1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{Bolt12OfferContext, Bolt12RefundContext, PaymentConstraints, PaymentContext, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::offer::{Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
78 #[cfg(not(c_bindings))]
80 crate::offers::offer::DerivedMetadata,
81 crate::routing::router::DefaultRouter,
82 crate::routing::gossip::NetworkGraph,
83 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
84 crate::sign::KeysManager,
88 crate::offers::offer::OfferWithDerivedMetadataBuilder,
89 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
92 use alloc::collections::{btree_map, BTreeMap};
95 use crate::prelude::*;
97 use core::cell::RefCell;
99 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
100 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
101 use core::time::Duration;
102 use core::ops::Deref;
104 // Re-export this for use in the public API.
105 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
106 use crate::ln::script::ShutdownScript;
108 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
110 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
111 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
112 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
114 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
115 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
116 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
117 // before we forward it.
119 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
120 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
121 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
122 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
123 // our payment, which we can use to decode errors or inform the user that the payment was sent.
125 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
126 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
127 #[cfg_attr(test, derive(Debug, PartialEq))]
128 pub enum PendingHTLCRouting {
129 /// An HTLC which should be forwarded on to another node.
131 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
132 /// do with the HTLC.
133 onion_packet: msgs::OnionPacket,
134 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
136 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
137 /// to the receiving node, such as one returned from
138 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
139 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
140 /// Set if this HTLC is being forwarded within a blinded path.
141 blinded: Option<BlindedForward>,
143 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
145 /// Note that at this point, we have not checked that the invoice being paid was actually
146 /// generated by us, but rather it's claiming to pay an invoice of ours.
148 /// Information about the amount the sender intended to pay and (potential) proof that this
149 /// is a payment for an invoice we generated. This proof of payment is is also used for
150 /// linking MPP parts of a larger payment.
151 payment_data: msgs::FinalOnionHopData,
152 /// Additional data which we (allegedly) instructed the sender to include in the onion.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::payment_metadata`].
157 payment_metadata: Option<Vec<u8>>,
158 /// The context of the payment included by the recipient in a blinded path, or `None` if a
159 /// blinded path was not used.
161 /// Used in part to determine the [`events::PaymentPurpose`].
162 payment_context: Option<PaymentContext>,
163 /// CLTV expiry of the received HTLC.
165 /// Used to track when we should expire pending HTLCs that go unclaimed.
166 incoming_cltv_expiry: u32,
167 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
168 /// provide the onion shared secret used to decrypt the next level of forwarding
170 phantom_shared_secret: Option<[u8; 32]>,
171 /// Custom TLVs which were set by the sender.
173 /// For HTLCs received by LDK, this will ultimately be exposed in
174 /// [`Event::PaymentClaimable::onion_fields`] as
175 /// [`RecipientOnionFields::custom_tlvs`].
176 custom_tlvs: Vec<(u64, Vec<u8>)>,
177 /// Set if this HTLC is the final hop in a multi-hop blinded path.
178 requires_blinded_error: bool,
180 /// The onion indicates that this is for payment to us but which contains the preimage for
181 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
182 /// "keysend" or "spontaneous" payment).
184 /// Information about the amount the sender intended to pay and possibly a token to
185 /// associate MPP parts of a larger payment.
187 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
188 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
189 payment_data: Option<msgs::FinalOnionHopData>,
190 /// Preimage for this onion payment. This preimage is provided by the sender and will be
191 /// used to settle the spontaneous payment.
192 payment_preimage: PaymentPreimage,
193 /// Additional data which we (allegedly) instructed the sender to include in the onion.
195 /// For HTLCs received by LDK, this will ultimately bubble back up as
196 /// [`RecipientOnionFields::payment_metadata`].
197 payment_metadata: Option<Vec<u8>>,
198 /// CLTV expiry of the received HTLC.
200 /// Used to track when we should expire pending HTLCs that go unclaimed.
201 incoming_cltv_expiry: u32,
202 /// Custom TLVs which were set by the sender.
204 /// For HTLCs received by LDK, these will ultimately bubble back up as
205 /// [`RecipientOnionFields::custom_tlvs`].
206 custom_tlvs: Vec<(u64, Vec<u8>)>,
207 /// Set if this HTLC is the final hop in a multi-hop blinded path.
208 requires_blinded_error: bool,
212 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
213 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
214 pub struct BlindedForward {
215 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
216 /// onion payload if we're the introduction node. Useful for calculating the next hop's
217 /// [`msgs::UpdateAddHTLC::blinding_point`].
218 pub inbound_blinding_point: PublicKey,
219 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
220 /// the introduction node.
221 pub failure: BlindedFailure,
224 impl PendingHTLCRouting {
225 // Used to override the onion failure code and data if the HTLC is blinded.
226 fn blinded_failure(&self) -> Option<BlindedFailure> {
228 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
229 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
230 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
236 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
238 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
239 #[cfg_attr(test, derive(Debug, PartialEq))]
240 pub struct PendingHTLCInfo {
241 /// Further routing details based on whether the HTLC is being forwarded or received.
242 pub routing: PendingHTLCRouting,
243 /// The onion shared secret we build with the sender used to decrypt the onion.
245 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
246 pub incoming_shared_secret: [u8; 32],
247 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
248 pub payment_hash: PaymentHash,
249 /// Amount received in the incoming HTLC.
251 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
253 pub incoming_amt_msat: Option<u64>,
254 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
255 /// intended for us to receive for received payments.
257 /// If the received amount is less than this for received payments, an intermediary hop has
258 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
259 /// it along another path).
261 /// Because nodes can take less than their required fees, and because senders may wish to
262 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
263 /// received payments. In such cases, recipients must handle this HTLC as if it had received
264 /// [`Self::outgoing_amt_msat`].
265 pub outgoing_amt_msat: u64,
266 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
267 /// should have been set on the received HTLC for received payments).
268 pub outgoing_cltv_value: u32,
269 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
271 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
274 /// If this is a received payment, this is the fee that our counterparty took.
276 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
278 pub skimmed_fee_msat: Option<u64>,
281 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
282 pub(super) enum HTLCFailureMsg {
283 Relay(msgs::UpdateFailHTLC),
284 Malformed(msgs::UpdateFailMalformedHTLC),
287 /// Stores whether we can't forward an HTLC or relevant forwarding info
288 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
289 pub(super) enum PendingHTLCStatus {
290 Forward(PendingHTLCInfo),
291 Fail(HTLCFailureMsg),
294 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
295 pub(super) struct PendingAddHTLCInfo {
296 pub(super) forward_info: PendingHTLCInfo,
298 // These fields are produced in `forward_htlcs()` and consumed in
299 // `process_pending_htlc_forwards()` for constructing the
300 // `HTLCSource::PreviousHopData` for failed and forwarded
303 // Note that this may be an outbound SCID alias for the associated channel.
304 prev_short_channel_id: u64,
306 prev_channel_id: ChannelId,
307 prev_funding_outpoint: OutPoint,
308 prev_user_channel_id: u128,
311 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
312 pub(super) enum HTLCForwardInfo {
313 AddHTLC(PendingAddHTLCInfo),
316 err_packet: msgs::OnionErrorPacket,
321 sha256_of_onion: [u8; 32],
325 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
326 /// which determines the failure message that should be used.
327 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
328 pub enum BlindedFailure {
329 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
330 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
331 FromIntroductionNode,
332 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
333 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
337 /// Tracks the inbound corresponding to an outbound HTLC
338 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
339 pub(crate) struct HTLCPreviousHopData {
340 // Note that this may be an outbound SCID alias for the associated channel.
341 short_channel_id: u64,
342 user_channel_id: Option<u128>,
344 incoming_packet_shared_secret: [u8; 32],
345 phantom_shared_secret: Option<[u8; 32]>,
346 blinded_failure: Option<BlindedFailure>,
347 channel_id: ChannelId,
349 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
350 // channel with a preimage provided by the forward channel.
355 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
357 /// This is only here for backwards-compatibility in serialization, in the future it can be
358 /// removed, breaking clients running 0.0.106 and earlier.
359 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
361 /// Contains the payer-provided preimage.
362 Spontaneous(PaymentPreimage),
365 /// HTLCs that are to us and can be failed/claimed by the user
366 struct ClaimableHTLC {
367 prev_hop: HTLCPreviousHopData,
369 /// The amount (in msats) of this MPP part
371 /// The amount (in msats) that the sender intended to be sent in this MPP
372 /// part (used for validating total MPP amount)
373 sender_intended_value: u64,
374 onion_payload: OnionPayload,
376 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
377 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
378 total_value_received: Option<u64>,
379 /// The sender intended sum total of all MPP parts specified in the onion
381 /// The extra fee our counterparty skimmed off the top of this HTLC.
382 counterparty_skimmed_fee_msat: Option<u64>,
385 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
386 fn from(val: &ClaimableHTLC) -> Self {
387 events::ClaimedHTLC {
388 channel_id: val.prev_hop.channel_id,
389 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
390 cltv_expiry: val.cltv_expiry,
391 value_msat: val.value,
392 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
397 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
398 /// a payment and ensure idempotency in LDK.
400 /// This is not exported to bindings users as we just use [u8; 32] directly
401 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
402 pub struct PaymentId(pub [u8; Self::LENGTH]);
405 /// Number of bytes in the id.
406 pub const LENGTH: usize = 32;
409 impl Writeable for PaymentId {
410 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
415 impl Readable for PaymentId {
416 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
417 let buf: [u8; 32] = Readable::read(r)?;
422 impl core::fmt::Display for PaymentId {
423 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
424 crate::util::logger::DebugBytes(&self.0).fmt(f)
428 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
430 /// This is not exported to bindings users as we just use [u8; 32] directly
431 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
432 pub struct InterceptId(pub [u8; 32]);
434 impl Writeable for InterceptId {
435 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
440 impl Readable for InterceptId {
441 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
442 let buf: [u8; 32] = Readable::read(r)?;
447 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
448 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
449 pub(crate) enum SentHTLCId {
450 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
451 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
454 pub(crate) fn from_source(source: &HTLCSource) -> Self {
456 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
457 short_channel_id: hop_data.short_channel_id,
458 htlc_id: hop_data.htlc_id,
460 HTLCSource::OutboundRoute { session_priv, .. } =>
461 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
465 impl_writeable_tlv_based_enum!(SentHTLCId,
466 (0, PreviousHopData) => {
467 (0, short_channel_id, required),
468 (2, htlc_id, required),
470 (2, OutboundRoute) => {
471 (0, session_priv, required),
476 /// Tracks the inbound corresponding to an outbound HTLC
477 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
478 #[derive(Clone, Debug, PartialEq, Eq)]
479 pub(crate) enum HTLCSource {
480 PreviousHopData(HTLCPreviousHopData),
483 session_priv: SecretKey,
484 /// Technically we can recalculate this from the route, but we cache it here to avoid
485 /// doing a double-pass on route when we get a failure back
486 first_hop_htlc_msat: u64,
487 payment_id: PaymentId,
490 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
491 impl core::hash::Hash for HTLCSource {
492 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
494 HTLCSource::PreviousHopData(prev_hop_data) => {
496 prev_hop_data.hash(hasher);
498 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
501 session_priv[..].hash(hasher);
502 payment_id.hash(hasher);
503 first_hop_htlc_msat.hash(hasher);
509 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
511 pub fn dummy() -> Self {
512 HTLCSource::OutboundRoute {
513 path: Path { hops: Vec::new(), blinded_tail: None },
514 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
515 first_hop_htlc_msat: 0,
516 payment_id: PaymentId([2; 32]),
520 #[cfg(debug_assertions)]
521 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
522 /// transaction. Useful to ensure different datastructures match up.
523 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
524 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
525 *first_hop_htlc_msat == htlc.amount_msat
527 // There's nothing we can check for forwarded HTLCs
533 /// This enum is used to specify which error data to send to peers when failing back an HTLC
534 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
536 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
537 #[derive(Clone, Copy)]
538 pub enum FailureCode {
539 /// We had a temporary error processing the payment. Useful if no other error codes fit
540 /// and you want to indicate that the payer may want to retry.
541 TemporaryNodeFailure,
542 /// We have a required feature which was not in this onion. For example, you may require
543 /// some additional metadata that was not provided with this payment.
544 RequiredNodeFeatureMissing,
545 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
546 /// the HTLC is too close to the current block height for safe handling.
547 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
548 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
549 IncorrectOrUnknownPaymentDetails,
550 /// We failed to process the payload after the onion was decrypted. You may wish to
551 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
553 /// If available, the tuple data may include the type number and byte offset in the
554 /// decrypted byte stream where the failure occurred.
555 InvalidOnionPayload(Option<(u64, u16)>),
558 impl Into<u16> for FailureCode {
559 fn into(self) -> u16 {
561 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
562 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
563 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
564 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
569 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
570 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
571 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
572 /// peer_state lock. We then return the set of things that need to be done outside the lock in
573 /// this struct and call handle_error!() on it.
575 struct MsgHandleErrInternal {
576 err: msgs::LightningError,
577 closes_channel: bool,
578 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
580 impl MsgHandleErrInternal {
582 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
584 err: LightningError {
586 action: msgs::ErrorAction::SendErrorMessage {
587 msg: msgs::ErrorMessage {
593 closes_channel: false,
594 shutdown_finish: None,
598 fn from_no_close(err: msgs::LightningError) -> Self {
599 Self { err, closes_channel: false, shutdown_finish: None }
602 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
603 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
604 let action = if shutdown_res.monitor_update.is_some() {
605 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
606 // should disconnect our peer such that we force them to broadcast their latest
607 // commitment upon reconnecting.
608 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
610 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
613 err: LightningError { err, action },
614 closes_channel: true,
615 shutdown_finish: Some((shutdown_res, channel_update)),
619 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
622 ChannelError::Warn(msg) => LightningError {
624 action: msgs::ErrorAction::SendWarningMessage {
625 msg: msgs::WarningMessage {
629 log_level: Level::Warn,
632 ChannelError::Ignore(msg) => LightningError {
634 action: msgs::ErrorAction::IgnoreError,
636 ChannelError::Close(msg) => LightningError {
638 action: msgs::ErrorAction::SendErrorMessage {
639 msg: msgs::ErrorMessage {
646 closes_channel: false,
647 shutdown_finish: None,
651 fn closes_channel(&self) -> bool {
656 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
657 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
658 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
659 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
660 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
662 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
663 /// be sent in the order they appear in the return value, however sometimes the order needs to be
664 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
665 /// they were originally sent). In those cases, this enum is also returned.
666 #[derive(Clone, PartialEq)]
667 pub(super) enum RAACommitmentOrder {
668 /// Send the CommitmentUpdate messages first
670 /// Send the RevokeAndACK message first
674 /// Information about a payment which is currently being claimed.
675 struct ClaimingPayment {
677 payment_purpose: events::PaymentPurpose,
678 receiver_node_id: PublicKey,
679 htlcs: Vec<events::ClaimedHTLC>,
680 sender_intended_value: Option<u64>,
682 impl_writeable_tlv_based!(ClaimingPayment, {
683 (0, amount_msat, required),
684 (2, payment_purpose, required),
685 (4, receiver_node_id, required),
686 (5, htlcs, optional_vec),
687 (7, sender_intended_value, option),
690 struct ClaimablePayment {
691 purpose: events::PaymentPurpose,
692 onion_fields: Option<RecipientOnionFields>,
693 htlcs: Vec<ClaimableHTLC>,
696 /// Information about claimable or being-claimed payments
697 struct ClaimablePayments {
698 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
699 /// failed/claimed by the user.
701 /// Note that, no consistency guarantees are made about the channels given here actually
702 /// existing anymore by the time you go to read them!
704 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
705 /// we don't get a duplicate payment.
706 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
708 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
709 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
710 /// as an [`events::Event::PaymentClaimed`].
711 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
714 /// Events which we process internally but cannot be processed immediately at the generation site
715 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
716 /// running normally, and specifically must be processed before any other non-background
717 /// [`ChannelMonitorUpdate`]s are applied.
719 enum BackgroundEvent {
720 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
721 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
722 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
723 /// channel has been force-closed we do not need the counterparty node_id.
725 /// Note that any such events are lost on shutdown, so in general they must be updates which
726 /// are regenerated on startup.
727 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
728 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
729 /// channel to continue normal operation.
731 /// In general this should be used rather than
732 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
733 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
734 /// error the other variant is acceptable.
736 /// Note that any such events are lost on shutdown, so in general they must be updates which
737 /// are regenerated on startup.
738 MonitorUpdateRegeneratedOnStartup {
739 counterparty_node_id: PublicKey,
740 funding_txo: OutPoint,
741 channel_id: ChannelId,
742 update: ChannelMonitorUpdate
744 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
745 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
747 MonitorUpdatesComplete {
748 counterparty_node_id: PublicKey,
749 channel_id: ChannelId,
754 pub(crate) enum MonitorUpdateCompletionAction {
755 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
756 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
757 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
758 /// event can be generated.
759 PaymentClaimed { payment_hash: PaymentHash },
760 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
761 /// operation of another channel.
763 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
764 /// from completing a monitor update which removes the payment preimage until the inbound edge
765 /// completes a monitor update containing the payment preimage. In that case, after the inbound
766 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
768 EmitEventAndFreeOtherChannel {
769 event: events::Event,
770 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
772 /// Indicates we should immediately resume the operation of another channel, unless there is
773 /// some other reason why the channel is blocked. In practice this simply means immediately
774 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
776 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
777 /// from completing a monitor update which removes the payment preimage until the inbound edge
778 /// completes a monitor update containing the payment preimage. However, we use this variant
779 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
780 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
782 /// This variant should thus never be written to disk, as it is processed inline rather than
783 /// stored for later processing.
784 FreeOtherChannelImmediately {
785 downstream_counterparty_node_id: PublicKey,
786 downstream_funding_outpoint: OutPoint,
787 blocking_action: RAAMonitorUpdateBlockingAction,
788 downstream_channel_id: ChannelId,
792 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
793 (0, PaymentClaimed) => { (0, payment_hash, required) },
794 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
795 // *immediately*. However, for simplicity we implement read/write here.
796 (1, FreeOtherChannelImmediately) => {
797 (0, downstream_counterparty_node_id, required),
798 (2, downstream_funding_outpoint, required),
799 (4, blocking_action, required),
800 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
801 // filled in, so we can safely unwrap it here.
802 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
804 (2, EmitEventAndFreeOtherChannel) => {
805 (0, event, upgradable_required),
806 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
807 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
808 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
809 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
810 // downgrades to prior versions.
811 (1, downstream_counterparty_and_funding_outpoint, option),
815 #[derive(Clone, Debug, PartialEq, Eq)]
816 pub(crate) enum EventCompletionAction {
817 ReleaseRAAChannelMonitorUpdate {
818 counterparty_node_id: PublicKey,
819 channel_funding_outpoint: OutPoint,
820 channel_id: ChannelId,
823 impl_writeable_tlv_based_enum!(EventCompletionAction,
824 (0, ReleaseRAAChannelMonitorUpdate) => {
825 (0, channel_funding_outpoint, required),
826 (2, counterparty_node_id, required),
827 // Note that by the time we get past the required read above, channel_funding_outpoint will be
828 // filled in, so we can safely unwrap it here.
829 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
833 #[derive(Clone, PartialEq, Eq, Debug)]
834 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
835 /// the blocked action here. See enum variants for more info.
836 pub(crate) enum RAAMonitorUpdateBlockingAction {
837 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
838 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
840 ForwardedPaymentInboundClaim {
841 /// The upstream channel ID (i.e. the inbound edge).
842 channel_id: ChannelId,
843 /// The HTLC ID on the inbound edge.
848 impl RAAMonitorUpdateBlockingAction {
849 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
850 Self::ForwardedPaymentInboundClaim {
851 channel_id: prev_hop.channel_id,
852 htlc_id: prev_hop.htlc_id,
857 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
858 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
862 /// State we hold per-peer.
863 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
864 /// `channel_id` -> `ChannelPhase`
866 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
867 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
868 /// `temporary_channel_id` -> `InboundChannelRequest`.
870 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
871 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
872 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
873 /// the channel is rejected, then the entry is simply removed.
874 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
875 /// The latest `InitFeatures` we heard from the peer.
876 latest_features: InitFeatures,
877 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
878 /// for broadcast messages, where ordering isn't as strict).
879 pub(super) pending_msg_events: Vec<MessageSendEvent>,
880 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
881 /// user but which have not yet completed.
883 /// Note that the channel may no longer exist. For example if the channel was closed but we
884 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
885 /// for a missing channel.
886 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
887 /// Map from a specific channel to some action(s) that should be taken when all pending
888 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
890 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
891 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
892 /// channels with a peer this will just be one allocation and will amount to a linear list of
893 /// channels to walk, avoiding the whole hashing rigmarole.
895 /// Note that the channel may no longer exist. For example, if a channel was closed but we
896 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
897 /// for a missing channel. While a malicious peer could construct a second channel with the
898 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
899 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
900 /// duplicates do not occur, so such channels should fail without a monitor update completing.
901 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
902 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
903 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
904 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
905 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
906 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
907 /// The peer is currently connected (i.e. we've seen a
908 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
909 /// [`ChannelMessageHandler::peer_disconnected`].
910 pub is_connected: bool,
913 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
914 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
915 /// If true is passed for `require_disconnected`, the function will return false if we haven't
916 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
917 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
918 if require_disconnected && self.is_connected {
921 !self.channel_by_id.iter().any(|(_, phase)|
923 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
924 ChannelPhase::UnfundedInboundV1(_) => false,
925 #[cfg(any(dual_funding, splicing))]
926 ChannelPhase::UnfundedOutboundV2(_) => true,
927 #[cfg(any(dual_funding, splicing))]
928 ChannelPhase::UnfundedInboundV2(_) => false,
931 && self.monitor_update_blocked_actions.is_empty()
932 && self.in_flight_monitor_updates.is_empty()
935 // Returns a count of all channels we have with this peer, including unfunded channels.
936 fn total_channel_count(&self) -> usize {
937 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
940 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
941 fn has_channel(&self, channel_id: &ChannelId) -> bool {
942 self.channel_by_id.contains_key(channel_id) ||
943 self.inbound_channel_request_by_id.contains_key(channel_id)
947 /// A not-yet-accepted inbound (from counterparty) channel. Once
948 /// accepted, the parameters will be used to construct a channel.
949 pub(super) struct InboundChannelRequest {
950 /// The original OpenChannel message.
951 pub open_channel_msg: msgs::OpenChannel,
952 /// The number of ticks remaining before the request expires.
953 pub ticks_remaining: i32,
956 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
957 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
958 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
960 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
961 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
963 /// For users who don't want to bother doing their own payment preimage storage, we also store that
966 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
967 /// and instead encoding it in the payment secret.
968 struct PendingInboundPayment {
969 /// The payment secret that the sender must use for us to accept this payment
970 payment_secret: PaymentSecret,
971 /// Time at which this HTLC expires - blocks with a header time above this value will result in
972 /// this payment being removed.
974 /// Arbitrary identifier the user specifies (or not)
975 user_payment_id: u64,
976 // Other required attributes of the payment, optionally enforced:
977 payment_preimage: Option<PaymentPreimage>,
978 min_value_msat: Option<u64>,
981 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
982 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
983 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
984 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
985 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
986 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
987 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
988 /// of [`KeysManager`] and [`DefaultRouter`].
990 /// This is not exported to bindings users as type aliases aren't supported in most languages.
991 #[cfg(not(c_bindings))]
992 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
1000 Arc<NetworkGraph<Arc<L>>>,
1003 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1004 ProbabilisticScoringFeeParameters,
1005 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1010 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1011 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1012 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1013 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1014 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1015 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1016 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1017 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1018 /// of [`KeysManager`] and [`DefaultRouter`].
1020 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1021 #[cfg(not(c_bindings))]
1022 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1031 &'f NetworkGraph<&'g L>,
1034 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1035 ProbabilisticScoringFeeParameters,
1036 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1041 /// A trivial trait which describes any [`ChannelManager`].
1043 /// This is not exported to bindings users as general cover traits aren't useful in other
1045 pub trait AChannelManager {
1046 /// A type implementing [`chain::Watch`].
1047 type Watch: chain::Watch<Self::Signer> + ?Sized;
1048 /// A type that may be dereferenced to [`Self::Watch`].
1049 type M: Deref<Target = Self::Watch>;
1050 /// A type implementing [`BroadcasterInterface`].
1051 type Broadcaster: BroadcasterInterface + ?Sized;
1052 /// A type that may be dereferenced to [`Self::Broadcaster`].
1053 type T: Deref<Target = Self::Broadcaster>;
1054 /// A type implementing [`EntropySource`].
1055 type EntropySource: EntropySource + ?Sized;
1056 /// A type that may be dereferenced to [`Self::EntropySource`].
1057 type ES: Deref<Target = Self::EntropySource>;
1058 /// A type implementing [`NodeSigner`].
1059 type NodeSigner: NodeSigner + ?Sized;
1060 /// A type that may be dereferenced to [`Self::NodeSigner`].
1061 type NS: Deref<Target = Self::NodeSigner>;
1062 /// A type implementing [`WriteableEcdsaChannelSigner`].
1063 type Signer: WriteableEcdsaChannelSigner + Sized;
1064 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1065 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1066 /// A type that may be dereferenced to [`Self::SignerProvider`].
1067 type SP: Deref<Target = Self::SignerProvider>;
1068 /// A type implementing [`FeeEstimator`].
1069 type FeeEstimator: FeeEstimator + ?Sized;
1070 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1071 type F: Deref<Target = Self::FeeEstimator>;
1072 /// A type implementing [`Router`].
1073 type Router: Router + ?Sized;
1074 /// A type that may be dereferenced to [`Self::Router`].
1075 type R: Deref<Target = Self::Router>;
1076 /// A type implementing [`Logger`].
1077 type Logger: Logger + ?Sized;
1078 /// A type that may be dereferenced to [`Self::Logger`].
1079 type L: Deref<Target = Self::Logger>;
1080 /// Returns a reference to the actual [`ChannelManager`] object.
1081 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1084 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1085 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1087 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1088 T::Target: BroadcasterInterface,
1089 ES::Target: EntropySource,
1090 NS::Target: NodeSigner,
1091 SP::Target: SignerProvider,
1092 F::Target: FeeEstimator,
1096 type Watch = M::Target;
1098 type Broadcaster = T::Target;
1100 type EntropySource = ES::Target;
1102 type NodeSigner = NS::Target;
1104 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1105 type SignerProvider = SP::Target;
1107 type FeeEstimator = F::Target;
1109 type Router = R::Target;
1111 type Logger = L::Target;
1113 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1116 /// A lightning node's channel state machine and payment management logic, which facilitates
1117 /// sending, forwarding, and receiving payments through lightning channels.
1119 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1120 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1122 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1123 /// closing channels
1124 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1125 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1126 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1127 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1129 /// - [`Router`] for finding payment paths when initiating and retrying payments
1130 /// - [`Logger`] for logging operational information of varying degrees
1132 /// Additionally, it implements the following traits:
1133 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1134 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1135 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1136 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1137 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1139 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1140 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1142 /// # `ChannelManager` vs `ChannelMonitor`
1144 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1145 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1146 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1147 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1148 /// [`chain::Watch`] of them.
1150 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1151 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1152 /// for any pertinent on-chain activity, enforcing claims as needed.
1154 /// This division of off-chain management and on-chain enforcement allows for interesting node
1155 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1156 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1158 /// # Initialization
1160 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1161 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1162 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1163 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1164 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1167 /// use bitcoin::BlockHash;
1168 /// use bitcoin::network::constants::Network;
1169 /// use lightning::chain::BestBlock;
1170 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1171 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1172 /// # use lightning::routing::gossip::NetworkGraph;
1173 /// use lightning::util::config::UserConfig;
1174 /// use lightning::util::ser::ReadableArgs;
1176 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1179 /// # L: lightning::util::logger::Logger,
1180 /// # ES: lightning::sign::EntropySource,
1181 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1182 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1184 /// # R: lightning::io::Read,
1186 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1187 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1188 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1189 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1191 /// # entropy_source: &ES,
1192 /// # node_signer: &dyn lightning::sign::NodeSigner,
1193 /// # signer_provider: &lightning::sign::DynSignerProvider,
1194 /// # best_block: lightning::chain::BestBlock,
1195 /// # current_timestamp: u32,
1196 /// # mut reader: R,
1197 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1198 /// // Fresh start with no channels
1199 /// let params = ChainParameters {
1200 /// network: Network::Bitcoin,
1203 /// let default_config = UserConfig::default();
1204 /// let channel_manager = ChannelManager::new(
1205 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1206 /// signer_provider, default_config, params, current_timestamp
1209 /// // Restart from deserialized data
1210 /// let mut channel_monitors = read_channel_monitors();
1211 /// let args = ChannelManagerReadArgs::new(
1212 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1213 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1215 /// let (block_hash, channel_manager) =
1216 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1218 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1221 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1222 /// for monitor in channel_monitors {
1223 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1231 /// The following is required for [`ChannelManager`] to function properly:
1232 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1233 /// called by [`PeerManager::read_event`] when processing network I/O)
1234 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1235 /// (typically initiated when [`PeerManager::process_events`] is called)
1236 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1237 /// as documented by those traits
1238 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1240 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1241 /// [`Persister`] such as a [`KVStore`] implementation
1242 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1244 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1245 /// when the last two requirements need to be checked.
1247 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1248 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1249 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1250 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1254 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1255 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1256 /// currently open channels.
1259 /// # use lightning::ln::channelmanager::AChannelManager;
1261 /// # fn example<T: AChannelManager>(channel_manager: T) {
1262 /// # let channel_manager = channel_manager.get_cm();
1263 /// let channels = channel_manager.list_usable_channels();
1264 /// for details in channels {
1265 /// println!("{:?}", details);
1270 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1271 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1272 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1273 /// by [`ChannelManager`].
1275 /// ## Opening Channels
1277 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1278 /// opening an outbound channel, which requires self-funding when handling
1279 /// [`Event::FundingGenerationReady`].
1282 /// # use bitcoin::{ScriptBuf, Transaction};
1283 /// # use bitcoin::secp256k1::PublicKey;
1284 /// # use lightning::ln::channelmanager::AChannelManager;
1285 /// # use lightning::events::{Event, EventsProvider};
1287 /// # trait Wallet {
1288 /// # fn create_funding_transaction(
1289 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1290 /// # ) -> Transaction;
1293 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1294 /// # let channel_manager = channel_manager.get_cm();
1295 /// let value_sats = 1_000_000;
1296 /// let push_msats = 10_000_000;
1297 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1298 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1299 /// Err(e) => println!("Error opening channel: {:?}", e),
1302 /// // On the event processing thread once the peer has responded
1303 /// channel_manager.process_pending_events(&|event| match event {
1304 /// Event::FundingGenerationReady {
1305 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1306 /// user_channel_id, ..
1308 /// assert_eq!(user_channel_id, 42);
1309 /// let funding_transaction = wallet.create_funding_transaction(
1310 /// channel_value_satoshis, output_script
1312 /// match channel_manager.funding_transaction_generated(
1313 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1315 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1316 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1319 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1320 /// assert_eq!(user_channel_id, 42);
1322 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1323 /// former_temporary_channel_id.unwrap()
1326 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1327 /// assert_eq!(user_channel_id, 42);
1328 /// println!("Channel {} ready", channel_id);
1336 /// ## Accepting Channels
1338 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1339 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1340 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1343 /// # use bitcoin::secp256k1::PublicKey;
1344 /// # use lightning::ln::channelmanager::AChannelManager;
1345 /// # use lightning::events::{Event, EventsProvider};
1347 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1349 /// # unimplemented!()
1352 /// # fn example<T: AChannelManager>(channel_manager: T) {
1353 /// # let channel_manager = channel_manager.get_cm();
1354 /// channel_manager.process_pending_events(&|event| match event {
1355 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1356 /// if !is_trusted(counterparty_node_id) {
1357 /// match channel_manager.force_close_without_broadcasting_txn(
1358 /// &temporary_channel_id, &counterparty_node_id
1360 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1361 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1366 /// let user_channel_id = 43;
1367 /// match channel_manager.accept_inbound_channel(
1368 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1370 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1371 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1380 /// ## Closing Channels
1382 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1383 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1384 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1385 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1386 /// once the channel has been closed successfully.
1389 /// # use bitcoin::secp256k1::PublicKey;
1390 /// # use lightning::ln::ChannelId;
1391 /// # use lightning::ln::channelmanager::AChannelManager;
1392 /// # use lightning::events::{Event, EventsProvider};
1394 /// # fn example<T: AChannelManager>(
1395 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1397 /// # let channel_manager = channel_manager.get_cm();
1398 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1399 /// Ok(()) => println!("Closing channel {}", channel_id),
1400 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1403 /// // On the event processing thread
1404 /// channel_manager.process_pending_events(&|event| match event {
1405 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1406 /// assert_eq!(user_channel_id, 42);
1407 /// println!("Channel {} closed", channel_id);
1417 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1418 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1419 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1420 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1421 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1424 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1425 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1426 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1427 /// [`abandon_payment`] is called.
1429 /// ## BOLT 11 Invoices
1431 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1432 /// functions in its `utils` module for constructing invoices that are compatible with
1433 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1434 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1435 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1436 /// the [`lightning-invoice`] `utils` module.
1438 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1439 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1440 /// an [`Event::PaymentClaimed`].
1443 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1444 /// # use lightning::ln::channelmanager::AChannelManager;
1446 /// # fn example<T: AChannelManager>(channel_manager: T) {
1447 /// # let channel_manager = channel_manager.get_cm();
1448 /// // Or use utils::create_invoice_from_channelmanager
1449 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1450 /// Some(10_000_000), 3600, None
1452 /// Ok((payment_hash, _payment_secret)) => {
1453 /// println!("Creating inbound payment {}", payment_hash);
1456 /// Err(()) => panic!("Error creating inbound payment"),
1459 /// // On the event processing thread
1460 /// channel_manager.process_pending_events(&|event| match event {
1461 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1462 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1463 /// assert_eq!(payment_hash, known_payment_hash);
1464 /// println!("Claiming payment {}", payment_hash);
1465 /// channel_manager.claim_funds(payment_preimage);
1467 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: None, .. } => {
1468 /// println!("Unknown payment hash: {}", payment_hash);
1470 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1471 /// assert_ne!(payment_hash, known_payment_hash);
1472 /// println!("Claiming spontaneous payment {}", payment_hash);
1473 /// channel_manager.claim_funds(payment_preimage);
1478 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1479 /// assert_eq!(payment_hash, known_payment_hash);
1480 /// println!("Claimed {} msats", amount_msat);
1488 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1489 /// functions for use with [`send_payment`].
1492 /// # use lightning::events::{Event, EventsProvider};
1493 /// # use lightning::ln::PaymentHash;
1494 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1495 /// # use lightning::routing::router::RouteParameters;
1497 /// # fn example<T: AChannelManager>(
1498 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1499 /// # route_params: RouteParameters, retry: Retry
1501 /// # let channel_manager = channel_manager.get_cm();
1502 /// // let (payment_hash, recipient_onion, route_params) =
1503 /// // payment::payment_parameters_from_invoice(&invoice);
1504 /// let payment_id = PaymentId([42; 32]);
1505 /// match channel_manager.send_payment(
1506 /// payment_hash, recipient_onion, payment_id, route_params, retry
1508 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1509 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1512 /// let expected_payment_id = payment_id;
1513 /// let expected_payment_hash = payment_hash;
1515 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1517 /// RecentPaymentDetails::Pending {
1518 /// payment_id: expected_payment_id,
1519 /// payment_hash: expected_payment_hash,
1525 /// // On the event processing thread
1526 /// channel_manager.process_pending_events(&|event| match event {
1527 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1528 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1535 /// ## BOLT 12 Offers
1537 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1538 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1539 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1540 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1541 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1542 /// stateless just as BOLT 11 invoices are.
1545 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1546 /// # use lightning::ln::channelmanager::AChannelManager;
1547 /// # use lightning::offers::parse::Bolt12SemanticError;
1549 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1550 /// # let channel_manager = channel_manager.get_cm();
1551 /// let offer = channel_manager
1552 /// .create_offer_builder("coffee".to_string())?
1554 /// # // Needed for compiling for c_bindings
1555 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1556 /// # let offer = builder
1557 /// .amount_msats(10_000_000)
1559 /// let bech32_offer = offer.to_string();
1561 /// // On the event processing thread
1562 /// channel_manager.process_pending_events(&|event| match event {
1563 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1564 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: Some(payment_preimage), .. } => {
1565 /// println!("Claiming payment {}", payment_hash);
1566 /// channel_manager.claim_funds(payment_preimage);
1568 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: None, .. } => {
1569 /// println!("Unknown payment hash: {}", payment_hash);
1574 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1575 /// println!("Claimed {} msats", amount_msat);
1584 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1585 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1586 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1589 /// # use lightning::events::{Event, EventsProvider};
1590 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1591 /// # use lightning::offers::offer::Offer;
1593 /// # fn example<T: AChannelManager>(
1594 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1595 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1597 /// # let channel_manager = channel_manager.get_cm();
1598 /// let payment_id = PaymentId([42; 32]);
1599 /// match channel_manager.pay_for_offer(
1600 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1602 /// Ok(()) => println!("Requesting invoice for offer"),
1603 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1606 /// // First the payment will be waiting on an invoice
1607 /// let expected_payment_id = payment_id;
1609 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1611 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1615 /// // Once the invoice is received, a payment will be sent
1617 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1619 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1623 /// // On the event processing thread
1624 /// channel_manager.process_pending_events(&|event| match event {
1625 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1626 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1627 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1634 /// ## BOLT 12 Refunds
1636 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1637 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1638 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1639 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1642 /// # use core::time::Duration;
1643 /// # use lightning::events::{Event, EventsProvider};
1644 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1645 /// # use lightning::offers::parse::Bolt12SemanticError;
1647 /// # fn example<T: AChannelManager>(
1648 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1649 /// # max_total_routing_fee_msat: Option<u64>
1650 /// # ) -> Result<(), Bolt12SemanticError> {
1651 /// # let channel_manager = channel_manager.get_cm();
1652 /// let payment_id = PaymentId([42; 32]);
1653 /// let refund = channel_manager
1654 /// .create_refund_builder(
1655 /// "coffee".to_string(), amount_msats, absolute_expiry, payment_id, retry,
1656 /// max_total_routing_fee_msat
1659 /// # // Needed for compiling for c_bindings
1660 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1661 /// # let refund = builder
1662 /// .payer_note("refund for order 1234".to_string())
1664 /// let bech32_refund = refund.to_string();
1666 /// // First the payment will be waiting on an invoice
1667 /// let expected_payment_id = payment_id;
1669 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1671 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1675 /// // Once the invoice is received, a payment will be sent
1677 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1679 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1683 /// // On the event processing thread
1684 /// channel_manager.process_pending_events(&|event| match event {
1685 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1686 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1694 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1695 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1698 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1699 /// # use lightning::ln::channelmanager::AChannelManager;
1700 /// # use lightning::offers::refund::Refund;
1702 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1703 /// # let channel_manager = channel_manager.get_cm();
1704 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1705 /// Ok(invoice) => {
1706 /// let payment_hash = invoice.payment_hash();
1707 /// println!("Requesting refund payment {}", payment_hash);
1710 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1713 /// // On the event processing thread
1714 /// channel_manager.process_pending_events(&|event| match event {
1715 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1716 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: Some(payment_preimage), .. } => {
1717 /// assert_eq!(payment_hash, known_payment_hash);
1718 /// println!("Claiming payment {}", payment_hash);
1719 /// channel_manager.claim_funds(payment_preimage);
1721 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: None, .. } => {
1722 /// println!("Unknown payment hash: {}", payment_hash);
1727 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1728 /// assert_eq!(payment_hash, known_payment_hash);
1729 /// println!("Claimed {} msats", amount_msat);
1739 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1740 /// all peers during write/read (though does not modify this instance, only the instance being
1741 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1742 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1744 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1745 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1746 /// [`ChannelMonitorUpdate`] before returning from
1747 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1748 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1749 /// `ChannelManager` operations from occurring during the serialization process). If the
1750 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1751 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1752 /// will be lost (modulo on-chain transaction fees).
1754 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1755 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1756 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1758 /// # `ChannelUpdate` Messages
1760 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1761 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1762 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1763 /// offline for a full minute. In order to track this, you must call
1764 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1766 /// # DoS Mitigation
1768 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1769 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1770 /// not have a channel with being unable to connect to us or open new channels with us if we have
1771 /// many peers with unfunded channels.
1773 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1774 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1775 /// never limited. Please ensure you limit the count of such channels yourself.
1779 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1780 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1781 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1782 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1783 /// you're using lightning-net-tokio.
1785 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1786 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1787 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1788 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1789 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1790 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1791 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1792 /// [`Persister`]: crate::util::persist::Persister
1793 /// [`KVStore`]: crate::util::persist::KVStore
1794 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1795 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1796 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1797 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1798 /// [`list_channels`]: Self::list_channels
1799 /// [`list_usable_channels`]: Self::list_usable_channels
1800 /// [`create_channel`]: Self::create_channel
1801 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1802 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1803 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1804 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1805 /// [`list_recent_payments`]: Self::list_recent_payments
1806 /// [`abandon_payment`]: Self::abandon_payment
1807 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1808 /// [`create_inbound_payment`]: Self::create_inbound_payment
1809 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1810 /// [`claim_funds`]: Self::claim_funds
1811 /// [`send_payment`]: Self::send_payment
1812 /// [`offers`]: crate::offers
1813 /// [`create_offer_builder`]: Self::create_offer_builder
1814 /// [`pay_for_offer`]: Self::pay_for_offer
1815 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1816 /// [`create_refund_builder`]: Self::create_refund_builder
1817 /// [`request_refund_payment`]: Self::request_refund_payment
1818 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1819 /// [`funding_created`]: msgs::FundingCreated
1820 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1821 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1822 /// [`update_channel`]: chain::Watch::update_channel
1823 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1824 /// [`read`]: ReadableArgs::read
1827 // The tree structure below illustrates the lock order requirements for the different locks of the
1828 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1829 // and should then be taken in the order of the lowest to the highest level in the tree.
1830 // Note that locks on different branches shall not be taken at the same time, as doing so will
1831 // create a new lock order for those specific locks in the order they were taken.
1835 // `pending_offers_messages`
1837 // `total_consistency_lock`
1839 // |__`forward_htlcs`
1841 // | |__`pending_intercepted_htlcs`
1843 // |__`decode_update_add_htlcs`
1845 // |__`per_peer_state`
1847 // |__`pending_inbound_payments`
1849 // |__`claimable_payments`
1851 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1855 // |__`outpoint_to_peer`
1857 // |__`short_to_chan_info`
1859 // |__`outbound_scid_aliases`
1863 // |__`pending_events`
1865 // |__`pending_background_events`
1867 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1869 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1870 T::Target: BroadcasterInterface,
1871 ES::Target: EntropySource,
1872 NS::Target: NodeSigner,
1873 SP::Target: SignerProvider,
1874 F::Target: FeeEstimator,
1878 default_configuration: UserConfig,
1879 chain_hash: ChainHash,
1880 fee_estimator: LowerBoundedFeeEstimator<F>,
1886 /// See `ChannelManager` struct-level documentation for lock order requirements.
1888 pub(super) best_block: RwLock<BestBlock>,
1890 best_block: RwLock<BestBlock>,
1891 secp_ctx: Secp256k1<secp256k1::All>,
1893 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1894 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1895 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1896 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1898 /// See `ChannelManager` struct-level documentation for lock order requirements.
1899 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1901 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1902 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1903 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1904 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1905 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1906 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1907 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1908 /// after reloading from disk while replaying blocks against ChannelMonitors.
1910 /// See `PendingOutboundPayment` documentation for more info.
1912 /// See `ChannelManager` struct-level documentation for lock order requirements.
1913 pending_outbound_payments: OutboundPayments,
1915 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1917 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1918 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1919 /// and via the classic SCID.
1921 /// Note that no consistency guarantees are made about the existence of a channel with the
1922 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1924 /// See `ChannelManager` struct-level documentation for lock order requirements.
1926 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1928 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1929 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1930 /// until the user tells us what we should do with them.
1932 /// See `ChannelManager` struct-level documentation for lock order requirements.
1933 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1935 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1937 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1938 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1939 /// and via the classic SCID.
1941 /// Note that no consistency guarantees are made about the existence of a channel with the
1942 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1944 /// See `ChannelManager` struct-level documentation for lock order requirements.
1945 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1947 /// The sets of payments which are claimable or currently being claimed. See
1948 /// [`ClaimablePayments`]' individual field docs for more info.
1950 /// See `ChannelManager` struct-level documentation for lock order requirements.
1951 claimable_payments: Mutex<ClaimablePayments>,
1953 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1954 /// and some closed channels which reached a usable state prior to being closed. This is used
1955 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1956 /// active channel list on load.
1958 /// See `ChannelManager` struct-level documentation for lock order requirements.
1959 outbound_scid_aliases: Mutex<HashSet<u64>>,
1961 /// Channel funding outpoint -> `counterparty_node_id`.
1963 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1964 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1965 /// the handling of the events.
1967 /// Note that no consistency guarantees are made about the existence of a peer with the
1968 /// `counterparty_node_id` in our other maps.
1971 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1972 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1973 /// would break backwards compatability.
1974 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1975 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1976 /// required to access the channel with the `counterparty_node_id`.
1978 /// See `ChannelManager` struct-level documentation for lock order requirements.
1980 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1982 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1984 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1986 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1987 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1988 /// confirmation depth.
1990 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1991 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1992 /// channel with the `channel_id` in our other maps.
1994 /// See `ChannelManager` struct-level documentation for lock order requirements.
1996 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1998 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2000 our_network_pubkey: PublicKey,
2002 inbound_payment_key: inbound_payment::ExpandedKey,
2004 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
2005 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
2006 /// we encrypt the namespace identifier using these bytes.
2008 /// [fake scids]: crate::util::scid_utils::fake_scid
2009 fake_scid_rand_bytes: [u8; 32],
2011 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2012 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2013 /// keeping additional state.
2014 probing_cookie_secret: [u8; 32],
2016 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2017 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2018 /// very far in the past, and can only ever be up to two hours in the future.
2019 highest_seen_timestamp: AtomicUsize,
2021 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2022 /// basis, as well as the peer's latest features.
2024 /// If we are connected to a peer we always at least have an entry here, even if no channels
2025 /// are currently open with that peer.
2027 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2028 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2031 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2033 /// See `ChannelManager` struct-level documentation for lock order requirements.
2034 #[cfg(not(any(test, feature = "_test_utils")))]
2035 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2036 #[cfg(any(test, feature = "_test_utils"))]
2037 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2039 /// The set of events which we need to give to the user to handle. In some cases an event may
2040 /// require some further action after the user handles it (currently only blocking a monitor
2041 /// update from being handed to the user to ensure the included changes to the channel state
2042 /// are handled by the user before they're persisted durably to disk). In that case, the second
2043 /// element in the tuple is set to `Some` with further details of the action.
2045 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2046 /// could be in the middle of being processed without the direct mutex held.
2048 /// See `ChannelManager` struct-level documentation for lock order requirements.
2049 #[cfg(not(any(test, feature = "_test_utils")))]
2050 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2051 #[cfg(any(test, feature = "_test_utils"))]
2052 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2054 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2055 pending_events_processor: AtomicBool,
2057 /// If we are running during init (either directly during the deserialization method or in
2058 /// block connection methods which run after deserialization but before normal operation) we
2059 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2060 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2061 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2063 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2065 /// See `ChannelManager` struct-level documentation for lock order requirements.
2067 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2068 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2069 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2070 /// Essentially just when we're serializing ourselves out.
2071 /// Taken first everywhere where we are making changes before any other locks.
2072 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2073 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2074 /// Notifier the lock contains sends out a notification when the lock is released.
2075 total_consistency_lock: RwLock<()>,
2076 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2077 /// received and the monitor has been persisted.
2079 /// This information does not need to be persisted as funding nodes can forget
2080 /// unfunded channels upon disconnection.
2081 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2083 background_events_processed_since_startup: AtomicBool,
2085 event_persist_notifier: Notifier,
2086 needs_persist_flag: AtomicBool,
2088 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2090 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2091 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2095 signer_provider: SP,
2100 /// Chain-related parameters used to construct a new `ChannelManager`.
2102 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2103 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2104 /// are not needed when deserializing a previously constructed `ChannelManager`.
2105 #[derive(Clone, Copy, PartialEq)]
2106 pub struct ChainParameters {
2107 /// The network for determining the `chain_hash` in Lightning messages.
2108 pub network: Network,
2110 /// The hash and height of the latest block successfully connected.
2112 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2113 pub best_block: BestBlock,
2116 #[derive(Copy, Clone, PartialEq)]
2120 SkipPersistHandleEvents,
2121 SkipPersistNoEvents,
2124 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2125 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2126 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2127 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2128 /// sending the aforementioned notification (since the lock being released indicates that the
2129 /// updates are ready for persistence).
2131 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2132 /// notify or not based on whether relevant changes have been made, providing a closure to
2133 /// `optionally_notify` which returns a `NotifyOption`.
2134 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2135 event_persist_notifier: &'a Notifier,
2136 needs_persist_flag: &'a AtomicBool,
2138 // We hold onto this result so the lock doesn't get released immediately.
2139 _read_guard: RwLockReadGuard<'a, ()>,
2142 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2143 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2144 /// events to handle.
2146 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2147 /// other cases where losing the changes on restart may result in a force-close or otherwise
2149 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2150 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2153 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2154 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2155 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2156 let force_notify = cm.get_cm().process_background_events();
2158 PersistenceNotifierGuard {
2159 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2160 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2161 should_persist: move || {
2162 // Pick the "most" action between `persist_check` and the background events
2163 // processing and return that.
2164 let notify = persist_check();
2165 match (notify, force_notify) {
2166 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2167 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2168 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2169 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2170 _ => NotifyOption::SkipPersistNoEvents,
2173 _read_guard: read_guard,
2177 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2178 /// [`ChannelManager::process_background_events`] MUST be called first (or
2179 /// [`Self::optionally_notify`] used).
2180 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2181 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2182 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2184 PersistenceNotifierGuard {
2185 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2186 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2187 should_persist: persist_check,
2188 _read_guard: read_guard,
2193 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2194 fn drop(&mut self) {
2195 match (self.should_persist)() {
2196 NotifyOption::DoPersist => {
2197 self.needs_persist_flag.store(true, Ordering::Release);
2198 self.event_persist_notifier.notify()
2200 NotifyOption::SkipPersistHandleEvents =>
2201 self.event_persist_notifier.notify(),
2202 NotifyOption::SkipPersistNoEvents => {},
2207 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2208 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2210 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2212 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2213 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2214 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2215 /// the maximum required amount in lnd as of March 2021.
2216 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2218 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2219 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2221 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2223 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2224 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2225 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2226 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2227 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2228 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2229 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2230 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2231 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2232 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2233 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2234 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2235 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2237 /// Minimum CLTV difference between the current block height and received inbound payments.
2238 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2240 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2241 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2242 // a payment was being routed, so we add an extra block to be safe.
2243 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2245 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2246 // ie that if the next-hop peer fails the HTLC within
2247 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2248 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2249 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2250 // LATENCY_GRACE_PERIOD_BLOCKS.
2252 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2254 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2255 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2257 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2259 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2260 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2262 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2263 /// until we mark the channel disabled and gossip the update.
2264 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2266 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2267 /// we mark the channel enabled and gossip the update.
2268 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2270 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2271 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2272 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2273 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2275 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2276 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2277 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2279 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2280 /// many peers we reject new (inbound) connections.
2281 const MAX_NO_CHANNEL_PEERS: usize = 250;
2283 /// Information needed for constructing an invoice route hint for this channel.
2284 #[derive(Clone, Debug, PartialEq)]
2285 pub struct CounterpartyForwardingInfo {
2286 /// Base routing fee in millisatoshis.
2287 pub fee_base_msat: u32,
2288 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2289 pub fee_proportional_millionths: u32,
2290 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2291 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2292 /// `cltv_expiry_delta` for more details.
2293 pub cltv_expiry_delta: u16,
2296 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2297 /// to better separate parameters.
2298 #[derive(Clone, Debug, PartialEq)]
2299 pub struct ChannelCounterparty {
2300 /// The node_id of our counterparty
2301 pub node_id: PublicKey,
2302 /// The Features the channel counterparty provided upon last connection.
2303 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2304 /// many routing-relevant features are present in the init context.
2305 pub features: InitFeatures,
2306 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2307 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2308 /// claiming at least this value on chain.
2310 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2312 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2313 pub unspendable_punishment_reserve: u64,
2314 /// Information on the fees and requirements that the counterparty requires when forwarding
2315 /// payments to us through this channel.
2316 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2317 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2318 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2319 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2320 pub outbound_htlc_minimum_msat: Option<u64>,
2321 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2322 pub outbound_htlc_maximum_msat: Option<u64>,
2325 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2326 #[derive(Clone, Debug, PartialEq)]
2327 pub struct ChannelDetails {
2328 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2329 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2330 /// Note that this means this value is *not* persistent - it can change once during the
2331 /// lifetime of the channel.
2332 pub channel_id: ChannelId,
2333 /// Parameters which apply to our counterparty. See individual fields for more information.
2334 pub counterparty: ChannelCounterparty,
2335 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2336 /// our counterparty already.
2337 pub funding_txo: Option<OutPoint>,
2338 /// The features which this channel operates with. See individual features for more info.
2340 /// `None` until negotiation completes and the channel type is finalized.
2341 pub channel_type: Option<ChannelTypeFeatures>,
2342 /// The position of the funding transaction in the chain. None if the funding transaction has
2343 /// not yet been confirmed and the channel fully opened.
2345 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2346 /// payments instead of this. See [`get_inbound_payment_scid`].
2348 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2349 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2351 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2352 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2353 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2354 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2355 /// [`confirmations_required`]: Self::confirmations_required
2356 pub short_channel_id: Option<u64>,
2357 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2358 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2359 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2362 /// This will be `None` as long as the channel is not available for routing outbound payments.
2364 /// [`short_channel_id`]: Self::short_channel_id
2365 /// [`confirmations_required`]: Self::confirmations_required
2366 pub outbound_scid_alias: Option<u64>,
2367 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2368 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2369 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2370 /// when they see a payment to be routed to us.
2372 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2373 /// previous values for inbound payment forwarding.
2375 /// [`short_channel_id`]: Self::short_channel_id
2376 pub inbound_scid_alias: Option<u64>,
2377 /// The value, in satoshis, of this channel as appears in the funding output
2378 pub channel_value_satoshis: u64,
2379 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2380 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2381 /// this value on chain.
2383 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2385 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2387 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2388 pub unspendable_punishment_reserve: Option<u64>,
2389 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2390 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2391 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2392 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2393 /// serialized with LDK versions prior to 0.0.113.
2395 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2396 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2397 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2398 pub user_channel_id: u128,
2399 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2400 /// which is applied to commitment and HTLC transactions.
2402 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2403 pub feerate_sat_per_1000_weight: Option<u32>,
2404 /// Our total balance. This is the amount we would get if we close the channel.
2405 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2406 /// amount is not likely to be recoverable on close.
2408 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2409 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2410 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2411 /// This does not consider any on-chain fees.
2413 /// See also [`ChannelDetails::outbound_capacity_msat`]
2414 pub balance_msat: u64,
2415 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2416 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2417 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2418 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2420 /// See also [`ChannelDetails::balance_msat`]
2422 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2423 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2424 /// should be able to spend nearly this amount.
2425 pub outbound_capacity_msat: u64,
2426 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2427 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2428 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2429 /// to use a limit as close as possible to the HTLC limit we can currently send.
2431 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2432 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2433 pub next_outbound_htlc_limit_msat: u64,
2434 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2435 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2436 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2437 /// route which is valid.
2438 pub next_outbound_htlc_minimum_msat: u64,
2439 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2440 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2441 /// available for inclusion in new inbound HTLCs).
2442 /// Note that there are some corner cases not fully handled here, so the actual available
2443 /// inbound capacity may be slightly higher than this.
2445 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2446 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2447 /// However, our counterparty should be able to spend nearly this amount.
2448 pub inbound_capacity_msat: u64,
2449 /// The number of required confirmations on the funding transaction before the funding will be
2450 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2451 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2452 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2453 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2455 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2457 /// [`is_outbound`]: ChannelDetails::is_outbound
2458 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2459 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2460 pub confirmations_required: Option<u32>,
2461 /// The current number of confirmations on the funding transaction.
2463 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2464 pub confirmations: Option<u32>,
2465 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2466 /// until we can claim our funds after we force-close the channel. During this time our
2467 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2468 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2469 /// time to claim our non-HTLC-encumbered funds.
2471 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2472 pub force_close_spend_delay: Option<u16>,
2473 /// True if the channel was initiated (and thus funded) by us.
2474 pub is_outbound: bool,
2475 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2476 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2477 /// required confirmation count has been reached (and we were connected to the peer at some
2478 /// point after the funding transaction received enough confirmations). The required
2479 /// confirmation count is provided in [`confirmations_required`].
2481 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2482 pub is_channel_ready: bool,
2483 /// The stage of the channel's shutdown.
2484 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2485 pub channel_shutdown_state: Option<ChannelShutdownState>,
2486 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2487 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2489 /// This is a strict superset of `is_channel_ready`.
2490 pub is_usable: bool,
2491 /// True if this channel is (or will be) publicly-announced.
2492 pub is_public: bool,
2493 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2494 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2495 pub inbound_htlc_minimum_msat: Option<u64>,
2496 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2497 pub inbound_htlc_maximum_msat: Option<u64>,
2498 /// Set of configurable parameters that affect channel operation.
2500 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2501 pub config: Option<ChannelConfig>,
2502 /// Pending inbound HTLCs.
2504 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2505 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2506 /// Pending outbound HTLCs.
2508 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2509 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2512 impl ChannelDetails {
2513 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2514 /// This should be used for providing invoice hints or in any other context where our
2515 /// counterparty will forward a payment to us.
2517 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2518 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2519 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2520 self.inbound_scid_alias.or(self.short_channel_id)
2523 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2524 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2525 /// we're sending or forwarding a payment outbound over this channel.
2527 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2528 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2529 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2530 self.short_channel_id.or(self.outbound_scid_alias)
2533 fn from_channel_context<SP: Deref, F: Deref>(
2534 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2535 fee_estimator: &LowerBoundedFeeEstimator<F>
2538 SP::Target: SignerProvider,
2539 F::Target: FeeEstimator
2541 let balance = context.get_available_balances(fee_estimator);
2542 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2543 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2545 channel_id: context.channel_id(),
2546 counterparty: ChannelCounterparty {
2547 node_id: context.get_counterparty_node_id(),
2548 features: latest_features,
2549 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2550 forwarding_info: context.counterparty_forwarding_info(),
2551 // Ensures that we have actually received the `htlc_minimum_msat` value
2552 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2553 // message (as they are always the first message from the counterparty).
2554 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2555 // default `0` value set by `Channel::new_outbound`.
2556 outbound_htlc_minimum_msat: if context.have_received_message() {
2557 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2558 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2560 funding_txo: context.get_funding_txo(),
2561 // Note that accept_channel (or open_channel) is always the first message, so
2562 // `have_received_message` indicates that type negotiation has completed.
2563 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2564 short_channel_id: context.get_short_channel_id(),
2565 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2566 inbound_scid_alias: context.latest_inbound_scid_alias(),
2567 channel_value_satoshis: context.get_value_satoshis(),
2568 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2569 unspendable_punishment_reserve: to_self_reserve_satoshis,
2570 balance_msat: balance.balance_msat,
2571 inbound_capacity_msat: balance.inbound_capacity_msat,
2572 outbound_capacity_msat: balance.outbound_capacity_msat,
2573 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2574 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2575 user_channel_id: context.get_user_id(),
2576 confirmations_required: context.minimum_depth(),
2577 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2578 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2579 is_outbound: context.is_outbound(),
2580 is_channel_ready: context.is_usable(),
2581 is_usable: context.is_live(),
2582 is_public: context.should_announce(),
2583 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2584 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2585 config: Some(context.config()),
2586 channel_shutdown_state: Some(context.shutdown_state()),
2587 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2588 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2593 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2594 /// Further information on the details of the channel shutdown.
2595 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2596 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2597 /// the channel will be removed shortly.
2598 /// Also note, that in normal operation, peers could disconnect at any of these states
2599 /// and require peer re-connection before making progress onto other states
2600 pub enum ChannelShutdownState {
2601 /// Channel has not sent or received a shutdown message.
2603 /// Local node has sent a shutdown message for this channel.
2605 /// Shutdown message exchanges have concluded and the channels are in the midst of
2606 /// resolving all existing open HTLCs before closing can continue.
2608 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2609 NegotiatingClosingFee,
2610 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2611 /// to drop the channel.
2615 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2616 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2617 #[derive(Debug, PartialEq)]
2618 pub enum RecentPaymentDetails {
2619 /// When an invoice was requested and thus a payment has not yet been sent.
2621 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2622 /// a payment and ensure idempotency in LDK.
2623 payment_id: PaymentId,
2625 /// When a payment is still being sent and awaiting successful delivery.
2627 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2628 /// a payment and ensure idempotency in LDK.
2629 payment_id: PaymentId,
2630 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2632 payment_hash: PaymentHash,
2633 /// Total amount (in msat, excluding fees) across all paths for this payment,
2634 /// not just the amount currently inflight.
2637 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2638 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2639 /// payment is removed from tracking.
2641 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2642 /// a payment and ensure idempotency in LDK.
2643 payment_id: PaymentId,
2644 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2645 /// made before LDK version 0.0.104.
2646 payment_hash: Option<PaymentHash>,
2648 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2649 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2650 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2652 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2653 /// a payment and ensure idempotency in LDK.
2654 payment_id: PaymentId,
2655 /// Hash of the payment that we have given up trying to send.
2656 payment_hash: PaymentHash,
2660 /// Route hints used in constructing invoices for [phantom node payents].
2662 /// [phantom node payments]: crate::sign::PhantomKeysManager
2664 pub struct PhantomRouteHints {
2665 /// The list of channels to be included in the invoice route hints.
2666 pub channels: Vec<ChannelDetails>,
2667 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2669 pub phantom_scid: u64,
2670 /// The pubkey of the real backing node that would ultimately receive the payment.
2671 pub real_node_pubkey: PublicKey,
2674 macro_rules! handle_error {
2675 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2676 // In testing, ensure there are no deadlocks where the lock is already held upon
2677 // entering the macro.
2678 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2679 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2683 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2684 let mut msg_event = None;
2686 if let Some((shutdown_res, update_option)) = shutdown_finish {
2687 let counterparty_node_id = shutdown_res.counterparty_node_id;
2688 let channel_id = shutdown_res.channel_id;
2689 let logger = WithContext::from(
2690 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2692 log_error!(logger, "Force-closing channel: {}", err.err);
2694 $self.finish_close_channel(shutdown_res);
2695 if let Some(update) = update_option {
2696 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2697 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2702 log_error!($self.logger, "Got non-closing error: {}", err.err);
2705 if let msgs::ErrorAction::IgnoreError = err.action {
2707 msg_event = Some(events::MessageSendEvent::HandleError {
2708 node_id: $counterparty_node_id,
2709 action: err.action.clone()
2713 if let Some(msg_event) = msg_event {
2714 let per_peer_state = $self.per_peer_state.read().unwrap();
2715 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2716 let mut peer_state = peer_state_mutex.lock().unwrap();
2717 peer_state.pending_msg_events.push(msg_event);
2721 // Return error in case higher-API need one
2728 macro_rules! update_maps_on_chan_removal {
2729 ($self: expr, $channel_context: expr) => {{
2730 if let Some(outpoint) = $channel_context.get_funding_txo() {
2731 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2733 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2734 if let Some(short_id) = $channel_context.get_short_channel_id() {
2735 short_to_chan_info.remove(&short_id);
2737 // If the channel was never confirmed on-chain prior to its closure, remove the
2738 // outbound SCID alias we used for it from the collision-prevention set. While we
2739 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2740 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2741 // opening a million channels with us which are closed before we ever reach the funding
2743 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2744 debug_assert!(alias_removed);
2746 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2750 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2751 macro_rules! convert_chan_phase_err {
2752 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2754 ChannelError::Warn(msg) => {
2755 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2757 ChannelError::Ignore(msg) => {
2758 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2760 ChannelError::Close(msg) => {
2761 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2762 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2763 update_maps_on_chan_removal!($self, $channel.context);
2764 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2765 let shutdown_res = $channel.context.force_shutdown(true, reason);
2767 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2772 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2773 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2775 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2776 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2778 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2779 match $channel_phase {
2780 ChannelPhase::Funded(channel) => {
2781 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2783 ChannelPhase::UnfundedOutboundV1(channel) => {
2784 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2786 ChannelPhase::UnfundedInboundV1(channel) => {
2787 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2789 #[cfg(any(dual_funding, splicing))]
2790 ChannelPhase::UnfundedOutboundV2(channel) => {
2791 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2793 #[cfg(any(dual_funding, splicing))]
2794 ChannelPhase::UnfundedInboundV2(channel) => {
2795 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2801 macro_rules! break_chan_phase_entry {
2802 ($self: ident, $res: expr, $entry: expr) => {
2806 let key = *$entry.key();
2807 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2809 $entry.remove_entry();
2817 macro_rules! try_chan_phase_entry {
2818 ($self: ident, $res: expr, $entry: expr) => {
2822 let key = *$entry.key();
2823 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2825 $entry.remove_entry();
2833 macro_rules! remove_channel_phase {
2834 ($self: expr, $entry: expr) => {
2836 let channel = $entry.remove_entry().1;
2837 update_maps_on_chan_removal!($self, &channel.context());
2843 macro_rules! send_channel_ready {
2844 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2845 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2846 node_id: $channel.context.get_counterparty_node_id(),
2847 msg: $channel_ready_msg,
2849 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2850 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2851 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2852 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2853 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2854 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2855 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2856 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2857 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2858 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2863 macro_rules! emit_channel_pending_event {
2864 ($locked_events: expr, $channel: expr) => {
2865 if $channel.context.should_emit_channel_pending_event() {
2866 $locked_events.push_back((events::Event::ChannelPending {
2867 channel_id: $channel.context.channel_id(),
2868 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2869 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2870 user_channel_id: $channel.context.get_user_id(),
2871 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2872 channel_type: Some($channel.context.get_channel_type().clone()),
2874 $channel.context.set_channel_pending_event_emitted();
2879 macro_rules! emit_channel_ready_event {
2880 ($locked_events: expr, $channel: expr) => {
2881 if $channel.context.should_emit_channel_ready_event() {
2882 debug_assert!($channel.context.channel_pending_event_emitted());
2883 $locked_events.push_back((events::Event::ChannelReady {
2884 channel_id: $channel.context.channel_id(),
2885 user_channel_id: $channel.context.get_user_id(),
2886 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2887 channel_type: $channel.context.get_channel_type().clone(),
2889 $channel.context.set_channel_ready_event_emitted();
2894 macro_rules! handle_monitor_update_completion {
2895 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2896 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2897 let mut updates = $chan.monitor_updating_restored(&&logger,
2898 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2899 $self.best_block.read().unwrap().height);
2900 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2901 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2902 // We only send a channel_update in the case where we are just now sending a
2903 // channel_ready and the channel is in a usable state. We may re-send a
2904 // channel_update later through the announcement_signatures process for public
2905 // channels, but there's no reason not to just inform our counterparty of our fees
2907 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2908 Some(events::MessageSendEvent::SendChannelUpdate {
2909 node_id: counterparty_node_id,
2915 let update_actions = $peer_state.monitor_update_blocked_actions
2916 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2918 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2919 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2920 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2921 updates.funding_broadcastable, updates.channel_ready,
2922 updates.announcement_sigs);
2923 if let Some(upd) = channel_update {
2924 $peer_state.pending_msg_events.push(upd);
2927 let channel_id = $chan.context.channel_id();
2928 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2929 core::mem::drop($peer_state_lock);
2930 core::mem::drop($per_peer_state_lock);
2932 // If the channel belongs to a batch funding transaction, the progress of the batch
2933 // should be updated as we have received funding_signed and persisted the monitor.
2934 if let Some(txid) = unbroadcasted_batch_funding_txid {
2935 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2936 let mut batch_completed = false;
2937 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2938 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2939 *chan_id == channel_id &&
2940 *pubkey == counterparty_node_id
2942 if let Some(channel_state) = channel_state {
2943 channel_state.2 = true;
2945 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2947 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2949 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2952 // When all channels in a batched funding transaction have become ready, it is not necessary
2953 // to track the progress of the batch anymore and the state of the channels can be updated.
2954 if batch_completed {
2955 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2956 let per_peer_state = $self.per_peer_state.read().unwrap();
2957 let mut batch_funding_tx = None;
2958 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2959 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2960 let mut peer_state = peer_state_mutex.lock().unwrap();
2961 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2962 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2963 chan.set_batch_ready();
2964 let mut pending_events = $self.pending_events.lock().unwrap();
2965 emit_channel_pending_event!(pending_events, chan);
2969 if let Some(tx) = batch_funding_tx {
2970 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2971 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2976 $self.handle_monitor_update_completion_actions(update_actions);
2978 if let Some(forwards) = htlc_forwards {
2979 $self.forward_htlcs(&mut [forwards][..]);
2981 if let Some(decode) = decode_update_add_htlcs {
2982 $self.push_decode_update_add_htlcs(decode);
2984 $self.finalize_claims(updates.finalized_claimed_htlcs);
2985 for failure in updates.failed_htlcs.drain(..) {
2986 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2987 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2992 macro_rules! handle_new_monitor_update {
2993 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2994 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2995 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2997 ChannelMonitorUpdateStatus::UnrecoverableError => {
2998 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2999 log_error!(logger, "{}", err_str);
3000 panic!("{}", err_str);
3002 ChannelMonitorUpdateStatus::InProgress => {
3003 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
3004 &$chan.context.channel_id());
3007 ChannelMonitorUpdateStatus::Completed => {
3013 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3014 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3015 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3017 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3018 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3019 .or_insert_with(Vec::new);
3020 // During startup, we push monitor updates as background events through to here in
3021 // order to replay updates that were in-flight when we shut down. Thus, we have to
3022 // filter for uniqueness here.
3023 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3024 .unwrap_or_else(|| {
3025 in_flight_updates.push($update);
3026 in_flight_updates.len() - 1
3028 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3029 handle_new_monitor_update!($self, update_res, $chan, _internal,
3031 let _ = in_flight_updates.remove(idx);
3032 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3033 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3039 macro_rules! process_events_body {
3040 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3041 let mut processed_all_events = false;
3042 while !processed_all_events {
3043 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3050 // We'll acquire our total consistency lock so that we can be sure no other
3051 // persists happen while processing monitor events.
3052 let _read_guard = $self.total_consistency_lock.read().unwrap();
3054 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3055 // ensure any startup-generated background events are handled first.
3056 result = $self.process_background_events();
3058 // TODO: This behavior should be documented. It's unintuitive that we query
3059 // ChannelMonitors when clearing other events.
3060 if $self.process_pending_monitor_events() {
3061 result = NotifyOption::DoPersist;
3065 let pending_events = $self.pending_events.lock().unwrap().clone();
3066 let num_events = pending_events.len();
3067 if !pending_events.is_empty() {
3068 result = NotifyOption::DoPersist;
3071 let mut post_event_actions = Vec::new();
3073 for (event, action_opt) in pending_events {
3074 $event_to_handle = event;
3076 if let Some(action) = action_opt {
3077 post_event_actions.push(action);
3082 let mut pending_events = $self.pending_events.lock().unwrap();
3083 pending_events.drain(..num_events);
3084 processed_all_events = pending_events.is_empty();
3085 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3086 // updated here with the `pending_events` lock acquired.
3087 $self.pending_events_processor.store(false, Ordering::Release);
3090 if !post_event_actions.is_empty() {
3091 $self.handle_post_event_actions(post_event_actions);
3092 // If we had some actions, go around again as we may have more events now
3093 processed_all_events = false;
3097 NotifyOption::DoPersist => {
3098 $self.needs_persist_flag.store(true, Ordering::Release);
3099 $self.event_persist_notifier.notify();
3101 NotifyOption::SkipPersistHandleEvents =>
3102 $self.event_persist_notifier.notify(),
3103 NotifyOption::SkipPersistNoEvents => {},
3109 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3111 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3112 T::Target: BroadcasterInterface,
3113 ES::Target: EntropySource,
3114 NS::Target: NodeSigner,
3115 SP::Target: SignerProvider,
3116 F::Target: FeeEstimator,
3120 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3122 /// The current time or latest block header time can be provided as the `current_timestamp`.
3124 /// This is the main "logic hub" for all channel-related actions, and implements
3125 /// [`ChannelMessageHandler`].
3127 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3129 /// Users need to notify the new `ChannelManager` when a new block is connected or
3130 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3131 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3134 /// [`block_connected`]: chain::Listen::block_connected
3135 /// [`block_disconnected`]: chain::Listen::block_disconnected
3136 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3138 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3139 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3140 current_timestamp: u32,
3142 let mut secp_ctx = Secp256k1::new();
3143 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3144 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3145 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3147 default_configuration: config.clone(),
3148 chain_hash: ChainHash::using_genesis_block(params.network),
3149 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3154 best_block: RwLock::new(params.best_block),
3156 outbound_scid_aliases: Mutex::new(new_hash_set()),
3157 pending_inbound_payments: Mutex::new(new_hash_map()),
3158 pending_outbound_payments: OutboundPayments::new(),
3159 forward_htlcs: Mutex::new(new_hash_map()),
3160 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3161 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3162 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3163 outpoint_to_peer: Mutex::new(new_hash_map()),
3164 short_to_chan_info: FairRwLock::new(new_hash_map()),
3166 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3169 inbound_payment_key: expanded_inbound_key,
3170 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3172 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3174 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3176 per_peer_state: FairRwLock::new(new_hash_map()),
3178 pending_events: Mutex::new(VecDeque::new()),
3179 pending_events_processor: AtomicBool::new(false),
3180 pending_background_events: Mutex::new(Vec::new()),
3181 total_consistency_lock: RwLock::new(()),
3182 background_events_processed_since_startup: AtomicBool::new(false),
3183 event_persist_notifier: Notifier::new(),
3184 needs_persist_flag: AtomicBool::new(false),
3185 funding_batch_states: Mutex::new(BTreeMap::new()),
3187 pending_offers_messages: Mutex::new(Vec::new()),
3188 pending_broadcast_messages: Mutex::new(Vec::new()),
3198 /// Gets the current configuration applied to all new channels.
3199 pub fn get_current_default_configuration(&self) -> &UserConfig {
3200 &self.default_configuration
3203 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3204 let height = self.best_block.read().unwrap().height;
3205 let mut outbound_scid_alias = 0;
3208 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3209 outbound_scid_alias += 1;
3211 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3213 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3217 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3222 /// Creates a new outbound channel to the given remote node and with the given value.
3224 /// `user_channel_id` will be provided back as in
3225 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3226 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3227 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3228 /// is simply copied to events and otherwise ignored.
3230 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3231 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3233 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3234 /// generate a shutdown scriptpubkey or destination script set by
3235 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3237 /// Note that we do not check if you are currently connected to the given peer. If no
3238 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3239 /// the channel eventually being silently forgotten (dropped on reload).
3241 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3242 /// channel. Otherwise, a random one will be generated for you.
3244 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3245 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3246 /// [`ChannelDetails::channel_id`] until after
3247 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3248 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3249 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3251 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3252 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3253 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3254 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3255 if channel_value_satoshis < 1000 {
3256 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3259 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3260 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3261 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3263 let per_peer_state = self.per_peer_state.read().unwrap();
3265 let peer_state_mutex = per_peer_state.get(&their_network_key)
3266 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3268 let mut peer_state = peer_state_mutex.lock().unwrap();
3270 if let Some(temporary_channel_id) = temporary_channel_id {
3271 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3272 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3277 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3278 let their_features = &peer_state.latest_features;
3279 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3280 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3281 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3282 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3286 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3291 let res = channel.get_open_channel(self.chain_hash);
3293 let temporary_channel_id = channel.context.channel_id();
3294 match peer_state.channel_by_id.entry(temporary_channel_id) {
3295 hash_map::Entry::Occupied(_) => {
3297 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3299 panic!("RNG is bad???");
3302 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3305 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3306 node_id: their_network_key,
3309 Ok(temporary_channel_id)
3312 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3313 // Allocate our best estimate of the number of channels we have in the `res`
3314 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3315 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3316 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3317 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3318 // the same channel.
3319 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3321 let best_block_height = self.best_block.read().unwrap().height;
3322 let per_peer_state = self.per_peer_state.read().unwrap();
3323 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3324 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3325 let peer_state = &mut *peer_state_lock;
3326 res.extend(peer_state.channel_by_id.iter()
3327 .filter_map(|(chan_id, phase)| match phase {
3328 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3329 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3333 .map(|(_channel_id, channel)| {
3334 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3335 peer_state.latest_features.clone(), &self.fee_estimator)
3343 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3344 /// more information.
3345 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3346 // Allocate our best estimate of the number of channels we have in the `res`
3347 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3348 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3349 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3350 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3351 // the same channel.
3352 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3354 let best_block_height = self.best_block.read().unwrap().height;
3355 let per_peer_state = self.per_peer_state.read().unwrap();
3356 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3357 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3358 let peer_state = &mut *peer_state_lock;
3359 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3360 let details = ChannelDetails::from_channel_context(context, best_block_height,
3361 peer_state.latest_features.clone(), &self.fee_estimator);
3369 /// Gets the list of usable channels, in random order. Useful as an argument to
3370 /// [`Router::find_route`] to ensure non-announced channels are used.
3372 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3373 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3375 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3376 // Note we use is_live here instead of usable which leads to somewhat confused
3377 // internal/external nomenclature, but that's ok cause that's probably what the user
3378 // really wanted anyway.
3379 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3382 /// Gets the list of channels we have with a given counterparty, in random order.
3383 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3384 let best_block_height = self.best_block.read().unwrap().height;
3385 let per_peer_state = self.per_peer_state.read().unwrap();
3387 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3388 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3389 let peer_state = &mut *peer_state_lock;
3390 let features = &peer_state.latest_features;
3391 let context_to_details = |context| {
3392 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3394 return peer_state.channel_by_id
3396 .map(|(_, phase)| phase.context())
3397 .map(context_to_details)
3403 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3404 /// successful path, or have unresolved HTLCs.
3406 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3407 /// result of a crash. If such a payment exists, is not listed here, and an
3408 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3410 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3411 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3412 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3413 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3414 PendingOutboundPayment::AwaitingInvoice { .. } => {
3415 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3417 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3418 PendingOutboundPayment::InvoiceReceived { .. } => {
3419 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3421 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3422 Some(RecentPaymentDetails::Pending {
3423 payment_id: *payment_id,
3424 payment_hash: *payment_hash,
3425 total_msat: *total_msat,
3428 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3429 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3431 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3432 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3434 PendingOutboundPayment::Legacy { .. } => None
3439 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3440 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3442 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3443 let mut shutdown_result = None;
3446 let per_peer_state = self.per_peer_state.read().unwrap();
3448 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3449 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3451 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3452 let peer_state = &mut *peer_state_lock;
3454 match peer_state.channel_by_id.entry(channel_id.clone()) {
3455 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3456 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3457 let funding_txo_opt = chan.context.get_funding_txo();
3458 let their_features = &peer_state.latest_features;
3459 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3460 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3461 failed_htlcs = htlcs;
3463 // We can send the `shutdown` message before updating the `ChannelMonitor`
3464 // here as we don't need the monitor update to complete until we send a
3465 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3466 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3467 node_id: *counterparty_node_id,
3471 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3472 "We can't both complete shutdown and generate a monitor update");
3474 // Update the monitor with the shutdown script if necessary.
3475 if let Some(monitor_update) = monitor_update_opt.take() {
3476 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3477 peer_state_lock, peer_state, per_peer_state, chan);
3480 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3481 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3484 hash_map::Entry::Vacant(_) => {
3485 return Err(APIError::ChannelUnavailable {
3487 "Channel with id {} not found for the passed counterparty node_id {}",
3488 channel_id, counterparty_node_id,
3495 for htlc_source in failed_htlcs.drain(..) {
3496 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3497 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3498 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3501 if let Some(shutdown_result) = shutdown_result {
3502 self.finish_close_channel(shutdown_result);
3508 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3509 /// will be accepted on the given channel, and after additional timeout/the closing of all
3510 /// pending HTLCs, the channel will be closed on chain.
3512 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3513 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3515 /// * If our counterparty is the channel initiator, we will require a channel closing
3516 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3517 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3518 /// counterparty to pay as much fee as they'd like, however.
3520 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3522 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3523 /// generate a shutdown scriptpubkey or destination script set by
3524 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3527 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3528 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3529 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3530 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3531 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3532 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3535 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3536 /// will be accepted on the given channel, and after additional timeout/the closing of all
3537 /// pending HTLCs, the channel will be closed on chain.
3539 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3540 /// the channel being closed or not:
3541 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3542 /// transaction. The upper-bound is set by
3543 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3544 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3545 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3546 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3547 /// will appear on a force-closure transaction, whichever is lower).
3549 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3550 /// Will fail if a shutdown script has already been set for this channel by
3551 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3552 /// also be compatible with our and the counterparty's features.
3554 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3556 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3557 /// generate a shutdown scriptpubkey or destination script set by
3558 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3561 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3562 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3563 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3564 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3565 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3568 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3569 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3570 #[cfg(debug_assertions)]
3571 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3572 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3575 let logger = WithContext::from(
3576 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3579 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3580 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3581 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3582 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3583 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3584 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3585 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3587 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3588 // There isn't anything we can do if we get an update failure - we're already
3589 // force-closing. The monitor update on the required in-memory copy should broadcast
3590 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3591 // ignore the result here.
3592 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3594 let mut shutdown_results = Vec::new();
3595 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3596 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3597 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3598 let per_peer_state = self.per_peer_state.read().unwrap();
3599 let mut has_uncompleted_channel = None;
3600 for (channel_id, counterparty_node_id, state) in affected_channels {
3601 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3602 let mut peer_state = peer_state_mutex.lock().unwrap();
3603 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3604 update_maps_on_chan_removal!(self, &chan.context());
3605 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3608 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3611 has_uncompleted_channel.unwrap_or(true),
3612 "Closing a batch where all channels have completed initial monitor update",
3617 let mut pending_events = self.pending_events.lock().unwrap();
3618 pending_events.push_back((events::Event::ChannelClosed {
3619 channel_id: shutdown_res.channel_id,
3620 user_channel_id: shutdown_res.user_channel_id,
3621 reason: shutdown_res.closure_reason,
3622 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3623 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3624 channel_funding_txo: shutdown_res.channel_funding_txo,
3627 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3628 pending_events.push_back((events::Event::DiscardFunding {
3629 channel_id: shutdown_res.channel_id, transaction
3633 for shutdown_result in shutdown_results.drain(..) {
3634 self.finish_close_channel(shutdown_result);
3638 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3639 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3640 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3641 -> Result<PublicKey, APIError> {
3642 let per_peer_state = self.per_peer_state.read().unwrap();
3643 let peer_state_mutex = per_peer_state.get(peer_node_id)
3644 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3645 let (update_opt, counterparty_node_id) = {
3646 let mut peer_state = peer_state_mutex.lock().unwrap();
3647 let closure_reason = if let Some(peer_msg) = peer_msg {
3648 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3650 ClosureReason::HolderForceClosed
3652 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3653 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3654 log_error!(logger, "Force-closing channel {}", channel_id);
3655 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3656 mem::drop(peer_state);
3657 mem::drop(per_peer_state);
3659 ChannelPhase::Funded(mut chan) => {
3660 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3661 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3663 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3664 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3665 // Unfunded channel has no update
3666 (None, chan_phase.context().get_counterparty_node_id())
3668 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
3669 #[cfg(any(dual_funding, splicing))]
3670 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3671 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3672 // Unfunded channel has no update
3673 (None, chan_phase.context().get_counterparty_node_id())
3676 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3677 log_error!(logger, "Force-closing channel {}", &channel_id);
3678 // N.B. that we don't send any channel close event here: we
3679 // don't have a user_channel_id, and we never sent any opening
3681 (None, *peer_node_id)
3683 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3686 if let Some(update) = update_opt {
3687 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3688 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3689 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3694 Ok(counterparty_node_id)
3697 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3698 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3699 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3700 Ok(counterparty_node_id) => {
3701 let per_peer_state = self.per_peer_state.read().unwrap();
3702 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3703 let mut peer_state = peer_state_mutex.lock().unwrap();
3704 peer_state.pending_msg_events.push(
3705 events::MessageSendEvent::HandleError {
3706 node_id: counterparty_node_id,
3707 action: msgs::ErrorAction::DisconnectPeer {
3708 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3719 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3720 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3721 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3723 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3724 -> Result<(), APIError> {
3725 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3728 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3729 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3730 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3732 /// You can always broadcast the latest local transaction(s) via
3733 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3734 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3735 -> Result<(), APIError> {
3736 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3739 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3740 /// for each to the chain and rejecting new HTLCs on each.
3741 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3742 for chan in self.list_channels() {
3743 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3747 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3748 /// local transaction(s).
3749 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3750 for chan in self.list_channels() {
3751 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3755 fn can_forward_htlc_to_outgoing_channel(
3756 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3757 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3758 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3759 // Note that the behavior here should be identical to the above block - we
3760 // should NOT reveal the existence or non-existence of a private channel if
3761 // we don't allow forwards outbound over them.
3762 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3764 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3765 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3766 // "refuse to forward unless the SCID alias was used", so we pretend
3767 // we don't have the channel here.
3768 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3771 // Note that we could technically not return an error yet here and just hope
3772 // that the connection is reestablished or monitor updated by the time we get
3773 // around to doing the actual forward, but better to fail early if we can and
3774 // hopefully an attacker trying to path-trace payments cannot make this occur
3775 // on a small/per-node/per-channel scale.
3776 if !chan.context.is_live() { // channel_disabled
3777 // If the channel_update we're going to return is disabled (i.e. the
3778 // peer has been disabled for some time), return `channel_disabled`,
3779 // otherwise return `temporary_channel_failure`.
3780 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3781 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3782 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3784 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3787 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3788 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3789 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3791 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3792 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3793 return Err((err, code, chan_update_opt));
3799 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3800 /// `scid`. `None` is returned when the channel is not found.
3801 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3802 &self, scid: u64, callback: C,
3804 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3805 None => return None,
3806 Some((cp_id, id)) => (cp_id, id),
3808 let per_peer_state = self.per_peer_state.read().unwrap();
3809 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3810 if peer_state_mutex_opt.is_none() {
3813 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3814 let peer_state = &mut *peer_state_lock;
3815 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3816 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3819 Some(chan) => Some(callback(chan)),
3823 fn can_forward_htlc(
3824 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3825 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3826 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3827 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3830 Some(Err(e)) => return Err(e),
3832 // If we couldn't find the channel info for the scid, it may be a phantom or
3833 // intercept forward.
3834 if (self.default_configuration.accept_intercept_htlcs &&
3835 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3836 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3838 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3843 let cur_height = self.best_block.read().unwrap().height + 1;
3844 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3845 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3847 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3848 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3850 return Err((err_msg, err_code, chan_update_opt));
3856 fn htlc_failure_from_update_add_err(
3857 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3858 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3859 shared_secret: &[u8; 32]
3860 ) -> HTLCFailureMsg {
3861 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3862 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3863 let chan_update = chan_update.unwrap();
3864 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3865 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3867 else if err_code == 0x1000 | 13 {
3868 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3870 else if err_code == 0x1000 | 20 {
3871 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3872 0u16.write(&mut res).expect("Writes cannot fail");
3874 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3875 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3876 chan_update.write(&mut res).expect("Writes cannot fail");
3877 } else if err_code & 0x1000 == 0x1000 {
3878 // If we're trying to return an error that requires a `channel_update` but
3879 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3880 // generate an update), just use the generic "temporary_node_failure"
3882 err_code = 0x2000 | 2;
3886 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3887 "Failed to accept/forward incoming HTLC: {}", err_msg
3889 // If `msg.blinding_point` is set, we must always fail with malformed.
3890 if msg.blinding_point.is_some() {
3891 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3892 channel_id: msg.channel_id,
3893 htlc_id: msg.htlc_id,
3894 sha256_of_onion: [0; 32],
3895 failure_code: INVALID_ONION_BLINDING,
3899 let (err_code, err_data) = if is_intro_node_blinded_forward {
3900 (INVALID_ONION_BLINDING, &[0; 32][..])
3902 (err_code, &res.0[..])
3904 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3905 channel_id: msg.channel_id,
3906 htlc_id: msg.htlc_id,
3907 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3908 .get_encrypted_failure_packet(shared_secret, &None),
3912 fn decode_update_add_htlc_onion(
3913 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3915 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3917 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3918 msg, &self.node_signer, &self.logger, &self.secp_ctx
3921 let next_packet_details = match next_packet_details_opt {
3922 Some(next_packet_details) => next_packet_details,
3923 // it is a receive, so no need for outbound checks
3924 None => return Ok((next_hop, shared_secret, None)),
3927 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3928 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3929 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3930 let (err_msg, err_code, chan_update_opt) = e;
3931 self.htlc_failure_from_update_add_err(
3932 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3933 next_hop.is_intro_node_blinded_forward(), &shared_secret
3937 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3940 fn construct_pending_htlc_status<'a>(
3941 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3942 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3943 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3944 ) -> PendingHTLCStatus {
3945 macro_rules! return_err {
3946 ($msg: expr, $err_code: expr, $data: expr) => {
3948 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3949 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3950 if msg.blinding_point.is_some() {
3951 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3952 msgs::UpdateFailMalformedHTLC {
3953 channel_id: msg.channel_id,
3954 htlc_id: msg.htlc_id,
3955 sha256_of_onion: [0; 32],
3956 failure_code: INVALID_ONION_BLINDING,
3960 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3961 channel_id: msg.channel_id,
3962 htlc_id: msg.htlc_id,
3963 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3964 .get_encrypted_failure_packet(&shared_secret, &None),
3970 onion_utils::Hop::Receive(next_hop_data) => {
3972 let current_height: u32 = self.best_block.read().unwrap().height;
3973 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3974 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3975 current_height, self.default_configuration.accept_mpp_keysend)
3978 // Note that we could obviously respond immediately with an update_fulfill_htlc
3979 // message, however that would leak that we are the recipient of this payment, so
3980 // instead we stay symmetric with the forwarding case, only responding (after a
3981 // delay) once they've send us a commitment_signed!
3982 PendingHTLCStatus::Forward(info)
3984 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3987 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3988 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3989 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3990 Ok(info) => PendingHTLCStatus::Forward(info),
3991 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3997 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3998 /// public, and thus should be called whenever the result is going to be passed out in a
3999 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
4001 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
4002 /// corresponding to the channel's counterparty locked, as the channel been removed from the
4003 /// storage and the `peer_state` lock has been dropped.
4005 /// [`channel_update`]: msgs::ChannelUpdate
4006 /// [`internal_closing_signed`]: Self::internal_closing_signed
4007 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4008 if !chan.context.should_announce() {
4009 return Err(LightningError {
4010 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4011 action: msgs::ErrorAction::IgnoreError
4014 if chan.context.get_short_channel_id().is_none() {
4015 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4017 let logger = WithChannelContext::from(&self.logger, &chan.context);
4018 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4019 self.get_channel_update_for_unicast(chan)
4022 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4023 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4024 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4025 /// provided evidence that they know about the existence of the channel.
4027 /// Note that through [`internal_closing_signed`], this function is called without the
4028 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4029 /// removed from the storage and the `peer_state` lock has been dropped.
4031 /// [`channel_update`]: msgs::ChannelUpdate
4032 /// [`internal_closing_signed`]: Self::internal_closing_signed
4033 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4034 let logger = WithChannelContext::from(&self.logger, &chan.context);
4035 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4036 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4037 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4041 self.get_channel_update_for_onion(short_channel_id, chan)
4044 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4045 let logger = WithChannelContext::from(&self.logger, &chan.context);
4046 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4047 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4049 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4050 ChannelUpdateStatus::Enabled => true,
4051 ChannelUpdateStatus::DisabledStaged(_) => true,
4052 ChannelUpdateStatus::Disabled => false,
4053 ChannelUpdateStatus::EnabledStaged(_) => false,
4056 let unsigned = msgs::UnsignedChannelUpdate {
4057 chain_hash: self.chain_hash,
4059 timestamp: chan.context.get_update_time_counter(),
4060 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4061 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4062 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4063 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4064 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4065 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4066 excess_data: Vec::new(),
4068 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4069 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4070 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4072 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4074 Ok(msgs::ChannelUpdate {
4081 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4082 let _lck = self.total_consistency_lock.read().unwrap();
4083 self.send_payment_along_path(SendAlongPathArgs {
4084 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4089 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4090 let SendAlongPathArgs {
4091 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4094 // The top-level caller should hold the total_consistency_lock read lock.
4095 debug_assert!(self.total_consistency_lock.try_write().is_err());
4096 let prng_seed = self.entropy_source.get_secure_random_bytes();
4097 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4099 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4100 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4101 payment_hash, keysend_preimage, prng_seed
4103 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4104 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4108 let err: Result<(), _> = loop {
4109 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4111 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4112 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4113 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4115 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4118 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4120 "Attempting to send payment with payment hash {} along path with next hop {}",
4121 payment_hash, path.hops.first().unwrap().short_channel_id);
4123 let per_peer_state = self.per_peer_state.read().unwrap();
4124 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4125 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4126 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4127 let peer_state = &mut *peer_state_lock;
4128 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4129 match chan_phase_entry.get_mut() {
4130 ChannelPhase::Funded(chan) => {
4131 if !chan.context.is_live() {
4132 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4134 let funding_txo = chan.context.get_funding_txo().unwrap();
4135 let logger = WithChannelContext::from(&self.logger, &chan.context);
4136 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4137 htlc_cltv, HTLCSource::OutboundRoute {
4139 session_priv: session_priv.clone(),
4140 first_hop_htlc_msat: htlc_msat,
4142 }, onion_packet, None, &self.fee_estimator, &&logger);
4143 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4144 Some(monitor_update) => {
4145 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4147 // Note that MonitorUpdateInProgress here indicates (per function
4148 // docs) that we will resend the commitment update once monitor
4149 // updating completes. Therefore, we must return an error
4150 // indicating that it is unsafe to retry the payment wholesale,
4151 // which we do in the send_payment check for
4152 // MonitorUpdateInProgress, below.
4153 return Err(APIError::MonitorUpdateInProgress);
4161 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4164 // The channel was likely removed after we fetched the id from the
4165 // `short_to_chan_info` map, but before we successfully locked the
4166 // `channel_by_id` map.
4167 // This can occur as no consistency guarantees exists between the two maps.
4168 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4172 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4173 Ok(_) => unreachable!(),
4175 Err(APIError::ChannelUnavailable { err: e.err })
4180 /// Sends a payment along a given route.
4182 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4183 /// fields for more info.
4185 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4186 /// [`PeerManager::process_events`]).
4188 /// # Avoiding Duplicate Payments
4190 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4191 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4192 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4193 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4194 /// second payment with the same [`PaymentId`].
4196 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4197 /// tracking of payments, including state to indicate once a payment has completed. Because you
4198 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4199 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4200 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4202 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4203 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4204 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4205 /// [`ChannelManager::list_recent_payments`] for more information.
4207 /// # Possible Error States on [`PaymentSendFailure`]
4209 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4210 /// each entry matching the corresponding-index entry in the route paths, see
4211 /// [`PaymentSendFailure`] for more info.
4213 /// In general, a path may raise:
4214 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4215 /// node public key) is specified.
4216 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4217 /// closed, doesn't exist, or the peer is currently disconnected.
4218 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4219 /// relevant updates.
4221 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4222 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4223 /// different route unless you intend to pay twice!
4225 /// [`RouteHop`]: crate::routing::router::RouteHop
4226 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4227 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4228 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4229 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4230 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4231 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4232 let best_block_height = self.best_block.read().unwrap().height;
4233 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4234 self.pending_outbound_payments
4235 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4236 &self.entropy_source, &self.node_signer, best_block_height,
4237 |args| self.send_payment_along_path(args))
4240 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4241 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4242 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4243 let best_block_height = self.best_block.read().unwrap().height;
4244 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4245 self.pending_outbound_payments
4246 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4247 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4248 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4249 &self.pending_events, |args| self.send_payment_along_path(args))
4253 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4254 let best_block_height = self.best_block.read().unwrap().height;
4255 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4256 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4257 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4258 best_block_height, |args| self.send_payment_along_path(args))
4262 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4263 let best_block_height = self.best_block.read().unwrap().height;
4264 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4268 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4269 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4272 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4273 let best_block_height = self.best_block.read().unwrap().height;
4274 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4275 self.pending_outbound_payments
4276 .send_payment_for_bolt12_invoice(
4277 invoice, payment_id, &self.router, self.list_usable_channels(),
4278 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4279 best_block_height, &self.logger, &self.pending_events,
4280 |args| self.send_payment_along_path(args)
4284 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4285 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4286 /// retries are exhausted.
4288 /// # Event Generation
4290 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4291 /// as there are no remaining pending HTLCs for this payment.
4293 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4294 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4295 /// determine the ultimate status of a payment.
4297 /// # Requested Invoices
4299 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4300 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4301 /// and prevent any attempts at paying it once received. The other events may only be generated
4302 /// once the invoice has been received.
4304 /// # Restart Behavior
4306 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4307 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4308 /// [`Event::InvoiceRequestFailed`].
4310 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4311 pub fn abandon_payment(&self, payment_id: PaymentId) {
4312 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4313 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4316 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4317 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4318 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4319 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4320 /// never reach the recipient.
4322 /// See [`send_payment`] documentation for more details on the return value of this function
4323 /// and idempotency guarantees provided by the [`PaymentId`] key.
4325 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4326 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4328 /// [`send_payment`]: Self::send_payment
4329 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4330 let best_block_height = self.best_block.read().unwrap().height;
4331 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4332 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4333 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4334 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4337 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4338 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4340 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4343 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4344 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4345 let best_block_height = self.best_block.read().unwrap().height;
4346 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4347 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4348 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4349 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4350 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4353 /// Send a payment that is probing the given route for liquidity. We calculate the
4354 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4355 /// us to easily discern them from real payments.
4356 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4357 let best_block_height = self.best_block.read().unwrap().height;
4358 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4359 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4360 &self.entropy_source, &self.node_signer, best_block_height,
4361 |args| self.send_payment_along_path(args))
4364 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4367 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4368 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4371 /// Sends payment probes over all paths of a route that would be used to pay the given
4372 /// amount to the given `node_id`.
4374 /// See [`ChannelManager::send_preflight_probes`] for more information.
4375 pub fn send_spontaneous_preflight_probes(
4376 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4377 liquidity_limit_multiplier: Option<u64>,
4378 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4379 let payment_params =
4380 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4382 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4384 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4387 /// Sends payment probes over all paths of a route that would be used to pay a route found
4388 /// according to the given [`RouteParameters`].
4390 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4391 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4392 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4393 /// confirmation in a wallet UI.
4395 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4396 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4397 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4398 /// payment. To mitigate this issue, channels with available liquidity less than the required
4399 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4400 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4401 pub fn send_preflight_probes(
4402 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4403 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4404 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4406 let payer = self.get_our_node_id();
4407 let usable_channels = self.list_usable_channels();
4408 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4409 let inflight_htlcs = self.compute_inflight_htlcs();
4413 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4415 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4416 ProbeSendFailure::RouteNotFound
4419 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4421 let mut res = Vec::new();
4423 for mut path in route.paths {
4424 // If the last hop is probably an unannounced channel we refrain from probing all the
4425 // way through to the end and instead probe up to the second-to-last channel.
4426 while let Some(last_path_hop) = path.hops.last() {
4427 if last_path_hop.maybe_announced_channel {
4428 // We found a potentially announced last hop.
4431 // Drop the last hop, as it's likely unannounced.
4434 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4435 last_path_hop.short_channel_id
4437 let final_value_msat = path.final_value_msat();
4439 if let Some(new_last) = path.hops.last_mut() {
4440 new_last.fee_msat += final_value_msat;
4445 if path.hops.len() < 2 {
4448 "Skipped sending payment probe over path with less than two hops."
4453 if let Some(first_path_hop) = path.hops.first() {
4454 if let Some(first_hop) = first_hops.iter().find(|h| {
4455 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4457 let path_value = path.final_value_msat() + path.fee_msat();
4458 let used_liquidity =
4459 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4461 if first_hop.next_outbound_htlc_limit_msat
4462 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4464 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4467 *used_liquidity += path_value;
4472 res.push(self.send_probe(path).map_err(|e| {
4473 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4474 ProbeSendFailure::SendingFailed(e)
4481 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4482 /// which checks the correctness of the funding transaction given the associated channel.
4483 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, &'static str>>(
4484 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4485 mut find_funding_output: FundingOutput,
4486 ) -> Result<(), APIError> {
4487 let per_peer_state = self.per_peer_state.read().unwrap();
4488 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4489 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4491 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4492 let peer_state = &mut *peer_state_lock;
4494 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4495 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4496 macro_rules! close_chan { ($err: expr, $api_err: expr, $chan: expr) => { {
4498 let err = if let ChannelError::Close(msg) = $err {
4499 let channel_id = $chan.context.channel_id();
4500 counterparty = chan.context.get_counterparty_node_id();
4501 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4502 let shutdown_res = $chan.context.force_shutdown(false, reason);
4503 MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None)
4504 } else { unreachable!(); };
4506 mem::drop(peer_state_lock);
4507 mem::drop(per_peer_state);
4508 let _: Result<(), _> = handle_error!(self, Err(err), counterparty);
4511 match find_funding_output(&chan, &funding_transaction) {
4512 Ok(found_funding_txo) => funding_txo = found_funding_txo,
4514 let chan_err = ChannelError::Close(err.to_owned());
4515 let api_err = APIError::APIMisuseError { err: err.to_owned() };
4516 return close_chan!(chan_err, api_err, chan);
4520 let logger = WithChannelContext::from(&self.logger, &chan.context);
4521 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger);
4523 Ok(funding_msg) => (chan, funding_msg),
4524 Err((mut chan, chan_err)) => {
4525 let api_err = APIError::ChannelUnavailable { err: "Signer refused to sign the initial commitment transaction".to_owned() };
4526 return close_chan!(chan_err, api_err, chan);
4531 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4532 return Err(APIError::APIMisuseError {
4534 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4535 temporary_channel_id, counterparty_node_id),
4538 None => return Err(APIError::ChannelUnavailable {err: format!(
4539 "Channel with id {} not found for the passed counterparty node_id {}",
4540 temporary_channel_id, counterparty_node_id),
4544 if let Some(msg) = msg_opt {
4545 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4546 node_id: chan.context.get_counterparty_node_id(),
4550 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4551 hash_map::Entry::Occupied(_) => {
4552 panic!("Generated duplicate funding txid?");
4554 hash_map::Entry::Vacant(e) => {
4555 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4556 match outpoint_to_peer.entry(funding_txo) {
4557 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4558 hash_map::Entry::Occupied(o) => {
4560 "An existing channel using outpoint {} is open with peer {}",
4561 funding_txo, o.get()
4563 mem::drop(outpoint_to_peer);
4564 mem::drop(peer_state_lock);
4565 mem::drop(per_peer_state);
4566 let reason = ClosureReason::ProcessingError { err: err.clone() };
4567 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4568 return Err(APIError::ChannelUnavailable { err });
4571 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4578 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4579 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4580 Ok(OutPoint { txid: tx.txid(), index: output_index })
4584 /// Call this upon creation of a funding transaction for the given channel.
4586 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4587 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4589 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4590 /// across the p2p network.
4592 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4593 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4595 /// May panic if the output found in the funding transaction is duplicative with some other
4596 /// channel (note that this should be trivially prevented by using unique funding transaction
4597 /// keys per-channel).
4599 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4600 /// counterparty's signature the funding transaction will automatically be broadcast via the
4601 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4603 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4604 /// not currently support replacing a funding transaction on an existing channel. Instead,
4605 /// create a new channel with a conflicting funding transaction.
4607 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4608 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4609 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4610 /// for more details.
4612 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4613 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4614 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4615 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4618 /// Call this upon creation of a batch funding transaction for the given channels.
4620 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4621 /// each individual channel and transaction output.
4623 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4624 /// will only be broadcast when we have safely received and persisted the counterparty's
4625 /// signature for each channel.
4627 /// If there is an error, all channels in the batch are to be considered closed.
4628 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4629 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4630 let mut result = Ok(());
4632 if !funding_transaction.is_coin_base() {
4633 for inp in funding_transaction.input.iter() {
4634 if inp.witness.is_empty() {
4635 result = result.and(Err(APIError::APIMisuseError {
4636 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4641 if funding_transaction.output.len() > u16::max_value() as usize {
4642 result = result.and(Err(APIError::APIMisuseError {
4643 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4647 let height = self.best_block.read().unwrap().height;
4648 // Transactions are evaluated as final by network mempools if their locktime is strictly
4649 // lower than the next block height. However, the modules constituting our Lightning
4650 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4651 // module is ahead of LDK, only allow one more block of headroom.
4652 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4653 funding_transaction.lock_time.is_block_height() &&
4654 funding_transaction.lock_time.to_consensus_u32() > height + 1
4656 result = result.and(Err(APIError::APIMisuseError {
4657 err: "Funding transaction absolute timelock is non-final".to_owned()
4662 let txid = funding_transaction.txid();
4663 let is_batch_funding = temporary_channels.len() > 1;
4664 let mut funding_batch_states = if is_batch_funding {
4665 Some(self.funding_batch_states.lock().unwrap())
4669 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4670 match states.entry(txid) {
4671 btree_map::Entry::Occupied(_) => {
4672 result = result.clone().and(Err(APIError::APIMisuseError {
4673 err: "Batch funding transaction with the same txid already exists".to_owned()
4677 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4680 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4681 result = result.and_then(|_| self.funding_transaction_generated_intern(
4682 temporary_channel_id,
4683 counterparty_node_id,
4684 funding_transaction.clone(),
4687 let mut output_index = None;
4688 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4689 for (idx, outp) in tx.output.iter().enumerate() {
4690 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4691 if output_index.is_some() {
4692 return Err("Multiple outputs matched the expected script and value");
4694 output_index = Some(idx as u16);
4697 if output_index.is_none() {
4698 return Err("No output matched the script_pubkey and value in the FundingGenerationReady event");
4700 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4701 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4702 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4703 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4704 // want to support V2 batching here as well.
4705 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4711 if let Err(ref e) = result {
4712 // Remaining channels need to be removed on any error.
4713 let e = format!("Error in transaction funding: {:?}", e);
4714 let mut channels_to_remove = Vec::new();
4715 channels_to_remove.extend(funding_batch_states.as_mut()
4716 .and_then(|states| states.remove(&txid))
4717 .into_iter().flatten()
4718 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4720 channels_to_remove.extend(temporary_channels.iter()
4721 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4723 let mut shutdown_results = Vec::new();
4725 let per_peer_state = self.per_peer_state.read().unwrap();
4726 for (channel_id, counterparty_node_id) in channels_to_remove {
4727 per_peer_state.get(&counterparty_node_id)
4728 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4729 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id).map(|chan| (chan, peer_state)))
4730 .map(|(mut chan, mut peer_state)| {
4731 update_maps_on_chan_removal!(self, &chan.context());
4732 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4733 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4734 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
4735 node_id: counterparty_node_id,
4736 action: msgs::ErrorAction::SendErrorMessage {
4737 msg: msgs::ErrorMessage {
4739 data: "Failed to fund channel".to_owned(),
4746 mem::drop(funding_batch_states);
4747 for shutdown_result in shutdown_results.drain(..) {
4748 self.finish_close_channel(shutdown_result);
4754 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4756 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4757 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4758 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4759 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4761 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4762 /// `counterparty_node_id` is provided.
4764 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4765 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4767 /// If an error is returned, none of the updates should be considered applied.
4769 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4770 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4771 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4772 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4773 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4774 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4775 /// [`APIMisuseError`]: APIError::APIMisuseError
4776 pub fn update_partial_channel_config(
4777 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4778 ) -> Result<(), APIError> {
4779 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4780 return Err(APIError::APIMisuseError {
4781 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4785 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4786 let per_peer_state = self.per_peer_state.read().unwrap();
4787 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4788 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4789 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4790 let peer_state = &mut *peer_state_lock;
4792 for channel_id in channel_ids {
4793 if !peer_state.has_channel(channel_id) {
4794 return Err(APIError::ChannelUnavailable {
4795 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4799 for channel_id in channel_ids {
4800 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4801 let mut config = channel_phase.context().config();
4802 config.apply(config_update);
4803 if !channel_phase.context_mut().update_config(&config) {
4806 if let ChannelPhase::Funded(channel) = channel_phase {
4807 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4808 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4809 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4810 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4811 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4812 node_id: channel.context.get_counterparty_node_id(),
4819 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4820 debug_assert!(false);
4821 return Err(APIError::ChannelUnavailable {
4823 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4824 channel_id, counterparty_node_id),
4831 /// Atomically updates the [`ChannelConfig`] for the given channels.
4833 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4834 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4835 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4836 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4838 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4839 /// `counterparty_node_id` is provided.
4841 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4842 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4844 /// If an error is returned, none of the updates should be considered applied.
4846 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4847 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4848 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4849 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4850 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4851 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4852 /// [`APIMisuseError`]: APIError::APIMisuseError
4853 pub fn update_channel_config(
4854 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4855 ) -> Result<(), APIError> {
4856 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4859 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4860 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4862 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4863 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4865 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4866 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4867 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4868 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4869 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4871 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4872 /// you from forwarding more than you received. See
4873 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4876 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4879 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4880 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4881 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4882 // TODO: when we move to deciding the best outbound channel at forward time, only take
4883 // `next_node_id` and not `next_hop_channel_id`
4884 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4885 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4887 let next_hop_scid = {
4888 let peer_state_lock = self.per_peer_state.read().unwrap();
4889 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4890 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4891 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4892 let peer_state = &mut *peer_state_lock;
4893 match peer_state.channel_by_id.get(next_hop_channel_id) {
4894 Some(ChannelPhase::Funded(chan)) => {
4895 if !chan.context.is_usable() {
4896 return Err(APIError::ChannelUnavailable {
4897 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4900 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4902 Some(_) => return Err(APIError::ChannelUnavailable {
4903 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4904 next_hop_channel_id, next_node_id)
4907 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4908 next_hop_channel_id, next_node_id);
4909 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4910 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4911 return Err(APIError::ChannelUnavailable {
4918 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4919 .ok_or_else(|| APIError::APIMisuseError {
4920 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4923 let routing = match payment.forward_info.routing {
4924 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4925 PendingHTLCRouting::Forward {
4926 onion_packet, blinded, short_channel_id: next_hop_scid
4929 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4931 let skimmed_fee_msat =
4932 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4933 let pending_htlc_info = PendingHTLCInfo {
4934 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4935 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4938 let mut per_source_pending_forward = [(
4939 payment.prev_short_channel_id,
4940 payment.prev_funding_outpoint,
4941 payment.prev_channel_id,
4942 payment.prev_user_channel_id,
4943 vec![(pending_htlc_info, payment.prev_htlc_id)]
4945 self.forward_htlcs(&mut per_source_pending_forward);
4949 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4950 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4952 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4955 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4956 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4957 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4959 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4960 .ok_or_else(|| APIError::APIMisuseError {
4961 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4964 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4965 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4966 short_channel_id: payment.prev_short_channel_id,
4967 user_channel_id: Some(payment.prev_user_channel_id),
4968 outpoint: payment.prev_funding_outpoint,
4969 channel_id: payment.prev_channel_id,
4970 htlc_id: payment.prev_htlc_id,
4971 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4972 phantom_shared_secret: None,
4973 blinded_failure: payment.forward_info.routing.blinded_failure(),
4976 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4977 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4978 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4979 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4984 fn process_pending_update_add_htlcs(&self) {
4985 let mut decode_update_add_htlcs = new_hash_map();
4986 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4988 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4989 if let Some(outgoing_scid) = outgoing_scid_opt {
4990 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4991 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4992 HTLCDestination::NextHopChannel {
4993 node_id: Some(*outgoing_counterparty_node_id),
4994 channel_id: *outgoing_channel_id,
4996 None => HTLCDestination::UnknownNextHop {
4997 requested_forward_scid: outgoing_scid,
5001 HTLCDestination::FailedPayment { payment_hash }
5005 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
5006 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5007 let counterparty_node_id = chan.context.get_counterparty_node_id();
5008 let channel_id = chan.context.channel_id();
5009 let funding_txo = chan.context.get_funding_txo().unwrap();
5010 let user_channel_id = chan.context.get_user_id();
5011 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
5012 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
5015 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
5016 incoming_user_channel_id, incoming_accept_underpaying_htlcs
5017 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
5018 incoming_channel_details
5020 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5024 let mut htlc_forwards = Vec::new();
5025 let mut htlc_fails = Vec::new();
5026 for update_add_htlc in &update_add_htlcs {
5027 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5028 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5030 Ok(decoded_onion) => decoded_onion,
5032 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5037 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5038 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5040 // Process the HTLC on the incoming channel.
5041 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5042 let logger = WithChannelContext::from(&self.logger, &chan.context);
5043 chan.can_accept_incoming_htlc(
5044 update_add_htlc, &self.fee_estimator, &logger,
5048 Some(Err((err, code))) => {
5049 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5050 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5051 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5056 let htlc_fail = self.htlc_failure_from_update_add_err(
5057 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5058 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5060 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5061 htlc_fails.push((htlc_fail, htlc_destination));
5064 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5065 None => continue 'outer_loop,
5068 // Now process the HTLC on the outgoing channel if it's a forward.
5069 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5070 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5071 &update_add_htlc, next_packet_details
5073 let htlc_fail = self.htlc_failure_from_update_add_err(
5074 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5075 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5077 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5078 htlc_fails.push((htlc_fail, htlc_destination));
5083 match self.construct_pending_htlc_status(
5084 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5085 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5087 PendingHTLCStatus::Forward(htlc_forward) => {
5088 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5090 PendingHTLCStatus::Fail(htlc_fail) => {
5091 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5092 htlc_fails.push((htlc_fail, htlc_destination));
5097 // Process all of the forwards and failures for the channel in which the HTLCs were
5098 // proposed to as a batch.
5099 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5100 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5101 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5102 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5103 let failure = match htlc_fail {
5104 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5105 htlc_id: fail_htlc.htlc_id,
5106 err_packet: fail_htlc.reason,
5108 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5109 htlc_id: fail_malformed_htlc.htlc_id,
5110 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5111 failure_code: fail_malformed_htlc.failure_code,
5114 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5115 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5116 prev_channel_id: incoming_channel_id,
5117 failed_next_destination: htlc_destination,
5123 /// Processes HTLCs which are pending waiting on random forward delay.
5125 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5126 /// Will likely generate further events.
5127 pub fn process_pending_htlc_forwards(&self) {
5128 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5130 self.process_pending_update_add_htlcs();
5132 let mut new_events = VecDeque::new();
5133 let mut failed_forwards = Vec::new();
5134 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5136 let mut forward_htlcs = new_hash_map();
5137 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5139 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5140 if short_chan_id != 0 {
5141 let mut forwarding_counterparty = None;
5142 macro_rules! forwarding_channel_not_found {
5144 for forward_info in pending_forwards.drain(..) {
5145 match forward_info {
5146 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5147 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5148 prev_user_channel_id, forward_info: PendingHTLCInfo {
5149 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5150 outgoing_cltv_value, ..
5153 macro_rules! failure_handler {
5154 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5155 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5156 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5158 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5159 short_channel_id: prev_short_channel_id,
5160 user_channel_id: Some(prev_user_channel_id),
5161 channel_id: prev_channel_id,
5162 outpoint: prev_funding_outpoint,
5163 htlc_id: prev_htlc_id,
5164 incoming_packet_shared_secret: incoming_shared_secret,
5165 phantom_shared_secret: $phantom_ss,
5166 blinded_failure: routing.blinded_failure(),
5169 let reason = if $next_hop_unknown {
5170 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5172 HTLCDestination::FailedPayment{ payment_hash }
5175 failed_forwards.push((htlc_source, payment_hash,
5176 HTLCFailReason::reason($err_code, $err_data),
5182 macro_rules! fail_forward {
5183 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5185 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5189 macro_rules! failed_payment {
5190 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5192 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5196 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5197 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5198 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5199 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5200 let next_hop = match onion_utils::decode_next_payment_hop(
5201 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5202 payment_hash, None, &self.node_signer
5205 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5206 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5207 // In this scenario, the phantom would have sent us an
5208 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5209 // if it came from us (the second-to-last hop) but contains the sha256
5211 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5213 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5214 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5218 onion_utils::Hop::Receive(hop_data) => {
5219 let current_height: u32 = self.best_block.read().unwrap().height;
5220 match create_recv_pending_htlc_info(hop_data,
5221 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5222 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5223 current_height, self.default_configuration.accept_mpp_keysend)
5225 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5226 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5232 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5235 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5238 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5239 // Channel went away before we could fail it. This implies
5240 // the channel is now on chain and our counterparty is
5241 // trying to broadcast the HTLC-Timeout, but that's their
5242 // problem, not ours.
5248 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5249 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5250 Some((cp_id, chan_id)) => (cp_id, chan_id),
5252 forwarding_channel_not_found!();
5256 forwarding_counterparty = Some(counterparty_node_id);
5257 let per_peer_state = self.per_peer_state.read().unwrap();
5258 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5259 if peer_state_mutex_opt.is_none() {
5260 forwarding_channel_not_found!();
5263 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5264 let peer_state = &mut *peer_state_lock;
5265 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5266 let logger = WithChannelContext::from(&self.logger, &chan.context);
5267 for forward_info in pending_forwards.drain(..) {
5268 let queue_fail_htlc_res = match forward_info {
5269 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5270 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5271 prev_user_channel_id, forward_info: PendingHTLCInfo {
5272 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5273 routing: PendingHTLCRouting::Forward {
5274 onion_packet, blinded, ..
5275 }, skimmed_fee_msat, ..
5278 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5279 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5280 short_channel_id: prev_short_channel_id,
5281 user_channel_id: Some(prev_user_channel_id),
5282 channel_id: prev_channel_id,
5283 outpoint: prev_funding_outpoint,
5284 htlc_id: prev_htlc_id,
5285 incoming_packet_shared_secret: incoming_shared_secret,
5286 // Phantom payments are only PendingHTLCRouting::Receive.
5287 phantom_shared_secret: None,
5288 blinded_failure: blinded.map(|b| b.failure),
5290 let next_blinding_point = blinded.and_then(|b| {
5291 let encrypted_tlvs_ss = self.node_signer.ecdh(
5292 Recipient::Node, &b.inbound_blinding_point, None
5293 ).unwrap().secret_bytes();
5294 onion_utils::next_hop_pubkey(
5295 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5298 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5299 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5300 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5303 if let ChannelError::Ignore(msg) = e {
5304 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5306 panic!("Stated return value requirements in send_htlc() were not met");
5308 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5309 failed_forwards.push((htlc_source, payment_hash,
5310 HTLCFailReason::reason(failure_code, data),
5311 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5317 HTLCForwardInfo::AddHTLC { .. } => {
5318 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5320 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5321 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5322 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5324 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5325 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5326 let res = chan.queue_fail_malformed_htlc(
5327 htlc_id, failure_code, sha256_of_onion, &&logger
5329 Some((res, htlc_id))
5332 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5333 if let Err(e) = queue_fail_htlc_res {
5334 if let ChannelError::Ignore(msg) = e {
5335 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5337 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5339 // fail-backs are best-effort, we probably already have one
5340 // pending, and if not that's OK, if not, the channel is on
5341 // the chain and sending the HTLC-Timeout is their problem.
5347 forwarding_channel_not_found!();
5351 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5352 match forward_info {
5353 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5354 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5355 prev_user_channel_id, forward_info: PendingHTLCInfo {
5356 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5357 skimmed_fee_msat, ..
5360 let blinded_failure = routing.blinded_failure();
5361 let (cltv_expiry, onion_payload, payment_data, payment_context, phantom_shared_secret, mut onion_fields) = match routing {
5362 PendingHTLCRouting::Receive {
5363 payment_data, payment_metadata, payment_context,
5364 incoming_cltv_expiry, phantom_shared_secret, custom_tlvs,
5365 requires_blinded_error: _
5367 let _legacy_hop_data = Some(payment_data.clone());
5368 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5369 payment_metadata, custom_tlvs };
5370 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
5371 Some(payment_data), payment_context, phantom_shared_secret, onion_fields)
5373 PendingHTLCRouting::ReceiveKeysend {
5374 payment_data, payment_preimage, payment_metadata,
5375 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5377 let onion_fields = RecipientOnionFields {
5378 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5382 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5383 payment_data, None, None, onion_fields)
5386 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5389 let claimable_htlc = ClaimableHTLC {
5390 prev_hop: HTLCPreviousHopData {
5391 short_channel_id: prev_short_channel_id,
5392 user_channel_id: Some(prev_user_channel_id),
5393 channel_id: prev_channel_id,
5394 outpoint: prev_funding_outpoint,
5395 htlc_id: prev_htlc_id,
5396 incoming_packet_shared_secret: incoming_shared_secret,
5397 phantom_shared_secret,
5400 // We differentiate the received value from the sender intended value
5401 // if possible so that we don't prematurely mark MPP payments complete
5402 // if routing nodes overpay
5403 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5404 sender_intended_value: outgoing_amt_msat,
5406 total_value_received: None,
5407 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5410 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5413 let mut committed_to_claimable = false;
5415 macro_rules! fail_htlc {
5416 ($htlc: expr, $payment_hash: expr) => {
5417 debug_assert!(!committed_to_claimable);
5418 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5419 htlc_msat_height_data.extend_from_slice(
5420 &self.best_block.read().unwrap().height.to_be_bytes(),
5422 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5423 short_channel_id: $htlc.prev_hop.short_channel_id,
5424 user_channel_id: $htlc.prev_hop.user_channel_id,
5425 channel_id: prev_channel_id,
5426 outpoint: prev_funding_outpoint,
5427 htlc_id: $htlc.prev_hop.htlc_id,
5428 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5429 phantom_shared_secret,
5432 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5433 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5435 continue 'next_forwardable_htlc;
5438 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5439 let mut receiver_node_id = self.our_network_pubkey;
5440 if phantom_shared_secret.is_some() {
5441 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5442 .expect("Failed to get node_id for phantom node recipient");
5445 macro_rules! check_total_value {
5446 ($purpose: expr) => {{
5447 let mut payment_claimable_generated = false;
5448 let is_keysend = $purpose.is_keysend();
5449 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5450 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5451 fail_htlc!(claimable_htlc, payment_hash);
5453 let ref mut claimable_payment = claimable_payments.claimable_payments
5454 .entry(payment_hash)
5455 // Note that if we insert here we MUST NOT fail_htlc!()
5456 .or_insert_with(|| {
5457 committed_to_claimable = true;
5459 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5462 if $purpose != claimable_payment.purpose {
5463 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5464 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5465 fail_htlc!(claimable_htlc, payment_hash);
5467 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5468 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5469 fail_htlc!(claimable_htlc, payment_hash);
5471 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5472 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5473 fail_htlc!(claimable_htlc, payment_hash);
5476 claimable_payment.onion_fields = Some(onion_fields);
5478 let ref mut htlcs = &mut claimable_payment.htlcs;
5479 let mut total_value = claimable_htlc.sender_intended_value;
5480 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5481 for htlc in htlcs.iter() {
5482 total_value += htlc.sender_intended_value;
5483 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5484 if htlc.total_msat != claimable_htlc.total_msat {
5485 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5486 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5487 total_value = msgs::MAX_VALUE_MSAT;
5489 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5491 // The condition determining whether an MPP is complete must
5492 // match exactly the condition used in `timer_tick_occurred`
5493 if total_value >= msgs::MAX_VALUE_MSAT {
5494 fail_htlc!(claimable_htlc, payment_hash);
5495 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5496 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5498 fail_htlc!(claimable_htlc, payment_hash);
5499 } else if total_value >= claimable_htlc.total_msat {
5500 #[allow(unused_assignments)] {
5501 committed_to_claimable = true;
5503 htlcs.push(claimable_htlc);
5504 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5505 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5506 let counterparty_skimmed_fee_msat = htlcs.iter()
5507 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5508 debug_assert!(total_value.saturating_sub(amount_msat) <=
5509 counterparty_skimmed_fee_msat);
5510 new_events.push_back((events::Event::PaymentClaimable {
5511 receiver_node_id: Some(receiver_node_id),
5515 counterparty_skimmed_fee_msat,
5516 via_channel_id: Some(prev_channel_id),
5517 via_user_channel_id: Some(prev_user_channel_id),
5518 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5519 onion_fields: claimable_payment.onion_fields.clone(),
5521 payment_claimable_generated = true;
5523 // Nothing to do - we haven't reached the total
5524 // payment value yet, wait until we receive more
5526 htlcs.push(claimable_htlc);
5527 #[allow(unused_assignments)] {
5528 committed_to_claimable = true;
5531 payment_claimable_generated
5535 // Check that the payment hash and secret are known. Note that we
5536 // MUST take care to handle the "unknown payment hash" and
5537 // "incorrect payment secret" cases here identically or we'd expose
5538 // that we are the ultimate recipient of the given payment hash.
5539 // Further, we must not expose whether we have any other HTLCs
5540 // associated with the same payment_hash pending or not.
5541 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5542 match payment_secrets.entry(payment_hash) {
5543 hash_map::Entry::Vacant(_) => {
5544 match claimable_htlc.onion_payload {
5545 OnionPayload::Invoice { .. } => {
5546 let payment_data = payment_data.unwrap();
5547 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5548 Ok(result) => result,
5550 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5551 fail_htlc!(claimable_htlc, payment_hash);
5554 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5555 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5556 if (cltv_expiry as u64) < expected_min_expiry_height {
5557 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5558 &payment_hash, cltv_expiry, expected_min_expiry_height);
5559 fail_htlc!(claimable_htlc, payment_hash);
5562 let purpose = events::PaymentPurpose::from_parts(
5564 payment_data.payment_secret,
5567 check_total_value!(purpose);
5569 OnionPayload::Spontaneous(preimage) => {
5570 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5571 check_total_value!(purpose);
5575 hash_map::Entry::Occupied(inbound_payment) => {
5576 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
5577 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5578 fail_htlc!(claimable_htlc, payment_hash);
5580 let payment_data = payment_data.unwrap();
5581 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5582 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5583 fail_htlc!(claimable_htlc, payment_hash);
5584 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5585 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5586 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5587 fail_htlc!(claimable_htlc, payment_hash);
5589 let purpose = events::PaymentPurpose::from_parts(
5590 inbound_payment.get().payment_preimage,
5591 payment_data.payment_secret,
5594 let payment_claimable_generated = check_total_value!(purpose);
5595 if payment_claimable_generated {
5596 inbound_payment.remove_entry();
5602 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5603 panic!("Got pending fail of our own HTLC");
5611 let best_block_height = self.best_block.read().unwrap().height;
5612 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5613 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5614 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5616 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5617 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5619 self.forward_htlcs(&mut phantom_receives);
5621 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5622 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5623 // nice to do the work now if we can rather than while we're trying to get messages in the
5625 self.check_free_holding_cells();
5627 if new_events.is_empty() { return }
5628 let mut events = self.pending_events.lock().unwrap();
5629 events.append(&mut new_events);
5632 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5634 /// Expects the caller to have a total_consistency_lock read lock.
5635 fn process_background_events(&self) -> NotifyOption {
5636 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5638 self.background_events_processed_since_startup.store(true, Ordering::Release);
5640 let mut background_events = Vec::new();
5641 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5642 if background_events.is_empty() {
5643 return NotifyOption::SkipPersistNoEvents;
5646 for event in background_events.drain(..) {
5648 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5649 // The channel has already been closed, so no use bothering to care about the
5650 // monitor updating completing.
5651 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5653 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5654 let mut updated_chan = false;
5656 let per_peer_state = self.per_peer_state.read().unwrap();
5657 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5658 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5659 let peer_state = &mut *peer_state_lock;
5660 match peer_state.channel_by_id.entry(channel_id) {
5661 hash_map::Entry::Occupied(mut chan_phase) => {
5662 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5663 updated_chan = true;
5664 handle_new_monitor_update!(self, funding_txo, update.clone(),
5665 peer_state_lock, peer_state, per_peer_state, chan);
5667 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5670 hash_map::Entry::Vacant(_) => {},
5675 // TODO: Track this as in-flight even though the channel is closed.
5676 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5679 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5680 let per_peer_state = self.per_peer_state.read().unwrap();
5681 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5682 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5683 let peer_state = &mut *peer_state_lock;
5684 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5685 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5687 let update_actions = peer_state.monitor_update_blocked_actions
5688 .remove(&channel_id).unwrap_or(Vec::new());
5689 mem::drop(peer_state_lock);
5690 mem::drop(per_peer_state);
5691 self.handle_monitor_update_completion_actions(update_actions);
5697 NotifyOption::DoPersist
5700 #[cfg(any(test, feature = "_test_utils"))]
5701 /// Process background events, for functional testing
5702 pub fn test_process_background_events(&self) {
5703 let _lck = self.total_consistency_lock.read().unwrap();
5704 let _ = self.process_background_events();
5707 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5708 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5710 let logger = WithChannelContext::from(&self.logger, &chan.context);
5712 // If the feerate has decreased by less than half, don't bother
5713 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5714 return NotifyOption::SkipPersistNoEvents;
5716 if !chan.context.is_live() {
5717 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5718 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5719 return NotifyOption::SkipPersistNoEvents;
5721 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5722 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5724 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5725 NotifyOption::DoPersist
5729 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5730 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5731 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5732 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5733 pub fn maybe_update_chan_fees(&self) {
5734 PersistenceNotifierGuard::optionally_notify(self, || {
5735 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5737 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5738 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5740 let per_peer_state = self.per_peer_state.read().unwrap();
5741 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5742 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5743 let peer_state = &mut *peer_state_lock;
5744 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5745 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5747 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5752 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5753 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5761 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5763 /// This currently includes:
5764 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5765 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5766 /// than a minute, informing the network that they should no longer attempt to route over
5768 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5769 /// with the current [`ChannelConfig`].
5770 /// * Removing peers which have disconnected but and no longer have any channels.
5771 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5772 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5773 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5774 /// The latter is determined using the system clock in `std` and the highest seen block time
5775 /// minus two hours in `no-std`.
5777 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5778 /// estimate fetches.
5780 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5781 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5782 pub fn timer_tick_occurred(&self) {
5783 PersistenceNotifierGuard::optionally_notify(self, || {
5784 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5786 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5787 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5789 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5790 let mut timed_out_mpp_htlcs = Vec::new();
5791 let mut pending_peers_awaiting_removal = Vec::new();
5792 let mut shutdown_channels = Vec::new();
5794 let mut process_unfunded_channel_tick = |
5795 chan_id: &ChannelId,
5796 context: &mut ChannelContext<SP>,
5797 unfunded_context: &mut UnfundedChannelContext,
5798 pending_msg_events: &mut Vec<MessageSendEvent>,
5799 counterparty_node_id: PublicKey,
5801 context.maybe_expire_prev_config();
5802 if unfunded_context.should_expire_unfunded_channel() {
5803 let logger = WithChannelContext::from(&self.logger, context);
5805 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5806 update_maps_on_chan_removal!(self, &context);
5807 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5808 pending_msg_events.push(MessageSendEvent::HandleError {
5809 node_id: counterparty_node_id,
5810 action: msgs::ErrorAction::SendErrorMessage {
5811 msg: msgs::ErrorMessage {
5812 channel_id: *chan_id,
5813 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5824 let per_peer_state = self.per_peer_state.read().unwrap();
5825 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5826 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5827 let peer_state = &mut *peer_state_lock;
5828 let pending_msg_events = &mut peer_state.pending_msg_events;
5829 let counterparty_node_id = *counterparty_node_id;
5830 peer_state.channel_by_id.retain(|chan_id, phase| {
5832 ChannelPhase::Funded(chan) => {
5833 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5838 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5839 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5841 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5842 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5843 handle_errors.push((Err(err), counterparty_node_id));
5844 if needs_close { return false; }
5847 match chan.channel_update_status() {
5848 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5849 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5850 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5851 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5852 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5853 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5854 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5856 if n >= DISABLE_GOSSIP_TICKS {
5857 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5858 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5859 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5860 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5864 should_persist = NotifyOption::DoPersist;
5866 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5869 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5871 if n >= ENABLE_GOSSIP_TICKS {
5872 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5873 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5874 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5875 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5879 should_persist = NotifyOption::DoPersist;
5881 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5887 chan.context.maybe_expire_prev_config();
5889 if chan.should_disconnect_peer_awaiting_response() {
5890 let logger = WithChannelContext::from(&self.logger, &chan.context);
5891 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5892 counterparty_node_id, chan_id);
5893 pending_msg_events.push(MessageSendEvent::HandleError {
5894 node_id: counterparty_node_id,
5895 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5896 msg: msgs::WarningMessage {
5897 channel_id: *chan_id,
5898 data: "Disconnecting due to timeout awaiting response".to_owned(),
5906 ChannelPhase::UnfundedInboundV1(chan) => {
5907 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5908 pending_msg_events, counterparty_node_id)
5910 ChannelPhase::UnfundedOutboundV1(chan) => {
5911 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5912 pending_msg_events, counterparty_node_id)
5914 #[cfg(any(dual_funding, splicing))]
5915 ChannelPhase::UnfundedInboundV2(chan) => {
5916 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5917 pending_msg_events, counterparty_node_id)
5919 #[cfg(any(dual_funding, splicing))]
5920 ChannelPhase::UnfundedOutboundV2(chan) => {
5921 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5922 pending_msg_events, counterparty_node_id)
5927 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5928 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5929 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5930 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5931 peer_state.pending_msg_events.push(
5932 events::MessageSendEvent::HandleError {
5933 node_id: counterparty_node_id,
5934 action: msgs::ErrorAction::SendErrorMessage {
5935 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5941 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5943 if peer_state.ok_to_remove(true) {
5944 pending_peers_awaiting_removal.push(counterparty_node_id);
5949 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5950 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5951 // of to that peer is later closed while still being disconnected (i.e. force closed),
5952 // we therefore need to remove the peer from `peer_state` separately.
5953 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5954 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5955 // negative effects on parallelism as much as possible.
5956 if pending_peers_awaiting_removal.len() > 0 {
5957 let mut per_peer_state = self.per_peer_state.write().unwrap();
5958 for counterparty_node_id in pending_peers_awaiting_removal {
5959 match per_peer_state.entry(counterparty_node_id) {
5960 hash_map::Entry::Occupied(entry) => {
5961 // Remove the entry if the peer is still disconnected and we still
5962 // have no channels to the peer.
5963 let remove_entry = {
5964 let peer_state = entry.get().lock().unwrap();
5965 peer_state.ok_to_remove(true)
5968 entry.remove_entry();
5971 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5976 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5977 if payment.htlcs.is_empty() {
5978 // This should be unreachable
5979 debug_assert!(false);
5982 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5983 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5984 // In this case we're not going to handle any timeouts of the parts here.
5985 // This condition determining whether the MPP is complete here must match
5986 // exactly the condition used in `process_pending_htlc_forwards`.
5987 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5988 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5991 } else if payment.htlcs.iter_mut().any(|htlc| {
5992 htlc.timer_ticks += 1;
5993 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5995 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5996 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
6003 for htlc_source in timed_out_mpp_htlcs.drain(..) {
6004 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
6005 let reason = HTLCFailReason::from_failure_code(23);
6006 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
6007 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
6010 for (err, counterparty_node_id) in handle_errors.drain(..) {
6011 let _ = handle_error!(self, err, counterparty_node_id);
6014 for shutdown_res in shutdown_channels {
6015 self.finish_close_channel(shutdown_res);
6018 #[cfg(feature = "std")]
6019 let duration_since_epoch = std::time::SystemTime::now()
6020 .duration_since(std::time::SystemTime::UNIX_EPOCH)
6021 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
6022 #[cfg(not(feature = "std"))]
6023 let duration_since_epoch = Duration::from_secs(
6024 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6027 self.pending_outbound_payments.remove_stale_payments(
6028 duration_since_epoch, &self.pending_events
6031 // Technically we don't need to do this here, but if we have holding cell entries in a
6032 // channel that need freeing, it's better to do that here and block a background task
6033 // than block the message queueing pipeline.
6034 if self.check_free_holding_cells() {
6035 should_persist = NotifyOption::DoPersist;
6042 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6043 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6044 /// along the path (including in our own channel on which we received it).
6046 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6047 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6048 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6049 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6051 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6052 /// [`ChannelManager::claim_funds`]), you should still monitor for
6053 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6054 /// startup during which time claims that were in-progress at shutdown may be replayed.
6055 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6056 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6059 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6060 /// reason for the failure.
6062 /// See [`FailureCode`] for valid failure codes.
6063 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6064 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6066 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6067 if let Some(payment) = removed_source {
6068 for htlc in payment.htlcs {
6069 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6070 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6071 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6072 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6077 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6078 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6079 match failure_code {
6080 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6081 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6082 FailureCode::IncorrectOrUnknownPaymentDetails => {
6083 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6084 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6085 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6087 FailureCode::InvalidOnionPayload(data) => {
6088 let fail_data = match data {
6089 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6092 HTLCFailReason::reason(failure_code.into(), fail_data)
6097 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6098 /// that we want to return and a channel.
6100 /// This is for failures on the channel on which the HTLC was *received*, not failures
6102 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6103 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6104 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6105 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6106 // an inbound SCID alias before the real SCID.
6107 let scid_pref = if chan.context.should_announce() {
6108 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6110 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6112 if let Some(scid) = scid_pref {
6113 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6115 (0x4000|10, Vec::new())
6120 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6121 /// that we want to return and a channel.
6122 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6123 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6124 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6125 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6126 if desired_err_code == 0x1000 | 20 {
6127 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6128 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6129 0u16.write(&mut enc).expect("Writes cannot fail");
6131 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6132 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6133 upd.write(&mut enc).expect("Writes cannot fail");
6134 (desired_err_code, enc.0)
6136 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6137 // which means we really shouldn't have gotten a payment to be forwarded over this
6138 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6139 // PERM|no_such_channel should be fine.
6140 (0x4000|10, Vec::new())
6144 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6145 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6146 // be surfaced to the user.
6147 fn fail_holding_cell_htlcs(
6148 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6149 counterparty_node_id: &PublicKey
6151 let (failure_code, onion_failure_data) = {
6152 let per_peer_state = self.per_peer_state.read().unwrap();
6153 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6154 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6155 let peer_state = &mut *peer_state_lock;
6156 match peer_state.channel_by_id.entry(channel_id) {
6157 hash_map::Entry::Occupied(chan_phase_entry) => {
6158 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6159 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6161 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6162 debug_assert!(false);
6163 (0x4000|10, Vec::new())
6166 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6168 } else { (0x4000|10, Vec::new()) }
6171 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6172 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6173 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6174 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6178 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6179 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6180 if push_forward_event { self.push_pending_forwards_ev(); }
6183 /// Fails an HTLC backwards to the sender of it to us.
6184 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6185 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6186 // Ensure that no peer state channel storage lock is held when calling this function.
6187 // This ensures that future code doesn't introduce a lock-order requirement for
6188 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6189 // this function with any `per_peer_state` peer lock acquired would.
6190 #[cfg(debug_assertions)]
6191 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6192 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6195 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6196 //identify whether we sent it or not based on the (I presume) very different runtime
6197 //between the branches here. We should make this async and move it into the forward HTLCs
6200 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6201 // from block_connected which may run during initialization prior to the chain_monitor
6202 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6203 let mut push_forward_event;
6205 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6206 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6207 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6208 &self.pending_events, &self.logger);
6210 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6211 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6212 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6215 WithContext::from(&self.logger, None, Some(*channel_id)),
6216 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6217 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6219 let failure = match blinded_failure {
6220 Some(BlindedFailure::FromIntroductionNode) => {
6221 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6222 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6223 incoming_packet_shared_secret, phantom_shared_secret
6225 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6227 Some(BlindedFailure::FromBlindedNode) => {
6228 HTLCForwardInfo::FailMalformedHTLC {
6230 failure_code: INVALID_ONION_BLINDING,
6231 sha256_of_onion: [0; 32]
6235 let err_packet = onion_error.get_encrypted_failure_packet(
6236 incoming_packet_shared_secret, phantom_shared_secret
6238 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6242 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6243 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6244 push_forward_event &= forward_htlcs.is_empty();
6245 match forward_htlcs.entry(*short_channel_id) {
6246 hash_map::Entry::Occupied(mut entry) => {
6247 entry.get_mut().push(failure);
6249 hash_map::Entry::Vacant(entry) => {
6250 entry.insert(vec!(failure));
6253 mem::drop(forward_htlcs);
6254 let mut pending_events = self.pending_events.lock().unwrap();
6255 pending_events.push_back((events::Event::HTLCHandlingFailed {
6256 prev_channel_id: *channel_id,
6257 failed_next_destination: destination,
6264 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6265 /// [`MessageSendEvent`]s needed to claim the payment.
6267 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6268 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6269 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6270 /// successful. It will generally be available in the next [`process_pending_events`] call.
6272 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6273 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6274 /// event matches your expectation. If you fail to do so and call this method, you may provide
6275 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6277 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6278 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6279 /// [`claim_funds_with_known_custom_tlvs`].
6281 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6282 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6283 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6284 /// [`process_pending_events`]: EventsProvider::process_pending_events
6285 /// [`create_inbound_payment`]: Self::create_inbound_payment
6286 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6287 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6288 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6289 self.claim_payment_internal(payment_preimage, false);
6292 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6293 /// even type numbers.
6297 /// You MUST check you've understood all even TLVs before using this to
6298 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6300 /// [`claim_funds`]: Self::claim_funds
6301 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6302 self.claim_payment_internal(payment_preimage, true);
6305 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6306 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6308 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6311 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6312 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6313 let mut receiver_node_id = self.our_network_pubkey;
6314 for htlc in payment.htlcs.iter() {
6315 if htlc.prev_hop.phantom_shared_secret.is_some() {
6316 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6317 .expect("Failed to get node_id for phantom node recipient");
6318 receiver_node_id = phantom_pubkey;
6323 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6324 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6325 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6326 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6327 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6329 if dup_purpose.is_some() {
6330 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6331 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6335 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6336 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6337 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6338 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6339 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6340 mem::drop(claimable_payments);
6341 for htlc in payment.htlcs {
6342 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6343 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6344 let receiver = HTLCDestination::FailedPayment { payment_hash };
6345 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6354 debug_assert!(!sources.is_empty());
6356 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6357 // and when we got here we need to check that the amount we're about to claim matches the
6358 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6359 // the MPP parts all have the same `total_msat`.
6360 let mut claimable_amt_msat = 0;
6361 let mut prev_total_msat = None;
6362 let mut expected_amt_msat = None;
6363 let mut valid_mpp = true;
6364 let mut errs = Vec::new();
6365 let per_peer_state = self.per_peer_state.read().unwrap();
6366 for htlc in sources.iter() {
6367 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6368 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6369 debug_assert!(false);
6373 prev_total_msat = Some(htlc.total_msat);
6375 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6376 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6377 debug_assert!(false);
6381 expected_amt_msat = htlc.total_value_received;
6382 claimable_amt_msat += htlc.value;
6384 mem::drop(per_peer_state);
6385 if sources.is_empty() || expected_amt_msat.is_none() {
6386 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6387 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6390 if claimable_amt_msat != expected_amt_msat.unwrap() {
6391 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6392 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6393 expected_amt_msat.unwrap(), claimable_amt_msat);
6397 for htlc in sources.drain(..) {
6398 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6399 if let Err((pk, err)) = self.claim_funds_from_hop(
6400 htlc.prev_hop, payment_preimage,
6401 |_, definitely_duplicate| {
6402 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6403 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6406 if let msgs::ErrorAction::IgnoreError = err.err.action {
6407 // We got a temporary failure updating monitor, but will claim the
6408 // HTLC when the monitor updating is restored (or on chain).
6409 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6410 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6411 } else { errs.push((pk, err)); }
6416 for htlc in sources.drain(..) {
6417 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6418 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6419 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6420 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6421 let receiver = HTLCDestination::FailedPayment { payment_hash };
6422 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6424 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6427 // Now we can handle any errors which were generated.
6428 for (counterparty_node_id, err) in errs.drain(..) {
6429 let res: Result<(), _> = Err(err);
6430 let _ = handle_error!(self, res, counterparty_node_id);
6434 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6435 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6436 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6437 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6439 // If we haven't yet run background events assume we're still deserializing and shouldn't
6440 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6441 // `BackgroundEvent`s.
6442 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6444 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6445 // the required mutexes are not held before we start.
6446 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6447 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6450 let per_peer_state = self.per_peer_state.read().unwrap();
6451 let chan_id = prev_hop.channel_id;
6452 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6453 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6457 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6458 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6459 .map(|peer_mutex| peer_mutex.lock().unwrap())
6462 if peer_state_opt.is_some() {
6463 let mut peer_state_lock = peer_state_opt.unwrap();
6464 let peer_state = &mut *peer_state_lock;
6465 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6466 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6467 let counterparty_node_id = chan.context.get_counterparty_node_id();
6468 let logger = WithChannelContext::from(&self.logger, &chan.context);
6469 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6472 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6473 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6474 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6476 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6479 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6480 peer_state, per_peer_state, chan);
6482 // If we're running during init we cannot update a monitor directly -
6483 // they probably haven't actually been loaded yet. Instead, push the
6484 // monitor update as a background event.
6485 self.pending_background_events.lock().unwrap().push(
6486 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6487 counterparty_node_id,
6488 funding_txo: prev_hop.outpoint,
6489 channel_id: prev_hop.channel_id,
6490 update: monitor_update.clone(),
6494 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6495 let action = if let Some(action) = completion_action(None, true) {
6500 mem::drop(peer_state_lock);
6502 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6504 let (node_id, _funding_outpoint, channel_id, blocker) =
6505 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6506 downstream_counterparty_node_id: node_id,
6507 downstream_funding_outpoint: funding_outpoint,
6508 blocking_action: blocker, downstream_channel_id: channel_id,
6510 (node_id, funding_outpoint, channel_id, blocker)
6512 debug_assert!(false,
6513 "Duplicate claims should always free another channel immediately");
6516 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6517 let mut peer_state = peer_state_mtx.lock().unwrap();
6518 if let Some(blockers) = peer_state
6519 .actions_blocking_raa_monitor_updates
6520 .get_mut(&channel_id)
6522 let mut found_blocker = false;
6523 blockers.retain(|iter| {
6524 // Note that we could actually be blocked, in
6525 // which case we need to only remove the one
6526 // blocker which was added duplicatively.
6527 let first_blocker = !found_blocker;
6528 if *iter == blocker { found_blocker = true; }
6529 *iter != blocker || !first_blocker
6531 debug_assert!(found_blocker);
6534 debug_assert!(false);
6543 let preimage_update = ChannelMonitorUpdate {
6544 update_id: CLOSED_CHANNEL_UPDATE_ID,
6545 counterparty_node_id: None,
6546 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6549 channel_id: Some(prev_hop.channel_id),
6553 // We update the ChannelMonitor on the backward link, after
6554 // receiving an `update_fulfill_htlc` from the forward link.
6555 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6556 if update_res != ChannelMonitorUpdateStatus::Completed {
6557 // TODO: This needs to be handled somehow - if we receive a monitor update
6558 // with a preimage we *must* somehow manage to propagate it to the upstream
6559 // channel, or we must have an ability to receive the same event and try
6560 // again on restart.
6561 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6562 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6563 payment_preimage, update_res);
6566 // If we're running during init we cannot update a monitor directly - they probably
6567 // haven't actually been loaded yet. Instead, push the monitor update as a background
6569 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6570 // channel is already closed) we need to ultimately handle the monitor update
6571 // completion action only after we've completed the monitor update. This is the only
6572 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6573 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6574 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6575 // complete the monitor update completion action from `completion_action`.
6576 self.pending_background_events.lock().unwrap().push(
6577 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6578 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6581 // Note that we do process the completion action here. This totally could be a
6582 // duplicate claim, but we have no way of knowing without interrogating the
6583 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6584 // generally always allowed to be duplicative (and it's specifically noted in
6585 // `PaymentForwarded`).
6586 self.handle_monitor_update_completion_actions(completion_action(None, false));
6590 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6591 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6594 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6595 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6596 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6597 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6600 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6601 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6602 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6603 if let Some(pubkey) = next_channel_counterparty_node_id {
6604 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6606 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6607 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6608 counterparty_node_id: path.hops[0].pubkey,
6610 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6611 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6614 HTLCSource::PreviousHopData(hop_data) => {
6615 let prev_channel_id = hop_data.channel_id;
6616 let prev_user_channel_id = hop_data.user_channel_id;
6617 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6618 #[cfg(debug_assertions)]
6619 let claiming_chan_funding_outpoint = hop_data.outpoint;
6620 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6621 |htlc_claim_value_msat, definitely_duplicate| {
6622 let chan_to_release =
6623 if let Some(node_id) = next_channel_counterparty_node_id {
6624 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6626 // We can only get `None` here if we are processing a
6627 // `ChannelMonitor`-originated event, in which case we
6628 // don't care about ensuring we wake the downstream
6629 // channel's monitor updating - the channel is already
6634 if definitely_duplicate && startup_replay {
6635 // On startup we may get redundant claims which are related to
6636 // monitor updates still in flight. In that case, we shouldn't
6637 // immediately free, but instead let that monitor update complete
6638 // in the background.
6639 #[cfg(debug_assertions)] {
6640 let background_events = self.pending_background_events.lock().unwrap();
6641 // There should be a `BackgroundEvent` pending...
6642 assert!(background_events.iter().any(|ev| {
6644 // to apply a monitor update that blocked the claiming channel,
6645 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6646 funding_txo, update, ..
6648 if *funding_txo == claiming_chan_funding_outpoint {
6649 assert!(update.updates.iter().any(|upd|
6650 if let ChannelMonitorUpdateStep::PaymentPreimage {
6651 payment_preimage: update_preimage
6653 payment_preimage == *update_preimage
6659 // or the channel we'd unblock is already closed,
6660 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6661 (funding_txo, _channel_id, monitor_update)
6663 if *funding_txo == next_channel_outpoint {
6664 assert_eq!(monitor_update.updates.len(), 1);
6666 monitor_update.updates[0],
6667 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6672 // or the monitor update has completed and will unblock
6673 // immediately once we get going.
6674 BackgroundEvent::MonitorUpdatesComplete {
6677 *channel_id == prev_channel_id,
6679 }), "{:?}", *background_events);
6682 } else if definitely_duplicate {
6683 if let Some(other_chan) = chan_to_release {
6684 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6685 downstream_counterparty_node_id: other_chan.0,
6686 downstream_funding_outpoint: other_chan.1,
6687 downstream_channel_id: other_chan.2,
6688 blocking_action: other_chan.3,
6692 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6693 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6694 Some(claimed_htlc_value - forwarded_htlc_value)
6697 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6698 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6699 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6700 event: events::Event::PaymentForwarded {
6701 prev_channel_id: Some(prev_channel_id),
6702 next_channel_id: Some(next_channel_id),
6703 prev_user_channel_id,
6704 next_user_channel_id,
6705 total_fee_earned_msat,
6707 claim_from_onchain_tx: from_onchain,
6708 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6710 downstream_counterparty_and_funding_outpoint: chan_to_release,
6714 if let Err((pk, err)) = res {
6715 let result: Result<(), _> = Err(err);
6716 let _ = handle_error!(self, result, pk);
6722 /// Gets the node_id held by this ChannelManager
6723 pub fn get_our_node_id(&self) -> PublicKey {
6724 self.our_network_pubkey.clone()
6727 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6728 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6729 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6730 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6732 for action in actions.into_iter() {
6734 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6735 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6736 if let Some(ClaimingPayment {
6738 payment_purpose: purpose,
6741 sender_intended_value: sender_intended_total_msat,
6743 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6747 receiver_node_id: Some(receiver_node_id),
6749 sender_intended_total_msat,
6753 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6754 event, downstream_counterparty_and_funding_outpoint
6756 self.pending_events.lock().unwrap().push_back((event, None));
6757 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6758 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6761 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6762 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6764 self.handle_monitor_update_release(
6765 downstream_counterparty_node_id,
6766 downstream_funding_outpoint,
6767 downstream_channel_id,
6768 Some(blocking_action),
6775 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6776 /// update completion.
6777 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6778 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6779 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6780 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6781 funding_broadcastable: Option<Transaction>,
6782 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6783 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6784 let logger = WithChannelContext::from(&self.logger, &channel.context);
6785 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6786 &channel.context.channel_id(),
6787 if raa.is_some() { "an" } else { "no" },
6788 if commitment_update.is_some() { "a" } else { "no" },
6789 pending_forwards.len(), pending_update_adds.len(),
6790 if funding_broadcastable.is_some() { "" } else { "not " },
6791 if channel_ready.is_some() { "sending" } else { "without" },
6792 if announcement_sigs.is_some() { "sending" } else { "without" });
6794 let counterparty_node_id = channel.context.get_counterparty_node_id();
6795 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6797 let mut htlc_forwards = None;
6798 if !pending_forwards.is_empty() {
6799 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6800 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6802 let mut decode_update_add_htlcs = None;
6803 if !pending_update_adds.is_empty() {
6804 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6807 if let Some(msg) = channel_ready {
6808 send_channel_ready!(self, pending_msg_events, channel, msg);
6810 if let Some(msg) = announcement_sigs {
6811 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6812 node_id: counterparty_node_id,
6817 macro_rules! handle_cs { () => {
6818 if let Some(update) = commitment_update {
6819 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6820 node_id: counterparty_node_id,
6825 macro_rules! handle_raa { () => {
6826 if let Some(revoke_and_ack) = raa {
6827 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6828 node_id: counterparty_node_id,
6829 msg: revoke_and_ack,
6834 RAACommitmentOrder::CommitmentFirst => {
6838 RAACommitmentOrder::RevokeAndACKFirst => {
6844 if let Some(tx) = funding_broadcastable {
6845 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6846 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6850 let mut pending_events = self.pending_events.lock().unwrap();
6851 emit_channel_pending_event!(pending_events, channel);
6852 emit_channel_ready_event!(pending_events, channel);
6855 (htlc_forwards, decode_update_add_htlcs)
6858 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6859 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6861 let counterparty_node_id = match counterparty_node_id {
6862 Some(cp_id) => cp_id.clone(),
6864 // TODO: Once we can rely on the counterparty_node_id from the
6865 // monitor event, this and the outpoint_to_peer map should be removed.
6866 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6867 match outpoint_to_peer.get(funding_txo) {
6868 Some(cp_id) => cp_id.clone(),
6873 let per_peer_state = self.per_peer_state.read().unwrap();
6874 let mut peer_state_lock;
6875 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6876 if peer_state_mutex_opt.is_none() { return }
6877 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6878 let peer_state = &mut *peer_state_lock;
6880 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6883 let update_actions = peer_state.monitor_update_blocked_actions
6884 .remove(&channel_id).unwrap_or(Vec::new());
6885 mem::drop(peer_state_lock);
6886 mem::drop(per_peer_state);
6887 self.handle_monitor_update_completion_actions(update_actions);
6890 let remaining_in_flight =
6891 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6892 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6895 let logger = WithChannelContext::from(&self.logger, &channel.context);
6896 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6897 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6898 remaining_in_flight);
6899 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6902 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6905 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6907 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6908 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6911 /// The `user_channel_id` parameter will be provided back in
6912 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6913 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6915 /// Note that this method will return an error and reject the channel, if it requires support
6916 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6917 /// used to accept such channels.
6919 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6920 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6921 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6922 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6925 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6926 /// it as confirmed immediately.
6928 /// The `user_channel_id` parameter will be provided back in
6929 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6930 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6932 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6933 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6935 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6936 /// transaction and blindly assumes that it will eventually confirm.
6938 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6939 /// does not pay to the correct script the correct amount, *you will lose funds*.
6941 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6942 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6943 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6944 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6947 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6949 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6950 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6952 let peers_without_funded_channels =
6953 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6954 let per_peer_state = self.per_peer_state.read().unwrap();
6955 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6957 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6958 log_error!(logger, "{}", err_str);
6960 APIError::ChannelUnavailable { err: err_str }
6962 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6963 let peer_state = &mut *peer_state_lock;
6964 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6966 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6967 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6968 // that we can delay allocating the SCID until after we're sure that the checks below will
6970 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6971 Some(unaccepted_channel) => {
6972 let best_block_height = self.best_block.read().unwrap().height;
6973 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6974 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6975 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6976 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6979 let err_str = "No such channel awaiting to be accepted.".to_owned();
6980 log_error!(logger, "{}", err_str);
6982 return Err(APIError::APIMisuseError { err: err_str });
6988 mem::drop(peer_state_lock);
6989 mem::drop(per_peer_state);
6990 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6991 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6993 return Err(APIError::ChannelUnavailable { err: e.err });
6997 Ok(mut channel) => {
6999 // This should have been correctly configured by the call to InboundV1Channel::new.
7000 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
7001 } else if channel.context.get_channel_type().requires_zero_conf() {
7002 let send_msg_err_event = events::MessageSendEvent::HandleError {
7003 node_id: channel.context.get_counterparty_node_id(),
7004 action: msgs::ErrorAction::SendErrorMessage{
7005 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
7008 peer_state.pending_msg_events.push(send_msg_err_event);
7009 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
7010 log_error!(logger, "{}", err_str);
7012 return Err(APIError::APIMisuseError { err: err_str });
7014 // If this peer already has some channels, a new channel won't increase our number of peers
7015 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7016 // channels per-peer we can accept channels from a peer with existing ones.
7017 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
7018 let send_msg_err_event = events::MessageSendEvent::HandleError {
7019 node_id: channel.context.get_counterparty_node_id(),
7020 action: msgs::ErrorAction::SendErrorMessage{
7021 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7024 peer_state.pending_msg_events.push(send_msg_err_event);
7025 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7026 log_error!(logger, "{}", err_str);
7028 return Err(APIError::APIMisuseError { err: err_str });
7032 // Now that we know we have a channel, assign an outbound SCID alias.
7033 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7034 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7036 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7037 node_id: channel.context.get_counterparty_node_id(),
7038 msg: channel.accept_inbound_channel(),
7041 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7048 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7049 /// or 0-conf channels.
7051 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7052 /// non-0-conf channels we have with the peer.
7053 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7054 where Filter: Fn(&PeerState<SP>) -> bool {
7055 let mut peers_without_funded_channels = 0;
7056 let best_block_height = self.best_block.read().unwrap().height;
7058 let peer_state_lock = self.per_peer_state.read().unwrap();
7059 for (_, peer_mtx) in peer_state_lock.iter() {
7060 let peer = peer_mtx.lock().unwrap();
7061 if !maybe_count_peer(&*peer) { continue; }
7062 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7063 if num_unfunded_channels == peer.total_channel_count() {
7064 peers_without_funded_channels += 1;
7068 return peers_without_funded_channels;
7071 fn unfunded_channel_count(
7072 peer: &PeerState<SP>, best_block_height: u32
7074 let mut num_unfunded_channels = 0;
7075 for (_, phase) in peer.channel_by_id.iter() {
7077 ChannelPhase::Funded(chan) => {
7078 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7079 // which have not yet had any confirmations on-chain.
7080 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7081 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7083 num_unfunded_channels += 1;
7086 ChannelPhase::UnfundedInboundV1(chan) => {
7087 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7088 num_unfunded_channels += 1;
7091 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7092 #[cfg(any(dual_funding, splicing))]
7093 ChannelPhase::UnfundedInboundV2(chan) => {
7094 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7095 // included in the unfunded count.
7096 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7097 chan.dual_funding_context.our_funding_satoshis == 0 {
7098 num_unfunded_channels += 1;
7101 ChannelPhase::UnfundedOutboundV1(_) => {
7102 // Outbound channels don't contribute to the unfunded count in the DoS context.
7105 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7106 #[cfg(any(dual_funding, splicing))]
7107 ChannelPhase::UnfundedOutboundV2(_) => {
7108 // Outbound channels don't contribute to the unfunded count in the DoS context.
7113 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7116 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7117 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7118 // likely to be lost on restart!
7119 if msg.common_fields.chain_hash != self.chain_hash {
7120 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7121 msg.common_fields.temporary_channel_id.clone()));
7124 if !self.default_configuration.accept_inbound_channels {
7125 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7126 msg.common_fields.temporary_channel_id.clone()));
7129 // Get the number of peers with channels, but without funded ones. We don't care too much
7130 // about peers that never open a channel, so we filter by peers that have at least one
7131 // channel, and then limit the number of those with unfunded channels.
7132 let channeled_peers_without_funding =
7133 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7135 let per_peer_state = self.per_peer_state.read().unwrap();
7136 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7138 debug_assert!(false);
7139 MsgHandleErrInternal::send_err_msg_no_close(
7140 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7141 msg.common_fields.temporary_channel_id.clone())
7143 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7144 let peer_state = &mut *peer_state_lock;
7146 // If this peer already has some channels, a new channel won't increase our number of peers
7147 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7148 // channels per-peer we can accept channels from a peer with existing ones.
7149 if peer_state.total_channel_count() == 0 &&
7150 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7151 !self.default_configuration.manually_accept_inbound_channels
7153 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7154 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7155 msg.common_fields.temporary_channel_id.clone()));
7158 let best_block_height = self.best_block.read().unwrap().height;
7159 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7160 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7161 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7162 msg.common_fields.temporary_channel_id.clone()));
7165 let channel_id = msg.common_fields.temporary_channel_id;
7166 let channel_exists = peer_state.has_channel(&channel_id);
7168 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7169 "temporary_channel_id collision for the same peer!".to_owned(),
7170 msg.common_fields.temporary_channel_id.clone()));
7173 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7174 if self.default_configuration.manually_accept_inbound_channels {
7175 let channel_type = channel::channel_type_from_open_channel(
7176 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7178 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7180 let mut pending_events = self.pending_events.lock().unwrap();
7181 pending_events.push_back((events::Event::OpenChannelRequest {
7182 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7183 counterparty_node_id: counterparty_node_id.clone(),
7184 funding_satoshis: msg.common_fields.funding_satoshis,
7185 push_msat: msg.push_msat,
7188 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7189 open_channel_msg: msg.clone(),
7190 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7195 // Otherwise create the channel right now.
7196 let mut random_bytes = [0u8; 16];
7197 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7198 let user_channel_id = u128::from_be_bytes(random_bytes);
7199 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7200 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7201 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7204 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7209 let channel_type = channel.context.get_channel_type();
7210 if channel_type.requires_zero_conf() {
7211 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7212 "No zero confirmation channels accepted".to_owned(),
7213 msg.common_fields.temporary_channel_id.clone()));
7215 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7216 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7217 "No channels with anchor outputs accepted".to_owned(),
7218 msg.common_fields.temporary_channel_id.clone()));
7221 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7222 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7224 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7225 node_id: counterparty_node_id.clone(),
7226 msg: channel.accept_inbound_channel(),
7228 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7232 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7233 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7234 // likely to be lost on restart!
7235 let (value, output_script, user_id) = {
7236 let per_peer_state = self.per_peer_state.read().unwrap();
7237 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7239 debug_assert!(false);
7240 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7242 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7243 let peer_state = &mut *peer_state_lock;
7244 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7245 hash_map::Entry::Occupied(mut phase) => {
7246 match phase.get_mut() {
7247 ChannelPhase::UnfundedOutboundV1(chan) => {
7248 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7249 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7252 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7256 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7259 let mut pending_events = self.pending_events.lock().unwrap();
7260 pending_events.push_back((events::Event::FundingGenerationReady {
7261 temporary_channel_id: msg.common_fields.temporary_channel_id,
7262 counterparty_node_id: *counterparty_node_id,
7263 channel_value_satoshis: value,
7265 user_channel_id: user_id,
7270 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7271 let best_block = *self.best_block.read().unwrap();
7273 let per_peer_state = self.per_peer_state.read().unwrap();
7274 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7276 debug_assert!(false);
7277 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7280 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7281 let peer_state = &mut *peer_state_lock;
7282 let (mut chan, funding_msg_opt, monitor) =
7283 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7284 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7285 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7286 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7288 Err((inbound_chan, err)) => {
7289 // We've already removed this inbound channel from the map in `PeerState`
7290 // above so at this point we just need to clean up any lingering entries
7291 // concerning this channel as it is safe to do so.
7292 debug_assert!(matches!(err, ChannelError::Close(_)));
7293 // Really we should be returning the channel_id the peer expects based
7294 // on their funding info here, but they're horribly confused anyway, so
7295 // there's not a lot we can do to save them.
7296 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7300 Some(mut phase) => {
7301 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7302 let err = ChannelError::Close(err_msg);
7303 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7305 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7308 let funded_channel_id = chan.context.channel_id();
7310 macro_rules! fail_chan { ($err: expr) => { {
7311 // Note that at this point we've filled in the funding outpoint on our
7312 // channel, but its actually in conflict with another channel. Thus, if
7313 // we call `convert_chan_phase_err` immediately (thus calling
7314 // `update_maps_on_chan_removal`), we'll remove the existing channel
7315 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7317 let err = ChannelError::Close($err.to_owned());
7318 chan.unset_funding_info(msg.temporary_channel_id);
7319 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7322 match peer_state.channel_by_id.entry(funded_channel_id) {
7323 hash_map::Entry::Occupied(_) => {
7324 fail_chan!("Already had channel with the new channel_id");
7326 hash_map::Entry::Vacant(e) => {
7327 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7328 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7329 hash_map::Entry::Occupied(_) => {
7330 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7332 hash_map::Entry::Vacant(i_e) => {
7333 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7334 if let Ok(persist_state) = monitor_res {
7335 i_e.insert(chan.context.get_counterparty_node_id());
7336 mem::drop(outpoint_to_peer_lock);
7338 // There's no problem signing a counterparty's funding transaction if our monitor
7339 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7340 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7341 // until we have persisted our monitor.
7342 if let Some(msg) = funding_msg_opt {
7343 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7344 node_id: counterparty_node_id.clone(),
7349 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7350 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7351 per_peer_state, chan, INITIAL_MONITOR);
7353 unreachable!("This must be a funded channel as we just inserted it.");
7357 let logger = WithChannelContext::from(&self.logger, &chan.context);
7358 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7359 fail_chan!("Duplicate funding outpoint");
7367 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7368 let best_block = *self.best_block.read().unwrap();
7369 let per_peer_state = self.per_peer_state.read().unwrap();
7370 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7372 debug_assert!(false);
7373 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7376 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7377 let peer_state = &mut *peer_state_lock;
7378 match peer_state.channel_by_id.entry(msg.channel_id) {
7379 hash_map::Entry::Occupied(chan_phase_entry) => {
7380 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7381 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7382 let logger = WithContext::from(
7384 Some(chan.context.get_counterparty_node_id()),
7385 Some(chan.context.channel_id())
7388 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7390 Ok((mut chan, monitor)) => {
7391 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7392 // We really should be able to insert here without doing a second
7393 // lookup, but sadly rust stdlib doesn't currently allow keeping
7394 // the original Entry around with the value removed.
7395 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7396 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7397 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7398 } else { unreachable!(); }
7401 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7402 // We weren't able to watch the channel to begin with, so no
7403 // updates should be made on it. Previously, full_stack_target
7404 // found an (unreachable) panic when the monitor update contained
7405 // within `shutdown_finish` was applied.
7406 chan.unset_funding_info(msg.channel_id);
7407 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7411 debug_assert!(matches!(e, ChannelError::Close(_)),
7412 "We don't have a channel anymore, so the error better have expected close");
7413 // We've already removed this outbound channel from the map in
7414 // `PeerState` above so at this point we just need to clean up any
7415 // lingering entries concerning this channel as it is safe to do so.
7416 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7420 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7423 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7427 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7428 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7429 // closing a channel), so any changes are likely to be lost on restart!
7430 let per_peer_state = self.per_peer_state.read().unwrap();
7431 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7433 debug_assert!(false);
7434 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7436 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7437 let peer_state = &mut *peer_state_lock;
7438 match peer_state.channel_by_id.entry(msg.channel_id) {
7439 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7440 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7441 let logger = WithChannelContext::from(&self.logger, &chan.context);
7442 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7443 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7444 if let Some(announcement_sigs) = announcement_sigs_opt {
7445 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7446 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7447 node_id: counterparty_node_id.clone(),
7448 msg: announcement_sigs,
7450 } else if chan.context.is_usable() {
7451 // If we're sending an announcement_signatures, we'll send the (public)
7452 // channel_update after sending a channel_announcement when we receive our
7453 // counterparty's announcement_signatures. Thus, we only bother to send a
7454 // channel_update here if the channel is not public, i.e. we're not sending an
7455 // announcement_signatures.
7456 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7457 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7458 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7459 node_id: counterparty_node_id.clone(),
7466 let mut pending_events = self.pending_events.lock().unwrap();
7467 emit_channel_ready_event!(pending_events, chan);
7472 try_chan_phase_entry!(self, Err(ChannelError::Close(
7473 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7476 hash_map::Entry::Vacant(_) => {
7477 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7482 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7483 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7484 let mut finish_shutdown = None;
7486 let per_peer_state = self.per_peer_state.read().unwrap();
7487 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7489 debug_assert!(false);
7490 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7492 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7493 let peer_state = &mut *peer_state_lock;
7494 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7495 let phase = chan_phase_entry.get_mut();
7497 ChannelPhase::Funded(chan) => {
7498 if !chan.received_shutdown() {
7499 let logger = WithChannelContext::from(&self.logger, &chan.context);
7500 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7502 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7505 let funding_txo_opt = chan.context.get_funding_txo();
7506 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7507 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7508 dropped_htlcs = htlcs;
7510 if let Some(msg) = shutdown {
7511 // We can send the `shutdown` message before updating the `ChannelMonitor`
7512 // here as we don't need the monitor update to complete until we send a
7513 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7514 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7515 node_id: *counterparty_node_id,
7519 // Update the monitor with the shutdown script if necessary.
7520 if let Some(monitor_update) = monitor_update_opt {
7521 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7522 peer_state_lock, peer_state, per_peer_state, chan);
7525 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7526 let context = phase.context_mut();
7527 let logger = WithChannelContext::from(&self.logger, context);
7528 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7529 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7530 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7532 // TODO(dual_funding): Combine this match arm with above.
7533 #[cfg(any(dual_funding, splicing))]
7534 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7535 let context = phase.context_mut();
7536 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7537 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7538 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7542 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7545 for htlc_source in dropped_htlcs.drain(..) {
7546 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7547 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7548 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7550 if let Some(shutdown_res) = finish_shutdown {
7551 self.finish_close_channel(shutdown_res);
7557 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7558 let per_peer_state = self.per_peer_state.read().unwrap();
7559 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7561 debug_assert!(false);
7562 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7564 let (tx, chan_option, shutdown_result) = {
7565 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7566 let peer_state = &mut *peer_state_lock;
7567 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7568 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7569 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7570 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7571 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7572 if let Some(msg) = closing_signed {
7573 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7574 node_id: counterparty_node_id.clone(),
7579 // We're done with this channel, we've got a signed closing transaction and
7580 // will send the closing_signed back to the remote peer upon return. This
7581 // also implies there are no pending HTLCs left on the channel, so we can
7582 // fully delete it from tracking (the channel monitor is still around to
7583 // watch for old state broadcasts)!
7584 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7585 } else { (tx, None, shutdown_result) }
7587 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7588 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7591 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7594 if let Some(broadcast_tx) = tx {
7595 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7596 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7597 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7599 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7600 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7601 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7602 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7607 mem::drop(per_peer_state);
7608 if let Some(shutdown_result) = shutdown_result {
7609 self.finish_close_channel(shutdown_result);
7614 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7615 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7616 //determine the state of the payment based on our response/if we forward anything/the time
7617 //we take to respond. We should take care to avoid allowing such an attack.
7619 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7620 //us repeatedly garbled in different ways, and compare our error messages, which are
7621 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7622 //but we should prevent it anyway.
7624 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7625 // closing a channel), so any changes are likely to be lost on restart!
7627 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7628 let per_peer_state = self.per_peer_state.read().unwrap();
7629 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7631 debug_assert!(false);
7632 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7634 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7635 let peer_state = &mut *peer_state_lock;
7636 match peer_state.channel_by_id.entry(msg.channel_id) {
7637 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7638 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7639 let mut pending_forward_info = match decoded_hop_res {
7640 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7641 self.construct_pending_htlc_status(
7642 msg, counterparty_node_id, shared_secret, next_hop,
7643 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7645 Err(e) => PendingHTLCStatus::Fail(e)
7647 let logger = WithChannelContext::from(&self.logger, &chan.context);
7648 // If the update_add is completely bogus, the call will Err and we will close,
7649 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7650 // want to reject the new HTLC and fail it backwards instead of forwarding.
7651 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7652 if msg.blinding_point.is_some() {
7653 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7654 msgs::UpdateFailMalformedHTLC {
7655 channel_id: msg.channel_id,
7656 htlc_id: msg.htlc_id,
7657 sha256_of_onion: [0; 32],
7658 failure_code: INVALID_ONION_BLINDING,
7662 match pending_forward_info {
7663 PendingHTLCStatus::Forward(PendingHTLCInfo {
7664 ref incoming_shared_secret, ref routing, ..
7666 let reason = if routing.blinded_failure().is_some() {
7667 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7668 } else if (error_code & 0x1000) != 0 {
7669 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7670 HTLCFailReason::reason(real_code, error_data)
7672 HTLCFailReason::from_failure_code(error_code)
7673 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7674 let msg = msgs::UpdateFailHTLC {
7675 channel_id: msg.channel_id,
7676 htlc_id: msg.htlc_id,
7679 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7685 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7687 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7688 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7691 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7696 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7698 let next_user_channel_id;
7699 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7700 let per_peer_state = self.per_peer_state.read().unwrap();
7701 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7703 debug_assert!(false);
7704 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7706 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7707 let peer_state = &mut *peer_state_lock;
7708 match peer_state.channel_by_id.entry(msg.channel_id) {
7709 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7710 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7711 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7712 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7713 let logger = WithChannelContext::from(&self.logger, &chan.context);
7715 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7717 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7718 .or_insert_with(Vec::new)
7719 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7721 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7722 // entry here, even though we *do* need to block the next RAA monitor update.
7723 // We do this instead in the `claim_funds_internal` by attaching a
7724 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7725 // outbound HTLC is claimed. This is guaranteed to all complete before we
7726 // process the RAA as messages are processed from single peers serially.
7727 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7728 next_user_channel_id = chan.context.get_user_id();
7731 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7732 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7735 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7738 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7739 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7740 funding_txo, msg.channel_id, Some(next_user_channel_id),
7746 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7747 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7748 // closing a channel), so any changes are likely to be lost on restart!
7749 let per_peer_state = self.per_peer_state.read().unwrap();
7750 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7752 debug_assert!(false);
7753 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7755 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7756 let peer_state = &mut *peer_state_lock;
7757 match peer_state.channel_by_id.entry(msg.channel_id) {
7758 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7759 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7760 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7762 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7763 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7766 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7771 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7772 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7773 // closing a channel), so any changes are likely to be lost on restart!
7774 let per_peer_state = self.per_peer_state.read().unwrap();
7775 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7777 debug_assert!(false);
7778 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7780 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7781 let peer_state = &mut *peer_state_lock;
7782 match peer_state.channel_by_id.entry(msg.channel_id) {
7783 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7784 if (msg.failure_code & 0x8000) == 0 {
7785 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7786 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7788 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7789 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7791 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7792 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7796 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7800 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7801 let per_peer_state = self.per_peer_state.read().unwrap();
7802 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7804 debug_assert!(false);
7805 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7807 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7808 let peer_state = &mut *peer_state_lock;
7809 match peer_state.channel_by_id.entry(msg.channel_id) {
7810 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7811 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7812 let logger = WithChannelContext::from(&self.logger, &chan.context);
7813 let funding_txo = chan.context.get_funding_txo();
7814 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7815 if let Some(monitor_update) = monitor_update_opt {
7816 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7817 peer_state, per_peer_state, chan);
7821 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7822 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7825 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7829 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7830 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7831 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7832 push_forward_event &= decode_update_add_htlcs.is_empty();
7833 let scid = update_add_htlcs.0;
7834 match decode_update_add_htlcs.entry(scid) {
7835 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7836 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7838 if push_forward_event { self.push_pending_forwards_ev(); }
7842 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7843 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7844 if push_forward_event { self.push_pending_forwards_ev() }
7848 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7849 let mut push_forward_event = false;
7850 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7851 let mut new_intercept_events = VecDeque::new();
7852 let mut failed_intercept_forwards = Vec::new();
7853 if !pending_forwards.is_empty() {
7854 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7855 let scid = match forward_info.routing {
7856 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7857 PendingHTLCRouting::Receive { .. } => 0,
7858 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7860 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7861 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7863 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7864 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7865 let forward_htlcs_empty = forward_htlcs.is_empty();
7866 match forward_htlcs.entry(scid) {
7867 hash_map::Entry::Occupied(mut entry) => {
7868 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7869 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7871 hash_map::Entry::Vacant(entry) => {
7872 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7873 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7875 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7876 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7877 match pending_intercepts.entry(intercept_id) {
7878 hash_map::Entry::Vacant(entry) => {
7879 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7880 requested_next_hop_scid: scid,
7881 payment_hash: forward_info.payment_hash,
7882 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7883 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7886 entry.insert(PendingAddHTLCInfo {
7887 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7889 hash_map::Entry::Occupied(_) => {
7890 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7891 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7892 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7893 short_channel_id: prev_short_channel_id,
7894 user_channel_id: Some(prev_user_channel_id),
7895 outpoint: prev_funding_outpoint,
7896 channel_id: prev_channel_id,
7897 htlc_id: prev_htlc_id,
7898 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7899 phantom_shared_secret: None,
7900 blinded_failure: forward_info.routing.blinded_failure(),
7903 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7904 HTLCFailReason::from_failure_code(0x4000 | 10),
7905 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7910 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7911 // payments are being processed.
7912 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7913 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7914 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7921 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7922 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7925 if !new_intercept_events.is_empty() {
7926 let mut events = self.pending_events.lock().unwrap();
7927 events.append(&mut new_intercept_events);
7933 fn push_pending_forwards_ev(&self) {
7934 let mut pending_events = self.pending_events.lock().unwrap();
7935 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7936 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7937 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7939 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7940 // events is done in batches and they are not removed until we're done processing each
7941 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7942 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7943 // payments will need an additional forwarding event before being claimed to make them look
7944 // real by taking more time.
7945 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7946 pending_events.push_back((Event::PendingHTLCsForwardable {
7947 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7952 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7953 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7954 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7955 /// the [`ChannelMonitorUpdate`] in question.
7956 fn raa_monitor_updates_held(&self,
7957 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7958 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7960 actions_blocking_raa_monitor_updates
7961 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7962 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7963 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7964 channel_funding_outpoint,
7966 counterparty_node_id,
7971 #[cfg(any(test, feature = "_test_utils"))]
7972 pub(crate) fn test_raa_monitor_updates_held(&self,
7973 counterparty_node_id: PublicKey, channel_id: ChannelId
7975 let per_peer_state = self.per_peer_state.read().unwrap();
7976 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7977 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7978 let peer_state = &mut *peer_state_lck;
7980 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7981 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7982 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7988 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7989 let htlcs_to_fail = {
7990 let per_peer_state = self.per_peer_state.read().unwrap();
7991 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7993 debug_assert!(false);
7994 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7995 }).map(|mtx| mtx.lock().unwrap())?;
7996 let peer_state = &mut *peer_state_lock;
7997 match peer_state.channel_by_id.entry(msg.channel_id) {
7998 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7999 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8000 let logger = WithChannelContext::from(&self.logger, &chan.context);
8001 let funding_txo_opt = chan.context.get_funding_txo();
8002 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
8003 self.raa_monitor_updates_held(
8004 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
8005 *counterparty_node_id)
8007 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
8008 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
8009 if let Some(monitor_update) = monitor_update_opt {
8010 let funding_txo = funding_txo_opt
8011 .expect("Funding outpoint must have been set for RAA handling to succeed");
8012 handle_new_monitor_update!(self, funding_txo, monitor_update,
8013 peer_state_lock, peer_state, per_peer_state, chan);
8017 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8018 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
8021 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8024 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8028 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8029 let per_peer_state = self.per_peer_state.read().unwrap();
8030 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8032 debug_assert!(false);
8033 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8035 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8036 let peer_state = &mut *peer_state_lock;
8037 match peer_state.channel_by_id.entry(msg.channel_id) {
8038 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8039 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8040 let logger = WithChannelContext::from(&self.logger, &chan.context);
8041 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8043 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8044 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8047 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8052 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8053 let per_peer_state = self.per_peer_state.read().unwrap();
8054 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8056 debug_assert!(false);
8057 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8059 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8060 let peer_state = &mut *peer_state_lock;
8061 match peer_state.channel_by_id.entry(msg.channel_id) {
8062 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8063 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8064 if !chan.context.is_usable() {
8065 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8068 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8069 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8070 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8071 msg, &self.default_configuration
8072 ), chan_phase_entry),
8073 // Note that announcement_signatures fails if the channel cannot be announced,
8074 // so get_channel_update_for_broadcast will never fail by the time we get here.
8075 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8078 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8079 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8082 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8087 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8088 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8089 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8090 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8092 // It's not a local channel
8093 return Ok(NotifyOption::SkipPersistNoEvents)
8096 let per_peer_state = self.per_peer_state.read().unwrap();
8097 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8098 if peer_state_mutex_opt.is_none() {
8099 return Ok(NotifyOption::SkipPersistNoEvents)
8101 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8102 let peer_state = &mut *peer_state_lock;
8103 match peer_state.channel_by_id.entry(chan_id) {
8104 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8105 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8106 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8107 if chan.context.should_announce() {
8108 // If the announcement is about a channel of ours which is public, some
8109 // other peer may simply be forwarding all its gossip to us. Don't provide
8110 // a scary-looking error message and return Ok instead.
8111 return Ok(NotifyOption::SkipPersistNoEvents);
8113 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8115 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8116 let msg_from_node_one = msg.contents.flags & 1 == 0;
8117 if were_node_one == msg_from_node_one {
8118 return Ok(NotifyOption::SkipPersistNoEvents);
8120 let logger = WithChannelContext::from(&self.logger, &chan.context);
8121 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8122 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8123 // If nothing changed after applying their update, we don't need to bother
8126 return Ok(NotifyOption::SkipPersistNoEvents);
8130 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8131 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8134 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8136 Ok(NotifyOption::DoPersist)
8139 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8140 let need_lnd_workaround = {
8141 let per_peer_state = self.per_peer_state.read().unwrap();
8143 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8145 debug_assert!(false);
8146 MsgHandleErrInternal::send_err_msg_no_close(
8147 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8151 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8152 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8153 let peer_state = &mut *peer_state_lock;
8154 match peer_state.channel_by_id.entry(msg.channel_id) {
8155 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8156 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8157 // Currently, we expect all holding cell update_adds to be dropped on peer
8158 // disconnect, so Channel's reestablish will never hand us any holding cell
8159 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8160 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8161 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8162 msg, &&logger, &self.node_signer, self.chain_hash,
8163 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8164 let mut channel_update = None;
8165 if let Some(msg) = responses.shutdown_msg {
8166 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8167 node_id: counterparty_node_id.clone(),
8170 } else if chan.context.is_usable() {
8171 // If the channel is in a usable state (ie the channel is not being shut
8172 // down), send a unicast channel_update to our counterparty to make sure
8173 // they have the latest channel parameters.
8174 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8175 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8176 node_id: chan.context.get_counterparty_node_id(),
8181 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8182 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8183 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8184 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8185 debug_assert!(htlc_forwards.is_none());
8186 debug_assert!(decode_update_add_htlcs.is_none());
8187 if let Some(upd) = channel_update {
8188 peer_state.pending_msg_events.push(upd);
8192 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8193 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8196 hash_map::Entry::Vacant(_) => {
8197 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8199 // Unfortunately, lnd doesn't force close on errors
8200 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8201 // One of the few ways to get an lnd counterparty to force close is by
8202 // replicating what they do when restoring static channel backups (SCBs). They
8203 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8204 // invalid `your_last_per_commitment_secret`.
8206 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8207 // can assume it's likely the channel closed from our point of view, but it
8208 // remains open on the counterparty's side. By sending this bogus
8209 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8210 // force close broadcasting their latest state. If the closing transaction from
8211 // our point of view remains unconfirmed, it'll enter a race with the
8212 // counterparty's to-be-broadcast latest commitment transaction.
8213 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8214 node_id: *counterparty_node_id,
8215 msg: msgs::ChannelReestablish {
8216 channel_id: msg.channel_id,
8217 next_local_commitment_number: 0,
8218 next_remote_commitment_number: 0,
8219 your_last_per_commitment_secret: [1u8; 32],
8220 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8221 next_funding_txid: None,
8224 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8225 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8226 counterparty_node_id), msg.channel_id)
8232 if let Some(channel_ready_msg) = need_lnd_workaround {
8233 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8235 Ok(NotifyOption::SkipPersistHandleEvents)
8238 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8239 fn process_pending_monitor_events(&self) -> bool {
8240 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8242 let mut failed_channels = Vec::new();
8243 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8244 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8245 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8246 for monitor_event in monitor_events.drain(..) {
8247 match monitor_event {
8248 MonitorEvent::HTLCEvent(htlc_update) => {
8249 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8250 if let Some(preimage) = htlc_update.payment_preimage {
8251 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8252 self.claim_funds_internal(htlc_update.source, preimage,
8253 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8254 false, counterparty_node_id, funding_outpoint, channel_id, None);
8256 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8257 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8258 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8259 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8262 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8263 let counterparty_node_id_opt = match counterparty_node_id {
8264 Some(cp_id) => Some(cp_id),
8266 // TODO: Once we can rely on the counterparty_node_id from the
8267 // monitor event, this and the outpoint_to_peer map should be removed.
8268 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8269 outpoint_to_peer.get(&funding_outpoint).cloned()
8272 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8273 let per_peer_state = self.per_peer_state.read().unwrap();
8274 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8275 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8276 let peer_state = &mut *peer_state_lock;
8277 let pending_msg_events = &mut peer_state.pending_msg_events;
8278 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8279 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8280 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8283 ClosureReason::HolderForceClosed
8285 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8286 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8287 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8288 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8292 pending_msg_events.push(events::MessageSendEvent::HandleError {
8293 node_id: chan.context.get_counterparty_node_id(),
8294 action: msgs::ErrorAction::DisconnectPeer {
8295 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8303 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8304 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8310 for failure in failed_channels.drain(..) {
8311 self.finish_close_channel(failure);
8314 has_pending_monitor_events
8317 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8318 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8319 /// update events as a separate process method here.
8321 pub fn process_monitor_events(&self) {
8322 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8323 self.process_pending_monitor_events();
8326 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8327 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8328 /// update was applied.
8329 fn check_free_holding_cells(&self) -> bool {
8330 let mut has_monitor_update = false;
8331 let mut failed_htlcs = Vec::new();
8333 // Walk our list of channels and find any that need to update. Note that when we do find an
8334 // update, if it includes actions that must be taken afterwards, we have to drop the
8335 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8336 // manage to go through all our peers without finding a single channel to update.
8338 let per_peer_state = self.per_peer_state.read().unwrap();
8339 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8341 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8342 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8343 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8344 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8346 let counterparty_node_id = chan.context.get_counterparty_node_id();
8347 let funding_txo = chan.context.get_funding_txo();
8348 let (monitor_opt, holding_cell_failed_htlcs) =
8349 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8350 if !holding_cell_failed_htlcs.is_empty() {
8351 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8353 if let Some(monitor_update) = monitor_opt {
8354 has_monitor_update = true;
8356 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8357 peer_state_lock, peer_state, per_peer_state, chan);
8358 continue 'peer_loop;
8367 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8368 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8369 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8375 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8376 /// is (temporarily) unavailable, and the operation should be retried later.
8378 /// This method allows for that retry - either checking for any signer-pending messages to be
8379 /// attempted in every channel, or in the specifically provided channel.
8381 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8382 #[cfg(async_signing)]
8383 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8384 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8386 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8387 let node_id = phase.context().get_counterparty_node_id();
8389 ChannelPhase::Funded(chan) => {
8390 let msgs = chan.signer_maybe_unblocked(&self.logger);
8391 if let Some(updates) = msgs.commitment_update {
8392 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8397 if let Some(msg) = msgs.funding_signed {
8398 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8403 if let Some(msg) = msgs.channel_ready {
8404 send_channel_ready!(self, pending_msg_events, chan, msg);
8407 ChannelPhase::UnfundedOutboundV1(chan) => {
8408 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8409 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8415 ChannelPhase::UnfundedInboundV1(_) => {},
8419 let per_peer_state = self.per_peer_state.read().unwrap();
8420 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8421 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8422 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8423 let peer_state = &mut *peer_state_lock;
8424 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8425 unblock_chan(chan, &mut peer_state.pending_msg_events);
8429 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8430 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8431 let peer_state = &mut *peer_state_lock;
8432 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8433 unblock_chan(chan, &mut peer_state.pending_msg_events);
8439 /// Check whether any channels have finished removing all pending updates after a shutdown
8440 /// exchange and can now send a closing_signed.
8441 /// Returns whether any closing_signed messages were generated.
8442 fn maybe_generate_initial_closing_signed(&self) -> bool {
8443 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8444 let mut has_update = false;
8445 let mut shutdown_results = Vec::new();
8447 let per_peer_state = self.per_peer_state.read().unwrap();
8449 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8450 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8451 let peer_state = &mut *peer_state_lock;
8452 let pending_msg_events = &mut peer_state.pending_msg_events;
8453 peer_state.channel_by_id.retain(|channel_id, phase| {
8455 ChannelPhase::Funded(chan) => {
8456 let logger = WithChannelContext::from(&self.logger, &chan.context);
8457 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8458 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8459 if let Some(msg) = msg_opt {
8461 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8462 node_id: chan.context.get_counterparty_node_id(), msg,
8465 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8466 if let Some(shutdown_result) = shutdown_result_opt {
8467 shutdown_results.push(shutdown_result);
8469 if let Some(tx) = tx_opt {
8470 // We're done with this channel. We got a closing_signed and sent back
8471 // a closing_signed with a closing transaction to broadcast.
8472 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8473 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8474 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8479 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8480 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8481 update_maps_on_chan_removal!(self, &chan.context);
8487 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8488 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8493 _ => true, // Retain unfunded channels if present.
8499 for (counterparty_node_id, err) in handle_errors.drain(..) {
8500 let _ = handle_error!(self, err, counterparty_node_id);
8503 for shutdown_result in shutdown_results.drain(..) {
8504 self.finish_close_channel(shutdown_result);
8510 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8511 /// pushing the channel monitor update (if any) to the background events queue and removing the
8513 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8514 for mut failure in failed_channels.drain(..) {
8515 // Either a commitment transactions has been confirmed on-chain or
8516 // Channel::block_disconnected detected that the funding transaction has been
8517 // reorganized out of the main chain.
8518 // We cannot broadcast our latest local state via monitor update (as
8519 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8520 // so we track the update internally and handle it when the user next calls
8521 // timer_tick_occurred, guaranteeing we're running normally.
8522 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8523 assert_eq!(update.updates.len(), 1);
8524 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8525 assert!(should_broadcast);
8526 } else { unreachable!(); }
8527 self.pending_background_events.lock().unwrap().push(
8528 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8529 counterparty_node_id, funding_txo, update, channel_id,
8532 self.finish_close_channel(failure);
8537 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8538 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8539 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8540 /// not have an expiration unless otherwise set on the builder.
8544 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8545 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8546 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8547 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8548 /// order to send the [`InvoiceRequest`].
8550 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8554 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8559 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8561 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8563 /// [`Offer`]: crate::offers::offer::Offer
8564 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8565 pub fn create_offer_builder(
8566 &$self, description: String
8567 ) -> Result<$builder, Bolt12SemanticError> {
8568 let node_id = $self.get_our_node_id();
8569 let expanded_key = &$self.inbound_payment_key;
8570 let entropy = &*$self.entropy_source;
8571 let secp_ctx = &$self.secp_ctx;
8573 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8574 let builder = OfferBuilder::deriving_signing_pubkey(
8575 description, node_id, expanded_key, entropy, secp_ctx
8577 .chain_hash($self.chain_hash)
8584 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8585 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8586 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8590 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8591 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8593 /// The builder will have the provided expiration set. Any changes to the expiration on the
8594 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8595 /// block time minus two hours is used for the current time when determining if the refund has
8598 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8599 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8600 /// with an [`Event::InvoiceRequestFailed`].
8602 /// If `max_total_routing_fee_msat` is not specified, The default from
8603 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8607 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8608 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8609 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8610 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8611 /// order to send the [`Bolt12Invoice`].
8613 /// Also, uses a derived payer id in the refund for payer privacy.
8617 /// Requires a direct connection to an introduction node in the responding
8618 /// [`Bolt12Invoice::payment_paths`].
8623 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8624 /// - `amount_msats` is invalid, or
8625 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8627 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8629 /// [`Refund`]: crate::offers::refund::Refund
8630 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8631 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8632 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8633 pub fn create_refund_builder(
8634 &$self, description: String, amount_msats: u64, absolute_expiry: Duration,
8635 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8636 ) -> Result<$builder, Bolt12SemanticError> {
8637 let node_id = $self.get_our_node_id();
8638 let expanded_key = &$self.inbound_payment_key;
8639 let entropy = &*$self.entropy_source;
8640 let secp_ctx = &$self.secp_ctx;
8642 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8643 let builder = RefundBuilder::deriving_payer_id(
8644 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8646 .chain_hash($self.chain_hash)
8647 .absolute_expiry(absolute_expiry)
8650 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8652 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8653 $self.pending_outbound_payments
8654 .add_new_awaiting_invoice(
8655 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8657 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8663 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8665 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8666 T::Target: BroadcasterInterface,
8667 ES::Target: EntropySource,
8668 NS::Target: NodeSigner,
8669 SP::Target: SignerProvider,
8670 F::Target: FeeEstimator,
8674 #[cfg(not(c_bindings))]
8675 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8676 #[cfg(not(c_bindings))]
8677 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8680 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8682 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8684 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8685 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8686 /// [`Bolt12Invoice`] once it is received.
8688 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8689 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8690 /// The optional parameters are used in the builder, if `Some`:
8691 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8692 /// [`Offer::expects_quantity`] is `true`.
8693 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8694 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8696 /// If `max_total_routing_fee_msat` is not specified, The default from
8697 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8701 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8702 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8705 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8706 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8707 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8711 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8712 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8713 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8714 /// in order to send the [`Bolt12Invoice`].
8718 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8719 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8720 /// [`Bolt12Invoice::payment_paths`].
8725 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8726 /// - the provided parameters are invalid for the offer,
8727 /// - the offer is for an unsupported chain, or
8728 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8731 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8732 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8733 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8734 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8735 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8736 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8737 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8738 pub fn pay_for_offer(
8739 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8740 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8741 max_total_routing_fee_msat: Option<u64>
8742 ) -> Result<(), Bolt12SemanticError> {
8743 let expanded_key = &self.inbound_payment_key;
8744 let entropy = &*self.entropy_source;
8745 let secp_ctx = &self.secp_ctx;
8747 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8748 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8750 let builder = builder.chain_hash(self.chain_hash)?;
8752 let builder = match quantity {
8754 Some(quantity) => builder.quantity(quantity)?,
8756 let builder = match amount_msats {
8758 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8760 let builder = match payer_note {
8762 Some(payer_note) => builder.payer_note(payer_note),
8764 let invoice_request = builder.build_and_sign()?;
8765 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8767 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8769 let expiration = StaleExpiration::TimerTicks(1);
8770 self.pending_outbound_payments
8771 .add_new_awaiting_invoice(
8772 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8774 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8776 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8777 if !offer.paths().is_empty() {
8778 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8779 // Using only one path could result in a failure if the path no longer exists. But only
8780 // one invoice for a given payment id will be paid, even if more than one is received.
8781 const REQUEST_LIMIT: usize = 10;
8782 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8783 let message = new_pending_onion_message(
8784 OffersMessage::InvoiceRequest(invoice_request.clone()),
8785 Destination::BlindedPath(path.clone()),
8786 Some(reply_path.clone()),
8788 pending_offers_messages.push(message);
8790 } else if let Some(signing_pubkey) = offer.signing_pubkey() {
8791 let message = new_pending_onion_message(
8792 OffersMessage::InvoiceRequest(invoice_request),
8793 Destination::Node(signing_pubkey),
8796 pending_offers_messages.push(message);
8798 debug_assert!(false);
8799 return Err(Bolt12SemanticError::MissingSigningPubkey);
8805 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8808 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8809 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8810 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8814 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8815 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8816 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8817 /// received and no retries will be made.
8822 /// - the refund is for an unsupported chain, or
8823 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8826 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8827 pub fn request_refund_payment(
8828 &self, refund: &Refund
8829 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8830 let expanded_key = &self.inbound_payment_key;
8831 let entropy = &*self.entropy_source;
8832 let secp_ctx = &self.secp_ctx;
8834 let amount_msats = refund.amount_msats();
8835 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8837 if refund.chain() != self.chain_hash {
8838 return Err(Bolt12SemanticError::UnsupportedChain);
8841 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8843 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8844 Ok((payment_hash, payment_secret)) => {
8845 let payment_context = PaymentContext::Bolt12Refund(Bolt12RefundContext {});
8846 let payment_paths = self.create_blinded_payment_paths(
8847 amount_msats, payment_secret, payment_context
8849 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8851 #[cfg(feature = "std")]
8852 let builder = refund.respond_using_derived_keys(
8853 payment_paths, payment_hash, expanded_key, entropy
8855 #[cfg(not(feature = "std"))]
8856 let created_at = Duration::from_secs(
8857 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8859 #[cfg(not(feature = "std"))]
8860 let builder = refund.respond_using_derived_keys_no_std(
8861 payment_paths, payment_hash, created_at, expanded_key, entropy
8863 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8864 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8865 let reply_path = self.create_blinded_path()
8866 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8868 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8869 if refund.paths().is_empty() {
8870 let message = new_pending_onion_message(
8871 OffersMessage::Invoice(invoice.clone()),
8872 Destination::Node(refund.payer_id()),
8875 pending_offers_messages.push(message);
8877 for path in refund.paths() {
8878 let message = new_pending_onion_message(
8879 OffersMessage::Invoice(invoice.clone()),
8880 Destination::BlindedPath(path.clone()),
8881 Some(reply_path.clone()),
8883 pending_offers_messages.push(message);
8889 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8893 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8896 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8897 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8899 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`] event, which
8900 /// will have the [`PaymentClaimable::purpose`] return `Some` for [`PaymentPurpose::preimage`]. That
8901 /// should then be passed directly to [`claim_funds`].
8903 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8905 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8906 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8910 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8911 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8913 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8915 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8916 /// on versions of LDK prior to 0.0.114.
8918 /// [`claim_funds`]: Self::claim_funds
8919 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8920 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8921 /// [`PaymentPurpose::preimage`]: events::PaymentPurpose::preimage
8922 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8923 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8924 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8925 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8926 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8927 min_final_cltv_expiry_delta)
8930 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8931 /// stored external to LDK.
8933 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8934 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8935 /// the `min_value_msat` provided here, if one is provided.
8937 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8938 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8941 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8942 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8943 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8944 /// sender "proof-of-payment" unless they have paid the required amount.
8946 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8947 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8948 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8949 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8950 /// invoices when no timeout is set.
8952 /// Note that we use block header time to time-out pending inbound payments (with some margin
8953 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8954 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8955 /// If you need exact expiry semantics, you should enforce them upon receipt of
8956 /// [`PaymentClaimable`].
8958 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8959 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8961 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8962 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8966 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8967 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8969 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8971 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8972 /// on versions of LDK prior to 0.0.114.
8974 /// [`create_inbound_payment`]: Self::create_inbound_payment
8975 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8976 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8977 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8978 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8979 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8980 min_final_cltv_expiry)
8983 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8984 /// previously returned from [`create_inbound_payment`].
8986 /// [`create_inbound_payment`]: Self::create_inbound_payment
8987 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8988 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8991 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8993 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8994 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8995 let recipient = self.get_our_node_id();
8996 let secp_ctx = &self.secp_ctx;
8998 let peers = self.per_peer_state.read().unwrap()
9000 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
9001 .map(|(node_id, _)| *node_id)
9002 .collect::<Vec<_>>();
9005 .create_blinded_paths(recipient, peers, secp_ctx)
9006 .and_then(|paths| paths.into_iter().next().ok_or(()))
9009 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
9010 /// [`Router::create_blinded_payment_paths`].
9011 fn create_blinded_payment_paths(
9012 &self, amount_msats: u64, payment_secret: PaymentSecret, payment_context: PaymentContext
9013 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
9014 let secp_ctx = &self.secp_ctx;
9016 let first_hops = self.list_usable_channels();
9017 let payee_node_id = self.get_our_node_id();
9018 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
9019 + LATENCY_GRACE_PERIOD_BLOCKS;
9020 let payee_tlvs = ReceiveTlvs {
9022 payment_constraints: PaymentConstraints {
9024 htlc_minimum_msat: 1,
9028 self.router.create_blinded_payment_paths(
9029 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9033 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9034 /// are used when constructing the phantom invoice's route hints.
9036 /// [phantom node payments]: crate::sign::PhantomKeysManager
9037 pub fn get_phantom_scid(&self) -> u64 {
9038 let best_block_height = self.best_block.read().unwrap().height;
9039 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9041 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9042 // Ensure the generated scid doesn't conflict with a real channel.
9043 match short_to_chan_info.get(&scid_candidate) {
9044 Some(_) => continue,
9045 None => return scid_candidate
9050 /// Gets route hints for use in receiving [phantom node payments].
9052 /// [phantom node payments]: crate::sign::PhantomKeysManager
9053 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9055 channels: self.list_usable_channels(),
9056 phantom_scid: self.get_phantom_scid(),
9057 real_node_pubkey: self.get_our_node_id(),
9061 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9062 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9063 /// [`ChannelManager::forward_intercepted_htlc`].
9065 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9066 /// times to get a unique scid.
9067 pub fn get_intercept_scid(&self) -> u64 {
9068 let best_block_height = self.best_block.read().unwrap().height;
9069 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9071 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9072 // Ensure the generated scid doesn't conflict with a real channel.
9073 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9074 return scid_candidate
9078 /// Gets inflight HTLC information by processing pending outbound payments that are in
9079 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9080 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9081 let mut inflight_htlcs = InFlightHtlcs::new();
9083 let per_peer_state = self.per_peer_state.read().unwrap();
9084 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9085 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9086 let peer_state = &mut *peer_state_lock;
9087 for chan in peer_state.channel_by_id.values().filter_map(
9088 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9090 for (htlc_source, _) in chan.inflight_htlc_sources() {
9091 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9092 inflight_htlcs.process_path(path, self.get_our_node_id());
9101 #[cfg(any(test, feature = "_test_utils"))]
9102 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9103 let events = core::cell::RefCell::new(Vec::new());
9104 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9105 self.process_pending_events(&event_handler);
9109 #[cfg(feature = "_test_utils")]
9110 pub fn push_pending_event(&self, event: events::Event) {
9111 let mut events = self.pending_events.lock().unwrap();
9112 events.push_back((event, None));
9116 pub fn pop_pending_event(&self) -> Option<events::Event> {
9117 let mut events = self.pending_events.lock().unwrap();
9118 events.pop_front().map(|(e, _)| e)
9122 pub fn has_pending_payments(&self) -> bool {
9123 self.pending_outbound_payments.has_pending_payments()
9127 pub fn clear_pending_payments(&self) {
9128 self.pending_outbound_payments.clear_pending_payments()
9131 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9132 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9133 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9134 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9135 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9136 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9137 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9139 let logger = WithContext::from(
9140 &self.logger, Some(counterparty_node_id), Some(channel_id),
9143 let per_peer_state = self.per_peer_state.read().unwrap();
9144 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9145 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9146 let peer_state = &mut *peer_state_lck;
9147 if let Some(blocker) = completed_blocker.take() {
9148 // Only do this on the first iteration of the loop.
9149 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9150 .get_mut(&channel_id)
9152 blockers.retain(|iter| iter != &blocker);
9156 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9157 channel_funding_outpoint, channel_id, counterparty_node_id) {
9158 // Check that, while holding the peer lock, we don't have anything else
9159 // blocking monitor updates for this channel. If we do, release the monitor
9160 // update(s) when those blockers complete.
9161 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9166 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9168 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9169 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9170 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9171 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9173 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9174 peer_state_lck, peer_state, per_peer_state, chan);
9175 if further_update_exists {
9176 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9181 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9188 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9189 log_pubkey!(counterparty_node_id));
9195 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9196 for action in actions {
9198 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9199 channel_funding_outpoint, channel_id, counterparty_node_id
9201 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9207 /// Processes any events asynchronously in the order they were generated since the last call
9208 /// using the given event handler.
9210 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9211 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9215 process_events_body!(self, ev, { handler(ev).await });
9219 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9221 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9222 T::Target: BroadcasterInterface,
9223 ES::Target: EntropySource,
9224 NS::Target: NodeSigner,
9225 SP::Target: SignerProvider,
9226 F::Target: FeeEstimator,
9230 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9231 /// The returned array will contain `MessageSendEvent`s for different peers if
9232 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9233 /// is always placed next to each other.
9235 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9236 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9237 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9238 /// will randomly be placed first or last in the returned array.
9240 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9241 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9242 /// the `MessageSendEvent`s to the specific peer they were generated under.
9243 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9244 let events = RefCell::new(Vec::new());
9245 PersistenceNotifierGuard::optionally_notify(self, || {
9246 let mut result = NotifyOption::SkipPersistNoEvents;
9248 // TODO: This behavior should be documented. It's unintuitive that we query
9249 // ChannelMonitors when clearing other events.
9250 if self.process_pending_monitor_events() {
9251 result = NotifyOption::DoPersist;
9254 if self.check_free_holding_cells() {
9255 result = NotifyOption::DoPersist;
9257 if self.maybe_generate_initial_closing_signed() {
9258 result = NotifyOption::DoPersist;
9261 let mut is_any_peer_connected = false;
9262 let mut pending_events = Vec::new();
9263 let per_peer_state = self.per_peer_state.read().unwrap();
9264 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9265 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9266 let peer_state = &mut *peer_state_lock;
9267 if peer_state.pending_msg_events.len() > 0 {
9268 pending_events.append(&mut peer_state.pending_msg_events);
9270 if peer_state.is_connected {
9271 is_any_peer_connected = true
9275 // Ensure that we are connected to some peers before getting broadcast messages.
9276 if is_any_peer_connected {
9277 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9278 pending_events.append(&mut broadcast_msgs);
9281 if !pending_events.is_empty() {
9282 events.replace(pending_events);
9291 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9293 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9294 T::Target: BroadcasterInterface,
9295 ES::Target: EntropySource,
9296 NS::Target: NodeSigner,
9297 SP::Target: SignerProvider,
9298 F::Target: FeeEstimator,
9302 /// Processes events that must be periodically handled.
9304 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9305 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9306 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9308 process_events_body!(self, ev, handler.handle_event(ev));
9312 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9314 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9315 T::Target: BroadcasterInterface,
9316 ES::Target: EntropySource,
9317 NS::Target: NodeSigner,
9318 SP::Target: SignerProvider,
9319 F::Target: FeeEstimator,
9323 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9325 let best_block = self.best_block.read().unwrap();
9326 assert_eq!(best_block.block_hash, header.prev_blockhash,
9327 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9328 assert_eq!(best_block.height, height - 1,
9329 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9332 self.transactions_confirmed(header, txdata, height);
9333 self.best_block_updated(header, height);
9336 fn block_disconnected(&self, header: &Header, height: u32) {
9337 let _persistence_guard =
9338 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9339 self, || -> NotifyOption { NotifyOption::DoPersist });
9340 let new_height = height - 1;
9342 let mut best_block = self.best_block.write().unwrap();
9343 assert_eq!(best_block.block_hash, header.block_hash(),
9344 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9345 assert_eq!(best_block.height, height,
9346 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9347 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9350 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9354 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9356 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9357 T::Target: BroadcasterInterface,
9358 ES::Target: EntropySource,
9359 NS::Target: NodeSigner,
9360 SP::Target: SignerProvider,
9361 F::Target: FeeEstimator,
9365 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9366 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9367 // during initialization prior to the chain_monitor being fully configured in some cases.
9368 // See the docs for `ChannelManagerReadArgs` for more.
9370 let block_hash = header.block_hash();
9371 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9373 let _persistence_guard =
9374 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9375 self, || -> NotifyOption { NotifyOption::DoPersist });
9376 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9377 .map(|(a, b)| (a, Vec::new(), b)));
9379 let last_best_block_height = self.best_block.read().unwrap().height;
9380 if height < last_best_block_height {
9381 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9382 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9386 fn best_block_updated(&self, header: &Header, height: u32) {
9387 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9388 // during initialization prior to the chain_monitor being fully configured in some cases.
9389 // See the docs for `ChannelManagerReadArgs` for more.
9391 let block_hash = header.block_hash();
9392 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9394 let _persistence_guard =
9395 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9396 self, || -> NotifyOption { NotifyOption::DoPersist });
9397 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9399 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9401 macro_rules! max_time {
9402 ($timestamp: expr) => {
9404 // Update $timestamp to be the max of its current value and the block
9405 // timestamp. This should keep us close to the current time without relying on
9406 // having an explicit local time source.
9407 // Just in case we end up in a race, we loop until we either successfully
9408 // update $timestamp or decide we don't need to.
9409 let old_serial = $timestamp.load(Ordering::Acquire);
9410 if old_serial >= header.time as usize { break; }
9411 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9417 max_time!(self.highest_seen_timestamp);
9418 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9419 payment_secrets.retain(|_, inbound_payment| {
9420 inbound_payment.expiry_time > header.time as u64
9424 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9425 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9426 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9427 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9428 let peer_state = &mut *peer_state_lock;
9429 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9430 let txid_opt = chan.context.get_funding_txo();
9431 let height_opt = chan.context.get_funding_tx_confirmation_height();
9432 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9433 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9434 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9441 fn transaction_unconfirmed(&self, txid: &Txid) {
9442 let _persistence_guard =
9443 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9444 self, || -> NotifyOption { NotifyOption::DoPersist });
9445 self.do_chain_event(None, |channel| {
9446 if let Some(funding_txo) = channel.context.get_funding_txo() {
9447 if funding_txo.txid == *txid {
9448 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9449 } else { Ok((None, Vec::new(), None)) }
9450 } else { Ok((None, Vec::new(), None)) }
9455 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9457 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9458 T::Target: BroadcasterInterface,
9459 ES::Target: EntropySource,
9460 NS::Target: NodeSigner,
9461 SP::Target: SignerProvider,
9462 F::Target: FeeEstimator,
9466 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9467 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9469 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9470 (&self, height_opt: Option<u32>, f: FN) {
9471 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9472 // during initialization prior to the chain_monitor being fully configured in some cases.
9473 // See the docs for `ChannelManagerReadArgs` for more.
9475 let mut failed_channels = Vec::new();
9476 let mut timed_out_htlcs = Vec::new();
9478 let per_peer_state = self.per_peer_state.read().unwrap();
9479 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9480 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9481 let peer_state = &mut *peer_state_lock;
9482 let pending_msg_events = &mut peer_state.pending_msg_events;
9484 peer_state.channel_by_id.retain(|_, phase| {
9486 // Retain unfunded channels.
9487 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9488 // TODO(dual_funding): Combine this match arm with above.
9489 #[cfg(any(dual_funding, splicing))]
9490 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9491 ChannelPhase::Funded(channel) => {
9492 let res = f(channel);
9493 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9494 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9495 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9496 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9497 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9499 let logger = WithChannelContext::from(&self.logger, &channel.context);
9500 if let Some(channel_ready) = channel_ready_opt {
9501 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9502 if channel.context.is_usable() {
9503 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9504 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9505 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9506 node_id: channel.context.get_counterparty_node_id(),
9511 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9516 let mut pending_events = self.pending_events.lock().unwrap();
9517 emit_channel_ready_event!(pending_events, channel);
9520 if let Some(announcement_sigs) = announcement_sigs {
9521 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9522 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9523 node_id: channel.context.get_counterparty_node_id(),
9524 msg: announcement_sigs,
9526 if let Some(height) = height_opt {
9527 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9528 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9530 // Note that announcement_signatures fails if the channel cannot be announced,
9531 // so get_channel_update_for_broadcast will never fail by the time we get here.
9532 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9537 if channel.is_our_channel_ready() {
9538 if let Some(real_scid) = channel.context.get_short_channel_id() {
9539 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9540 // to the short_to_chan_info map here. Note that we check whether we
9541 // can relay using the real SCID at relay-time (i.e.
9542 // enforce option_scid_alias then), and if the funding tx is ever
9543 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9544 // is always consistent.
9545 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9546 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9547 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9548 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9549 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9552 } else if let Err(reason) = res {
9553 update_maps_on_chan_removal!(self, &channel.context);
9554 // It looks like our counterparty went on-chain or funding transaction was
9555 // reorged out of the main chain. Close the channel.
9556 let reason_message = format!("{}", reason);
9557 failed_channels.push(channel.context.force_shutdown(true, reason));
9558 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9559 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9560 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9564 pending_msg_events.push(events::MessageSendEvent::HandleError {
9565 node_id: channel.context.get_counterparty_node_id(),
9566 action: msgs::ErrorAction::DisconnectPeer {
9567 msg: Some(msgs::ErrorMessage {
9568 channel_id: channel.context.channel_id(),
9569 data: reason_message,
9582 if let Some(height) = height_opt {
9583 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9584 payment.htlcs.retain(|htlc| {
9585 // If height is approaching the number of blocks we think it takes us to get
9586 // our commitment transaction confirmed before the HTLC expires, plus the
9587 // number of blocks we generally consider it to take to do a commitment update,
9588 // just give up on it and fail the HTLC.
9589 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9590 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9591 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9593 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9594 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9595 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9599 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9602 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9603 intercepted_htlcs.retain(|_, htlc| {
9604 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9605 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9606 short_channel_id: htlc.prev_short_channel_id,
9607 user_channel_id: Some(htlc.prev_user_channel_id),
9608 htlc_id: htlc.prev_htlc_id,
9609 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9610 phantom_shared_secret: None,
9611 outpoint: htlc.prev_funding_outpoint,
9612 channel_id: htlc.prev_channel_id,
9613 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9616 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9617 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9618 _ => unreachable!(),
9620 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9621 HTLCFailReason::from_failure_code(0x2000 | 2),
9622 HTLCDestination::InvalidForward { requested_forward_scid }));
9623 let logger = WithContext::from(
9624 &self.logger, None, Some(htlc.prev_channel_id)
9626 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9632 self.handle_init_event_channel_failures(failed_channels);
9634 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9635 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9639 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9640 /// may have events that need processing.
9642 /// In order to check if this [`ChannelManager`] needs persisting, call
9643 /// [`Self::get_and_clear_needs_persistence`].
9645 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9646 /// [`ChannelManager`] and should instead register actions to be taken later.
9647 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9648 self.event_persist_notifier.get_future()
9651 /// Returns true if this [`ChannelManager`] needs to be persisted.
9653 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9654 /// indicates this should be checked.
9655 pub fn get_and_clear_needs_persistence(&self) -> bool {
9656 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9659 #[cfg(any(test, feature = "_test_utils"))]
9660 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9661 self.event_persist_notifier.notify_pending()
9664 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9665 /// [`chain::Confirm`] interfaces.
9666 pub fn current_best_block(&self) -> BestBlock {
9667 self.best_block.read().unwrap().clone()
9670 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9671 /// [`ChannelManager`].
9672 pub fn node_features(&self) -> NodeFeatures {
9673 provided_node_features(&self.default_configuration)
9676 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9677 /// [`ChannelManager`].
9679 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9680 /// or not. Thus, this method is not public.
9681 #[cfg(any(feature = "_test_utils", test))]
9682 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9683 provided_bolt11_invoice_features(&self.default_configuration)
9686 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9687 /// [`ChannelManager`].
9688 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9689 provided_bolt12_invoice_features(&self.default_configuration)
9692 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9693 /// [`ChannelManager`].
9694 pub fn channel_features(&self) -> ChannelFeatures {
9695 provided_channel_features(&self.default_configuration)
9698 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9699 /// [`ChannelManager`].
9700 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9701 provided_channel_type_features(&self.default_configuration)
9704 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9705 /// [`ChannelManager`].
9706 pub fn init_features(&self) -> InitFeatures {
9707 provided_init_features(&self.default_configuration)
9711 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9712 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9714 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9715 T::Target: BroadcasterInterface,
9716 ES::Target: EntropySource,
9717 NS::Target: NodeSigner,
9718 SP::Target: SignerProvider,
9719 F::Target: FeeEstimator,
9723 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9724 // Note that we never need to persist the updated ChannelManager for an inbound
9725 // open_channel message - pre-funded channels are never written so there should be no
9726 // change to the contents.
9727 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9728 let res = self.internal_open_channel(counterparty_node_id, msg);
9729 let persist = match &res {
9730 Err(e) if e.closes_channel() => {
9731 debug_assert!(false, "We shouldn't close a new channel");
9732 NotifyOption::DoPersist
9734 _ => NotifyOption::SkipPersistHandleEvents,
9736 let _ = handle_error!(self, res, *counterparty_node_id);
9741 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9742 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9743 "Dual-funded channels not supported".to_owned(),
9744 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9747 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9748 // Note that we never need to persist the updated ChannelManager for an inbound
9749 // accept_channel message - pre-funded channels are never written so there should be no
9750 // change to the contents.
9751 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9752 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9753 NotifyOption::SkipPersistHandleEvents
9757 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9758 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9759 "Dual-funded channels not supported".to_owned(),
9760 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9763 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9764 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9765 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9768 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9769 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9770 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9773 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9774 // Note that we never need to persist the updated ChannelManager for an inbound
9775 // channel_ready message - while the channel's state will change, any channel_ready message
9776 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9777 // will not force-close the channel on startup.
9778 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9779 let res = self.internal_channel_ready(counterparty_node_id, msg);
9780 let persist = match &res {
9781 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9782 _ => NotifyOption::SkipPersistHandleEvents,
9784 let _ = handle_error!(self, res, *counterparty_node_id);
9789 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9790 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9791 "Quiescence not supported".to_owned(),
9792 msg.channel_id.clone())), *counterparty_node_id);
9796 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9797 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9798 "Splicing not supported".to_owned(),
9799 msg.channel_id.clone())), *counterparty_node_id);
9803 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9804 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9805 "Splicing not supported (splice_ack)".to_owned(),
9806 msg.channel_id.clone())), *counterparty_node_id);
9810 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9811 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9812 "Splicing not supported (splice_locked)".to_owned(),
9813 msg.channel_id.clone())), *counterparty_node_id);
9816 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9817 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9818 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9821 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9822 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9823 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9826 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9827 // Note that we never need to persist the updated ChannelManager for an inbound
9828 // update_add_htlc message - the message itself doesn't change our channel state only the
9829 // `commitment_signed` message afterwards will.
9830 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9831 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9832 let persist = match &res {
9833 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9834 Err(_) => NotifyOption::SkipPersistHandleEvents,
9835 Ok(()) => NotifyOption::SkipPersistNoEvents,
9837 let _ = handle_error!(self, res, *counterparty_node_id);
9842 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9843 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9844 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9847 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9848 // Note that we never need to persist the updated ChannelManager for an inbound
9849 // update_fail_htlc message - the message itself doesn't change our channel state only the
9850 // `commitment_signed` message afterwards will.
9851 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9852 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9853 let persist = match &res {
9854 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9855 Err(_) => NotifyOption::SkipPersistHandleEvents,
9856 Ok(()) => NotifyOption::SkipPersistNoEvents,
9858 let _ = handle_error!(self, res, *counterparty_node_id);
9863 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9864 // Note that we never need to persist the updated ChannelManager for an inbound
9865 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9866 // only the `commitment_signed` message afterwards will.
9867 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9868 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9869 let persist = match &res {
9870 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9871 Err(_) => NotifyOption::SkipPersistHandleEvents,
9872 Ok(()) => NotifyOption::SkipPersistNoEvents,
9874 let _ = handle_error!(self, res, *counterparty_node_id);
9879 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9880 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9881 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9884 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9885 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9886 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9889 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9890 // Note that we never need to persist the updated ChannelManager for an inbound
9891 // update_fee message - the message itself doesn't change our channel state only the
9892 // `commitment_signed` message afterwards will.
9893 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9894 let res = self.internal_update_fee(counterparty_node_id, msg);
9895 let persist = match &res {
9896 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9897 Err(_) => NotifyOption::SkipPersistHandleEvents,
9898 Ok(()) => NotifyOption::SkipPersistNoEvents,
9900 let _ = handle_error!(self, res, *counterparty_node_id);
9905 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9906 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9907 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9910 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9911 PersistenceNotifierGuard::optionally_notify(self, || {
9912 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9915 NotifyOption::DoPersist
9920 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9921 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9922 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9923 let persist = match &res {
9924 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9925 Err(_) => NotifyOption::SkipPersistHandleEvents,
9926 Ok(persist) => *persist,
9928 let _ = handle_error!(self, res, *counterparty_node_id);
9933 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9934 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9935 self, || NotifyOption::SkipPersistHandleEvents);
9936 let mut failed_channels = Vec::new();
9937 let mut per_peer_state = self.per_peer_state.write().unwrap();
9940 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9941 "Marking channels with {} disconnected and generating channel_updates.",
9942 log_pubkey!(counterparty_node_id)
9944 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9945 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9946 let peer_state = &mut *peer_state_lock;
9947 let pending_msg_events = &mut peer_state.pending_msg_events;
9948 peer_state.channel_by_id.retain(|_, phase| {
9949 let context = match phase {
9950 ChannelPhase::Funded(chan) => {
9951 let logger = WithChannelContext::from(&self.logger, &chan.context);
9952 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9953 // We only retain funded channels that are not shutdown.
9958 // We retain UnfundedOutboundV1 channel for some time in case
9959 // peer unexpectedly disconnects, and intends to reconnect again.
9960 ChannelPhase::UnfundedOutboundV1(_) => {
9963 // Unfunded inbound channels will always be removed.
9964 ChannelPhase::UnfundedInboundV1(chan) => {
9967 #[cfg(any(dual_funding, splicing))]
9968 ChannelPhase::UnfundedOutboundV2(chan) => {
9971 #[cfg(any(dual_funding, splicing))]
9972 ChannelPhase::UnfundedInboundV2(chan) => {
9976 // Clean up for removal.
9977 update_maps_on_chan_removal!(self, &context);
9978 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9981 // Note that we don't bother generating any events for pre-accept channels -
9982 // they're not considered "channels" yet from the PoV of our events interface.
9983 peer_state.inbound_channel_request_by_id.clear();
9984 pending_msg_events.retain(|msg| {
9986 // V1 Channel Establishment
9987 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9988 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9989 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9990 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9991 // V2 Channel Establishment
9992 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9993 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9994 // Common Channel Establishment
9995 &events::MessageSendEvent::SendChannelReady { .. } => false,
9996 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9998 &events::MessageSendEvent::SendStfu { .. } => false,
10000 &events::MessageSendEvent::SendSplice { .. } => false,
10001 &events::MessageSendEvent::SendSpliceAck { .. } => false,
10002 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
10003 // Interactive Transaction Construction
10004 &events::MessageSendEvent::SendTxAddInput { .. } => false,
10005 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
10006 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
10007 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
10008 &events::MessageSendEvent::SendTxComplete { .. } => false,
10009 &events::MessageSendEvent::SendTxSignatures { .. } => false,
10010 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
10011 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
10012 &events::MessageSendEvent::SendTxAbort { .. } => false,
10013 // Channel Operations
10014 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
10015 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
10016 &events::MessageSendEvent::SendClosingSigned { .. } => false,
10017 &events::MessageSendEvent::SendShutdown { .. } => false,
10018 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
10019 &events::MessageSendEvent::HandleError { .. } => false,
10021 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
10022 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
10023 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
10024 // This check here is to ensure exhaustivity.
10025 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
10026 debug_assert!(false, "This event shouldn't have been here");
10029 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
10030 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
10031 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10032 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10033 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10034 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10037 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10038 peer_state.is_connected = false;
10039 peer_state.ok_to_remove(true)
10040 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10043 per_peer_state.remove(counterparty_node_id);
10045 mem::drop(per_peer_state);
10047 for failure in failed_channels.drain(..) {
10048 self.finish_close_channel(failure);
10052 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10053 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10054 if !init_msg.features.supports_static_remote_key() {
10055 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10059 let mut res = Ok(());
10061 PersistenceNotifierGuard::optionally_notify(self, || {
10062 // If we have too many peers connected which don't have funded channels, disconnect the
10063 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10064 // unfunded channels taking up space in memory for disconnected peers, we still let new
10065 // peers connect, but we'll reject new channels from them.
10066 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10067 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10070 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10071 match peer_state_lock.entry(counterparty_node_id.clone()) {
10072 hash_map::Entry::Vacant(e) => {
10073 if inbound_peer_limited {
10075 return NotifyOption::SkipPersistNoEvents;
10077 e.insert(Mutex::new(PeerState {
10078 channel_by_id: new_hash_map(),
10079 inbound_channel_request_by_id: new_hash_map(),
10080 latest_features: init_msg.features.clone(),
10081 pending_msg_events: Vec::new(),
10082 in_flight_monitor_updates: BTreeMap::new(),
10083 monitor_update_blocked_actions: BTreeMap::new(),
10084 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10085 is_connected: true,
10088 hash_map::Entry::Occupied(e) => {
10089 let mut peer_state = e.get().lock().unwrap();
10090 peer_state.latest_features = init_msg.features.clone();
10092 let best_block_height = self.best_block.read().unwrap().height;
10093 if inbound_peer_limited &&
10094 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10095 peer_state.channel_by_id.len()
10098 return NotifyOption::SkipPersistNoEvents;
10101 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10102 peer_state.is_connected = true;
10107 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10109 let per_peer_state = self.per_peer_state.read().unwrap();
10110 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10111 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10112 let peer_state = &mut *peer_state_lock;
10113 let pending_msg_events = &mut peer_state.pending_msg_events;
10115 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10117 ChannelPhase::Funded(chan) => {
10118 let logger = WithChannelContext::from(&self.logger, &chan.context);
10119 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10120 node_id: chan.context.get_counterparty_node_id(),
10121 msg: chan.get_channel_reestablish(&&logger),
10125 ChannelPhase::UnfundedOutboundV1(chan) => {
10126 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10127 node_id: chan.context.get_counterparty_node_id(),
10128 msg: chan.get_open_channel(self.chain_hash),
10132 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10133 #[cfg(any(dual_funding, splicing))]
10134 ChannelPhase::UnfundedOutboundV2(chan) => {
10135 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10136 node_id: chan.context.get_counterparty_node_id(),
10137 msg: chan.get_open_channel_v2(self.chain_hash),
10141 ChannelPhase::UnfundedInboundV1(_) => {
10142 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10143 // they are not persisted and won't be recovered after a crash.
10144 // Therefore, they shouldn't exist at this point.
10145 debug_assert!(false);
10148 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10149 #[cfg(any(dual_funding, splicing))]
10150 ChannelPhase::UnfundedInboundV2(channel) => {
10151 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10152 // they are not persisted and won't be recovered after a crash.
10153 // Therefore, they shouldn't exist at this point.
10154 debug_assert!(false);
10160 return NotifyOption::SkipPersistHandleEvents;
10161 //TODO: Also re-broadcast announcement_signatures
10166 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10167 match &msg.data as &str {
10168 "cannot co-op close channel w/ active htlcs"|
10169 "link failed to shutdown" =>
10171 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10172 // send one while HTLCs are still present. The issue is tracked at
10173 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10174 // to fix it but none so far have managed to land upstream. The issue appears to be
10175 // very low priority for the LND team despite being marked "P1".
10176 // We're not going to bother handling this in a sensible way, instead simply
10177 // repeating the Shutdown message on repeat until morale improves.
10178 if !msg.channel_id.is_zero() {
10179 PersistenceNotifierGuard::optionally_notify(
10181 || -> NotifyOption {
10182 let per_peer_state = self.per_peer_state.read().unwrap();
10183 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10184 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10185 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10186 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10187 if let Some(msg) = chan.get_outbound_shutdown() {
10188 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10189 node_id: *counterparty_node_id,
10193 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10194 node_id: *counterparty_node_id,
10195 action: msgs::ErrorAction::SendWarningMessage {
10196 msg: msgs::WarningMessage {
10197 channel_id: msg.channel_id,
10198 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10200 log_level: Level::Trace,
10203 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10204 // a `ChannelManager` write here.
10205 return NotifyOption::SkipPersistHandleEvents;
10207 NotifyOption::SkipPersistNoEvents
10216 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10218 if msg.channel_id.is_zero() {
10219 let channel_ids: Vec<ChannelId> = {
10220 let per_peer_state = self.per_peer_state.read().unwrap();
10221 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10222 if peer_state_mutex_opt.is_none() { return; }
10223 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10224 let peer_state = &mut *peer_state_lock;
10225 // Note that we don't bother generating any events for pre-accept channels -
10226 // they're not considered "channels" yet from the PoV of our events interface.
10227 peer_state.inbound_channel_request_by_id.clear();
10228 peer_state.channel_by_id.keys().cloned().collect()
10230 for channel_id in channel_ids {
10231 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10232 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10236 // First check if we can advance the channel type and try again.
10237 let per_peer_state = self.per_peer_state.read().unwrap();
10238 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10239 if peer_state_mutex_opt.is_none() { return; }
10240 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10241 let peer_state = &mut *peer_state_lock;
10242 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10243 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10244 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10245 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10246 node_id: *counterparty_node_id,
10252 #[cfg(any(dual_funding, splicing))]
10253 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10254 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10255 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10256 node_id: *counterparty_node_id,
10262 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10263 #[cfg(any(dual_funding, splicing))]
10264 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10268 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10269 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10273 fn provided_node_features(&self) -> NodeFeatures {
10274 provided_node_features(&self.default_configuration)
10277 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10278 provided_init_features(&self.default_configuration)
10281 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10282 Some(vec![self.chain_hash])
10285 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10286 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10287 "Dual-funded channels not supported".to_owned(),
10288 msg.channel_id.clone())), *counterparty_node_id);
10291 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10292 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10293 "Dual-funded channels not supported".to_owned(),
10294 msg.channel_id.clone())), *counterparty_node_id);
10297 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10298 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10299 "Dual-funded channels not supported".to_owned(),
10300 msg.channel_id.clone())), *counterparty_node_id);
10303 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10304 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10305 "Dual-funded channels not supported".to_owned(),
10306 msg.channel_id.clone())), *counterparty_node_id);
10309 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10310 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10311 "Dual-funded channels not supported".to_owned(),
10312 msg.channel_id.clone())), *counterparty_node_id);
10315 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10316 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10317 "Dual-funded channels not supported".to_owned(),
10318 msg.channel_id.clone())), *counterparty_node_id);
10321 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10322 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10323 "Dual-funded channels not supported".to_owned(),
10324 msg.channel_id.clone())), *counterparty_node_id);
10327 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10328 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10329 "Dual-funded channels not supported".to_owned(),
10330 msg.channel_id.clone())), *counterparty_node_id);
10333 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10334 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10335 "Dual-funded channels not supported".to_owned(),
10336 msg.channel_id.clone())), *counterparty_node_id);
10340 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10341 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10343 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10344 T::Target: BroadcasterInterface,
10345 ES::Target: EntropySource,
10346 NS::Target: NodeSigner,
10347 SP::Target: SignerProvider,
10348 F::Target: FeeEstimator,
10352 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
10353 let secp_ctx = &self.secp_ctx;
10354 let expanded_key = &self.inbound_payment_key;
10357 OffersMessage::InvoiceRequest(invoice_request) => {
10358 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10361 Ok(amount_msats) => amount_msats,
10362 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
10364 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10365 Ok(invoice_request) => invoice_request,
10367 let error = Bolt12SemanticError::InvalidMetadata;
10368 return Some(OffersMessage::InvoiceError(error.into()));
10372 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10373 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10374 Some(amount_msats), relative_expiry, None
10376 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10378 let error = Bolt12SemanticError::InvalidAmount;
10379 return Some(OffersMessage::InvoiceError(error.into()));
10383 let payment_context = PaymentContext::Bolt12Offer(Bolt12OfferContext {
10384 offer_id: invoice_request.offer_id,
10385 invoice_request: invoice_request.fields(),
10387 let payment_paths = match self.create_blinded_payment_paths(
10388 amount_msats, payment_secret, payment_context
10390 Ok(payment_paths) => payment_paths,
10392 let error = Bolt12SemanticError::MissingPaths;
10393 return Some(OffersMessage::InvoiceError(error.into()));
10397 #[cfg(not(feature = "std"))]
10398 let created_at = Duration::from_secs(
10399 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10402 let response = if invoice_request.keys.is_some() {
10403 #[cfg(feature = "std")]
10404 let builder = invoice_request.respond_using_derived_keys(
10405 payment_paths, payment_hash
10407 #[cfg(not(feature = "std"))]
10408 let builder = invoice_request.respond_using_derived_keys_no_std(
10409 payment_paths, payment_hash, created_at
10412 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10413 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10414 .map_err(InvoiceError::from)
10416 #[cfg(feature = "std")]
10417 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10418 #[cfg(not(feature = "std"))]
10419 let builder = invoice_request.respond_with_no_std(
10420 payment_paths, payment_hash, created_at
10423 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10424 .and_then(|builder| builder.allow_mpp().build())
10425 .map_err(InvoiceError::from)
10426 .and_then(|invoice| {
10428 let mut invoice = invoice;
10430 .sign(|invoice: &UnsignedBolt12Invoice|
10431 self.node_signer.sign_bolt12_invoice(invoice)
10433 .map_err(InvoiceError::from)
10438 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
10439 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
10442 OffersMessage::Invoice(invoice) => {
10443 let response = invoice
10444 .verify(expanded_key, secp_ctx)
10445 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10446 .and_then(|payment_id| {
10447 let features = self.bolt12_invoice_features();
10448 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10449 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10451 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10453 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10454 InvoiceError::from_string(format!("{:?}", e))
10461 Err(e) => Some(OffersMessage::InvoiceError(e)),
10464 OffersMessage::InvoiceError(invoice_error) => {
10465 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10471 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10472 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10476 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10477 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10479 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10480 T::Target: BroadcasterInterface,
10481 ES::Target: EntropySource,
10482 NS::Target: NodeSigner,
10483 SP::Target: SignerProvider,
10484 F::Target: FeeEstimator,
10488 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10489 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10493 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10494 /// [`ChannelManager`].
10495 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10496 let mut node_features = provided_init_features(config).to_context();
10497 node_features.set_keysend_optional();
10501 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10502 /// [`ChannelManager`].
10504 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10505 /// or not. Thus, this method is not public.
10506 #[cfg(any(feature = "_test_utils", test))]
10507 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10508 provided_init_features(config).to_context()
10511 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10512 /// [`ChannelManager`].
10513 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10514 provided_init_features(config).to_context()
10517 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10518 /// [`ChannelManager`].
10519 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10520 provided_init_features(config).to_context()
10523 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10524 /// [`ChannelManager`].
10525 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10526 ChannelTypeFeatures::from_init(&provided_init_features(config))
10529 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10530 /// [`ChannelManager`].
10531 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10532 // Note that if new features are added here which other peers may (eventually) require, we
10533 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10534 // [`ErroringMessageHandler`].
10535 let mut features = InitFeatures::empty();
10536 features.set_data_loss_protect_required();
10537 features.set_upfront_shutdown_script_optional();
10538 features.set_variable_length_onion_required();
10539 features.set_static_remote_key_required();
10540 features.set_payment_secret_required();
10541 features.set_basic_mpp_optional();
10542 features.set_wumbo_optional();
10543 features.set_shutdown_any_segwit_optional();
10544 features.set_channel_type_optional();
10545 features.set_scid_privacy_optional();
10546 features.set_zero_conf_optional();
10547 features.set_route_blinding_optional();
10548 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10549 features.set_anchors_zero_fee_htlc_tx_optional();
10554 const SERIALIZATION_VERSION: u8 = 1;
10555 const MIN_SERIALIZATION_VERSION: u8 = 1;
10557 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10558 (2, fee_base_msat, required),
10559 (4, fee_proportional_millionths, required),
10560 (6, cltv_expiry_delta, required),
10563 impl_writeable_tlv_based!(ChannelCounterparty, {
10564 (2, node_id, required),
10565 (4, features, required),
10566 (6, unspendable_punishment_reserve, required),
10567 (8, forwarding_info, option),
10568 (9, outbound_htlc_minimum_msat, option),
10569 (11, outbound_htlc_maximum_msat, option),
10572 impl Writeable for ChannelDetails {
10573 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10574 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10575 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10576 let user_channel_id_low = self.user_channel_id as u64;
10577 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10578 write_tlv_fields!(writer, {
10579 (1, self.inbound_scid_alias, option),
10580 (2, self.channel_id, required),
10581 (3, self.channel_type, option),
10582 (4, self.counterparty, required),
10583 (5, self.outbound_scid_alias, option),
10584 (6, self.funding_txo, option),
10585 (7, self.config, option),
10586 (8, self.short_channel_id, option),
10587 (9, self.confirmations, option),
10588 (10, self.channel_value_satoshis, required),
10589 (12, self.unspendable_punishment_reserve, option),
10590 (14, user_channel_id_low, required),
10591 (16, self.balance_msat, required),
10592 (18, self.outbound_capacity_msat, required),
10593 (19, self.next_outbound_htlc_limit_msat, required),
10594 (20, self.inbound_capacity_msat, required),
10595 (21, self.next_outbound_htlc_minimum_msat, required),
10596 (22, self.confirmations_required, option),
10597 (24, self.force_close_spend_delay, option),
10598 (26, self.is_outbound, required),
10599 (28, self.is_channel_ready, required),
10600 (30, self.is_usable, required),
10601 (32, self.is_public, required),
10602 (33, self.inbound_htlc_minimum_msat, option),
10603 (35, self.inbound_htlc_maximum_msat, option),
10604 (37, user_channel_id_high_opt, option),
10605 (39, self.feerate_sat_per_1000_weight, option),
10606 (41, self.channel_shutdown_state, option),
10607 (43, self.pending_inbound_htlcs, optional_vec),
10608 (45, self.pending_outbound_htlcs, optional_vec),
10614 impl Readable for ChannelDetails {
10615 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10616 _init_and_read_len_prefixed_tlv_fields!(reader, {
10617 (1, inbound_scid_alias, option),
10618 (2, channel_id, required),
10619 (3, channel_type, option),
10620 (4, counterparty, required),
10621 (5, outbound_scid_alias, option),
10622 (6, funding_txo, option),
10623 (7, config, option),
10624 (8, short_channel_id, option),
10625 (9, confirmations, option),
10626 (10, channel_value_satoshis, required),
10627 (12, unspendable_punishment_reserve, option),
10628 (14, user_channel_id_low, required),
10629 (16, balance_msat, required),
10630 (18, outbound_capacity_msat, required),
10631 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10632 // filled in, so we can safely unwrap it here.
10633 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10634 (20, inbound_capacity_msat, required),
10635 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10636 (22, confirmations_required, option),
10637 (24, force_close_spend_delay, option),
10638 (26, is_outbound, required),
10639 (28, is_channel_ready, required),
10640 (30, is_usable, required),
10641 (32, is_public, required),
10642 (33, inbound_htlc_minimum_msat, option),
10643 (35, inbound_htlc_maximum_msat, option),
10644 (37, user_channel_id_high_opt, option),
10645 (39, feerate_sat_per_1000_weight, option),
10646 (41, channel_shutdown_state, option),
10647 (43, pending_inbound_htlcs, optional_vec),
10648 (45, pending_outbound_htlcs, optional_vec),
10651 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10652 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10653 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10654 let user_channel_id = user_channel_id_low as u128 +
10655 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10658 inbound_scid_alias,
10659 channel_id: channel_id.0.unwrap(),
10661 counterparty: counterparty.0.unwrap(),
10662 outbound_scid_alias,
10666 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10667 unspendable_punishment_reserve,
10669 balance_msat: balance_msat.0.unwrap(),
10670 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10671 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10672 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10673 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10674 confirmations_required,
10676 force_close_spend_delay,
10677 is_outbound: is_outbound.0.unwrap(),
10678 is_channel_ready: is_channel_ready.0.unwrap(),
10679 is_usable: is_usable.0.unwrap(),
10680 is_public: is_public.0.unwrap(),
10681 inbound_htlc_minimum_msat,
10682 inbound_htlc_maximum_msat,
10683 feerate_sat_per_1000_weight,
10684 channel_shutdown_state,
10685 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10686 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10691 impl_writeable_tlv_based!(PhantomRouteHints, {
10692 (2, channels, required_vec),
10693 (4, phantom_scid, required),
10694 (6, real_node_pubkey, required),
10697 impl_writeable_tlv_based!(BlindedForward, {
10698 (0, inbound_blinding_point, required),
10699 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10702 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10704 (0, onion_packet, required),
10705 (1, blinded, option),
10706 (2, short_channel_id, required),
10709 (0, payment_data, required),
10710 (1, phantom_shared_secret, option),
10711 (2, incoming_cltv_expiry, required),
10712 (3, payment_metadata, option),
10713 (5, custom_tlvs, optional_vec),
10714 (7, requires_blinded_error, (default_value, false)),
10715 (9, payment_context, option),
10717 (2, ReceiveKeysend) => {
10718 (0, payment_preimage, required),
10719 (1, requires_blinded_error, (default_value, false)),
10720 (2, incoming_cltv_expiry, required),
10721 (3, payment_metadata, option),
10722 (4, payment_data, option), // Added in 0.0.116
10723 (5, custom_tlvs, optional_vec),
10727 impl_writeable_tlv_based!(PendingHTLCInfo, {
10728 (0, routing, required),
10729 (2, incoming_shared_secret, required),
10730 (4, payment_hash, required),
10731 (6, outgoing_amt_msat, required),
10732 (8, outgoing_cltv_value, required),
10733 (9, incoming_amt_msat, option),
10734 (10, skimmed_fee_msat, option),
10738 impl Writeable for HTLCFailureMsg {
10739 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10741 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10742 0u8.write(writer)?;
10743 channel_id.write(writer)?;
10744 htlc_id.write(writer)?;
10745 reason.write(writer)?;
10747 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10748 channel_id, htlc_id, sha256_of_onion, failure_code
10750 1u8.write(writer)?;
10751 channel_id.write(writer)?;
10752 htlc_id.write(writer)?;
10753 sha256_of_onion.write(writer)?;
10754 failure_code.write(writer)?;
10761 impl Readable for HTLCFailureMsg {
10762 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10763 let id: u8 = Readable::read(reader)?;
10766 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10767 channel_id: Readable::read(reader)?,
10768 htlc_id: Readable::read(reader)?,
10769 reason: Readable::read(reader)?,
10773 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10774 channel_id: Readable::read(reader)?,
10775 htlc_id: Readable::read(reader)?,
10776 sha256_of_onion: Readable::read(reader)?,
10777 failure_code: Readable::read(reader)?,
10780 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10781 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10782 // messages contained in the variants.
10783 // In version 0.0.101, support for reading the variants with these types was added, and
10784 // we should migrate to writing these variants when UpdateFailHTLC or
10785 // UpdateFailMalformedHTLC get TLV fields.
10787 let length: BigSize = Readable::read(reader)?;
10788 let mut s = FixedLengthReader::new(reader, length.0);
10789 let res = Readable::read(&mut s)?;
10790 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10791 Ok(HTLCFailureMsg::Relay(res))
10794 let length: BigSize = Readable::read(reader)?;
10795 let mut s = FixedLengthReader::new(reader, length.0);
10796 let res = Readable::read(&mut s)?;
10797 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10798 Ok(HTLCFailureMsg::Malformed(res))
10800 _ => Err(DecodeError::UnknownRequiredFeature),
10805 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10810 impl_writeable_tlv_based_enum!(BlindedFailure,
10811 (0, FromIntroductionNode) => {},
10812 (2, FromBlindedNode) => {}, ;
10815 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10816 (0, short_channel_id, required),
10817 (1, phantom_shared_secret, option),
10818 (2, outpoint, required),
10819 (3, blinded_failure, option),
10820 (4, htlc_id, required),
10821 (6, incoming_packet_shared_secret, required),
10822 (7, user_channel_id, option),
10823 // Note that by the time we get past the required read for type 2 above, outpoint will be
10824 // filled in, so we can safely unwrap it here.
10825 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10828 impl Writeable for ClaimableHTLC {
10829 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10830 let (payment_data, keysend_preimage) = match &self.onion_payload {
10831 OnionPayload::Invoice { _legacy_hop_data } => {
10832 (_legacy_hop_data.as_ref(), None)
10834 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
10836 write_tlv_fields!(writer, {
10837 (0, self.prev_hop, required),
10838 (1, self.total_msat, required),
10839 (2, self.value, required),
10840 (3, self.sender_intended_value, required),
10841 (4, payment_data, option),
10842 (5, self.total_value_received, option),
10843 (6, self.cltv_expiry, required),
10844 (8, keysend_preimage, option),
10845 (10, self.counterparty_skimmed_fee_msat, option),
10851 impl Readable for ClaimableHTLC {
10852 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10853 _init_and_read_len_prefixed_tlv_fields!(reader, {
10854 (0, prev_hop, required),
10855 (1, total_msat, option),
10856 (2, value_ser, required),
10857 (3, sender_intended_value, option),
10858 (4, payment_data_opt, option),
10859 (5, total_value_received, option),
10860 (6, cltv_expiry, required),
10861 (8, keysend_preimage, option),
10862 (10, counterparty_skimmed_fee_msat, option),
10864 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10865 let value = value_ser.0.unwrap();
10866 let onion_payload = match keysend_preimage {
10868 if payment_data.is_some() {
10869 return Err(DecodeError::InvalidValue)
10871 if total_msat.is_none() {
10872 total_msat = Some(value);
10874 OnionPayload::Spontaneous(p)
10877 if total_msat.is_none() {
10878 if payment_data.is_none() {
10879 return Err(DecodeError::InvalidValue)
10881 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10883 OnionPayload::Invoice { _legacy_hop_data: payment_data }
10887 prev_hop: prev_hop.0.unwrap(),
10890 sender_intended_value: sender_intended_value.unwrap_or(value),
10891 total_value_received,
10892 total_msat: total_msat.unwrap(),
10894 cltv_expiry: cltv_expiry.0.unwrap(),
10895 counterparty_skimmed_fee_msat,
10900 impl Readable for HTLCSource {
10901 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10902 let id: u8 = Readable::read(reader)?;
10905 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10906 let mut first_hop_htlc_msat: u64 = 0;
10907 let mut path_hops = Vec::new();
10908 let mut payment_id = None;
10909 let mut payment_params: Option<PaymentParameters> = None;
10910 let mut blinded_tail: Option<BlindedTail> = None;
10911 read_tlv_fields!(reader, {
10912 (0, session_priv, required),
10913 (1, payment_id, option),
10914 (2, first_hop_htlc_msat, required),
10915 (4, path_hops, required_vec),
10916 (5, payment_params, (option: ReadableArgs, 0)),
10917 (6, blinded_tail, option),
10919 if payment_id.is_none() {
10920 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10922 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10924 let path = Path { hops: path_hops, blinded_tail };
10925 if path.hops.len() == 0 {
10926 return Err(DecodeError::InvalidValue);
10928 if let Some(params) = payment_params.as_mut() {
10929 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10930 if final_cltv_expiry_delta == &0 {
10931 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10935 Ok(HTLCSource::OutboundRoute {
10936 session_priv: session_priv.0.unwrap(),
10937 first_hop_htlc_msat,
10939 payment_id: payment_id.unwrap(),
10942 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10943 _ => Err(DecodeError::UnknownRequiredFeature),
10948 impl Writeable for HTLCSource {
10949 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10951 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10952 0u8.write(writer)?;
10953 let payment_id_opt = Some(payment_id);
10954 write_tlv_fields!(writer, {
10955 (0, session_priv, required),
10956 (1, payment_id_opt, option),
10957 (2, first_hop_htlc_msat, required),
10958 // 3 was previously used to write a PaymentSecret for the payment.
10959 (4, path.hops, required_vec),
10960 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10961 (6, path.blinded_tail, option),
10964 HTLCSource::PreviousHopData(ref field) => {
10965 1u8.write(writer)?;
10966 field.write(writer)?;
10973 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10974 (0, forward_info, required),
10975 (1, prev_user_channel_id, (default_value, 0)),
10976 (2, prev_short_channel_id, required),
10977 (4, prev_htlc_id, required),
10978 (6, prev_funding_outpoint, required),
10979 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10980 // filled in, so we can safely unwrap it here.
10981 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10984 impl Writeable for HTLCForwardInfo {
10985 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10986 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10988 Self::AddHTLC(info) => {
10992 Self::FailHTLC { htlc_id, err_packet } => {
10993 FAIL_HTLC_VARIANT_ID.write(w)?;
10994 write_tlv_fields!(w, {
10995 (0, htlc_id, required),
10996 (2, err_packet, required),
10999 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
11000 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
11001 // packet so older versions have something to fail back with, but serialize the real data as
11002 // optional TLVs for the benefit of newer versions.
11003 FAIL_HTLC_VARIANT_ID.write(w)?;
11004 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
11005 write_tlv_fields!(w, {
11006 (0, htlc_id, required),
11007 (1, failure_code, required),
11008 (2, dummy_err_packet, required),
11009 (3, sha256_of_onion, required),
11017 impl Readable for HTLCForwardInfo {
11018 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
11019 let id: u8 = Readable::read(r)?;
11021 0 => Self::AddHTLC(Readable::read(r)?),
11023 _init_and_read_len_prefixed_tlv_fields!(r, {
11024 (0, htlc_id, required),
11025 (1, malformed_htlc_failure_code, option),
11026 (2, err_packet, required),
11027 (3, sha256_of_onion, option),
11029 if let Some(failure_code) = malformed_htlc_failure_code {
11030 Self::FailMalformedHTLC {
11031 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11033 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
11037 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11038 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11042 _ => return Err(DecodeError::InvalidValue),
11047 impl_writeable_tlv_based!(PendingInboundPayment, {
11048 (0, payment_secret, required),
11049 (2, expiry_time, required),
11050 (4, user_payment_id, required),
11051 (6, payment_preimage, required),
11052 (8, min_value_msat, required),
11055 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11057 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11058 T::Target: BroadcasterInterface,
11059 ES::Target: EntropySource,
11060 NS::Target: NodeSigner,
11061 SP::Target: SignerProvider,
11062 F::Target: FeeEstimator,
11066 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11067 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11069 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11071 self.chain_hash.write(writer)?;
11073 let best_block = self.best_block.read().unwrap();
11074 best_block.height.write(writer)?;
11075 best_block.block_hash.write(writer)?;
11078 let per_peer_state = self.per_peer_state.write().unwrap();
11080 let mut serializable_peer_count: u64 = 0;
11082 let mut number_of_funded_channels = 0;
11083 for (_, peer_state_mutex) in per_peer_state.iter() {
11084 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11085 let peer_state = &mut *peer_state_lock;
11086 if !peer_state.ok_to_remove(false) {
11087 serializable_peer_count += 1;
11090 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11091 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11095 (number_of_funded_channels as u64).write(writer)?;
11097 for (_, peer_state_mutex) in per_peer_state.iter() {
11098 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11099 let peer_state = &mut *peer_state_lock;
11100 for channel in peer_state.channel_by_id.iter().filter_map(
11101 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11102 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11105 channel.write(writer)?;
11111 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11112 (forward_htlcs.len() as u64).write(writer)?;
11113 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11114 short_channel_id.write(writer)?;
11115 (pending_forwards.len() as u64).write(writer)?;
11116 for forward in pending_forwards {
11117 forward.write(writer)?;
11122 let mut decode_update_add_htlcs_opt = None;
11123 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11124 if !decode_update_add_htlcs.is_empty() {
11125 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11128 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11129 let claimable_payments = self.claimable_payments.lock().unwrap();
11130 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11132 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11133 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11134 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11135 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11136 payment_hash.write(writer)?;
11137 (payment.htlcs.len() as u64).write(writer)?;
11138 for htlc in payment.htlcs.iter() {
11139 htlc.write(writer)?;
11141 htlc_purposes.push(&payment.purpose);
11142 htlc_onion_fields.push(&payment.onion_fields);
11145 let mut monitor_update_blocked_actions_per_peer = None;
11146 let mut peer_states = Vec::new();
11147 for (_, peer_state_mutex) in per_peer_state.iter() {
11148 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11149 // of a lockorder violation deadlock - no other thread can be holding any
11150 // per_peer_state lock at all.
11151 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11154 (serializable_peer_count).write(writer)?;
11155 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11156 // Peers which we have no channels to should be dropped once disconnected. As we
11157 // disconnect all peers when shutting down and serializing the ChannelManager, we
11158 // consider all peers as disconnected here. There's therefore no need write peers with
11160 if !peer_state.ok_to_remove(false) {
11161 peer_pubkey.write(writer)?;
11162 peer_state.latest_features.write(writer)?;
11163 if !peer_state.monitor_update_blocked_actions.is_empty() {
11164 monitor_update_blocked_actions_per_peer
11165 .get_or_insert_with(Vec::new)
11166 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11171 let events = self.pending_events.lock().unwrap();
11172 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11173 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11174 // refuse to read the new ChannelManager.
11175 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11176 if events_not_backwards_compatible {
11177 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11178 // well save the space and not write any events here.
11179 0u64.write(writer)?;
11181 (events.len() as u64).write(writer)?;
11182 for (event, _) in events.iter() {
11183 event.write(writer)?;
11187 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11188 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11189 // the closing monitor updates were always effectively replayed on startup (either directly
11190 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11191 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11192 0u64.write(writer)?;
11194 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11195 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11196 // likely to be identical.
11197 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11198 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11200 (pending_inbound_payments.len() as u64).write(writer)?;
11201 for (hash, pending_payment) in pending_inbound_payments.iter() {
11202 hash.write(writer)?;
11203 pending_payment.write(writer)?;
11206 // For backwards compat, write the session privs and their total length.
11207 let mut num_pending_outbounds_compat: u64 = 0;
11208 for (_, outbound) in pending_outbound_payments.iter() {
11209 if !outbound.is_fulfilled() && !outbound.abandoned() {
11210 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11213 num_pending_outbounds_compat.write(writer)?;
11214 for (_, outbound) in pending_outbound_payments.iter() {
11216 PendingOutboundPayment::Legacy { session_privs } |
11217 PendingOutboundPayment::Retryable { session_privs, .. } => {
11218 for session_priv in session_privs.iter() {
11219 session_priv.write(writer)?;
11222 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11223 PendingOutboundPayment::InvoiceReceived { .. } => {},
11224 PendingOutboundPayment::Fulfilled { .. } => {},
11225 PendingOutboundPayment::Abandoned { .. } => {},
11229 // Encode without retry info for 0.0.101 compatibility.
11230 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11231 for (id, outbound) in pending_outbound_payments.iter() {
11233 PendingOutboundPayment::Legacy { session_privs } |
11234 PendingOutboundPayment::Retryable { session_privs, .. } => {
11235 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11241 let mut pending_intercepted_htlcs = None;
11242 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11243 if our_pending_intercepts.len() != 0 {
11244 pending_intercepted_htlcs = Some(our_pending_intercepts);
11247 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11248 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11249 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11250 // map. Thus, if there are no entries we skip writing a TLV for it.
11251 pending_claiming_payments = None;
11254 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11255 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11256 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11257 if !updates.is_empty() {
11258 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11259 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11264 write_tlv_fields!(writer, {
11265 (1, pending_outbound_payments_no_retry, required),
11266 (2, pending_intercepted_htlcs, option),
11267 (3, pending_outbound_payments, required),
11268 (4, pending_claiming_payments, option),
11269 (5, self.our_network_pubkey, required),
11270 (6, monitor_update_blocked_actions_per_peer, option),
11271 (7, self.fake_scid_rand_bytes, required),
11272 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11273 (9, htlc_purposes, required_vec),
11274 (10, in_flight_monitor_updates, option),
11275 (11, self.probing_cookie_secret, required),
11276 (13, htlc_onion_fields, optional_vec),
11277 (14, decode_update_add_htlcs_opt, option),
11284 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11285 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11286 (self.len() as u64).write(w)?;
11287 for (event, action) in self.iter() {
11290 #[cfg(debug_assertions)] {
11291 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11292 // be persisted and are regenerated on restart. However, if such an event has a
11293 // post-event-handling action we'll write nothing for the event and would have to
11294 // either forget the action or fail on deserialization (which we do below). Thus,
11295 // check that the event is sane here.
11296 let event_encoded = event.encode();
11297 let event_read: Option<Event> =
11298 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11299 if action.is_some() { assert!(event_read.is_some()); }
11305 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11306 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11307 let len: u64 = Readable::read(reader)?;
11308 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11309 let mut events: Self = VecDeque::with_capacity(cmp::min(
11310 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11313 let ev_opt = MaybeReadable::read(reader)?;
11314 let action = Readable::read(reader)?;
11315 if let Some(ev) = ev_opt {
11316 events.push_back((ev, action));
11317 } else if action.is_some() {
11318 return Err(DecodeError::InvalidValue);
11325 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11326 (0, NotShuttingDown) => {},
11327 (2, ShutdownInitiated) => {},
11328 (4, ResolvingHTLCs) => {},
11329 (6, NegotiatingClosingFee) => {},
11330 (8, ShutdownComplete) => {}, ;
11333 /// Arguments for the creation of a ChannelManager that are not deserialized.
11335 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11337 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11338 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11339 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11340 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11341 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11342 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11343 /// same way you would handle a [`chain::Filter`] call using
11344 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11345 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11346 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11347 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11348 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11349 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11351 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11352 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11354 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11355 /// call any other methods on the newly-deserialized [`ChannelManager`].
11357 /// Note that because some channels may be closed during deserialization, it is critical that you
11358 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11359 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11360 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11361 /// not force-close the same channels but consider them live), you may end up revoking a state for
11362 /// which you've already broadcasted the transaction.
11364 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11365 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11367 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11368 T::Target: BroadcasterInterface,
11369 ES::Target: EntropySource,
11370 NS::Target: NodeSigner,
11371 SP::Target: SignerProvider,
11372 F::Target: FeeEstimator,
11376 /// A cryptographically secure source of entropy.
11377 pub entropy_source: ES,
11379 /// A signer that is able to perform node-scoped cryptographic operations.
11380 pub node_signer: NS,
11382 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11383 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11385 pub signer_provider: SP,
11387 /// The fee_estimator for use in the ChannelManager in the future.
11389 /// No calls to the FeeEstimator will be made during deserialization.
11390 pub fee_estimator: F,
11391 /// The chain::Watch for use in the ChannelManager in the future.
11393 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11394 /// you have deserialized ChannelMonitors separately and will add them to your
11395 /// chain::Watch after deserializing this ChannelManager.
11396 pub chain_monitor: M,
11398 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11399 /// used to broadcast the latest local commitment transactions of channels which must be
11400 /// force-closed during deserialization.
11401 pub tx_broadcaster: T,
11402 /// The router which will be used in the ChannelManager in the future for finding routes
11403 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11405 /// No calls to the router will be made during deserialization.
11407 /// The Logger for use in the ChannelManager and which may be used to log information during
11408 /// deserialization.
11410 /// Default settings used for new channels. Any existing channels will continue to use the
11411 /// runtime settings which were stored when the ChannelManager was serialized.
11412 pub default_config: UserConfig,
11414 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11415 /// value.context.get_funding_txo() should be the key).
11417 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11418 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11419 /// is true for missing channels as well. If there is a monitor missing for which we find
11420 /// channel data Err(DecodeError::InvalidValue) will be returned.
11422 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11425 /// This is not exported to bindings users because we have no HashMap bindings
11426 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11429 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11430 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11432 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11433 T::Target: BroadcasterInterface,
11434 ES::Target: EntropySource,
11435 NS::Target: NodeSigner,
11436 SP::Target: SignerProvider,
11437 F::Target: FeeEstimator,
11441 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11442 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11443 /// populate a HashMap directly from C.
11444 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11445 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11447 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11448 channel_monitors: hash_map_from_iter(
11449 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11455 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11456 // SipmleArcChannelManager type:
11457 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11458 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11460 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11461 T::Target: BroadcasterInterface,
11462 ES::Target: EntropySource,
11463 NS::Target: NodeSigner,
11464 SP::Target: SignerProvider,
11465 F::Target: FeeEstimator,
11469 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11470 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11471 Ok((blockhash, Arc::new(chan_manager)))
11475 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11476 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11478 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11479 T::Target: BroadcasterInterface,
11480 ES::Target: EntropySource,
11481 NS::Target: NodeSigner,
11482 SP::Target: SignerProvider,
11483 F::Target: FeeEstimator,
11487 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11488 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11490 let chain_hash: ChainHash = Readable::read(reader)?;
11491 let best_block_height: u32 = Readable::read(reader)?;
11492 let best_block_hash: BlockHash = Readable::read(reader)?;
11494 let mut failed_htlcs = Vec::new();
11496 let channel_count: u64 = Readable::read(reader)?;
11497 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11498 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11499 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11500 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11501 let mut channel_closures = VecDeque::new();
11502 let mut close_background_events = Vec::new();
11503 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11504 for _ in 0..channel_count {
11505 let mut channel: Channel<SP> = Channel::read(reader, (
11506 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11508 let logger = WithChannelContext::from(&args.logger, &channel.context);
11509 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11510 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11511 funding_txo_set.insert(funding_txo.clone());
11512 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11513 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11514 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11515 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11516 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11517 // But if the channel is behind of the monitor, close the channel:
11518 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11519 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11520 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11521 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11522 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11524 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11525 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11526 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11528 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11529 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11530 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11532 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11533 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11534 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11536 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11537 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11538 return Err(DecodeError::InvalidValue);
11540 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11541 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11542 counterparty_node_id, funding_txo, channel_id, update
11545 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11546 channel_closures.push_back((events::Event::ChannelClosed {
11547 channel_id: channel.context.channel_id(),
11548 user_channel_id: channel.context.get_user_id(),
11549 reason: ClosureReason::OutdatedChannelManager,
11550 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11551 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11552 channel_funding_txo: channel.context.get_funding_txo(),
11554 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11555 let mut found_htlc = false;
11556 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11557 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11560 // If we have some HTLCs in the channel which are not present in the newer
11561 // ChannelMonitor, they have been removed and should be failed back to
11562 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11563 // were actually claimed we'd have generated and ensured the previous-hop
11564 // claim update ChannelMonitor updates were persisted prior to persising
11565 // the ChannelMonitor update for the forward leg, so attempting to fail the
11566 // backwards leg of the HTLC will simply be rejected.
11568 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11569 &channel.context.channel_id(), &payment_hash);
11570 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11574 channel.on_startup_drop_completed_blocked_mon_updates_through(&logger, monitor.get_latest_update_id());
11575 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {} with {} blocked updates",
11576 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11577 monitor.get_latest_update_id(), channel.blocked_monitor_updates_pending());
11578 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11579 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11581 if let Some(funding_txo) = channel.context.get_funding_txo() {
11582 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11584 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11585 hash_map::Entry::Occupied(mut entry) => {
11586 let by_id_map = entry.get_mut();
11587 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11589 hash_map::Entry::Vacant(entry) => {
11590 let mut by_id_map = new_hash_map();
11591 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11592 entry.insert(by_id_map);
11596 } else if channel.is_awaiting_initial_mon_persist() {
11597 // If we were persisted and shut down while the initial ChannelMonitor persistence
11598 // was in-progress, we never broadcasted the funding transaction and can still
11599 // safely discard the channel.
11600 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11601 channel_closures.push_back((events::Event::ChannelClosed {
11602 channel_id: channel.context.channel_id(),
11603 user_channel_id: channel.context.get_user_id(),
11604 reason: ClosureReason::DisconnectedPeer,
11605 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11606 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11607 channel_funding_txo: channel.context.get_funding_txo(),
11610 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11611 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11612 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11613 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11614 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11615 return Err(DecodeError::InvalidValue);
11619 for (funding_txo, monitor) in args.channel_monitors.iter() {
11620 if !funding_txo_set.contains(funding_txo) {
11621 let logger = WithChannelMonitor::from(&args.logger, monitor);
11622 let channel_id = monitor.channel_id();
11623 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11625 let monitor_update = ChannelMonitorUpdate {
11626 update_id: CLOSED_CHANNEL_UPDATE_ID,
11627 counterparty_node_id: None,
11628 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11629 channel_id: Some(monitor.channel_id()),
11631 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11635 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11636 let forward_htlcs_count: u64 = Readable::read(reader)?;
11637 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11638 for _ in 0..forward_htlcs_count {
11639 let short_channel_id = Readable::read(reader)?;
11640 let pending_forwards_count: u64 = Readable::read(reader)?;
11641 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11642 for _ in 0..pending_forwards_count {
11643 pending_forwards.push(Readable::read(reader)?);
11645 forward_htlcs.insert(short_channel_id, pending_forwards);
11648 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11649 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11650 for _ in 0..claimable_htlcs_count {
11651 let payment_hash = Readable::read(reader)?;
11652 let previous_hops_len: u64 = Readable::read(reader)?;
11653 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11654 for _ in 0..previous_hops_len {
11655 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11657 claimable_htlcs_list.push((payment_hash, previous_hops));
11660 let peer_state_from_chans = |channel_by_id| {
11663 inbound_channel_request_by_id: new_hash_map(),
11664 latest_features: InitFeatures::empty(),
11665 pending_msg_events: Vec::new(),
11666 in_flight_monitor_updates: BTreeMap::new(),
11667 monitor_update_blocked_actions: BTreeMap::new(),
11668 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11669 is_connected: false,
11673 let peer_count: u64 = Readable::read(reader)?;
11674 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11675 for _ in 0..peer_count {
11676 let peer_pubkey = Readable::read(reader)?;
11677 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11678 let mut peer_state = peer_state_from_chans(peer_chans);
11679 peer_state.latest_features = Readable::read(reader)?;
11680 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11683 let event_count: u64 = Readable::read(reader)?;
11684 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11685 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11686 for _ in 0..event_count {
11687 match MaybeReadable::read(reader)? {
11688 Some(event) => pending_events_read.push_back((event, None)),
11693 let background_event_count: u64 = Readable::read(reader)?;
11694 for _ in 0..background_event_count {
11695 match <u8 as Readable>::read(reader)? {
11697 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11698 // however we really don't (and never did) need them - we regenerate all
11699 // on-startup monitor updates.
11700 let _: OutPoint = Readable::read(reader)?;
11701 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11703 _ => return Err(DecodeError::InvalidValue),
11707 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11708 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11710 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11711 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11712 for _ in 0..pending_inbound_payment_count {
11713 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11714 return Err(DecodeError::InvalidValue);
11718 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11719 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11720 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11721 for _ in 0..pending_outbound_payments_count_compat {
11722 let session_priv = Readable::read(reader)?;
11723 let payment = PendingOutboundPayment::Legacy {
11724 session_privs: hash_set_from_iter([session_priv]),
11726 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11727 return Err(DecodeError::InvalidValue)
11731 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11732 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11733 let mut pending_outbound_payments = None;
11734 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11735 let mut received_network_pubkey: Option<PublicKey> = None;
11736 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11737 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11738 let mut claimable_htlc_purposes = None;
11739 let mut claimable_htlc_onion_fields = None;
11740 let mut pending_claiming_payments = Some(new_hash_map());
11741 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11742 let mut events_override = None;
11743 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11744 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11745 read_tlv_fields!(reader, {
11746 (1, pending_outbound_payments_no_retry, option),
11747 (2, pending_intercepted_htlcs, option),
11748 (3, pending_outbound_payments, option),
11749 (4, pending_claiming_payments, option),
11750 (5, received_network_pubkey, option),
11751 (6, monitor_update_blocked_actions_per_peer, option),
11752 (7, fake_scid_rand_bytes, option),
11753 (8, events_override, option),
11754 (9, claimable_htlc_purposes, optional_vec),
11755 (10, in_flight_monitor_updates, option),
11756 (11, probing_cookie_secret, option),
11757 (13, claimable_htlc_onion_fields, optional_vec),
11758 (14, decode_update_add_htlcs, option),
11760 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11761 if fake_scid_rand_bytes.is_none() {
11762 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11765 if probing_cookie_secret.is_none() {
11766 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11769 if let Some(events) = events_override {
11770 pending_events_read = events;
11773 if !channel_closures.is_empty() {
11774 pending_events_read.append(&mut channel_closures);
11777 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11778 pending_outbound_payments = Some(pending_outbound_payments_compat);
11779 } else if pending_outbound_payments.is_none() {
11780 let mut outbounds = new_hash_map();
11781 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11782 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11784 pending_outbound_payments = Some(outbounds);
11786 let pending_outbounds = OutboundPayments {
11787 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11788 retry_lock: Mutex::new(())
11791 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11792 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11793 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11794 // replayed, and for each monitor update we have to replay we have to ensure there's a
11795 // `ChannelMonitor` for it.
11797 // In order to do so we first walk all of our live channels (so that we can check their
11798 // state immediately after doing the update replays, when we have the `update_id`s
11799 // available) and then walk any remaining in-flight updates.
11801 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11802 let mut pending_background_events = Vec::new();
11803 macro_rules! handle_in_flight_updates {
11804 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11805 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11807 let mut max_in_flight_update_id = 0;
11808 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11809 for update in $chan_in_flight_upds.iter() {
11810 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11811 update.update_id, $channel_info_log, &$monitor.channel_id());
11812 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11813 pending_background_events.push(
11814 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11815 counterparty_node_id: $counterparty_node_id,
11816 funding_txo: $funding_txo,
11817 channel_id: $monitor.channel_id(),
11818 update: update.clone(),
11821 if $chan_in_flight_upds.is_empty() {
11822 // We had some updates to apply, but it turns out they had completed before we
11823 // were serialized, we just weren't notified of that. Thus, we may have to run
11824 // the completion actions for any monitor updates, but otherwise are done.
11825 pending_background_events.push(
11826 BackgroundEvent::MonitorUpdatesComplete {
11827 counterparty_node_id: $counterparty_node_id,
11828 channel_id: $monitor.channel_id(),
11831 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11832 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11833 return Err(DecodeError::InvalidValue);
11835 max_in_flight_update_id
11839 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11840 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11841 let peer_state = &mut *peer_state_lock;
11842 for phase in peer_state.channel_by_id.values() {
11843 if let ChannelPhase::Funded(chan) = phase {
11844 let logger = WithChannelContext::from(&args.logger, &chan.context);
11846 // Channels that were persisted have to be funded, otherwise they should have been
11848 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11849 let monitor = args.channel_monitors.get(&funding_txo)
11850 .expect("We already checked for monitor presence when loading channels");
11851 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11852 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11853 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11854 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11855 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11856 funding_txo, monitor, peer_state, logger, ""));
11859 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11860 // If the channel is ahead of the monitor, return DangerousValue:
11861 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11862 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11863 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11864 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11865 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11866 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11867 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11868 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11869 return Err(DecodeError::DangerousValue);
11872 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11873 // created in this `channel_by_id` map.
11874 debug_assert!(false);
11875 return Err(DecodeError::InvalidValue);
11880 if let Some(in_flight_upds) = in_flight_monitor_updates {
11881 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11882 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11883 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11884 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11885 // Now that we've removed all the in-flight monitor updates for channels that are
11886 // still open, we need to replay any monitor updates that are for closed channels,
11887 // creating the neccessary peer_state entries as we go.
11888 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11889 Mutex::new(peer_state_from_chans(new_hash_map()))
11891 let mut peer_state = peer_state_mutex.lock().unwrap();
11892 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11893 funding_txo, monitor, peer_state, logger, "closed ");
11895 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11896 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11897 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11898 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11899 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11900 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11901 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11902 log_error!(logger, " Pending in-flight updates are: {:?}", chan_in_flight_updates);
11903 return Err(DecodeError::InvalidValue);
11908 // Note that we have to do the above replays before we push new monitor updates.
11909 pending_background_events.append(&mut close_background_events);
11911 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11912 // should ensure we try them again on the inbound edge. We put them here and do so after we
11913 // have a fully-constructed `ChannelManager` at the end.
11914 let mut pending_claims_to_replay = Vec::new();
11917 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11918 // ChannelMonitor data for any channels for which we do not have authorative state
11919 // (i.e. those for which we just force-closed above or we otherwise don't have a
11920 // corresponding `Channel` at all).
11921 // This avoids several edge-cases where we would otherwise "forget" about pending
11922 // payments which are still in-flight via their on-chain state.
11923 // We only rebuild the pending payments map if we were most recently serialized by
11925 for (_, monitor) in args.channel_monitors.iter() {
11926 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11927 if counterparty_opt.is_none() {
11928 let logger = WithChannelMonitor::from(&args.logger, monitor);
11929 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11930 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11931 if path.hops.is_empty() {
11932 log_error!(logger, "Got an empty path for a pending payment");
11933 return Err(DecodeError::InvalidValue);
11936 let path_amt = path.final_value_msat();
11937 let mut session_priv_bytes = [0; 32];
11938 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11939 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11940 hash_map::Entry::Occupied(mut entry) => {
11941 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11942 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11943 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11945 hash_map::Entry::Vacant(entry) => {
11946 let path_fee = path.fee_msat();
11947 entry.insert(PendingOutboundPayment::Retryable {
11948 retry_strategy: None,
11949 attempts: PaymentAttempts::new(),
11950 payment_params: None,
11951 session_privs: hash_set_from_iter([session_priv_bytes]),
11952 payment_hash: htlc.payment_hash,
11953 payment_secret: None, // only used for retries, and we'll never retry on startup
11954 payment_metadata: None, // only used for retries, and we'll never retry on startup
11955 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11956 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11957 pending_amt_msat: path_amt,
11958 pending_fee_msat: Some(path_fee),
11959 total_msat: path_amt,
11960 starting_block_height: best_block_height,
11961 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11963 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11964 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11969 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11970 match htlc_source {
11971 HTLCSource::PreviousHopData(prev_hop_data) => {
11972 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11973 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11974 info.prev_htlc_id == prev_hop_data.htlc_id
11976 // The ChannelMonitor is now responsible for this HTLC's
11977 // failure/success and will let us know what its outcome is. If we
11978 // still have an entry for this HTLC in `forward_htlcs` or
11979 // `pending_intercepted_htlcs`, we were apparently not persisted after
11980 // the monitor was when forwarding the payment.
11981 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11982 update_add_htlcs.retain(|update_add_htlc| {
11983 let matches = *scid == prev_hop_data.short_channel_id &&
11984 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11986 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11987 &htlc.payment_hash, &monitor.channel_id());
11991 !update_add_htlcs.is_empty()
11993 forward_htlcs.retain(|_, forwards| {
11994 forwards.retain(|forward| {
11995 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11996 if pending_forward_matches_htlc(&htlc_info) {
11997 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11998 &htlc.payment_hash, &monitor.channel_id());
12003 !forwards.is_empty()
12005 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
12006 if pending_forward_matches_htlc(&htlc_info) {
12007 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
12008 &htlc.payment_hash, &monitor.channel_id());
12009 pending_events_read.retain(|(event, _)| {
12010 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
12011 intercepted_id != ev_id
12018 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
12019 if let Some(preimage) = preimage_opt {
12020 let pending_events = Mutex::new(pending_events_read);
12021 // Note that we set `from_onchain` to "false" here,
12022 // deliberately keeping the pending payment around forever.
12023 // Given it should only occur when we have a channel we're
12024 // force-closing for being stale that's okay.
12025 // The alternative would be to wipe the state when claiming,
12026 // generating a `PaymentPathSuccessful` event but regenerating
12027 // it and the `PaymentSent` on every restart until the
12028 // `ChannelMonitor` is removed.
12030 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
12031 channel_funding_outpoint: monitor.get_funding_txo().0,
12032 channel_id: monitor.channel_id(),
12033 counterparty_node_id: path.hops[0].pubkey,
12035 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
12036 path, false, compl_action, &pending_events, &&logger);
12037 pending_events_read = pending_events.into_inner().unwrap();
12044 // Whether the downstream channel was closed or not, try to re-apply any payment
12045 // preimages from it which may be needed in upstream channels for forwarded
12047 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12049 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12050 if let HTLCSource::PreviousHopData(_) = htlc_source {
12051 if let Some(payment_preimage) = preimage_opt {
12052 Some((htlc_source, payment_preimage, htlc.amount_msat,
12053 // Check if `counterparty_opt.is_none()` to see if the
12054 // downstream chan is closed (because we don't have a
12055 // channel_id -> peer map entry).
12056 counterparty_opt.is_none(),
12057 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12058 monitor.get_funding_txo().0, monitor.channel_id()))
12061 // If it was an outbound payment, we've handled it above - if a preimage
12062 // came in and we persisted the `ChannelManager` we either handled it and
12063 // are good to go or the channel force-closed - we don't have to handle the
12064 // channel still live case here.
12068 for tuple in outbound_claimed_htlcs_iter {
12069 pending_claims_to_replay.push(tuple);
12074 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12075 // If we have pending HTLCs to forward, assume we either dropped a
12076 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12077 // shut down before the timer hit. Either way, set the time_forwardable to a small
12078 // constant as enough time has likely passed that we should simply handle the forwards
12079 // now, or at least after the user gets a chance to reconnect to our peers.
12080 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12081 time_forwardable: Duration::from_secs(2),
12085 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12086 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12088 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12089 if let Some(purposes) = claimable_htlc_purposes {
12090 if purposes.len() != claimable_htlcs_list.len() {
12091 return Err(DecodeError::InvalidValue);
12093 if let Some(onion_fields) = claimable_htlc_onion_fields {
12094 if onion_fields.len() != claimable_htlcs_list.len() {
12095 return Err(DecodeError::InvalidValue);
12097 for (purpose, (onion, (payment_hash, htlcs))) in
12098 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12100 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12101 purpose, htlcs, onion_fields: onion,
12103 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12106 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12107 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12108 purpose, htlcs, onion_fields: None,
12110 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12114 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12115 // include a `_legacy_hop_data` in the `OnionPayload`.
12116 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12117 if htlcs.is_empty() {
12118 return Err(DecodeError::InvalidValue);
12120 let purpose = match &htlcs[0].onion_payload {
12121 OnionPayload::Invoice { _legacy_hop_data } => {
12122 if let Some(hop_data) = _legacy_hop_data {
12123 events::PaymentPurpose::Bolt11InvoicePayment {
12124 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12125 Some(inbound_payment) => inbound_payment.payment_preimage,
12126 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12127 Ok((payment_preimage, _)) => payment_preimage,
12129 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12130 return Err(DecodeError::InvalidValue);
12134 payment_secret: hop_data.payment_secret,
12136 } else { return Err(DecodeError::InvalidValue); }
12138 OnionPayload::Spontaneous(payment_preimage) =>
12139 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12141 claimable_payments.insert(payment_hash, ClaimablePayment {
12142 purpose, htlcs, onion_fields: None,
12147 let mut secp_ctx = Secp256k1::new();
12148 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12150 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12152 Err(()) => return Err(DecodeError::InvalidValue)
12154 if let Some(network_pubkey) = received_network_pubkey {
12155 if network_pubkey != our_network_pubkey {
12156 log_error!(args.logger, "Key that was generated does not match the existing key.");
12157 return Err(DecodeError::InvalidValue);
12161 let mut outbound_scid_aliases = new_hash_set();
12162 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12163 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12164 let peer_state = &mut *peer_state_lock;
12165 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12166 if let ChannelPhase::Funded(chan) = phase {
12167 let logger = WithChannelContext::from(&args.logger, &chan.context);
12168 if chan.context.outbound_scid_alias() == 0 {
12169 let mut outbound_scid_alias;
12171 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12172 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12173 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12175 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12176 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12177 // Note that in rare cases its possible to hit this while reading an older
12178 // channel if we just happened to pick a colliding outbound alias above.
12179 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12180 return Err(DecodeError::InvalidValue);
12182 if chan.context.is_usable() {
12183 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12184 // Note that in rare cases its possible to hit this while reading an older
12185 // channel if we just happened to pick a colliding outbound alias above.
12186 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12187 return Err(DecodeError::InvalidValue);
12191 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12192 // created in this `channel_by_id` map.
12193 debug_assert!(false);
12194 return Err(DecodeError::InvalidValue);
12199 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12201 for (_, monitor) in args.channel_monitors.iter() {
12202 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12203 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12204 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12205 let mut claimable_amt_msat = 0;
12206 let mut receiver_node_id = Some(our_network_pubkey);
12207 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12208 if phantom_shared_secret.is_some() {
12209 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12210 .expect("Failed to get node_id for phantom node recipient");
12211 receiver_node_id = Some(phantom_pubkey)
12213 for claimable_htlc in &payment.htlcs {
12214 claimable_amt_msat += claimable_htlc.value;
12216 // Add a holding-cell claim of the payment to the Channel, which should be
12217 // applied ~immediately on peer reconnection. Because it won't generate a
12218 // new commitment transaction we can just provide the payment preimage to
12219 // the corresponding ChannelMonitor and nothing else.
12221 // We do so directly instead of via the normal ChannelMonitor update
12222 // procedure as the ChainMonitor hasn't yet been initialized, implying
12223 // we're not allowed to call it directly yet. Further, we do the update
12224 // without incrementing the ChannelMonitor update ID as there isn't any
12226 // If we were to generate a new ChannelMonitor update ID here and then
12227 // crash before the user finishes block connect we'd end up force-closing
12228 // this channel as well. On the flip side, there's no harm in restarting
12229 // without the new monitor persisted - we'll end up right back here on
12231 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12232 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12233 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12234 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12235 let peer_state = &mut *peer_state_lock;
12236 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12237 let logger = WithChannelContext::from(&args.logger, &channel.context);
12238 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12241 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12242 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12245 pending_events_read.push_back((events::Event::PaymentClaimed {
12248 purpose: payment.purpose,
12249 amount_msat: claimable_amt_msat,
12250 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12251 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12257 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12258 if let Some(peer_state) = per_peer_state.get(&node_id) {
12259 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12260 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12261 for action in actions.iter() {
12262 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12263 downstream_counterparty_and_funding_outpoint:
12264 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12266 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12268 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12269 blocked_channel_id);
12270 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12271 .entry(*blocked_channel_id)
12272 .or_insert_with(Vec::new).push(blocking_action.clone());
12274 // If the channel we were blocking has closed, we don't need to
12275 // worry about it - the blocked monitor update should never have
12276 // been released from the `Channel` object so it can't have
12277 // completed, and if the channel closed there's no reason to bother
12281 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12282 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12286 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12288 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12289 return Err(DecodeError::InvalidValue);
12293 let channel_manager = ChannelManager {
12295 fee_estimator: bounded_fee_estimator,
12296 chain_monitor: args.chain_monitor,
12297 tx_broadcaster: args.tx_broadcaster,
12298 router: args.router,
12300 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12302 inbound_payment_key: expanded_inbound_key,
12303 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12304 pending_outbound_payments: pending_outbounds,
12305 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12307 forward_htlcs: Mutex::new(forward_htlcs),
12308 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12309 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12310 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12311 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12312 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12313 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12315 probing_cookie_secret: probing_cookie_secret.unwrap(),
12317 our_network_pubkey,
12320 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12322 per_peer_state: FairRwLock::new(per_peer_state),
12324 pending_events: Mutex::new(pending_events_read),
12325 pending_events_processor: AtomicBool::new(false),
12326 pending_background_events: Mutex::new(pending_background_events),
12327 total_consistency_lock: RwLock::new(()),
12328 background_events_processed_since_startup: AtomicBool::new(false),
12330 event_persist_notifier: Notifier::new(),
12331 needs_persist_flag: AtomicBool::new(false),
12333 funding_batch_states: Mutex::new(BTreeMap::new()),
12335 pending_offers_messages: Mutex::new(Vec::new()),
12337 pending_broadcast_messages: Mutex::new(Vec::new()),
12339 entropy_source: args.entropy_source,
12340 node_signer: args.node_signer,
12341 signer_provider: args.signer_provider,
12343 logger: args.logger,
12344 default_configuration: args.default_config,
12347 for htlc_source in failed_htlcs.drain(..) {
12348 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12349 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12350 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12351 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12354 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12355 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12356 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12357 // channel is closed we just assume that it probably came from an on-chain claim.
12358 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12359 downstream_closed, true, downstream_node_id, downstream_funding,
12360 downstream_channel_id, None
12364 //TODO: Broadcast channel update for closed channels, but only after we've made a
12365 //connection or two.
12367 Ok((best_block_hash.clone(), channel_manager))
12373 use bitcoin::hashes::Hash;
12374 use bitcoin::hashes::sha256::Hash as Sha256;
12375 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12376 use core::sync::atomic::Ordering;
12377 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12378 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12379 use crate::ln::ChannelId;
12380 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12381 use crate::ln::functional_test_utils::*;
12382 use crate::ln::msgs::{self, ErrorAction};
12383 use crate::ln::msgs::ChannelMessageHandler;
12384 use crate::prelude::*;
12385 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12386 use crate::util::errors::APIError;
12387 use crate::util::ser::Writeable;
12388 use crate::util::test_utils;
12389 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12390 use crate::sign::EntropySource;
12393 fn test_notify_limits() {
12394 // Check that a few cases which don't require the persistence of a new ChannelManager,
12395 // indeed, do not cause the persistence of a new ChannelManager.
12396 let chanmon_cfgs = create_chanmon_cfgs(3);
12397 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12398 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12399 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12401 // All nodes start with a persistable update pending as `create_network` connects each node
12402 // with all other nodes to make most tests simpler.
12403 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12404 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12405 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12407 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12409 // We check that the channel info nodes have doesn't change too early, even though we try
12410 // to connect messages with new values
12411 chan.0.contents.fee_base_msat *= 2;
12412 chan.1.contents.fee_base_msat *= 2;
12413 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12414 &nodes[1].node.get_our_node_id()).pop().unwrap();
12415 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12416 &nodes[0].node.get_our_node_id()).pop().unwrap();
12418 // The first two nodes (which opened a channel) should now require fresh persistence
12419 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12420 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12421 // ... but the last node should not.
12422 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12423 // After persisting the first two nodes they should no longer need fresh persistence.
12424 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12425 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12427 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12428 // about the channel.
12429 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12430 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12431 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12433 // The nodes which are a party to the channel should also ignore messages from unrelated
12435 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12436 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12437 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12438 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12439 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12440 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12442 // At this point the channel info given by peers should still be the same.
12443 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12444 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12446 // An earlier version of handle_channel_update didn't check the directionality of the
12447 // update message and would always update the local fee info, even if our peer was
12448 // (spuriously) forwarding us our own channel_update.
12449 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12450 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12451 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12453 // First deliver each peers' own message, checking that the node doesn't need to be
12454 // persisted and that its channel info remains the same.
12455 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12456 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12457 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12458 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12459 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12460 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12462 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12463 // the channel info has updated.
12464 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12465 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12466 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12467 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12468 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12469 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12473 fn test_keysend_dup_hash_partial_mpp() {
12474 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12476 let chanmon_cfgs = create_chanmon_cfgs(2);
12477 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12478 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12479 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12480 create_announced_chan_between_nodes(&nodes, 0, 1);
12482 // First, send a partial MPP payment.
12483 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12484 let mut mpp_route = route.clone();
12485 mpp_route.paths.push(mpp_route.paths[0].clone());
12487 let payment_id = PaymentId([42; 32]);
12488 // Use the utility function send_payment_along_path to send the payment with MPP data which
12489 // indicates there are more HTLCs coming.
12490 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12491 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12492 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12493 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12494 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12495 check_added_monitors!(nodes[0], 1);
12496 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12497 assert_eq!(events.len(), 1);
12498 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12500 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12501 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12502 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12503 check_added_monitors!(nodes[0], 1);
12504 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12505 assert_eq!(events.len(), 1);
12506 let ev = events.drain(..).next().unwrap();
12507 let payment_event = SendEvent::from_event(ev);
12508 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12509 check_added_monitors!(nodes[1], 0);
12510 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12511 expect_pending_htlcs_forwardable!(nodes[1]);
12512 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12513 check_added_monitors!(nodes[1], 1);
12514 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12515 assert!(updates.update_add_htlcs.is_empty());
12516 assert!(updates.update_fulfill_htlcs.is_empty());
12517 assert_eq!(updates.update_fail_htlcs.len(), 1);
12518 assert!(updates.update_fail_malformed_htlcs.is_empty());
12519 assert!(updates.update_fee.is_none());
12520 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12521 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12522 expect_payment_failed!(nodes[0], our_payment_hash, true);
12524 // Send the second half of the original MPP payment.
12525 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12526 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12527 check_added_monitors!(nodes[0], 1);
12528 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12529 assert_eq!(events.len(), 1);
12530 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12532 // Claim the full MPP payment. Note that we can't use a test utility like
12533 // claim_funds_along_route because the ordering of the messages causes the second half of the
12534 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12535 // lightning messages manually.
12536 nodes[1].node.claim_funds(payment_preimage);
12537 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12538 check_added_monitors!(nodes[1], 2);
12540 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12541 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12542 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12543 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12544 check_added_monitors!(nodes[0], 1);
12545 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12546 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12547 check_added_monitors!(nodes[1], 1);
12548 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12549 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12550 check_added_monitors!(nodes[1], 1);
12551 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12552 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12553 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12554 check_added_monitors!(nodes[0], 1);
12555 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12556 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12557 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12558 check_added_monitors!(nodes[0], 1);
12559 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12560 check_added_monitors!(nodes[1], 1);
12561 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12562 check_added_monitors!(nodes[1], 1);
12563 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12564 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12565 check_added_monitors!(nodes[0], 1);
12567 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12568 // path's success and a PaymentPathSuccessful event for each path's success.
12569 let events = nodes[0].node.get_and_clear_pending_events();
12570 assert_eq!(events.len(), 2);
12572 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12573 assert_eq!(payment_id, *actual_payment_id);
12574 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12575 assert_eq!(route.paths[0], *path);
12577 _ => panic!("Unexpected event"),
12580 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12581 assert_eq!(payment_id, *actual_payment_id);
12582 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12583 assert_eq!(route.paths[0], *path);
12585 _ => panic!("Unexpected event"),
12590 fn test_keysend_dup_payment_hash() {
12591 do_test_keysend_dup_payment_hash(false);
12592 do_test_keysend_dup_payment_hash(true);
12595 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12596 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12597 // outbound regular payment fails as expected.
12598 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12599 // fails as expected.
12600 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12601 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12602 // reject MPP keysend payments, since in this case where the payment has no payment
12603 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12604 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12605 // payment secrets and reject otherwise.
12606 let chanmon_cfgs = create_chanmon_cfgs(2);
12607 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12608 let mut mpp_keysend_cfg = test_default_channel_config();
12609 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12610 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12611 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12612 create_announced_chan_between_nodes(&nodes, 0, 1);
12613 let scorer = test_utils::TestScorer::new();
12614 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12616 // To start (1), send a regular payment but don't claim it.
12617 let expected_route = [&nodes[1]];
12618 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12620 // Next, attempt a keysend payment and make sure it fails.
12621 let route_params = RouteParameters::from_payment_params_and_value(
12622 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12623 TEST_FINAL_CLTV, false), 100_000);
12624 let route = find_route(
12625 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12626 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12628 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12629 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12630 check_added_monitors!(nodes[0], 1);
12631 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12632 assert_eq!(events.len(), 1);
12633 let ev = events.drain(..).next().unwrap();
12634 let payment_event = SendEvent::from_event(ev);
12635 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12636 check_added_monitors!(nodes[1], 0);
12637 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12638 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12639 // fails), the second will process the resulting failure and fail the HTLC backward
12640 expect_pending_htlcs_forwardable!(nodes[1]);
12641 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12642 check_added_monitors!(nodes[1], 1);
12643 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12644 assert!(updates.update_add_htlcs.is_empty());
12645 assert!(updates.update_fulfill_htlcs.is_empty());
12646 assert_eq!(updates.update_fail_htlcs.len(), 1);
12647 assert!(updates.update_fail_malformed_htlcs.is_empty());
12648 assert!(updates.update_fee.is_none());
12649 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12650 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12651 expect_payment_failed!(nodes[0], payment_hash, true);
12653 // Finally, claim the original payment.
12654 claim_payment(&nodes[0], &expected_route, payment_preimage);
12656 // To start (2), send a keysend payment but don't claim it.
12657 let payment_preimage = PaymentPreimage([42; 32]);
12658 let route = find_route(
12659 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12660 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12662 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12663 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12664 check_added_monitors!(nodes[0], 1);
12665 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12666 assert_eq!(events.len(), 1);
12667 let event = events.pop().unwrap();
12668 let path = vec![&nodes[1]];
12669 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12671 // Next, attempt a regular payment and make sure it fails.
12672 let payment_secret = PaymentSecret([43; 32]);
12673 nodes[0].node.send_payment_with_route(&route, payment_hash,
12674 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12675 check_added_monitors!(nodes[0], 1);
12676 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12677 assert_eq!(events.len(), 1);
12678 let ev = events.drain(..).next().unwrap();
12679 let payment_event = SendEvent::from_event(ev);
12680 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12681 check_added_monitors!(nodes[1], 0);
12682 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12683 expect_pending_htlcs_forwardable!(nodes[1]);
12684 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12685 check_added_monitors!(nodes[1], 1);
12686 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12687 assert!(updates.update_add_htlcs.is_empty());
12688 assert!(updates.update_fulfill_htlcs.is_empty());
12689 assert_eq!(updates.update_fail_htlcs.len(), 1);
12690 assert!(updates.update_fail_malformed_htlcs.is_empty());
12691 assert!(updates.update_fee.is_none());
12692 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12693 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12694 expect_payment_failed!(nodes[0], payment_hash, true);
12696 // Finally, succeed the keysend payment.
12697 claim_payment(&nodes[0], &expected_route, payment_preimage);
12699 // To start (3), send a keysend payment but don't claim it.
12700 let payment_id_1 = PaymentId([44; 32]);
12701 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12702 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12703 check_added_monitors!(nodes[0], 1);
12704 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12705 assert_eq!(events.len(), 1);
12706 let event = events.pop().unwrap();
12707 let path = vec![&nodes[1]];
12708 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12710 // Next, attempt a keysend payment and make sure it fails.
12711 let route_params = RouteParameters::from_payment_params_and_value(
12712 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12715 let route = find_route(
12716 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12717 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12719 let payment_id_2 = PaymentId([45; 32]);
12720 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12721 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12722 check_added_monitors!(nodes[0], 1);
12723 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12724 assert_eq!(events.len(), 1);
12725 let ev = events.drain(..).next().unwrap();
12726 let payment_event = SendEvent::from_event(ev);
12727 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12728 check_added_monitors!(nodes[1], 0);
12729 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12730 expect_pending_htlcs_forwardable!(nodes[1]);
12731 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12732 check_added_monitors!(nodes[1], 1);
12733 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12734 assert!(updates.update_add_htlcs.is_empty());
12735 assert!(updates.update_fulfill_htlcs.is_empty());
12736 assert_eq!(updates.update_fail_htlcs.len(), 1);
12737 assert!(updates.update_fail_malformed_htlcs.is_empty());
12738 assert!(updates.update_fee.is_none());
12739 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12740 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12741 expect_payment_failed!(nodes[0], payment_hash, true);
12743 // Finally, claim the original payment.
12744 claim_payment(&nodes[0], &expected_route, payment_preimage);
12748 fn test_keysend_hash_mismatch() {
12749 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12750 // preimage doesn't match the msg's payment hash.
12751 let chanmon_cfgs = create_chanmon_cfgs(2);
12752 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12753 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12754 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12756 let payer_pubkey = nodes[0].node.get_our_node_id();
12757 let payee_pubkey = nodes[1].node.get_our_node_id();
12759 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12760 let route_params = RouteParameters::from_payment_params_and_value(
12761 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12762 let network_graph = nodes[0].network_graph;
12763 let first_hops = nodes[0].node.list_usable_channels();
12764 let scorer = test_utils::TestScorer::new();
12765 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12766 let route = find_route(
12767 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12768 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12771 let test_preimage = PaymentPreimage([42; 32]);
12772 let mismatch_payment_hash = PaymentHash([43; 32]);
12773 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12774 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12775 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12776 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12777 check_added_monitors!(nodes[0], 1);
12779 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12780 assert_eq!(updates.update_add_htlcs.len(), 1);
12781 assert!(updates.update_fulfill_htlcs.is_empty());
12782 assert!(updates.update_fail_htlcs.is_empty());
12783 assert!(updates.update_fail_malformed_htlcs.is_empty());
12784 assert!(updates.update_fee.is_none());
12785 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12787 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12791 fn test_keysend_msg_with_secret_err() {
12792 // Test that we error as expected if we receive a keysend payment that includes a payment
12793 // secret when we don't support MPP keysend.
12794 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12795 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12796 let chanmon_cfgs = create_chanmon_cfgs(2);
12797 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12798 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12799 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12801 let payer_pubkey = nodes[0].node.get_our_node_id();
12802 let payee_pubkey = nodes[1].node.get_our_node_id();
12804 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12805 let route_params = RouteParameters::from_payment_params_and_value(
12806 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12807 let network_graph = nodes[0].network_graph;
12808 let first_hops = nodes[0].node.list_usable_channels();
12809 let scorer = test_utils::TestScorer::new();
12810 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12811 let route = find_route(
12812 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12813 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12816 let test_preimage = PaymentPreimage([42; 32]);
12817 let test_secret = PaymentSecret([43; 32]);
12818 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12819 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12820 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12821 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12822 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12823 PaymentId(payment_hash.0), None, session_privs).unwrap();
12824 check_added_monitors!(nodes[0], 1);
12826 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12827 assert_eq!(updates.update_add_htlcs.len(), 1);
12828 assert!(updates.update_fulfill_htlcs.is_empty());
12829 assert!(updates.update_fail_htlcs.is_empty());
12830 assert!(updates.update_fail_malformed_htlcs.is_empty());
12831 assert!(updates.update_fee.is_none());
12832 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12834 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12838 fn test_multi_hop_missing_secret() {
12839 let chanmon_cfgs = create_chanmon_cfgs(4);
12840 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12841 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12842 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12844 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12845 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12846 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12847 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12849 // Marshall an MPP route.
12850 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12851 let path = route.paths[0].clone();
12852 route.paths.push(path);
12853 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12854 route.paths[0].hops[0].short_channel_id = chan_1_id;
12855 route.paths[0].hops[1].short_channel_id = chan_3_id;
12856 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12857 route.paths[1].hops[0].short_channel_id = chan_2_id;
12858 route.paths[1].hops[1].short_channel_id = chan_4_id;
12860 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12861 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12863 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12864 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12866 _ => panic!("unexpected error")
12871 fn test_channel_update_cached() {
12872 let chanmon_cfgs = create_chanmon_cfgs(3);
12873 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12874 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12875 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12877 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12879 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12880 check_added_monitors!(nodes[0], 1);
12881 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12883 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12884 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12885 assert_eq!(node_1_events.len(), 0);
12888 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12889 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12890 assert_eq!(pending_broadcast_messages.len(), 1);
12893 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12894 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12895 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12897 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12898 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12900 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12901 assert_eq!(node_0_events.len(), 0);
12903 // Now we reconnect to a peer
12904 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12905 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12907 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12908 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12909 }, false).unwrap();
12911 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12912 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12913 assert_eq!(node_0_events.len(), 1);
12914 match &node_0_events[0] {
12915 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12916 _ => panic!("Unexpected event"),
12919 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12920 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12921 assert_eq!(pending_broadcast_messages.len(), 0);
12926 fn test_drop_disconnected_peers_when_removing_channels() {
12927 let chanmon_cfgs = create_chanmon_cfgs(2);
12928 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12929 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12930 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12932 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12934 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12935 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12937 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12938 check_closed_broadcast!(nodes[0], true);
12939 check_added_monitors!(nodes[0], 1);
12940 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12943 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12944 // disconnected and the channel between has been force closed.
12945 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12946 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12947 assert_eq!(nodes_0_per_peer_state.len(), 1);
12948 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12951 nodes[0].node.timer_tick_occurred();
12954 // Assert that nodes[1] has now been removed.
12955 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12960 fn bad_inbound_payment_hash() {
12961 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12962 let chanmon_cfgs = create_chanmon_cfgs(2);
12963 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12964 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12965 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12967 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12968 let payment_data = msgs::FinalOnionHopData {
12970 total_msat: 100_000,
12973 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12974 // payment verification fails as expected.
12975 let mut bad_payment_hash = payment_hash.clone();
12976 bad_payment_hash.0[0] += 1;
12977 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12978 Ok(_) => panic!("Unexpected ok"),
12980 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12984 // Check that using the original payment hash succeeds.
12985 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12989 fn test_outpoint_to_peer_coverage() {
12990 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12991 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12992 // the channel is successfully closed.
12993 let chanmon_cfgs = create_chanmon_cfgs(2);
12994 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12995 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12996 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12998 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12999 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13000 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
13001 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13002 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13004 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
13005 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
13007 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
13008 // funding transaction, and have the real `channel_id`.
13009 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13010 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13013 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
13015 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
13016 // as it has the funding transaction.
13017 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13018 assert_eq!(nodes_0_lock.len(), 1);
13019 assert!(nodes_0_lock.contains_key(&funding_output));
13022 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13024 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13026 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13028 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13029 assert_eq!(nodes_0_lock.len(), 1);
13030 assert!(nodes_0_lock.contains_key(&funding_output));
13032 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13035 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
13036 // soon as it has the funding transaction.
13037 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13038 assert_eq!(nodes_1_lock.len(), 1);
13039 assert!(nodes_1_lock.contains_key(&funding_output));
13041 check_added_monitors!(nodes[1], 1);
13042 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13043 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13044 check_added_monitors!(nodes[0], 1);
13045 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13046 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13047 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13048 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13050 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13051 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13052 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13053 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13055 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13056 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13058 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13059 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13060 // fee for the closing transaction has been negotiated and the parties has the other
13061 // party's signature for the fee negotiated closing transaction.)
13062 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13063 assert_eq!(nodes_0_lock.len(), 1);
13064 assert!(nodes_0_lock.contains_key(&funding_output));
13068 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13069 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13070 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13071 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13072 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13073 assert_eq!(nodes_1_lock.len(), 1);
13074 assert!(nodes_1_lock.contains_key(&funding_output));
13077 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13079 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13080 // therefore has all it needs to fully close the channel (both signatures for the
13081 // closing transaction).
13082 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13083 // fully closed by `nodes[0]`.
13084 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13086 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13087 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13088 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13089 assert_eq!(nodes_1_lock.len(), 1);
13090 assert!(nodes_1_lock.contains_key(&funding_output));
13093 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13095 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13097 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13098 // they both have everything required to fully close the channel.
13099 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13101 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13103 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13104 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13107 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13108 let expected_message = format!("Not connected to node: {}", expected_public_key);
13109 check_api_error_message(expected_message, res_err)
13112 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13113 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13114 check_api_error_message(expected_message, res_err)
13117 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13118 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13119 check_api_error_message(expected_message, res_err)
13122 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13123 let expected_message = "No such channel awaiting to be accepted.".to_string();
13124 check_api_error_message(expected_message, res_err)
13127 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13129 Err(APIError::APIMisuseError { err }) => {
13130 assert_eq!(err, expected_err_message);
13132 Err(APIError::ChannelUnavailable { err }) => {
13133 assert_eq!(err, expected_err_message);
13135 Ok(_) => panic!("Unexpected Ok"),
13136 Err(_) => panic!("Unexpected Error"),
13141 fn test_api_calls_with_unkown_counterparty_node() {
13142 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13143 // expected if the `counterparty_node_id` is an unkown peer in the
13144 // `ChannelManager::per_peer_state` map.
13145 let chanmon_cfg = create_chanmon_cfgs(2);
13146 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13147 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13148 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13151 let channel_id = ChannelId::from_bytes([4; 32]);
13152 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13153 let intercept_id = InterceptId([0; 32]);
13155 // Test the API functions.
13156 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13158 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13160 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13162 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13164 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13166 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13168 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13172 fn test_api_calls_with_unavailable_channel() {
13173 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13174 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13175 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13176 // the given `channel_id`.
13177 let chanmon_cfg = create_chanmon_cfgs(2);
13178 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13179 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13180 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13182 let counterparty_node_id = nodes[1].node.get_our_node_id();
13185 let channel_id = ChannelId::from_bytes([4; 32]);
13187 // Test the API functions.
13188 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13190 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13192 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13194 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13196 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13198 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13202 fn test_connection_limiting() {
13203 // Test that we limit un-channel'd peers and un-funded channels properly.
13204 let chanmon_cfgs = create_chanmon_cfgs(2);
13205 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13206 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13207 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13209 // Note that create_network connects the nodes together for us
13211 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13212 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13214 let mut funding_tx = None;
13215 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13216 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13217 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13220 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13221 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13222 funding_tx = Some(tx.clone());
13223 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13224 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13226 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13227 check_added_monitors!(nodes[1], 1);
13228 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13230 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13232 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13233 check_added_monitors!(nodes[0], 1);
13234 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13236 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13239 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13240 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13241 &nodes[0].keys_manager);
13242 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13243 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13244 open_channel_msg.common_fields.temporary_channel_id);
13246 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13247 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13249 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13250 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13251 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13252 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13253 peer_pks.push(random_pk);
13254 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13255 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13258 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13259 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13260 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13261 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13262 }, true).unwrap_err();
13264 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13265 // them if we have too many un-channel'd peers.
13266 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13267 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13268 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13269 for ev in chan_closed_events {
13270 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13272 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13273 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13275 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13276 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13277 }, true).unwrap_err();
13279 // but of course if the connection is outbound its allowed...
13280 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13281 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13282 }, false).unwrap();
13283 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13285 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13286 // Even though we accept one more connection from new peers, we won't actually let them
13288 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13289 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13290 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13291 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13292 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13294 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13295 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13296 open_channel_msg.common_fields.temporary_channel_id);
13298 // Of course, however, outbound channels are always allowed
13299 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13300 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13302 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13303 // "protected" and can connect again.
13304 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13305 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13306 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13308 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13310 // Further, because the first channel was funded, we can open another channel with
13312 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13313 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13317 fn test_outbound_chans_unlimited() {
13318 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13319 let chanmon_cfgs = create_chanmon_cfgs(2);
13320 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13321 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13322 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13324 // Note that create_network connects the nodes together for us
13326 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13327 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13329 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13330 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13331 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13332 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13335 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13337 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13338 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13339 open_channel_msg.common_fields.temporary_channel_id);
13341 // but we can still open an outbound channel.
13342 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13343 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13345 // but even with such an outbound channel, additional inbound channels will still fail.
13346 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13347 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13348 open_channel_msg.common_fields.temporary_channel_id);
13352 fn test_0conf_limiting() {
13353 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13354 // flag set and (sometimes) accept channels as 0conf.
13355 let chanmon_cfgs = create_chanmon_cfgs(2);
13356 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13357 let mut settings = test_default_channel_config();
13358 settings.manually_accept_inbound_channels = true;
13359 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13360 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13362 // Note that create_network connects the nodes together for us
13364 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13365 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13367 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13368 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13369 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13370 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13371 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13372 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13375 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13376 let events = nodes[1].node.get_and_clear_pending_events();
13378 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13379 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13381 _ => panic!("Unexpected event"),
13383 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13384 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13387 // If we try to accept a channel from another peer non-0conf it will fail.
13388 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13389 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13390 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13391 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13393 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13394 let events = nodes[1].node.get_and_clear_pending_events();
13396 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13397 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13398 Err(APIError::APIMisuseError { err }) =>
13399 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13403 _ => panic!("Unexpected event"),
13405 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13406 open_channel_msg.common_fields.temporary_channel_id);
13408 // ...however if we accept the same channel 0conf it should work just fine.
13409 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13410 let events = nodes[1].node.get_and_clear_pending_events();
13412 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13413 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13415 _ => panic!("Unexpected event"),
13417 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13421 fn reject_excessively_underpaying_htlcs() {
13422 let chanmon_cfg = create_chanmon_cfgs(1);
13423 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13424 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13425 let node = create_network(1, &node_cfg, &node_chanmgr);
13426 let sender_intended_amt_msat = 100;
13427 let extra_fee_msat = 10;
13428 let hop_data = msgs::InboundOnionPayload::Receive {
13429 sender_intended_htlc_amt_msat: 100,
13430 cltv_expiry_height: 42,
13431 payment_metadata: None,
13432 keysend_preimage: None,
13433 payment_data: Some(msgs::FinalOnionHopData {
13434 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13436 custom_tlvs: Vec::new(),
13438 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13439 // intended amount, we fail the payment.
13440 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13441 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13442 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13443 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13444 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13446 assert_eq!(err_code, 19);
13447 } else { panic!(); }
13449 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13450 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13451 sender_intended_htlc_amt_msat: 100,
13452 cltv_expiry_height: 42,
13453 payment_metadata: None,
13454 keysend_preimage: None,
13455 payment_data: Some(msgs::FinalOnionHopData {
13456 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13458 custom_tlvs: Vec::new(),
13460 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13461 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13462 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13463 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13467 fn test_final_incorrect_cltv(){
13468 let chanmon_cfg = create_chanmon_cfgs(1);
13469 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13470 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13471 let node = create_network(1, &node_cfg, &node_chanmgr);
13473 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13474 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13475 sender_intended_htlc_amt_msat: 100,
13476 cltv_expiry_height: 22,
13477 payment_metadata: None,
13478 keysend_preimage: None,
13479 payment_data: Some(msgs::FinalOnionHopData {
13480 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13482 custom_tlvs: Vec::new(),
13483 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13484 node[0].node.default_configuration.accept_mpp_keysend);
13486 // Should not return an error as this condition:
13487 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13488 // is not satisfied.
13489 assert!(result.is_ok());
13493 fn test_inbound_anchors_manual_acceptance() {
13494 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13495 // flag set and (sometimes) accept channels as 0conf.
13496 let mut anchors_cfg = test_default_channel_config();
13497 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13499 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13500 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13502 let chanmon_cfgs = create_chanmon_cfgs(3);
13503 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13504 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13505 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13506 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13508 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13509 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13511 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13512 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13513 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13514 match &msg_events[0] {
13515 MessageSendEvent::HandleError { node_id, action } => {
13516 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13518 ErrorAction::SendErrorMessage { msg } =>
13519 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13520 _ => panic!("Unexpected error action"),
13523 _ => panic!("Unexpected event"),
13526 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13527 let events = nodes[2].node.get_and_clear_pending_events();
13529 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13530 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13531 _ => panic!("Unexpected event"),
13533 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13537 fn test_anchors_zero_fee_htlc_tx_fallback() {
13538 // Tests that if both nodes support anchors, but the remote node does not want to accept
13539 // anchor channels at the moment, an error it sent to the local node such that it can retry
13540 // the channel without the anchors feature.
13541 let chanmon_cfgs = create_chanmon_cfgs(2);
13542 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13543 let mut anchors_config = test_default_channel_config();
13544 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13545 anchors_config.manually_accept_inbound_channels = true;
13546 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13547 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13549 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13550 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13551 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13553 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13554 let events = nodes[1].node.get_and_clear_pending_events();
13556 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13557 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13559 _ => panic!("Unexpected event"),
13562 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13563 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13565 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13566 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13568 // Since nodes[1] should not have accepted the channel, it should
13569 // not have generated any events.
13570 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13574 fn test_update_channel_config() {
13575 let chanmon_cfg = create_chanmon_cfgs(2);
13576 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13577 let mut user_config = test_default_channel_config();
13578 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13579 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13580 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13581 let channel = &nodes[0].node.list_channels()[0];
13583 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13584 let events = nodes[0].node.get_and_clear_pending_msg_events();
13585 assert_eq!(events.len(), 0);
13587 user_config.channel_config.forwarding_fee_base_msat += 10;
13588 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13589 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13590 let events = nodes[0].node.get_and_clear_pending_msg_events();
13591 assert_eq!(events.len(), 1);
13593 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13594 _ => panic!("expected BroadcastChannelUpdate event"),
13597 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13598 let events = nodes[0].node.get_and_clear_pending_msg_events();
13599 assert_eq!(events.len(), 0);
13601 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13602 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13603 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13604 ..Default::default()
13606 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13607 let events = nodes[0].node.get_and_clear_pending_msg_events();
13608 assert_eq!(events.len(), 1);
13610 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13611 _ => panic!("expected BroadcastChannelUpdate event"),
13614 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13615 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13616 forwarding_fee_proportional_millionths: Some(new_fee),
13617 ..Default::default()
13619 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13620 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13621 let events = nodes[0].node.get_and_clear_pending_msg_events();
13622 assert_eq!(events.len(), 1);
13624 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13625 _ => panic!("expected BroadcastChannelUpdate event"),
13628 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13629 // should be applied to ensure update atomicity as specified in the API docs.
13630 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13631 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13632 let new_fee = current_fee + 100;
13635 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13636 forwarding_fee_proportional_millionths: Some(new_fee),
13637 ..Default::default()
13639 Err(APIError::ChannelUnavailable { err: _ }),
13642 // Check that the fee hasn't changed for the channel that exists.
13643 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13644 let events = nodes[0].node.get_and_clear_pending_msg_events();
13645 assert_eq!(events.len(), 0);
13649 fn test_payment_display() {
13650 let payment_id = PaymentId([42; 32]);
13651 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13652 let payment_hash = PaymentHash([42; 32]);
13653 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13654 let payment_preimage = PaymentPreimage([42; 32]);
13655 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13659 fn test_trigger_lnd_force_close() {
13660 let chanmon_cfg = create_chanmon_cfgs(2);
13661 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13662 let user_config = test_default_channel_config();
13663 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13664 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13666 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13667 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13668 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13669 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13670 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13671 check_closed_broadcast(&nodes[0], 1, true);
13672 check_added_monitors(&nodes[0], 1);
13673 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13675 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13676 assert_eq!(txn.len(), 1);
13677 check_spends!(txn[0], funding_tx);
13680 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13681 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13683 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13684 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13686 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13687 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13688 }, false).unwrap();
13689 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13690 let channel_reestablish = get_event_msg!(
13691 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13693 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13695 // Alice should respond with an error since the channel isn't known, but a bogus
13696 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13697 // close even if it was an lnd node.
13698 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13699 assert_eq!(msg_events.len(), 2);
13700 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13701 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13702 assert_eq!(msg.next_local_commitment_number, 0);
13703 assert_eq!(msg.next_remote_commitment_number, 0);
13704 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13705 } else { panic!() };
13706 check_closed_broadcast(&nodes[1], 1, true);
13707 check_added_monitors(&nodes[1], 1);
13708 let expected_close_reason = ClosureReason::ProcessingError {
13709 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13711 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13713 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13714 assert_eq!(txn.len(), 1);
13715 check_spends!(txn[0], funding_tx);
13720 fn test_malformed_forward_htlcs_ser() {
13721 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13722 let chanmon_cfg = create_chanmon_cfgs(1);
13723 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13726 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13727 let deserialized_chanmgr;
13728 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13730 let dummy_failed_htlc = |htlc_id| {
13731 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13733 let dummy_malformed_htlc = |htlc_id| {
13734 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13737 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13738 if htlc_id % 2 == 0 {
13739 dummy_failed_htlc(htlc_id)
13741 dummy_malformed_htlc(htlc_id)
13745 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13746 if htlc_id % 2 == 1 {
13747 dummy_failed_htlc(htlc_id)
13749 dummy_malformed_htlc(htlc_id)
13754 let (scid_1, scid_2) = (42, 43);
13755 let mut forward_htlcs = new_hash_map();
13756 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13757 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13759 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13760 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13761 core::mem::drop(chanmgr_fwd_htlcs);
13763 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13765 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13766 for scid in [scid_1, scid_2].iter() {
13767 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13768 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13770 assert!(deserialized_fwd_htlcs.is_empty());
13771 core::mem::drop(deserialized_fwd_htlcs);
13773 expect_pending_htlcs_forwardable!(nodes[0]);
13779 use crate::chain::Listen;
13780 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13781 use crate::sign::{KeysManager, InMemorySigner};
13782 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13783 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13784 use crate::ln::functional_test_utils::*;
13785 use crate::ln::msgs::{ChannelMessageHandler, Init};
13786 use crate::routing::gossip::NetworkGraph;
13787 use crate::routing::router::{PaymentParameters, RouteParameters};
13788 use crate::util::test_utils;
13789 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13791 use bitcoin::blockdata::locktime::absolute::LockTime;
13792 use bitcoin::hashes::Hash;
13793 use bitcoin::hashes::sha256::Hash as Sha256;
13794 use bitcoin::{Transaction, TxOut};
13796 use crate::sync::{Arc, Mutex, RwLock};
13798 use criterion::Criterion;
13800 type Manager<'a, P> = ChannelManager<
13801 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13802 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13803 &'a test_utils::TestLogger, &'a P>,
13804 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13805 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13806 &'a test_utils::TestLogger>;
13808 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13809 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13811 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13812 type CM = Manager<'chan_mon_cfg, P>;
13814 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13816 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13819 pub fn bench_sends(bench: &mut Criterion) {
13820 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13823 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13824 // Do a simple benchmark of sending a payment back and forth between two nodes.
13825 // Note that this is unrealistic as each payment send will require at least two fsync
13827 let network = bitcoin::Network::Testnet;
13828 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13830 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13831 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13832 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13833 let scorer = RwLock::new(test_utils::TestScorer::new());
13834 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13836 let mut config: UserConfig = Default::default();
13837 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13838 config.channel_handshake_config.minimum_depth = 1;
13840 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13841 let seed_a = [1u8; 32];
13842 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13843 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13845 best_block: BestBlock::from_network(network),
13846 }, genesis_block.header.time);
13847 let node_a_holder = ANodeHolder { node: &node_a };
13849 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13850 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13851 let seed_b = [2u8; 32];
13852 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13853 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13855 best_block: BestBlock::from_network(network),
13856 }, genesis_block.header.time);
13857 let node_b_holder = ANodeHolder { node: &node_b };
13859 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13860 features: node_b.init_features(), networks: None, remote_network_address: None
13862 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13863 features: node_a.init_features(), networks: None, remote_network_address: None
13864 }, false).unwrap();
13865 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13866 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13867 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13870 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13871 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13872 value: 8_000_000, script_pubkey: output_script,
13874 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13875 } else { panic!(); }
13877 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13878 let events_b = node_b.get_and_clear_pending_events();
13879 assert_eq!(events_b.len(), 1);
13880 match events_b[0] {
13881 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13882 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13884 _ => panic!("Unexpected event"),
13887 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13888 let events_a = node_a.get_and_clear_pending_events();
13889 assert_eq!(events_a.len(), 1);
13890 match events_a[0] {
13891 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13892 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13894 _ => panic!("Unexpected event"),
13897 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13899 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13900 Listen::block_connected(&node_a, &block, 1);
13901 Listen::block_connected(&node_b, &block, 1);
13903 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13904 let msg_events = node_a.get_and_clear_pending_msg_events();
13905 assert_eq!(msg_events.len(), 2);
13906 match msg_events[0] {
13907 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13908 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13909 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13913 match msg_events[1] {
13914 MessageSendEvent::SendChannelUpdate { .. } => {},
13918 let events_a = node_a.get_and_clear_pending_events();
13919 assert_eq!(events_a.len(), 1);
13920 match events_a[0] {
13921 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13922 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13924 _ => panic!("Unexpected event"),
13927 let events_b = node_b.get_and_clear_pending_events();
13928 assert_eq!(events_b.len(), 1);
13929 match events_b[0] {
13930 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13931 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13933 _ => panic!("Unexpected event"),
13936 let mut payment_count: u64 = 0;
13937 macro_rules! send_payment {
13938 ($node_a: expr, $node_b: expr) => {
13939 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13940 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13941 let mut payment_preimage = PaymentPreimage([0; 32]);
13942 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13943 payment_count += 1;
13944 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13945 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13947 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13948 PaymentId(payment_hash.0),
13949 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13950 Retry::Attempts(0)).unwrap();
13951 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13952 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13953 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13954 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13955 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13956 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13957 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13959 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13960 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13961 $node_b.claim_funds(payment_preimage);
13962 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13964 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13965 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13966 assert_eq!(node_id, $node_a.get_our_node_id());
13967 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13968 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13970 _ => panic!("Failed to generate claim event"),
13973 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13974 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13975 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13976 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13978 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13982 bench.bench_function(bench_name, |b| b.iter(|| {
13983 send_payment!(node_a, node_b);
13984 send_payment!(node_b, node_a);