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4246 self.pending_outbound_payments
4247 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4248 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4249 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4250 &self.pending_events, |args| self.send_payment_along_path(args))
4254 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4255 let best_block_height = self.best_block.read().unwrap().height;
4256 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4257 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4258 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4259 best_block_height, |args| self.send_payment_along_path(args))
4263 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4264 let best_block_height = self.best_block.read().unwrap().height;
4265 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4269 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4270 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4273 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4274 let best_block_height = self.best_block.read().unwrap().height;
4275 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4276 self.pending_outbound_payments
4277 .send_payment_for_bolt12_invoice(
4278 invoice, payment_id, &self.router, self.list_usable_channels(),
4279 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4280 best_block_height, &self.logger, &self.pending_events,
4281 |args| self.send_payment_along_path(args)
4285 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4286 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4287 /// retries are exhausted.
4289 /// # Event Generation
4291 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4292 /// as there are no remaining pending HTLCs for this payment.
4294 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4295 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4296 /// determine the ultimate status of a payment.
4298 /// # Requested Invoices
4300 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4301 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4302 /// and prevent any attempts at paying it once received. The other events may only be generated
4303 /// once the invoice has been received.
4305 /// # Restart Behavior
4307 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4308 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4309 /// [`Event::InvoiceRequestFailed`].
4311 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4312 pub fn abandon_payment(&self, payment_id: PaymentId) {
4313 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4314 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4317 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4318 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4319 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4320 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4321 /// never reach the recipient.
4323 /// See [`send_payment`] documentation for more details on the return value of this function
4324 /// and idempotency guarantees provided by the [`PaymentId`] key.
4326 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4327 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4329 /// [`send_payment`]: Self::send_payment
4330 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4331 let best_block_height = self.best_block.read().unwrap().height;
4332 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4333 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4334 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4335 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4338 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4339 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4341 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4344 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4345 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4346 let best_block_height = self.best_block.read().unwrap().height;
4347 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4348 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4349 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4350 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4351 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4354 /// Send a payment that is probing the given route for liquidity. We calculate the
4355 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4356 /// us to easily discern them from real payments.
4357 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4358 let best_block_height = self.best_block.read().unwrap().height;
4359 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4360 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4361 &self.entropy_source, &self.node_signer, best_block_height,
4362 |args| self.send_payment_along_path(args))
4365 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4368 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4369 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4372 /// Sends payment probes over all paths of a route that would be used to pay the given
4373 /// amount to the given `node_id`.
4375 /// See [`ChannelManager::send_preflight_probes`] for more information.
4376 pub fn send_spontaneous_preflight_probes(
4377 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4378 liquidity_limit_multiplier: Option<u64>,
4379 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4380 let payment_params =
4381 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4383 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4385 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4388 /// Sends payment probes over all paths of a route that would be used to pay a route found
4389 /// according to the given [`RouteParameters`].
4391 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4392 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4393 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4394 /// confirmation in a wallet UI.
4396 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4397 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4398 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4399 /// payment. To mitigate this issue, channels with available liquidity less than the required
4400 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4401 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4402 pub fn send_preflight_probes(
4403 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4404 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4405 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4407 let payer = self.get_our_node_id();
4408 let usable_channels = self.list_usable_channels();
4409 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4410 let inflight_htlcs = self.compute_inflight_htlcs();
4414 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4416 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4417 ProbeSendFailure::RouteNotFound
4420 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4422 let mut res = Vec::new();
4424 for mut path in route.paths {
4425 // If the last hop is probably an unannounced channel we refrain from probing all the
4426 // way through to the end and instead probe up to the second-to-last channel.
4427 while let Some(last_path_hop) = path.hops.last() {
4428 if last_path_hop.maybe_announced_channel {
4429 // We found a potentially announced last hop.
4432 // Drop the last hop, as it's likely unannounced.
4435 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4436 last_path_hop.short_channel_id
4438 let final_value_msat = path.final_value_msat();
4440 if let Some(new_last) = path.hops.last_mut() {
4441 new_last.fee_msat += final_value_msat;
4446 if path.hops.len() < 2 {
4449 "Skipped sending payment probe over path with less than two hops."
4454 if let Some(first_path_hop) = path.hops.first() {
4455 if let Some(first_hop) = first_hops.iter().find(|h| {
4456 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4458 let path_value = path.final_value_msat() + path.fee_msat();
4459 let used_liquidity =
4460 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4462 if first_hop.next_outbound_htlc_limit_msat
4463 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4465 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4468 *used_liquidity += path_value;
4473 res.push(self.send_probe(path).map_err(|e| {
4474 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4475 ProbeSendFailure::SendingFailed(e)
4482 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4483 /// which checks the correctness of the funding transaction given the associated channel.
4484 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, &'static str>>(
4485 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4486 mut find_funding_output: FundingOutput,
4487 ) -> Result<(), APIError> {
4488 let per_peer_state = self.per_peer_state.read().unwrap();
4489 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4490 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4492 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4493 let peer_state = &mut *peer_state_lock;
4495 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4496 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4497 macro_rules! close_chan { ($err: expr, $api_err: expr, $chan: expr) => { {
4499 let err = if let ChannelError::Close(msg) = $err {
4500 let channel_id = $chan.context.channel_id();
4501 counterparty = chan.context.get_counterparty_node_id();
4502 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4503 let shutdown_res = $chan.context.force_shutdown(false, reason);
4504 MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None)
4505 } else { unreachable!(); };
4507 mem::drop(peer_state_lock);
4508 mem::drop(per_peer_state);
4509 let _: Result<(), _> = handle_error!(self, Err(err), counterparty);
4512 match find_funding_output(&chan, &funding_transaction) {
4513 Ok(found_funding_txo) => funding_txo = found_funding_txo,
4515 let chan_err = ChannelError::Close(err.to_owned());
4516 let api_err = APIError::APIMisuseError { err: err.to_owned() };
4517 return close_chan!(chan_err, api_err, chan);
4521 let logger = WithChannelContext::from(&self.logger, &chan.context);
4522 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger);
4524 Ok(funding_msg) => (chan, funding_msg),
4525 Err((mut chan, chan_err)) => {
4526 let api_err = APIError::ChannelUnavailable { err: "Signer refused to sign the initial commitment transaction".to_owned() };
4527 return close_chan!(chan_err, api_err, chan);
4532 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4533 return Err(APIError::APIMisuseError {
4535 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4536 temporary_channel_id, counterparty_node_id),
4539 None => return Err(APIError::ChannelUnavailable {err: format!(
4540 "Channel with id {} not found for the passed counterparty node_id {}",
4541 temporary_channel_id, counterparty_node_id),
4545 if let Some(msg) = msg_opt {
4546 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4547 node_id: chan.context.get_counterparty_node_id(),
4551 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4552 hash_map::Entry::Occupied(_) => {
4553 panic!("Generated duplicate funding txid?");
4555 hash_map::Entry::Vacant(e) => {
4556 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4557 match outpoint_to_peer.entry(funding_txo) {
4558 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4559 hash_map::Entry::Occupied(o) => {
4561 "An existing channel using outpoint {} is open with peer {}",
4562 funding_txo, o.get()
4564 mem::drop(outpoint_to_peer);
4565 mem::drop(peer_state_lock);
4566 mem::drop(per_peer_state);
4567 let reason = ClosureReason::ProcessingError { err: err.clone() };
4568 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4569 return Err(APIError::ChannelUnavailable { err });
4572 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4579 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4580 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4581 Ok(OutPoint { txid: tx.txid(), index: output_index })
4585 /// Call this upon creation of a funding transaction for the given channel.
4587 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4588 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4590 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4591 /// across the p2p network.
4593 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4594 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4596 /// May panic if the output found in the funding transaction is duplicative with some other
4597 /// channel (note that this should be trivially prevented by using unique funding transaction
4598 /// keys per-channel).
4600 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4601 /// counterparty's signature the funding transaction will automatically be broadcast via the
4602 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4604 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4605 /// not currently support replacing a funding transaction on an existing channel. Instead,
4606 /// create a new channel with a conflicting funding transaction.
4608 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4609 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4610 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4611 /// for more details.
4613 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4614 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4615 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4616 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4619 /// Call this upon creation of a batch funding transaction for the given channels.
4621 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4622 /// each individual channel and transaction output.
4624 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4625 /// will only be broadcast when we have safely received and persisted the counterparty's
4626 /// signature for each channel.
4628 /// If there is an error, all channels in the batch are to be considered closed.
4629 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4630 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4631 let mut result = Ok(());
4633 if !funding_transaction.is_coin_base() {
4634 for inp in funding_transaction.input.iter() {
4635 if inp.witness.is_empty() {
4636 result = result.and(Err(APIError::APIMisuseError {
4637 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4642 if funding_transaction.output.len() > u16::max_value() as usize {
4643 result = result.and(Err(APIError::APIMisuseError {
4644 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4648 let height = self.best_block.read().unwrap().height;
4649 // Transactions are evaluated as final by network mempools if their locktime is strictly
4650 // lower than the next block height. However, the modules constituting our Lightning
4651 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4652 // module is ahead of LDK, only allow one more block of headroom.
4653 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4654 funding_transaction.lock_time.is_block_height() &&
4655 funding_transaction.lock_time.to_consensus_u32() > height + 1
4657 result = result.and(Err(APIError::APIMisuseError {
4658 err: "Funding transaction absolute timelock is non-final".to_owned()
4663 let txid = funding_transaction.txid();
4664 let is_batch_funding = temporary_channels.len() > 1;
4665 let mut funding_batch_states = if is_batch_funding {
4666 Some(self.funding_batch_states.lock().unwrap())
4670 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4671 match states.entry(txid) {
4672 btree_map::Entry::Occupied(_) => {
4673 result = result.clone().and(Err(APIError::APIMisuseError {
4674 err: "Batch funding transaction with the same txid already exists".to_owned()
4678 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4681 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4682 result = result.and_then(|_| self.funding_transaction_generated_intern(
4683 temporary_channel_id,
4684 counterparty_node_id,
4685 funding_transaction.clone(),
4688 let mut output_index = None;
4689 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4690 for (idx, outp) in tx.output.iter().enumerate() {
4691 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4692 if output_index.is_some() {
4693 return Err("Multiple outputs matched the expected script and value");
4695 output_index = Some(idx as u16);
4698 if output_index.is_none() {
4699 return Err("No output matched the script_pubkey and value in the FundingGenerationReady event");
4701 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4702 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4703 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4704 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4705 // want to support V2 batching here as well.
4706 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4712 if let Err(ref e) = result {
4713 // Remaining channels need to be removed on any error.
4714 let e = format!("Error in transaction funding: {:?}", e);
4715 let mut channels_to_remove = Vec::new();
4716 channels_to_remove.extend(funding_batch_states.as_mut()
4717 .and_then(|states| states.remove(&txid))
4718 .into_iter().flatten()
4719 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4721 channels_to_remove.extend(temporary_channels.iter()
4722 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4724 let mut shutdown_results = Vec::new();
4726 let per_peer_state = self.per_peer_state.read().unwrap();
4727 for (channel_id, counterparty_node_id) in channels_to_remove {
4728 per_peer_state.get(&counterparty_node_id)
4729 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4730 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id).map(|chan| (chan, peer_state)))
4731 .map(|(mut chan, mut peer_state)| {
4732 update_maps_on_chan_removal!(self, &chan.context());
4733 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4734 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4735 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
4736 node_id: counterparty_node_id,
4737 action: msgs::ErrorAction::SendErrorMessage {
4738 msg: msgs::ErrorMessage {
4740 data: "Failed to fund channel".to_owned(),
4747 mem::drop(funding_batch_states);
4748 for shutdown_result in shutdown_results.drain(..) {
4749 self.finish_close_channel(shutdown_result);
4755 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4757 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4758 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4759 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4760 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4762 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4763 /// `counterparty_node_id` is provided.
4765 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4766 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4768 /// If an error is returned, none of the updates should be considered applied.
4770 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4771 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4772 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4773 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4774 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4775 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4776 /// [`APIMisuseError`]: APIError::APIMisuseError
4777 pub fn update_partial_channel_config(
4778 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4779 ) -> Result<(), APIError> {
4780 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4781 return Err(APIError::APIMisuseError {
4782 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4786 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4787 let per_peer_state = self.per_peer_state.read().unwrap();
4788 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4789 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4790 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4791 let peer_state = &mut *peer_state_lock;
4793 for channel_id in channel_ids {
4794 if !peer_state.has_channel(channel_id) {
4795 return Err(APIError::ChannelUnavailable {
4796 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4800 for channel_id in channel_ids {
4801 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4802 let mut config = channel_phase.context().config();
4803 config.apply(config_update);
4804 if !channel_phase.context_mut().update_config(&config) {
4807 if let ChannelPhase::Funded(channel) = channel_phase {
4808 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4809 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4810 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4811 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4812 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4813 node_id: channel.context.get_counterparty_node_id(),
4820 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4821 debug_assert!(false);
4822 return Err(APIError::ChannelUnavailable {
4824 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4825 channel_id, counterparty_node_id),
4832 /// Atomically updates the [`ChannelConfig`] for the given channels.
4834 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4835 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4836 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4837 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4839 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4840 /// `counterparty_node_id` is provided.
4842 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4843 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4845 /// If an error is returned, none of the updates should be considered applied.
4847 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4848 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4849 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4850 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4851 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4852 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4853 /// [`APIMisuseError`]: APIError::APIMisuseError
4854 pub fn update_channel_config(
4855 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4856 ) -> Result<(), APIError> {
4857 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4860 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4861 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4863 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4864 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4866 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4867 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4868 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4869 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4870 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4872 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4873 /// you from forwarding more than you received. See
4874 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4877 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4880 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4881 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4882 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4883 // TODO: when we move to deciding the best outbound channel at forward time, only take
4884 // `next_node_id` and not `next_hop_channel_id`
4885 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4886 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4888 let next_hop_scid = {
4889 let peer_state_lock = self.per_peer_state.read().unwrap();
4890 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4891 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4892 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4893 let peer_state = &mut *peer_state_lock;
4894 match peer_state.channel_by_id.get(next_hop_channel_id) {
4895 Some(ChannelPhase::Funded(chan)) => {
4896 if !chan.context.is_usable() {
4897 return Err(APIError::ChannelUnavailable {
4898 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4901 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4903 Some(_) => return Err(APIError::ChannelUnavailable {
4904 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4905 next_hop_channel_id, next_node_id)
4908 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4909 next_hop_channel_id, next_node_id);
4910 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4911 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4912 return Err(APIError::ChannelUnavailable {
4919 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4920 .ok_or_else(|| APIError::APIMisuseError {
4921 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4924 let routing = match payment.forward_info.routing {
4925 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4926 PendingHTLCRouting::Forward {
4927 onion_packet, blinded, short_channel_id: next_hop_scid
4930 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4932 let skimmed_fee_msat =
4933 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4934 let pending_htlc_info = PendingHTLCInfo {
4935 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4936 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4939 let mut per_source_pending_forward = [(
4940 payment.prev_short_channel_id,
4941 payment.prev_funding_outpoint,
4942 payment.prev_channel_id,
4943 payment.prev_user_channel_id,
4944 vec![(pending_htlc_info, payment.prev_htlc_id)]
4946 self.forward_htlcs(&mut per_source_pending_forward);
4950 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4951 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4953 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4956 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4957 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4958 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4960 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4961 .ok_or_else(|| APIError::APIMisuseError {
4962 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4965 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4966 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4967 short_channel_id: payment.prev_short_channel_id,
4968 user_channel_id: Some(payment.prev_user_channel_id),
4969 outpoint: payment.prev_funding_outpoint,
4970 channel_id: payment.prev_channel_id,
4971 htlc_id: payment.prev_htlc_id,
4972 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4973 phantom_shared_secret: None,
4974 blinded_failure: payment.forward_info.routing.blinded_failure(),
4977 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4978 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4979 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4980 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4985 fn process_pending_update_add_htlcs(&self) {
4986 let mut decode_update_add_htlcs = new_hash_map();
4987 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4989 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4990 if let Some(outgoing_scid) = outgoing_scid_opt {
4991 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4992 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4993 HTLCDestination::NextHopChannel {
4994 node_id: Some(*outgoing_counterparty_node_id),
4995 channel_id: *outgoing_channel_id,
4997 None => HTLCDestination::UnknownNextHop {
4998 requested_forward_scid: outgoing_scid,
5002 HTLCDestination::FailedPayment { payment_hash }
5006 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
5007 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5008 let counterparty_node_id = chan.context.get_counterparty_node_id();
5009 let channel_id = chan.context.channel_id();
5010 let funding_txo = chan.context.get_funding_txo().unwrap();
5011 let user_channel_id = chan.context.get_user_id();
5012 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
5013 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
5016 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
5017 incoming_user_channel_id, incoming_accept_underpaying_htlcs
5018 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
5019 incoming_channel_details
5021 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5025 let mut htlc_forwards = Vec::new();
5026 let mut htlc_fails = Vec::new();
5027 for update_add_htlc in &update_add_htlcs {
5028 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5029 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5031 Ok(decoded_onion) => decoded_onion,
5033 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5038 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5039 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5041 // Process the HTLC on the incoming channel.
5042 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5043 let logger = WithChannelContext::from(&self.logger, &chan.context);
5044 chan.can_accept_incoming_htlc(
5045 update_add_htlc, &self.fee_estimator, &logger,
5049 Some(Err((err, code))) => {
5050 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5051 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5052 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5057 let htlc_fail = self.htlc_failure_from_update_add_err(
5058 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5059 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5061 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5062 htlc_fails.push((htlc_fail, htlc_destination));
5065 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5066 None => continue 'outer_loop,
5069 // Now process the HTLC on the outgoing channel if it's a forward.
5070 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5071 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5072 &update_add_htlc, next_packet_details
5074 let htlc_fail = self.htlc_failure_from_update_add_err(
5075 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5076 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5078 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5079 htlc_fails.push((htlc_fail, htlc_destination));
5084 match self.construct_pending_htlc_status(
5085 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5086 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5088 PendingHTLCStatus::Forward(htlc_forward) => {
5089 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5091 PendingHTLCStatus::Fail(htlc_fail) => {
5092 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5093 htlc_fails.push((htlc_fail, htlc_destination));
5098 // Process all of the forwards and failures for the channel in which the HTLCs were
5099 // proposed to as a batch.
5100 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5101 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5102 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5103 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5104 let failure = match htlc_fail {
5105 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5106 htlc_id: fail_htlc.htlc_id,
5107 err_packet: fail_htlc.reason,
5109 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5110 htlc_id: fail_malformed_htlc.htlc_id,
5111 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5112 failure_code: fail_malformed_htlc.failure_code,
5115 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5116 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5117 prev_channel_id: incoming_channel_id,
5118 failed_next_destination: htlc_destination,
5124 /// Processes HTLCs which are pending waiting on random forward delay.
5126 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5127 /// Will likely generate further events.
5128 pub fn process_pending_htlc_forwards(&self) {
5129 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5131 self.process_pending_update_add_htlcs();
5133 let mut new_events = VecDeque::new();
5134 let mut failed_forwards = Vec::new();
5135 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5137 let mut forward_htlcs = new_hash_map();
5138 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5140 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5141 if short_chan_id != 0 {
5142 let mut forwarding_counterparty = None;
5143 macro_rules! forwarding_channel_not_found {
5145 for forward_info in pending_forwards.drain(..) {
5146 match forward_info {
5147 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5148 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5149 prev_user_channel_id, forward_info: PendingHTLCInfo {
5150 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5151 outgoing_cltv_value, ..
5154 macro_rules! failure_handler {
5155 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5156 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5157 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5159 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5160 short_channel_id: prev_short_channel_id,
5161 user_channel_id: Some(prev_user_channel_id),
5162 channel_id: prev_channel_id,
5163 outpoint: prev_funding_outpoint,
5164 htlc_id: prev_htlc_id,
5165 incoming_packet_shared_secret: incoming_shared_secret,
5166 phantom_shared_secret: $phantom_ss,
5167 blinded_failure: routing.blinded_failure(),
5170 let reason = if $next_hop_unknown {
5171 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5173 HTLCDestination::FailedPayment{ payment_hash }
5176 failed_forwards.push((htlc_source, payment_hash,
5177 HTLCFailReason::reason($err_code, $err_data),
5183 macro_rules! fail_forward {
5184 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5186 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5190 macro_rules! failed_payment {
5191 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5193 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5197 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5198 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5199 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5200 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5201 let next_hop = match onion_utils::decode_next_payment_hop(
5202 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5203 payment_hash, None, &self.node_signer
5206 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5207 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5208 // In this scenario, the phantom would have sent us an
5209 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5210 // if it came from us (the second-to-last hop) but contains the sha256
5212 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5214 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5215 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5219 onion_utils::Hop::Receive(hop_data) => {
5220 let current_height: u32 = self.best_block.read().unwrap().height;
5221 match create_recv_pending_htlc_info(hop_data,
5222 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5223 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5224 current_height, self.default_configuration.accept_mpp_keysend)
5226 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5227 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5233 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5236 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5239 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5240 // Channel went away before we could fail it. This implies
5241 // the channel is now on chain and our counterparty is
5242 // trying to broadcast the HTLC-Timeout, but that's their
5243 // problem, not ours.
5249 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5250 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5251 Some((cp_id, chan_id)) => (cp_id, chan_id),
5253 forwarding_channel_not_found!();
5257 forwarding_counterparty = Some(counterparty_node_id);
5258 let per_peer_state = self.per_peer_state.read().unwrap();
5259 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5260 if peer_state_mutex_opt.is_none() {
5261 forwarding_channel_not_found!();
5264 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5265 let peer_state = &mut *peer_state_lock;
5266 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5267 let logger = WithChannelContext::from(&self.logger, &chan.context);
5268 for forward_info in pending_forwards.drain(..) {
5269 let queue_fail_htlc_res = match forward_info {
5270 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5271 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5272 prev_user_channel_id, forward_info: PendingHTLCInfo {
5273 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5274 routing: PendingHTLCRouting::Forward {
5275 onion_packet, blinded, ..
5276 }, skimmed_fee_msat, ..
5279 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5280 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5281 short_channel_id: prev_short_channel_id,
5282 user_channel_id: Some(prev_user_channel_id),
5283 channel_id: prev_channel_id,
5284 outpoint: prev_funding_outpoint,
5285 htlc_id: prev_htlc_id,
5286 incoming_packet_shared_secret: incoming_shared_secret,
5287 // Phantom payments are only PendingHTLCRouting::Receive.
5288 phantom_shared_secret: None,
5289 blinded_failure: blinded.map(|b| b.failure),
5291 let next_blinding_point = blinded.and_then(|b| {
5292 let encrypted_tlvs_ss = self.node_signer.ecdh(
5293 Recipient::Node, &b.inbound_blinding_point, None
5294 ).unwrap().secret_bytes();
5295 onion_utils::next_hop_pubkey(
5296 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5299 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5300 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5301 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5304 if let ChannelError::Ignore(msg) = e {
5305 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5307 panic!("Stated return value requirements in send_htlc() were not met");
5309 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5310 failed_forwards.push((htlc_source, payment_hash,
5311 HTLCFailReason::reason(failure_code, data),
5312 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5318 HTLCForwardInfo::AddHTLC { .. } => {
5319 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5321 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5322 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5323 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5325 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5326 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5327 let res = chan.queue_fail_malformed_htlc(
5328 htlc_id, failure_code, sha256_of_onion, &&logger
5330 Some((res, htlc_id))
5333 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5334 if let Err(e) = queue_fail_htlc_res {
5335 if let ChannelError::Ignore(msg) = e {
5336 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5338 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5340 // fail-backs are best-effort, we probably already have one
5341 // pending, and if not that's OK, if not, the channel is on
5342 // the chain and sending the HTLC-Timeout is their problem.
5348 forwarding_channel_not_found!();
5352 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5353 match forward_info {
5354 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5355 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5356 prev_user_channel_id, forward_info: PendingHTLCInfo {
5357 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5358 skimmed_fee_msat, ..
5361 let blinded_failure = routing.blinded_failure();
5362 let (cltv_expiry, onion_payload, payment_data, payment_context, phantom_shared_secret, mut onion_fields) = match routing {
5363 PendingHTLCRouting::Receive {
5364 payment_data, payment_metadata, payment_context,
5365 incoming_cltv_expiry, phantom_shared_secret, custom_tlvs,
5366 requires_blinded_error: _
5368 let _legacy_hop_data = Some(payment_data.clone());
5369 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5370 payment_metadata, custom_tlvs };
5371 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
5372 Some(payment_data), payment_context, phantom_shared_secret, onion_fields)
5374 PendingHTLCRouting::ReceiveKeysend {
5375 payment_data, payment_preimage, payment_metadata,
5376 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5378 let onion_fields = RecipientOnionFields {
5379 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5383 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5384 payment_data, None, None, onion_fields)
5387 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5390 let claimable_htlc = ClaimableHTLC {
5391 prev_hop: HTLCPreviousHopData {
5392 short_channel_id: prev_short_channel_id,
5393 user_channel_id: Some(prev_user_channel_id),
5394 channel_id: prev_channel_id,
5395 outpoint: prev_funding_outpoint,
5396 htlc_id: prev_htlc_id,
5397 incoming_packet_shared_secret: incoming_shared_secret,
5398 phantom_shared_secret,
5401 // We differentiate the received value from the sender intended value
5402 // if possible so that we don't prematurely mark MPP payments complete
5403 // if routing nodes overpay
5404 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5405 sender_intended_value: outgoing_amt_msat,
5407 total_value_received: None,
5408 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5411 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5414 let mut committed_to_claimable = false;
5416 macro_rules! fail_htlc {
5417 ($htlc: expr, $payment_hash: expr) => {
5418 debug_assert!(!committed_to_claimable);
5419 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5420 htlc_msat_height_data.extend_from_slice(
5421 &self.best_block.read().unwrap().height.to_be_bytes(),
5423 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5424 short_channel_id: $htlc.prev_hop.short_channel_id,
5425 user_channel_id: $htlc.prev_hop.user_channel_id,
5426 channel_id: prev_channel_id,
5427 outpoint: prev_funding_outpoint,
5428 htlc_id: $htlc.prev_hop.htlc_id,
5429 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5430 phantom_shared_secret,
5433 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5434 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5436 continue 'next_forwardable_htlc;
5439 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5440 let mut receiver_node_id = self.our_network_pubkey;
5441 if phantom_shared_secret.is_some() {
5442 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5443 .expect("Failed to get node_id for phantom node recipient");
5446 macro_rules! check_total_value {
5447 ($purpose: expr) => {{
5448 let mut payment_claimable_generated = false;
5449 let is_keysend = $purpose.is_keysend();
5450 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5451 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5452 fail_htlc!(claimable_htlc, payment_hash);
5454 let ref mut claimable_payment = claimable_payments.claimable_payments
5455 .entry(payment_hash)
5456 // Note that if we insert here we MUST NOT fail_htlc!()
5457 .or_insert_with(|| {
5458 committed_to_claimable = true;
5460 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5463 if $purpose != claimable_payment.purpose {
5464 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5465 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5466 fail_htlc!(claimable_htlc, payment_hash);
5468 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5469 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5470 fail_htlc!(claimable_htlc, payment_hash);
5472 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5473 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5474 fail_htlc!(claimable_htlc, payment_hash);
5477 claimable_payment.onion_fields = Some(onion_fields);
5479 let ref mut htlcs = &mut claimable_payment.htlcs;
5480 let mut total_value = claimable_htlc.sender_intended_value;
5481 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5482 for htlc in htlcs.iter() {
5483 total_value += htlc.sender_intended_value;
5484 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5485 if htlc.total_msat != claimable_htlc.total_msat {
5486 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5487 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5488 total_value = msgs::MAX_VALUE_MSAT;
5490 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5492 // The condition determining whether an MPP is complete must
5493 // match exactly the condition used in `timer_tick_occurred`
5494 if total_value >= msgs::MAX_VALUE_MSAT {
5495 fail_htlc!(claimable_htlc, payment_hash);
5496 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5497 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5499 fail_htlc!(claimable_htlc, payment_hash);
5500 } else if total_value >= claimable_htlc.total_msat {
5501 #[allow(unused_assignments)] {
5502 committed_to_claimable = true;
5504 htlcs.push(claimable_htlc);
5505 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5506 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5507 let counterparty_skimmed_fee_msat = htlcs.iter()
5508 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5509 debug_assert!(total_value.saturating_sub(amount_msat) <=
5510 counterparty_skimmed_fee_msat);
5511 new_events.push_back((events::Event::PaymentClaimable {
5512 receiver_node_id: Some(receiver_node_id),
5516 counterparty_skimmed_fee_msat,
5517 via_channel_id: Some(prev_channel_id),
5518 via_user_channel_id: Some(prev_user_channel_id),
5519 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5520 onion_fields: claimable_payment.onion_fields.clone(),
5522 payment_claimable_generated = true;
5524 // Nothing to do - we haven't reached the total
5525 // payment value yet, wait until we receive more
5527 htlcs.push(claimable_htlc);
5528 #[allow(unused_assignments)] {
5529 committed_to_claimable = true;
5532 payment_claimable_generated
5536 // Check that the payment hash and secret are known. Note that we
5537 // MUST take care to handle the "unknown payment hash" and
5538 // "incorrect payment secret" cases here identically or we'd expose
5539 // that we are the ultimate recipient of the given payment hash.
5540 // Further, we must not expose whether we have any other HTLCs
5541 // associated with the same payment_hash pending or not.
5542 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5543 match payment_secrets.entry(payment_hash) {
5544 hash_map::Entry::Vacant(_) => {
5545 match claimable_htlc.onion_payload {
5546 OnionPayload::Invoice { .. } => {
5547 let payment_data = payment_data.unwrap();
5548 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5549 Ok(result) => result,
5551 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5552 fail_htlc!(claimable_htlc, payment_hash);
5555 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5556 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5557 if (cltv_expiry as u64) < expected_min_expiry_height {
5558 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5559 &payment_hash, cltv_expiry, expected_min_expiry_height);
5560 fail_htlc!(claimable_htlc, payment_hash);
5563 let purpose = events::PaymentPurpose::from_parts(
5565 payment_data.payment_secret,
5568 check_total_value!(purpose);
5570 OnionPayload::Spontaneous(preimage) => {
5571 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5572 check_total_value!(purpose);
5576 hash_map::Entry::Occupied(inbound_payment) => {
5577 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
5578 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5579 fail_htlc!(claimable_htlc, payment_hash);
5581 let payment_data = payment_data.unwrap();
5582 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5583 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5584 fail_htlc!(claimable_htlc, payment_hash);
5585 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5586 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5587 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5588 fail_htlc!(claimable_htlc, payment_hash);
5590 let purpose = events::PaymentPurpose::from_parts(
5591 inbound_payment.get().payment_preimage,
5592 payment_data.payment_secret,
5595 let payment_claimable_generated = check_total_value!(purpose);
5596 if payment_claimable_generated {
5597 inbound_payment.remove_entry();
5603 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5604 panic!("Got pending fail of our own HTLC");
5612 let best_block_height = self.best_block.read().unwrap().height;
5613 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5614 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5615 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5617 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5618 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5620 self.forward_htlcs(&mut phantom_receives);
5622 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5623 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5624 // nice to do the work now if we can rather than while we're trying to get messages in the
5626 self.check_free_holding_cells();
5628 if new_events.is_empty() { return }
5629 let mut events = self.pending_events.lock().unwrap();
5630 events.append(&mut new_events);
5633 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5635 /// Expects the caller to have a total_consistency_lock read lock.
5636 fn process_background_events(&self) -> NotifyOption {
5637 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5639 self.background_events_processed_since_startup.store(true, Ordering::Release);
5641 let mut background_events = Vec::new();
5642 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5643 if background_events.is_empty() {
5644 return NotifyOption::SkipPersistNoEvents;
5647 for event in background_events.drain(..) {
5649 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5650 // The channel has already been closed, so no use bothering to care about the
5651 // monitor updating completing.
5652 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5654 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5655 let mut updated_chan = false;
5657 let per_peer_state = self.per_peer_state.read().unwrap();
5658 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5659 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5660 let peer_state = &mut *peer_state_lock;
5661 match peer_state.channel_by_id.entry(channel_id) {
5662 hash_map::Entry::Occupied(mut chan_phase) => {
5663 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5664 updated_chan = true;
5665 handle_new_monitor_update!(self, funding_txo, update.clone(),
5666 peer_state_lock, peer_state, per_peer_state, chan);
5668 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5671 hash_map::Entry::Vacant(_) => {},
5676 // TODO: Track this as in-flight even though the channel is closed.
5677 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5680 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5681 let per_peer_state = self.per_peer_state.read().unwrap();
5682 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5683 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5684 let peer_state = &mut *peer_state_lock;
5685 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5686 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5688 let update_actions = peer_state.monitor_update_blocked_actions
5689 .remove(&channel_id).unwrap_or(Vec::new());
5690 mem::drop(peer_state_lock);
5691 mem::drop(per_peer_state);
5692 self.handle_monitor_update_completion_actions(update_actions);
5698 NotifyOption::DoPersist
5701 #[cfg(any(test, feature = "_test_utils"))]
5702 /// Process background events, for functional testing
5703 pub fn test_process_background_events(&self) {
5704 let _lck = self.total_consistency_lock.read().unwrap();
5705 let _ = self.process_background_events();
5708 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5709 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5711 let logger = WithChannelContext::from(&self.logger, &chan.context);
5713 // If the feerate has decreased by less than half, don't bother
5714 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5715 return NotifyOption::SkipPersistNoEvents;
5717 if !chan.context.is_live() {
5718 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5719 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5720 return NotifyOption::SkipPersistNoEvents;
5722 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5723 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5725 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5726 NotifyOption::DoPersist
5730 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5731 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5732 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5733 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5734 pub fn maybe_update_chan_fees(&self) {
5735 PersistenceNotifierGuard::optionally_notify(self, || {
5736 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5738 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5739 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5741 let per_peer_state = self.per_peer_state.read().unwrap();
5742 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5743 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5744 let peer_state = &mut *peer_state_lock;
5745 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5746 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5748 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5753 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5754 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5762 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5764 /// This currently includes:
5765 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5766 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5767 /// than a minute, informing the network that they should no longer attempt to route over
5769 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5770 /// with the current [`ChannelConfig`].
5771 /// * Removing peers which have disconnected but and no longer have any channels.
5772 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5773 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5774 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5775 /// The latter is determined using the system clock in `std` and the highest seen block time
5776 /// minus two hours in `no-std`.
5778 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5779 /// estimate fetches.
5781 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5782 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5783 pub fn timer_tick_occurred(&self) {
5784 PersistenceNotifierGuard::optionally_notify(self, || {
5785 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5787 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5788 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5790 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5791 let mut timed_out_mpp_htlcs = Vec::new();
5792 let mut pending_peers_awaiting_removal = Vec::new();
5793 let mut shutdown_channels = Vec::new();
5795 let mut process_unfunded_channel_tick = |
5796 chan_id: &ChannelId,
5797 context: &mut ChannelContext<SP>,
5798 unfunded_context: &mut UnfundedChannelContext,
5799 pending_msg_events: &mut Vec<MessageSendEvent>,
5800 counterparty_node_id: PublicKey,
5802 context.maybe_expire_prev_config();
5803 if unfunded_context.should_expire_unfunded_channel() {
5804 let logger = WithChannelContext::from(&self.logger, context);
5806 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5807 update_maps_on_chan_removal!(self, &context);
5808 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5809 pending_msg_events.push(MessageSendEvent::HandleError {
5810 node_id: counterparty_node_id,
5811 action: msgs::ErrorAction::SendErrorMessage {
5812 msg: msgs::ErrorMessage {
5813 channel_id: *chan_id,
5814 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5825 let per_peer_state = self.per_peer_state.read().unwrap();
5826 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5827 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5828 let peer_state = &mut *peer_state_lock;
5829 let pending_msg_events = &mut peer_state.pending_msg_events;
5830 let counterparty_node_id = *counterparty_node_id;
5831 peer_state.channel_by_id.retain(|chan_id, phase| {
5833 ChannelPhase::Funded(chan) => {
5834 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5839 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5840 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5842 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5843 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5844 handle_errors.push((Err(err), counterparty_node_id));
5845 if needs_close { return false; }
5848 match chan.channel_update_status() {
5849 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5850 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5851 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5852 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5853 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5854 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5855 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5857 if n >= DISABLE_GOSSIP_TICKS {
5858 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5859 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5860 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5861 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5865 should_persist = NotifyOption::DoPersist;
5867 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5870 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5872 if n >= ENABLE_GOSSIP_TICKS {
5873 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5874 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5875 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5876 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5880 should_persist = NotifyOption::DoPersist;
5882 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5888 chan.context.maybe_expire_prev_config();
5890 if chan.should_disconnect_peer_awaiting_response() {
5891 let logger = WithChannelContext::from(&self.logger, &chan.context);
5892 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5893 counterparty_node_id, chan_id);
5894 pending_msg_events.push(MessageSendEvent::HandleError {
5895 node_id: counterparty_node_id,
5896 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5897 msg: msgs::WarningMessage {
5898 channel_id: *chan_id,
5899 data: "Disconnecting due to timeout awaiting response".to_owned(),
5907 ChannelPhase::UnfundedInboundV1(chan) => {
5908 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5909 pending_msg_events, counterparty_node_id)
5911 ChannelPhase::UnfundedOutboundV1(chan) => {
5912 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5913 pending_msg_events, counterparty_node_id)
5915 #[cfg(any(dual_funding, splicing))]
5916 ChannelPhase::UnfundedInboundV2(chan) => {
5917 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5918 pending_msg_events, counterparty_node_id)
5920 #[cfg(any(dual_funding, splicing))]
5921 ChannelPhase::UnfundedOutboundV2(chan) => {
5922 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5923 pending_msg_events, counterparty_node_id)
5928 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5929 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5930 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5931 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5932 peer_state.pending_msg_events.push(
5933 events::MessageSendEvent::HandleError {
5934 node_id: counterparty_node_id,
5935 action: msgs::ErrorAction::SendErrorMessage {
5936 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5942 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5944 if peer_state.ok_to_remove(true) {
5945 pending_peers_awaiting_removal.push(counterparty_node_id);
5950 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5951 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5952 // of to that peer is later closed while still being disconnected (i.e. force closed),
5953 // we therefore need to remove the peer from `peer_state` separately.
5954 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5955 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5956 // negative effects on parallelism as much as possible.
5957 if pending_peers_awaiting_removal.len() > 0 {
5958 let mut per_peer_state = self.per_peer_state.write().unwrap();
5959 for counterparty_node_id in pending_peers_awaiting_removal {
5960 match per_peer_state.entry(counterparty_node_id) {
5961 hash_map::Entry::Occupied(entry) => {
5962 // Remove the entry if the peer is still disconnected and we still
5963 // have no channels to the peer.
5964 let remove_entry = {
5965 let peer_state = entry.get().lock().unwrap();
5966 peer_state.ok_to_remove(true)
5969 entry.remove_entry();
5972 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5977 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5978 if payment.htlcs.is_empty() {
5979 // This should be unreachable
5980 debug_assert!(false);
5983 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5984 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5985 // In this case we're not going to handle any timeouts of the parts here.
5986 // This condition determining whether the MPP is complete here must match
5987 // exactly the condition used in `process_pending_htlc_forwards`.
5988 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5989 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5992 } else if payment.htlcs.iter_mut().any(|htlc| {
5993 htlc.timer_ticks += 1;
5994 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5996 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5997 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
6004 for htlc_source in timed_out_mpp_htlcs.drain(..) {
6005 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
6006 let reason = HTLCFailReason::from_failure_code(23);
6007 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
6008 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
6011 for (err, counterparty_node_id) in handle_errors.drain(..) {
6012 let _ = handle_error!(self, err, counterparty_node_id);
6015 for shutdown_res in shutdown_channels {
6016 self.finish_close_channel(shutdown_res);
6019 #[cfg(feature = "std")]
6020 let duration_since_epoch = std::time::SystemTime::now()
6021 .duration_since(std::time::SystemTime::UNIX_EPOCH)
6022 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
6023 #[cfg(not(feature = "std"))]
6024 let duration_since_epoch = Duration::from_secs(
6025 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6028 self.pending_outbound_payments.remove_stale_payments(
6029 duration_since_epoch, &self.pending_events
6032 // Technically we don't need to do this here, but if we have holding cell entries in a
6033 // channel that need freeing, it's better to do that here and block a background task
6034 // than block the message queueing pipeline.
6035 if self.check_free_holding_cells() {
6036 should_persist = NotifyOption::DoPersist;
6043 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6044 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6045 /// along the path (including in our own channel on which we received it).
6047 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6048 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6049 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6050 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6052 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6053 /// [`ChannelManager::claim_funds`]), you should still monitor for
6054 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6055 /// startup during which time claims that were in-progress at shutdown may be replayed.
6056 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6057 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6060 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6061 /// reason for the failure.
6063 /// See [`FailureCode`] for valid failure codes.
6064 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6065 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6067 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6068 if let Some(payment) = removed_source {
6069 for htlc in payment.htlcs {
6070 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6071 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6072 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6073 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6078 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6079 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6080 match failure_code {
6081 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6082 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6083 FailureCode::IncorrectOrUnknownPaymentDetails => {
6084 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6085 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6086 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6088 FailureCode::InvalidOnionPayload(data) => {
6089 let fail_data = match data {
6090 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6093 HTLCFailReason::reason(failure_code.into(), fail_data)
6098 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6099 /// that we want to return and a channel.
6101 /// This is for failures on the channel on which the HTLC was *received*, not failures
6103 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6104 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6105 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6106 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6107 // an inbound SCID alias before the real SCID.
6108 let scid_pref = if chan.context.should_announce() {
6109 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6111 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6113 if let Some(scid) = scid_pref {
6114 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6116 (0x4000|10, Vec::new())
6121 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6122 /// that we want to return and a channel.
6123 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6124 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6125 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6126 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6127 if desired_err_code == 0x1000 | 20 {
6128 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6129 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6130 0u16.write(&mut enc).expect("Writes cannot fail");
6132 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6133 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6134 upd.write(&mut enc).expect("Writes cannot fail");
6135 (desired_err_code, enc.0)
6137 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6138 // which means we really shouldn't have gotten a payment to be forwarded over this
6139 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6140 // PERM|no_such_channel should be fine.
6141 (0x4000|10, Vec::new())
6145 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6146 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6147 // be surfaced to the user.
6148 fn fail_holding_cell_htlcs(
6149 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6150 counterparty_node_id: &PublicKey
6152 let (failure_code, onion_failure_data) = {
6153 let per_peer_state = self.per_peer_state.read().unwrap();
6154 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6155 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6156 let peer_state = &mut *peer_state_lock;
6157 match peer_state.channel_by_id.entry(channel_id) {
6158 hash_map::Entry::Occupied(chan_phase_entry) => {
6159 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6160 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6162 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6163 debug_assert!(false);
6164 (0x4000|10, Vec::new())
6167 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6169 } else { (0x4000|10, Vec::new()) }
6172 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6173 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6174 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6175 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6179 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6180 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6181 if push_forward_event { self.push_pending_forwards_ev(); }
6184 /// Fails an HTLC backwards to the sender of it to us.
6185 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6186 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6187 // Ensure that no peer state channel storage lock is held when calling this function.
6188 // This ensures that future code doesn't introduce a lock-order requirement for
6189 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6190 // this function with any `per_peer_state` peer lock acquired would.
6191 #[cfg(debug_assertions)]
6192 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6193 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6196 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6197 //identify whether we sent it or not based on the (I presume) very different runtime
6198 //between the branches here. We should make this async and move it into the forward HTLCs
6201 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6202 // from block_connected which may run during initialization prior to the chain_monitor
6203 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6204 let mut push_forward_event;
6206 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6207 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6208 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6209 &self.pending_events, &self.logger);
6211 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6212 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6213 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6216 WithContext::from(&self.logger, None, Some(*channel_id)),
6217 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6218 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6220 let failure = match blinded_failure {
6221 Some(BlindedFailure::FromIntroductionNode) => {
6222 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6223 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6224 incoming_packet_shared_secret, phantom_shared_secret
6226 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6228 Some(BlindedFailure::FromBlindedNode) => {
6229 HTLCForwardInfo::FailMalformedHTLC {
6231 failure_code: INVALID_ONION_BLINDING,
6232 sha256_of_onion: [0; 32]
6236 let err_packet = onion_error.get_encrypted_failure_packet(
6237 incoming_packet_shared_secret, phantom_shared_secret
6239 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6243 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6244 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6245 push_forward_event &= forward_htlcs.is_empty();
6246 match forward_htlcs.entry(*short_channel_id) {
6247 hash_map::Entry::Occupied(mut entry) => {
6248 entry.get_mut().push(failure);
6250 hash_map::Entry::Vacant(entry) => {
6251 entry.insert(vec!(failure));
6254 mem::drop(forward_htlcs);
6255 let mut pending_events = self.pending_events.lock().unwrap();
6256 pending_events.push_back((events::Event::HTLCHandlingFailed {
6257 prev_channel_id: *channel_id,
6258 failed_next_destination: destination,
6265 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6266 /// [`MessageSendEvent`]s needed to claim the payment.
6268 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6269 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6270 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6271 /// successful. It will generally be available in the next [`process_pending_events`] call.
6273 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6274 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6275 /// event matches your expectation. If you fail to do so and call this method, you may provide
6276 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6278 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6279 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6280 /// [`claim_funds_with_known_custom_tlvs`].
6282 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6283 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6284 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6285 /// [`process_pending_events`]: EventsProvider::process_pending_events
6286 /// [`create_inbound_payment`]: Self::create_inbound_payment
6287 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6288 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6289 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6290 self.claim_payment_internal(payment_preimage, false);
6293 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6294 /// even type numbers.
6298 /// You MUST check you've understood all even TLVs before using this to
6299 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6301 /// [`claim_funds`]: Self::claim_funds
6302 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6303 self.claim_payment_internal(payment_preimage, true);
6306 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6307 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6309 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6312 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6313 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6314 let mut receiver_node_id = self.our_network_pubkey;
6315 for htlc in payment.htlcs.iter() {
6316 if htlc.prev_hop.phantom_shared_secret.is_some() {
6317 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6318 .expect("Failed to get node_id for phantom node recipient");
6319 receiver_node_id = phantom_pubkey;
6324 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6325 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6326 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6327 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6328 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6330 if dup_purpose.is_some() {
6331 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6332 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6336 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6337 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6338 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6339 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6340 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6341 mem::drop(claimable_payments);
6342 for htlc in payment.htlcs {
6343 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6344 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6345 let receiver = HTLCDestination::FailedPayment { payment_hash };
6346 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6355 debug_assert!(!sources.is_empty());
6357 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6358 // and when we got here we need to check that the amount we're about to claim matches the
6359 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6360 // the MPP parts all have the same `total_msat`.
6361 let mut claimable_amt_msat = 0;
6362 let mut prev_total_msat = None;
6363 let mut expected_amt_msat = None;
6364 let mut valid_mpp = true;
6365 let mut errs = Vec::new();
6366 let per_peer_state = self.per_peer_state.read().unwrap();
6367 for htlc in sources.iter() {
6368 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6369 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6370 debug_assert!(false);
6374 prev_total_msat = Some(htlc.total_msat);
6376 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6377 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6378 debug_assert!(false);
6382 expected_amt_msat = htlc.total_value_received;
6383 claimable_amt_msat += htlc.value;
6385 mem::drop(per_peer_state);
6386 if sources.is_empty() || expected_amt_msat.is_none() {
6387 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6388 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6391 if claimable_amt_msat != expected_amt_msat.unwrap() {
6392 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6393 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6394 expected_amt_msat.unwrap(), claimable_amt_msat);
6398 for htlc in sources.drain(..) {
6399 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6400 if let Err((pk, err)) = self.claim_funds_from_hop(
6401 htlc.prev_hop, payment_preimage,
6402 |_, definitely_duplicate| {
6403 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6404 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6407 if let msgs::ErrorAction::IgnoreError = err.err.action {
6408 // We got a temporary failure updating monitor, but will claim the
6409 // HTLC when the monitor updating is restored (or on chain).
6410 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6411 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6412 } else { errs.push((pk, err)); }
6417 for htlc in sources.drain(..) {
6418 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6419 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6420 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6421 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6422 let receiver = HTLCDestination::FailedPayment { payment_hash };
6423 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6425 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6428 // Now we can handle any errors which were generated.
6429 for (counterparty_node_id, err) in errs.drain(..) {
6430 let res: Result<(), _> = Err(err);
6431 let _ = handle_error!(self, res, counterparty_node_id);
6435 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6436 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6437 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6438 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6440 // If we haven't yet run background events assume we're still deserializing and shouldn't
6441 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6442 // `BackgroundEvent`s.
6443 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6445 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6446 // the required mutexes are not held before we start.
6447 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6448 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6451 let per_peer_state = self.per_peer_state.read().unwrap();
6452 let chan_id = prev_hop.channel_id;
6453 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6454 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6458 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6459 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6460 .map(|peer_mutex| peer_mutex.lock().unwrap())
6463 if peer_state_opt.is_some() {
6464 let mut peer_state_lock = peer_state_opt.unwrap();
6465 let peer_state = &mut *peer_state_lock;
6466 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6467 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6468 let counterparty_node_id = chan.context.get_counterparty_node_id();
6469 let logger = WithChannelContext::from(&self.logger, &chan.context);
6470 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6473 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6474 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6475 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6477 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6480 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6481 peer_state, per_peer_state, chan);
6483 // If we're running during init we cannot update a monitor directly -
6484 // they probably haven't actually been loaded yet. Instead, push the
6485 // monitor update as a background event.
6486 self.pending_background_events.lock().unwrap().push(
6487 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6488 counterparty_node_id,
6489 funding_txo: prev_hop.outpoint,
6490 channel_id: prev_hop.channel_id,
6491 update: monitor_update.clone(),
6495 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6496 let action = if let Some(action) = completion_action(None, true) {
6501 mem::drop(peer_state_lock);
6503 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6505 let (node_id, _funding_outpoint, channel_id, blocker) =
6506 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6507 downstream_counterparty_node_id: node_id,
6508 downstream_funding_outpoint: funding_outpoint,
6509 blocking_action: blocker, downstream_channel_id: channel_id,
6511 (node_id, funding_outpoint, channel_id, blocker)
6513 debug_assert!(false,
6514 "Duplicate claims should always free another channel immediately");
6517 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6518 let mut peer_state = peer_state_mtx.lock().unwrap();
6519 if let Some(blockers) = peer_state
6520 .actions_blocking_raa_monitor_updates
6521 .get_mut(&channel_id)
6523 let mut found_blocker = false;
6524 blockers.retain(|iter| {
6525 // Note that we could actually be blocked, in
6526 // which case we need to only remove the one
6527 // blocker which was added duplicatively.
6528 let first_blocker = !found_blocker;
6529 if *iter == blocker { found_blocker = true; }
6530 *iter != blocker || !first_blocker
6532 debug_assert!(found_blocker);
6535 debug_assert!(false);
6544 let preimage_update = ChannelMonitorUpdate {
6545 update_id: CLOSED_CHANNEL_UPDATE_ID,
6546 counterparty_node_id: None,
6547 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6550 channel_id: Some(prev_hop.channel_id),
6554 // We update the ChannelMonitor on the backward link, after
6555 // receiving an `update_fulfill_htlc` from the forward link.
6556 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6557 if update_res != ChannelMonitorUpdateStatus::Completed {
6558 // TODO: This needs to be handled somehow - if we receive a monitor update
6559 // with a preimage we *must* somehow manage to propagate it to the upstream
6560 // channel, or we must have an ability to receive the same event and try
6561 // again on restart.
6562 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6563 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6564 payment_preimage, update_res);
6567 // If we're running during init we cannot update a monitor directly - they probably
6568 // haven't actually been loaded yet. Instead, push the monitor update as a background
6570 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6571 // channel is already closed) we need to ultimately handle the monitor update
6572 // completion action only after we've completed the monitor update. This is the only
6573 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6574 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6575 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6576 // complete the monitor update completion action from `completion_action`.
6577 self.pending_background_events.lock().unwrap().push(
6578 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6579 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6582 // Note that we do process the completion action here. This totally could be a
6583 // duplicate claim, but we have no way of knowing without interrogating the
6584 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6585 // generally always allowed to be duplicative (and it's specifically noted in
6586 // `PaymentForwarded`).
6587 self.handle_monitor_update_completion_actions(completion_action(None, false));
6591 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6592 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6595 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6596 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6597 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6598 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6601 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6602 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6603 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6604 if let Some(pubkey) = next_channel_counterparty_node_id {
6605 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6607 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6608 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6609 counterparty_node_id: path.hops[0].pubkey,
6611 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6612 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6615 HTLCSource::PreviousHopData(hop_data) => {
6616 let prev_channel_id = hop_data.channel_id;
6617 let prev_user_channel_id = hop_data.user_channel_id;
6618 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6619 #[cfg(debug_assertions)]
6620 let claiming_chan_funding_outpoint = hop_data.outpoint;
6621 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6622 |htlc_claim_value_msat, definitely_duplicate| {
6623 let chan_to_release =
6624 if let Some(node_id) = next_channel_counterparty_node_id {
6625 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6627 // We can only get `None` here if we are processing a
6628 // `ChannelMonitor`-originated event, in which case we
6629 // don't care about ensuring we wake the downstream
6630 // channel's monitor updating - the channel is already
6635 if definitely_duplicate && startup_replay {
6636 // On startup we may get redundant claims which are related to
6637 // monitor updates still in flight. In that case, we shouldn't
6638 // immediately free, but instead let that monitor update complete
6639 // in the background.
6640 #[cfg(debug_assertions)] {
6641 let background_events = self.pending_background_events.lock().unwrap();
6642 // There should be a `BackgroundEvent` pending...
6643 assert!(background_events.iter().any(|ev| {
6645 // to apply a monitor update that blocked the claiming channel,
6646 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6647 funding_txo, update, ..
6649 if *funding_txo == claiming_chan_funding_outpoint {
6650 assert!(update.updates.iter().any(|upd|
6651 if let ChannelMonitorUpdateStep::PaymentPreimage {
6652 payment_preimage: update_preimage
6654 payment_preimage == *update_preimage
6660 // or the channel we'd unblock is already closed,
6661 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6662 (funding_txo, _channel_id, monitor_update)
6664 if *funding_txo == next_channel_outpoint {
6665 assert_eq!(monitor_update.updates.len(), 1);
6667 monitor_update.updates[0],
6668 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6673 // or the monitor update has completed and will unblock
6674 // immediately once we get going.
6675 BackgroundEvent::MonitorUpdatesComplete {
6678 *channel_id == prev_channel_id,
6680 }), "{:?}", *background_events);
6683 } else if definitely_duplicate {
6684 if let Some(other_chan) = chan_to_release {
6685 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6686 downstream_counterparty_node_id: other_chan.0,
6687 downstream_funding_outpoint: other_chan.1,
6688 downstream_channel_id: other_chan.2,
6689 blocking_action: other_chan.3,
6693 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6694 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6695 Some(claimed_htlc_value - forwarded_htlc_value)
6698 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6699 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6700 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6701 event: events::Event::PaymentForwarded {
6702 prev_channel_id: Some(prev_channel_id),
6703 next_channel_id: Some(next_channel_id),
6704 prev_user_channel_id,
6705 next_user_channel_id,
6706 total_fee_earned_msat,
6708 claim_from_onchain_tx: from_onchain,
6709 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6711 downstream_counterparty_and_funding_outpoint: chan_to_release,
6715 if let Err((pk, err)) = res {
6716 let result: Result<(), _> = Err(err);
6717 let _ = handle_error!(self, result, pk);
6723 /// Gets the node_id held by this ChannelManager
6724 pub fn get_our_node_id(&self) -> PublicKey {
6725 self.our_network_pubkey.clone()
6728 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6729 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6730 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6731 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6733 for action in actions.into_iter() {
6735 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6736 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6737 if let Some(ClaimingPayment {
6739 payment_purpose: purpose,
6742 sender_intended_value: sender_intended_total_msat,
6744 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6748 receiver_node_id: Some(receiver_node_id),
6750 sender_intended_total_msat,
6754 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6755 event, downstream_counterparty_and_funding_outpoint
6757 self.pending_events.lock().unwrap().push_back((event, None));
6758 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6759 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6762 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6763 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6765 self.handle_monitor_update_release(
6766 downstream_counterparty_node_id,
6767 downstream_funding_outpoint,
6768 downstream_channel_id,
6769 Some(blocking_action),
6776 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6777 /// update completion.
6778 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6779 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6780 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6781 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6782 funding_broadcastable: Option<Transaction>,
6783 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6784 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6785 let logger = WithChannelContext::from(&self.logger, &channel.context);
6786 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6787 &channel.context.channel_id(),
6788 if raa.is_some() { "an" } else { "no" },
6789 if commitment_update.is_some() { "a" } else { "no" },
6790 pending_forwards.len(), pending_update_adds.len(),
6791 if funding_broadcastable.is_some() { "" } else { "not " },
6792 if channel_ready.is_some() { "sending" } else { "without" },
6793 if announcement_sigs.is_some() { "sending" } else { "without" });
6795 let counterparty_node_id = channel.context.get_counterparty_node_id();
6796 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6798 let mut htlc_forwards = None;
6799 if !pending_forwards.is_empty() {
6800 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6801 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6803 let mut decode_update_add_htlcs = None;
6804 if !pending_update_adds.is_empty() {
6805 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6808 if let Some(msg) = channel_ready {
6809 send_channel_ready!(self, pending_msg_events, channel, msg);
6811 if let Some(msg) = announcement_sigs {
6812 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6813 node_id: counterparty_node_id,
6818 macro_rules! handle_cs { () => {
6819 if let Some(update) = commitment_update {
6820 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6821 node_id: counterparty_node_id,
6826 macro_rules! handle_raa { () => {
6827 if let Some(revoke_and_ack) = raa {
6828 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6829 node_id: counterparty_node_id,
6830 msg: revoke_and_ack,
6835 RAACommitmentOrder::CommitmentFirst => {
6839 RAACommitmentOrder::RevokeAndACKFirst => {
6845 if let Some(tx) = funding_broadcastable {
6846 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6847 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6851 let mut pending_events = self.pending_events.lock().unwrap();
6852 emit_channel_pending_event!(pending_events, channel);
6853 emit_channel_ready_event!(pending_events, channel);
6856 (htlc_forwards, decode_update_add_htlcs)
6859 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6860 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6862 let counterparty_node_id = match counterparty_node_id {
6863 Some(cp_id) => cp_id.clone(),
6865 // TODO: Once we can rely on the counterparty_node_id from the
6866 // monitor event, this and the outpoint_to_peer map should be removed.
6867 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6868 match outpoint_to_peer.get(funding_txo) {
6869 Some(cp_id) => cp_id.clone(),
6874 let per_peer_state = self.per_peer_state.read().unwrap();
6875 let mut peer_state_lock;
6876 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6877 if peer_state_mutex_opt.is_none() { return }
6878 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6879 let peer_state = &mut *peer_state_lock;
6881 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6884 let update_actions = peer_state.monitor_update_blocked_actions
6885 .remove(&channel_id).unwrap_or(Vec::new());
6886 mem::drop(peer_state_lock);
6887 mem::drop(per_peer_state);
6888 self.handle_monitor_update_completion_actions(update_actions);
6891 let remaining_in_flight =
6892 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6893 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6896 let logger = WithChannelContext::from(&self.logger, &channel.context);
6897 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6898 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6899 remaining_in_flight);
6900 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6903 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6906 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6908 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6909 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6912 /// The `user_channel_id` parameter will be provided back in
6913 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6914 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6916 /// Note that this method will return an error and reject the channel, if it requires support
6917 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6918 /// used to accept such channels.
6920 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6921 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6922 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6923 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6926 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6927 /// it as confirmed immediately.
6929 /// The `user_channel_id` parameter will be provided back in
6930 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6931 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6933 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6934 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6936 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6937 /// transaction and blindly assumes that it will eventually confirm.
6939 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6940 /// does not pay to the correct script the correct amount, *you will lose funds*.
6942 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6943 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6944 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6945 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6948 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6950 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6951 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6953 let peers_without_funded_channels =
6954 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6955 let per_peer_state = self.per_peer_state.read().unwrap();
6956 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6958 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6959 log_error!(logger, "{}", err_str);
6961 APIError::ChannelUnavailable { err: err_str }
6963 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6964 let peer_state = &mut *peer_state_lock;
6965 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6967 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6968 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6969 // that we can delay allocating the SCID until after we're sure that the checks below will
6971 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6972 Some(unaccepted_channel) => {
6973 let best_block_height = self.best_block.read().unwrap().height;
6974 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6975 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6976 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6977 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6980 let err_str = "No such channel awaiting to be accepted.".to_owned();
6981 log_error!(logger, "{}", err_str);
6983 return Err(APIError::APIMisuseError { err: err_str });
6989 mem::drop(peer_state_lock);
6990 mem::drop(per_peer_state);
6991 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6992 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6994 return Err(APIError::ChannelUnavailable { err: e.err });
6998 Ok(mut channel) => {
7000 // This should have been correctly configured by the call to InboundV1Channel::new.
7001 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
7002 } else if channel.context.get_channel_type().requires_zero_conf() {
7003 let send_msg_err_event = events::MessageSendEvent::HandleError {
7004 node_id: channel.context.get_counterparty_node_id(),
7005 action: msgs::ErrorAction::SendErrorMessage{
7006 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
7009 peer_state.pending_msg_events.push(send_msg_err_event);
7010 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
7011 log_error!(logger, "{}", err_str);
7013 return Err(APIError::APIMisuseError { err: err_str });
7015 // If this peer already has some channels, a new channel won't increase our number of peers
7016 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7017 // channels per-peer we can accept channels from a peer with existing ones.
7018 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
7019 let send_msg_err_event = events::MessageSendEvent::HandleError {
7020 node_id: channel.context.get_counterparty_node_id(),
7021 action: msgs::ErrorAction::SendErrorMessage{
7022 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7025 peer_state.pending_msg_events.push(send_msg_err_event);
7026 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7027 log_error!(logger, "{}", err_str);
7029 return Err(APIError::APIMisuseError { err: err_str });
7033 // Now that we know we have a channel, assign an outbound SCID alias.
7034 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7035 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7037 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7038 node_id: channel.context.get_counterparty_node_id(),
7039 msg: channel.accept_inbound_channel(),
7042 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7049 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7050 /// or 0-conf channels.
7052 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7053 /// non-0-conf channels we have with the peer.
7054 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7055 where Filter: Fn(&PeerState<SP>) -> bool {
7056 let mut peers_without_funded_channels = 0;
7057 let best_block_height = self.best_block.read().unwrap().height;
7059 let peer_state_lock = self.per_peer_state.read().unwrap();
7060 for (_, peer_mtx) in peer_state_lock.iter() {
7061 let peer = peer_mtx.lock().unwrap();
7062 if !maybe_count_peer(&*peer) { continue; }
7063 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7064 if num_unfunded_channels == peer.total_channel_count() {
7065 peers_without_funded_channels += 1;
7069 return peers_without_funded_channels;
7072 fn unfunded_channel_count(
7073 peer: &PeerState<SP>, best_block_height: u32
7075 let mut num_unfunded_channels = 0;
7076 for (_, phase) in peer.channel_by_id.iter() {
7078 ChannelPhase::Funded(chan) => {
7079 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7080 // which have not yet had any confirmations on-chain.
7081 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7082 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7084 num_unfunded_channels += 1;
7087 ChannelPhase::UnfundedInboundV1(chan) => {
7088 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7089 num_unfunded_channels += 1;
7092 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7093 #[cfg(any(dual_funding, splicing))]
7094 ChannelPhase::UnfundedInboundV2(chan) => {
7095 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7096 // included in the unfunded count.
7097 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7098 chan.dual_funding_context.our_funding_satoshis == 0 {
7099 num_unfunded_channels += 1;
7102 ChannelPhase::UnfundedOutboundV1(_) => {
7103 // Outbound channels don't contribute to the unfunded count in the DoS context.
7106 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7107 #[cfg(any(dual_funding, splicing))]
7108 ChannelPhase::UnfundedOutboundV2(_) => {
7109 // Outbound channels don't contribute to the unfunded count in the DoS context.
7114 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7117 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7118 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7119 // likely to be lost on restart!
7120 if msg.common_fields.chain_hash != self.chain_hash {
7121 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7122 msg.common_fields.temporary_channel_id.clone()));
7125 if !self.default_configuration.accept_inbound_channels {
7126 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7127 msg.common_fields.temporary_channel_id.clone()));
7130 // Get the number of peers with channels, but without funded ones. We don't care too much
7131 // about peers that never open a channel, so we filter by peers that have at least one
7132 // channel, and then limit the number of those with unfunded channels.
7133 let channeled_peers_without_funding =
7134 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7136 let per_peer_state = self.per_peer_state.read().unwrap();
7137 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7139 debug_assert!(false);
7140 MsgHandleErrInternal::send_err_msg_no_close(
7141 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7142 msg.common_fields.temporary_channel_id.clone())
7144 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7145 let peer_state = &mut *peer_state_lock;
7147 // If this peer already has some channels, a new channel won't increase our number of peers
7148 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7149 // channels per-peer we can accept channels from a peer with existing ones.
7150 if peer_state.total_channel_count() == 0 &&
7151 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7152 !self.default_configuration.manually_accept_inbound_channels
7154 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7155 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7156 msg.common_fields.temporary_channel_id.clone()));
7159 let best_block_height = self.best_block.read().unwrap().height;
7160 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7161 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7162 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7163 msg.common_fields.temporary_channel_id.clone()));
7166 let channel_id = msg.common_fields.temporary_channel_id;
7167 let channel_exists = peer_state.has_channel(&channel_id);
7169 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7170 "temporary_channel_id collision for the same peer!".to_owned(),
7171 msg.common_fields.temporary_channel_id.clone()));
7174 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7175 if self.default_configuration.manually_accept_inbound_channels {
7176 let channel_type = channel::channel_type_from_open_channel(
7177 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7179 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7181 let mut pending_events = self.pending_events.lock().unwrap();
7182 pending_events.push_back((events::Event::OpenChannelRequest {
7183 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7184 counterparty_node_id: counterparty_node_id.clone(),
7185 funding_satoshis: msg.common_fields.funding_satoshis,
7186 push_msat: msg.push_msat,
7189 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7190 open_channel_msg: msg.clone(),
7191 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7196 // Otherwise create the channel right now.
7197 let mut random_bytes = [0u8; 16];
7198 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7199 let user_channel_id = u128::from_be_bytes(random_bytes);
7200 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7201 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7202 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7205 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7210 let channel_type = channel.context.get_channel_type();
7211 if channel_type.requires_zero_conf() {
7212 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7213 "No zero confirmation channels accepted".to_owned(),
7214 msg.common_fields.temporary_channel_id.clone()));
7216 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7217 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7218 "No channels with anchor outputs accepted".to_owned(),
7219 msg.common_fields.temporary_channel_id.clone()));
7222 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7223 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7225 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7226 node_id: counterparty_node_id.clone(),
7227 msg: channel.accept_inbound_channel(),
7229 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7233 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7234 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7235 // likely to be lost on restart!
7236 let (value, output_script, user_id) = {
7237 let per_peer_state = self.per_peer_state.read().unwrap();
7238 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7240 debug_assert!(false);
7241 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7243 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7244 let peer_state = &mut *peer_state_lock;
7245 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7246 hash_map::Entry::Occupied(mut phase) => {
7247 match phase.get_mut() {
7248 ChannelPhase::UnfundedOutboundV1(chan) => {
7249 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7250 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7253 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7257 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7260 let mut pending_events = self.pending_events.lock().unwrap();
7261 pending_events.push_back((events::Event::FundingGenerationReady {
7262 temporary_channel_id: msg.common_fields.temporary_channel_id,
7263 counterparty_node_id: *counterparty_node_id,
7264 channel_value_satoshis: value,
7266 user_channel_id: user_id,
7271 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7272 let best_block = *self.best_block.read().unwrap();
7274 let per_peer_state = self.per_peer_state.read().unwrap();
7275 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7277 debug_assert!(false);
7278 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7281 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7282 let peer_state = &mut *peer_state_lock;
7283 let (mut chan, funding_msg_opt, monitor) =
7284 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7285 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7286 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7287 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7289 Err((inbound_chan, err)) => {
7290 // We've already removed this inbound channel from the map in `PeerState`
7291 // above so at this point we just need to clean up any lingering entries
7292 // concerning this channel as it is safe to do so.
7293 debug_assert!(matches!(err, ChannelError::Close(_)));
7294 // Really we should be returning the channel_id the peer expects based
7295 // on their funding info here, but they're horribly confused anyway, so
7296 // there's not a lot we can do to save them.
7297 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7301 Some(mut phase) => {
7302 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7303 let err = ChannelError::Close(err_msg);
7304 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7306 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7309 let funded_channel_id = chan.context.channel_id();
7311 macro_rules! fail_chan { ($err: expr) => { {
7312 // Note that at this point we've filled in the funding outpoint on our
7313 // channel, but its actually in conflict with another channel. Thus, if
7314 // we call `convert_chan_phase_err` immediately (thus calling
7315 // `update_maps_on_chan_removal`), we'll remove the existing channel
7316 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7318 let err = ChannelError::Close($err.to_owned());
7319 chan.unset_funding_info(msg.temporary_channel_id);
7320 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7323 match peer_state.channel_by_id.entry(funded_channel_id) {
7324 hash_map::Entry::Occupied(_) => {
7325 fail_chan!("Already had channel with the new channel_id");
7327 hash_map::Entry::Vacant(e) => {
7328 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7329 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7330 hash_map::Entry::Occupied(_) => {
7331 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7333 hash_map::Entry::Vacant(i_e) => {
7334 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7335 if let Ok(persist_state) = monitor_res {
7336 i_e.insert(chan.context.get_counterparty_node_id());
7337 mem::drop(outpoint_to_peer_lock);
7339 // There's no problem signing a counterparty's funding transaction if our monitor
7340 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7341 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7342 // until we have persisted our monitor.
7343 if let Some(msg) = funding_msg_opt {
7344 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7345 node_id: counterparty_node_id.clone(),
7350 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7351 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7352 per_peer_state, chan, INITIAL_MONITOR);
7354 unreachable!("This must be a funded channel as we just inserted it.");
7358 let logger = WithChannelContext::from(&self.logger, &chan.context);
7359 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7360 fail_chan!("Duplicate funding outpoint");
7368 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7369 let best_block = *self.best_block.read().unwrap();
7370 let per_peer_state = self.per_peer_state.read().unwrap();
7371 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7373 debug_assert!(false);
7374 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7377 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7378 let peer_state = &mut *peer_state_lock;
7379 match peer_state.channel_by_id.entry(msg.channel_id) {
7380 hash_map::Entry::Occupied(chan_phase_entry) => {
7381 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7382 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7383 let logger = WithContext::from(
7385 Some(chan.context.get_counterparty_node_id()),
7386 Some(chan.context.channel_id())
7389 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7391 Ok((mut chan, monitor)) => {
7392 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7393 // We really should be able to insert here without doing a second
7394 // lookup, but sadly rust stdlib doesn't currently allow keeping
7395 // the original Entry around with the value removed.
7396 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7397 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7398 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7399 } else { unreachable!(); }
7402 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7403 // We weren't able to watch the channel to begin with, so no
7404 // updates should be made on it. Previously, full_stack_target
7405 // found an (unreachable) panic when the monitor update contained
7406 // within `shutdown_finish` was applied.
7407 chan.unset_funding_info(msg.channel_id);
7408 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7412 debug_assert!(matches!(e, ChannelError::Close(_)),
7413 "We don't have a channel anymore, so the error better have expected close");
7414 // We've already removed this outbound channel from the map in
7415 // `PeerState` above so at this point we just need to clean up any
7416 // lingering entries concerning this channel as it is safe to do so.
7417 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7421 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7424 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7428 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7429 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7430 // closing a channel), so any changes are likely to be lost on restart!
7431 let per_peer_state = self.per_peer_state.read().unwrap();
7432 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7434 debug_assert!(false);
7435 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7437 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7438 let peer_state = &mut *peer_state_lock;
7439 match peer_state.channel_by_id.entry(msg.channel_id) {
7440 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7441 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7442 let logger = WithChannelContext::from(&self.logger, &chan.context);
7443 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7444 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7445 if let Some(announcement_sigs) = announcement_sigs_opt {
7446 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7447 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7448 node_id: counterparty_node_id.clone(),
7449 msg: announcement_sigs,
7451 } else if chan.context.is_usable() {
7452 // If we're sending an announcement_signatures, we'll send the (public)
7453 // channel_update after sending a channel_announcement when we receive our
7454 // counterparty's announcement_signatures. Thus, we only bother to send a
7455 // channel_update here if the channel is not public, i.e. we're not sending an
7456 // announcement_signatures.
7457 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7458 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7459 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7460 node_id: counterparty_node_id.clone(),
7467 let mut pending_events = self.pending_events.lock().unwrap();
7468 emit_channel_ready_event!(pending_events, chan);
7473 try_chan_phase_entry!(self, Err(ChannelError::Close(
7474 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7477 hash_map::Entry::Vacant(_) => {
7478 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7483 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7484 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7485 let mut finish_shutdown = None;
7487 let per_peer_state = self.per_peer_state.read().unwrap();
7488 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7490 debug_assert!(false);
7491 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7493 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7494 let peer_state = &mut *peer_state_lock;
7495 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7496 let phase = chan_phase_entry.get_mut();
7498 ChannelPhase::Funded(chan) => {
7499 if !chan.received_shutdown() {
7500 let logger = WithChannelContext::from(&self.logger, &chan.context);
7501 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7503 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7506 let funding_txo_opt = chan.context.get_funding_txo();
7507 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7508 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7509 dropped_htlcs = htlcs;
7511 if let Some(msg) = shutdown {
7512 // We can send the `shutdown` message before updating the `ChannelMonitor`
7513 // here as we don't need the monitor update to complete until we send a
7514 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7515 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7516 node_id: *counterparty_node_id,
7520 // Update the monitor with the shutdown script if necessary.
7521 if let Some(monitor_update) = monitor_update_opt {
7522 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7523 peer_state_lock, peer_state, per_peer_state, chan);
7526 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7527 let context = phase.context_mut();
7528 let logger = WithChannelContext::from(&self.logger, context);
7529 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7530 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7531 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7533 // TODO(dual_funding): Combine this match arm with above.
7534 #[cfg(any(dual_funding, splicing))]
7535 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7536 let context = phase.context_mut();
7537 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7538 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7539 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7543 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7546 for htlc_source in dropped_htlcs.drain(..) {
7547 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7548 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7549 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7551 if let Some(shutdown_res) = finish_shutdown {
7552 self.finish_close_channel(shutdown_res);
7558 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7559 let per_peer_state = self.per_peer_state.read().unwrap();
7560 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7562 debug_assert!(false);
7563 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7565 let (tx, chan_option, shutdown_result) = {
7566 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7567 let peer_state = &mut *peer_state_lock;
7568 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7569 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7570 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7571 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7572 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7573 if let Some(msg) = closing_signed {
7574 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7575 node_id: counterparty_node_id.clone(),
7580 // We're done with this channel, we've got a signed closing transaction and
7581 // will send the closing_signed back to the remote peer upon return. This
7582 // also implies there are no pending HTLCs left on the channel, so we can
7583 // fully delete it from tracking (the channel monitor is still around to
7584 // watch for old state broadcasts)!
7585 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7586 } else { (tx, None, shutdown_result) }
7588 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7589 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7592 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7595 if let Some(broadcast_tx) = tx {
7596 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7597 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7598 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7600 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7601 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7602 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7603 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7608 mem::drop(per_peer_state);
7609 if let Some(shutdown_result) = shutdown_result {
7610 self.finish_close_channel(shutdown_result);
7615 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7616 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7617 //determine the state of the payment based on our response/if we forward anything/the time
7618 //we take to respond. We should take care to avoid allowing such an attack.
7620 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7621 //us repeatedly garbled in different ways, and compare our error messages, which are
7622 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7623 //but we should prevent it anyway.
7625 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7626 // closing a channel), so any changes are likely to be lost on restart!
7628 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7629 let per_peer_state = self.per_peer_state.read().unwrap();
7630 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7632 debug_assert!(false);
7633 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7635 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7636 let peer_state = &mut *peer_state_lock;
7637 match peer_state.channel_by_id.entry(msg.channel_id) {
7638 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7639 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7640 let mut pending_forward_info = match decoded_hop_res {
7641 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7642 self.construct_pending_htlc_status(
7643 msg, counterparty_node_id, shared_secret, next_hop,
7644 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7646 Err(e) => PendingHTLCStatus::Fail(e)
7648 let logger = WithChannelContext::from(&self.logger, &chan.context);
7649 // If the update_add is completely bogus, the call will Err and we will close,
7650 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7651 // want to reject the new HTLC and fail it backwards instead of forwarding.
7652 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7653 if msg.blinding_point.is_some() {
7654 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7655 msgs::UpdateFailMalformedHTLC {
7656 channel_id: msg.channel_id,
7657 htlc_id: msg.htlc_id,
7658 sha256_of_onion: [0; 32],
7659 failure_code: INVALID_ONION_BLINDING,
7663 match pending_forward_info {
7664 PendingHTLCStatus::Forward(PendingHTLCInfo {
7665 ref incoming_shared_secret, ref routing, ..
7667 let reason = if routing.blinded_failure().is_some() {
7668 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7669 } else if (error_code & 0x1000) != 0 {
7670 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7671 HTLCFailReason::reason(real_code, error_data)
7673 HTLCFailReason::from_failure_code(error_code)
7674 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7675 let msg = msgs::UpdateFailHTLC {
7676 channel_id: msg.channel_id,
7677 htlc_id: msg.htlc_id,
7680 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7686 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7688 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7689 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7692 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7697 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7699 let next_user_channel_id;
7700 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7701 let per_peer_state = self.per_peer_state.read().unwrap();
7702 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7704 debug_assert!(false);
7705 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7707 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7708 let peer_state = &mut *peer_state_lock;
7709 match peer_state.channel_by_id.entry(msg.channel_id) {
7710 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7711 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7712 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7713 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7714 let logger = WithChannelContext::from(&self.logger, &chan.context);
7716 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7718 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7719 .or_insert_with(Vec::new)
7720 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7722 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7723 // entry here, even though we *do* need to block the next RAA monitor update.
7724 // We do this instead in the `claim_funds_internal` by attaching a
7725 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7726 // outbound HTLC is claimed. This is guaranteed to all complete before we
7727 // process the RAA as messages are processed from single peers serially.
7728 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7729 next_user_channel_id = chan.context.get_user_id();
7732 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7733 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7736 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7739 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7740 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7741 funding_txo, msg.channel_id, Some(next_user_channel_id),
7747 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7748 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7749 // closing a channel), so any changes are likely to be lost on restart!
7750 let per_peer_state = self.per_peer_state.read().unwrap();
7751 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7753 debug_assert!(false);
7754 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7756 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7757 let peer_state = &mut *peer_state_lock;
7758 match peer_state.channel_by_id.entry(msg.channel_id) {
7759 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7760 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7761 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7763 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7764 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7767 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7772 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7773 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7774 // closing a channel), so any changes are likely to be lost on restart!
7775 let per_peer_state = self.per_peer_state.read().unwrap();
7776 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7778 debug_assert!(false);
7779 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7781 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7782 let peer_state = &mut *peer_state_lock;
7783 match peer_state.channel_by_id.entry(msg.channel_id) {
7784 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7785 if (msg.failure_code & 0x8000) == 0 {
7786 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7787 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7789 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7790 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7792 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7793 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7797 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7801 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7802 let per_peer_state = self.per_peer_state.read().unwrap();
7803 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7805 debug_assert!(false);
7806 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7808 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7809 let peer_state = &mut *peer_state_lock;
7810 match peer_state.channel_by_id.entry(msg.channel_id) {
7811 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7812 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7813 let logger = WithChannelContext::from(&self.logger, &chan.context);
7814 let funding_txo = chan.context.get_funding_txo();
7815 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7816 if let Some(monitor_update) = monitor_update_opt {
7817 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7818 peer_state, per_peer_state, chan);
7822 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7823 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7826 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7830 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7831 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7832 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7833 push_forward_event &= decode_update_add_htlcs.is_empty();
7834 let scid = update_add_htlcs.0;
7835 match decode_update_add_htlcs.entry(scid) {
7836 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7837 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7839 if push_forward_event { self.push_pending_forwards_ev(); }
7843 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7844 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7845 if push_forward_event { self.push_pending_forwards_ev() }
7849 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7850 let mut push_forward_event = false;
7851 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7852 let mut new_intercept_events = VecDeque::new();
7853 let mut failed_intercept_forwards = Vec::new();
7854 if !pending_forwards.is_empty() {
7855 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7856 let scid = match forward_info.routing {
7857 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7858 PendingHTLCRouting::Receive { .. } => 0,
7859 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7861 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7862 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7864 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7865 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7866 let forward_htlcs_empty = forward_htlcs.is_empty();
7867 match forward_htlcs.entry(scid) {
7868 hash_map::Entry::Occupied(mut entry) => {
7869 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7870 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7872 hash_map::Entry::Vacant(entry) => {
7873 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7874 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7876 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7877 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7878 match pending_intercepts.entry(intercept_id) {
7879 hash_map::Entry::Vacant(entry) => {
7880 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7881 requested_next_hop_scid: scid,
7882 payment_hash: forward_info.payment_hash,
7883 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7884 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7887 entry.insert(PendingAddHTLCInfo {
7888 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7890 hash_map::Entry::Occupied(_) => {
7891 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7892 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7893 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7894 short_channel_id: prev_short_channel_id,
7895 user_channel_id: Some(prev_user_channel_id),
7896 outpoint: prev_funding_outpoint,
7897 channel_id: prev_channel_id,
7898 htlc_id: prev_htlc_id,
7899 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7900 phantom_shared_secret: None,
7901 blinded_failure: forward_info.routing.blinded_failure(),
7904 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7905 HTLCFailReason::from_failure_code(0x4000 | 10),
7906 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7911 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7912 // payments are being processed.
7913 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7914 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7915 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7922 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7923 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7926 if !new_intercept_events.is_empty() {
7927 let mut events = self.pending_events.lock().unwrap();
7928 events.append(&mut new_intercept_events);
7934 fn push_pending_forwards_ev(&self) {
7935 let mut pending_events = self.pending_events.lock().unwrap();
7936 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7937 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7938 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7940 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7941 // events is done in batches and they are not removed until we're done processing each
7942 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7943 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7944 // payments will need an additional forwarding event before being claimed to make them look
7945 // real by taking more time.
7946 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7947 pending_events.push_back((Event::PendingHTLCsForwardable {
7948 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7953 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7954 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7955 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7956 /// the [`ChannelMonitorUpdate`] in question.
7957 fn raa_monitor_updates_held(&self,
7958 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7959 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7961 actions_blocking_raa_monitor_updates
7962 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7963 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7964 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7965 channel_funding_outpoint,
7967 counterparty_node_id,
7972 #[cfg(any(test, feature = "_test_utils"))]
7973 pub(crate) fn test_raa_monitor_updates_held(&self,
7974 counterparty_node_id: PublicKey, channel_id: ChannelId
7976 let per_peer_state = self.per_peer_state.read().unwrap();
7977 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7978 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7979 let peer_state = &mut *peer_state_lck;
7981 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7982 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7983 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7989 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7990 let htlcs_to_fail = {
7991 let per_peer_state = self.per_peer_state.read().unwrap();
7992 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7994 debug_assert!(false);
7995 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7996 }).map(|mtx| mtx.lock().unwrap())?;
7997 let peer_state = &mut *peer_state_lock;
7998 match peer_state.channel_by_id.entry(msg.channel_id) {
7999 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8000 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8001 let logger = WithChannelContext::from(&self.logger, &chan.context);
8002 let funding_txo_opt = chan.context.get_funding_txo();
8003 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
8004 self.raa_monitor_updates_held(
8005 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
8006 *counterparty_node_id)
8008 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
8009 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
8010 if let Some(monitor_update) = monitor_update_opt {
8011 let funding_txo = funding_txo_opt
8012 .expect("Funding outpoint must have been set for RAA handling to succeed");
8013 handle_new_monitor_update!(self, funding_txo, monitor_update,
8014 peer_state_lock, peer_state, per_peer_state, chan);
8018 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8019 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
8022 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8025 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8029 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8030 let per_peer_state = self.per_peer_state.read().unwrap();
8031 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8033 debug_assert!(false);
8034 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8036 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8037 let peer_state = &mut *peer_state_lock;
8038 match peer_state.channel_by_id.entry(msg.channel_id) {
8039 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8040 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8041 let logger = WithChannelContext::from(&self.logger, &chan.context);
8042 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8044 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8045 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8048 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8053 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8054 let per_peer_state = self.per_peer_state.read().unwrap();
8055 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8057 debug_assert!(false);
8058 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8060 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8061 let peer_state = &mut *peer_state_lock;
8062 match peer_state.channel_by_id.entry(msg.channel_id) {
8063 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8064 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8065 if !chan.context.is_usable() {
8066 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8069 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8070 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8071 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8072 msg, &self.default_configuration
8073 ), chan_phase_entry),
8074 // Note that announcement_signatures fails if the channel cannot be announced,
8075 // so get_channel_update_for_broadcast will never fail by the time we get here.
8076 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8079 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8080 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8083 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8088 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8089 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8090 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8091 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8093 // It's not a local channel
8094 return Ok(NotifyOption::SkipPersistNoEvents)
8097 let per_peer_state = self.per_peer_state.read().unwrap();
8098 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8099 if peer_state_mutex_opt.is_none() {
8100 return Ok(NotifyOption::SkipPersistNoEvents)
8102 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8103 let peer_state = &mut *peer_state_lock;
8104 match peer_state.channel_by_id.entry(chan_id) {
8105 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8106 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8107 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8108 if chan.context.should_announce() {
8109 // If the announcement is about a channel of ours which is public, some
8110 // other peer may simply be forwarding all its gossip to us. Don't provide
8111 // a scary-looking error message and return Ok instead.
8112 return Ok(NotifyOption::SkipPersistNoEvents);
8114 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8116 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8117 let msg_from_node_one = msg.contents.flags & 1 == 0;
8118 if were_node_one == msg_from_node_one {
8119 return Ok(NotifyOption::SkipPersistNoEvents);
8121 let logger = WithChannelContext::from(&self.logger, &chan.context);
8122 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8123 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8124 // If nothing changed after applying their update, we don't need to bother
8127 return Ok(NotifyOption::SkipPersistNoEvents);
8131 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8132 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8135 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8137 Ok(NotifyOption::DoPersist)
8140 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8141 let need_lnd_workaround = {
8142 let per_peer_state = self.per_peer_state.read().unwrap();
8144 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8146 debug_assert!(false);
8147 MsgHandleErrInternal::send_err_msg_no_close(
8148 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8152 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8153 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8154 let peer_state = &mut *peer_state_lock;
8155 match peer_state.channel_by_id.entry(msg.channel_id) {
8156 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8157 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8158 // Currently, we expect all holding cell update_adds to be dropped on peer
8159 // disconnect, so Channel's reestablish will never hand us any holding cell
8160 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8161 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8162 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8163 msg, &&logger, &self.node_signer, self.chain_hash,
8164 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8165 let mut channel_update = None;
8166 if let Some(msg) = responses.shutdown_msg {
8167 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8168 node_id: counterparty_node_id.clone(),
8171 } else if chan.context.is_usable() {
8172 // If the channel is in a usable state (ie the channel is not being shut
8173 // down), send a unicast channel_update to our counterparty to make sure
8174 // they have the latest channel parameters.
8175 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8176 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8177 node_id: chan.context.get_counterparty_node_id(),
8182 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8183 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8184 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8185 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8186 debug_assert!(htlc_forwards.is_none());
8187 debug_assert!(decode_update_add_htlcs.is_none());
8188 if let Some(upd) = channel_update {
8189 peer_state.pending_msg_events.push(upd);
8193 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8194 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8197 hash_map::Entry::Vacant(_) => {
8198 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8200 // Unfortunately, lnd doesn't force close on errors
8201 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8202 // One of the few ways to get an lnd counterparty to force close is by
8203 // replicating what they do when restoring static channel backups (SCBs). They
8204 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8205 // invalid `your_last_per_commitment_secret`.
8207 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8208 // can assume it's likely the channel closed from our point of view, but it
8209 // remains open on the counterparty's side. By sending this bogus
8210 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8211 // force close broadcasting their latest state. If the closing transaction from
8212 // our point of view remains unconfirmed, it'll enter a race with the
8213 // counterparty's to-be-broadcast latest commitment transaction.
8214 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8215 node_id: *counterparty_node_id,
8216 msg: msgs::ChannelReestablish {
8217 channel_id: msg.channel_id,
8218 next_local_commitment_number: 0,
8219 next_remote_commitment_number: 0,
8220 your_last_per_commitment_secret: [1u8; 32],
8221 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8222 next_funding_txid: None,
8225 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8226 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8227 counterparty_node_id), msg.channel_id)
8233 if let Some(channel_ready_msg) = need_lnd_workaround {
8234 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8236 Ok(NotifyOption::SkipPersistHandleEvents)
8239 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8240 fn process_pending_monitor_events(&self) -> bool {
8241 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8243 let mut failed_channels = Vec::new();
8244 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8245 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8246 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8247 for monitor_event in monitor_events.drain(..) {
8248 match monitor_event {
8249 MonitorEvent::HTLCEvent(htlc_update) => {
8250 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8251 if let Some(preimage) = htlc_update.payment_preimage {
8252 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8253 self.claim_funds_internal(htlc_update.source, preimage,
8254 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8255 false, counterparty_node_id, funding_outpoint, channel_id, None);
8257 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8258 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8259 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8260 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8263 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8264 let counterparty_node_id_opt = match counterparty_node_id {
8265 Some(cp_id) => Some(cp_id),
8267 // TODO: Once we can rely on the counterparty_node_id from the
8268 // monitor event, this and the outpoint_to_peer map should be removed.
8269 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8270 outpoint_to_peer.get(&funding_outpoint).cloned()
8273 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8274 let per_peer_state = self.per_peer_state.read().unwrap();
8275 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8276 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8277 let peer_state = &mut *peer_state_lock;
8278 let pending_msg_events = &mut peer_state.pending_msg_events;
8279 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8280 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8281 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8284 ClosureReason::HolderForceClosed
8286 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8287 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8288 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8289 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8293 pending_msg_events.push(events::MessageSendEvent::HandleError {
8294 node_id: chan.context.get_counterparty_node_id(),
8295 action: msgs::ErrorAction::DisconnectPeer {
8296 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8304 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8305 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8311 for failure in failed_channels.drain(..) {
8312 self.finish_close_channel(failure);
8315 has_pending_monitor_events
8318 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8319 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8320 /// update events as a separate process method here.
8322 pub fn process_monitor_events(&self) {
8323 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8324 self.process_pending_monitor_events();
8327 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8328 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8329 /// update was applied.
8330 fn check_free_holding_cells(&self) -> bool {
8331 let mut has_monitor_update = false;
8332 let mut failed_htlcs = Vec::new();
8334 // Walk our list of channels and find any that need to update. Note that when we do find an
8335 // update, if it includes actions that must be taken afterwards, we have to drop the
8336 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8337 // manage to go through all our peers without finding a single channel to update.
8339 let per_peer_state = self.per_peer_state.read().unwrap();
8340 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8342 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8343 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8344 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8345 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8347 let counterparty_node_id = chan.context.get_counterparty_node_id();
8348 let funding_txo = chan.context.get_funding_txo();
8349 let (monitor_opt, holding_cell_failed_htlcs) =
8350 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8351 if !holding_cell_failed_htlcs.is_empty() {
8352 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8354 if let Some(monitor_update) = monitor_opt {
8355 has_monitor_update = true;
8357 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8358 peer_state_lock, peer_state, per_peer_state, chan);
8359 continue 'peer_loop;
8368 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8369 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8370 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8376 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8377 /// is (temporarily) unavailable, and the operation should be retried later.
8379 /// This method allows for that retry - either checking for any signer-pending messages to be
8380 /// attempted in every channel, or in the specifically provided channel.
8382 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8383 #[cfg(async_signing)]
8384 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8385 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8387 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8388 let node_id = phase.context().get_counterparty_node_id();
8390 ChannelPhase::Funded(chan) => {
8391 let msgs = chan.signer_maybe_unblocked(&self.logger);
8392 if let Some(updates) = msgs.commitment_update {
8393 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8398 if let Some(msg) = msgs.funding_signed {
8399 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8404 if let Some(msg) = msgs.channel_ready {
8405 send_channel_ready!(self, pending_msg_events, chan, msg);
8408 ChannelPhase::UnfundedOutboundV1(chan) => {
8409 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8410 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8416 ChannelPhase::UnfundedInboundV1(_) => {},
8420 let per_peer_state = self.per_peer_state.read().unwrap();
8421 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8422 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8423 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8424 let peer_state = &mut *peer_state_lock;
8425 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8426 unblock_chan(chan, &mut peer_state.pending_msg_events);
8430 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8431 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8432 let peer_state = &mut *peer_state_lock;
8433 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8434 unblock_chan(chan, &mut peer_state.pending_msg_events);
8440 /// Check whether any channels have finished removing all pending updates after a shutdown
8441 /// exchange and can now send a closing_signed.
8442 /// Returns whether any closing_signed messages were generated.
8443 fn maybe_generate_initial_closing_signed(&self) -> bool {
8444 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8445 let mut has_update = false;
8446 let mut shutdown_results = Vec::new();
8448 let per_peer_state = self.per_peer_state.read().unwrap();
8450 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8451 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8452 let peer_state = &mut *peer_state_lock;
8453 let pending_msg_events = &mut peer_state.pending_msg_events;
8454 peer_state.channel_by_id.retain(|channel_id, phase| {
8456 ChannelPhase::Funded(chan) => {
8457 let logger = WithChannelContext::from(&self.logger, &chan.context);
8458 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8459 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8460 if let Some(msg) = msg_opt {
8462 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8463 node_id: chan.context.get_counterparty_node_id(), msg,
8466 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8467 if let Some(shutdown_result) = shutdown_result_opt {
8468 shutdown_results.push(shutdown_result);
8470 if let Some(tx) = tx_opt {
8471 // We're done with this channel. We got a closing_signed and sent back
8472 // a closing_signed with a closing transaction to broadcast.
8473 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8474 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8475 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8480 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8481 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8482 update_maps_on_chan_removal!(self, &chan.context);
8488 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8489 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8494 _ => true, // Retain unfunded channels if present.
8500 for (counterparty_node_id, err) in handle_errors.drain(..) {
8501 let _ = handle_error!(self, err, counterparty_node_id);
8504 for shutdown_result in shutdown_results.drain(..) {
8505 self.finish_close_channel(shutdown_result);
8511 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8512 /// pushing the channel monitor update (if any) to the background events queue and removing the
8514 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8515 for mut failure in failed_channels.drain(..) {
8516 // Either a commitment transactions has been confirmed on-chain or
8517 // Channel::block_disconnected detected that the funding transaction has been
8518 // reorganized out of the main chain.
8519 // We cannot broadcast our latest local state via monitor update (as
8520 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8521 // so we track the update internally and handle it when the user next calls
8522 // timer_tick_occurred, guaranteeing we're running normally.
8523 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8524 assert_eq!(update.updates.len(), 1);
8525 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8526 assert!(should_broadcast);
8527 } else { unreachable!(); }
8528 self.pending_background_events.lock().unwrap().push(
8529 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8530 counterparty_node_id, funding_txo, update, channel_id,
8533 self.finish_close_channel(failure);
8538 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8539 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8540 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8541 /// not have an expiration unless otherwise set on the builder.
8545 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8546 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8547 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8548 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8549 /// order to send the [`InvoiceRequest`].
8551 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8555 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8560 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8562 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8564 /// [`Offer`]: crate::offers::offer::Offer
8565 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8566 pub fn create_offer_builder(&$self) -> Result<$builder, Bolt12SemanticError> {
8567 let node_id = $self.get_our_node_id();
8568 let expanded_key = &$self.inbound_payment_key;
8569 let entropy = &*$self.entropy_source;
8570 let secp_ctx = &$self.secp_ctx;
8572 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8573 let builder = OfferBuilder::deriving_signing_pubkey(
8574 node_id, expanded_key, entropy, secp_ctx
8576 .chain_hash($self.chain_hash)
8583 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8584 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8585 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8589 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8590 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8592 /// The builder will have the provided expiration set. Any changes to the expiration on the
8593 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8594 /// block time minus two hours is used for the current time when determining if the refund has
8597 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8598 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8599 /// with an [`Event::InvoiceRequestFailed`].
8601 /// If `max_total_routing_fee_msat` is not specified, The default from
8602 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8606 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8607 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8608 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8609 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8610 /// order to send the [`Bolt12Invoice`].
8612 /// Also, uses a derived payer id in the refund for payer privacy.
8616 /// Requires a direct connection to an introduction node in the responding
8617 /// [`Bolt12Invoice::payment_paths`].
8622 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8623 /// - `amount_msats` is invalid, or
8624 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8626 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8628 /// [`Refund`]: crate::offers::refund::Refund
8629 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8630 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8631 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8632 pub fn create_refund_builder(
8633 &$self, amount_msats: u64, absolute_expiry: Duration, payment_id: PaymentId,
8634 retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8635 ) -> Result<$builder, Bolt12SemanticError> {
8636 let node_id = $self.get_our_node_id();
8637 let expanded_key = &$self.inbound_payment_key;
8638 let entropy = &*$self.entropy_source;
8639 let secp_ctx = &$self.secp_ctx;
8641 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8642 let builder = RefundBuilder::deriving_payer_id(
8643 node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8645 .chain_hash($self.chain_hash)
8646 .absolute_expiry(absolute_expiry)
8649 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8651 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8652 $self.pending_outbound_payments
8653 .add_new_awaiting_invoice(
8654 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8656 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8662 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8664 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8665 T::Target: BroadcasterInterface,
8666 ES::Target: EntropySource,
8667 NS::Target: NodeSigner,
8668 SP::Target: SignerProvider,
8669 F::Target: FeeEstimator,
8673 #[cfg(not(c_bindings))]
8674 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8675 #[cfg(not(c_bindings))]
8676 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8679 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8681 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8683 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8684 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8685 /// [`Bolt12Invoice`] once it is received.
8687 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8688 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8689 /// The optional parameters are used in the builder, if `Some`:
8690 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8691 /// [`Offer::expects_quantity`] is `true`.
8692 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8693 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8695 /// If `max_total_routing_fee_msat` is not specified, The default from
8696 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8700 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8701 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8704 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8705 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8706 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8710 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8711 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8712 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8713 /// in order to send the [`Bolt12Invoice`].
8717 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8718 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8719 /// [`Bolt12Invoice::payment_paths`].
8724 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8725 /// - the provided parameters are invalid for the offer,
8726 /// - the offer is for an unsupported chain, or
8727 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8730 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8731 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8732 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8733 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8734 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8735 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8736 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8737 pub fn pay_for_offer(
8738 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8739 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8740 max_total_routing_fee_msat: Option<u64>
8741 ) -> Result<(), Bolt12SemanticError> {
8742 let expanded_key = &self.inbound_payment_key;
8743 let entropy = &*self.entropy_source;
8744 let secp_ctx = &self.secp_ctx;
8746 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8747 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8749 let builder = builder.chain_hash(self.chain_hash)?;
8751 let builder = match quantity {
8753 Some(quantity) => builder.quantity(quantity)?,
8755 let builder = match amount_msats {
8757 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8759 let builder = match payer_note {
8761 Some(payer_note) => builder.payer_note(payer_note),
8763 let invoice_request = builder.build_and_sign()?;
8764 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8766 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8768 let expiration = StaleExpiration::TimerTicks(1);
8769 self.pending_outbound_payments
8770 .add_new_awaiting_invoice(
8771 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8773 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8775 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8776 if !offer.paths().is_empty() {
8777 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8778 // Using only one path could result in a failure if the path no longer exists. But only
8779 // one invoice for a given payment id will be paid, even if more than one is received.
8780 const REQUEST_LIMIT: usize = 10;
8781 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8782 let message = new_pending_onion_message(
8783 OffersMessage::InvoiceRequest(invoice_request.clone()),
8784 Destination::BlindedPath(path.clone()),
8785 Some(reply_path.clone()),
8787 pending_offers_messages.push(message);
8789 } else if let Some(signing_pubkey) = offer.signing_pubkey() {
8790 let message = new_pending_onion_message(
8791 OffersMessage::InvoiceRequest(invoice_request),
8792 Destination::Node(signing_pubkey),
8795 pending_offers_messages.push(message);
8797 debug_assert!(false);
8798 return Err(Bolt12SemanticError::MissingSigningPubkey);
8804 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8807 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8808 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8809 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8813 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8814 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8815 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8816 /// received and no retries will be made.
8821 /// - the refund is for an unsupported chain, or
8822 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8825 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8826 pub fn request_refund_payment(
8827 &self, refund: &Refund
8828 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8829 let expanded_key = &self.inbound_payment_key;
8830 let entropy = &*self.entropy_source;
8831 let secp_ctx = &self.secp_ctx;
8833 let amount_msats = refund.amount_msats();
8834 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8836 if refund.chain() != self.chain_hash {
8837 return Err(Bolt12SemanticError::UnsupportedChain);
8840 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8842 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8843 Ok((payment_hash, payment_secret)) => {
8844 let payment_context = PaymentContext::Bolt12Refund(Bolt12RefundContext {});
8845 let payment_paths = self.create_blinded_payment_paths(
8846 amount_msats, payment_secret, payment_context
8848 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8850 #[cfg(feature = "std")]
8851 let builder = refund.respond_using_derived_keys(
8852 payment_paths, payment_hash, expanded_key, entropy
8854 #[cfg(not(feature = "std"))]
8855 let created_at = Duration::from_secs(
8856 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8858 #[cfg(not(feature = "std"))]
8859 let builder = refund.respond_using_derived_keys_no_std(
8860 payment_paths, payment_hash, created_at, expanded_key, entropy
8862 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8863 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8864 let reply_path = self.create_blinded_path()
8865 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8867 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8868 if refund.paths().is_empty() {
8869 let message = new_pending_onion_message(
8870 OffersMessage::Invoice(invoice.clone()),
8871 Destination::Node(refund.payer_id()),
8874 pending_offers_messages.push(message);
8876 for path in refund.paths() {
8877 let message = new_pending_onion_message(
8878 OffersMessage::Invoice(invoice.clone()),
8879 Destination::BlindedPath(path.clone()),
8880 Some(reply_path.clone()),
8882 pending_offers_messages.push(message);
8888 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8892 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8895 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8896 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8898 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`] event, which
8899 /// will have the [`PaymentClaimable::purpose`] return `Some` for [`PaymentPurpose::preimage`]. That
8900 /// should then be passed directly to [`claim_funds`].
8902 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8904 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8905 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8909 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8910 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8912 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8914 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8915 /// on versions of LDK prior to 0.0.114.
8917 /// [`claim_funds`]: Self::claim_funds
8918 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8919 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8920 /// [`PaymentPurpose::preimage`]: events::PaymentPurpose::preimage
8921 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8922 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8923 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8924 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8925 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8926 min_final_cltv_expiry_delta)
8929 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8930 /// stored external to LDK.
8932 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8933 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8934 /// the `min_value_msat` provided here, if one is provided.
8936 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8937 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8940 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8941 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8942 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8943 /// sender "proof-of-payment" unless they have paid the required amount.
8945 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8946 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8947 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8948 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8949 /// invoices when no timeout is set.
8951 /// Note that we use block header time to time-out pending inbound payments (with some margin
8952 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8953 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8954 /// If you need exact expiry semantics, you should enforce them upon receipt of
8955 /// [`PaymentClaimable`].
8957 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8958 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8960 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8961 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8965 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8966 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8968 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8970 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8971 /// on versions of LDK prior to 0.0.114.
8973 /// [`create_inbound_payment`]: Self::create_inbound_payment
8974 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8975 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8976 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8977 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8978 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8979 min_final_cltv_expiry)
8982 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8983 /// previously returned from [`create_inbound_payment`].
8985 /// [`create_inbound_payment`]: Self::create_inbound_payment
8986 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8987 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8990 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8992 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8993 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8994 let recipient = self.get_our_node_id();
8995 let secp_ctx = &self.secp_ctx;
8997 let peers = self.per_peer_state.read().unwrap()
8999 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
9000 .map(|(node_id, _)| *node_id)
9001 .collect::<Vec<_>>();
9004 .create_blinded_paths(recipient, peers, secp_ctx)
9005 .and_then(|paths| paths.into_iter().next().ok_or(()))
9008 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
9009 /// [`Router::create_blinded_payment_paths`].
9010 fn create_blinded_payment_paths(
9011 &self, amount_msats: u64, payment_secret: PaymentSecret, payment_context: PaymentContext
9012 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
9013 let secp_ctx = &self.secp_ctx;
9015 let first_hops = self.list_usable_channels();
9016 let payee_node_id = self.get_our_node_id();
9017 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
9018 + LATENCY_GRACE_PERIOD_BLOCKS;
9019 let payee_tlvs = ReceiveTlvs {
9021 payment_constraints: PaymentConstraints {
9023 htlc_minimum_msat: 1,
9027 self.router.create_blinded_payment_paths(
9028 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9032 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9033 /// are used when constructing the phantom invoice's route hints.
9035 /// [phantom node payments]: crate::sign::PhantomKeysManager
9036 pub fn get_phantom_scid(&self) -> u64 {
9037 let best_block_height = self.best_block.read().unwrap().height;
9038 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9040 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9041 // Ensure the generated scid doesn't conflict with a real channel.
9042 match short_to_chan_info.get(&scid_candidate) {
9043 Some(_) => continue,
9044 None => return scid_candidate
9049 /// Gets route hints for use in receiving [phantom node payments].
9051 /// [phantom node payments]: crate::sign::PhantomKeysManager
9052 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9054 channels: self.list_usable_channels(),
9055 phantom_scid: self.get_phantom_scid(),
9056 real_node_pubkey: self.get_our_node_id(),
9060 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9061 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9062 /// [`ChannelManager::forward_intercepted_htlc`].
9064 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9065 /// times to get a unique scid.
9066 pub fn get_intercept_scid(&self) -> u64 {
9067 let best_block_height = self.best_block.read().unwrap().height;
9068 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9070 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9071 // Ensure the generated scid doesn't conflict with a real channel.
9072 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9073 return scid_candidate
9077 /// Gets inflight HTLC information by processing pending outbound payments that are in
9078 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9079 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9080 let mut inflight_htlcs = InFlightHtlcs::new();
9082 let per_peer_state = self.per_peer_state.read().unwrap();
9083 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9084 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9085 let peer_state = &mut *peer_state_lock;
9086 for chan in peer_state.channel_by_id.values().filter_map(
9087 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9089 for (htlc_source, _) in chan.inflight_htlc_sources() {
9090 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9091 inflight_htlcs.process_path(path, self.get_our_node_id());
9100 #[cfg(any(test, feature = "_test_utils"))]
9101 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9102 let events = core::cell::RefCell::new(Vec::new());
9103 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9104 self.process_pending_events(&event_handler);
9108 #[cfg(feature = "_test_utils")]
9109 pub fn push_pending_event(&self, event: events::Event) {
9110 let mut events = self.pending_events.lock().unwrap();
9111 events.push_back((event, None));
9115 pub fn pop_pending_event(&self) -> Option<events::Event> {
9116 let mut events = self.pending_events.lock().unwrap();
9117 events.pop_front().map(|(e, _)| e)
9121 pub fn has_pending_payments(&self) -> bool {
9122 self.pending_outbound_payments.has_pending_payments()
9126 pub fn clear_pending_payments(&self) {
9127 self.pending_outbound_payments.clear_pending_payments()
9130 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9131 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9132 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9133 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9134 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9135 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9136 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9138 let logger = WithContext::from(
9139 &self.logger, Some(counterparty_node_id), Some(channel_id),
9142 let per_peer_state = self.per_peer_state.read().unwrap();
9143 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9144 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9145 let peer_state = &mut *peer_state_lck;
9146 if let Some(blocker) = completed_blocker.take() {
9147 // Only do this on the first iteration of the loop.
9148 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9149 .get_mut(&channel_id)
9151 blockers.retain(|iter| iter != &blocker);
9155 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9156 channel_funding_outpoint, channel_id, counterparty_node_id) {
9157 // Check that, while holding the peer lock, we don't have anything else
9158 // blocking monitor updates for this channel. If we do, release the monitor
9159 // update(s) when those blockers complete.
9160 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9165 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9167 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9168 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9169 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9170 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9172 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9173 peer_state_lck, peer_state, per_peer_state, chan);
9174 if further_update_exists {
9175 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9180 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9187 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9188 log_pubkey!(counterparty_node_id));
9194 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9195 for action in actions {
9197 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9198 channel_funding_outpoint, channel_id, counterparty_node_id
9200 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9206 /// Processes any events asynchronously in the order they were generated since the last call
9207 /// using the given event handler.
9209 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9210 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9214 process_events_body!(self, ev, { handler(ev).await });
9218 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9220 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9221 T::Target: BroadcasterInterface,
9222 ES::Target: EntropySource,
9223 NS::Target: NodeSigner,
9224 SP::Target: SignerProvider,
9225 F::Target: FeeEstimator,
9229 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9230 /// The returned array will contain `MessageSendEvent`s for different peers if
9231 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9232 /// is always placed next to each other.
9234 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9235 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9236 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9237 /// will randomly be placed first or last in the returned array.
9239 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9240 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9241 /// the `MessageSendEvent`s to the specific peer they were generated under.
9242 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9243 let events = RefCell::new(Vec::new());
9244 PersistenceNotifierGuard::optionally_notify(self, || {
9245 let mut result = NotifyOption::SkipPersistNoEvents;
9247 // TODO: This behavior should be documented. It's unintuitive that we query
9248 // ChannelMonitors when clearing other events.
9249 if self.process_pending_monitor_events() {
9250 result = NotifyOption::DoPersist;
9253 if self.check_free_holding_cells() {
9254 result = NotifyOption::DoPersist;
9256 if self.maybe_generate_initial_closing_signed() {
9257 result = NotifyOption::DoPersist;
9260 let mut is_any_peer_connected = false;
9261 let mut pending_events = Vec::new();
9262 let per_peer_state = self.per_peer_state.read().unwrap();
9263 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9264 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9265 let peer_state = &mut *peer_state_lock;
9266 if peer_state.pending_msg_events.len() > 0 {
9267 pending_events.append(&mut peer_state.pending_msg_events);
9269 if peer_state.is_connected {
9270 is_any_peer_connected = true
9274 // Ensure that we are connected to some peers before getting broadcast messages.
9275 if is_any_peer_connected {
9276 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9277 pending_events.append(&mut broadcast_msgs);
9280 if !pending_events.is_empty() {
9281 events.replace(pending_events);
9290 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9292 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9293 T::Target: BroadcasterInterface,
9294 ES::Target: EntropySource,
9295 NS::Target: NodeSigner,
9296 SP::Target: SignerProvider,
9297 F::Target: FeeEstimator,
9301 /// Processes events that must be periodically handled.
9303 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9304 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9305 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9307 process_events_body!(self, ev, handler.handle_event(ev));
9311 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9313 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9314 T::Target: BroadcasterInterface,
9315 ES::Target: EntropySource,
9316 NS::Target: NodeSigner,
9317 SP::Target: SignerProvider,
9318 F::Target: FeeEstimator,
9322 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9324 let best_block = self.best_block.read().unwrap();
9325 assert_eq!(best_block.block_hash, header.prev_blockhash,
9326 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9327 assert_eq!(best_block.height, height - 1,
9328 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9331 self.transactions_confirmed(header, txdata, height);
9332 self.best_block_updated(header, height);
9335 fn block_disconnected(&self, header: &Header, height: u32) {
9336 let _persistence_guard =
9337 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9338 self, || -> NotifyOption { NotifyOption::DoPersist });
9339 let new_height = height - 1;
9341 let mut best_block = self.best_block.write().unwrap();
9342 assert_eq!(best_block.block_hash, header.block_hash(),
9343 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9344 assert_eq!(best_block.height, height,
9345 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9346 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9349 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9353 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9355 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9356 T::Target: BroadcasterInterface,
9357 ES::Target: EntropySource,
9358 NS::Target: NodeSigner,
9359 SP::Target: SignerProvider,
9360 F::Target: FeeEstimator,
9364 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9365 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9366 // during initialization prior to the chain_monitor being fully configured in some cases.
9367 // See the docs for `ChannelManagerReadArgs` for more.
9369 let block_hash = header.block_hash();
9370 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9372 let _persistence_guard =
9373 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9374 self, || -> NotifyOption { NotifyOption::DoPersist });
9375 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9376 .map(|(a, b)| (a, Vec::new(), b)));
9378 let last_best_block_height = self.best_block.read().unwrap().height;
9379 if height < last_best_block_height {
9380 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9381 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9385 fn best_block_updated(&self, header: &Header, height: u32) {
9386 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9387 // during initialization prior to the chain_monitor being fully configured in some cases.
9388 // See the docs for `ChannelManagerReadArgs` for more.
9390 let block_hash = header.block_hash();
9391 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9393 let _persistence_guard =
9394 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9395 self, || -> NotifyOption { NotifyOption::DoPersist });
9396 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9398 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9400 macro_rules! max_time {
9401 ($timestamp: expr) => {
9403 // Update $timestamp to be the max of its current value and the block
9404 // timestamp. This should keep us close to the current time without relying on
9405 // having an explicit local time source.
9406 // Just in case we end up in a race, we loop until we either successfully
9407 // update $timestamp or decide we don't need to.
9408 let old_serial = $timestamp.load(Ordering::Acquire);
9409 if old_serial >= header.time as usize { break; }
9410 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9416 max_time!(self.highest_seen_timestamp);
9417 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9418 payment_secrets.retain(|_, inbound_payment| {
9419 inbound_payment.expiry_time > header.time as u64
9423 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9424 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9425 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9426 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9427 let peer_state = &mut *peer_state_lock;
9428 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9429 let txid_opt = chan.context.get_funding_txo();
9430 let height_opt = chan.context.get_funding_tx_confirmation_height();
9431 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9432 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9433 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9440 fn transaction_unconfirmed(&self, txid: &Txid) {
9441 let _persistence_guard =
9442 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9443 self, || -> NotifyOption { NotifyOption::DoPersist });
9444 self.do_chain_event(None, |channel| {
9445 if let Some(funding_txo) = channel.context.get_funding_txo() {
9446 if funding_txo.txid == *txid {
9447 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9448 } else { Ok((None, Vec::new(), None)) }
9449 } else { Ok((None, Vec::new(), None)) }
9454 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9456 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9457 T::Target: BroadcasterInterface,
9458 ES::Target: EntropySource,
9459 NS::Target: NodeSigner,
9460 SP::Target: SignerProvider,
9461 F::Target: FeeEstimator,
9465 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9466 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9468 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9469 (&self, height_opt: Option<u32>, f: FN) {
9470 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9471 // during initialization prior to the chain_monitor being fully configured in some cases.
9472 // See the docs for `ChannelManagerReadArgs` for more.
9474 let mut failed_channels = Vec::new();
9475 let mut timed_out_htlcs = Vec::new();
9477 let per_peer_state = self.per_peer_state.read().unwrap();
9478 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9479 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9480 let peer_state = &mut *peer_state_lock;
9481 let pending_msg_events = &mut peer_state.pending_msg_events;
9483 peer_state.channel_by_id.retain(|_, phase| {
9485 // Retain unfunded channels.
9486 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9487 // TODO(dual_funding): Combine this match arm with above.
9488 #[cfg(any(dual_funding, splicing))]
9489 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9490 ChannelPhase::Funded(channel) => {
9491 let res = f(channel);
9492 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9493 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9494 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9495 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9496 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9498 let logger = WithChannelContext::from(&self.logger, &channel.context);
9499 if let Some(channel_ready) = channel_ready_opt {
9500 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9501 if channel.context.is_usable() {
9502 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9503 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9504 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9505 node_id: channel.context.get_counterparty_node_id(),
9510 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9515 let mut pending_events = self.pending_events.lock().unwrap();
9516 emit_channel_ready_event!(pending_events, channel);
9519 if let Some(announcement_sigs) = announcement_sigs {
9520 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9521 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9522 node_id: channel.context.get_counterparty_node_id(),
9523 msg: announcement_sigs,
9525 if let Some(height) = height_opt {
9526 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9527 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9529 // Note that announcement_signatures fails if the channel cannot be announced,
9530 // so get_channel_update_for_broadcast will never fail by the time we get here.
9531 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9536 if channel.is_our_channel_ready() {
9537 if let Some(real_scid) = channel.context.get_short_channel_id() {
9538 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9539 // to the short_to_chan_info map here. Note that we check whether we
9540 // can relay using the real SCID at relay-time (i.e.
9541 // enforce option_scid_alias then), and if the funding tx is ever
9542 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9543 // is always consistent.
9544 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9545 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9546 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9547 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9548 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9551 } else if let Err(reason) = res {
9552 update_maps_on_chan_removal!(self, &channel.context);
9553 // It looks like our counterparty went on-chain or funding transaction was
9554 // reorged out of the main chain. Close the channel.
9555 let reason_message = format!("{}", reason);
9556 failed_channels.push(channel.context.force_shutdown(true, reason));
9557 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9558 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9559 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9563 pending_msg_events.push(events::MessageSendEvent::HandleError {
9564 node_id: channel.context.get_counterparty_node_id(),
9565 action: msgs::ErrorAction::DisconnectPeer {
9566 msg: Some(msgs::ErrorMessage {
9567 channel_id: channel.context.channel_id(),
9568 data: reason_message,
9581 if let Some(height) = height_opt {
9582 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9583 payment.htlcs.retain(|htlc| {
9584 // If height is approaching the number of blocks we think it takes us to get
9585 // our commitment transaction confirmed before the HTLC expires, plus the
9586 // number of blocks we generally consider it to take to do a commitment update,
9587 // just give up on it and fail the HTLC.
9588 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9589 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9590 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9592 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9593 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9594 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9598 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9601 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9602 intercepted_htlcs.retain(|_, htlc| {
9603 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9604 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9605 short_channel_id: htlc.prev_short_channel_id,
9606 user_channel_id: Some(htlc.prev_user_channel_id),
9607 htlc_id: htlc.prev_htlc_id,
9608 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9609 phantom_shared_secret: None,
9610 outpoint: htlc.prev_funding_outpoint,
9611 channel_id: htlc.prev_channel_id,
9612 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9615 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9616 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9617 _ => unreachable!(),
9619 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9620 HTLCFailReason::from_failure_code(0x2000 | 2),
9621 HTLCDestination::InvalidForward { requested_forward_scid }));
9622 let logger = WithContext::from(
9623 &self.logger, None, Some(htlc.prev_channel_id)
9625 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9631 self.handle_init_event_channel_failures(failed_channels);
9633 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9634 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9638 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9639 /// may have events that need processing.
9641 /// In order to check if this [`ChannelManager`] needs persisting, call
9642 /// [`Self::get_and_clear_needs_persistence`].
9644 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9645 /// [`ChannelManager`] and should instead register actions to be taken later.
9646 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9647 self.event_persist_notifier.get_future()
9650 /// Returns true if this [`ChannelManager`] needs to be persisted.
9652 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9653 /// indicates this should be checked.
9654 pub fn get_and_clear_needs_persistence(&self) -> bool {
9655 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9658 #[cfg(any(test, feature = "_test_utils"))]
9659 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9660 self.event_persist_notifier.notify_pending()
9663 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9664 /// [`chain::Confirm`] interfaces.
9665 pub fn current_best_block(&self) -> BestBlock {
9666 self.best_block.read().unwrap().clone()
9669 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9670 /// [`ChannelManager`].
9671 pub fn node_features(&self) -> NodeFeatures {
9672 provided_node_features(&self.default_configuration)
9675 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9676 /// [`ChannelManager`].
9678 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9679 /// or not. Thus, this method is not public.
9680 #[cfg(any(feature = "_test_utils", test))]
9681 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9682 provided_bolt11_invoice_features(&self.default_configuration)
9685 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9686 /// [`ChannelManager`].
9687 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9688 provided_bolt12_invoice_features(&self.default_configuration)
9691 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9692 /// [`ChannelManager`].
9693 pub fn channel_features(&self) -> ChannelFeatures {
9694 provided_channel_features(&self.default_configuration)
9697 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9698 /// [`ChannelManager`].
9699 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9700 provided_channel_type_features(&self.default_configuration)
9703 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9704 /// [`ChannelManager`].
9705 pub fn init_features(&self) -> InitFeatures {
9706 provided_init_features(&self.default_configuration)
9710 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9711 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9713 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9714 T::Target: BroadcasterInterface,
9715 ES::Target: EntropySource,
9716 NS::Target: NodeSigner,
9717 SP::Target: SignerProvider,
9718 F::Target: FeeEstimator,
9722 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9723 // Note that we never need to persist the updated ChannelManager for an inbound
9724 // open_channel message - pre-funded channels are never written so there should be no
9725 // change to the contents.
9726 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9727 let res = self.internal_open_channel(counterparty_node_id, msg);
9728 let persist = match &res {
9729 Err(e) if e.closes_channel() => {
9730 debug_assert!(false, "We shouldn't close a new channel");
9731 NotifyOption::DoPersist
9733 _ => NotifyOption::SkipPersistHandleEvents,
9735 let _ = handle_error!(self, res, *counterparty_node_id);
9740 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9741 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9742 "Dual-funded channels not supported".to_owned(),
9743 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9746 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9747 // Note that we never need to persist the updated ChannelManager for an inbound
9748 // accept_channel message - pre-funded channels are never written so there should be no
9749 // change to the contents.
9750 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9751 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9752 NotifyOption::SkipPersistHandleEvents
9756 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9757 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9758 "Dual-funded channels not supported".to_owned(),
9759 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9762 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9763 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9764 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9767 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9768 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9769 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9772 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9773 // Note that we never need to persist the updated ChannelManager for an inbound
9774 // channel_ready message - while the channel's state will change, any channel_ready message
9775 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9776 // will not force-close the channel on startup.
9777 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9778 let res = self.internal_channel_ready(counterparty_node_id, msg);
9779 let persist = match &res {
9780 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9781 _ => NotifyOption::SkipPersistHandleEvents,
9783 let _ = handle_error!(self, res, *counterparty_node_id);
9788 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9789 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9790 "Quiescence not supported".to_owned(),
9791 msg.channel_id.clone())), *counterparty_node_id);
9795 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9796 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9797 "Splicing not supported".to_owned(),
9798 msg.channel_id.clone())), *counterparty_node_id);
9802 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9803 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9804 "Splicing not supported (splice_ack)".to_owned(),
9805 msg.channel_id.clone())), *counterparty_node_id);
9809 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9810 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9811 "Splicing not supported (splice_locked)".to_owned(),
9812 msg.channel_id.clone())), *counterparty_node_id);
9815 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9816 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9817 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9820 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9821 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9822 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9825 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9826 // Note that we never need to persist the updated ChannelManager for an inbound
9827 // update_add_htlc message - the message itself doesn't change our channel state only the
9828 // `commitment_signed` message afterwards will.
9829 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9830 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9831 let persist = match &res {
9832 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9833 Err(_) => NotifyOption::SkipPersistHandleEvents,
9834 Ok(()) => NotifyOption::SkipPersistNoEvents,
9836 let _ = handle_error!(self, res, *counterparty_node_id);
9841 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9842 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9843 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9846 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9847 // Note that we never need to persist the updated ChannelManager for an inbound
9848 // update_fail_htlc message - the message itself doesn't change our channel state only the
9849 // `commitment_signed` message afterwards will.
9850 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9851 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9852 let persist = match &res {
9853 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9854 Err(_) => NotifyOption::SkipPersistHandleEvents,
9855 Ok(()) => NotifyOption::SkipPersistNoEvents,
9857 let _ = handle_error!(self, res, *counterparty_node_id);
9862 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9863 // Note that we never need to persist the updated ChannelManager for an inbound
9864 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9865 // only the `commitment_signed` message afterwards will.
9866 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9867 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9868 let persist = match &res {
9869 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9870 Err(_) => NotifyOption::SkipPersistHandleEvents,
9871 Ok(()) => NotifyOption::SkipPersistNoEvents,
9873 let _ = handle_error!(self, res, *counterparty_node_id);
9878 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9879 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9880 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9883 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9884 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9885 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9888 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9889 // Note that we never need to persist the updated ChannelManager for an inbound
9890 // update_fee message - the message itself doesn't change our channel state only the
9891 // `commitment_signed` message afterwards will.
9892 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9893 let res = self.internal_update_fee(counterparty_node_id, msg);
9894 let persist = match &res {
9895 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9896 Err(_) => NotifyOption::SkipPersistHandleEvents,
9897 Ok(()) => NotifyOption::SkipPersistNoEvents,
9899 let _ = handle_error!(self, res, *counterparty_node_id);
9904 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9905 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9906 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9909 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9910 PersistenceNotifierGuard::optionally_notify(self, || {
9911 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9914 NotifyOption::DoPersist
9919 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9920 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9921 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9922 let persist = match &res {
9923 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9924 Err(_) => NotifyOption::SkipPersistHandleEvents,
9925 Ok(persist) => *persist,
9927 let _ = handle_error!(self, res, *counterparty_node_id);
9932 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9933 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9934 self, || NotifyOption::SkipPersistHandleEvents);
9935 let mut failed_channels = Vec::new();
9936 let mut per_peer_state = self.per_peer_state.write().unwrap();
9939 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9940 "Marking channels with {} disconnected and generating channel_updates.",
9941 log_pubkey!(counterparty_node_id)
9943 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9944 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9945 let peer_state = &mut *peer_state_lock;
9946 let pending_msg_events = &mut peer_state.pending_msg_events;
9947 peer_state.channel_by_id.retain(|_, phase| {
9948 let context = match phase {
9949 ChannelPhase::Funded(chan) => {
9950 let logger = WithChannelContext::from(&self.logger, &chan.context);
9951 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9952 // We only retain funded channels that are not shutdown.
9957 // We retain UnfundedOutboundV1 channel for some time in case
9958 // peer unexpectedly disconnects, and intends to reconnect again.
9959 ChannelPhase::UnfundedOutboundV1(_) => {
9962 // Unfunded inbound channels will always be removed.
9963 ChannelPhase::UnfundedInboundV1(chan) => {
9966 #[cfg(any(dual_funding, splicing))]
9967 ChannelPhase::UnfundedOutboundV2(chan) => {
9970 #[cfg(any(dual_funding, splicing))]
9971 ChannelPhase::UnfundedInboundV2(chan) => {
9975 // Clean up for removal.
9976 update_maps_on_chan_removal!(self, &context);
9977 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9980 // Note that we don't bother generating any events for pre-accept channels -
9981 // they're not considered "channels" yet from the PoV of our events interface.
9982 peer_state.inbound_channel_request_by_id.clear();
9983 pending_msg_events.retain(|msg| {
9985 // V1 Channel Establishment
9986 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9987 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9988 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9989 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9990 // V2 Channel Establishment
9991 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9992 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9993 // Common Channel Establishment
9994 &events::MessageSendEvent::SendChannelReady { .. } => false,
9995 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9997 &events::MessageSendEvent::SendStfu { .. } => false,
9999 &events::MessageSendEvent::SendSplice { .. } => false,
10000 &events::MessageSendEvent::SendSpliceAck { .. } => false,
10001 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
10002 // Interactive Transaction Construction
10003 &events::MessageSendEvent::SendTxAddInput { .. } => false,
10004 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
10005 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
10006 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
10007 &events::MessageSendEvent::SendTxComplete { .. } => false,
10008 &events::MessageSendEvent::SendTxSignatures { .. } => false,
10009 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
10010 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
10011 &events::MessageSendEvent::SendTxAbort { .. } => false,
10012 // Channel Operations
10013 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
10014 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
10015 &events::MessageSendEvent::SendClosingSigned { .. } => false,
10016 &events::MessageSendEvent::SendShutdown { .. } => false,
10017 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
10018 &events::MessageSendEvent::HandleError { .. } => false,
10020 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
10021 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
10022 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
10023 // This check here is to ensure exhaustivity.
10024 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
10025 debug_assert!(false, "This event shouldn't have been here");
10028 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
10029 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
10030 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10031 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10032 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10033 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10036 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10037 peer_state.is_connected = false;
10038 peer_state.ok_to_remove(true)
10039 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10042 per_peer_state.remove(counterparty_node_id);
10044 mem::drop(per_peer_state);
10046 for failure in failed_channels.drain(..) {
10047 self.finish_close_channel(failure);
10051 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10052 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10053 if !init_msg.features.supports_static_remote_key() {
10054 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10058 let mut res = Ok(());
10060 PersistenceNotifierGuard::optionally_notify(self, || {
10061 // If we have too many peers connected which don't have funded channels, disconnect the
10062 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10063 // unfunded channels taking up space in memory for disconnected peers, we still let new
10064 // peers connect, but we'll reject new channels from them.
10065 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10066 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10069 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10070 match peer_state_lock.entry(counterparty_node_id.clone()) {
10071 hash_map::Entry::Vacant(e) => {
10072 if inbound_peer_limited {
10074 return NotifyOption::SkipPersistNoEvents;
10076 e.insert(Mutex::new(PeerState {
10077 channel_by_id: new_hash_map(),
10078 inbound_channel_request_by_id: new_hash_map(),
10079 latest_features: init_msg.features.clone(),
10080 pending_msg_events: Vec::new(),
10081 in_flight_monitor_updates: BTreeMap::new(),
10082 monitor_update_blocked_actions: BTreeMap::new(),
10083 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10084 is_connected: true,
10087 hash_map::Entry::Occupied(e) => {
10088 let mut peer_state = e.get().lock().unwrap();
10089 peer_state.latest_features = init_msg.features.clone();
10091 let best_block_height = self.best_block.read().unwrap().height;
10092 if inbound_peer_limited &&
10093 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10094 peer_state.channel_by_id.len()
10097 return NotifyOption::SkipPersistNoEvents;
10100 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10101 peer_state.is_connected = true;
10106 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10108 let per_peer_state = self.per_peer_state.read().unwrap();
10109 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10110 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10111 let peer_state = &mut *peer_state_lock;
10112 let pending_msg_events = &mut peer_state.pending_msg_events;
10114 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10116 ChannelPhase::Funded(chan) => {
10117 let logger = WithChannelContext::from(&self.logger, &chan.context);
10118 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10119 node_id: chan.context.get_counterparty_node_id(),
10120 msg: chan.get_channel_reestablish(&&logger),
10124 ChannelPhase::UnfundedOutboundV1(chan) => {
10125 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10126 node_id: chan.context.get_counterparty_node_id(),
10127 msg: chan.get_open_channel(self.chain_hash),
10131 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10132 #[cfg(any(dual_funding, splicing))]
10133 ChannelPhase::UnfundedOutboundV2(chan) => {
10134 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10135 node_id: chan.context.get_counterparty_node_id(),
10136 msg: chan.get_open_channel_v2(self.chain_hash),
10140 ChannelPhase::UnfundedInboundV1(_) => {
10141 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10142 // they are not persisted and won't be recovered after a crash.
10143 // Therefore, they shouldn't exist at this point.
10144 debug_assert!(false);
10147 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10148 #[cfg(any(dual_funding, splicing))]
10149 ChannelPhase::UnfundedInboundV2(channel) => {
10150 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10151 // they are not persisted and won't be recovered after a crash.
10152 // Therefore, they shouldn't exist at this point.
10153 debug_assert!(false);
10159 return NotifyOption::SkipPersistHandleEvents;
10160 //TODO: Also re-broadcast announcement_signatures
10165 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10166 match &msg.data as &str {
10167 "cannot co-op close channel w/ active htlcs"|
10168 "link failed to shutdown" =>
10170 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10171 // send one while HTLCs are still present. The issue is tracked at
10172 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10173 // to fix it but none so far have managed to land upstream. The issue appears to be
10174 // very low priority for the LND team despite being marked "P1".
10175 // We're not going to bother handling this in a sensible way, instead simply
10176 // repeating the Shutdown message on repeat until morale improves.
10177 if !msg.channel_id.is_zero() {
10178 PersistenceNotifierGuard::optionally_notify(
10180 || -> NotifyOption {
10181 let per_peer_state = self.per_peer_state.read().unwrap();
10182 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10183 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10184 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10185 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10186 if let Some(msg) = chan.get_outbound_shutdown() {
10187 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10188 node_id: *counterparty_node_id,
10192 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10193 node_id: *counterparty_node_id,
10194 action: msgs::ErrorAction::SendWarningMessage {
10195 msg: msgs::WarningMessage {
10196 channel_id: msg.channel_id,
10197 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10199 log_level: Level::Trace,
10202 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10203 // a `ChannelManager` write here.
10204 return NotifyOption::SkipPersistHandleEvents;
10206 NotifyOption::SkipPersistNoEvents
10215 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10217 if msg.channel_id.is_zero() {
10218 let channel_ids: Vec<ChannelId> = {
10219 let per_peer_state = self.per_peer_state.read().unwrap();
10220 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10221 if peer_state_mutex_opt.is_none() { return; }
10222 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10223 let peer_state = &mut *peer_state_lock;
10224 // Note that we don't bother generating any events for pre-accept channels -
10225 // they're not considered "channels" yet from the PoV of our events interface.
10226 peer_state.inbound_channel_request_by_id.clear();
10227 peer_state.channel_by_id.keys().cloned().collect()
10229 for channel_id in channel_ids {
10230 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10231 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10235 // First check if we can advance the channel type and try again.
10236 let per_peer_state = self.per_peer_state.read().unwrap();
10237 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10238 if peer_state_mutex_opt.is_none() { return; }
10239 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10240 let peer_state = &mut *peer_state_lock;
10241 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10242 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10243 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10244 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10245 node_id: *counterparty_node_id,
10251 #[cfg(any(dual_funding, splicing))]
10252 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10253 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10254 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10255 node_id: *counterparty_node_id,
10261 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10262 #[cfg(any(dual_funding, splicing))]
10263 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10267 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10268 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10272 fn provided_node_features(&self) -> NodeFeatures {
10273 provided_node_features(&self.default_configuration)
10276 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10277 provided_init_features(&self.default_configuration)
10280 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10281 Some(vec![self.chain_hash])
10284 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10285 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10286 "Dual-funded channels not supported".to_owned(),
10287 msg.channel_id.clone())), *counterparty_node_id);
10290 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10291 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10292 "Dual-funded channels not supported".to_owned(),
10293 msg.channel_id.clone())), *counterparty_node_id);
10296 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10297 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10298 "Dual-funded channels not supported".to_owned(),
10299 msg.channel_id.clone())), *counterparty_node_id);
10302 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10303 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10304 "Dual-funded channels not supported".to_owned(),
10305 msg.channel_id.clone())), *counterparty_node_id);
10308 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10309 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10310 "Dual-funded channels not supported".to_owned(),
10311 msg.channel_id.clone())), *counterparty_node_id);
10314 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10315 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10316 "Dual-funded channels not supported".to_owned(),
10317 msg.channel_id.clone())), *counterparty_node_id);
10320 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10321 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10322 "Dual-funded channels not supported".to_owned(),
10323 msg.channel_id.clone())), *counterparty_node_id);
10326 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10327 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10328 "Dual-funded channels not supported".to_owned(),
10329 msg.channel_id.clone())), *counterparty_node_id);
10332 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10333 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10334 "Dual-funded channels not supported".to_owned(),
10335 msg.channel_id.clone())), *counterparty_node_id);
10339 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10340 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10342 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10343 T::Target: BroadcasterInterface,
10344 ES::Target: EntropySource,
10345 NS::Target: NodeSigner,
10346 SP::Target: SignerProvider,
10347 F::Target: FeeEstimator,
10351 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
10352 let secp_ctx = &self.secp_ctx;
10353 let expanded_key = &self.inbound_payment_key;
10356 OffersMessage::InvoiceRequest(invoice_request) => {
10357 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10360 Ok(amount_msats) => amount_msats,
10361 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
10363 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10364 Ok(invoice_request) => invoice_request,
10366 let error = Bolt12SemanticError::InvalidMetadata;
10367 return Some(OffersMessage::InvoiceError(error.into()));
10371 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10372 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10373 Some(amount_msats), relative_expiry, None
10375 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10377 let error = Bolt12SemanticError::InvalidAmount;
10378 return Some(OffersMessage::InvoiceError(error.into()));
10382 let payment_context = PaymentContext::Bolt12Offer(Bolt12OfferContext {
10383 offer_id: invoice_request.offer_id,
10384 invoice_request: invoice_request.fields(),
10386 let payment_paths = match self.create_blinded_payment_paths(
10387 amount_msats, payment_secret, payment_context
10389 Ok(payment_paths) => payment_paths,
10391 let error = Bolt12SemanticError::MissingPaths;
10392 return Some(OffersMessage::InvoiceError(error.into()));
10396 #[cfg(not(feature = "std"))]
10397 let created_at = Duration::from_secs(
10398 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10401 let response = if invoice_request.keys.is_some() {
10402 #[cfg(feature = "std")]
10403 let builder = invoice_request.respond_using_derived_keys(
10404 payment_paths, payment_hash
10406 #[cfg(not(feature = "std"))]
10407 let builder = invoice_request.respond_using_derived_keys_no_std(
10408 payment_paths, payment_hash, created_at
10411 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10412 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10413 .map_err(InvoiceError::from)
10415 #[cfg(feature = "std")]
10416 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10417 #[cfg(not(feature = "std"))]
10418 let builder = invoice_request.respond_with_no_std(
10419 payment_paths, payment_hash, created_at
10422 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10423 .and_then(|builder| builder.allow_mpp().build())
10424 .map_err(InvoiceError::from)
10425 .and_then(|invoice| {
10427 let mut invoice = invoice;
10429 .sign(|invoice: &UnsignedBolt12Invoice|
10430 self.node_signer.sign_bolt12_invoice(invoice)
10432 .map_err(InvoiceError::from)
10437 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
10438 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
10441 OffersMessage::Invoice(invoice) => {
10442 let response = invoice
10443 .verify(expanded_key, secp_ctx)
10444 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10445 .and_then(|payment_id| {
10446 let features = self.bolt12_invoice_features();
10447 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10448 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10450 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10452 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10453 InvoiceError::from_string(format!("{:?}", e))
10460 Err(e) => Some(OffersMessage::InvoiceError(e)),
10463 OffersMessage::InvoiceError(invoice_error) => {
10464 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10470 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10471 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10475 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10476 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10478 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10479 T::Target: BroadcasterInterface,
10480 ES::Target: EntropySource,
10481 NS::Target: NodeSigner,
10482 SP::Target: SignerProvider,
10483 F::Target: FeeEstimator,
10487 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10488 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10492 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10493 /// [`ChannelManager`].
10494 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10495 let mut node_features = provided_init_features(config).to_context();
10496 node_features.set_keysend_optional();
10500 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10501 /// [`ChannelManager`].
10503 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10504 /// or not. Thus, this method is not public.
10505 #[cfg(any(feature = "_test_utils", test))]
10506 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10507 provided_init_features(config).to_context()
10510 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10511 /// [`ChannelManager`].
10512 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10513 provided_init_features(config).to_context()
10516 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10517 /// [`ChannelManager`].
10518 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10519 provided_init_features(config).to_context()
10522 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10523 /// [`ChannelManager`].
10524 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10525 ChannelTypeFeatures::from_init(&provided_init_features(config))
10528 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10529 /// [`ChannelManager`].
10530 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10531 // Note that if new features are added here which other peers may (eventually) require, we
10532 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10533 // [`ErroringMessageHandler`].
10534 let mut features = InitFeatures::empty();
10535 features.set_data_loss_protect_required();
10536 features.set_upfront_shutdown_script_optional();
10537 features.set_variable_length_onion_required();
10538 features.set_static_remote_key_required();
10539 features.set_payment_secret_required();
10540 features.set_basic_mpp_optional();
10541 features.set_wumbo_optional();
10542 features.set_shutdown_any_segwit_optional();
10543 features.set_channel_type_optional();
10544 features.set_scid_privacy_optional();
10545 features.set_zero_conf_optional();
10546 features.set_route_blinding_optional();
10547 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10548 features.set_anchors_zero_fee_htlc_tx_optional();
10553 const SERIALIZATION_VERSION: u8 = 1;
10554 const MIN_SERIALIZATION_VERSION: u8 = 1;
10556 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10557 (2, fee_base_msat, required),
10558 (4, fee_proportional_millionths, required),
10559 (6, cltv_expiry_delta, required),
10562 impl_writeable_tlv_based!(ChannelCounterparty, {
10563 (2, node_id, required),
10564 (4, features, required),
10565 (6, unspendable_punishment_reserve, required),
10566 (8, forwarding_info, option),
10567 (9, outbound_htlc_minimum_msat, option),
10568 (11, outbound_htlc_maximum_msat, option),
10571 impl Writeable for ChannelDetails {
10572 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10573 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10574 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10575 let user_channel_id_low = self.user_channel_id as u64;
10576 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10577 write_tlv_fields!(writer, {
10578 (1, self.inbound_scid_alias, option),
10579 (2, self.channel_id, required),
10580 (3, self.channel_type, option),
10581 (4, self.counterparty, required),
10582 (5, self.outbound_scid_alias, option),
10583 (6, self.funding_txo, option),
10584 (7, self.config, option),
10585 (8, self.short_channel_id, option),
10586 (9, self.confirmations, option),
10587 (10, self.channel_value_satoshis, required),
10588 (12, self.unspendable_punishment_reserve, option),
10589 (14, user_channel_id_low, required),
10590 (16, self.balance_msat, required),
10591 (18, self.outbound_capacity_msat, required),
10592 (19, self.next_outbound_htlc_limit_msat, required),
10593 (20, self.inbound_capacity_msat, required),
10594 (21, self.next_outbound_htlc_minimum_msat, required),
10595 (22, self.confirmations_required, option),
10596 (24, self.force_close_spend_delay, option),
10597 (26, self.is_outbound, required),
10598 (28, self.is_channel_ready, required),
10599 (30, self.is_usable, required),
10600 (32, self.is_public, required),
10601 (33, self.inbound_htlc_minimum_msat, option),
10602 (35, self.inbound_htlc_maximum_msat, option),
10603 (37, user_channel_id_high_opt, option),
10604 (39, self.feerate_sat_per_1000_weight, option),
10605 (41, self.channel_shutdown_state, option),
10606 (43, self.pending_inbound_htlcs, optional_vec),
10607 (45, self.pending_outbound_htlcs, optional_vec),
10613 impl Readable for ChannelDetails {
10614 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10615 _init_and_read_len_prefixed_tlv_fields!(reader, {
10616 (1, inbound_scid_alias, option),
10617 (2, channel_id, required),
10618 (3, channel_type, option),
10619 (4, counterparty, required),
10620 (5, outbound_scid_alias, option),
10621 (6, funding_txo, option),
10622 (7, config, option),
10623 (8, short_channel_id, option),
10624 (9, confirmations, option),
10625 (10, channel_value_satoshis, required),
10626 (12, unspendable_punishment_reserve, option),
10627 (14, user_channel_id_low, required),
10628 (16, balance_msat, required),
10629 (18, outbound_capacity_msat, required),
10630 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10631 // filled in, so we can safely unwrap it here.
10632 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10633 (20, inbound_capacity_msat, required),
10634 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10635 (22, confirmations_required, option),
10636 (24, force_close_spend_delay, option),
10637 (26, is_outbound, required),
10638 (28, is_channel_ready, required),
10639 (30, is_usable, required),
10640 (32, is_public, required),
10641 (33, inbound_htlc_minimum_msat, option),
10642 (35, inbound_htlc_maximum_msat, option),
10643 (37, user_channel_id_high_opt, option),
10644 (39, feerate_sat_per_1000_weight, option),
10645 (41, channel_shutdown_state, option),
10646 (43, pending_inbound_htlcs, optional_vec),
10647 (45, pending_outbound_htlcs, optional_vec),
10650 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10651 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10652 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10653 let user_channel_id = user_channel_id_low as u128 +
10654 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10657 inbound_scid_alias,
10658 channel_id: channel_id.0.unwrap(),
10660 counterparty: counterparty.0.unwrap(),
10661 outbound_scid_alias,
10665 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10666 unspendable_punishment_reserve,
10668 balance_msat: balance_msat.0.unwrap(),
10669 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10670 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10671 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10672 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10673 confirmations_required,
10675 force_close_spend_delay,
10676 is_outbound: is_outbound.0.unwrap(),
10677 is_channel_ready: is_channel_ready.0.unwrap(),
10678 is_usable: is_usable.0.unwrap(),
10679 is_public: is_public.0.unwrap(),
10680 inbound_htlc_minimum_msat,
10681 inbound_htlc_maximum_msat,
10682 feerate_sat_per_1000_weight,
10683 channel_shutdown_state,
10684 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10685 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10690 impl_writeable_tlv_based!(PhantomRouteHints, {
10691 (2, channels, required_vec),
10692 (4, phantom_scid, required),
10693 (6, real_node_pubkey, required),
10696 impl_writeable_tlv_based!(BlindedForward, {
10697 (0, inbound_blinding_point, required),
10698 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10701 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10703 (0, onion_packet, required),
10704 (1, blinded, option),
10705 (2, short_channel_id, required),
10708 (0, payment_data, required),
10709 (1, phantom_shared_secret, option),
10710 (2, incoming_cltv_expiry, required),
10711 (3, payment_metadata, option),
10712 (5, custom_tlvs, optional_vec),
10713 (7, requires_blinded_error, (default_value, false)),
10714 (9, payment_context, option),
10716 (2, ReceiveKeysend) => {
10717 (0, payment_preimage, required),
10718 (1, requires_blinded_error, (default_value, false)),
10719 (2, incoming_cltv_expiry, required),
10720 (3, payment_metadata, option),
10721 (4, payment_data, option), // Added in 0.0.116
10722 (5, custom_tlvs, optional_vec),
10726 impl_writeable_tlv_based!(PendingHTLCInfo, {
10727 (0, routing, required),
10728 (2, incoming_shared_secret, required),
10729 (4, payment_hash, required),
10730 (6, outgoing_amt_msat, required),
10731 (8, outgoing_cltv_value, required),
10732 (9, incoming_amt_msat, option),
10733 (10, skimmed_fee_msat, option),
10737 impl Writeable for HTLCFailureMsg {
10738 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10740 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10741 0u8.write(writer)?;
10742 channel_id.write(writer)?;
10743 htlc_id.write(writer)?;
10744 reason.write(writer)?;
10746 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10747 channel_id, htlc_id, sha256_of_onion, failure_code
10749 1u8.write(writer)?;
10750 channel_id.write(writer)?;
10751 htlc_id.write(writer)?;
10752 sha256_of_onion.write(writer)?;
10753 failure_code.write(writer)?;
10760 impl Readable for HTLCFailureMsg {
10761 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10762 let id: u8 = Readable::read(reader)?;
10765 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10766 channel_id: Readable::read(reader)?,
10767 htlc_id: Readable::read(reader)?,
10768 reason: Readable::read(reader)?,
10772 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10773 channel_id: Readable::read(reader)?,
10774 htlc_id: Readable::read(reader)?,
10775 sha256_of_onion: Readable::read(reader)?,
10776 failure_code: Readable::read(reader)?,
10779 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10780 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10781 // messages contained in the variants.
10782 // In version 0.0.101, support for reading the variants with these types was added, and
10783 // we should migrate to writing these variants when UpdateFailHTLC or
10784 // UpdateFailMalformedHTLC get TLV fields.
10786 let length: BigSize = Readable::read(reader)?;
10787 let mut s = FixedLengthReader::new(reader, length.0);
10788 let res = Readable::read(&mut s)?;
10789 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10790 Ok(HTLCFailureMsg::Relay(res))
10793 let length: BigSize = Readable::read(reader)?;
10794 let mut s = FixedLengthReader::new(reader, length.0);
10795 let res = Readable::read(&mut s)?;
10796 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10797 Ok(HTLCFailureMsg::Malformed(res))
10799 _ => Err(DecodeError::UnknownRequiredFeature),
10804 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10809 impl_writeable_tlv_based_enum!(BlindedFailure,
10810 (0, FromIntroductionNode) => {},
10811 (2, FromBlindedNode) => {}, ;
10814 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10815 (0, short_channel_id, required),
10816 (1, phantom_shared_secret, option),
10817 (2, outpoint, required),
10818 (3, blinded_failure, option),
10819 (4, htlc_id, required),
10820 (6, incoming_packet_shared_secret, required),
10821 (7, user_channel_id, option),
10822 // Note that by the time we get past the required read for type 2 above, outpoint will be
10823 // filled in, so we can safely unwrap it here.
10824 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10827 impl Writeable for ClaimableHTLC {
10828 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10829 let (payment_data, keysend_preimage) = match &self.onion_payload {
10830 OnionPayload::Invoice { _legacy_hop_data } => {
10831 (_legacy_hop_data.as_ref(), None)
10833 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
10835 write_tlv_fields!(writer, {
10836 (0, self.prev_hop, required),
10837 (1, self.total_msat, required),
10838 (2, self.value, required),
10839 (3, self.sender_intended_value, required),
10840 (4, payment_data, option),
10841 (5, self.total_value_received, option),
10842 (6, self.cltv_expiry, required),
10843 (8, keysend_preimage, option),
10844 (10, self.counterparty_skimmed_fee_msat, option),
10850 impl Readable for ClaimableHTLC {
10851 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10852 _init_and_read_len_prefixed_tlv_fields!(reader, {
10853 (0, prev_hop, required),
10854 (1, total_msat, option),
10855 (2, value_ser, required),
10856 (3, sender_intended_value, option),
10857 (4, payment_data_opt, option),
10858 (5, total_value_received, option),
10859 (6, cltv_expiry, required),
10860 (8, keysend_preimage, option),
10861 (10, counterparty_skimmed_fee_msat, option),
10863 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10864 let value = value_ser.0.unwrap();
10865 let onion_payload = match keysend_preimage {
10867 if payment_data.is_some() {
10868 return Err(DecodeError::InvalidValue)
10870 if total_msat.is_none() {
10871 total_msat = Some(value);
10873 OnionPayload::Spontaneous(p)
10876 if total_msat.is_none() {
10877 if payment_data.is_none() {
10878 return Err(DecodeError::InvalidValue)
10880 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10882 OnionPayload::Invoice { _legacy_hop_data: payment_data }
10886 prev_hop: prev_hop.0.unwrap(),
10889 sender_intended_value: sender_intended_value.unwrap_or(value),
10890 total_value_received,
10891 total_msat: total_msat.unwrap(),
10893 cltv_expiry: cltv_expiry.0.unwrap(),
10894 counterparty_skimmed_fee_msat,
10899 impl Readable for HTLCSource {
10900 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10901 let id: u8 = Readable::read(reader)?;
10904 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10905 let mut first_hop_htlc_msat: u64 = 0;
10906 let mut path_hops = Vec::new();
10907 let mut payment_id = None;
10908 let mut payment_params: Option<PaymentParameters> = None;
10909 let mut blinded_tail: Option<BlindedTail> = None;
10910 read_tlv_fields!(reader, {
10911 (0, session_priv, required),
10912 (1, payment_id, option),
10913 (2, first_hop_htlc_msat, required),
10914 (4, path_hops, required_vec),
10915 (5, payment_params, (option: ReadableArgs, 0)),
10916 (6, blinded_tail, option),
10918 if payment_id.is_none() {
10919 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10921 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10923 let path = Path { hops: path_hops, blinded_tail };
10924 if path.hops.len() == 0 {
10925 return Err(DecodeError::InvalidValue);
10927 if let Some(params) = payment_params.as_mut() {
10928 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10929 if final_cltv_expiry_delta == &0 {
10930 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10934 Ok(HTLCSource::OutboundRoute {
10935 session_priv: session_priv.0.unwrap(),
10936 first_hop_htlc_msat,
10938 payment_id: payment_id.unwrap(),
10941 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10942 _ => Err(DecodeError::UnknownRequiredFeature),
10947 impl Writeable for HTLCSource {
10948 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10950 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10951 0u8.write(writer)?;
10952 let payment_id_opt = Some(payment_id);
10953 write_tlv_fields!(writer, {
10954 (0, session_priv, required),
10955 (1, payment_id_opt, option),
10956 (2, first_hop_htlc_msat, required),
10957 // 3 was previously used to write a PaymentSecret for the payment.
10958 (4, path.hops, required_vec),
10959 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10960 (6, path.blinded_tail, option),
10963 HTLCSource::PreviousHopData(ref field) => {
10964 1u8.write(writer)?;
10965 field.write(writer)?;
10972 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10973 (0, forward_info, required),
10974 (1, prev_user_channel_id, (default_value, 0)),
10975 (2, prev_short_channel_id, required),
10976 (4, prev_htlc_id, required),
10977 (6, prev_funding_outpoint, required),
10978 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10979 // filled in, so we can safely unwrap it here.
10980 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10983 impl Writeable for HTLCForwardInfo {
10984 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10985 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10987 Self::AddHTLC(info) => {
10991 Self::FailHTLC { htlc_id, err_packet } => {
10992 FAIL_HTLC_VARIANT_ID.write(w)?;
10993 write_tlv_fields!(w, {
10994 (0, htlc_id, required),
10995 (2, err_packet, required),
10998 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
10999 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
11000 // packet so older versions have something to fail back with, but serialize the real data as
11001 // optional TLVs for the benefit of newer versions.
11002 FAIL_HTLC_VARIANT_ID.write(w)?;
11003 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
11004 write_tlv_fields!(w, {
11005 (0, htlc_id, required),
11006 (1, failure_code, required),
11007 (2, dummy_err_packet, required),
11008 (3, sha256_of_onion, required),
11016 impl Readable for HTLCForwardInfo {
11017 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
11018 let id: u8 = Readable::read(r)?;
11020 0 => Self::AddHTLC(Readable::read(r)?),
11022 _init_and_read_len_prefixed_tlv_fields!(r, {
11023 (0, htlc_id, required),
11024 (1, malformed_htlc_failure_code, option),
11025 (2, err_packet, required),
11026 (3, sha256_of_onion, option),
11028 if let Some(failure_code) = malformed_htlc_failure_code {
11029 Self::FailMalformedHTLC {
11030 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11032 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
11036 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11037 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11041 _ => return Err(DecodeError::InvalidValue),
11046 impl_writeable_tlv_based!(PendingInboundPayment, {
11047 (0, payment_secret, required),
11048 (2, expiry_time, required),
11049 (4, user_payment_id, required),
11050 (6, payment_preimage, required),
11051 (8, min_value_msat, required),
11054 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11056 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11057 T::Target: BroadcasterInterface,
11058 ES::Target: EntropySource,
11059 NS::Target: NodeSigner,
11060 SP::Target: SignerProvider,
11061 F::Target: FeeEstimator,
11065 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11066 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11068 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11070 self.chain_hash.write(writer)?;
11072 let best_block = self.best_block.read().unwrap();
11073 best_block.height.write(writer)?;
11074 best_block.block_hash.write(writer)?;
11077 let per_peer_state = self.per_peer_state.write().unwrap();
11079 let mut serializable_peer_count: u64 = 0;
11081 let mut number_of_funded_channels = 0;
11082 for (_, peer_state_mutex) in per_peer_state.iter() {
11083 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11084 let peer_state = &mut *peer_state_lock;
11085 if !peer_state.ok_to_remove(false) {
11086 serializable_peer_count += 1;
11089 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11090 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11094 (number_of_funded_channels as u64).write(writer)?;
11096 for (_, peer_state_mutex) in per_peer_state.iter() {
11097 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11098 let peer_state = &mut *peer_state_lock;
11099 for channel in peer_state.channel_by_id.iter().filter_map(
11100 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11101 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11104 channel.write(writer)?;
11110 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11111 (forward_htlcs.len() as u64).write(writer)?;
11112 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11113 short_channel_id.write(writer)?;
11114 (pending_forwards.len() as u64).write(writer)?;
11115 for forward in pending_forwards {
11116 forward.write(writer)?;
11121 let mut decode_update_add_htlcs_opt = None;
11122 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11123 if !decode_update_add_htlcs.is_empty() {
11124 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11127 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11128 let claimable_payments = self.claimable_payments.lock().unwrap();
11129 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11131 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11132 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11133 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11134 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11135 payment_hash.write(writer)?;
11136 (payment.htlcs.len() as u64).write(writer)?;
11137 for htlc in payment.htlcs.iter() {
11138 htlc.write(writer)?;
11140 htlc_purposes.push(&payment.purpose);
11141 htlc_onion_fields.push(&payment.onion_fields);
11144 let mut monitor_update_blocked_actions_per_peer = None;
11145 let mut peer_states = Vec::new();
11146 for (_, peer_state_mutex) in per_peer_state.iter() {
11147 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11148 // of a lockorder violation deadlock - no other thread can be holding any
11149 // per_peer_state lock at all.
11150 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11153 (serializable_peer_count).write(writer)?;
11154 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11155 // Peers which we have no channels to should be dropped once disconnected. As we
11156 // disconnect all peers when shutting down and serializing the ChannelManager, we
11157 // consider all peers as disconnected here. There's therefore no need write peers with
11159 if !peer_state.ok_to_remove(false) {
11160 peer_pubkey.write(writer)?;
11161 peer_state.latest_features.write(writer)?;
11162 if !peer_state.monitor_update_blocked_actions.is_empty() {
11163 monitor_update_blocked_actions_per_peer
11164 .get_or_insert_with(Vec::new)
11165 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11170 let events = self.pending_events.lock().unwrap();
11171 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11172 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11173 // refuse to read the new ChannelManager.
11174 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11175 if events_not_backwards_compatible {
11176 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11177 // well save the space and not write any events here.
11178 0u64.write(writer)?;
11180 (events.len() as u64).write(writer)?;
11181 for (event, _) in events.iter() {
11182 event.write(writer)?;
11186 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11187 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11188 // the closing monitor updates were always effectively replayed on startup (either directly
11189 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11190 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11191 0u64.write(writer)?;
11193 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11194 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11195 // likely to be identical.
11196 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11197 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11199 (pending_inbound_payments.len() as u64).write(writer)?;
11200 for (hash, pending_payment) in pending_inbound_payments.iter() {
11201 hash.write(writer)?;
11202 pending_payment.write(writer)?;
11205 // For backwards compat, write the session privs and their total length.
11206 let mut num_pending_outbounds_compat: u64 = 0;
11207 for (_, outbound) in pending_outbound_payments.iter() {
11208 if !outbound.is_fulfilled() && !outbound.abandoned() {
11209 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11212 num_pending_outbounds_compat.write(writer)?;
11213 for (_, outbound) in pending_outbound_payments.iter() {
11215 PendingOutboundPayment::Legacy { session_privs } |
11216 PendingOutboundPayment::Retryable { session_privs, .. } => {
11217 for session_priv in session_privs.iter() {
11218 session_priv.write(writer)?;
11221 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11222 PendingOutboundPayment::InvoiceReceived { .. } => {},
11223 PendingOutboundPayment::Fulfilled { .. } => {},
11224 PendingOutboundPayment::Abandoned { .. } => {},
11228 // Encode without retry info for 0.0.101 compatibility.
11229 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11230 for (id, outbound) in pending_outbound_payments.iter() {
11232 PendingOutboundPayment::Legacy { session_privs } |
11233 PendingOutboundPayment::Retryable { session_privs, .. } => {
11234 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11240 let mut pending_intercepted_htlcs = None;
11241 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11242 if our_pending_intercepts.len() != 0 {
11243 pending_intercepted_htlcs = Some(our_pending_intercepts);
11246 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11247 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11248 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11249 // map. Thus, if there are no entries we skip writing a TLV for it.
11250 pending_claiming_payments = None;
11253 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11254 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11255 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11256 if !updates.is_empty() {
11257 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11258 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11263 write_tlv_fields!(writer, {
11264 (1, pending_outbound_payments_no_retry, required),
11265 (2, pending_intercepted_htlcs, option),
11266 (3, pending_outbound_payments, required),
11267 (4, pending_claiming_payments, option),
11268 (5, self.our_network_pubkey, required),
11269 (6, monitor_update_blocked_actions_per_peer, option),
11270 (7, self.fake_scid_rand_bytes, required),
11271 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11272 (9, htlc_purposes, required_vec),
11273 (10, in_flight_monitor_updates, option),
11274 (11, self.probing_cookie_secret, required),
11275 (13, htlc_onion_fields, optional_vec),
11276 (14, decode_update_add_htlcs_opt, option),
11283 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11284 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11285 (self.len() as u64).write(w)?;
11286 for (event, action) in self.iter() {
11289 #[cfg(debug_assertions)] {
11290 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11291 // be persisted and are regenerated on restart. However, if such an event has a
11292 // post-event-handling action we'll write nothing for the event and would have to
11293 // either forget the action or fail on deserialization (which we do below). Thus,
11294 // check that the event is sane here.
11295 let event_encoded = event.encode();
11296 let event_read: Option<Event> =
11297 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11298 if action.is_some() { assert!(event_read.is_some()); }
11304 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11305 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11306 let len: u64 = Readable::read(reader)?;
11307 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11308 let mut events: Self = VecDeque::with_capacity(cmp::min(
11309 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11312 let ev_opt = MaybeReadable::read(reader)?;
11313 let action = Readable::read(reader)?;
11314 if let Some(ev) = ev_opt {
11315 events.push_back((ev, action));
11316 } else if action.is_some() {
11317 return Err(DecodeError::InvalidValue);
11324 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11325 (0, NotShuttingDown) => {},
11326 (2, ShutdownInitiated) => {},
11327 (4, ResolvingHTLCs) => {},
11328 (6, NegotiatingClosingFee) => {},
11329 (8, ShutdownComplete) => {}, ;
11332 /// Arguments for the creation of a ChannelManager that are not deserialized.
11334 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11336 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11337 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11338 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11339 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11340 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11341 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11342 /// same way you would handle a [`chain::Filter`] call using
11343 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11344 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11345 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11346 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11347 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11348 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11350 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11351 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11353 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11354 /// call any other methods on the newly-deserialized [`ChannelManager`].
11356 /// Note that because some channels may be closed during deserialization, it is critical that you
11357 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11358 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11359 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11360 /// not force-close the same channels but consider them live), you may end up revoking a state for
11361 /// which you've already broadcasted the transaction.
11363 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11364 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11366 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11367 T::Target: BroadcasterInterface,
11368 ES::Target: EntropySource,
11369 NS::Target: NodeSigner,
11370 SP::Target: SignerProvider,
11371 F::Target: FeeEstimator,
11375 /// A cryptographically secure source of entropy.
11376 pub entropy_source: ES,
11378 /// A signer that is able to perform node-scoped cryptographic operations.
11379 pub node_signer: NS,
11381 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11382 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11384 pub signer_provider: SP,
11386 /// The fee_estimator for use in the ChannelManager in the future.
11388 /// No calls to the FeeEstimator will be made during deserialization.
11389 pub fee_estimator: F,
11390 /// The chain::Watch for use in the ChannelManager in the future.
11392 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11393 /// you have deserialized ChannelMonitors separately and will add them to your
11394 /// chain::Watch after deserializing this ChannelManager.
11395 pub chain_monitor: M,
11397 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11398 /// used to broadcast the latest local commitment transactions of channels which must be
11399 /// force-closed during deserialization.
11400 pub tx_broadcaster: T,
11401 /// The router which will be used in the ChannelManager in the future for finding routes
11402 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11404 /// No calls to the router will be made during deserialization.
11406 /// The Logger for use in the ChannelManager and which may be used to log information during
11407 /// deserialization.
11409 /// Default settings used for new channels. Any existing channels will continue to use the
11410 /// runtime settings which were stored when the ChannelManager was serialized.
11411 pub default_config: UserConfig,
11413 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11414 /// value.context.get_funding_txo() should be the key).
11416 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11417 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11418 /// is true for missing channels as well. If there is a monitor missing for which we find
11419 /// channel data Err(DecodeError::InvalidValue) will be returned.
11421 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11424 /// This is not exported to bindings users because we have no HashMap bindings
11425 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11428 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11429 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11431 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11432 T::Target: BroadcasterInterface,
11433 ES::Target: EntropySource,
11434 NS::Target: NodeSigner,
11435 SP::Target: SignerProvider,
11436 F::Target: FeeEstimator,
11440 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11441 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11442 /// populate a HashMap directly from C.
11443 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11444 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11446 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11447 channel_monitors: hash_map_from_iter(
11448 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11454 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11455 // SipmleArcChannelManager type:
11456 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11457 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11459 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11460 T::Target: BroadcasterInterface,
11461 ES::Target: EntropySource,
11462 NS::Target: NodeSigner,
11463 SP::Target: SignerProvider,
11464 F::Target: FeeEstimator,
11468 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11469 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11470 Ok((blockhash, Arc::new(chan_manager)))
11474 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11475 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11477 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11478 T::Target: BroadcasterInterface,
11479 ES::Target: EntropySource,
11480 NS::Target: NodeSigner,
11481 SP::Target: SignerProvider,
11482 F::Target: FeeEstimator,
11486 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11487 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11489 let chain_hash: ChainHash = Readable::read(reader)?;
11490 let best_block_height: u32 = Readable::read(reader)?;
11491 let best_block_hash: BlockHash = Readable::read(reader)?;
11493 let mut failed_htlcs = Vec::new();
11495 let channel_count: u64 = Readable::read(reader)?;
11496 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11497 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11498 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11499 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11500 let mut channel_closures = VecDeque::new();
11501 let mut close_background_events = Vec::new();
11502 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11503 for _ in 0..channel_count {
11504 let mut channel: Channel<SP> = Channel::read(reader, (
11505 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11507 let logger = WithChannelContext::from(&args.logger, &channel.context);
11508 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11509 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11510 funding_txo_set.insert(funding_txo.clone());
11511 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11512 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11513 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11514 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11515 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11516 // But if the channel is behind of the monitor, close the channel:
11517 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11518 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11519 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11520 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11521 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11523 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11524 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11525 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11527 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11528 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11529 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11531 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11532 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11533 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11535 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11536 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11537 return Err(DecodeError::InvalidValue);
11539 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11540 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11541 counterparty_node_id, funding_txo, channel_id, update
11544 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11545 channel_closures.push_back((events::Event::ChannelClosed {
11546 channel_id: channel.context.channel_id(),
11547 user_channel_id: channel.context.get_user_id(),
11548 reason: ClosureReason::OutdatedChannelManager,
11549 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11550 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11551 channel_funding_txo: channel.context.get_funding_txo(),
11553 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11554 let mut found_htlc = false;
11555 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11556 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11559 // If we have some HTLCs in the channel which are not present in the newer
11560 // ChannelMonitor, they have been removed and should be failed back to
11561 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11562 // were actually claimed we'd have generated and ensured the previous-hop
11563 // claim update ChannelMonitor updates were persisted prior to persising
11564 // the ChannelMonitor update for the forward leg, so attempting to fail the
11565 // backwards leg of the HTLC will simply be rejected.
11567 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11568 &channel.context.channel_id(), &payment_hash);
11569 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11573 channel.on_startup_drop_completed_blocked_mon_updates_through(&logger, monitor.get_latest_update_id());
11574 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {} with {} blocked updates",
11575 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11576 monitor.get_latest_update_id(), channel.blocked_monitor_updates_pending());
11577 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11578 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11580 if let Some(funding_txo) = channel.context.get_funding_txo() {
11581 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11583 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11584 hash_map::Entry::Occupied(mut entry) => {
11585 let by_id_map = entry.get_mut();
11586 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11588 hash_map::Entry::Vacant(entry) => {
11589 let mut by_id_map = new_hash_map();
11590 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11591 entry.insert(by_id_map);
11595 } else if channel.is_awaiting_initial_mon_persist() {
11596 // If we were persisted and shut down while the initial ChannelMonitor persistence
11597 // was in-progress, we never broadcasted the funding transaction and can still
11598 // safely discard the channel.
11599 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11600 channel_closures.push_back((events::Event::ChannelClosed {
11601 channel_id: channel.context.channel_id(),
11602 user_channel_id: channel.context.get_user_id(),
11603 reason: ClosureReason::DisconnectedPeer,
11604 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11605 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11606 channel_funding_txo: channel.context.get_funding_txo(),
11609 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11610 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11611 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11612 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11613 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11614 return Err(DecodeError::InvalidValue);
11618 for (funding_txo, monitor) in args.channel_monitors.iter() {
11619 if !funding_txo_set.contains(funding_txo) {
11620 let logger = WithChannelMonitor::from(&args.logger, monitor);
11621 let channel_id = monitor.channel_id();
11622 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11624 let monitor_update = ChannelMonitorUpdate {
11625 update_id: CLOSED_CHANNEL_UPDATE_ID,
11626 counterparty_node_id: None,
11627 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11628 channel_id: Some(monitor.channel_id()),
11630 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11634 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11635 let forward_htlcs_count: u64 = Readable::read(reader)?;
11636 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11637 for _ in 0..forward_htlcs_count {
11638 let short_channel_id = Readable::read(reader)?;
11639 let pending_forwards_count: u64 = Readable::read(reader)?;
11640 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11641 for _ in 0..pending_forwards_count {
11642 pending_forwards.push(Readable::read(reader)?);
11644 forward_htlcs.insert(short_channel_id, pending_forwards);
11647 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11648 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11649 for _ in 0..claimable_htlcs_count {
11650 let payment_hash = Readable::read(reader)?;
11651 let previous_hops_len: u64 = Readable::read(reader)?;
11652 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11653 for _ in 0..previous_hops_len {
11654 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11656 claimable_htlcs_list.push((payment_hash, previous_hops));
11659 let peer_state_from_chans = |channel_by_id| {
11662 inbound_channel_request_by_id: new_hash_map(),
11663 latest_features: InitFeatures::empty(),
11664 pending_msg_events: Vec::new(),
11665 in_flight_monitor_updates: BTreeMap::new(),
11666 monitor_update_blocked_actions: BTreeMap::new(),
11667 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11668 is_connected: false,
11672 let peer_count: u64 = Readable::read(reader)?;
11673 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11674 for _ in 0..peer_count {
11675 let peer_pubkey = Readable::read(reader)?;
11676 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11677 let mut peer_state = peer_state_from_chans(peer_chans);
11678 peer_state.latest_features = Readable::read(reader)?;
11679 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11682 let event_count: u64 = Readable::read(reader)?;
11683 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11684 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11685 for _ in 0..event_count {
11686 match MaybeReadable::read(reader)? {
11687 Some(event) => pending_events_read.push_back((event, None)),
11692 let background_event_count: u64 = Readable::read(reader)?;
11693 for _ in 0..background_event_count {
11694 match <u8 as Readable>::read(reader)? {
11696 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11697 // however we really don't (and never did) need them - we regenerate all
11698 // on-startup monitor updates.
11699 let _: OutPoint = Readable::read(reader)?;
11700 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11702 _ => return Err(DecodeError::InvalidValue),
11706 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11707 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11709 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11710 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11711 for _ in 0..pending_inbound_payment_count {
11712 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11713 return Err(DecodeError::InvalidValue);
11717 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11718 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11719 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11720 for _ in 0..pending_outbound_payments_count_compat {
11721 let session_priv = Readable::read(reader)?;
11722 let payment = PendingOutboundPayment::Legacy {
11723 session_privs: hash_set_from_iter([session_priv]),
11725 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11726 return Err(DecodeError::InvalidValue)
11730 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11731 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11732 let mut pending_outbound_payments = None;
11733 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11734 let mut received_network_pubkey: Option<PublicKey> = None;
11735 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11736 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11737 let mut claimable_htlc_purposes = None;
11738 let mut claimable_htlc_onion_fields = None;
11739 let mut pending_claiming_payments = Some(new_hash_map());
11740 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11741 let mut events_override = None;
11742 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11743 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11744 read_tlv_fields!(reader, {
11745 (1, pending_outbound_payments_no_retry, option),
11746 (2, pending_intercepted_htlcs, option),
11747 (3, pending_outbound_payments, option),
11748 (4, pending_claiming_payments, option),
11749 (5, received_network_pubkey, option),
11750 (6, monitor_update_blocked_actions_per_peer, option),
11751 (7, fake_scid_rand_bytes, option),
11752 (8, events_override, option),
11753 (9, claimable_htlc_purposes, optional_vec),
11754 (10, in_flight_monitor_updates, option),
11755 (11, probing_cookie_secret, option),
11756 (13, claimable_htlc_onion_fields, optional_vec),
11757 (14, decode_update_add_htlcs, option),
11759 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11760 if fake_scid_rand_bytes.is_none() {
11761 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11764 if probing_cookie_secret.is_none() {
11765 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11768 if let Some(events) = events_override {
11769 pending_events_read = events;
11772 if !channel_closures.is_empty() {
11773 pending_events_read.append(&mut channel_closures);
11776 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11777 pending_outbound_payments = Some(pending_outbound_payments_compat);
11778 } else if pending_outbound_payments.is_none() {
11779 let mut outbounds = new_hash_map();
11780 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11781 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11783 pending_outbound_payments = Some(outbounds);
11785 let pending_outbounds = OutboundPayments {
11786 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11787 retry_lock: Mutex::new(())
11790 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11791 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11792 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11793 // replayed, and for each monitor update we have to replay we have to ensure there's a
11794 // `ChannelMonitor` for it.
11796 // In order to do so we first walk all of our live channels (so that we can check their
11797 // state immediately after doing the update replays, when we have the `update_id`s
11798 // available) and then walk any remaining in-flight updates.
11800 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11801 let mut pending_background_events = Vec::new();
11802 macro_rules! handle_in_flight_updates {
11803 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11804 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11806 let mut max_in_flight_update_id = 0;
11807 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11808 for update in $chan_in_flight_upds.iter() {
11809 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11810 update.update_id, $channel_info_log, &$monitor.channel_id());
11811 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11812 pending_background_events.push(
11813 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11814 counterparty_node_id: $counterparty_node_id,
11815 funding_txo: $funding_txo,
11816 channel_id: $monitor.channel_id(),
11817 update: update.clone(),
11820 if $chan_in_flight_upds.is_empty() {
11821 // We had some updates to apply, but it turns out they had completed before we
11822 // were serialized, we just weren't notified of that. Thus, we may have to run
11823 // the completion actions for any monitor updates, but otherwise are done.
11824 pending_background_events.push(
11825 BackgroundEvent::MonitorUpdatesComplete {
11826 counterparty_node_id: $counterparty_node_id,
11827 channel_id: $monitor.channel_id(),
11830 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11831 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11832 return Err(DecodeError::InvalidValue);
11834 max_in_flight_update_id
11838 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11839 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11840 let peer_state = &mut *peer_state_lock;
11841 for phase in peer_state.channel_by_id.values() {
11842 if let ChannelPhase::Funded(chan) = phase {
11843 let logger = WithChannelContext::from(&args.logger, &chan.context);
11845 // Channels that were persisted have to be funded, otherwise they should have been
11847 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11848 let monitor = args.channel_monitors.get(&funding_txo)
11849 .expect("We already checked for monitor presence when loading channels");
11850 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11851 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11852 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11853 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11854 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11855 funding_txo, monitor, peer_state, logger, ""));
11858 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11859 // If the channel is ahead of the monitor, return DangerousValue:
11860 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11861 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11862 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11863 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11864 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11865 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11866 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11867 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11868 return Err(DecodeError::DangerousValue);
11871 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11872 // created in this `channel_by_id` map.
11873 debug_assert!(false);
11874 return Err(DecodeError::InvalidValue);
11879 if let Some(in_flight_upds) = in_flight_monitor_updates {
11880 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11881 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11882 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11883 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11884 // Now that we've removed all the in-flight monitor updates for channels that are
11885 // still open, we need to replay any monitor updates that are for closed channels,
11886 // creating the neccessary peer_state entries as we go.
11887 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11888 Mutex::new(peer_state_from_chans(new_hash_map()))
11890 let mut peer_state = peer_state_mutex.lock().unwrap();
11891 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11892 funding_txo, monitor, peer_state, logger, "closed ");
11894 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11895 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11896 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11897 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11898 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11899 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11900 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11901 log_error!(logger, " Pending in-flight updates are: {:?}", chan_in_flight_updates);
11902 return Err(DecodeError::InvalidValue);
11907 // Note that we have to do the above replays before we push new monitor updates.
11908 pending_background_events.append(&mut close_background_events);
11910 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11911 // should ensure we try them again on the inbound edge. We put them here and do so after we
11912 // have a fully-constructed `ChannelManager` at the end.
11913 let mut pending_claims_to_replay = Vec::new();
11916 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11917 // ChannelMonitor data for any channels for which we do not have authorative state
11918 // (i.e. those for which we just force-closed above or we otherwise don't have a
11919 // corresponding `Channel` at all).
11920 // This avoids several edge-cases where we would otherwise "forget" about pending
11921 // payments which are still in-flight via their on-chain state.
11922 // We only rebuild the pending payments map if we were most recently serialized by
11924 for (_, monitor) in args.channel_monitors.iter() {
11925 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11926 if counterparty_opt.is_none() {
11927 let logger = WithChannelMonitor::from(&args.logger, monitor);
11928 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11929 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11930 if path.hops.is_empty() {
11931 log_error!(logger, "Got an empty path for a pending payment");
11932 return Err(DecodeError::InvalidValue);
11935 let path_amt = path.final_value_msat();
11936 let mut session_priv_bytes = [0; 32];
11937 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11938 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11939 hash_map::Entry::Occupied(mut entry) => {
11940 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11941 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11942 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11944 hash_map::Entry::Vacant(entry) => {
11945 let path_fee = path.fee_msat();
11946 entry.insert(PendingOutboundPayment::Retryable {
11947 retry_strategy: None,
11948 attempts: PaymentAttempts::new(),
11949 payment_params: None,
11950 session_privs: hash_set_from_iter([session_priv_bytes]),
11951 payment_hash: htlc.payment_hash,
11952 payment_secret: None, // only used for retries, and we'll never retry on startup
11953 payment_metadata: None, // only used for retries, and we'll never retry on startup
11954 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11955 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11956 pending_amt_msat: path_amt,
11957 pending_fee_msat: Some(path_fee),
11958 total_msat: path_amt,
11959 starting_block_height: best_block_height,
11960 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11962 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11963 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11968 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11969 match htlc_source {
11970 HTLCSource::PreviousHopData(prev_hop_data) => {
11971 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11972 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11973 info.prev_htlc_id == prev_hop_data.htlc_id
11975 // The ChannelMonitor is now responsible for this HTLC's
11976 // failure/success and will let us know what its outcome is. If we
11977 // still have an entry for this HTLC in `forward_htlcs` or
11978 // `pending_intercepted_htlcs`, we were apparently not persisted after
11979 // the monitor was when forwarding the payment.
11980 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11981 update_add_htlcs.retain(|update_add_htlc| {
11982 let matches = *scid == prev_hop_data.short_channel_id &&
11983 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11985 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11986 &htlc.payment_hash, &monitor.channel_id());
11990 !update_add_htlcs.is_empty()
11992 forward_htlcs.retain(|_, forwards| {
11993 forwards.retain(|forward| {
11994 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11995 if pending_forward_matches_htlc(&htlc_info) {
11996 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11997 &htlc.payment_hash, &monitor.channel_id());
12002 !forwards.is_empty()
12004 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
12005 if pending_forward_matches_htlc(&htlc_info) {
12006 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
12007 &htlc.payment_hash, &monitor.channel_id());
12008 pending_events_read.retain(|(event, _)| {
12009 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
12010 intercepted_id != ev_id
12017 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
12018 if let Some(preimage) = preimage_opt {
12019 let pending_events = Mutex::new(pending_events_read);
12020 // Note that we set `from_onchain` to "false" here,
12021 // deliberately keeping the pending payment around forever.
12022 // Given it should only occur when we have a channel we're
12023 // force-closing for being stale that's okay.
12024 // The alternative would be to wipe the state when claiming,
12025 // generating a `PaymentPathSuccessful` event but regenerating
12026 // it and the `PaymentSent` on every restart until the
12027 // `ChannelMonitor` is removed.
12029 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
12030 channel_funding_outpoint: monitor.get_funding_txo().0,
12031 channel_id: monitor.channel_id(),
12032 counterparty_node_id: path.hops[0].pubkey,
12034 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
12035 path, false, compl_action, &pending_events, &&logger);
12036 pending_events_read = pending_events.into_inner().unwrap();
12043 // Whether the downstream channel was closed or not, try to re-apply any payment
12044 // preimages from it which may be needed in upstream channels for forwarded
12046 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12048 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12049 if let HTLCSource::PreviousHopData(_) = htlc_source {
12050 if let Some(payment_preimage) = preimage_opt {
12051 Some((htlc_source, payment_preimage, htlc.amount_msat,
12052 // Check if `counterparty_opt.is_none()` to see if the
12053 // downstream chan is closed (because we don't have a
12054 // channel_id -> peer map entry).
12055 counterparty_opt.is_none(),
12056 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12057 monitor.get_funding_txo().0, monitor.channel_id()))
12060 // If it was an outbound payment, we've handled it above - if a preimage
12061 // came in and we persisted the `ChannelManager` we either handled it and
12062 // are good to go or the channel force-closed - we don't have to handle the
12063 // channel still live case here.
12067 for tuple in outbound_claimed_htlcs_iter {
12068 pending_claims_to_replay.push(tuple);
12073 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12074 // If we have pending HTLCs to forward, assume we either dropped a
12075 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12076 // shut down before the timer hit. Either way, set the time_forwardable to a small
12077 // constant as enough time has likely passed that we should simply handle the forwards
12078 // now, or at least after the user gets a chance to reconnect to our peers.
12079 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12080 time_forwardable: Duration::from_secs(2),
12084 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12085 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12087 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12088 if let Some(purposes) = claimable_htlc_purposes {
12089 if purposes.len() != claimable_htlcs_list.len() {
12090 return Err(DecodeError::InvalidValue);
12092 if let Some(onion_fields) = claimable_htlc_onion_fields {
12093 if onion_fields.len() != claimable_htlcs_list.len() {
12094 return Err(DecodeError::InvalidValue);
12096 for (purpose, (onion, (payment_hash, htlcs))) in
12097 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12099 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12100 purpose, htlcs, onion_fields: onion,
12102 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12105 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12106 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12107 purpose, htlcs, onion_fields: None,
12109 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12113 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12114 // include a `_legacy_hop_data` in the `OnionPayload`.
12115 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12116 if htlcs.is_empty() {
12117 return Err(DecodeError::InvalidValue);
12119 let purpose = match &htlcs[0].onion_payload {
12120 OnionPayload::Invoice { _legacy_hop_data } => {
12121 if let Some(hop_data) = _legacy_hop_data {
12122 events::PaymentPurpose::Bolt11InvoicePayment {
12123 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12124 Some(inbound_payment) => inbound_payment.payment_preimage,
12125 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12126 Ok((payment_preimage, _)) => payment_preimage,
12128 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12129 return Err(DecodeError::InvalidValue);
12133 payment_secret: hop_data.payment_secret,
12135 } else { return Err(DecodeError::InvalidValue); }
12137 OnionPayload::Spontaneous(payment_preimage) =>
12138 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12140 claimable_payments.insert(payment_hash, ClaimablePayment {
12141 purpose, htlcs, onion_fields: None,
12146 let mut secp_ctx = Secp256k1::new();
12147 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12149 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12151 Err(()) => return Err(DecodeError::InvalidValue)
12153 if let Some(network_pubkey) = received_network_pubkey {
12154 if network_pubkey != our_network_pubkey {
12155 log_error!(args.logger, "Key that was generated does not match the existing key.");
12156 return Err(DecodeError::InvalidValue);
12160 let mut outbound_scid_aliases = new_hash_set();
12161 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12162 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12163 let peer_state = &mut *peer_state_lock;
12164 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12165 if let ChannelPhase::Funded(chan) = phase {
12166 let logger = WithChannelContext::from(&args.logger, &chan.context);
12167 if chan.context.outbound_scid_alias() == 0 {
12168 let mut outbound_scid_alias;
12170 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12171 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12172 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12174 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12175 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12176 // Note that in rare cases its possible to hit this while reading an older
12177 // channel if we just happened to pick a colliding outbound alias above.
12178 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12179 return Err(DecodeError::InvalidValue);
12181 if chan.context.is_usable() {
12182 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12183 // Note that in rare cases its possible to hit this while reading an older
12184 // channel if we just happened to pick a colliding outbound alias above.
12185 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12186 return Err(DecodeError::InvalidValue);
12190 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12191 // created in this `channel_by_id` map.
12192 debug_assert!(false);
12193 return Err(DecodeError::InvalidValue);
12198 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12200 for (_, monitor) in args.channel_monitors.iter() {
12201 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12202 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12203 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12204 let mut claimable_amt_msat = 0;
12205 let mut receiver_node_id = Some(our_network_pubkey);
12206 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12207 if phantom_shared_secret.is_some() {
12208 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12209 .expect("Failed to get node_id for phantom node recipient");
12210 receiver_node_id = Some(phantom_pubkey)
12212 for claimable_htlc in &payment.htlcs {
12213 claimable_amt_msat += claimable_htlc.value;
12215 // Add a holding-cell claim of the payment to the Channel, which should be
12216 // applied ~immediately on peer reconnection. Because it won't generate a
12217 // new commitment transaction we can just provide the payment preimage to
12218 // the corresponding ChannelMonitor and nothing else.
12220 // We do so directly instead of via the normal ChannelMonitor update
12221 // procedure as the ChainMonitor hasn't yet been initialized, implying
12222 // we're not allowed to call it directly yet. Further, we do the update
12223 // without incrementing the ChannelMonitor update ID as there isn't any
12225 // If we were to generate a new ChannelMonitor update ID here and then
12226 // crash before the user finishes block connect we'd end up force-closing
12227 // this channel as well. On the flip side, there's no harm in restarting
12228 // without the new monitor persisted - we'll end up right back here on
12230 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12231 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12232 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12233 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12234 let peer_state = &mut *peer_state_lock;
12235 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12236 let logger = WithChannelContext::from(&args.logger, &channel.context);
12237 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12240 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12241 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12244 pending_events_read.push_back((events::Event::PaymentClaimed {
12247 purpose: payment.purpose,
12248 amount_msat: claimable_amt_msat,
12249 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12250 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12256 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12257 if let Some(peer_state) = per_peer_state.get(&node_id) {
12258 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12259 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12260 for action in actions.iter() {
12261 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12262 downstream_counterparty_and_funding_outpoint:
12263 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12265 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12267 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12268 blocked_channel_id);
12269 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12270 .entry(*blocked_channel_id)
12271 .or_insert_with(Vec::new).push(blocking_action.clone());
12273 // If the channel we were blocking has closed, we don't need to
12274 // worry about it - the blocked monitor update should never have
12275 // been released from the `Channel` object so it can't have
12276 // completed, and if the channel closed there's no reason to bother
12280 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12281 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12285 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12287 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12288 return Err(DecodeError::InvalidValue);
12292 let channel_manager = ChannelManager {
12294 fee_estimator: bounded_fee_estimator,
12295 chain_monitor: args.chain_monitor,
12296 tx_broadcaster: args.tx_broadcaster,
12297 router: args.router,
12299 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12301 inbound_payment_key: expanded_inbound_key,
12302 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12303 pending_outbound_payments: pending_outbounds,
12304 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12306 forward_htlcs: Mutex::new(forward_htlcs),
12307 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12308 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12309 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12310 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12311 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12312 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12314 probing_cookie_secret: probing_cookie_secret.unwrap(),
12316 our_network_pubkey,
12319 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12321 per_peer_state: FairRwLock::new(per_peer_state),
12323 pending_events: Mutex::new(pending_events_read),
12324 pending_events_processor: AtomicBool::new(false),
12325 pending_background_events: Mutex::new(pending_background_events),
12326 total_consistency_lock: RwLock::new(()),
12327 background_events_processed_since_startup: AtomicBool::new(false),
12329 event_persist_notifier: Notifier::new(),
12330 needs_persist_flag: AtomicBool::new(false),
12332 funding_batch_states: Mutex::new(BTreeMap::new()),
12334 pending_offers_messages: Mutex::new(Vec::new()),
12336 pending_broadcast_messages: Mutex::new(Vec::new()),
12338 entropy_source: args.entropy_source,
12339 node_signer: args.node_signer,
12340 signer_provider: args.signer_provider,
12342 logger: args.logger,
12343 default_configuration: args.default_config,
12346 for htlc_source in failed_htlcs.drain(..) {
12347 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12348 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12349 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12350 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12353 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12354 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12355 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12356 // channel is closed we just assume that it probably came from an on-chain claim.
12357 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12358 downstream_closed, true, downstream_node_id, downstream_funding,
12359 downstream_channel_id, None
12363 //TODO: Broadcast channel update for closed channels, but only after we've made a
12364 //connection or two.
12366 Ok((best_block_hash.clone(), channel_manager))
12372 use bitcoin::hashes::Hash;
12373 use bitcoin::hashes::sha256::Hash as Sha256;
12374 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12375 use core::sync::atomic::Ordering;
12376 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12377 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12378 use crate::ln::ChannelId;
12379 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12380 use crate::ln::functional_test_utils::*;
12381 use crate::ln::msgs::{self, ErrorAction};
12382 use crate::ln::msgs::ChannelMessageHandler;
12383 use crate::prelude::*;
12384 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12385 use crate::util::errors::APIError;
12386 use crate::util::ser::Writeable;
12387 use crate::util::test_utils;
12388 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12389 use crate::sign::EntropySource;
12392 fn test_notify_limits() {
12393 // Check that a few cases which don't require the persistence of a new ChannelManager,
12394 // indeed, do not cause the persistence of a new ChannelManager.
12395 let chanmon_cfgs = create_chanmon_cfgs(3);
12396 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12397 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12398 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12400 // All nodes start with a persistable update pending as `create_network` connects each node
12401 // with all other nodes to make most tests simpler.
12402 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12403 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12404 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12406 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12408 // We check that the channel info nodes have doesn't change too early, even though we try
12409 // to connect messages with new values
12410 chan.0.contents.fee_base_msat *= 2;
12411 chan.1.contents.fee_base_msat *= 2;
12412 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12413 &nodes[1].node.get_our_node_id()).pop().unwrap();
12414 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12415 &nodes[0].node.get_our_node_id()).pop().unwrap();
12417 // The first two nodes (which opened a channel) should now require fresh persistence
12418 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12419 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12420 // ... but the last node should not.
12421 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12422 // After persisting the first two nodes they should no longer need fresh persistence.
12423 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12424 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12426 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12427 // about the channel.
12428 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12429 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12430 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12432 // The nodes which are a party to the channel should also ignore messages from unrelated
12434 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12435 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12436 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12437 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12438 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12439 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12441 // At this point the channel info given by peers should still be the same.
12442 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12443 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12445 // An earlier version of handle_channel_update didn't check the directionality of the
12446 // update message and would always update the local fee info, even if our peer was
12447 // (spuriously) forwarding us our own channel_update.
12448 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12449 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12450 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12452 // First deliver each peers' own message, checking that the node doesn't need to be
12453 // persisted and that its channel info remains the same.
12454 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12455 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12456 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12457 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12458 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12459 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12461 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12462 // the channel info has updated.
12463 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12464 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12465 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12466 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12467 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12468 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12472 fn test_keysend_dup_hash_partial_mpp() {
12473 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12475 let chanmon_cfgs = create_chanmon_cfgs(2);
12476 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12477 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12478 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12479 create_announced_chan_between_nodes(&nodes, 0, 1);
12481 // First, send a partial MPP payment.
12482 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12483 let mut mpp_route = route.clone();
12484 mpp_route.paths.push(mpp_route.paths[0].clone());
12486 let payment_id = PaymentId([42; 32]);
12487 // Use the utility function send_payment_along_path to send the payment with MPP data which
12488 // indicates there are more HTLCs coming.
12489 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12490 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12491 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12492 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12493 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12494 check_added_monitors!(nodes[0], 1);
12495 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12496 assert_eq!(events.len(), 1);
12497 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12499 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12500 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12501 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12502 check_added_monitors!(nodes[0], 1);
12503 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12504 assert_eq!(events.len(), 1);
12505 let ev = events.drain(..).next().unwrap();
12506 let payment_event = SendEvent::from_event(ev);
12507 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12508 check_added_monitors!(nodes[1], 0);
12509 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12510 expect_pending_htlcs_forwardable!(nodes[1]);
12511 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12512 check_added_monitors!(nodes[1], 1);
12513 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12514 assert!(updates.update_add_htlcs.is_empty());
12515 assert!(updates.update_fulfill_htlcs.is_empty());
12516 assert_eq!(updates.update_fail_htlcs.len(), 1);
12517 assert!(updates.update_fail_malformed_htlcs.is_empty());
12518 assert!(updates.update_fee.is_none());
12519 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12520 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12521 expect_payment_failed!(nodes[0], our_payment_hash, true);
12523 // Send the second half of the original MPP payment.
12524 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12525 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12526 check_added_monitors!(nodes[0], 1);
12527 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12528 assert_eq!(events.len(), 1);
12529 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12531 // Claim the full MPP payment. Note that we can't use a test utility like
12532 // claim_funds_along_route because the ordering of the messages causes the second half of the
12533 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12534 // lightning messages manually.
12535 nodes[1].node.claim_funds(payment_preimage);
12536 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12537 check_added_monitors!(nodes[1], 2);
12539 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12540 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12541 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12542 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12543 check_added_monitors!(nodes[0], 1);
12544 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12545 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12546 check_added_monitors!(nodes[1], 1);
12547 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12548 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12549 check_added_monitors!(nodes[1], 1);
12550 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12551 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12552 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12553 check_added_monitors!(nodes[0], 1);
12554 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12555 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12556 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12557 check_added_monitors!(nodes[0], 1);
12558 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12559 check_added_monitors!(nodes[1], 1);
12560 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12561 check_added_monitors!(nodes[1], 1);
12562 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12563 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12564 check_added_monitors!(nodes[0], 1);
12566 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12567 // path's success and a PaymentPathSuccessful event for each path's success.
12568 let events = nodes[0].node.get_and_clear_pending_events();
12569 assert_eq!(events.len(), 2);
12571 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12572 assert_eq!(payment_id, *actual_payment_id);
12573 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12574 assert_eq!(route.paths[0], *path);
12576 _ => panic!("Unexpected event"),
12579 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12580 assert_eq!(payment_id, *actual_payment_id);
12581 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12582 assert_eq!(route.paths[0], *path);
12584 _ => panic!("Unexpected event"),
12589 fn test_keysend_dup_payment_hash() {
12590 do_test_keysend_dup_payment_hash(false);
12591 do_test_keysend_dup_payment_hash(true);
12594 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12595 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12596 // outbound regular payment fails as expected.
12597 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12598 // fails as expected.
12599 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12600 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12601 // reject MPP keysend payments, since in this case where the payment has no payment
12602 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12603 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12604 // payment secrets and reject otherwise.
12605 let chanmon_cfgs = create_chanmon_cfgs(2);
12606 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12607 let mut mpp_keysend_cfg = test_default_channel_config();
12608 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12609 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12610 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12611 create_announced_chan_between_nodes(&nodes, 0, 1);
12612 let scorer = test_utils::TestScorer::new();
12613 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12615 // To start (1), send a regular payment but don't claim it.
12616 let expected_route = [&nodes[1]];
12617 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12619 // Next, attempt a keysend payment and make sure it fails.
12620 let route_params = RouteParameters::from_payment_params_and_value(
12621 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12622 TEST_FINAL_CLTV, false), 100_000);
12623 let route = find_route(
12624 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12625 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12627 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12628 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12629 check_added_monitors!(nodes[0], 1);
12630 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12631 assert_eq!(events.len(), 1);
12632 let ev = events.drain(..).next().unwrap();
12633 let payment_event = SendEvent::from_event(ev);
12634 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12635 check_added_monitors!(nodes[1], 0);
12636 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12637 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12638 // fails), the second will process the resulting failure and fail the HTLC backward
12639 expect_pending_htlcs_forwardable!(nodes[1]);
12640 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12641 check_added_monitors!(nodes[1], 1);
12642 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12643 assert!(updates.update_add_htlcs.is_empty());
12644 assert!(updates.update_fulfill_htlcs.is_empty());
12645 assert_eq!(updates.update_fail_htlcs.len(), 1);
12646 assert!(updates.update_fail_malformed_htlcs.is_empty());
12647 assert!(updates.update_fee.is_none());
12648 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12649 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12650 expect_payment_failed!(nodes[0], payment_hash, true);
12652 // Finally, claim the original payment.
12653 claim_payment(&nodes[0], &expected_route, payment_preimage);
12655 // To start (2), send a keysend payment but don't claim it.
12656 let payment_preimage = PaymentPreimage([42; 32]);
12657 let route = find_route(
12658 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12659 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12661 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12662 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12663 check_added_monitors!(nodes[0], 1);
12664 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12665 assert_eq!(events.len(), 1);
12666 let event = events.pop().unwrap();
12667 let path = vec![&nodes[1]];
12668 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12670 // Next, attempt a regular payment and make sure it fails.
12671 let payment_secret = PaymentSecret([43; 32]);
12672 nodes[0].node.send_payment_with_route(&route, payment_hash,
12673 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12674 check_added_monitors!(nodes[0], 1);
12675 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12676 assert_eq!(events.len(), 1);
12677 let ev = events.drain(..).next().unwrap();
12678 let payment_event = SendEvent::from_event(ev);
12679 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12680 check_added_monitors!(nodes[1], 0);
12681 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12682 expect_pending_htlcs_forwardable!(nodes[1]);
12683 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12684 check_added_monitors!(nodes[1], 1);
12685 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12686 assert!(updates.update_add_htlcs.is_empty());
12687 assert!(updates.update_fulfill_htlcs.is_empty());
12688 assert_eq!(updates.update_fail_htlcs.len(), 1);
12689 assert!(updates.update_fail_malformed_htlcs.is_empty());
12690 assert!(updates.update_fee.is_none());
12691 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12692 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12693 expect_payment_failed!(nodes[0], payment_hash, true);
12695 // Finally, succeed the keysend payment.
12696 claim_payment(&nodes[0], &expected_route, payment_preimage);
12698 // To start (3), send a keysend payment but don't claim it.
12699 let payment_id_1 = PaymentId([44; 32]);
12700 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12701 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12702 check_added_monitors!(nodes[0], 1);
12703 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12704 assert_eq!(events.len(), 1);
12705 let event = events.pop().unwrap();
12706 let path = vec![&nodes[1]];
12707 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12709 // Next, attempt a keysend payment and make sure it fails.
12710 let route_params = RouteParameters::from_payment_params_and_value(
12711 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12714 let route = find_route(
12715 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12716 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12718 let payment_id_2 = PaymentId([45; 32]);
12719 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12720 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12721 check_added_monitors!(nodes[0], 1);
12722 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12723 assert_eq!(events.len(), 1);
12724 let ev = events.drain(..).next().unwrap();
12725 let payment_event = SendEvent::from_event(ev);
12726 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12727 check_added_monitors!(nodes[1], 0);
12728 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12729 expect_pending_htlcs_forwardable!(nodes[1]);
12730 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12731 check_added_monitors!(nodes[1], 1);
12732 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12733 assert!(updates.update_add_htlcs.is_empty());
12734 assert!(updates.update_fulfill_htlcs.is_empty());
12735 assert_eq!(updates.update_fail_htlcs.len(), 1);
12736 assert!(updates.update_fail_malformed_htlcs.is_empty());
12737 assert!(updates.update_fee.is_none());
12738 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12739 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12740 expect_payment_failed!(nodes[0], payment_hash, true);
12742 // Finally, claim the original payment.
12743 claim_payment(&nodes[0], &expected_route, payment_preimage);
12747 fn test_keysend_hash_mismatch() {
12748 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12749 // preimage doesn't match the msg's payment hash.
12750 let chanmon_cfgs = create_chanmon_cfgs(2);
12751 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12752 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12753 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12755 let payer_pubkey = nodes[0].node.get_our_node_id();
12756 let payee_pubkey = nodes[1].node.get_our_node_id();
12758 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12759 let route_params = RouteParameters::from_payment_params_and_value(
12760 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12761 let network_graph = nodes[0].network_graph;
12762 let first_hops = nodes[0].node.list_usable_channels();
12763 let scorer = test_utils::TestScorer::new();
12764 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12765 let route = find_route(
12766 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12767 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12770 let test_preimage = PaymentPreimage([42; 32]);
12771 let mismatch_payment_hash = PaymentHash([43; 32]);
12772 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12773 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12774 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12775 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12776 check_added_monitors!(nodes[0], 1);
12778 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12779 assert_eq!(updates.update_add_htlcs.len(), 1);
12780 assert!(updates.update_fulfill_htlcs.is_empty());
12781 assert!(updates.update_fail_htlcs.is_empty());
12782 assert!(updates.update_fail_malformed_htlcs.is_empty());
12783 assert!(updates.update_fee.is_none());
12784 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12786 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12790 fn test_keysend_msg_with_secret_err() {
12791 // Test that we error as expected if we receive a keysend payment that includes a payment
12792 // secret when we don't support MPP keysend.
12793 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12794 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12795 let chanmon_cfgs = create_chanmon_cfgs(2);
12796 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12797 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12798 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12800 let payer_pubkey = nodes[0].node.get_our_node_id();
12801 let payee_pubkey = nodes[1].node.get_our_node_id();
12803 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12804 let route_params = RouteParameters::from_payment_params_and_value(
12805 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12806 let network_graph = nodes[0].network_graph;
12807 let first_hops = nodes[0].node.list_usable_channels();
12808 let scorer = test_utils::TestScorer::new();
12809 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12810 let route = find_route(
12811 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12812 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12815 let test_preimage = PaymentPreimage([42; 32]);
12816 let test_secret = PaymentSecret([43; 32]);
12817 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12818 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12819 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12820 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12821 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12822 PaymentId(payment_hash.0), None, session_privs).unwrap();
12823 check_added_monitors!(nodes[0], 1);
12825 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12826 assert_eq!(updates.update_add_htlcs.len(), 1);
12827 assert!(updates.update_fulfill_htlcs.is_empty());
12828 assert!(updates.update_fail_htlcs.is_empty());
12829 assert!(updates.update_fail_malformed_htlcs.is_empty());
12830 assert!(updates.update_fee.is_none());
12831 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12833 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12837 fn test_multi_hop_missing_secret() {
12838 let chanmon_cfgs = create_chanmon_cfgs(4);
12839 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12840 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12841 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12843 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12844 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12845 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12846 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12848 // Marshall an MPP route.
12849 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12850 let path = route.paths[0].clone();
12851 route.paths.push(path);
12852 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12853 route.paths[0].hops[0].short_channel_id = chan_1_id;
12854 route.paths[0].hops[1].short_channel_id = chan_3_id;
12855 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12856 route.paths[1].hops[0].short_channel_id = chan_2_id;
12857 route.paths[1].hops[1].short_channel_id = chan_4_id;
12859 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12860 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12862 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12863 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12865 _ => panic!("unexpected error")
12870 fn test_channel_update_cached() {
12871 let chanmon_cfgs = create_chanmon_cfgs(3);
12872 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12873 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12874 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12876 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12878 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12879 check_added_monitors!(nodes[0], 1);
12880 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12882 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12883 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12884 assert_eq!(node_1_events.len(), 0);
12887 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12888 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12889 assert_eq!(pending_broadcast_messages.len(), 1);
12892 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12893 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12894 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12896 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12897 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12899 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12900 assert_eq!(node_0_events.len(), 0);
12902 // Now we reconnect to a peer
12903 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12904 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12906 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12907 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12908 }, false).unwrap();
12910 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12911 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12912 assert_eq!(node_0_events.len(), 1);
12913 match &node_0_events[0] {
12914 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12915 _ => panic!("Unexpected event"),
12918 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12919 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12920 assert_eq!(pending_broadcast_messages.len(), 0);
12925 fn test_drop_disconnected_peers_when_removing_channels() {
12926 let chanmon_cfgs = create_chanmon_cfgs(2);
12927 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12928 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12929 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12931 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12933 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12934 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12936 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12937 check_closed_broadcast!(nodes[0], true);
12938 check_added_monitors!(nodes[0], 1);
12939 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12942 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12943 // disconnected and the channel between has been force closed.
12944 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12945 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12946 assert_eq!(nodes_0_per_peer_state.len(), 1);
12947 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12950 nodes[0].node.timer_tick_occurred();
12953 // Assert that nodes[1] has now been removed.
12954 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12959 fn bad_inbound_payment_hash() {
12960 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12961 let chanmon_cfgs = create_chanmon_cfgs(2);
12962 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12963 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12964 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12966 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12967 let payment_data = msgs::FinalOnionHopData {
12969 total_msat: 100_000,
12972 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12973 // payment verification fails as expected.
12974 let mut bad_payment_hash = payment_hash.clone();
12975 bad_payment_hash.0[0] += 1;
12976 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12977 Ok(_) => panic!("Unexpected ok"),
12979 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12983 // Check that using the original payment hash succeeds.
12984 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12988 fn test_outpoint_to_peer_coverage() {
12989 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12990 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12991 // the channel is successfully closed.
12992 let chanmon_cfgs = create_chanmon_cfgs(2);
12993 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12994 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12995 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12997 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12998 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12999 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
13000 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13001 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13003 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
13004 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
13006 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
13007 // funding transaction, and have the real `channel_id`.
13008 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13009 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13012 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
13014 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
13015 // as it has the funding transaction.
13016 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13017 assert_eq!(nodes_0_lock.len(), 1);
13018 assert!(nodes_0_lock.contains_key(&funding_output));
13021 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13023 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13025 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13027 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13028 assert_eq!(nodes_0_lock.len(), 1);
13029 assert!(nodes_0_lock.contains_key(&funding_output));
13031 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13034 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
13035 // soon as it has the funding transaction.
13036 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13037 assert_eq!(nodes_1_lock.len(), 1);
13038 assert!(nodes_1_lock.contains_key(&funding_output));
13040 check_added_monitors!(nodes[1], 1);
13041 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13042 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13043 check_added_monitors!(nodes[0], 1);
13044 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13045 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13046 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13047 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13049 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13050 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13051 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13052 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13054 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13055 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13057 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13058 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13059 // fee for the closing transaction has been negotiated and the parties has the other
13060 // party's signature for the fee negotiated closing transaction.)
13061 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13062 assert_eq!(nodes_0_lock.len(), 1);
13063 assert!(nodes_0_lock.contains_key(&funding_output));
13067 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13068 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13069 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13070 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13071 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13072 assert_eq!(nodes_1_lock.len(), 1);
13073 assert!(nodes_1_lock.contains_key(&funding_output));
13076 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13078 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13079 // therefore has all it needs to fully close the channel (both signatures for the
13080 // closing transaction).
13081 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13082 // fully closed by `nodes[0]`.
13083 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13085 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13086 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13087 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13088 assert_eq!(nodes_1_lock.len(), 1);
13089 assert!(nodes_1_lock.contains_key(&funding_output));
13092 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13094 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13096 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13097 // they both have everything required to fully close the channel.
13098 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13100 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13102 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13103 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13106 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13107 let expected_message = format!("Not connected to node: {}", expected_public_key);
13108 check_api_error_message(expected_message, res_err)
13111 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13112 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13113 check_api_error_message(expected_message, res_err)
13116 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13117 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13118 check_api_error_message(expected_message, res_err)
13121 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13122 let expected_message = "No such channel awaiting to be accepted.".to_string();
13123 check_api_error_message(expected_message, res_err)
13126 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13128 Err(APIError::APIMisuseError { err }) => {
13129 assert_eq!(err, expected_err_message);
13131 Err(APIError::ChannelUnavailable { err }) => {
13132 assert_eq!(err, expected_err_message);
13134 Ok(_) => panic!("Unexpected Ok"),
13135 Err(_) => panic!("Unexpected Error"),
13140 fn test_api_calls_with_unkown_counterparty_node() {
13141 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13142 // expected if the `counterparty_node_id` is an unkown peer in the
13143 // `ChannelManager::per_peer_state` map.
13144 let chanmon_cfg = create_chanmon_cfgs(2);
13145 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13146 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13147 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13150 let channel_id = ChannelId::from_bytes([4; 32]);
13151 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13152 let intercept_id = InterceptId([0; 32]);
13154 // Test the API functions.
13155 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13157 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13159 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13161 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13163 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13165 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13167 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13171 fn test_api_calls_with_unavailable_channel() {
13172 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13173 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13174 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13175 // the given `channel_id`.
13176 let chanmon_cfg = create_chanmon_cfgs(2);
13177 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13178 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13179 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13181 let counterparty_node_id = nodes[1].node.get_our_node_id();
13184 let channel_id = ChannelId::from_bytes([4; 32]);
13186 // Test the API functions.
13187 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13189 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13191 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13193 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13195 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13197 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13201 fn test_connection_limiting() {
13202 // Test that we limit un-channel'd peers and un-funded channels properly.
13203 let chanmon_cfgs = create_chanmon_cfgs(2);
13204 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13205 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13206 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13208 // Note that create_network connects the nodes together for us
13210 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13211 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13213 let mut funding_tx = None;
13214 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13215 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13216 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13219 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13220 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13221 funding_tx = Some(tx.clone());
13222 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13223 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13225 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13226 check_added_monitors!(nodes[1], 1);
13227 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13229 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13231 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13232 check_added_monitors!(nodes[0], 1);
13233 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13235 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13238 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13239 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13240 &nodes[0].keys_manager);
13241 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13242 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13243 open_channel_msg.common_fields.temporary_channel_id);
13245 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13246 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13248 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13249 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13250 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13251 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13252 peer_pks.push(random_pk);
13253 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13254 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13257 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13258 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13259 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13260 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13261 }, true).unwrap_err();
13263 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13264 // them if we have too many un-channel'd peers.
13265 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13266 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13267 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13268 for ev in chan_closed_events {
13269 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13271 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13272 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13274 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13275 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13276 }, true).unwrap_err();
13278 // but of course if the connection is outbound its allowed...
13279 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13280 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13281 }, false).unwrap();
13282 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13284 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13285 // Even though we accept one more connection from new peers, we won't actually let them
13287 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13288 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13289 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13290 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13291 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13293 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13294 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13295 open_channel_msg.common_fields.temporary_channel_id);
13297 // Of course, however, outbound channels are always allowed
13298 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13299 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13301 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13302 // "protected" and can connect again.
13303 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13304 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13305 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13307 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13309 // Further, because the first channel was funded, we can open another channel with
13311 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13312 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13316 fn test_outbound_chans_unlimited() {
13317 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13318 let chanmon_cfgs = create_chanmon_cfgs(2);
13319 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13320 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13321 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13323 // Note that create_network connects the nodes together for us
13325 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13326 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13328 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13329 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13330 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13331 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13334 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13336 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13337 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13338 open_channel_msg.common_fields.temporary_channel_id);
13340 // but we can still open an outbound channel.
13341 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13342 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13344 // but even with such an outbound channel, additional inbound channels will still fail.
13345 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13346 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13347 open_channel_msg.common_fields.temporary_channel_id);
13351 fn test_0conf_limiting() {
13352 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13353 // flag set and (sometimes) accept channels as 0conf.
13354 let chanmon_cfgs = create_chanmon_cfgs(2);
13355 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13356 let mut settings = test_default_channel_config();
13357 settings.manually_accept_inbound_channels = true;
13358 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13359 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13361 // Note that create_network connects the nodes together for us
13363 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13364 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13366 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13367 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13368 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13369 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13370 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13371 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13374 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13375 let events = nodes[1].node.get_and_clear_pending_events();
13377 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13378 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13380 _ => panic!("Unexpected event"),
13382 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13383 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13386 // If we try to accept a channel from another peer non-0conf it will fail.
13387 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13388 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13389 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13390 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13392 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13393 let events = nodes[1].node.get_and_clear_pending_events();
13395 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13396 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13397 Err(APIError::APIMisuseError { err }) =>
13398 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13402 _ => panic!("Unexpected event"),
13404 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13405 open_channel_msg.common_fields.temporary_channel_id);
13407 // ...however if we accept the same channel 0conf it should work just fine.
13408 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13409 let events = nodes[1].node.get_and_clear_pending_events();
13411 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13412 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13414 _ => panic!("Unexpected event"),
13416 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13420 fn reject_excessively_underpaying_htlcs() {
13421 let chanmon_cfg = create_chanmon_cfgs(1);
13422 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13423 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13424 let node = create_network(1, &node_cfg, &node_chanmgr);
13425 let sender_intended_amt_msat = 100;
13426 let extra_fee_msat = 10;
13427 let hop_data = msgs::InboundOnionPayload::Receive {
13428 sender_intended_htlc_amt_msat: 100,
13429 cltv_expiry_height: 42,
13430 payment_metadata: None,
13431 keysend_preimage: None,
13432 payment_data: Some(msgs::FinalOnionHopData {
13433 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13435 custom_tlvs: Vec::new(),
13437 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13438 // intended amount, we fail the payment.
13439 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13440 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13441 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13442 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13443 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13445 assert_eq!(err_code, 19);
13446 } else { panic!(); }
13448 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13449 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13450 sender_intended_htlc_amt_msat: 100,
13451 cltv_expiry_height: 42,
13452 payment_metadata: None,
13453 keysend_preimage: None,
13454 payment_data: Some(msgs::FinalOnionHopData {
13455 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13457 custom_tlvs: Vec::new(),
13459 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13460 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13461 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13462 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13466 fn test_final_incorrect_cltv(){
13467 let chanmon_cfg = create_chanmon_cfgs(1);
13468 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13469 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13470 let node = create_network(1, &node_cfg, &node_chanmgr);
13472 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13473 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13474 sender_intended_htlc_amt_msat: 100,
13475 cltv_expiry_height: 22,
13476 payment_metadata: None,
13477 keysend_preimage: None,
13478 payment_data: Some(msgs::FinalOnionHopData {
13479 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13481 custom_tlvs: Vec::new(),
13482 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13483 node[0].node.default_configuration.accept_mpp_keysend);
13485 // Should not return an error as this condition:
13486 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13487 // is not satisfied.
13488 assert!(result.is_ok());
13492 fn test_inbound_anchors_manual_acceptance() {
13493 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13494 // flag set and (sometimes) accept channels as 0conf.
13495 let mut anchors_cfg = test_default_channel_config();
13496 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13498 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13499 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13501 let chanmon_cfgs = create_chanmon_cfgs(3);
13502 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13503 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13504 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13505 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13507 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13508 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13510 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13511 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13512 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13513 match &msg_events[0] {
13514 MessageSendEvent::HandleError { node_id, action } => {
13515 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13517 ErrorAction::SendErrorMessage { msg } =>
13518 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13519 _ => panic!("Unexpected error action"),
13522 _ => panic!("Unexpected event"),
13525 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13526 let events = nodes[2].node.get_and_clear_pending_events();
13528 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13529 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13530 _ => panic!("Unexpected event"),
13532 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13536 fn test_anchors_zero_fee_htlc_tx_fallback() {
13537 // Tests that if both nodes support anchors, but the remote node does not want to accept
13538 // anchor channels at the moment, an error it sent to the local node such that it can retry
13539 // the channel without the anchors feature.
13540 let chanmon_cfgs = create_chanmon_cfgs(2);
13541 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13542 let mut anchors_config = test_default_channel_config();
13543 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13544 anchors_config.manually_accept_inbound_channels = true;
13545 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13546 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13548 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13549 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13550 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13552 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13553 let events = nodes[1].node.get_and_clear_pending_events();
13555 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13556 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13558 _ => panic!("Unexpected event"),
13561 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13562 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13564 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13565 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13567 // Since nodes[1] should not have accepted the channel, it should
13568 // not have generated any events.
13569 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13573 fn test_update_channel_config() {
13574 let chanmon_cfg = create_chanmon_cfgs(2);
13575 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13576 let mut user_config = test_default_channel_config();
13577 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13578 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13579 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13580 let channel = &nodes[0].node.list_channels()[0];
13582 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13583 let events = nodes[0].node.get_and_clear_pending_msg_events();
13584 assert_eq!(events.len(), 0);
13586 user_config.channel_config.forwarding_fee_base_msat += 10;
13587 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13588 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13589 let events = nodes[0].node.get_and_clear_pending_msg_events();
13590 assert_eq!(events.len(), 1);
13592 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13593 _ => panic!("expected BroadcastChannelUpdate event"),
13596 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13597 let events = nodes[0].node.get_and_clear_pending_msg_events();
13598 assert_eq!(events.len(), 0);
13600 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13601 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13602 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13603 ..Default::default()
13605 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13606 let events = nodes[0].node.get_and_clear_pending_msg_events();
13607 assert_eq!(events.len(), 1);
13609 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13610 _ => panic!("expected BroadcastChannelUpdate event"),
13613 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13614 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13615 forwarding_fee_proportional_millionths: Some(new_fee),
13616 ..Default::default()
13618 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13619 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13620 let events = nodes[0].node.get_and_clear_pending_msg_events();
13621 assert_eq!(events.len(), 1);
13623 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13624 _ => panic!("expected BroadcastChannelUpdate event"),
13627 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13628 // should be applied to ensure update atomicity as specified in the API docs.
13629 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13630 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13631 let new_fee = current_fee + 100;
13634 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13635 forwarding_fee_proportional_millionths: Some(new_fee),
13636 ..Default::default()
13638 Err(APIError::ChannelUnavailable { err: _ }),
13641 // Check that the fee hasn't changed for the channel that exists.
13642 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13643 let events = nodes[0].node.get_and_clear_pending_msg_events();
13644 assert_eq!(events.len(), 0);
13648 fn test_payment_display() {
13649 let payment_id = PaymentId([42; 32]);
13650 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13651 let payment_hash = PaymentHash([42; 32]);
13652 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13653 let payment_preimage = PaymentPreimage([42; 32]);
13654 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13658 fn test_trigger_lnd_force_close() {
13659 let chanmon_cfg = create_chanmon_cfgs(2);
13660 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13661 let user_config = test_default_channel_config();
13662 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13663 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13665 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13666 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13667 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13668 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13669 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13670 check_closed_broadcast(&nodes[0], 1, true);
13671 check_added_monitors(&nodes[0], 1);
13672 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13674 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13675 assert_eq!(txn.len(), 1);
13676 check_spends!(txn[0], funding_tx);
13679 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13680 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13682 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13683 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13685 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13686 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13687 }, false).unwrap();
13688 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13689 let channel_reestablish = get_event_msg!(
13690 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13692 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13694 // Alice should respond with an error since the channel isn't known, but a bogus
13695 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13696 // close even if it was an lnd node.
13697 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13698 assert_eq!(msg_events.len(), 2);
13699 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13700 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13701 assert_eq!(msg.next_local_commitment_number, 0);
13702 assert_eq!(msg.next_remote_commitment_number, 0);
13703 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13704 } else { panic!() };
13705 check_closed_broadcast(&nodes[1], 1, true);
13706 check_added_monitors(&nodes[1], 1);
13707 let expected_close_reason = ClosureReason::ProcessingError {
13708 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13710 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13712 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13713 assert_eq!(txn.len(), 1);
13714 check_spends!(txn[0], funding_tx);
13719 fn test_malformed_forward_htlcs_ser() {
13720 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13721 let chanmon_cfg = create_chanmon_cfgs(1);
13722 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13725 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13726 let deserialized_chanmgr;
13727 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13729 let dummy_failed_htlc = |htlc_id| {
13730 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13732 let dummy_malformed_htlc = |htlc_id| {
13733 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13736 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13737 if htlc_id % 2 == 0 {
13738 dummy_failed_htlc(htlc_id)
13740 dummy_malformed_htlc(htlc_id)
13744 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13745 if htlc_id % 2 == 1 {
13746 dummy_failed_htlc(htlc_id)
13748 dummy_malformed_htlc(htlc_id)
13753 let (scid_1, scid_2) = (42, 43);
13754 let mut forward_htlcs = new_hash_map();
13755 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13756 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13758 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13759 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13760 core::mem::drop(chanmgr_fwd_htlcs);
13762 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13764 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13765 for scid in [scid_1, scid_2].iter() {
13766 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13767 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13769 assert!(deserialized_fwd_htlcs.is_empty());
13770 core::mem::drop(deserialized_fwd_htlcs);
13772 expect_pending_htlcs_forwardable!(nodes[0]);
13778 use crate::chain::Listen;
13779 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13780 use crate::sign::{KeysManager, InMemorySigner};
13781 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13782 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13783 use crate::ln::functional_test_utils::*;
13784 use crate::ln::msgs::{ChannelMessageHandler, Init};
13785 use crate::routing::gossip::NetworkGraph;
13786 use crate::routing::router::{PaymentParameters, RouteParameters};
13787 use crate::util::test_utils;
13788 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13790 use bitcoin::blockdata::locktime::absolute::LockTime;
13791 use bitcoin::hashes::Hash;
13792 use bitcoin::hashes::sha256::Hash as Sha256;
13793 use bitcoin::{Transaction, TxOut};
13795 use crate::sync::{Arc, Mutex, RwLock};
13797 use criterion::Criterion;
13799 type Manager<'a, P> = ChannelManager<
13800 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13801 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13802 &'a test_utils::TestLogger, &'a P>,
13803 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13804 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13805 &'a test_utils::TestLogger>;
13807 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13808 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13810 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13811 type CM = Manager<'chan_mon_cfg, P>;
13813 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13815 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13818 pub fn bench_sends(bench: &mut Criterion) {
13819 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13822 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13823 // Do a simple benchmark of sending a payment back and forth between two nodes.
13824 // Note that this is unrealistic as each payment send will require at least two fsync
13826 let network = bitcoin::Network::Testnet;
13827 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13829 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13830 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13831 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13832 let scorer = RwLock::new(test_utils::TestScorer::new());
13833 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13835 let mut config: UserConfig = Default::default();
13836 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13837 config.channel_handshake_config.minimum_depth = 1;
13839 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13840 let seed_a = [1u8; 32];
13841 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13842 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13844 best_block: BestBlock::from_network(network),
13845 }, genesis_block.header.time);
13846 let node_a_holder = ANodeHolder { node: &node_a };
13848 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13849 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13850 let seed_b = [2u8; 32];
13851 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13852 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13854 best_block: BestBlock::from_network(network),
13855 }, genesis_block.header.time);
13856 let node_b_holder = ANodeHolder { node: &node_b };
13858 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13859 features: node_b.init_features(), networks: None, remote_network_address: None
13861 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13862 features: node_a.init_features(), networks: None, remote_network_address: None
13863 }, false).unwrap();
13864 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13865 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13866 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13869 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13870 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13871 value: 8_000_000, script_pubkey: output_script,
13873 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13874 } else { panic!(); }
13876 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13877 let events_b = node_b.get_and_clear_pending_events();
13878 assert_eq!(events_b.len(), 1);
13879 match events_b[0] {
13880 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13881 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13883 _ => panic!("Unexpected event"),
13886 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13887 let events_a = node_a.get_and_clear_pending_events();
13888 assert_eq!(events_a.len(), 1);
13889 match events_a[0] {
13890 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13891 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13893 _ => panic!("Unexpected event"),
13896 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13898 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13899 Listen::block_connected(&node_a, &block, 1);
13900 Listen::block_connected(&node_b, &block, 1);
13902 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13903 let msg_events = node_a.get_and_clear_pending_msg_events();
13904 assert_eq!(msg_events.len(), 2);
13905 match msg_events[0] {
13906 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13907 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13908 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13912 match msg_events[1] {
13913 MessageSendEvent::SendChannelUpdate { .. } => {},
13917 let events_a = node_a.get_and_clear_pending_events();
13918 assert_eq!(events_a.len(), 1);
13919 match events_a[0] {
13920 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13921 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13923 _ => panic!("Unexpected event"),
13926 let events_b = node_b.get_and_clear_pending_events();
13927 assert_eq!(events_b.len(), 1);
13928 match events_b[0] {
13929 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13930 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13932 _ => panic!("Unexpected event"),
13935 let mut payment_count: u64 = 0;
13936 macro_rules! send_payment {
13937 ($node_a: expr, $node_b: expr) => {
13938 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13939 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13940 let mut payment_preimage = PaymentPreimage([0; 32]);
13941 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13942 payment_count += 1;
13943 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13944 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13946 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13947 PaymentId(payment_hash.0),
13948 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13949 Retry::Attempts(0)).unwrap();
13950 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13951 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13952 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13953 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13954 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13955 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13956 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13958 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13959 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13960 $node_b.claim_funds(payment_preimage);
13961 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13963 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13964 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13965 assert_eq!(node_id, $node_a.get_our_node_id());
13966 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13967 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13969 _ => panic!("Failed to generate claim event"),
13972 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13973 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13974 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13975 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13977 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13981 bench.bench_function(bench_name, |b| b.iter(|| {
13982 send_payment!(node_a, node_b);
13983 send_payment!(node_b, node_a);