Merge pull request #2101 from TheBlueMatt/2023-03-one-less-sig
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::genesis_block;
23 use bitcoin::network::constants::Network;
24
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
28
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
32
33 use crate::chain;
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
38 use crate::events;
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{DefaultRouter, InFlightHtlcs, PaymentParameters, Route, RouteHop, RouteParameters, RoutePath, Router};
49 use crate::routing::scoring::ProbabilisticScorer;
50 use crate::ln::msgs;
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT};
54 #[cfg(test)]
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment};
57 use crate::ln::wire::Encode;
58 use crate::chain::keysinterface::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, ChannelSigner, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
66
67 use alloc::collections::BTreeMap;
68
69 use crate::io;
70 use crate::prelude::*;
71 use core::{cmp, mem};
72 use core::cell::RefCell;
73 use crate::io::Read;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, Ordering};
76 use core::time::Duration;
77 use core::ops::Deref;
78
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, Retry, RetryableSendFailure};
81
82 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
83 //
84 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
85 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
86 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
87 //
88 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
89 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
90 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
91 // before we forward it.
92 //
93 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
94 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
95 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
96 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
97 // our payment, which we can use to decode errors or inform the user that the payment was sent.
98
99 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
100 pub(super) enum PendingHTLCRouting {
101         Forward {
102                 onion_packet: msgs::OnionPacket,
103                 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
104                 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
105                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
106         },
107         Receive {
108                 payment_data: msgs::FinalOnionHopData,
109                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
110                 phantom_shared_secret: Option<[u8; 32]>,
111         },
112         ReceiveKeysend {
113                 payment_preimage: PaymentPreimage,
114                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
115         },
116 }
117
118 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
119 pub(super) struct PendingHTLCInfo {
120         pub(super) routing: PendingHTLCRouting,
121         pub(super) incoming_shared_secret: [u8; 32],
122         payment_hash: PaymentHash,
123         /// Amount received
124         pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
125         /// Sender intended amount to forward or receive (actual amount received
126         /// may overshoot this in either case)
127         pub(super) outgoing_amt_msat: u64,
128         pub(super) outgoing_cltv_value: u32,
129 }
130
131 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
132 pub(super) enum HTLCFailureMsg {
133         Relay(msgs::UpdateFailHTLC),
134         Malformed(msgs::UpdateFailMalformedHTLC),
135 }
136
137 /// Stores whether we can't forward an HTLC or relevant forwarding info
138 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
139 pub(super) enum PendingHTLCStatus {
140         Forward(PendingHTLCInfo),
141         Fail(HTLCFailureMsg),
142 }
143
144 pub(super) struct PendingAddHTLCInfo {
145         pub(super) forward_info: PendingHTLCInfo,
146
147         // These fields are produced in `forward_htlcs()` and consumed in
148         // `process_pending_htlc_forwards()` for constructing the
149         // `HTLCSource::PreviousHopData` for failed and forwarded
150         // HTLCs.
151         //
152         // Note that this may be an outbound SCID alias for the associated channel.
153         prev_short_channel_id: u64,
154         prev_htlc_id: u64,
155         prev_funding_outpoint: OutPoint,
156         prev_user_channel_id: u128,
157 }
158
159 pub(super) enum HTLCForwardInfo {
160         AddHTLC(PendingAddHTLCInfo),
161         FailHTLC {
162                 htlc_id: u64,
163                 err_packet: msgs::OnionErrorPacket,
164         },
165 }
166
167 /// Tracks the inbound corresponding to an outbound HTLC
168 #[derive(Clone, Hash, PartialEq, Eq)]
169 pub(crate) struct HTLCPreviousHopData {
170         // Note that this may be an outbound SCID alias for the associated channel.
171         short_channel_id: u64,
172         htlc_id: u64,
173         incoming_packet_shared_secret: [u8; 32],
174         phantom_shared_secret: Option<[u8; 32]>,
175
176         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
177         // channel with a preimage provided by the forward channel.
178         outpoint: OutPoint,
179 }
180
181 enum OnionPayload {
182         /// Indicates this incoming onion payload is for the purpose of paying an invoice.
183         Invoice {
184                 /// This is only here for backwards-compatibility in serialization, in the future it can be
185                 /// removed, breaking clients running 0.0.106 and earlier.
186                 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
187         },
188         /// Contains the payer-provided preimage.
189         Spontaneous(PaymentPreimage),
190 }
191
192 /// HTLCs that are to us and can be failed/claimed by the user
193 struct ClaimableHTLC {
194         prev_hop: HTLCPreviousHopData,
195         cltv_expiry: u32,
196         /// The amount (in msats) of this MPP part
197         value: u64,
198         /// The amount (in msats) that the sender intended to be sent in this MPP
199         /// part (used for validating total MPP amount)
200         sender_intended_value: u64,
201         onion_payload: OnionPayload,
202         timer_ticks: u8,
203         /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
204         /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
205         total_value_received: Option<u64>,
206         /// The sender intended sum total of all MPP parts specified in the onion
207         total_msat: u64,
208 }
209
210 /// A payment identifier used to uniquely identify a payment to LDK.
211 ///
212 /// This is not exported to bindings users as we just use [u8; 32] directly
213 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
214 pub struct PaymentId(pub [u8; 32]);
215
216 impl Writeable for PaymentId {
217         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
218                 self.0.write(w)
219         }
220 }
221
222 impl Readable for PaymentId {
223         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
224                 let buf: [u8; 32] = Readable::read(r)?;
225                 Ok(PaymentId(buf))
226         }
227 }
228
229 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
230 ///
231 /// This is not exported to bindings users as we just use [u8; 32] directly
232 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
233 pub struct InterceptId(pub [u8; 32]);
234
235 impl Writeable for InterceptId {
236         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
237                 self.0.write(w)
238         }
239 }
240
241 impl Readable for InterceptId {
242         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
243                 let buf: [u8; 32] = Readable::read(r)?;
244                 Ok(InterceptId(buf))
245         }
246 }
247
248 #[derive(Clone, Copy, PartialEq, Eq, Hash)]
249 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
250 pub(crate) enum SentHTLCId {
251         PreviousHopData { short_channel_id: u64, htlc_id: u64 },
252         OutboundRoute { session_priv: SecretKey },
253 }
254 impl SentHTLCId {
255         pub(crate) fn from_source(source: &HTLCSource) -> Self {
256                 match source {
257                         HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
258                                 short_channel_id: hop_data.short_channel_id,
259                                 htlc_id: hop_data.htlc_id,
260                         },
261                         HTLCSource::OutboundRoute { session_priv, .. } =>
262                                 Self::OutboundRoute { session_priv: *session_priv },
263                 }
264         }
265 }
266 impl_writeable_tlv_based_enum!(SentHTLCId,
267         (0, PreviousHopData) => {
268                 (0, short_channel_id, required),
269                 (2, htlc_id, required),
270         },
271         (2, OutboundRoute) => {
272                 (0, session_priv, required),
273         };
274 );
275
276
277 /// Tracks the inbound corresponding to an outbound HTLC
278 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
279 #[derive(Clone, PartialEq, Eq)]
280 pub(crate) enum HTLCSource {
281         PreviousHopData(HTLCPreviousHopData),
282         OutboundRoute {
283                 path: Vec<RouteHop>,
284                 session_priv: SecretKey,
285                 /// Technically we can recalculate this from the route, but we cache it here to avoid
286                 /// doing a double-pass on route when we get a failure back
287                 first_hop_htlc_msat: u64,
288                 payment_id: PaymentId,
289                 payment_secret: Option<PaymentSecret>,
290         },
291 }
292 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
293 impl core::hash::Hash for HTLCSource {
294         fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
295                 match self {
296                         HTLCSource::PreviousHopData(prev_hop_data) => {
297                                 0u8.hash(hasher);
298                                 prev_hop_data.hash(hasher);
299                         },
300                         HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat } => {
301                                 1u8.hash(hasher);
302                                 path.hash(hasher);
303                                 session_priv[..].hash(hasher);
304                                 payment_id.hash(hasher);
305                                 payment_secret.hash(hasher);
306                                 first_hop_htlc_msat.hash(hasher);
307                         },
308                 }
309         }
310 }
311 impl HTLCSource {
312         #[cfg(not(feature = "grind_signatures"))]
313         #[cfg(test)]
314         pub fn dummy() -> Self {
315                 HTLCSource::OutboundRoute {
316                         path: Vec::new(),
317                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
318                         first_hop_htlc_msat: 0,
319                         payment_id: PaymentId([2; 32]),
320                         payment_secret: None,
321                 }
322         }
323
324         #[cfg(debug_assertions)]
325         /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
326         /// transaction. Useful to ensure different datastructures match up.
327         pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
328                 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
329                         *first_hop_htlc_msat == htlc.amount_msat
330                 } else {
331                         // There's nothing we can check for forwarded HTLCs
332                         true
333                 }
334         }
335 }
336
337 struct ReceiveError {
338         err_code: u16,
339         err_data: Vec<u8>,
340         msg: &'static str,
341 }
342
343 /// This enum is used to specify which error data to send to peers when failing back an HTLC
344 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
345 ///
346 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
347 #[derive(Clone, Copy)]
348 pub enum FailureCode {
349         /// We had a temporary error processing the payment. Useful if no other error codes fit
350         /// and you want to indicate that the payer may want to retry.
351         TemporaryNodeFailure             = 0x2000 | 2,
352         /// We have a required feature which was not in this onion. For example, you may require
353         /// some additional metadata that was not provided with this payment.
354         RequiredNodeFeatureMissing       = 0x4000 | 0x2000 | 3,
355         /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
356         /// the HTLC is too close to the current block height for safe handling.
357         /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
358         /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
359         IncorrectOrUnknownPaymentDetails = 0x4000 | 15,
360 }
361
362 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash, PublicKey, [u8; 32])>);
363
364 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
365 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
366 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
367 /// peer_state lock. We then return the set of things that need to be done outside the lock in
368 /// this struct and call handle_error!() on it.
369
370 struct MsgHandleErrInternal {
371         err: msgs::LightningError,
372         chan_id: Option<([u8; 32], u128)>, // If Some a channel of ours has been closed
373         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
374 }
375 impl MsgHandleErrInternal {
376         #[inline]
377         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
378                 Self {
379                         err: LightningError {
380                                 err: err.clone(),
381                                 action: msgs::ErrorAction::SendErrorMessage {
382                                         msg: msgs::ErrorMessage {
383                                                 channel_id,
384                                                 data: err
385                                         },
386                                 },
387                         },
388                         chan_id: None,
389                         shutdown_finish: None,
390                 }
391         }
392         #[inline]
393         fn from_no_close(err: msgs::LightningError) -> Self {
394                 Self { err, chan_id: None, shutdown_finish: None }
395         }
396         #[inline]
397         fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
398                 Self {
399                         err: LightningError {
400                                 err: err.clone(),
401                                 action: msgs::ErrorAction::SendErrorMessage {
402                                         msg: msgs::ErrorMessage {
403                                                 channel_id,
404                                                 data: err
405                                         },
406                                 },
407                         },
408                         chan_id: Some((channel_id, user_channel_id)),
409                         shutdown_finish: Some((shutdown_res, channel_update)),
410                 }
411         }
412         #[inline]
413         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
414                 Self {
415                         err: match err {
416                                 ChannelError::Warn(msg) =>  LightningError {
417                                         err: msg.clone(),
418                                         action: msgs::ErrorAction::SendWarningMessage {
419                                                 msg: msgs::WarningMessage {
420                                                         channel_id,
421                                                         data: msg
422                                                 },
423                                                 log_level: Level::Warn,
424                                         },
425                                 },
426                                 ChannelError::Ignore(msg) => LightningError {
427                                         err: msg,
428                                         action: msgs::ErrorAction::IgnoreError,
429                                 },
430                                 ChannelError::Close(msg) => LightningError {
431                                         err: msg.clone(),
432                                         action: msgs::ErrorAction::SendErrorMessage {
433                                                 msg: msgs::ErrorMessage {
434                                                         channel_id,
435                                                         data: msg
436                                                 },
437                                         },
438                                 },
439                         },
440                         chan_id: None,
441                         shutdown_finish: None,
442                 }
443         }
444 }
445
446 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
447 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
448 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
449 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
450 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
451
452 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
453 /// be sent in the order they appear in the return value, however sometimes the order needs to be
454 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
455 /// they were originally sent). In those cases, this enum is also returned.
456 #[derive(Clone, PartialEq)]
457 pub(super) enum RAACommitmentOrder {
458         /// Send the CommitmentUpdate messages first
459         CommitmentFirst,
460         /// Send the RevokeAndACK message first
461         RevokeAndACKFirst,
462 }
463
464 /// Information about a payment which is currently being claimed.
465 struct ClaimingPayment {
466         amount_msat: u64,
467         payment_purpose: events::PaymentPurpose,
468         receiver_node_id: PublicKey,
469 }
470 impl_writeable_tlv_based!(ClaimingPayment, {
471         (0, amount_msat, required),
472         (2, payment_purpose, required),
473         (4, receiver_node_id, required),
474 });
475
476 /// Information about claimable or being-claimed payments
477 struct ClaimablePayments {
478         /// Map from payment hash to the payment data and any HTLCs which are to us and can be
479         /// failed/claimed by the user.
480         ///
481         /// Note that, no consistency guarantees are made about the channels given here actually
482         /// existing anymore by the time you go to read them!
483         ///
484         /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
485         /// we don't get a duplicate payment.
486         claimable_htlcs: HashMap<PaymentHash, (events::PaymentPurpose, Vec<ClaimableHTLC>)>,
487
488         /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
489         /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
490         /// as an [`events::Event::PaymentClaimed`].
491         pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
492 }
493
494 /// Events which we process internally but cannot be procsesed immediately at the generation site
495 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
496 /// quite some time lag.
497 enum BackgroundEvent {
498         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
499         /// commitment transaction.
500         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
501 }
502
503 #[derive(Debug)]
504 pub(crate) enum MonitorUpdateCompletionAction {
505         /// Indicates that a payment ultimately destined for us was claimed and we should emit an
506         /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
507         /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
508         /// event can be generated.
509         PaymentClaimed { payment_hash: PaymentHash },
510         /// Indicates an [`events::Event`] should be surfaced to the user.
511         EmitEvent { event: events::Event },
512 }
513
514 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
515         (0, PaymentClaimed) => { (0, payment_hash, required) },
516         (2, EmitEvent) => { (0, event, upgradable_required) },
517 );
518
519 /// State we hold per-peer.
520 pub(super) struct PeerState<Signer: ChannelSigner> {
521         /// `temporary_channel_id` or `channel_id` -> `channel`.
522         ///
523         /// Holds all channels where the peer is the counterparty. Once a channel has been assigned a
524         /// `channel_id`, the `temporary_channel_id` key in the map is updated and is replaced by the
525         /// `channel_id`.
526         pub(super) channel_by_id: HashMap<[u8; 32], Channel<Signer>>,
527         /// The latest `InitFeatures` we heard from the peer.
528         latest_features: InitFeatures,
529         /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
530         /// for broadcast messages, where ordering isn't as strict).
531         pub(super) pending_msg_events: Vec<MessageSendEvent>,
532         /// Map from a specific channel to some action(s) that should be taken when all pending
533         /// [`ChannelMonitorUpdate`]s for the channel complete updating.
534         ///
535         /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
536         /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
537         /// channels with a peer this will just be one allocation and will amount to a linear list of
538         /// channels to walk, avoiding the whole hashing rigmarole.
539         ///
540         /// Note that the channel may no longer exist. For example, if a channel was closed but we
541         /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
542         /// for a missing channel. While a malicious peer could construct a second channel with the
543         /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
544         /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
545         /// duplicates do not occur, so such channels should fail without a monitor update completing.
546         monitor_update_blocked_actions: BTreeMap<[u8; 32], Vec<MonitorUpdateCompletionAction>>,
547         /// The peer is currently connected (i.e. we've seen a
548         /// [`ChannelMessageHandler::peer_connected`] and no corresponding
549         /// [`ChannelMessageHandler::peer_disconnected`].
550         is_connected: bool,
551 }
552
553 impl <Signer: ChannelSigner> PeerState<Signer> {
554         /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
555         /// If true is passed for `require_disconnected`, the function will return false if we haven't
556         /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
557         fn ok_to_remove(&self, require_disconnected: bool) -> bool {
558                 if require_disconnected && self.is_connected {
559                         return false
560                 }
561                 self.channel_by_id.is_empty() && self.monitor_update_blocked_actions.is_empty()
562         }
563 }
564
565 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
566 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
567 ///
568 /// For users who don't want to bother doing their own payment preimage storage, we also store that
569 /// here.
570 ///
571 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
572 /// and instead encoding it in the payment secret.
573 struct PendingInboundPayment {
574         /// The payment secret that the sender must use for us to accept this payment
575         payment_secret: PaymentSecret,
576         /// Time at which this HTLC expires - blocks with a header time above this value will result in
577         /// this payment being removed.
578         expiry_time: u64,
579         /// Arbitrary identifier the user specifies (or not)
580         user_payment_id: u64,
581         // Other required attributes of the payment, optionally enforced:
582         payment_preimage: Option<PaymentPreimage>,
583         min_value_msat: Option<u64>,
584 }
585
586 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
587 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
588 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
589 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
590 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
591 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
592 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
593 /// of [`KeysManager`] and [`DefaultRouter`].
594 ///
595 /// This is not exported to bindings users as Arcs don't make sense in bindings
596 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
597         Arc<M>,
598         Arc<T>,
599         Arc<KeysManager>,
600         Arc<KeysManager>,
601         Arc<KeysManager>,
602         Arc<F>,
603         Arc<DefaultRouter<
604                 Arc<NetworkGraph<Arc<L>>>,
605                 Arc<L>,
606                 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>
607         >>,
608         Arc<L>
609 >;
610
611 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
612 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
613 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
614 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
615 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
616 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
617 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
618 /// or, respectively, [`Router`]  for its router, but this type alias chooses the concrete types
619 /// of [`KeysManager`] and [`DefaultRouter`].
620 ///
621 /// This is not exported to bindings users as Arcs don't make sense in bindings
622 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> = ChannelManager<&'a M, &'b T, &'c KeysManager, &'c KeysManager, &'c KeysManager, &'d F, &'e DefaultRouter<&'f NetworkGraph<&'g L>, &'g L, &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>>, &'g L>;
623
624 /// Manager which keeps track of a number of channels and sends messages to the appropriate
625 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
626 ///
627 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
628 /// to individual Channels.
629 ///
630 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
631 /// all peers during write/read (though does not modify this instance, only the instance being
632 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
633 /// called [`funding_transaction_generated`] for outbound channels) being closed.
634 ///
635 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
636 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST write each monitor update out to disk before
637 /// returning from [`chain::Watch::watch_channel`]/[`update_channel`], with ChannelManagers, writing updates
638 /// happens out-of-band (and will prevent any other `ChannelManager` operations from occurring during
639 /// the serialization process). If the deserialized version is out-of-date compared to the
640 /// [`ChannelMonitor`] passed by reference to [`read`], those channels will be force-closed based on the
641 /// `ChannelMonitor` state and no funds will be lost (mod on-chain transaction fees).
642 ///
643 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
644 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
645 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
646 ///
647 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
648 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
649 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
650 /// offline for a full minute. In order to track this, you must call
651 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
652 ///
653 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
654 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
655 /// not have a channel with being unable to connect to us or open new channels with us if we have
656 /// many peers with unfunded channels.
657 ///
658 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
659 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
660 /// never limited. Please ensure you limit the count of such channels yourself.
661 ///
662 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
663 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
664 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
665 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
666 /// you're using lightning-net-tokio.
667 ///
668 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
669 /// [`funding_created`]: msgs::FundingCreated
670 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
671 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
672 /// [`update_channel`]: chain::Watch::update_channel
673 /// [`ChannelUpdate`]: msgs::ChannelUpdate
674 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
675 /// [`read`]: ReadableArgs::read
676 //
677 // Lock order:
678 // The tree structure below illustrates the lock order requirements for the different locks of the
679 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
680 // and should then be taken in the order of the lowest to the highest level in the tree.
681 // Note that locks on different branches shall not be taken at the same time, as doing so will
682 // create a new lock order for those specific locks in the order they were taken.
683 //
684 // Lock order tree:
685 //
686 // `total_consistency_lock`
687 //  |
688 //  |__`forward_htlcs`
689 //  |   |
690 //  |   |__`pending_intercepted_htlcs`
691 //  |
692 //  |__`per_peer_state`
693 //  |   |
694 //  |   |__`pending_inbound_payments`
695 //  |       |
696 //  |       |__`claimable_payments`
697 //  |       |
698 //  |       |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
699 //  |           |
700 //  |           |__`peer_state`
701 //  |               |
702 //  |               |__`id_to_peer`
703 //  |               |
704 //  |               |__`short_to_chan_info`
705 //  |               |
706 //  |               |__`outbound_scid_aliases`
707 //  |               |
708 //  |               |__`best_block`
709 //  |               |
710 //  |               |__`pending_events`
711 //  |                   |
712 //  |                   |__`pending_background_events`
713 //
714 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
715 where
716         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
717         T::Target: BroadcasterInterface,
718         ES::Target: EntropySource,
719         NS::Target: NodeSigner,
720         SP::Target: SignerProvider,
721         F::Target: FeeEstimator,
722         R::Target: Router,
723         L::Target: Logger,
724 {
725         default_configuration: UserConfig,
726         genesis_hash: BlockHash,
727         fee_estimator: LowerBoundedFeeEstimator<F>,
728         chain_monitor: M,
729         tx_broadcaster: T,
730         #[allow(unused)]
731         router: R,
732
733         /// See `ChannelManager` struct-level documentation for lock order requirements.
734         #[cfg(test)]
735         pub(super) best_block: RwLock<BestBlock>,
736         #[cfg(not(test))]
737         best_block: RwLock<BestBlock>,
738         secp_ctx: Secp256k1<secp256k1::All>,
739
740         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
741         /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
742         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
743         /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
744         ///
745         /// See `ChannelManager` struct-level documentation for lock order requirements.
746         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
747
748         /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
749         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
750         /// (if the channel has been force-closed), however we track them here to prevent duplicative
751         /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
752         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
753         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
754         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
755         /// after reloading from disk while replaying blocks against ChannelMonitors.
756         ///
757         /// See `PendingOutboundPayment` documentation for more info.
758         ///
759         /// See `ChannelManager` struct-level documentation for lock order requirements.
760         pending_outbound_payments: OutboundPayments,
761
762         /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
763         ///
764         /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
765         /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
766         /// and via the classic SCID.
767         ///
768         /// Note that no consistency guarantees are made about the existence of a channel with the
769         /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
770         ///
771         /// See `ChannelManager` struct-level documentation for lock order requirements.
772         #[cfg(test)]
773         pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
774         #[cfg(not(test))]
775         forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
776         /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
777         /// until the user tells us what we should do with them.
778         ///
779         /// See `ChannelManager` struct-level documentation for lock order requirements.
780         pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
781
782         /// The sets of payments which are claimable or currently being claimed. See
783         /// [`ClaimablePayments`]' individual field docs for more info.
784         ///
785         /// See `ChannelManager` struct-level documentation for lock order requirements.
786         claimable_payments: Mutex<ClaimablePayments>,
787
788         /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
789         /// and some closed channels which reached a usable state prior to being closed. This is used
790         /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
791         /// active channel list on load.
792         ///
793         /// See `ChannelManager` struct-level documentation for lock order requirements.
794         outbound_scid_aliases: Mutex<HashSet<u64>>,
795
796         /// `channel_id` -> `counterparty_node_id`.
797         ///
798         /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
799         /// multiple channels with the same `temporary_channel_id` to different peers can exist,
800         /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
801         ///
802         /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
803         /// the corresponding channel for the event, as we only have access to the `channel_id` during
804         /// the handling of the events.
805         ///
806         /// Note that no consistency guarantees are made about the existence of a peer with the
807         /// `counterparty_node_id` in our other maps.
808         ///
809         /// TODO:
810         /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
811         /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
812         /// would break backwards compatability.
813         /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
814         /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
815         /// required to access the channel with the `counterparty_node_id`.
816         ///
817         /// See `ChannelManager` struct-level documentation for lock order requirements.
818         id_to_peer: Mutex<HashMap<[u8; 32], PublicKey>>,
819
820         /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
821         ///
822         /// Outbound SCID aliases are added here once the channel is available for normal use, with
823         /// SCIDs being added once the funding transaction is confirmed at the channel's required
824         /// confirmation depth.
825         ///
826         /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
827         /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
828         /// channel with the `channel_id` in our other maps.
829         ///
830         /// See `ChannelManager` struct-level documentation for lock order requirements.
831         #[cfg(test)]
832         pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
833         #[cfg(not(test))]
834         short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, [u8; 32])>>,
835
836         our_network_pubkey: PublicKey,
837
838         inbound_payment_key: inbound_payment::ExpandedKey,
839
840         /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
841         /// incoming payment. To make it harder for a third-party to identify the type of a payment,
842         /// we encrypt the namespace identifier using these bytes.
843         ///
844         /// [fake scids]: crate::util::scid_utils::fake_scid
845         fake_scid_rand_bytes: [u8; 32],
846
847         /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
848         /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
849         /// keeping additional state.
850         probing_cookie_secret: [u8; 32],
851
852         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
853         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
854         /// very far in the past, and can only ever be up to two hours in the future.
855         highest_seen_timestamp: AtomicUsize,
856
857         /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
858         /// basis, as well as the peer's latest features.
859         ///
860         /// If we are connected to a peer we always at least have an entry here, even if no channels
861         /// are currently open with that peer.
862         ///
863         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
864         /// operate on the inner value freely. This opens up for parallel per-peer operation for
865         /// channels.
866         ///
867         /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
868         ///
869         /// See `ChannelManager` struct-level documentation for lock order requirements.
870         #[cfg(not(any(test, feature = "_test_utils")))]
871         per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
872         #[cfg(any(test, feature = "_test_utils"))]
873         pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>>>,
874
875         /// See `ChannelManager` struct-level documentation for lock order requirements.
876         pending_events: Mutex<Vec<events::Event>>,
877         /// See `ChannelManager` struct-level documentation for lock order requirements.
878         pending_background_events: Mutex<Vec<BackgroundEvent>>,
879         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
880         /// Essentially just when we're serializing ourselves out.
881         /// Taken first everywhere where we are making changes before any other locks.
882         /// When acquiring this lock in read mode, rather than acquiring it directly, call
883         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
884         /// Notifier the lock contains sends out a notification when the lock is released.
885         total_consistency_lock: RwLock<()>,
886
887         persistence_notifier: Notifier,
888
889         entropy_source: ES,
890         node_signer: NS,
891         signer_provider: SP,
892
893         logger: L,
894 }
895
896 /// Chain-related parameters used to construct a new `ChannelManager`.
897 ///
898 /// Typically, the block-specific parameters are derived from the best block hash for the network,
899 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
900 /// are not needed when deserializing a previously constructed `ChannelManager`.
901 #[derive(Clone, Copy, PartialEq)]
902 pub struct ChainParameters {
903         /// The network for determining the `chain_hash` in Lightning messages.
904         pub network: Network,
905
906         /// The hash and height of the latest block successfully connected.
907         ///
908         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
909         pub best_block: BestBlock,
910 }
911
912 #[derive(Copy, Clone, PartialEq)]
913 enum NotifyOption {
914         DoPersist,
915         SkipPersist,
916 }
917
918 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
919 /// desirable to notify any listeners on `await_persistable_update_timeout`/
920 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
921 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
922 /// sending the aforementioned notification (since the lock being released indicates that the
923 /// updates are ready for persistence).
924 ///
925 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
926 /// notify or not based on whether relevant changes have been made, providing a closure to
927 /// `optionally_notify` which returns a `NotifyOption`.
928 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
929         persistence_notifier: &'a Notifier,
930         should_persist: F,
931         // We hold onto this result so the lock doesn't get released immediately.
932         _read_guard: RwLockReadGuard<'a, ()>,
933 }
934
935 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
936         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a Notifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
937                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
938         }
939
940         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a Notifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
941                 let read_guard = lock.read().unwrap();
942
943                 PersistenceNotifierGuard {
944                         persistence_notifier: notifier,
945                         should_persist: persist_check,
946                         _read_guard: read_guard,
947                 }
948         }
949 }
950
951 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
952         fn drop(&mut self) {
953                 if (self.should_persist)() == NotifyOption::DoPersist {
954                         self.persistence_notifier.notify();
955                 }
956         }
957 }
958
959 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
960 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
961 ///
962 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
963 ///
964 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
965 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
966 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
967 /// the maximum required amount in lnd as of March 2021.
968 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
969
970 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
971 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
972 ///
973 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
974 ///
975 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
976 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
977 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
978 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
979 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
980 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
981 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
982 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
983 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
984 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
985 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
986 // routing failure for any HTLC sender picking up an LDK node among the first hops.
987 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
988
989 /// Minimum CLTV difference between the current block height and received inbound payments.
990 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
991 /// this value.
992 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
993 // any payments to succeed. Further, we don't want payments to fail if a block was found while
994 // a payment was being routed, so we add an extra block to be safe.
995 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
996
997 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
998 // ie that if the next-hop peer fails the HTLC within
999 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1000 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1001 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1002 // LATENCY_GRACE_PERIOD_BLOCKS.
1003 #[deny(const_err)]
1004 #[allow(dead_code)]
1005 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1006
1007 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1008 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1009 #[deny(const_err)]
1010 #[allow(dead_code)]
1011 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1012
1013 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1014 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1015
1016 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until we time-out the
1017 /// idempotency of payments by [`PaymentId`]. See
1018 /// [`OutboundPayments::remove_stale_resolved_payments`].
1019 pub(crate) const IDEMPOTENCY_TIMEOUT_TICKS: u8 = 7;
1020
1021 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1022 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1023 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1024 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1025
1026 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1027 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1028 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1029
1030 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1031 /// many peers we reject new (inbound) connections.
1032 const MAX_NO_CHANNEL_PEERS: usize = 250;
1033
1034 /// Information needed for constructing an invoice route hint for this channel.
1035 #[derive(Clone, Debug, PartialEq)]
1036 pub struct CounterpartyForwardingInfo {
1037         /// Base routing fee in millisatoshis.
1038         pub fee_base_msat: u32,
1039         /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1040         pub fee_proportional_millionths: u32,
1041         /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1042         /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1043         /// `cltv_expiry_delta` for more details.
1044         pub cltv_expiry_delta: u16,
1045 }
1046
1047 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1048 /// to better separate parameters.
1049 #[derive(Clone, Debug, PartialEq)]
1050 pub struct ChannelCounterparty {
1051         /// The node_id of our counterparty
1052         pub node_id: PublicKey,
1053         /// The Features the channel counterparty provided upon last connection.
1054         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1055         /// many routing-relevant features are present in the init context.
1056         pub features: InitFeatures,
1057         /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1058         /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1059         /// claiming at least this value on chain.
1060         ///
1061         /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1062         ///
1063         /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1064         pub unspendable_punishment_reserve: u64,
1065         /// Information on the fees and requirements that the counterparty requires when forwarding
1066         /// payments to us through this channel.
1067         pub forwarding_info: Option<CounterpartyForwardingInfo>,
1068         /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1069         /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1070         /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1071         pub outbound_htlc_minimum_msat: Option<u64>,
1072         /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1073         pub outbound_htlc_maximum_msat: Option<u64>,
1074 }
1075
1076 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1077 #[derive(Clone, Debug, PartialEq)]
1078 pub struct ChannelDetails {
1079         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1080         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1081         /// Note that this means this value is *not* persistent - it can change once during the
1082         /// lifetime of the channel.
1083         pub channel_id: [u8; 32],
1084         /// Parameters which apply to our counterparty. See individual fields for more information.
1085         pub counterparty: ChannelCounterparty,
1086         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1087         /// our counterparty already.
1088         ///
1089         /// Note that, if this has been set, `channel_id` will be equivalent to
1090         /// `funding_txo.unwrap().to_channel_id()`.
1091         pub funding_txo: Option<OutPoint>,
1092         /// The features which this channel operates with. See individual features for more info.
1093         ///
1094         /// `None` until negotiation completes and the channel type is finalized.
1095         pub channel_type: Option<ChannelTypeFeatures>,
1096         /// The position of the funding transaction in the chain. None if the funding transaction has
1097         /// not yet been confirmed and the channel fully opened.
1098         ///
1099         /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1100         /// payments instead of this. See [`get_inbound_payment_scid`].
1101         ///
1102         /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1103         /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1104         ///
1105         /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1106         /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1107         /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1108         /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1109         /// [`confirmations_required`]: Self::confirmations_required
1110         pub short_channel_id: Option<u64>,
1111         /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1112         /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1113         /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1114         /// `Some(0)`).
1115         ///
1116         /// This will be `None` as long as the channel is not available for routing outbound payments.
1117         ///
1118         /// [`short_channel_id`]: Self::short_channel_id
1119         /// [`confirmations_required`]: Self::confirmations_required
1120         pub outbound_scid_alias: Option<u64>,
1121         /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1122         /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1123         /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1124         /// when they see a payment to be routed to us.
1125         ///
1126         /// Our counterparty may choose to rotate this value at any time, though will always recognize
1127         /// previous values for inbound payment forwarding.
1128         ///
1129         /// [`short_channel_id`]: Self::short_channel_id
1130         pub inbound_scid_alias: Option<u64>,
1131         /// The value, in satoshis, of this channel as appears in the funding output
1132         pub channel_value_satoshis: u64,
1133         /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1134         /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1135         /// this value on chain.
1136         ///
1137         /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1138         ///
1139         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1140         ///
1141         /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1142         pub unspendable_punishment_reserve: Option<u64>,
1143         /// The `user_channel_id` passed in to create_channel, or a random value if the channel was
1144         /// inbound. This may be zero for inbound channels serialized with LDK versions prior to
1145         /// 0.0.113.
1146         pub user_channel_id: u128,
1147         /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1148         /// which is applied to commitment and HTLC transactions.
1149         ///
1150         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1151         pub feerate_sat_per_1000_weight: Option<u32>,
1152         /// Our total balance.  This is the amount we would get if we close the channel.
1153         /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
1154         /// amount is not likely to be recoverable on close.
1155         ///
1156         /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
1157         /// balance is not available for inclusion in new outbound HTLCs). This further does not include
1158         /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
1159         /// This does not consider any on-chain fees.
1160         ///
1161         /// See also [`ChannelDetails::outbound_capacity_msat`]
1162         pub balance_msat: u64,
1163         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1164         /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1165         /// available for inclusion in new outbound HTLCs). This further does not include any pending
1166         /// outgoing HTLCs which are awaiting some other resolution to be sent.
1167         ///
1168         /// See also [`ChannelDetails::balance_msat`]
1169         ///
1170         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1171         /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1172         /// should be able to spend nearly this amount.
1173         pub outbound_capacity_msat: u64,
1174         /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1175         /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1176         /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1177         /// to use a limit as close as possible to the HTLC limit we can currently send.
1178         ///
1179         /// See also [`ChannelDetails::balance_msat`] and [`ChannelDetails::outbound_capacity_msat`].
1180         pub next_outbound_htlc_limit_msat: u64,
1181         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1182         /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1183         /// available for inclusion in new inbound HTLCs).
1184         /// Note that there are some corner cases not fully handled here, so the actual available
1185         /// inbound capacity may be slightly higher than this.
1186         ///
1187         /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1188         /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1189         /// However, our counterparty should be able to spend nearly this amount.
1190         pub inbound_capacity_msat: u64,
1191         /// The number of required confirmations on the funding transaction before the funding will be
1192         /// considered "locked". This number is selected by the channel fundee (i.e. us if
1193         /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1194         /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1195         /// [`ChannelHandshakeLimits::max_minimum_depth`].
1196         ///
1197         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1198         ///
1199         /// [`is_outbound`]: ChannelDetails::is_outbound
1200         /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1201         /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1202         pub confirmations_required: Option<u32>,
1203         /// The current number of confirmations on the funding transaction.
1204         ///
1205         /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1206         pub confirmations: Option<u32>,
1207         /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1208         /// until we can claim our funds after we force-close the channel. During this time our
1209         /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1210         /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1211         /// time to claim our non-HTLC-encumbered funds.
1212         ///
1213         /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1214         pub force_close_spend_delay: Option<u16>,
1215         /// True if the channel was initiated (and thus funded) by us.
1216         pub is_outbound: bool,
1217         /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1218         /// channel is not currently being shut down. `channel_ready` message exchange implies the
1219         /// required confirmation count has been reached (and we were connected to the peer at some
1220         /// point after the funding transaction received enough confirmations). The required
1221         /// confirmation count is provided in [`confirmations_required`].
1222         ///
1223         /// [`confirmations_required`]: ChannelDetails::confirmations_required
1224         pub is_channel_ready: bool,
1225         /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1226         /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1227         ///
1228         /// This is a strict superset of `is_channel_ready`.
1229         pub is_usable: bool,
1230         /// True if this channel is (or will be) publicly-announced.
1231         pub is_public: bool,
1232         /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1233         /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1234         pub inbound_htlc_minimum_msat: Option<u64>,
1235         /// The largest value HTLC (in msat) we currently will accept, for this channel.
1236         pub inbound_htlc_maximum_msat: Option<u64>,
1237         /// Set of configurable parameters that affect channel operation.
1238         ///
1239         /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1240         pub config: Option<ChannelConfig>,
1241 }
1242
1243 impl ChannelDetails {
1244         /// Gets the current SCID which should be used to identify this channel for inbound payments.
1245         /// This should be used for providing invoice hints or in any other context where our
1246         /// counterparty will forward a payment to us.
1247         ///
1248         /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1249         /// [`ChannelDetails::short_channel_id`]. See those for more information.
1250         pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1251                 self.inbound_scid_alias.or(self.short_channel_id)
1252         }
1253
1254         /// Gets the current SCID which should be used to identify this channel for outbound payments.
1255         /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1256         /// we're sending or forwarding a payment outbound over this channel.
1257         ///
1258         /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1259         /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1260         pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1261                 self.short_channel_id.or(self.outbound_scid_alias)
1262         }
1263
1264         fn from_channel<Signer: WriteableEcdsaChannelSigner>(channel: &Channel<Signer>,
1265                 best_block_height: u32, latest_features: InitFeatures) -> Self {
1266
1267                 let balance = channel.get_available_balances();
1268                 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1269                         channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1270                 ChannelDetails {
1271                         channel_id: channel.channel_id(),
1272                         counterparty: ChannelCounterparty {
1273                                 node_id: channel.get_counterparty_node_id(),
1274                                 features: latest_features,
1275                                 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1276                                 forwarding_info: channel.counterparty_forwarding_info(),
1277                                 // Ensures that we have actually received the `htlc_minimum_msat` value
1278                                 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1279                                 // message (as they are always the first message from the counterparty).
1280                                 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1281                                 // default `0` value set by `Channel::new_outbound`.
1282                                 outbound_htlc_minimum_msat: if channel.have_received_message() {
1283                                         Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1284                                 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1285                         },
1286                         funding_txo: channel.get_funding_txo(),
1287                         // Note that accept_channel (or open_channel) is always the first message, so
1288                         // `have_received_message` indicates that type negotiation has completed.
1289                         channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1290                         short_channel_id: channel.get_short_channel_id(),
1291                         outbound_scid_alias: if channel.is_usable() { Some(channel.outbound_scid_alias()) } else { None },
1292                         inbound_scid_alias: channel.latest_inbound_scid_alias(),
1293                         channel_value_satoshis: channel.get_value_satoshis(),
1294                         feerate_sat_per_1000_weight: Some(channel.get_feerate_sat_per_1000_weight()),
1295                         unspendable_punishment_reserve: to_self_reserve_satoshis,
1296                         balance_msat: balance.balance_msat,
1297                         inbound_capacity_msat: balance.inbound_capacity_msat,
1298                         outbound_capacity_msat: balance.outbound_capacity_msat,
1299                         next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1300                         user_channel_id: channel.get_user_id(),
1301                         confirmations_required: channel.minimum_depth(),
1302                         confirmations: Some(channel.get_funding_tx_confirmations(best_block_height)),
1303                         force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1304                         is_outbound: channel.is_outbound(),
1305                         is_channel_ready: channel.is_usable(),
1306                         is_usable: channel.is_live(),
1307                         is_public: channel.should_announce(),
1308                         inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1309                         inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat(),
1310                         config: Some(channel.config()),
1311                 }
1312         }
1313 }
1314
1315 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1316 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1317 #[derive(Debug, PartialEq)]
1318 pub enum RecentPaymentDetails {
1319         /// When a payment is still being sent and awaiting successful delivery.
1320         Pending {
1321                 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1322                 /// abandoned.
1323                 payment_hash: PaymentHash,
1324                 /// Total amount (in msat, excluding fees) across all paths for this payment,
1325                 /// not just the amount currently inflight.
1326                 total_msat: u64,
1327         },
1328         /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1329         /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1330         /// payment is removed from tracking.
1331         Fulfilled {
1332                 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1333                 /// made before LDK version 0.0.104.
1334                 payment_hash: Option<PaymentHash>,
1335         },
1336         /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1337         /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1338         /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1339         Abandoned {
1340                 /// Hash of the payment that we have given up trying to send.
1341                 payment_hash: PaymentHash,
1342         },
1343 }
1344
1345 /// Route hints used in constructing invoices for [phantom node payents].
1346 ///
1347 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1348 #[derive(Clone)]
1349 pub struct PhantomRouteHints {
1350         /// The list of channels to be included in the invoice route hints.
1351         pub channels: Vec<ChannelDetails>,
1352         /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1353         /// route hints.
1354         pub phantom_scid: u64,
1355         /// The pubkey of the real backing node that would ultimately receive the payment.
1356         pub real_node_pubkey: PublicKey,
1357 }
1358
1359 macro_rules! handle_error {
1360         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1361                 match $internal {
1362                         Ok(msg) => Ok(msg),
1363                         Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1364                                 // In testing, ensure there are no deadlocks where the lock is already held upon
1365                                 // entering the macro.
1366                                 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1367                                 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1368
1369                                 let mut msg_events = Vec::with_capacity(2);
1370
1371                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
1372                                         $self.finish_force_close_channel(shutdown_res);
1373                                         if let Some(update) = update_option {
1374                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1375                                                         msg: update
1376                                                 });
1377                                         }
1378                                         if let Some((channel_id, user_channel_id)) = chan_id {
1379                                                 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1380                                                         channel_id, user_channel_id,
1381                                                         reason: ClosureReason::ProcessingError { err: err.err.clone() }
1382                                                 });
1383                                         }
1384                                 }
1385
1386                                 log_error!($self.logger, "{}", err.err);
1387                                 if let msgs::ErrorAction::IgnoreError = err.action {
1388                                 } else {
1389                                         msg_events.push(events::MessageSendEvent::HandleError {
1390                                                 node_id: $counterparty_node_id,
1391                                                 action: err.action.clone()
1392                                         });
1393                                 }
1394
1395                                 if !msg_events.is_empty() {
1396                                         let per_peer_state = $self.per_peer_state.read().unwrap();
1397                                         if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1398                                                 let mut peer_state = peer_state_mutex.lock().unwrap();
1399                                                 peer_state.pending_msg_events.append(&mut msg_events);
1400                                         }
1401                                 }
1402
1403                                 // Return error in case higher-API need one
1404                                 Err(err)
1405                         },
1406                 }
1407         }
1408 }
1409
1410 macro_rules! update_maps_on_chan_removal {
1411         ($self: expr, $channel: expr) => {{
1412                 $self.id_to_peer.lock().unwrap().remove(&$channel.channel_id());
1413                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1414                 if let Some(short_id) = $channel.get_short_channel_id() {
1415                         short_to_chan_info.remove(&short_id);
1416                 } else {
1417                         // If the channel was never confirmed on-chain prior to its closure, remove the
1418                         // outbound SCID alias we used for it from the collision-prevention set. While we
1419                         // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1420                         // also don't want a counterparty to be able to trivially cause a memory leak by simply
1421                         // opening a million channels with us which are closed before we ever reach the funding
1422                         // stage.
1423                         let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1424                         debug_assert!(alias_removed);
1425                 }
1426                 short_to_chan_info.remove(&$channel.outbound_scid_alias());
1427         }}
1428 }
1429
1430 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1431 macro_rules! convert_chan_err {
1432         ($self: ident, $err: expr, $channel: expr, $channel_id: expr) => {
1433                 match $err {
1434                         ChannelError::Warn(msg) => {
1435                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1436                         },
1437                         ChannelError::Ignore(msg) => {
1438                                 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1439                         },
1440                         ChannelError::Close(msg) => {
1441                                 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1442                                 update_maps_on_chan_removal!($self, $channel);
1443                                 let shutdown_res = $channel.force_shutdown(true);
1444                                 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1445                                         shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1446                         },
1447                 }
1448         }
1449 }
1450
1451 macro_rules! break_chan_entry {
1452         ($self: ident, $res: expr, $entry: expr) => {
1453                 match $res {
1454                         Ok(res) => res,
1455                         Err(e) => {
1456                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1457                                 if drop {
1458                                         $entry.remove_entry();
1459                                 }
1460                                 break Err(res);
1461                         }
1462                 }
1463         }
1464 }
1465
1466 macro_rules! try_chan_entry {
1467         ($self: ident, $res: expr, $entry: expr) => {
1468                 match $res {
1469                         Ok(res) => res,
1470                         Err(e) => {
1471                                 let (drop, res) = convert_chan_err!($self, e, $entry.get_mut(), $entry.key());
1472                                 if drop {
1473                                         $entry.remove_entry();
1474                                 }
1475                                 return Err(res);
1476                         }
1477                 }
1478         }
1479 }
1480
1481 macro_rules! remove_channel {
1482         ($self: expr, $entry: expr) => {
1483                 {
1484                         let channel = $entry.remove_entry().1;
1485                         update_maps_on_chan_removal!($self, channel);
1486                         channel
1487                 }
1488         }
1489 }
1490
1491 macro_rules! send_channel_ready {
1492         ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1493                 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1494                         node_id: $channel.get_counterparty_node_id(),
1495                         msg: $channel_ready_msg,
1496                 });
1497                 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1498                 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1499                 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1500                 let outbound_alias_insert = short_to_chan_info.insert($channel.outbound_scid_alias(), ($channel.get_counterparty_node_id(), $channel.channel_id()));
1501                 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1502                         "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1503                 if let Some(real_scid) = $channel.get_short_channel_id() {
1504                         let scid_insert = short_to_chan_info.insert(real_scid, ($channel.get_counterparty_node_id(), $channel.channel_id()));
1505                         assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.get_counterparty_node_id(), $channel.channel_id()),
1506                                 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1507                 }
1508         }}
1509 }
1510
1511 macro_rules! emit_channel_pending_event {
1512         ($locked_events: expr, $channel: expr) => {
1513                 if $channel.should_emit_channel_pending_event() {
1514                         $locked_events.push(events::Event::ChannelPending {
1515                                 channel_id: $channel.channel_id(),
1516                                 former_temporary_channel_id: $channel.temporary_channel_id(),
1517                                 counterparty_node_id: $channel.get_counterparty_node_id(),
1518                                 user_channel_id: $channel.get_user_id(),
1519                                 funding_txo: $channel.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1520                         });
1521                         $channel.set_channel_pending_event_emitted();
1522                 }
1523         }
1524 }
1525
1526 macro_rules! emit_channel_ready_event {
1527         ($locked_events: expr, $channel: expr) => {
1528                 if $channel.should_emit_channel_ready_event() {
1529                         debug_assert!($channel.channel_pending_event_emitted());
1530                         $locked_events.push(events::Event::ChannelReady {
1531                                 channel_id: $channel.channel_id(),
1532                                 user_channel_id: $channel.get_user_id(),
1533                                 counterparty_node_id: $channel.get_counterparty_node_id(),
1534                                 channel_type: $channel.get_channel_type().clone(),
1535                         });
1536                         $channel.set_channel_ready_event_emitted();
1537                 }
1538         }
1539 }
1540
1541 macro_rules! handle_monitor_update_completion {
1542         ($self: ident, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1543                 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1544                         &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1545                         $self.best_block.read().unwrap().height());
1546                 let counterparty_node_id = $chan.get_counterparty_node_id();
1547                 let channel_update = if updates.channel_ready.is_some() && $chan.is_usable() {
1548                         // We only send a channel_update in the case where we are just now sending a
1549                         // channel_ready and the channel is in a usable state. We may re-send a
1550                         // channel_update later through the announcement_signatures process for public
1551                         // channels, but there's no reason not to just inform our counterparty of our fees
1552                         // now.
1553                         if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
1554                                 Some(events::MessageSendEvent::SendChannelUpdate {
1555                                         node_id: counterparty_node_id,
1556                                         msg,
1557                                 })
1558                         } else { None }
1559                 } else { None };
1560
1561                 let update_actions = $peer_state.monitor_update_blocked_actions
1562                         .remove(&$chan.channel_id()).unwrap_or(Vec::new());
1563
1564                 let htlc_forwards = $self.handle_channel_resumption(
1565                         &mut $peer_state.pending_msg_events, $chan, updates.raa,
1566                         updates.commitment_update, updates.order, updates.accepted_htlcs,
1567                         updates.funding_broadcastable, updates.channel_ready,
1568                         updates.announcement_sigs);
1569                 if let Some(upd) = channel_update {
1570                         $peer_state.pending_msg_events.push(upd);
1571                 }
1572
1573                 let channel_id = $chan.channel_id();
1574                 core::mem::drop($peer_state_lock);
1575                 core::mem::drop($per_peer_state_lock);
1576
1577                 $self.handle_monitor_update_completion_actions(update_actions);
1578
1579                 if let Some(forwards) = htlc_forwards {
1580                         $self.forward_htlcs(&mut [forwards][..]);
1581                 }
1582                 $self.finalize_claims(updates.finalized_claimed_htlcs);
1583                 for failure in updates.failed_htlcs.drain(..) {
1584                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
1585                         $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
1586                 }
1587         } }
1588 }
1589
1590 macro_rules! handle_new_monitor_update {
1591         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, MANUALLY_REMOVING, $remove: expr) => { {
1592                 // update_maps_on_chan_removal needs to be able to take id_to_peer, so make sure we can in
1593                 // any case so that it won't deadlock.
1594                 debug_assert!($self.id_to_peer.try_lock().is_ok());
1595                 match $update_res {
1596                         ChannelMonitorUpdateStatus::InProgress => {
1597                                 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
1598                                         log_bytes!($chan.channel_id()[..]));
1599                                 Ok(())
1600                         },
1601                         ChannelMonitorUpdateStatus::PermanentFailure => {
1602                                 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateStatus::PermanentFailure",
1603                                         log_bytes!($chan.channel_id()[..]));
1604                                 update_maps_on_chan_removal!($self, $chan);
1605                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown(
1606                                         "ChannelMonitor storage failure".to_owned(), $chan.channel_id(),
1607                                         $chan.get_user_id(), $chan.force_shutdown(false),
1608                                         $self.get_channel_update_for_broadcast(&$chan).ok()));
1609                                 $remove;
1610                                 res
1611                         },
1612                         ChannelMonitorUpdateStatus::Completed => {
1613                                 if ($update_id == 0 || $chan.get_next_monitor_update()
1614                                         .expect("We can't be processing a monitor update if it isn't queued")
1615                                         .update_id == $update_id) &&
1616                                         $chan.get_latest_monitor_update_id() == $update_id
1617                                 {
1618                                         handle_monitor_update_completion!($self, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
1619                                 }
1620                                 Ok(())
1621                         },
1622                 }
1623         } };
1624         ($self: ident, $update_res: expr, $update_id: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan_entry: expr) => {
1625                 handle_new_monitor_update!($self, $update_res, $update_id, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan_entry.get_mut(), MANUALLY_REMOVING, $chan_entry.remove_entry())
1626         }
1627 }
1628
1629 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
1630 where
1631         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1632         T::Target: BroadcasterInterface,
1633         ES::Target: EntropySource,
1634         NS::Target: NodeSigner,
1635         SP::Target: SignerProvider,
1636         F::Target: FeeEstimator,
1637         R::Target: Router,
1638         L::Target: Logger,
1639 {
1640         /// Constructs a new `ChannelManager` to hold several channels and route between them.
1641         ///
1642         /// This is the main "logic hub" for all channel-related actions, and implements
1643         /// [`ChannelMessageHandler`].
1644         ///
1645         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1646         ///
1647         /// Users need to notify the new `ChannelManager` when a new block is connected or
1648         /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
1649         /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
1650         /// more details.
1651         ///
1652         /// [`block_connected`]: chain::Listen::block_connected
1653         /// [`block_disconnected`]: chain::Listen::block_disconnected
1654         /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
1655         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES, node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters) -> Self {
1656                 let mut secp_ctx = Secp256k1::new();
1657                 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
1658                 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
1659                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1660                 ChannelManager {
1661                         default_configuration: config.clone(),
1662                         genesis_hash: genesis_block(params.network).header.block_hash(),
1663                         fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
1664                         chain_monitor,
1665                         tx_broadcaster,
1666                         router,
1667
1668                         best_block: RwLock::new(params.best_block),
1669
1670                         outbound_scid_aliases: Mutex::new(HashSet::new()),
1671                         pending_inbound_payments: Mutex::new(HashMap::new()),
1672                         pending_outbound_payments: OutboundPayments::new(),
1673                         forward_htlcs: Mutex::new(HashMap::new()),
1674                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs: HashMap::new(), pending_claiming_payments: HashMap::new() }),
1675                         pending_intercepted_htlcs: Mutex::new(HashMap::new()),
1676                         id_to_peer: Mutex::new(HashMap::new()),
1677                         short_to_chan_info: FairRwLock::new(HashMap::new()),
1678
1679                         our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
1680                         secp_ctx,
1681
1682                         inbound_payment_key: expanded_inbound_key,
1683                         fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
1684
1685                         probing_cookie_secret: entropy_source.get_secure_random_bytes(),
1686
1687                         highest_seen_timestamp: AtomicUsize::new(0),
1688
1689                         per_peer_state: FairRwLock::new(HashMap::new()),
1690
1691                         pending_events: Mutex::new(Vec::new()),
1692                         pending_background_events: Mutex::new(Vec::new()),
1693                         total_consistency_lock: RwLock::new(()),
1694                         persistence_notifier: Notifier::new(),
1695
1696                         entropy_source,
1697                         node_signer,
1698                         signer_provider,
1699
1700                         logger,
1701                 }
1702         }
1703
1704         /// Gets the current configuration applied to all new channels.
1705         pub fn get_current_default_configuration(&self) -> &UserConfig {
1706                 &self.default_configuration
1707         }
1708
1709         fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1710                 let height = self.best_block.read().unwrap().height();
1711                 let mut outbound_scid_alias = 0;
1712                 let mut i = 0;
1713                 loop {
1714                         if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1715                                 outbound_scid_alias += 1;
1716                         } else {
1717                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
1718                         }
1719                         if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1720                                 break;
1721                         }
1722                         i += 1;
1723                         if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1724                 }
1725                 outbound_scid_alias
1726         }
1727
1728         /// Creates a new outbound channel to the given remote node and with the given value.
1729         ///
1730         /// `user_channel_id` will be provided back as in
1731         /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1732         /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
1733         /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
1734         /// is simply copied to events and otherwise ignored.
1735         ///
1736         /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1737         /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1738         ///
1739         /// Note that we do not check if you are currently connected to the given peer. If no
1740         /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1741         /// the channel eventually being silently forgotten (dropped on reload).
1742         ///
1743         /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1744         /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1745         /// [`ChannelDetails::channel_id`] until after
1746         /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1747         /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1748         /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1749         ///
1750         /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1751         /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1752         /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1753         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1754                 if channel_value_satoshis < 1000 {
1755                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1756                 }
1757
1758                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1759                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1760                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1761
1762                 let per_peer_state = self.per_peer_state.read().unwrap();
1763
1764                 let peer_state_mutex = per_peer_state.get(&their_network_key)
1765                         .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
1766
1767                 let mut peer_state = peer_state_mutex.lock().unwrap();
1768                 let channel = {
1769                         let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1770                         let their_features = &peer_state.latest_features;
1771                         let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1772                         match Channel::new_outbound(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
1773                                 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1774                                 self.best_block.read().unwrap().height(), outbound_scid_alias)
1775                         {
1776                                 Ok(res) => res,
1777                                 Err(e) => {
1778                                         self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1779                                         return Err(e);
1780                                 },
1781                         }
1782                 };
1783                 let res = channel.get_open_channel(self.genesis_hash.clone());
1784
1785                 let temporary_channel_id = channel.channel_id();
1786                 match peer_state.channel_by_id.entry(temporary_channel_id) {
1787                         hash_map::Entry::Occupied(_) => {
1788                                 if cfg!(fuzzing) {
1789                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1790                                 } else {
1791                                         panic!("RNG is bad???");
1792                                 }
1793                         },
1794                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1795                 }
1796
1797                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1798                         node_id: their_network_key,
1799                         msg: res,
1800                 });
1801                 Ok(temporary_channel_id)
1802         }
1803
1804         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<<SP::Target as SignerProvider>::Signer>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
1805                 // Allocate our best estimate of the number of channels we have in the `res`
1806                 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
1807                 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
1808                 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
1809                 // unlikely as the `short_to_chan_info` map often contains 2 entries for
1810                 // the same channel.
1811                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
1812                 {
1813                         let best_block_height = self.best_block.read().unwrap().height();
1814                         let per_peer_state = self.per_peer_state.read().unwrap();
1815                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
1816                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1817                                 let peer_state = &mut *peer_state_lock;
1818                                 for (_channel_id, channel) in peer_state.channel_by_id.iter().filter(f) {
1819                                         let details = ChannelDetails::from_channel(channel, best_block_height,
1820                                                 peer_state.latest_features.clone());
1821                                         res.push(details);
1822                                 }
1823                         }
1824                 }
1825                 res
1826         }
1827
1828         /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
1829         /// more information.
1830         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1831                 self.list_channels_with_filter(|_| true)
1832         }
1833
1834         /// Gets the list of usable channels, in random order. Useful as an argument to
1835         /// [`Router::find_route`] to ensure non-announced channels are used.
1836         ///
1837         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1838         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1839         /// are.
1840         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1841                 // Note we use is_live here instead of usable which leads to somewhat confused
1842                 // internal/external nomenclature, but that's ok cause that's probably what the user
1843                 // really wanted anyway.
1844                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1845         }
1846
1847         /// Gets the list of channels we have with a given counterparty, in random order.
1848         pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
1849                 let best_block_height = self.best_block.read().unwrap().height();
1850                 let per_peer_state = self.per_peer_state.read().unwrap();
1851
1852                 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
1853                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1854                         let peer_state = &mut *peer_state_lock;
1855                         let features = &peer_state.latest_features;
1856                         return peer_state.channel_by_id
1857                                 .iter()
1858                                 .map(|(_, channel)|
1859                                         ChannelDetails::from_channel(channel, best_block_height, features.clone()))
1860                                 .collect();
1861                 }
1862                 vec![]
1863         }
1864
1865         /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
1866         /// successful path, or have unresolved HTLCs.
1867         ///
1868         /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
1869         /// result of a crash. If such a payment exists, is not listed here, and an
1870         /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
1871         ///
1872         /// [`Event::PaymentSent`]: events::Event::PaymentSent
1873         pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
1874                 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
1875                         .filter_map(|(_, pending_outbound_payment)| match pending_outbound_payment {
1876                                 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
1877                                         Some(RecentPaymentDetails::Pending {
1878                                                 payment_hash: *payment_hash,
1879                                                 total_msat: *total_msat,
1880                                         })
1881                                 },
1882                                 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
1883                                         Some(RecentPaymentDetails::Abandoned { payment_hash: *payment_hash })
1884                                 },
1885                                 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
1886                                         Some(RecentPaymentDetails::Fulfilled { payment_hash: *payment_hash })
1887                                 },
1888                                 PendingOutboundPayment::Legacy { .. } => None
1889                         })
1890                         .collect()
1891         }
1892
1893         /// Helper function that issues the channel close events
1894         fn issue_channel_close_events(&self, channel: &Channel<<SP::Target as SignerProvider>::Signer>, closure_reason: ClosureReason) {
1895                 let mut pending_events_lock = self.pending_events.lock().unwrap();
1896                 match channel.unbroadcasted_funding() {
1897                         Some(transaction) => {
1898                                 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1899                         },
1900                         None => {},
1901                 }
1902                 pending_events_lock.push(events::Event::ChannelClosed {
1903                         channel_id: channel.channel_id(),
1904                         user_channel_id: channel.get_user_id(),
1905                         reason: closure_reason
1906                 });
1907         }
1908
1909         fn close_channel_internal(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1910                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1911
1912                 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1913                 let result: Result<(), _> = loop {
1914                         let per_peer_state = self.per_peer_state.read().unwrap();
1915
1916                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
1917                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
1918
1919                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
1920                         let peer_state = &mut *peer_state_lock;
1921                         match peer_state.channel_by_id.entry(channel_id.clone()) {
1922                                 hash_map::Entry::Occupied(mut chan_entry) => {
1923                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
1924                                         let their_features = &peer_state.latest_features;
1925                                         let (shutdown_msg, mut monitor_update_opt, htlcs) = chan_entry.get_mut()
1926                                                 .get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight)?;
1927                                         failed_htlcs = htlcs;
1928
1929                                         // We can send the `shutdown` message before updating the `ChannelMonitor`
1930                                         // here as we don't need the monitor update to complete until we send a
1931                                         // `shutdown_signed`, which we'll delay if we're pending a monitor update.
1932                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1933                                                 node_id: *counterparty_node_id,
1934                                                 msg: shutdown_msg,
1935                                         });
1936
1937                                         // Update the monitor with the shutdown script if necessary.
1938                                         if let Some(monitor_update) = monitor_update_opt.take() {
1939                                                 let update_id = monitor_update.update_id;
1940                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
1941                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
1942                                         }
1943
1944                                         if chan_entry.get().is_shutdown() {
1945                                                 let channel = remove_channel!(self, chan_entry);
1946                                                 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1947                                                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1948                                                                 msg: channel_update
1949                                                         });
1950                                                 }
1951                                                 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1952                                         }
1953                                         break Ok(());
1954                                 },
1955                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), counterparty_node_id) })
1956                         }
1957                 };
1958
1959                 for htlc_source in failed_htlcs.drain(..) {
1960                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
1961                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
1962                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
1963                 }
1964
1965                 let _ = handle_error!(self, result, *counterparty_node_id);
1966                 Ok(())
1967         }
1968
1969         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1970         /// will be accepted on the given channel, and after additional timeout/the closing of all
1971         /// pending HTLCs, the channel will be closed on chain.
1972         ///
1973         ///  * If we are the channel initiator, we will pay between our [`Background`] and
1974         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1975         ///    estimate.
1976         ///  * If our counterparty is the channel initiator, we will require a channel closing
1977         ///    transaction feerate of at least our [`Background`] feerate or the feerate which
1978         ///    would appear on a force-closure transaction, whichever is lower. We will allow our
1979         ///    counterparty to pay as much fee as they'd like, however.
1980         ///
1981         /// May generate a [`SendShutdown`] message event on success, which should be relayed.
1982         ///
1983         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1984         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1985         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1986         /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
1987         pub fn close_channel(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey) -> Result<(), APIError> {
1988                 self.close_channel_internal(channel_id, counterparty_node_id, None)
1989         }
1990
1991         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1992         /// will be accepted on the given channel, and after additional timeout/the closing of all
1993         /// pending HTLCs, the channel will be closed on chain.
1994         ///
1995         /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1996         /// the channel being closed or not:
1997         ///  * If we are the channel initiator, we will pay at least this feerate on the closing
1998         ///    transaction. The upper-bound is set by
1999         ///    [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2000         ///    estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2001         ///  * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2002         ///    transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2003         ///    will appear on a force-closure transaction, whichever is lower).
2004         ///
2005         /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2006         ///
2007         /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2008         /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2009         /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2010         /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2011         pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
2012                 self.close_channel_internal(channel_id, counterparty_node_id, Some(target_feerate_sats_per_1000_weight))
2013         }
2014
2015         #[inline]
2016         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2017                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2018                 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2019                 for htlc_source in failed_htlcs.drain(..) {
2020                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2021                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2022                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2023                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2024                 }
2025                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
2026                         // There isn't anything we can do if we get an update failure - we're already
2027                         // force-closing. The monitor update on the required in-memory copy should broadcast
2028                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
2029                         // ignore the result here.
2030                         let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2031                 }
2032         }
2033
2034         /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2035         /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2036         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2037         -> Result<PublicKey, APIError> {
2038                 let per_peer_state = self.per_peer_state.read().unwrap();
2039                 let peer_state_mutex = per_peer_state.get(peer_node_id)
2040                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2041                 let mut chan = {
2042                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2043                         let peer_state = &mut *peer_state_lock;
2044                         if let hash_map::Entry::Occupied(chan) = peer_state.channel_by_id.entry(channel_id.clone()) {
2045                                 if let Some(peer_msg) = peer_msg {
2046                                         self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) });
2047                                 } else {
2048                                         self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
2049                                 }
2050                                 remove_channel!(self, chan)
2051                         } else {
2052                                 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*channel_id), peer_node_id) });
2053                         }
2054                 };
2055                 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
2056                 self.finish_force_close_channel(chan.force_shutdown(broadcast));
2057                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
2058                         let mut peer_state = peer_state_mutex.lock().unwrap();
2059                         peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2060                                 msg: update
2061                         });
2062                 }
2063
2064                 Ok(chan.get_counterparty_node_id())
2065         }
2066
2067         fn force_close_sending_error(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2068                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2069                 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2070                         Ok(counterparty_node_id) => {
2071                                 let per_peer_state = self.per_peer_state.read().unwrap();
2072                                 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2073                                         let mut peer_state = peer_state_mutex.lock().unwrap();
2074                                         peer_state.pending_msg_events.push(
2075                                                 events::MessageSendEvent::HandleError {
2076                                                         node_id: counterparty_node_id,
2077                                                         action: msgs::ErrorAction::SendErrorMessage {
2078                                                                 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2079                                                         },
2080                                                 }
2081                                         );
2082                                 }
2083                                 Ok(())
2084                         },
2085                         Err(e) => Err(e)
2086                 }
2087         }
2088
2089         /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2090         /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2091         /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2092         /// channel.
2093         pub fn force_close_broadcasting_latest_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2094         -> Result<(), APIError> {
2095                 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2096         }
2097
2098         /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2099         /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2100         /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2101         ///
2102         /// You can always get the latest local transaction(s) to broadcast from
2103         /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2104         pub fn force_close_without_broadcasting_txn(&self, channel_id: &[u8; 32], counterparty_node_id: &PublicKey)
2105         -> Result<(), APIError> {
2106                 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2107         }
2108
2109         /// Force close all channels, immediately broadcasting the latest local commitment transaction
2110         /// for each to the chain and rejecting new HTLCs on each.
2111         pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2112                 for chan in self.list_channels() {
2113                         let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2114                 }
2115         }
2116
2117         /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2118         /// local transaction(s).
2119         pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2120                 for chan in self.list_channels() {
2121                         let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2122                 }
2123         }
2124
2125         fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
2126                 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
2127         {
2128                 // final_incorrect_cltv_expiry
2129                 if hop_data.outgoing_cltv_value > cltv_expiry {
2130                         return Err(ReceiveError {
2131                                 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2132                                 err_code: 18,
2133                                 err_data: cltv_expiry.to_be_bytes().to_vec()
2134                         })
2135                 }
2136                 // final_expiry_too_soon
2137                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2138                 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2139                 //
2140                 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2141                 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2142                 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2143                 let current_height: u32 = self.best_block.read().unwrap().height();
2144                 if (hop_data.outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2145                         let mut err_data = Vec::with_capacity(12);
2146                         err_data.extend_from_slice(&amt_msat.to_be_bytes());
2147                         err_data.extend_from_slice(&current_height.to_be_bytes());
2148                         return Err(ReceiveError {
2149                                 err_code: 0x4000 | 15, err_data,
2150                                 msg: "The final CLTV expiry is too soon to handle",
2151                         });
2152                 }
2153                 if hop_data.amt_to_forward > amt_msat {
2154                         return Err(ReceiveError {
2155                                 err_code: 19,
2156                                 err_data: amt_msat.to_be_bytes().to_vec(),
2157                                 msg: "Upstream node sent less than we were supposed to receive in payment",
2158                         });
2159                 }
2160
2161                 let routing = match hop_data.format {
2162                         msgs::OnionHopDataFormat::NonFinalNode { .. } => {
2163                                 return Err(ReceiveError {
2164                                         err_code: 0x4000|22,
2165                                         err_data: Vec::new(),
2166                                         msg: "Got non final data with an HMAC of 0",
2167                                 });
2168                         },
2169                         msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
2170                                 if payment_data.is_some() && keysend_preimage.is_some() {
2171                                         return Err(ReceiveError {
2172                                                 err_code: 0x4000|22,
2173                                                 err_data: Vec::new(),
2174                                                 msg: "We don't support MPP keysend payments",
2175                                         });
2176                                 } else if let Some(data) = payment_data {
2177                                         PendingHTLCRouting::Receive {
2178                                                 payment_data: data,
2179                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2180                                                 phantom_shared_secret,
2181                                         }
2182                                 } else if let Some(payment_preimage) = keysend_preimage {
2183                                         // We need to check that the sender knows the keysend preimage before processing this
2184                                         // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2185                                         // could discover the final destination of X, by probing the adjacent nodes on the route
2186                                         // with a keysend payment of identical payment hash to X and observing the processing
2187                                         // time discrepancies due to a hash collision with X.
2188                                         let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2189                                         if hashed_preimage != payment_hash {
2190                                                 return Err(ReceiveError {
2191                                                         err_code: 0x4000|22,
2192                                                         err_data: Vec::new(),
2193                                                         msg: "Payment preimage didn't match payment hash",
2194                                                 });
2195                                         }
2196
2197                                         PendingHTLCRouting::ReceiveKeysend {
2198                                                 payment_preimage,
2199                                                 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2200                                         }
2201                                 } else {
2202                                         return Err(ReceiveError {
2203                                                 err_code: 0x4000|0x2000|3,
2204                                                 err_data: Vec::new(),
2205                                                 msg: "We require payment_secrets",
2206                                         });
2207                                 }
2208                         },
2209                 };
2210                 Ok(PendingHTLCInfo {
2211                         routing,
2212                         payment_hash,
2213                         incoming_shared_secret: shared_secret,
2214                         incoming_amt_msat: Some(amt_msat),
2215                         outgoing_amt_msat: hop_data.amt_to_forward,
2216                         outgoing_cltv_value: hop_data.outgoing_cltv_value,
2217                 })
2218         }
2219
2220         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> PendingHTLCStatus {
2221                 macro_rules! return_malformed_err {
2222                         ($msg: expr, $err_code: expr) => {
2223                                 {
2224                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2225                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2226                                                 channel_id: msg.channel_id,
2227                                                 htlc_id: msg.htlc_id,
2228                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2229                                                 failure_code: $err_code,
2230                                         }));
2231                                 }
2232                         }
2233                 }
2234
2235                 if let Err(_) = msg.onion_routing_packet.public_key {
2236                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2237                 }
2238
2239                 let shared_secret = self.node_signer.ecdh(
2240                         Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2241                 ).unwrap().secret_bytes();
2242
2243                 if msg.onion_routing_packet.version != 0 {
2244                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2245                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2246                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
2247                         //receiving node would have to brute force to figure out which version was put in the
2248                         //packet by the node that send us the message, in the case of hashing the hop_data, the
2249                         //node knows the HMAC matched, so they already know what is there...
2250                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2251                 }
2252                 macro_rules! return_err {
2253                         ($msg: expr, $err_code: expr, $data: expr) => {
2254                                 {
2255                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2256                                         return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2257                                                 channel_id: msg.channel_id,
2258                                                 htlc_id: msg.htlc_id,
2259                                                 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2260                                                         .get_encrypted_failure_packet(&shared_secret, &None),
2261                                         }));
2262                                 }
2263                         }
2264                 }
2265
2266                 let next_hop = match onion_utils::decode_next_payment_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2267                         Ok(res) => res,
2268                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2269                                 return_malformed_err!(err_msg, err_code);
2270                         },
2271                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2272                                 return_err!(err_msg, err_code, &[0; 0]);
2273                         },
2274                 };
2275
2276                 let pending_forward_info = match next_hop {
2277                         onion_utils::Hop::Receive(next_hop_data) => {
2278                                 // OUR PAYMENT!
2279                                 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2280                                         Ok(info) => {
2281                                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
2282                                                 // message, however that would leak that we are the recipient of this payment, so
2283                                                 // instead we stay symmetric with the forwarding case, only responding (after a
2284                                                 // delay) once they've send us a commitment_signed!
2285                                                 PendingHTLCStatus::Forward(info)
2286                                         },
2287                                         Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2288                                 }
2289                         },
2290                         onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2291                                 let new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2292                                 let outgoing_packet = msgs::OnionPacket {
2293                                         version: 0,
2294                                         public_key: onion_utils::next_hop_packet_pubkey(&self.secp_ctx, new_pubkey, &shared_secret),
2295                                         hop_data: new_packet_bytes,
2296                                         hmac: next_hop_hmac.clone(),
2297                                 };
2298
2299                                 let short_channel_id = match next_hop_data.format {
2300                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2301                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
2302                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2303                                         },
2304                                 };
2305
2306                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
2307                                         routing: PendingHTLCRouting::Forward {
2308                                                 onion_packet: outgoing_packet,
2309                                                 short_channel_id,
2310                                         },
2311                                         payment_hash: msg.payment_hash.clone(),
2312                                         incoming_shared_secret: shared_secret,
2313                                         incoming_amt_msat: Some(msg.amount_msat),
2314                                         outgoing_amt_msat: next_hop_data.amt_to_forward,
2315                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2316                                 })
2317                         }
2318                 };
2319
2320                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref outgoing_amt_msat, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2321                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2322                         // with a short_channel_id of 0. This is important as various things later assume
2323                         // short_channel_id is non-0 in any ::Forward.
2324                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2325                                 if let Some((err, mut code, chan_update)) = loop {
2326                                         let id_option = self.short_to_chan_info.read().unwrap().get(short_channel_id).cloned();
2327                                         let forwarding_chan_info_opt = match id_option {
2328                                                 None => { // unknown_next_peer
2329                                                         // Note that this is likely a timing oracle for detecting whether an scid is a
2330                                                         // phantom or an intercept.
2331                                                         if (self.default_configuration.accept_intercept_htlcs &&
2332                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)) ||
2333                                                            fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id, &self.genesis_hash)
2334                                                         {
2335                                                                 None
2336                                                         } else {
2337                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2338                                                         }
2339                                                 },
2340                                                 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
2341                                         };
2342                                         let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
2343                                                 let per_peer_state = self.per_peer_state.read().unwrap();
2344                                                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
2345                                                 if peer_state_mutex_opt.is_none() {
2346                                                         break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2347                                                 }
2348                                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
2349                                                 let peer_state = &mut *peer_state_lock;
2350                                                 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id) {
2351                                                         None => {
2352                                                                 // Channel was removed. The short_to_chan_info and channel_by_id maps
2353                                                                 // have no consistency guarantees.
2354                                                                 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2355                                                         },
2356                                                         Some(chan) => chan
2357                                                 };
2358                                                 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2359                                                         // Note that the behavior here should be identical to the above block - we
2360                                                         // should NOT reveal the existence or non-existence of a private channel if
2361                                                         // we don't allow forwards outbound over them.
2362                                                         break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2363                                                 }
2364                                                 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2365                                                         // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2366                                                         // "refuse to forward unless the SCID alias was used", so we pretend
2367                                                         // we don't have the channel here.
2368                                                         break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2369                                                 }
2370                                                 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2371
2372                                                 // Note that we could technically not return an error yet here and just hope
2373                                                 // that the connection is reestablished or monitor updated by the time we get
2374                                                 // around to doing the actual forward, but better to fail early if we can and
2375                                                 // hopefully an attacker trying to path-trace payments cannot make this occur
2376                                                 // on a small/per-node/per-channel scale.
2377                                                 if !chan.is_live() { // channel_disabled
2378                                                         break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2379                                                 }
2380                                                 if *outgoing_amt_msat < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2381                                                         break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2382                                                 }
2383                                                 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, *outgoing_amt_msat, *outgoing_cltv_value) {
2384                                                         break Some((err, code, chan_update_opt));
2385                                                 }
2386                                                 chan_update_opt
2387                                         } else {
2388                                                 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
2389                                                         // We really should set `incorrect_cltv_expiry` here but as we're not
2390                                                         // forwarding over a real channel we can't generate a channel_update
2391                                                         // for it. Instead we just return a generic temporary_node_failure.
2392                                                         break Some((
2393                                                                 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
2394                                                                 0x2000 | 2, None,
2395                                                         ));
2396                                                 }
2397                                                 None
2398                                         };
2399
2400                                         let cur_height = self.best_block.read().unwrap().height() + 1;
2401                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2402                                         // but we want to be robust wrt to counterparty packet sanitization (see
2403                                         // HTLC_FAIL_BACK_BUFFER rationale).
2404                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2405                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2406                                         }
2407                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2408                                                 break Some(("CLTV expiry is too far in the future", 21, None));
2409                                         }
2410                                         // If the HTLC expires ~now, don't bother trying to forward it to our
2411                                         // counterparty. They should fail it anyway, but we don't want to bother with
2412                                         // the round-trips or risk them deciding they definitely want the HTLC and
2413                                         // force-closing to ensure they get it if we're offline.
2414                                         // We previously had a much more aggressive check here which tried to ensure
2415                                         // our counterparty receives an HTLC which has *our* risk threshold met on it,
2416                                         // but there is no need to do that, and since we're a bit conservative with our
2417                                         // risk threshold it just results in failing to forward payments.
2418                                         if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2419                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2420                                         }
2421
2422                                         break None;
2423                                 }
2424                                 {
2425                                         let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
2426                                         if let Some(chan_update) = chan_update {
2427                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2428                                                         msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2429                                                 }
2430                                                 else if code == 0x1000 | 13 {
2431                                                         msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2432                                                 }
2433                                                 else if code == 0x1000 | 20 {
2434                                                         // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
2435                                                         0u16.write(&mut res).expect("Writes cannot fail");
2436                                                 }
2437                                                 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
2438                                                 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
2439                                                 chan_update.write(&mut res).expect("Writes cannot fail");
2440                                         } else if code & 0x1000 == 0x1000 {
2441                                                 // If we're trying to return an error that requires a `channel_update` but
2442                                                 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
2443                                                 // generate an update), just use the generic "temporary_node_failure"
2444                                                 // instead.
2445                                                 code = 0x2000 | 2;
2446                                         }
2447                                         return_err!(err, code, &res.0[..]);
2448                                 }
2449                         }
2450                 }
2451
2452                 pending_forward_info
2453         }
2454
2455         /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
2456         /// public, and thus should be called whenever the result is going to be passed out in a
2457         /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2458         ///
2459         /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
2460         /// corresponding to the channel's counterparty locked, as the channel been removed from the
2461         /// storage and the `peer_state` lock has been dropped.
2462         ///
2463         /// [`channel_update`]: msgs::ChannelUpdate
2464         /// [`internal_closing_signed`]: Self::internal_closing_signed
2465         fn get_channel_update_for_broadcast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2466                 if !chan.should_announce() {
2467                         return Err(LightningError {
2468                                 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2469                                 action: msgs::ErrorAction::IgnoreError
2470                         });
2471                 }
2472                 if chan.get_short_channel_id().is_none() {
2473                         return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
2474                 }
2475                 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2476                 self.get_channel_update_for_unicast(chan)
2477         }
2478
2479         /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
2480         /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
2481         /// and thus MUST NOT be called unless the recipient of the resulting message has already
2482         /// provided evidence that they know about the existence of the channel.
2483         ///
2484         /// Note that through [`internal_closing_signed`], this function is called without the
2485         /// `peer_state`  corresponding to the channel's counterparty locked, as the channel been
2486         /// removed from the storage and the `peer_state` lock has been dropped.
2487         ///
2488         /// [`channel_update`]: msgs::ChannelUpdate
2489         /// [`internal_closing_signed`]: Self::internal_closing_signed
2490         fn get_channel_update_for_unicast(&self, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2491                 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2492                 let short_channel_id = match chan.get_short_channel_id().or(chan.latest_inbound_scid_alias()) {
2493                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2494                         Some(id) => id,
2495                 };
2496
2497                 self.get_channel_update_for_onion(short_channel_id, chan)
2498         }
2499         fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2500                 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2501                 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2502
2503                 let unsigned = msgs::UnsignedChannelUpdate {
2504                         chain_hash: self.genesis_hash,
2505                         short_channel_id,
2506                         timestamp: chan.get_update_time_counter(),
2507                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2508                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2509                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2510                         htlc_maximum_msat: chan.get_announced_htlc_max_msat(),
2511                         fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2512                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2513                         excess_data: Vec::new(),
2514                 };
2515                 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
2516                 // If we returned an error and the `node_signer` cannot provide a signature for whatever
2517                 // reason`, we wouldn't be able to receive inbound payments through the corresponding
2518                 // channel.
2519                 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
2520
2521                 Ok(msgs::ChannelUpdate {
2522                         signature: sig,
2523                         contents: unsigned
2524                 })
2525         }
2526
2527         #[cfg(test)]
2528         pub(crate) fn test_send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2529                 let _lck = self.total_consistency_lock.read().unwrap();
2530                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv_bytes)
2531         }
2532
2533         fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
2534                 // The top-level caller should hold the total_consistency_lock read lock.
2535                 debug_assert!(self.total_consistency_lock.try_write().is_err());
2536
2537                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2538                 let prng_seed = self.entropy_source.get_secure_random_bytes();
2539                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2540
2541                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2542                         .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
2543                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2544                 if onion_utils::route_size_insane(&onion_payloads) {
2545                         return Err(APIError::InvalidRoute{err: "Route size too large considering onion data".to_owned()});
2546                 }
2547                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2548
2549                 let err: Result<(), _> = loop {
2550                         let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.first().unwrap().short_channel_id) {
2551                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2552                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
2553                         };
2554
2555                         let per_peer_state = self.per_peer_state.read().unwrap();
2556                         let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
2557                                 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
2558                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2559                         let peer_state = &mut *peer_state_lock;
2560                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(id) {
2561                                 if !chan.get().is_live() {
2562                                         return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
2563                                 }
2564                                 let funding_txo = chan.get().get_funding_txo().unwrap();
2565                                 let send_res = chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(),
2566                                         htlc_cltv, HTLCSource::OutboundRoute {
2567                                                 path: path.clone(),
2568                                                 session_priv: session_priv.clone(),
2569                                                 first_hop_htlc_msat: htlc_msat,
2570                                                 payment_id,
2571                                                 payment_secret: payment_secret.clone(),
2572                                         }, onion_packet, &self.logger);
2573                                 match break_chan_entry!(self, send_res, chan) {
2574                                         Some(monitor_update) => {
2575                                                 let update_id = monitor_update.update_id;
2576                                                 let update_res = self.chain_monitor.update_channel(funding_txo, monitor_update);
2577                                                 if let Err(e) = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan) {
2578                                                         break Err(e);
2579                                                 }
2580                                                 if update_res == ChannelMonitorUpdateStatus::InProgress {
2581                                                         // Note that MonitorUpdateInProgress here indicates (per function
2582                                                         // docs) that we will resend the commitment update once monitor
2583                                                         // updating completes. Therefore, we must return an error
2584                                                         // indicating that it is unsafe to retry the payment wholesale,
2585                                                         // which we do in the send_payment check for
2586                                                         // MonitorUpdateInProgress, below.
2587                                                         return Err(APIError::MonitorUpdateInProgress);
2588                                                 }
2589                                         },
2590                                         None => { },
2591                                 }
2592                         } else {
2593                                 // The channel was likely removed after we fetched the id from the
2594                                 // `short_to_chan_info` map, but before we successfully locked the
2595                                 // `channel_by_id` map.
2596                                 // This can occur as no consistency guarantees exists between the two maps.
2597                                 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
2598                         }
2599                         return Ok(());
2600                 };
2601
2602                 match handle_error!(self, err, path.first().unwrap().pubkey) {
2603                         Ok(_) => unreachable!(),
2604                         Err(e) => {
2605                                 Err(APIError::ChannelUnavailable { err: e.err })
2606                         },
2607                 }
2608         }
2609
2610         /// Sends a payment along a given route.
2611         ///
2612         /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
2613         /// fields for more info.
2614         ///
2615         /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
2616         /// [`PeerManager::process_events`]).
2617         ///
2618         /// # Avoiding Duplicate Payments
2619         ///
2620         /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
2621         /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
2622         /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
2623         /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
2624         /// second payment with the same [`PaymentId`].
2625         ///
2626         /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
2627         /// tracking of payments, including state to indicate once a payment has completed. Because you
2628         /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
2629         /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
2630         /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
2631         ///
2632         /// Additionally, in the scenario where we begin the process of sending a payment, but crash
2633         /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
2634         /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
2635         /// [`ChannelManager::list_recent_payments`] for more information.
2636         ///
2637         /// # Possible Error States on [`PaymentSendFailure`]
2638         ///
2639         /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
2640         /// each entry matching the corresponding-index entry in the route paths, see
2641         /// [`PaymentSendFailure`] for more info.
2642         ///
2643         /// In general, a path may raise:
2644         ///  * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
2645         ///    node public key) is specified.
2646         ///  * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
2647         ///    (including due to previous monitor update failure or new permanent monitor update
2648         ///    failure).
2649         ///  * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
2650         ///    relevant updates.
2651         ///
2652         /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
2653         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2654         /// different route unless you intend to pay twice!
2655         ///
2656         /// # A caution on `payment_secret`
2657         ///
2658         /// `payment_secret` is unrelated to `payment_hash` (or [`PaymentPreimage`]) and exists to
2659         /// authenticate the sender to the recipient and prevent payment-probing (deanonymization)
2660         /// attacks. For newer nodes, it will be provided to you in the invoice. If you do not have one,
2661         /// the [`Route`] must not contain multiple paths as multi-path payments require a
2662         /// recipient-provided `payment_secret`.
2663         ///
2664         /// If a `payment_secret` *is* provided, we assume that the invoice had the payment_secret
2665         /// feature bit set (either as required or as available). If multiple paths are present in the
2666         /// [`Route`], we assume the invoice had the basic_mpp feature set.
2667         ///
2668         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2669         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2670         /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
2671         /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
2672         /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
2673         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2674                 let best_block_height = self.best_block.read().unwrap().height();
2675                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2676                 self.pending_outbound_payments
2677                         .send_payment_with_route(route, payment_hash, payment_secret, payment_id, &self.entropy_source, &self.node_signer, best_block_height,
2678                                 |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2679                                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2680         }
2681
2682         /// Similar to [`ChannelManager::send_payment`], but will automatically find a route based on
2683         /// `route_params` and retry failed payment paths based on `retry_strategy`.
2684         pub fn send_payment_with_retry(&self, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
2685                 let best_block_height = self.best_block.read().unwrap().height();
2686                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2687                 self.pending_outbound_payments
2688                         .send_payment(payment_hash, payment_secret, payment_id, retry_strategy, route_params,
2689                                 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
2690                                 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
2691                                 &self.pending_events,
2692                                 |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2693                                 self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2694         }
2695
2696         #[cfg(test)]
2697         pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
2698                 let best_block_height = self.best_block.read().unwrap().height();
2699                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2700                 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, payment_secret, keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer, best_block_height,
2701                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2702                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2703         }
2704
2705         #[cfg(test)]
2706         pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, payment_secret: Option<PaymentSecret>, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
2707                 let best_block_height = self.best_block.read().unwrap().height();
2708                 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, payment_secret, payment_id, route, None, &self.entropy_source, best_block_height)
2709         }
2710
2711
2712         /// Signals that no further retries for the given payment should occur. Useful if you have a
2713         /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
2714         /// retries are exhausted.
2715         ///
2716         /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
2717         /// as there are no remaining pending HTLCs for this payment.
2718         ///
2719         /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2720         /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2721         /// determine the ultimate status of a payment.
2722         ///
2723         /// If an [`Event::PaymentFailed`] event is generated and we restart without this
2724         /// [`ChannelManager`] having been persisted, another [`Event::PaymentFailed`] may be generated.
2725         ///
2726         /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2727         /// [`Event::PaymentSent`]: events::Event::PaymentSent
2728         pub fn abandon_payment(&self, payment_id: PaymentId) {
2729                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2730                 self.pending_outbound_payments.abandon_payment(payment_id, &self.pending_events);
2731         }
2732
2733         /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2734         /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2735         /// the preimage, it must be a cryptographically secure random value that no intermediate node
2736         /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2737         /// never reach the recipient.
2738         ///
2739         /// See [`send_payment`] documentation for more details on the return value of this function
2740         /// and idempotency guarantees provided by the [`PaymentId`] key.
2741         ///
2742         /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2743         /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2744         ///
2745         /// Note that `route` must have exactly one path.
2746         ///
2747         /// [`send_payment`]: Self::send_payment
2748         pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
2749                 let best_block_height = self.best_block.read().unwrap().height();
2750                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2751                 self.pending_outbound_payments.send_spontaneous_payment_with_route(
2752                         route, payment_preimage, payment_id, &self.entropy_source, &self.node_signer,
2753                         best_block_height,
2754                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2755                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2756         }
2757
2758         /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
2759         /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
2760         ///
2761         /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
2762         /// payments.
2763         ///
2764         /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
2765         pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
2766                 let best_block_height = self.best_block.read().unwrap().height();
2767                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2768                 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, payment_id,
2769                         retry_strategy, route_params, &self.router, self.list_usable_channels(),
2770                         || self.compute_inflight_htlcs(),  &self.entropy_source, &self.node_signer, best_block_height,
2771                         &self.logger, &self.pending_events,
2772                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2773                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2774         }
2775
2776         /// Send a payment that is probing the given route for liquidity. We calculate the
2777         /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
2778         /// us to easily discern them from real payments.
2779         pub fn send_probe(&self, hops: Vec<RouteHop>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2780                 let best_block_height = self.best_block.read().unwrap().height();
2781                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2782                 self.pending_outbound_payments.send_probe(hops, self.probing_cookie_secret, &self.entropy_source, &self.node_signer, best_block_height,
2783                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
2784                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv))
2785         }
2786
2787         /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
2788         /// payment probe.
2789         #[cfg(test)]
2790         pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
2791                 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
2792         }
2793
2794         /// Handles the generation of a funding transaction, optionally (for tests) with a function
2795         /// which checks the correctness of the funding transaction given the associated channel.
2796         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<<SP::Target as SignerProvider>::Signer>, &Transaction) -> Result<OutPoint, APIError>>(
2797                 &self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
2798         ) -> Result<(), APIError> {
2799                 let per_peer_state = self.per_peer_state.read().unwrap();
2800                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2801                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2802
2803                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2804                 let peer_state = &mut *peer_state_lock;
2805                 let (chan, msg) = {
2806                         let (res, chan) = {
2807                                 match peer_state.channel_by_id.remove(temporary_channel_id) {
2808                                         Some(mut chan) => {
2809                                                 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2810
2811                                                 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2812                                                         .map_err(|e| if let ChannelError::Close(msg) = e {
2813                                                                 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2814                                                         } else { unreachable!(); })
2815                                                 , chan)
2816                                         },
2817                                         None => { return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) }) },
2818                                 }
2819                         };
2820                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
2821                                 Ok(funding_msg) => {
2822                                         (chan, funding_msg)
2823                                 },
2824                                 Err(_) => { return Err(APIError::ChannelUnavailable {
2825                                         err: "Signer refused to sign the initial commitment transaction".to_owned()
2826                                 }) },
2827                         }
2828                 };
2829
2830                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2831                         node_id: chan.get_counterparty_node_id(),
2832                         msg,
2833                 });
2834                 match peer_state.channel_by_id.entry(chan.channel_id()) {
2835                         hash_map::Entry::Occupied(_) => {
2836                                 panic!("Generated duplicate funding txid?");
2837                         },
2838                         hash_map::Entry::Vacant(e) => {
2839                                 let mut id_to_peer = self.id_to_peer.lock().unwrap();
2840                                 if id_to_peer.insert(chan.channel_id(), chan.get_counterparty_node_id()).is_some() {
2841                                         panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
2842                                 }
2843                                 e.insert(chan);
2844                         }
2845                 }
2846                 Ok(())
2847         }
2848
2849         #[cfg(test)]
2850         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2851                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
2852                         Ok(OutPoint { txid: tx.txid(), index: output_index })
2853                 })
2854         }
2855
2856         /// Call this upon creation of a funding transaction for the given channel.
2857         ///
2858         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2859         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2860         ///
2861         /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
2862         /// across the p2p network.
2863         ///
2864         /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2865         /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2866         ///
2867         /// May panic if the output found in the funding transaction is duplicative with some other
2868         /// channel (note that this should be trivially prevented by using unique funding transaction
2869         /// keys per-channel).
2870         ///
2871         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2872         /// counterparty's signature the funding transaction will automatically be broadcast via the
2873         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2874         ///
2875         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2876         /// not currently support replacing a funding transaction on an existing channel. Instead,
2877         /// create a new channel with a conflicting funding transaction.
2878         ///
2879         /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
2880         /// the wallet software generating the funding transaction to apply anti-fee sniping as
2881         /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
2882         /// for more details.
2883         ///
2884         /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
2885         /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
2886         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
2887                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2888
2889                 for inp in funding_transaction.input.iter() {
2890                         if inp.witness.is_empty() {
2891                                 return Err(APIError::APIMisuseError {
2892                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2893                                 });
2894                         }
2895                 }
2896                 {
2897                         let height = self.best_block.read().unwrap().height();
2898                         // Transactions are evaluated as final by network mempools at the next block. However, the modules
2899                         // constituting our Lightning node might not have perfect sync about their blockchain views. Thus, if
2900                         // the wallet module is in advance on the LDK view, allow one more block of headroom.
2901                         if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 2 {
2902                                 return Err(APIError::APIMisuseError {
2903                                         err: "Funding transaction absolute timelock is non-final".to_owned()
2904                                 });
2905                         }
2906                 }
2907                 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
2908                         let mut output_index = None;
2909                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2910                         for (idx, outp) in tx.output.iter().enumerate() {
2911                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2912                                         if output_index.is_some() {
2913                                                 return Err(APIError::APIMisuseError {
2914                                                         err: "Multiple outputs matched the expected script and value".to_owned()
2915                                                 });
2916                                         }
2917                                         if idx > u16::max_value() as usize {
2918                                                 return Err(APIError::APIMisuseError {
2919                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2920                                                 });
2921                                         }
2922                                         output_index = Some(idx as u16);
2923                                 }
2924                         }
2925                         if output_index.is_none() {
2926                                 return Err(APIError::APIMisuseError {
2927                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2928                                 });
2929                         }
2930                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2931                 })
2932         }
2933
2934         /// Atomically updates the [`ChannelConfig`] for the given channels.
2935         ///
2936         /// Once the updates are applied, each eligible channel (advertised with a known short channel
2937         /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
2938         /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
2939         /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
2940         ///
2941         /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
2942         /// `counterparty_node_id` is provided.
2943         ///
2944         /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
2945         /// below [`MIN_CLTV_EXPIRY_DELTA`].
2946         ///
2947         /// If an error is returned, none of the updates should be considered applied.
2948         ///
2949         /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
2950         /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
2951         /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
2952         /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
2953         /// [`ChannelUpdate`]: msgs::ChannelUpdate
2954         /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
2955         /// [`APIMisuseError`]: APIError::APIMisuseError
2956         pub fn update_channel_config(
2957                 &self, counterparty_node_id: &PublicKey, channel_ids: &[[u8; 32]], config: &ChannelConfig,
2958         ) -> Result<(), APIError> {
2959                 if config.cltv_expiry_delta < MIN_CLTV_EXPIRY_DELTA {
2960                         return Err(APIError::APIMisuseError {
2961                                 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
2962                         });
2963                 }
2964
2965                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(
2966                         &self.total_consistency_lock, &self.persistence_notifier,
2967                 );
2968                 let per_peer_state = self.per_peer_state.read().unwrap();
2969                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2970                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2971                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2972                 let peer_state = &mut *peer_state_lock;
2973                 for channel_id in channel_ids {
2974                         if !peer_state.channel_by_id.contains_key(channel_id) {
2975                                 return Err(APIError::ChannelUnavailable {
2976                                         err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", log_bytes!(*channel_id), counterparty_node_id),
2977                                 });
2978                         }
2979                 }
2980                 for channel_id in channel_ids {
2981                         let channel = peer_state.channel_by_id.get_mut(channel_id).unwrap();
2982                         if !channel.update_config(config) {
2983                                 continue;
2984                         }
2985                         if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
2986                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
2987                         } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
2988                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
2989                                         node_id: channel.get_counterparty_node_id(),
2990                                         msg,
2991                                 });
2992                         }
2993                 }
2994                 Ok(())
2995         }
2996
2997         /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
2998         /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
2999         ///
3000         /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3001         /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3002         ///
3003         /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3004         /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3005         /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3006         /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3007         /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3008         ///
3009         /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3010         /// you from forwarding more than you received.
3011         ///
3012         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3013         /// backwards.
3014         ///
3015         /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3016         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3017         // TODO: when we move to deciding the best outbound channel at forward time, only take
3018         // `next_node_id` and not `next_hop_channel_id`
3019         pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &[u8; 32], next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3020                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3021
3022                 let next_hop_scid = {
3023                         let peer_state_lock = self.per_peer_state.read().unwrap();
3024                         let peer_state_mutex = peer_state_lock.get(&next_node_id)
3025                                 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3026                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3027                         let peer_state = &mut *peer_state_lock;
3028                         match peer_state.channel_by_id.get(next_hop_channel_id) {
3029                                 Some(chan) => {
3030                                         if !chan.is_usable() {
3031                                                 return Err(APIError::ChannelUnavailable {
3032                                                         err: format!("Channel with id {} not fully established", log_bytes!(*next_hop_channel_id))
3033                                                 })
3034                                         }
3035                                         chan.get_short_channel_id().unwrap_or(chan.outbound_scid_alias())
3036                                 },
3037                                 None => return Err(APIError::ChannelUnavailable {
3038                                         err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*next_hop_channel_id), next_node_id)
3039                                 })
3040                         }
3041                 };
3042
3043                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3044                         .ok_or_else(|| APIError::APIMisuseError {
3045                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3046                         })?;
3047
3048                 let routing = match payment.forward_info.routing {
3049                         PendingHTLCRouting::Forward { onion_packet, .. } => {
3050                                 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3051                         },
3052                         _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3053                 };
3054                 let pending_htlc_info = PendingHTLCInfo {
3055                         outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3056                 };
3057
3058                 let mut per_source_pending_forward = [(
3059                         payment.prev_short_channel_id,
3060                         payment.prev_funding_outpoint,
3061                         payment.prev_user_channel_id,
3062                         vec![(pending_htlc_info, payment.prev_htlc_id)]
3063                 )];
3064                 self.forward_htlcs(&mut per_source_pending_forward);
3065                 Ok(())
3066         }
3067
3068         /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3069         /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3070         ///
3071         /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3072         /// backwards.
3073         ///
3074         /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3075         pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3076                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3077
3078                 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3079                         .ok_or_else(|| APIError::APIMisuseError {
3080                                 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3081                         })?;
3082
3083                 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3084                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3085                                 short_channel_id: payment.prev_short_channel_id,
3086                                 outpoint: payment.prev_funding_outpoint,
3087                                 htlc_id: payment.prev_htlc_id,
3088                                 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3089                                 phantom_shared_secret: None,
3090                         });
3091
3092                         let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
3093                         let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
3094                         self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
3095                 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
3096
3097                 Ok(())
3098         }
3099
3100         /// Processes HTLCs which are pending waiting on random forward delay.
3101         ///
3102         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
3103         /// Will likely generate further events.
3104         pub fn process_pending_htlc_forwards(&self) {
3105                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3106
3107                 let mut new_events = Vec::new();
3108                 let mut failed_forwards = Vec::new();
3109                 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
3110                 {
3111                         let mut forward_htlcs = HashMap::new();
3112                         mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
3113
3114                         for (short_chan_id, mut pending_forwards) in forward_htlcs {
3115                                 if short_chan_id != 0 {
3116                                         macro_rules! forwarding_channel_not_found {
3117                                                 () => {
3118                                                         for forward_info in pending_forwards.drain(..) {
3119                                                                 match forward_info {
3120                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3121                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3122                                                                                 forward_info: PendingHTLCInfo {
3123                                                                                         routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
3124                                                                                         outgoing_cltv_value, incoming_amt_msat: _
3125                                                                                 }
3126                                                                         }) => {
3127                                                                                 macro_rules! failure_handler {
3128                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
3129                                                                                                 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3130
3131                                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3132                                                                                                         short_channel_id: prev_short_channel_id,
3133                                                                                                         outpoint: prev_funding_outpoint,
3134                                                                                                         htlc_id: prev_htlc_id,
3135                                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3136                                                                                                         phantom_shared_secret: $phantom_ss,
3137                                                                                                 });
3138
3139                                                                                                 let reason = if $next_hop_unknown {
3140                                                                                                         HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
3141                                                                                                 } else {
3142                                                                                                         HTLCDestination::FailedPayment{ payment_hash }
3143                                                                                                 };
3144
3145                                                                                                 failed_forwards.push((htlc_source, payment_hash,
3146                                                                                                         HTLCFailReason::reason($err_code, $err_data),
3147                                                                                                         reason
3148                                                                                                 ));
3149                                                                                                 continue;
3150                                                                                         }
3151                                                                                 }
3152                                                                                 macro_rules! fail_forward {
3153                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3154                                                                                                 {
3155                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
3156                                                                                                 }
3157                                                                                         }
3158                                                                                 }
3159                                                                                 macro_rules! failed_payment {
3160                                                                                         ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
3161                                                                                                 {
3162                                                                                                         failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
3163                                                                                                 }
3164                                                                                         }
3165                                                                                 }
3166                                                                                 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
3167                                                                                         let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
3168                                                                                         if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
3169                                                                                                 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
3170                                                                                                 let next_hop = match onion_utils::decode_next_payment_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
3171                                                                                                         Ok(res) => res,
3172                                                                                                         Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
3173                                                                                                                 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
3174                                                                                                                 // In this scenario, the phantom would have sent us an
3175                                                                                                                 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
3176                                                                                                                 // if it came from us (the second-to-last hop) but contains the sha256
3177                                                                                                                 // of the onion.
3178                                                                                                                 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
3179                                                                                                         },
3180                                                                                                         Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
3181                                                                                                                 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
3182                                                                                                         },
3183                                                                                                 };
3184                                                                                                 match next_hop {
3185                                                                                                         onion_utils::Hop::Receive(hop_data) => {
3186                                                                                                                 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value, Some(phantom_shared_secret)) {
3187                                                                                                                         Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
3188                                                                                                                         Err(ReceiveError { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
3189                                                                                                                 }
3190                                                                                                         },
3191                                                                                                         _ => panic!(),
3192                                                                                                 }
3193                                                                                         } else {
3194                                                                                                 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3195                                                                                         }
3196                                                                                 } else {
3197                                                                                         fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
3198                                                                                 }
3199                                                                         },
3200                                                                         HTLCForwardInfo::FailHTLC { .. } => {
3201                                                                                 // Channel went away before we could fail it. This implies
3202                                                                                 // the channel is now on chain and our counterparty is
3203                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
3204                                                                                 // problem, not ours.
3205                                                                         }
3206                                                                 }
3207                                                         }
3208                                                 }
3209                                         }
3210                                         let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
3211                                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3212                                                 None => {
3213                                                         forwarding_channel_not_found!();
3214                                                         continue;
3215                                                 }
3216                                         };
3217                                         let per_peer_state = self.per_peer_state.read().unwrap();
3218                                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3219                                         if peer_state_mutex_opt.is_none() {
3220                                                 forwarding_channel_not_found!();
3221                                                 continue;
3222                                         }
3223                                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3224                                         let peer_state = &mut *peer_state_lock;
3225                                         match peer_state.channel_by_id.entry(forward_chan_id) {
3226                                                 hash_map::Entry::Vacant(_) => {
3227                                                         forwarding_channel_not_found!();
3228                                                         continue;
3229                                                 },
3230                                                 hash_map::Entry::Occupied(mut chan) => {
3231                                                         for forward_info in pending_forwards.drain(..) {
3232                                                                 match forward_info {
3233                                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3234                                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id: _,
3235                                                                                 forward_info: PendingHTLCInfo {
3236                                                                                         incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
3237                                                                                         routing: PendingHTLCRouting::Forward { onion_packet, .. }, incoming_amt_msat: _,
3238                                                                                 },
3239                                                                         }) => {
3240                                                                                 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
3241                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3242                                                                                         short_channel_id: prev_short_channel_id,
3243                                                                                         outpoint: prev_funding_outpoint,
3244                                                                                         htlc_id: prev_htlc_id,
3245                                                                                         incoming_packet_shared_secret: incoming_shared_secret,
3246                                                                                         // Phantom payments are only PendingHTLCRouting::Receive.
3247                                                                                         phantom_shared_secret: None,
3248                                                                                 });
3249                                                                                 if let Err(e) = chan.get_mut().queue_add_htlc(outgoing_amt_msat,
3250                                                                                         payment_hash, outgoing_cltv_value, htlc_source.clone(),
3251                                                                                         onion_packet, &self.logger)
3252                                                                                 {
3253                                                                                         if let ChannelError::Ignore(msg) = e {
3254                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
3255                                                                                         } else {
3256                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
3257                                                                                         }
3258                                                                                         let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
3259                                                                                         failed_forwards.push((htlc_source, payment_hash,
3260                                                                                                 HTLCFailReason::reason(failure_code, data),
3261                                                                                                 HTLCDestination::NextHopChannel { node_id: Some(chan.get().get_counterparty_node_id()), channel_id: forward_chan_id }
3262                                                                                         ));
3263                                                                                         continue;
3264                                                                                 }
3265                                                                         },
3266                                                                         HTLCForwardInfo::AddHTLC { .. } => {
3267                                                                                 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3268                                                                         },
3269                                                                         HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3270                                                                                 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3271                                                                                 if let Err(e) = chan.get_mut().queue_fail_htlc(
3272                                                                                         htlc_id, err_packet, &self.logger
3273                                                                                 ) {
3274                                                                                         if let ChannelError::Ignore(msg) = e {
3275                                                                                                 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3276                                                                                         } else {
3277                                                                                                 panic!("Stated return value requirements in queue_fail_htlc() were not met");
3278                                                                                         }
3279                                                                                         // fail-backs are best-effort, we probably already have one
3280                                                                                         // pending, and if not that's OK, if not, the channel is on
3281                                                                                         // the chain and sending the HTLC-Timeout is their problem.
3282                                                                                         continue;
3283                                                                                 }
3284                                                                         },
3285                                                                 }
3286                                                         }
3287                                                 }
3288                                         }
3289                                 } else {
3290                                         for forward_info in pending_forwards.drain(..) {
3291                                                 match forward_info {
3292                                                         HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
3293                                                                 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
3294                                                                 forward_info: PendingHTLCInfo {
3295                                                                         routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat, ..
3296                                                                 }
3297                                                         }) => {
3298                                                                 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret) = match routing {
3299                                                                         PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } => {
3300                                                                                 let _legacy_hop_data = Some(payment_data.clone());
3301                                                                                 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data }, Some(payment_data), phantom_shared_secret)
3302                                                                         },
3303                                                                         PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3304                                                                                 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None, None),
3305                                                                         _ => {
3306                                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3307                                                                         }
3308                                                                 };
3309                                                                 let mut claimable_htlc = ClaimableHTLC {
3310                                                                         prev_hop: HTLCPreviousHopData {
3311                                                                                 short_channel_id: prev_short_channel_id,
3312                                                                                 outpoint: prev_funding_outpoint,
3313                                                                                 htlc_id: prev_htlc_id,
3314                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
3315                                                                                 phantom_shared_secret,
3316                                                                         },
3317                                                                         // We differentiate the received value from the sender intended value
3318                                                                         // if possible so that we don't prematurely mark MPP payments complete
3319                                                                         // if routing nodes overpay
3320                                                                         value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
3321                                                                         sender_intended_value: outgoing_amt_msat,
3322                                                                         timer_ticks: 0,
3323                                                                         total_value_received: None,
3324                                                                         total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
3325                                                                         cltv_expiry,
3326                                                                         onion_payload,
3327                                                                 };
3328
3329                                                                 macro_rules! fail_htlc {
3330                                                                         ($htlc: expr, $payment_hash: expr) => {
3331                                                                                 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
3332                                                                                 htlc_msat_height_data.extend_from_slice(
3333                                                                                         &self.best_block.read().unwrap().height().to_be_bytes(),
3334                                                                                 );
3335                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3336                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
3337                                                                                                 outpoint: prev_funding_outpoint,
3338                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
3339                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3340                                                                                                 phantom_shared_secret,
3341                                                                                         }), payment_hash,
3342                                                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
3343                                                                                         HTLCDestination::FailedPayment { payment_hash: $payment_hash },
3344                                                                                 ));
3345                                                                         }
3346                                                                 }
3347                                                                 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
3348                                                                 let mut receiver_node_id = self.our_network_pubkey;
3349                                                                 if phantom_shared_secret.is_some() {
3350                                                                         receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
3351                                                                                 .expect("Failed to get node_id for phantom node recipient");
3352                                                                 }
3353
3354                                                                 macro_rules! check_total_value {
3355                                                                         ($payment_data: expr, $payment_preimage: expr) => {{
3356                                                                                 let mut payment_claimable_generated = false;
3357                                                                                 let purpose = || {
3358                                                                                         events::PaymentPurpose::InvoicePayment {
3359                                                                                                 payment_preimage: $payment_preimage,
3360                                                                                                 payment_secret: $payment_data.payment_secret,
3361                                                                                         }
3362                                                                                 };
3363                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3364                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3365                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3366                                                                                         continue
3367                                                                                 }
3368                                                                                 let (_, ref mut htlcs) = claimable_payments.claimable_htlcs.entry(payment_hash)
3369                                                                                         .or_insert_with(|| (purpose(), Vec::new()));
3370                                                                                 if htlcs.len() == 1 {
3371                                                                                         if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3372                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3373                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3374                                                                                                 continue
3375                                                                                         }
3376                                                                                 }
3377                                                                                 let mut total_value = claimable_htlc.sender_intended_value;
3378                                                                                 for htlc in htlcs.iter() {
3379                                                                                         total_value += htlc.sender_intended_value;
3380                                                                                         match &htlc.onion_payload {
3381                                                                                                 OnionPayload::Invoice { .. } => {
3382                                                                                                         if htlc.total_msat != $payment_data.total_msat {
3383                                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3384                                                                                                                         log_bytes!(payment_hash.0), $payment_data.total_msat, htlc.total_msat);
3385                                                                                                                 total_value = msgs::MAX_VALUE_MSAT;
3386                                                                                                         }
3387                                                                                                         if total_value >= msgs::MAX_VALUE_MSAT { break; }
3388                                                                                                 },
3389                                                                                                 _ => unreachable!(),
3390                                                                                         }
3391                                                                                 }
3392                                                                                 // The condition determining whether an MPP is complete must
3393                                                                                 // match exactly the condition used in `timer_tick_occurred`
3394                                                                                 if total_value >= msgs::MAX_VALUE_MSAT {
3395                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3396                                                                                 } else if total_value - claimable_htlc.sender_intended_value >= $payment_data.total_msat {
3397                                                                                         log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
3398                                                                                                 log_bytes!(payment_hash.0));
3399                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3400                                                                                 } else if total_value >= $payment_data.total_msat {
3401                                                                                         let prev_channel_id = prev_funding_outpoint.to_channel_id();
3402                                                                                         htlcs.push(claimable_htlc);
3403                                                                                         let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
3404                                                                                         htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
3405                                                                                         new_events.push(events::Event::PaymentClaimable {
3406                                                                                                 receiver_node_id: Some(receiver_node_id),
3407                                                                                                 payment_hash,
3408                                                                                                 purpose: purpose(),
3409                                                                                                 amount_msat,
3410                                                                                                 via_channel_id: Some(prev_channel_id),
3411                                                                                                 via_user_channel_id: Some(prev_user_channel_id),
3412                                                                                         });
3413                                                                                         payment_claimable_generated = true;
3414                                                                                 } else {
3415                                                                                         // Nothing to do - we haven't reached the total
3416                                                                                         // payment value yet, wait until we receive more
3417                                                                                         // MPP parts.
3418                                                                                         htlcs.push(claimable_htlc);
3419                                                                                 }
3420                                                                                 payment_claimable_generated
3421                                                                         }}
3422                                                                 }
3423
3424                                                                 // Check that the payment hash and secret are known. Note that we
3425                                                                 // MUST take care to handle the "unknown payment hash" and
3426                                                                 // "incorrect payment secret" cases here identically or we'd expose
3427                                                                 // that we are the ultimate recipient of the given payment hash.
3428                                                                 // Further, we must not expose whether we have any other HTLCs
3429                                                                 // associated with the same payment_hash pending or not.
3430                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3431                                                                 match payment_secrets.entry(payment_hash) {
3432                                                                         hash_map::Entry::Vacant(_) => {
3433                                                                                 match claimable_htlc.onion_payload {
3434                                                                                         OnionPayload::Invoice { .. } => {
3435                                                                                                 let payment_data = payment_data.unwrap();
3436                                                                                                 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3437                                                                                                         Ok(result) => result,
3438                                                                                                         Err(()) => {
3439                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", log_bytes!(payment_hash.0));
3440                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3441                                                                                                                 continue
3442                                                                                                         }
3443                                                                                                 };
3444                                                                                                 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
3445                                                                                                         let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
3446                                                                                                         if (cltv_expiry as u64) < expected_min_expiry_height {
3447                                                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
3448                                                                                                                         log_bytes!(payment_hash.0), cltv_expiry, expected_min_expiry_height);
3449                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3450                                                                                                                 continue;
3451                                                                                                         }
3452                                                                                                 }
3453                                                                                                 check_total_value!(payment_data, payment_preimage);
3454                                                                                         },
3455                                                                                         OnionPayload::Spontaneous(preimage) => {
3456                                                                                                 let mut claimable_payments = self.claimable_payments.lock().unwrap();
3457                                                                                                 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
3458                                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3459                                                                                                         continue
3460                                                                                                 }
3461                                                                                                 match claimable_payments.claimable_htlcs.entry(payment_hash) {
3462                                                                                                         hash_map::Entry::Vacant(e) => {
3463                                                                                                                 let amount_msat = claimable_htlc.value;
3464                                                                                                                 claimable_htlc.total_value_received = Some(amount_msat);
3465                                                                                                                 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
3466                                                                                                                 e.insert((purpose.clone(), vec![claimable_htlc]));
3467                                                                                                                 let prev_channel_id = prev_funding_outpoint.to_channel_id();
3468                                                                                                                 new_events.push(events::Event::PaymentClaimable {
3469                                                                                                                         receiver_node_id: Some(receiver_node_id),
3470                                                                                                                         payment_hash,
3471                                                                                                                         amount_msat,
3472                                                                                                                         purpose,
3473                                                                                                                         via_channel_id: Some(prev_channel_id),
3474                                                                                                                         via_user_channel_id: Some(prev_user_channel_id),
3475                                                                                                                 });
3476                                                                                                         },
3477                                                                                                         hash_map::Entry::Occupied(_) => {
3478                                                                                                                 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3479                                                                                                                 fail_htlc!(claimable_htlc, payment_hash);
3480                                                                                                         }
3481                                                                                                 }
3482                                                                                         }
3483                                                                                 }
3484                                                                         },
3485                                                                         hash_map::Entry::Occupied(inbound_payment) => {
3486                                                                                 if payment_data.is_none() {
3487                                                                                         log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3488                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3489                                                                                         continue
3490                                                                                 };
3491                                                                                 let payment_data = payment_data.unwrap();
3492                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3493                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3494                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3495                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3496                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3497                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3498                                                                                         fail_htlc!(claimable_htlc, payment_hash);
3499                                                                                 } else {
3500                                                                                         let payment_claimable_generated = check_total_value!(payment_data, inbound_payment.get().payment_preimage);
3501                                                                                         if payment_claimable_generated {
3502                                                                                                 inbound_payment.remove_entry();
3503                                                                                         }
3504                                                                                 }
3505                                                                         },
3506                                                                 };
3507                                                         },
3508                                                         HTLCForwardInfo::FailHTLC { .. } => {
3509                                                                 panic!("Got pending fail of our own HTLC");
3510                                                         }
3511                                                 }
3512                                         }
3513                                 }
3514                         }
3515                 }
3516
3517                 let best_block_height = self.best_block.read().unwrap().height();
3518                 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
3519                         || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3520                         &self.pending_events, &self.logger,
3521                         |path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv|
3522                         self.send_payment_along_path(path, payment_hash, payment_secret, total_value, cur_height, payment_id, keysend_preimage, session_priv));
3523
3524                 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
3525                         self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
3526                 }
3527                 self.forward_htlcs(&mut phantom_receives);
3528
3529                 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
3530                 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
3531                 // nice to do the work now if we can rather than while we're trying to get messages in the
3532                 // network stack.
3533                 self.check_free_holding_cells();
3534
3535                 if new_events.is_empty() { return }
3536                 let mut events = self.pending_events.lock().unwrap();
3537                 events.append(&mut new_events);
3538         }
3539
3540         /// Free the background events, generally called from timer_tick_occurred.
3541         ///
3542         /// Exposed for testing to allow us to process events quickly without generating accidental
3543         /// BroadcastChannelUpdate events in timer_tick_occurred.
3544         ///
3545         /// Expects the caller to have a total_consistency_lock read lock.
3546         fn process_background_events(&self) -> bool {
3547                 let mut background_events = Vec::new();
3548                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3549                 if background_events.is_empty() {
3550                         return false;
3551                 }
3552
3553                 for event in background_events.drain(..) {
3554                         match event {
3555                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3556                                         // The channel has already been closed, so no use bothering to care about the
3557                                         // monitor updating completing.
3558                                         let _ = self.chain_monitor.update_channel(funding_txo, &update);
3559                                 },
3560                         }
3561                 }
3562                 true
3563         }
3564
3565         #[cfg(any(test, feature = "_test_utils"))]
3566         /// Process background events, for functional testing
3567         pub fn test_process_background_events(&self) {
3568                 self.process_background_events();
3569         }
3570
3571         fn update_channel_fee(&self, chan_id: &[u8; 32], chan: &mut Channel<<SP::Target as SignerProvider>::Signer>, new_feerate: u32) -> NotifyOption {
3572                 if !chan.is_outbound() { return NotifyOption::SkipPersist; }
3573                 // If the feerate has decreased by less than half, don't bother
3574                 if new_feerate <= chan.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.get_feerate_sat_per_1000_weight() {
3575                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3576                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3577                         return NotifyOption::SkipPersist;
3578                 }
3579                 if !chan.is_live() {
3580                         log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3581                                 log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3582                         return NotifyOption::SkipPersist;
3583                 }
3584                 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3585                         log_bytes!(chan_id[..]), chan.get_feerate_sat_per_1000_weight(), new_feerate);
3586
3587                 chan.queue_update_fee(new_feerate, &self.logger);
3588                 NotifyOption::DoPersist
3589         }
3590
3591         #[cfg(fuzzing)]
3592         /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3593         /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3594         /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3595         /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3596         pub fn maybe_update_chan_fees(&self) {
3597                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3598                         let mut should_persist = NotifyOption::SkipPersist;
3599
3600                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3601
3602                         let per_peer_state = self.per_peer_state.read().unwrap();
3603                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3604                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3605                                 let peer_state = &mut *peer_state_lock;
3606                                 for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
3607                                         let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3608                                         if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3609                                 }
3610                         }
3611
3612                         should_persist
3613                 });
3614         }
3615
3616         /// Performs actions which should happen on startup and roughly once per minute thereafter.
3617         ///
3618         /// This currently includes:
3619         ///  * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3620         ///  * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
3621         ///    than a minute, informing the network that they should no longer attempt to route over
3622         ///    the channel.
3623         ///  * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
3624         ///    with the current [`ChannelConfig`].
3625         ///  * Removing peers which have disconnected but and no longer have any channels.
3626         ///
3627         /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
3628         /// estimate fetches.
3629         ///
3630         /// [`ChannelUpdate`]: msgs::ChannelUpdate
3631         /// [`ChannelConfig`]: crate::util::config::ChannelConfig
3632         pub fn timer_tick_occurred(&self) {
3633                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3634                         let mut should_persist = NotifyOption::SkipPersist;
3635                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3636
3637                         let new_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
3638
3639                         let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
3640                         let mut timed_out_mpp_htlcs = Vec::new();
3641                         let mut pending_peers_awaiting_removal = Vec::new();
3642                         {
3643                                 let per_peer_state = self.per_peer_state.read().unwrap();
3644                                 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
3645                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3646                                         let peer_state = &mut *peer_state_lock;
3647                                         let pending_msg_events = &mut peer_state.pending_msg_events;
3648                                         let counterparty_node_id = *counterparty_node_id;
3649                                         peer_state.channel_by_id.retain(|chan_id, chan| {
3650                                                 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
3651                                                 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3652
3653                                                 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3654                                                         let (needs_close, err) = convert_chan_err!(self, e, chan, chan_id);
3655                                                         handle_errors.push((Err(err), counterparty_node_id));
3656                                                         if needs_close { return false; }
3657                                                 }
3658
3659                                                 match chan.channel_update_status() {
3660                                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3661                                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3662                                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3663                                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3664                                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3665                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3666                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3667                                                                                 msg: update
3668                                                                         });
3669                                                                 }
3670                                                                 should_persist = NotifyOption::DoPersist;
3671                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3672                                                         },
3673                                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3674                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3675                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3676                                                                                 msg: update
3677                                                                         });
3678                                                                 }
3679                                                                 should_persist = NotifyOption::DoPersist;
3680                                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3681                                                         },
3682                                                         _ => {},
3683                                                 }
3684
3685                                                 chan.maybe_expire_prev_config();
3686
3687                                                 true
3688                                         });
3689                                         if peer_state.ok_to_remove(true) {
3690                                                 pending_peers_awaiting_removal.push(counterparty_node_id);
3691                                         }
3692                                 }
3693                         }
3694
3695                         // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
3696                         // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
3697                         // of to that peer is later closed while still being disconnected (i.e. force closed),
3698                         // we therefore need to remove the peer from `peer_state` separately.
3699                         // To avoid having to take the `per_peer_state` `write` lock once the channels are
3700                         // closed, we instead remove such peers awaiting removal here on a timer, to limit the
3701                         // negative effects on parallelism as much as possible.
3702                         if pending_peers_awaiting_removal.len() > 0 {
3703                                 let mut per_peer_state = self.per_peer_state.write().unwrap();
3704                                 for counterparty_node_id in pending_peers_awaiting_removal {
3705                                         match per_peer_state.entry(counterparty_node_id) {
3706                                                 hash_map::Entry::Occupied(entry) => {
3707                                                         // Remove the entry if the peer is still disconnected and we still
3708                                                         // have no channels to the peer.
3709                                                         let remove_entry = {
3710                                                                 let peer_state = entry.get().lock().unwrap();
3711                                                                 peer_state.ok_to_remove(true)
3712                                                         };
3713                                                         if remove_entry {
3714                                                                 entry.remove_entry();
3715                                                         }
3716                                                 },
3717                                                 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
3718                                         }
3719                                 }
3720                         }
3721
3722                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
3723                                 if htlcs.is_empty() {
3724                                         // This should be unreachable
3725                                         debug_assert!(false);
3726                                         return false;
3727                                 }
3728                                 if let OnionPayload::Invoice { .. } = htlcs[0].onion_payload {
3729                                         // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3730                                         // In this case we're not going to handle any timeouts of the parts here.
3731                                         // This condition determining whether the MPP is complete here must match
3732                                         // exactly the condition used in `process_pending_htlc_forwards`.
3733                                         if htlcs[0].total_msat <= htlcs.iter().fold(0, |total, htlc| total + htlc.sender_intended_value) {
3734                                                 return true;
3735                                         } else if htlcs.into_iter().any(|htlc| {
3736                                                 htlc.timer_ticks += 1;
3737                                                 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3738                                         }) {
3739                                                 timed_out_mpp_htlcs.extend(htlcs.drain(..).map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
3740                                                 return false;
3741                                         }
3742                                 }
3743                                 true
3744                         });
3745
3746                         for htlc_source in timed_out_mpp_htlcs.drain(..) {
3747                                 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
3748                                 let reason = HTLCFailReason::from_failure_code(23);
3749                                 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
3750                                 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
3751                         }
3752
3753                         for (err, counterparty_node_id) in handle_errors.drain(..) {
3754                                 let _ = handle_error!(self, err, counterparty_node_id);
3755                         }
3756
3757                         self.pending_outbound_payments.remove_stale_resolved_payments(&self.pending_events);
3758
3759                         // Technically we don't need to do this here, but if we have holding cell entries in a
3760                         // channel that need freeing, it's better to do that here and block a background task
3761                         // than block the message queueing pipeline.
3762                         if self.check_free_holding_cells() {
3763                                 should_persist = NotifyOption::DoPersist;
3764                         }
3765
3766                         should_persist
3767                 });
3768         }
3769
3770         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3771         /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
3772         /// along the path (including in our own channel on which we received it).
3773         ///
3774         /// Note that in some cases around unclean shutdown, it is possible the payment may have
3775         /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
3776         /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
3777         /// may have already been failed automatically by LDK if it was nearing its expiration time.
3778         ///
3779         /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
3780         /// [`ChannelManager::claim_funds`]), you should still monitor for
3781         /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
3782         /// startup during which time claims that were in-progress at shutdown may be replayed.
3783         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
3784                 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
3785         }
3786
3787         /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
3788         /// reason for the failure.
3789         ///
3790         /// See [`FailureCode`] for valid failure codes.
3791         pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
3792                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3793
3794                 let removed_source = self.claimable_payments.lock().unwrap().claimable_htlcs.remove(payment_hash);
3795                 if let Some((_, mut sources)) = removed_source {
3796                         for htlc in sources.drain(..) {
3797                                 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
3798                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
3799                                 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
3800                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3801                         }
3802                 }
3803         }
3804
3805         /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
3806         fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
3807                 match failure_code {
3808                         FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code as u16),
3809                         FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code as u16),
3810                         FailureCode::IncorrectOrUnknownPaymentDetails => {
3811                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
3812                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
3813                                 HTLCFailReason::reason(failure_code as u16, htlc_msat_height_data)
3814                         }
3815                 }
3816         }
3817
3818         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3819         /// that we want to return and a channel.
3820         ///
3821         /// This is for failures on the channel on which the HTLC was *received*, not failures
3822         /// forwarding
3823         fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3824                 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3825                 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3826                 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3827                 // an inbound SCID alias before the real SCID.
3828                 let scid_pref = if chan.should_announce() {
3829                         chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3830                 } else {
3831                         chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3832                 };
3833                 if let Some(scid) = scid_pref {
3834                         self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3835                 } else {
3836                         (0x4000|10, Vec::new())
3837                 }
3838         }
3839
3840
3841         /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3842         /// that we want to return and a channel.
3843         fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<<SP::Target as SignerProvider>::Signer>) -> (u16, Vec<u8>) {
3844                 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3845                 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3846                         let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
3847                         if desired_err_code == 0x1000 | 20 {
3848                                 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
3849                                 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
3850                                 0u16.write(&mut enc).expect("Writes cannot fail");
3851                         }
3852                         (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
3853                         msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
3854                         upd.write(&mut enc).expect("Writes cannot fail");
3855                         (desired_err_code, enc.0)
3856                 } else {
3857                         // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3858                         // which means we really shouldn't have gotten a payment to be forwarded over this
3859                         // channel yet, or if we did it's from a route hint. Either way, returning an error of
3860                         // PERM|no_such_channel should be fine.
3861                         (0x4000|10, Vec::new())
3862                 }
3863         }
3864
3865         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3866         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3867         // be surfaced to the user.
3868         fn fail_holding_cell_htlcs(
3869                 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32],
3870                 counterparty_node_id: &PublicKey
3871         ) {
3872                 let (failure_code, onion_failure_data) = {
3873                         let per_peer_state = self.per_peer_state.read().unwrap();
3874                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3875                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3876                                 let peer_state = &mut *peer_state_lock;
3877                                 match peer_state.channel_by_id.entry(channel_id) {
3878                                         hash_map::Entry::Occupied(chan_entry) => {
3879                                                 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3880                                         },
3881                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3882                                 }
3883                         } else { (0x4000|10, Vec::new()) }
3884                 };
3885
3886                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3887                         let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
3888                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
3889                         self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
3890                 }
3891         }
3892
3893         /// Fails an HTLC backwards to the sender of it to us.
3894         /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
3895         fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
3896                 // Ensure that no peer state channel storage lock is held when calling this function.
3897                 // This ensures that future code doesn't introduce a lock-order requirement for
3898                 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
3899                 // this function with any `per_peer_state` peer lock acquired would.
3900                 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3901                         debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3902                 }
3903
3904                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3905                 //identify whether we sent it or not based on the (I presume) very different runtime
3906                 //between the branches here. We should make this async and move it into the forward HTLCs
3907                 //timer handling.
3908
3909                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3910                 // from block_connected which may run during initialization prior to the chain_monitor
3911                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3912                 match source {
3913                         HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
3914                                 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
3915                                         session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
3916                                         &self.pending_events, &self.logger)
3917                                 { self.push_pending_forwards_ev(); }
3918                         },
3919                         HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint }) => {
3920                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", log_bytes!(payment_hash.0), onion_error);
3921                                 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
3922
3923                                 let mut push_forward_ev = false;
3924                                 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
3925                                 if forward_htlcs.is_empty() {
3926                                         push_forward_ev = true;
3927                                 }
3928                                 match forward_htlcs.entry(*short_channel_id) {
3929                                         hash_map::Entry::Occupied(mut entry) => {
3930                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
3931                                         },
3932                                         hash_map::Entry::Vacant(entry) => {
3933                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
3934                                         }
3935                                 }
3936                                 mem::drop(forward_htlcs);
3937                                 if push_forward_ev { self.push_pending_forwards_ev(); }
3938                                 let mut pending_events = self.pending_events.lock().unwrap();
3939                                 pending_events.push(events::Event::HTLCHandlingFailed {
3940                                         prev_channel_id: outpoint.to_channel_id(),
3941                                         failed_next_destination: destination,
3942                                 });
3943                         },
3944                 }
3945         }
3946
3947         /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
3948         /// [`MessageSendEvent`]s needed to claim the payment.
3949         ///
3950         /// Note that calling this method does *not* guarantee that the payment has been claimed. You
3951         /// *must* wait for an [`Event::PaymentClaimed`] event which upon a successful claim will be
3952         /// provided to your [`EventHandler`] when [`process_pending_events`] is next called.
3953         ///
3954         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3955         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
3956         /// event matches your expectation. If you fail to do so and call this method, you may provide
3957         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3958         ///
3959         /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
3960         /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
3961         /// [`process_pending_events`]: EventsProvider::process_pending_events
3962         /// [`create_inbound_payment`]: Self::create_inbound_payment
3963         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3964         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
3965                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3966
3967                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3968
3969                 let mut sources = {
3970                         let mut claimable_payments = self.claimable_payments.lock().unwrap();
3971                         if let Some((payment_purpose, sources)) = claimable_payments.claimable_htlcs.remove(&payment_hash) {
3972                                 let mut receiver_node_id = self.our_network_pubkey;
3973                                 for htlc in sources.iter() {
3974                                         if htlc.prev_hop.phantom_shared_secret.is_some() {
3975                                                 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
3976                                                         .expect("Failed to get node_id for phantom node recipient");
3977                                                 receiver_node_id = phantom_pubkey;
3978                                                 break;
3979                                         }
3980                                 }
3981
3982                                 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
3983                                         ClaimingPayment { amount_msat: sources.iter().map(|source| source.value).sum(),
3984                                         payment_purpose, receiver_node_id,
3985                                 });
3986                                 if dup_purpose.is_some() {
3987                                         debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
3988                                         log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
3989                                                 log_bytes!(payment_hash.0));
3990                                 }
3991                                 sources
3992                         } else { return; }
3993                 };
3994                 debug_assert!(!sources.is_empty());
3995
3996                 // If we are claiming an MPP payment, we check that all channels which contain a claimable
3997                 // HTLC still exist. While this isn't guaranteed to remain true if a channel closes while
3998                 // we're claiming (or even after we claim, before the commitment update dance completes),
3999                 // it should be a relatively rare race, and we'd rather not claim HTLCs that require us to
4000                 // go on-chain (and lose the on-chain fee to do so) than just reject the payment.
4001                 //
4002                 // Note that we'll still always get our funds - as long as the generated
4003                 // `ChannelMonitorUpdate` makes it out to the relevant monitor we can claim on-chain.
4004                 //
4005                 // If we find an HTLC which we would need to claim but for which we do not have a
4006                 // channel, we will fail all parts of the MPP payment. While we could wait and see if
4007                 // the sender retries the already-failed path(s), it should be a pretty rare case where
4008                 // we got all the HTLCs and then a channel closed while we were waiting for the user to
4009                 // provide the preimage, so worrying too much about the optimal handling isn't worth
4010                 // it.
4011                 let mut claimable_amt_msat = 0;
4012                 let mut prev_total_msat = None;
4013                 let mut expected_amt_msat = None;
4014                 let mut valid_mpp = true;
4015                 let mut errs = Vec::new();
4016                 let per_peer_state = self.per_peer_state.read().unwrap();
4017                 for htlc in sources.iter() {
4018                         let (counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&htlc.prev_hop.short_channel_id) {
4019                                 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4020                                 None => {
4021                                         valid_mpp = false;
4022                                         break;
4023                                 }
4024                         };
4025
4026                         let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4027                         if peer_state_mutex_opt.is_none() {
4028                                 valid_mpp = false;
4029                                 break;
4030                         }
4031
4032                         let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4033                         let peer_state = &mut *peer_state_lock;
4034
4035                         if peer_state.channel_by_id.get(&chan_id).is_none() {
4036                                 valid_mpp = false;
4037                                 break;
4038                         }
4039
4040                         if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
4041                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
4042                                 debug_assert!(false);
4043                                 valid_mpp = false;
4044                                 break;
4045                         }
4046                         prev_total_msat = Some(htlc.total_msat);
4047
4048                         if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
4049                                 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
4050                                 debug_assert!(false);
4051                                 valid_mpp = false;
4052                                 break;
4053                         }
4054                         expected_amt_msat = htlc.total_value_received;
4055
4056                         if let OnionPayload::Spontaneous(_) = &htlc.onion_payload {
4057                                 // We don't currently support MPP for spontaneous payments, so just check
4058                                 // that there's one payment here and move on.
4059                                 if sources.len() != 1 {
4060                                         log_error!(self.logger, "Somehow ended up with an MPP spontaneous payment - this should not be reachable!");
4061                                         debug_assert!(false);
4062                                         valid_mpp = false;
4063                                         break;
4064                                 }
4065                         }
4066
4067                         claimable_amt_msat += htlc.value;
4068                 }
4069                 mem::drop(per_peer_state);
4070                 if sources.is_empty() || expected_amt_msat.is_none() {
4071                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4072                         log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
4073                         return;
4074                 }
4075                 if claimable_amt_msat != expected_amt_msat.unwrap() {
4076                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4077                         log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
4078                                 expected_amt_msat.unwrap(), claimable_amt_msat);
4079                         return;
4080                 }
4081                 if valid_mpp {
4082                         for htlc in sources.drain(..) {
4083                                 if let Err((pk, err)) = self.claim_funds_from_hop(
4084                                         htlc.prev_hop, payment_preimage,
4085                                         |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
4086                                 {
4087                                         if let msgs::ErrorAction::IgnoreError = err.err.action {
4088                                                 // We got a temporary failure updating monitor, but will claim the
4089                                                 // HTLC when the monitor updating is restored (or on chain).
4090                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
4091                                         } else { errs.push((pk, err)); }
4092                                 }
4093                         }
4094                 }
4095                 if !valid_mpp {
4096                         for htlc in sources.drain(..) {
4097                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4098                                 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4099                                 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4100                                 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
4101                                 let receiver = HTLCDestination::FailedPayment { payment_hash };
4102                                 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4103                         }
4104                         self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4105                 }
4106
4107                 // Now we can handle any errors which were generated.
4108                 for (counterparty_node_id, err) in errs.drain(..) {
4109                         let res: Result<(), _> = Err(err);
4110                         let _ = handle_error!(self, res, counterparty_node_id);
4111                 }
4112         }
4113
4114         fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
4115                 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
4116         -> Result<(), (PublicKey, MsgHandleErrInternal)> {
4117                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
4118
4119                 let per_peer_state = self.per_peer_state.read().unwrap();
4120                 let chan_id = prev_hop.outpoint.to_channel_id();
4121                 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
4122                         Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
4123                         None => None
4124                 };
4125
4126                 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
4127                         |counterparty_node_id| per_peer_state.get(counterparty_node_id).map(
4128                                 |peer_mutex| peer_mutex.lock().unwrap()
4129                         )
4130                 ).unwrap_or(None);
4131
4132                 if peer_state_opt.is_some() {
4133                         let mut peer_state_lock = peer_state_opt.unwrap();
4134                         let peer_state = &mut *peer_state_lock;
4135                         if let hash_map::Entry::Occupied(mut chan) = peer_state.channel_by_id.entry(chan_id) {
4136                                 let counterparty_node_id = chan.get().get_counterparty_node_id();
4137                                 let fulfill_res = chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
4138
4139                                 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
4140                                         if let Some(action) = completion_action(Some(htlc_value_msat)) {
4141                                                 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
4142                                                         log_bytes!(chan_id), action);
4143                                                 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
4144                                         }
4145                                         let update_id = monitor_update.update_id;
4146                                         let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, monitor_update);
4147                                         let res = handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4148                                                 peer_state, per_peer_state, chan);
4149                                         if let Err(e) = res {
4150                                                 // TODO: This is a *critical* error - we probably updated the outbound edge
4151                                                 // of the HTLC's monitor with a preimage. We should retry this monitor
4152                                                 // update over and over again until morale improves.
4153                                                 log_error!(self.logger, "Failed to update channel monitor with preimage {:?}", payment_preimage);
4154                                                 return Err((counterparty_node_id, e));
4155                                         }
4156                                 }
4157                                 return Ok(());
4158                         }
4159                 }
4160                 let preimage_update = ChannelMonitorUpdate {
4161                         update_id: CLOSED_CHANNEL_UPDATE_ID,
4162                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4163                                 payment_preimage,
4164                         }],
4165                 };
4166                 // We update the ChannelMonitor on the backward link, after
4167                 // receiving an `update_fulfill_htlc` from the forward link.
4168                 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
4169                 if update_res != ChannelMonitorUpdateStatus::Completed {
4170                         // TODO: This needs to be handled somehow - if we receive a monitor update
4171                         // with a preimage we *must* somehow manage to propagate it to the upstream
4172                         // channel, or we must have an ability to receive the same event and try
4173                         // again on restart.
4174                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4175                                 payment_preimage, update_res);
4176                 }
4177                 // Note that we do process the completion action here. This totally could be a
4178                 // duplicate claim, but we have no way of knowing without interrogating the
4179                 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
4180                 // generally always allowed to be duplicative (and it's specifically noted in
4181                 // `PaymentForwarded`).
4182                 self.handle_monitor_update_completion_actions(completion_action(None));
4183                 Ok(())
4184         }
4185
4186         fn finalize_claims(&self, sources: Vec<HTLCSource>) {
4187                 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
4188         }
4189
4190         fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool, next_channel_id: [u8; 32]) {
4191                 match source {
4192                         HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
4193                                 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage, session_priv, path, from_onchain, &self.pending_events, &self.logger);
4194                         },
4195                         HTLCSource::PreviousHopData(hop_data) => {
4196                                 let prev_outpoint = hop_data.outpoint;
4197                                 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
4198                                         |htlc_claim_value_msat| {
4199                                                 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4200                                                         let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4201                                                                 Some(claimed_htlc_value - forwarded_htlc_value)
4202                                                         } else { None };
4203
4204                                                         let prev_channel_id = Some(prev_outpoint.to_channel_id());
4205                                                         let next_channel_id = Some(next_channel_id);
4206
4207                                                         Some(MonitorUpdateCompletionAction::EmitEvent { event: events::Event::PaymentForwarded {
4208                                                                 fee_earned_msat,
4209                                                                 claim_from_onchain_tx: from_onchain,
4210                                                                 prev_channel_id,
4211                                                                 next_channel_id,
4212                                                                 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
4213                                                         }})
4214                                                 } else { None }
4215                                         });
4216                                 if let Err((pk, err)) = res {
4217                                         let result: Result<(), _> = Err(err);
4218                                         let _ = handle_error!(self, result, pk);
4219                                 }
4220                         },
4221                 }
4222         }
4223
4224         /// Gets the node_id held by this ChannelManager
4225         pub fn get_our_node_id(&self) -> PublicKey {
4226                 self.our_network_pubkey.clone()
4227         }
4228
4229         fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
4230                 for action in actions.into_iter() {
4231                         match action {
4232                                 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
4233                                         let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
4234                                         if let Some(ClaimingPayment { amount_msat, payment_purpose: purpose, receiver_node_id }) = payment {
4235                                                 self.pending_events.lock().unwrap().push(events::Event::PaymentClaimed {
4236                                                         payment_hash, purpose, amount_msat, receiver_node_id: Some(receiver_node_id),
4237                                                 });
4238                                         }
4239                                 },
4240                                 MonitorUpdateCompletionAction::EmitEvent { event } => {
4241                                         self.pending_events.lock().unwrap().push(event);
4242                                 },
4243                         }
4244                 }
4245         }
4246
4247         /// Handles a channel reentering a functional state, either due to reconnect or a monitor
4248         /// update completion.
4249         fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
4250                 channel: &mut Channel<<SP::Target as SignerProvider>::Signer>, raa: Option<msgs::RevokeAndACK>,
4251                 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
4252                 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
4253                 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
4254         -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
4255                 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
4256                         log_bytes!(channel.channel_id()),
4257                         if raa.is_some() { "an" } else { "no" },
4258                         if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
4259                         if funding_broadcastable.is_some() { "" } else { "not " },
4260                         if channel_ready.is_some() { "sending" } else { "without" },
4261                         if announcement_sigs.is_some() { "sending" } else { "without" });
4262
4263                 let mut htlc_forwards = None;
4264
4265                 let counterparty_node_id = channel.get_counterparty_node_id();
4266                 if !pending_forwards.is_empty() {
4267                         htlc_forwards = Some((channel.get_short_channel_id().unwrap_or(channel.outbound_scid_alias()),
4268                                 channel.get_funding_txo().unwrap(), channel.get_user_id(), pending_forwards));
4269                 }
4270
4271                 if let Some(msg) = channel_ready {
4272                         send_channel_ready!(self, pending_msg_events, channel, msg);
4273                 }
4274                 if let Some(msg) = announcement_sigs {
4275                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4276                                 node_id: counterparty_node_id,
4277                                 msg,
4278                         });
4279                 }
4280
4281                 macro_rules! handle_cs { () => {
4282                         if let Some(update) = commitment_update {
4283                                 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4284                                         node_id: counterparty_node_id,
4285                                         updates: update,
4286                                 });
4287                         }
4288                 } }
4289                 macro_rules! handle_raa { () => {
4290                         if let Some(revoke_and_ack) = raa {
4291                                 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4292                                         node_id: counterparty_node_id,
4293                                         msg: revoke_and_ack,
4294                                 });
4295                         }
4296                 } }
4297                 match order {
4298                         RAACommitmentOrder::CommitmentFirst => {
4299                                 handle_cs!();
4300                                 handle_raa!();
4301                         },
4302                         RAACommitmentOrder::RevokeAndACKFirst => {
4303                                 handle_raa!();
4304                                 handle_cs!();
4305                         },
4306                 }
4307
4308                 if let Some(tx) = funding_broadcastable {
4309                         log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
4310                         self.tx_broadcaster.broadcast_transaction(&tx);
4311                 }
4312
4313                 {
4314                         let mut pending_events = self.pending_events.lock().unwrap();
4315                         emit_channel_pending_event!(pending_events, channel);
4316                         emit_channel_ready_event!(pending_events, channel);
4317                 }
4318
4319                 htlc_forwards
4320         }
4321
4322         fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
4323                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
4324
4325                 let counterparty_node_id = match counterparty_node_id {
4326                         Some(cp_id) => cp_id.clone(),
4327                         None => {
4328                                 // TODO: Once we can rely on the counterparty_node_id from the
4329                                 // monitor event, this and the id_to_peer map should be removed.
4330                                 let id_to_peer = self.id_to_peer.lock().unwrap();
4331                                 match id_to_peer.get(&funding_txo.to_channel_id()) {
4332                                         Some(cp_id) => cp_id.clone(),
4333                                         None => return,
4334                                 }
4335                         }
4336                 };
4337                 let per_peer_state = self.per_peer_state.read().unwrap();
4338                 let mut peer_state_lock;
4339                 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4340                 if peer_state_mutex_opt.is_none() { return }
4341                 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4342                 let peer_state = &mut *peer_state_lock;
4343                 let mut channel = {
4344                         match peer_state.channel_by_id.entry(funding_txo.to_channel_id()){
4345                                 hash_map::Entry::Occupied(chan) => chan,
4346                                 hash_map::Entry::Vacant(_) => return,
4347                         }
4348                 };
4349                 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}",
4350                         highest_applied_update_id, channel.get().get_latest_monitor_update_id());
4351                 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4352                         return;
4353                 }
4354                 handle_monitor_update_completion!(self, highest_applied_update_id, peer_state_lock, peer_state, per_peer_state, channel.get_mut());
4355         }
4356
4357         /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
4358         ///
4359         /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
4360         /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
4361         /// the channel.
4362         ///
4363         /// The `user_channel_id` parameter will be provided back in
4364         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4365         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4366         ///
4367         /// Note that this method will return an error and reject the channel, if it requires support
4368         /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
4369         /// used to accept such channels.
4370         ///
4371         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4372         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4373         pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4374                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
4375         }
4376
4377         /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
4378         /// it as confirmed immediately.
4379         ///
4380         /// The `user_channel_id` parameter will be provided back in
4381         /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4382         /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
4383         ///
4384         /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
4385         /// and (if the counterparty agrees), enables forwarding of payments immediately.
4386         ///
4387         /// This fully trusts that the counterparty has honestly and correctly constructed the funding
4388         /// transaction and blindly assumes that it will eventually confirm.
4389         ///
4390         /// If it does not confirm before we decide to close the channel, or if the funding transaction
4391         /// does not pay to the correct script the correct amount, *you will lose funds*.
4392         ///
4393         /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4394         /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4395         pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
4396                 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
4397         }
4398
4399         fn do_accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
4400                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4401
4402                 let peers_without_funded_channels = self.peers_without_funded_channels(|peer| !peer.channel_by_id.is_empty());
4403                 let per_peer_state = self.per_peer_state.read().unwrap();
4404                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4405                         .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4406                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4407                 let peer_state = &mut *peer_state_lock;
4408                 let is_only_peer_channel = peer_state.channel_by_id.len() == 1;
4409                 match peer_state.channel_by_id.entry(temporary_channel_id.clone()) {
4410                         hash_map::Entry::Occupied(mut channel) => {
4411                                 if !channel.get().inbound_is_awaiting_accept() {
4412                                         return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4413                                 }
4414                                 if accept_0conf {
4415                                         channel.get_mut().set_0conf();
4416                                 } else if channel.get().get_channel_type().requires_zero_conf() {
4417                                         let send_msg_err_event = events::MessageSendEvent::HandleError {
4418                                                 node_id: channel.get().get_counterparty_node_id(),
4419                                                 action: msgs::ErrorAction::SendErrorMessage{
4420                                                         msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
4421                                                 }
4422                                         };
4423                                         peer_state.pending_msg_events.push(send_msg_err_event);
4424                                         let _ = remove_channel!(self, channel);
4425                                         return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
4426                                 } else {
4427                                         // If this peer already has some channels, a new channel won't increase our number of peers
4428                                         // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4429                                         // channels per-peer we can accept channels from a peer with existing ones.
4430                                         if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
4431                                                 let send_msg_err_event = events::MessageSendEvent::HandleError {
4432                                                         node_id: channel.get().get_counterparty_node_id(),
4433                                                         action: msgs::ErrorAction::SendErrorMessage{
4434                                                                 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
4435                                                         }
4436                                                 };
4437                                                 peer_state.pending_msg_events.push(send_msg_err_event);
4438                                                 let _ = remove_channel!(self, channel);
4439                                                 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
4440                                         }
4441                                 }
4442
4443                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4444                                         node_id: channel.get().get_counterparty_node_id(),
4445                                         msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4446                                 });
4447                         }
4448                         hash_map::Entry::Vacant(_) => {
4449                                 return Err(APIError::ChannelUnavailable { err: format!("Channel with id {} not found for the passed counterparty node_id {}", log_bytes!(*temporary_channel_id), counterparty_node_id) });
4450                         }
4451                 }
4452                 Ok(())
4453         }
4454
4455         /// Gets the number of peers which match the given filter and do not have any funded, outbound,
4456         /// or 0-conf channels.
4457         ///
4458         /// The filter is called for each peer and provided with the number of unfunded, inbound, and
4459         /// non-0-conf channels we have with the peer.
4460         fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
4461         where Filter: Fn(&PeerState<<SP::Target as SignerProvider>::Signer>) -> bool {
4462                 let mut peers_without_funded_channels = 0;
4463                 let best_block_height = self.best_block.read().unwrap().height();
4464                 {
4465                         let peer_state_lock = self.per_peer_state.read().unwrap();
4466                         for (_, peer_mtx) in peer_state_lock.iter() {
4467                                 let peer = peer_mtx.lock().unwrap();
4468                                 if !maybe_count_peer(&*peer) { continue; }
4469                                 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
4470                                 if num_unfunded_channels == peer.channel_by_id.len() {
4471                                         peers_without_funded_channels += 1;
4472                                 }
4473                         }
4474                 }
4475                 return peers_without_funded_channels;
4476         }
4477
4478         fn unfunded_channel_count(
4479                 peer: &PeerState<<SP::Target as SignerProvider>::Signer>, best_block_height: u32
4480         ) -> usize {
4481                 let mut num_unfunded_channels = 0;
4482                 for (_, chan) in peer.channel_by_id.iter() {
4483                         if !chan.is_outbound() && chan.minimum_depth().unwrap_or(1) != 0 &&
4484                                 chan.get_funding_tx_confirmations(best_block_height) == 0
4485                         {
4486                                 num_unfunded_channels += 1;
4487                         }
4488                 }
4489                 num_unfunded_channels
4490         }
4491
4492         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4493                 if msg.chain_hash != self.genesis_hash {
4494                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4495                 }
4496
4497                 if !self.default_configuration.accept_inbound_channels {
4498                         return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4499                 }
4500
4501                 let mut random_bytes = [0u8; 16];
4502                 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
4503                 let user_channel_id = u128::from_be_bytes(random_bytes);
4504                 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4505
4506                 // Get the number of peers with channels, but without funded ones. We don't care too much
4507                 // about peers that never open a channel, so we filter by peers that have at least one
4508                 // channel, and then limit the number of those with unfunded channels.
4509                 let channeled_peers_without_funding = self.peers_without_funded_channels(|node| !node.channel_by_id.is_empty());
4510
4511                 let per_peer_state = self.per_peer_state.read().unwrap();
4512                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4513                     .ok_or_else(|| {
4514                                 debug_assert!(false);
4515                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
4516                         })?;
4517                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4518                 let peer_state = &mut *peer_state_lock;
4519
4520                 // If this peer already has some channels, a new channel won't increase our number of peers
4521                 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
4522                 // channels per-peer we can accept channels from a peer with existing ones.
4523                 if peer_state.channel_by_id.is_empty() &&
4524                         channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
4525                         !self.default_configuration.manually_accept_inbound_channels
4526                 {
4527                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4528                                 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
4529                                 msg.temporary_channel_id.clone()));
4530                 }
4531
4532                 let best_block_height = self.best_block.read().unwrap().height();
4533                 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
4534                         return Err(MsgHandleErrInternal::send_err_msg_no_close(
4535                                 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
4536                                 msg.temporary_channel_id.clone()));
4537                 }
4538
4539                 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
4540                         counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
4541                         &self.default_configuration, best_block_height, &self.logger, outbound_scid_alias)
4542                 {
4543                         Err(e) => {
4544                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4545                                 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4546                         },
4547                         Ok(res) => res
4548                 };
4549                 match peer_state.channel_by_id.entry(channel.channel_id()) {
4550                         hash_map::Entry::Occupied(_) => {
4551                                 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4552                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()))
4553                         },
4554                         hash_map::Entry::Vacant(entry) => {
4555                                 if !self.default_configuration.manually_accept_inbound_channels {
4556                                         if channel.get_channel_type().requires_zero_conf() {
4557                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4558                                         }
4559                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4560                                                 node_id: counterparty_node_id.clone(),
4561                                                 msg: channel.accept_inbound_channel(user_channel_id),
4562                                         });
4563                                 } else {
4564                                         let mut pending_events = self.pending_events.lock().unwrap();
4565                                         pending_events.push(
4566                                                 events::Event::OpenChannelRequest {
4567                                                         temporary_channel_id: msg.temporary_channel_id.clone(),
4568                                                         counterparty_node_id: counterparty_node_id.clone(),
4569                                                         funding_satoshis: msg.funding_satoshis,
4570                                                         push_msat: msg.push_msat,
4571                                                         channel_type: channel.get_channel_type().clone(),
4572                                                 }
4573                                         );
4574                                 }
4575
4576                                 entry.insert(channel);
4577                         }
4578                 }
4579                 Ok(())
4580         }
4581
4582         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4583                 let (value, output_script, user_id) = {
4584                         let per_peer_state = self.per_peer_state.read().unwrap();
4585                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4586                                 .ok_or_else(|| {
4587                                         debug_assert!(false);
4588                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4589                                 })?;
4590                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4591                         let peer_state = &mut *peer_state_lock;
4592                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4593                                 hash_map::Entry::Occupied(mut chan) => {
4594                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), chan);
4595                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4596                                 },
4597                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4598                         }
4599                 };
4600                 let mut pending_events = self.pending_events.lock().unwrap();
4601                 pending_events.push(events::Event::FundingGenerationReady {
4602                         temporary_channel_id: msg.temporary_channel_id,
4603                         counterparty_node_id: *counterparty_node_id,
4604                         channel_value_satoshis: value,
4605                         output_script,
4606                         user_channel_id: user_id,
4607                 });
4608                 Ok(())
4609         }
4610
4611         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4612                 let best_block = *self.best_block.read().unwrap();
4613
4614                 let per_peer_state = self.per_peer_state.read().unwrap();
4615                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4616                         .ok_or_else(|| {
4617                                 debug_assert!(false);
4618                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
4619                         })?;
4620
4621                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4622                 let peer_state = &mut *peer_state_lock;
4623                 let ((funding_msg, monitor), chan) =
4624                         match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
4625                                 hash_map::Entry::Occupied(mut chan) => {
4626                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.signer_provider, &self.logger), chan), chan.remove())
4627                                 },
4628                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
4629                         };
4630
4631                 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
4632                         hash_map::Entry::Occupied(_) => {
4633                                 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4634                         },
4635                         hash_map::Entry::Vacant(e) => {
4636                                 match self.id_to_peer.lock().unwrap().entry(chan.channel_id()) {
4637                                         hash_map::Entry::Occupied(_) => {
4638                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close(
4639                                                         "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
4640                                                         funding_msg.channel_id))
4641                                         },
4642                                         hash_map::Entry::Vacant(i_e) => {
4643                                                 i_e.insert(chan.get_counterparty_node_id());
4644                                         }
4645                                 }
4646
4647                                 // There's no problem signing a counterparty's funding transaction if our monitor
4648                                 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4649                                 // accepted payment from yet. We do, however, need to wait to send our channel_ready
4650                                 // until we have persisted our monitor.
4651                                 let new_channel_id = funding_msg.channel_id;
4652                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4653                                         node_id: counterparty_node_id.clone(),
4654                                         msg: funding_msg,
4655                                 });
4656
4657                                 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
4658
4659                                 let chan = e.insert(chan);
4660                                 let mut res = handle_new_monitor_update!(self, monitor_res, 0, peer_state_lock, peer_state,
4661                                         per_peer_state, chan, MANUALLY_REMOVING, { peer_state.channel_by_id.remove(&new_channel_id) });
4662
4663                                 // Note that we reply with the new channel_id in error messages if we gave up on the
4664                                 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4665                                 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4666                                 // any messages referencing a previously-closed channel anyway.
4667                                 // We do not propagate the monitor update to the user as it would be for a monitor
4668                                 // that we didn't manage to store (and that we don't care about - we don't respond
4669                                 // with the funding_signed so the channel can never go on chain).
4670                                 if let Err(MsgHandleErrInternal { shutdown_finish: Some((res, _)), .. }) = &mut res {
4671                                         res.0 = None;
4672                                 }
4673                                 res
4674                         }
4675                 }
4676         }
4677
4678         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4679                 let best_block = *self.best_block.read().unwrap();
4680                 let per_peer_state = self.per_peer_state.read().unwrap();
4681                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4682                         .ok_or_else(|| {
4683                                 debug_assert!(false);
4684                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4685                         })?;
4686
4687                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4688                 let peer_state = &mut *peer_state_lock;
4689                 match peer_state.channel_by_id.entry(msg.channel_id) {
4690                         hash_map::Entry::Occupied(mut chan) => {
4691                                 let monitor = try_chan_entry!(self,
4692                                         chan.get_mut().funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan);
4693                                 let update_res = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor);
4694                                 let mut res = handle_new_monitor_update!(self, update_res, 0, peer_state_lock, peer_state, per_peer_state, chan);
4695                                 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4696                                         // We weren't able to watch the channel to begin with, so no updates should be made on
4697                                         // it. Previously, full_stack_target found an (unreachable) panic when the
4698                                         // monitor update contained within `shutdown_finish` was applied.
4699                                         if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4700                                                 shutdown_finish.0.take();
4701                                         }
4702                                 }
4703                                 res
4704                         },
4705                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4706                 }
4707         }
4708
4709         fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
4710                 let per_peer_state = self.per_peer_state.read().unwrap();
4711                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4712                         .ok_or_else(|| {
4713                                 debug_assert!(false);
4714                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4715                         })?;
4716                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4717                 let peer_state = &mut *peer_state_lock;
4718                 match peer_state.channel_by_id.entry(msg.channel_id) {
4719                         hash_map::Entry::Occupied(mut chan) => {
4720                                 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().channel_ready(&msg, &self.node_signer,
4721                                         self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan);
4722                                 if let Some(announcement_sigs) = announcement_sigs_opt {
4723                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4724                                         peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4725                                                 node_id: counterparty_node_id.clone(),
4726                                                 msg: announcement_sigs,
4727                                         });
4728                                 } else if chan.get().is_usable() {
4729                                         // If we're sending an announcement_signatures, we'll send the (public)
4730                                         // channel_update after sending a channel_announcement when we receive our
4731                                         // counterparty's announcement_signatures. Thus, we only bother to send a
4732                                         // channel_update here if the channel is not public, i.e. we're not sending an
4733                                         // announcement_signatures.
4734                                         log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4735                                         if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4736                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4737                                                         node_id: counterparty_node_id.clone(),
4738                                                         msg,
4739                                                 });
4740                                         }
4741                                 }
4742
4743                                 {
4744                                         let mut pending_events = self.pending_events.lock().unwrap();
4745                                         emit_channel_ready_event!(pending_events, chan.get_mut());
4746                                 }
4747
4748                                 Ok(())
4749                         },
4750                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4751                 }
4752         }
4753
4754         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4755                 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4756                 let result: Result<(), _> = loop {
4757                         let per_peer_state = self.per_peer_state.read().unwrap();
4758                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4759                                 .ok_or_else(|| {
4760                                         debug_assert!(false);
4761                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4762                                 })?;
4763                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4764                         let peer_state = &mut *peer_state_lock;
4765                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4766                                 hash_map::Entry::Occupied(mut chan_entry) => {
4767
4768                                         if !chan_entry.get().received_shutdown() {
4769                                                 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4770                                                         log_bytes!(msg.channel_id),
4771                                                         if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4772                                         }
4773
4774                                         let funding_txo_opt = chan_entry.get().get_funding_txo();
4775                                         let (shutdown, monitor_update_opt, htlcs) = try_chan_entry!(self,
4776                                                 chan_entry.get_mut().shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_entry);
4777                                         dropped_htlcs = htlcs;
4778
4779                                         if let Some(msg) = shutdown {
4780                                                 // We can send the `shutdown` message before updating the `ChannelMonitor`
4781                                                 // here as we don't need the monitor update to complete until we send a
4782                                                 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
4783                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4784                                                         node_id: *counterparty_node_id,
4785                                                         msg,
4786                                                 });
4787                                         }
4788
4789                                         // Update the monitor with the shutdown script if necessary.
4790                                         if let Some(monitor_update) = monitor_update_opt {
4791                                                 let update_id = monitor_update.update_id;
4792                                                 let update_res = self.chain_monitor.update_channel(funding_txo_opt.unwrap(), monitor_update);
4793                                                 break handle_new_monitor_update!(self, update_res, update_id, peer_state_lock, peer_state, per_peer_state, chan_entry);
4794                                         }
4795                                         break Ok(());
4796                                 },
4797                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4798                         }
4799                 };
4800                 for htlc_source in dropped_htlcs.drain(..) {
4801                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
4802                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
4803                         self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
4804                 }
4805
4806                 result
4807         }
4808
4809         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4810                 let per_peer_state = self.per_peer_state.read().unwrap();
4811                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4812                         .ok_or_else(|| {
4813                                 debug_assert!(false);
4814                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4815                         })?;
4816                 let (tx, chan_option) = {
4817                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4818                         let peer_state = &mut *peer_state_lock;
4819                         match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
4820                                 hash_map::Entry::Occupied(mut chan_entry) => {
4821                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), chan_entry);
4822                                         if let Some(msg) = closing_signed {
4823                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4824                                                         node_id: counterparty_node_id.clone(),
4825                                                         msg,
4826                                                 });
4827                                         }
4828                                         if tx.is_some() {
4829                                                 // We're done with this channel, we've got a signed closing transaction and
4830                                                 // will send the closing_signed back to the remote peer upon return. This
4831                                                 // also implies there are no pending HTLCs left on the channel, so we can
4832                                                 // fully delete it from tracking (the channel monitor is still around to
4833                                                 // watch for old state broadcasts)!
4834                                                 (tx, Some(remove_channel!(self, chan_entry)))
4835                                         } else { (tx, None) }
4836                                 },
4837                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4838                         }
4839                 };
4840                 if let Some(broadcast_tx) = tx {
4841                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4842                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4843                 }
4844                 if let Some(chan) = chan_option {
4845                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4846                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4847                                 let peer_state = &mut *peer_state_lock;
4848                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4849                                         msg: update
4850                                 });
4851                         }
4852                         self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4853                 }
4854                 Ok(())
4855         }
4856
4857         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4858                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4859                 //determine the state of the payment based on our response/if we forward anything/the time
4860                 //we take to respond. We should take care to avoid allowing such an attack.
4861                 //
4862                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4863                 //us repeatedly garbled in different ways, and compare our error messages, which are
4864                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4865                 //but we should prevent it anyway.
4866
4867                 let pending_forward_info = self.decode_update_add_htlc_onion(msg);
4868                 let per_peer_state = self.per_peer_state.read().unwrap();
4869                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4870                         .ok_or_else(|| {
4871                                 debug_assert!(false);
4872                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4873                         })?;
4874                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4875                 let peer_state = &mut *peer_state_lock;
4876                 match peer_state.channel_by_id.entry(msg.channel_id) {
4877                         hash_map::Entry::Occupied(mut chan) => {
4878
4879                                 let create_pending_htlc_status = |chan: &Channel<<SP::Target as SignerProvider>::Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4880                                         // If the update_add is completely bogus, the call will Err and we will close,
4881                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4882                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
4883                                         match pending_forward_info {
4884                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4885                                                         let reason = if (error_code & 0x1000) != 0 {
4886                                                                 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4887                                                                 HTLCFailReason::reason(real_code, error_data)
4888                                                         } else {
4889                                                                 HTLCFailReason::from_failure_code(error_code)
4890                                                         }.get_encrypted_failure_packet(incoming_shared_secret, &None);
4891                                                         let msg = msgs::UpdateFailHTLC {
4892                                                                 channel_id: msg.channel_id,
4893                                                                 htlc_id: msg.htlc_id,
4894                                                                 reason
4895                                                         };
4896                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4897                                                 },
4898                                                 _ => pending_forward_info
4899                                         }
4900                                 };
4901                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), chan);
4902                         },
4903                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4904                 }
4905                 Ok(())
4906         }
4907
4908         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4909                 let (htlc_source, forwarded_htlc_value) = {
4910                         let per_peer_state = self.per_peer_state.read().unwrap();
4911                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4912                                 .ok_or_else(|| {
4913                                         debug_assert!(false);
4914                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4915                                 })?;
4916                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4917                         let peer_state = &mut *peer_state_lock;
4918                         match peer_state.channel_by_id.entry(msg.channel_id) {
4919                                 hash_map::Entry::Occupied(mut chan) => {
4920                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), chan)
4921                                 },
4922                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4923                         }
4924                 };
4925                 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, msg.channel_id);
4926                 Ok(())
4927         }
4928
4929         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4930                 let per_peer_state = self.per_peer_state.read().unwrap();
4931                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4932                         .ok_or_else(|| {
4933                                 debug_assert!(false);
4934                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4935                         })?;
4936                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4937                 let peer_state = &mut *peer_state_lock;
4938                 match peer_state.channel_by_id.entry(msg.channel_id) {
4939                         hash_map::Entry::Occupied(mut chan) => {
4940                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan);
4941                         },
4942                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4943                 }
4944                 Ok(())
4945         }
4946
4947         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4948                 let per_peer_state = self.per_peer_state.read().unwrap();
4949                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4950                         .ok_or_else(|| {
4951                                 debug_assert!(false);
4952                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4953                         })?;
4954                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4955                 let peer_state = &mut *peer_state_lock;
4956                 match peer_state.channel_by_id.entry(msg.channel_id) {
4957                         hash_map::Entry::Occupied(mut chan) => {
4958                                 if (msg.failure_code & 0x8000) == 0 {
4959                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4960                                         try_chan_entry!(self, Err(chan_err), chan);
4961                                 }
4962                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan);
4963                                 Ok(())
4964                         },
4965                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4966                 }
4967         }
4968
4969         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4970                 let per_peer_state = self.per_peer_state.read().unwrap();
4971                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4972                         .ok_or_else(|| {
4973                                 debug_assert!(false);
4974                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
4975                         })?;
4976                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4977                 let peer_state = &mut *peer_state_lock;
4978                 match peer_state.channel_by_id.entry(msg.channel_id) {
4979                         hash_map::Entry::Occupied(mut chan) => {
4980                                 let funding_txo = chan.get().get_funding_txo();
4981                                 let monitor_update = try_chan_entry!(self, chan.get_mut().commitment_signed(&msg, &self.logger), chan);
4982                                 let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
4983                                 let update_id = monitor_update.update_id;
4984                                 handle_new_monitor_update!(self, update_res, update_id, peer_state_lock,
4985                                         peer_state, per_peer_state, chan)
4986                         },
4987                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
4988                 }
4989         }
4990
4991         #[inline]
4992         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
4993                 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
4994                         let mut push_forward_event = false;
4995                         let mut new_intercept_events = Vec::new();
4996                         let mut failed_intercept_forwards = Vec::new();
4997                         if !pending_forwards.is_empty() {
4998                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4999                                         let scid = match forward_info.routing {
5000                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
5001                                                 PendingHTLCRouting::Receive { .. } => 0,
5002                                                 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
5003                                         };
5004                                         // Pull this now to avoid introducing a lock order with `forward_htlcs`.
5005                                         let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
5006
5007                                         let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5008                                         let forward_htlcs_empty = forward_htlcs.is_empty();
5009                                         match forward_htlcs.entry(scid) {
5010                                                 hash_map::Entry::Occupied(mut entry) => {
5011                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5012                                                                 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
5013                                                 },
5014                                                 hash_map::Entry::Vacant(entry) => {
5015                                                         if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
5016                                                            fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
5017                                                         {
5018                                                                 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
5019                                                                 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
5020                                                                 match pending_intercepts.entry(intercept_id) {
5021                                                                         hash_map::Entry::Vacant(entry) => {
5022                                                                                 new_intercept_events.push(events::Event::HTLCIntercepted {
5023                                                                                         requested_next_hop_scid: scid,
5024                                                                                         payment_hash: forward_info.payment_hash,
5025                                                                                         inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
5026                                                                                         expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
5027                                                                                         intercept_id
5028                                                                                 });
5029                                                                                 entry.insert(PendingAddHTLCInfo {
5030                                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
5031                                                                         },
5032                                                                         hash_map::Entry::Occupied(_) => {
5033                                                                                 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
5034                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5035                                                                                         short_channel_id: prev_short_channel_id,
5036                                                                                         outpoint: prev_funding_outpoint,
5037                                                                                         htlc_id: prev_htlc_id,
5038                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
5039                                                                                         phantom_shared_secret: None,
5040                                                                                 });
5041
5042                                                                                 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
5043                                                                                                 HTLCFailReason::from_failure_code(0x4000 | 10),
5044                                                                                                 HTLCDestination::InvalidForward { requested_forward_scid: scid },
5045                                                                                 ));
5046                                                                         }
5047                                                                 }
5048                                                         } else {
5049                                                                 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
5050                                                                 // payments are being processed.
5051                                                                 if forward_htlcs_empty {
5052                                                                         push_forward_event = true;
5053                                                                 }
5054                                                                 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5055                                                                         prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
5056                                                         }
5057                                                 }
5058                                         }
5059                                 }
5060                         }
5061
5062                         for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
5063                                 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5064                         }
5065
5066                         if !new_intercept_events.is_empty() {
5067                                 let mut events = self.pending_events.lock().unwrap();
5068                                 events.append(&mut new_intercept_events);
5069                         }
5070                         if push_forward_event { self.push_pending_forwards_ev() }
5071                 }
5072         }
5073
5074         // We only want to push a PendingHTLCsForwardable event if no others are queued.
5075         fn push_pending_forwards_ev(&self) {
5076                 let mut pending_events = self.pending_events.lock().unwrap();
5077                 let forward_ev_exists = pending_events.iter()
5078                         .find(|ev| if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false })
5079                         .is_some();
5080                 if !forward_ev_exists {
5081                         pending_events.push(events::Event::PendingHTLCsForwardable {
5082                                 time_forwardable:
5083                                         Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
5084                         });
5085                 }
5086         }
5087
5088         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
5089                 let (htlcs_to_fail, res) = {
5090                         let per_peer_state = self.per_peer_state.read().unwrap();
5091                         let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
5092                                 .ok_or_else(|| {
5093                                         debug_assert!(false);
5094                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5095                                 }).map(|mtx| mtx.lock().unwrap())?;
5096                         let peer_state = &mut *peer_state_lock;
5097                         match peer_state.channel_by_id.entry(msg.channel_id) {
5098                                 hash_map::Entry::Occupied(mut chan) => {
5099                                         let funding_txo = chan.get().get_funding_txo();
5100                                         let (htlcs_to_fail, monitor_update) = try_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.logger), chan);
5101                                         let update_res = self.chain_monitor.update_channel(funding_txo.unwrap(), monitor_update);
5102                                         let update_id = monitor_update.update_id;
5103                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5104                                                 peer_state_lock, peer_state, per_peer_state, chan);
5105                                         (htlcs_to_fail, res)
5106                                 },
5107                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5108                         }
5109                 };
5110                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
5111                 res
5112         }
5113
5114         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
5115                 let per_peer_state = self.per_peer_state.read().unwrap();
5116                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5117                         .ok_or_else(|| {
5118                                 debug_assert!(false);
5119                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5120                         })?;
5121                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5122                 let peer_state = &mut *peer_state_lock;
5123                 match peer_state.channel_by_id.entry(msg.channel_id) {
5124                         hash_map::Entry::Occupied(mut chan) => {
5125                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg, &self.logger), chan);
5126                         },
5127                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5128                 }
5129                 Ok(())
5130         }
5131
5132         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
5133                 let per_peer_state = self.per_peer_state.read().unwrap();
5134                 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5135                         .ok_or_else(|| {
5136                                 debug_assert!(false);
5137                                 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5138                         })?;
5139                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5140                 let peer_state = &mut *peer_state_lock;
5141                 match peer_state.channel_by_id.entry(msg.channel_id) {
5142                         hash_map::Entry::Occupied(mut chan) => {
5143                                 if !chan.get().is_usable() {
5144                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
5145                                 }
5146
5147                                 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5148                                         msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
5149                                                 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
5150                                                 msg, &self.default_configuration
5151                                         ), chan),
5152                                         // Note that announcement_signatures fails if the channel cannot be announced,
5153                                         // so get_channel_update_for_broadcast will never fail by the time we get here.
5154                                         update_msg: Some(self.get_channel_update_for_broadcast(chan.get()).unwrap()),
5155                                 });
5156                         },
5157                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5158                 }
5159                 Ok(())
5160         }
5161
5162         /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
5163         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
5164                 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
5165                         Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
5166                         None => {
5167                                 // It's not a local channel
5168                                 return Ok(NotifyOption::SkipPersist)
5169                         }
5170                 };
5171                 let per_peer_state = self.per_peer_state.read().unwrap();
5172                 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
5173                 if peer_state_mutex_opt.is_none() {
5174                         return Ok(NotifyOption::SkipPersist)
5175                 }
5176                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5177                 let peer_state = &mut *peer_state_lock;
5178                 match peer_state.channel_by_id.entry(chan_id) {
5179                         hash_map::Entry::Occupied(mut chan) => {
5180                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
5181                                         if chan.get().should_announce() {
5182                                                 // If the announcement is about a channel of ours which is public, some
5183                                                 // other peer may simply be forwarding all its gossip to us. Don't provide
5184                                                 // a scary-looking error message and return Ok instead.
5185                                                 return Ok(NotifyOption::SkipPersist);
5186                                         }
5187                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
5188                                 }
5189                                 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
5190                                 let msg_from_node_one = msg.contents.flags & 1 == 0;
5191                                 if were_node_one == msg_from_node_one {
5192                                         return Ok(NotifyOption::SkipPersist);
5193                                 } else {
5194                                         log_debug!(self.logger, "Received channel_update for channel {}.", log_bytes!(chan_id));
5195                                         try_chan_entry!(self, chan.get_mut().channel_update(&msg), chan);
5196                                 }
5197                         },
5198                         hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersist)
5199                 }
5200                 Ok(NotifyOption::DoPersist)
5201         }
5202
5203         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
5204                 let htlc_forwards;
5205                 let need_lnd_workaround = {
5206                         let per_peer_state = self.per_peer_state.read().unwrap();
5207
5208                         let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5209                                 .ok_or_else(|| {
5210                                         debug_assert!(false);
5211                                         MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5212                                 })?;
5213                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5214                         let peer_state = &mut *peer_state_lock;
5215                         match peer_state.channel_by_id.entry(msg.channel_id) {
5216                                 hash_map::Entry::Occupied(mut chan) => {
5217                                         // Currently, we expect all holding cell update_adds to be dropped on peer
5218                                         // disconnect, so Channel's reestablish will never hand us any holding cell
5219                                         // freed HTLCs to fail backwards. If in the future we no longer drop pending
5220                                         // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
5221                                         let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
5222                                                 msg, &self.logger, &self.node_signer, self.genesis_hash,
5223                                                 &self.default_configuration, &*self.best_block.read().unwrap()), chan);
5224                                         let mut channel_update = None;
5225                                         if let Some(msg) = responses.shutdown_msg {
5226                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
5227                                                         node_id: counterparty_node_id.clone(),
5228                                                         msg,
5229                                                 });
5230                                         } else if chan.get().is_usable() {
5231                                                 // If the channel is in a usable state (ie the channel is not being shut
5232                                                 // down), send a unicast channel_update to our counterparty to make sure
5233                                                 // they have the latest channel parameters.
5234                                                 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
5235                                                         channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
5236                                                                 node_id: chan.get().get_counterparty_node_id(),
5237                                                                 msg,
5238                                                         });
5239                                                 }
5240                                         }
5241                                         let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
5242                                         htlc_forwards = self.handle_channel_resumption(
5243                                                 &mut peer_state.pending_msg_events, chan.get_mut(), responses.raa, responses.commitment_update, responses.order,
5244                                                 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
5245                                         if let Some(upd) = channel_update {
5246                                                 peer_state.pending_msg_events.push(upd);
5247                                         }
5248                                         need_lnd_workaround
5249                                 },
5250                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5251                         }
5252                 };
5253
5254                 if let Some(forwards) = htlc_forwards {
5255                         self.forward_htlcs(&mut [forwards][..]);
5256                 }
5257
5258                 if let Some(channel_ready_msg) = need_lnd_workaround {
5259                         self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
5260                 }
5261                 Ok(())
5262         }
5263
5264         /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
5265         fn process_pending_monitor_events(&self) -> bool {
5266                 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5267
5268                 let mut failed_channels = Vec::new();
5269                 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
5270                 let has_pending_monitor_events = !pending_monitor_events.is_empty();
5271                 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
5272                         for monitor_event in monitor_events.drain(..) {
5273                                 match monitor_event {
5274                                         MonitorEvent::HTLCEvent(htlc_update) => {
5275                                                 if let Some(preimage) = htlc_update.payment_preimage {
5276                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
5277                                                         self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, funding_outpoint.to_channel_id());
5278                                                 } else {
5279                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
5280                                                         let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
5281                                                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
5282                                                         self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
5283                                                 }
5284                                         },
5285                                         MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
5286                                         MonitorEvent::UpdateFailed(funding_outpoint) => {
5287                                                 let counterparty_node_id_opt = match counterparty_node_id {
5288                                                         Some(cp_id) => Some(cp_id),
5289                                                         None => {
5290                                                                 // TODO: Once we can rely on the counterparty_node_id from the
5291                                                                 // monitor event, this and the id_to_peer map should be removed.
5292                                                                 let id_to_peer = self.id_to_peer.lock().unwrap();
5293                                                                 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
5294                                                         }
5295                                                 };
5296                                                 if let Some(counterparty_node_id) = counterparty_node_id_opt {
5297                                                         let per_peer_state = self.per_peer_state.read().unwrap();
5298                                                         if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5299                                                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5300                                                                 let peer_state = &mut *peer_state_lock;
5301                                                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5302                                                                 if let hash_map::Entry::Occupied(chan_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
5303                                                                         let mut chan = remove_channel!(self, chan_entry);
5304                                                                         failed_channels.push(chan.force_shutdown(false));
5305                                                                         if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5306                                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5307                                                                                         msg: update
5308                                                                                 });
5309                                                                         }
5310                                                                         let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
5311                                                                                 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
5312                                                                         } else {
5313                                                                                 ClosureReason::CommitmentTxConfirmed
5314                                                                         };
5315                                                                         self.issue_channel_close_events(&chan, reason);
5316                                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
5317                                                                                 node_id: chan.get_counterparty_node_id(),
5318                                                                                 action: msgs::ErrorAction::SendErrorMessage {
5319                                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
5320                                                                                 },
5321                                                                         });
5322                                                                 }
5323                                                         }
5324                                                 }
5325                                         },
5326                                         MonitorEvent::Completed { funding_txo, monitor_update_id } => {
5327                                                 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
5328                                         },
5329                                 }
5330                         }
5331                 }
5332
5333                 for failure in failed_channels.drain(..) {
5334                         self.finish_force_close_channel(failure);
5335                 }
5336
5337                 has_pending_monitor_events
5338         }
5339
5340         /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
5341         /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
5342         /// update events as a separate process method here.
5343         #[cfg(fuzzing)]
5344         pub fn process_monitor_events(&self) {
5345                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5346                         if self.process_pending_monitor_events() {
5347                                 NotifyOption::DoPersist
5348                         } else {
5349                                 NotifyOption::SkipPersist
5350                         }
5351                 });
5352         }
5353
5354         /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
5355         /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
5356         /// update was applied.
5357         fn check_free_holding_cells(&self) -> bool {
5358                 let mut has_monitor_update = false;
5359                 let mut failed_htlcs = Vec::new();
5360                 let mut handle_errors = Vec::new();
5361
5362                 // Walk our list of channels and find any that need to update. Note that when we do find an
5363                 // update, if it includes actions that must be taken afterwards, we have to drop the
5364                 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
5365                 // manage to go through all our peers without finding a single channel to update.
5366                 'peer_loop: loop {
5367                         let per_peer_state = self.per_peer_state.read().unwrap();
5368                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5369                                 'chan_loop: loop {
5370                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5371                                         let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
5372                                         for (channel_id, chan) in peer_state.channel_by_id.iter_mut() {
5373                                                 let counterparty_node_id = chan.get_counterparty_node_id();
5374                                                 let funding_txo = chan.get_funding_txo();
5375                                                 let (monitor_opt, holding_cell_failed_htlcs) =
5376                                                         chan.maybe_free_holding_cell_htlcs(&self.logger);
5377                                                 if !holding_cell_failed_htlcs.is_empty() {
5378                                                         failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
5379                                                 }
5380                                                 if let Some(monitor_update) = monitor_opt {
5381                                                         has_monitor_update = true;
5382
5383                                                         let update_res = self.chain_monitor.update_channel(
5384                                                                 funding_txo.expect("channel is live"), monitor_update);
5385                                                         let update_id = monitor_update.update_id;
5386                                                         let channel_id: [u8; 32] = *channel_id;
5387                                                         let res = handle_new_monitor_update!(self, update_res, update_id,
5388                                                                 peer_state_lock, peer_state, per_peer_state, chan, MANUALLY_REMOVING,
5389                                                                 peer_state.channel_by_id.remove(&channel_id));
5390                                                         if res.is_err() {
5391                                                                 handle_errors.push((counterparty_node_id, res));
5392                                                         }
5393                                                         continue 'peer_loop;
5394                                                 }
5395                                         }
5396                                         break 'chan_loop;
5397                                 }
5398                         }
5399                         break 'peer_loop;
5400                 }
5401
5402                 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
5403                 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
5404                         self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
5405                 }
5406
5407                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5408                         let _ = handle_error!(self, err, counterparty_node_id);
5409                 }
5410
5411                 has_update
5412         }
5413
5414         /// Check whether any channels have finished removing all pending updates after a shutdown
5415         /// exchange and can now send a closing_signed.
5416         /// Returns whether any closing_signed messages were generated.
5417         fn maybe_generate_initial_closing_signed(&self) -> bool {
5418                 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
5419                 let mut has_update = false;
5420                 {
5421                         let per_peer_state = self.per_peer_state.read().unwrap();
5422
5423                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5424                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5425                                 let peer_state = &mut *peer_state_lock;
5426                                 let pending_msg_events = &mut peer_state.pending_msg_events;
5427                                 peer_state.channel_by_id.retain(|channel_id, chan| {
5428                                         match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
5429                                                 Ok((msg_opt, tx_opt)) => {
5430                                                         if let Some(msg) = msg_opt {
5431                                                                 has_update = true;
5432                                                                 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
5433                                                                         node_id: chan.get_counterparty_node_id(), msg,
5434                                                                 });
5435                                                         }
5436                                                         if let Some(tx) = tx_opt {
5437                                                                 // We're done with this channel. We got a closing_signed and sent back
5438                                                                 // a closing_signed with a closing transaction to broadcast.
5439                                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5440                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5441                                                                                 msg: update
5442                                                                         });
5443                                                                 }
5444
5445                                                                 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
5446
5447                                                                 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
5448                                                                 self.tx_broadcaster.broadcast_transaction(&tx);
5449                                                                 update_maps_on_chan_removal!(self, chan);
5450                                                                 false
5451                                                         } else { true }
5452                                                 },
5453                                                 Err(e) => {
5454                                                         has_update = true;
5455                                                         let (close_channel, res) = convert_chan_err!(self, e, chan, channel_id);
5456                                                         handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
5457                                                         !close_channel
5458                                                 }
5459                                         }
5460                                 });
5461                         }
5462                 }
5463
5464                 for (counterparty_node_id, err) in handle_errors.drain(..) {
5465                         let _ = handle_error!(self, err, counterparty_node_id);
5466                 }
5467
5468                 has_update
5469         }
5470
5471         /// Handle a list of channel failures during a block_connected or block_disconnected call,
5472         /// pushing the channel monitor update (if any) to the background events queue and removing the
5473         /// Channel object.
5474         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5475                 for mut failure in failed_channels.drain(..) {
5476                         // Either a commitment transactions has been confirmed on-chain or
5477                         // Channel::block_disconnected detected that the funding transaction has been
5478                         // reorganized out of the main chain.
5479                         // We cannot broadcast our latest local state via monitor update (as
5480                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5481                         // so we track the update internally and handle it when the user next calls
5482                         // timer_tick_occurred, guaranteeing we're running normally.
5483                         if let Some((funding_txo, update)) = failure.0.take() {
5484                                 assert_eq!(update.updates.len(), 1);
5485                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5486                                         assert!(should_broadcast);
5487                                 } else { unreachable!(); }
5488                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5489                         }
5490                         self.finish_force_close_channel(failure);
5491                 }
5492         }
5493
5494         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5495                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5496
5497                 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5498                         return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5499                 }
5500
5501                 let payment_secret = PaymentSecret(self.entropy_source.get_secure_random_bytes());
5502
5503                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5504                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5505                 match payment_secrets.entry(payment_hash) {
5506                         hash_map::Entry::Vacant(e) => {
5507                                 e.insert(PendingInboundPayment {
5508                                         payment_secret, min_value_msat, payment_preimage,
5509                                         user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5510                                         // We assume that highest_seen_timestamp is pretty close to the current time -
5511                                         // it's updated when we receive a new block with the maximum time we've seen in
5512                                         // a header. It should never be more than two hours in the future.
5513                                         // Thus, we add two hours here as a buffer to ensure we absolutely
5514                                         // never fail a payment too early.
5515                                         // Note that we assume that received blocks have reasonably up-to-date
5516                                         // timestamps.
5517                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5518                                 });
5519                         },
5520                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5521                 }
5522                 Ok(payment_secret)
5523         }
5524
5525         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5526         /// to pay us.
5527         ///
5528         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5529         /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5530         ///
5531         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
5532         /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
5533         /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
5534         /// passed directly to [`claim_funds`].
5535         ///
5536         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5537         ///
5538         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5539         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5540         ///
5541         /// # Note
5542         ///
5543         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5544         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5545         ///
5546         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5547         ///
5548         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5549         /// on versions of LDK prior to 0.0.114.
5550         ///
5551         /// [`claim_funds`]: Self::claim_funds
5552         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5553         /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
5554         /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
5555         /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
5556         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5557         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
5558                 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
5559                 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
5560                         &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5561                         min_final_cltv_expiry_delta)
5562         }
5563
5564         /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5565         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5566         ///
5567         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5568         ///
5569         /// # Note
5570         /// This method is deprecated and will be removed soon.
5571         ///
5572         /// [`create_inbound_payment`]: Self::create_inbound_payment
5573         #[deprecated]
5574         pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5575                 let payment_preimage = PaymentPreimage(self.entropy_source.get_secure_random_bytes());
5576                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5577                 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5578                 Ok((payment_hash, payment_secret))
5579         }
5580
5581         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5582         /// stored external to LDK.
5583         ///
5584         /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
5585         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5586         /// the `min_value_msat` provided here, if one is provided.
5587         ///
5588         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5589         /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5590         /// payments.
5591         ///
5592         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5593         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5594         /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
5595         /// sender "proof-of-payment" unless they have paid the required amount.
5596         ///
5597         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5598         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5599         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5600         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5601         /// invoices when no timeout is set.
5602         ///
5603         /// Note that we use block header time to time-out pending inbound payments (with some margin
5604         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5605         /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
5606         /// If you need exact expiry semantics, you should enforce them upon receipt of
5607         /// [`PaymentClaimable`].
5608         ///
5609         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
5610         /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
5611         ///
5612         /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5613         /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5614         ///
5615         /// # Note
5616         ///
5617         /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5618         /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5619         ///
5620         /// Errors if `min_value_msat` is greater than total bitcoin supply.
5621         ///
5622         /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
5623         /// on versions of LDK prior to 0.0.114.
5624         ///
5625         /// [`create_inbound_payment`]: Self::create_inbound_payment
5626         /// [`PaymentClaimable`]: events::Event::PaymentClaimable
5627         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
5628                 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
5629                 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
5630                         invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
5631                         min_final_cltv_expiry)
5632         }
5633
5634         /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5635         /// serialized state with LDK node(s) running 0.0.103 and earlier.
5636         ///
5637         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5638         ///
5639         /// # Note
5640         /// This method is deprecated and will be removed soon.
5641         ///
5642         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5643         #[deprecated]
5644         pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5645                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5646         }
5647
5648         /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5649         /// previously returned from [`create_inbound_payment`].
5650         ///
5651         /// [`create_inbound_payment`]: Self::create_inbound_payment
5652         pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5653                 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5654         }
5655
5656         /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5657         /// are used when constructing the phantom invoice's route hints.
5658         ///
5659         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5660         pub fn get_phantom_scid(&self) -> u64 {
5661                 let best_block_height = self.best_block.read().unwrap().height();
5662                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5663                 loop {
5664                         let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5665                         // Ensure the generated scid doesn't conflict with a real channel.
5666                         match short_to_chan_info.get(&scid_candidate) {
5667                                 Some(_) => continue,
5668                                 None => return scid_candidate
5669                         }
5670                 }
5671         }
5672
5673         /// Gets route hints for use in receiving [phantom node payments].
5674         ///
5675         /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5676         pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5677                 PhantomRouteHints {
5678                         channels: self.list_usable_channels(),
5679                         phantom_scid: self.get_phantom_scid(),
5680                         real_node_pubkey: self.get_our_node_id(),
5681                 }
5682         }
5683
5684         /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
5685         /// used when constructing the route hints for HTLCs intended to be intercepted. See
5686         /// [`ChannelManager::forward_intercepted_htlc`].
5687         ///
5688         /// Note that this method is not guaranteed to return unique values, you may need to call it a few
5689         /// times to get a unique scid.
5690         pub fn get_intercept_scid(&self) -> u64 {
5691                 let best_block_height = self.best_block.read().unwrap().height();
5692                 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
5693                 loop {
5694                         let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
5695                         // Ensure the generated scid doesn't conflict with a real channel.
5696                         if short_to_chan_info.contains_key(&scid_candidate) { continue }
5697                         return scid_candidate
5698                 }
5699         }
5700
5701         /// Gets inflight HTLC information by processing pending outbound payments that are in
5702         /// our channels. May be used during pathfinding to account for in-use channel liquidity.
5703         pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
5704                 let mut inflight_htlcs = InFlightHtlcs::new();
5705
5706                 let per_peer_state = self.per_peer_state.read().unwrap();
5707                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5708                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5709                         let peer_state = &mut *peer_state_lock;
5710                         for chan in peer_state.channel_by_id.values() {
5711                                 for (htlc_source, _) in chan.inflight_htlc_sources() {
5712                                         if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
5713                                                 inflight_htlcs.process_path(path, self.get_our_node_id());
5714                                         }
5715                                 }
5716                         }
5717                 }
5718
5719                 inflight_htlcs
5720         }
5721
5722         #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5723         pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5724                 let events = core::cell::RefCell::new(Vec::new());
5725                 let event_handler = |event: events::Event| events.borrow_mut().push(event);
5726                 self.process_pending_events(&event_handler);
5727                 events.into_inner()
5728         }
5729
5730         #[cfg(feature = "_test_utils")]
5731         pub fn push_pending_event(&self, event: events::Event) {
5732                 let mut events = self.pending_events.lock().unwrap();
5733                 events.push(event);
5734         }
5735
5736         #[cfg(test)]
5737         pub fn pop_pending_event(&self) -> Option<events::Event> {
5738                 let mut events = self.pending_events.lock().unwrap();
5739                 if events.is_empty() { None } else { Some(events.remove(0)) }
5740         }
5741
5742         #[cfg(test)]
5743         pub fn has_pending_payments(&self) -> bool {
5744                 self.pending_outbound_payments.has_pending_payments()
5745         }
5746
5747         #[cfg(test)]
5748         pub fn clear_pending_payments(&self) {
5749                 self.pending_outbound_payments.clear_pending_payments()
5750         }
5751
5752         /// Processes any events asynchronously in the order they were generated since the last call
5753         /// using the given event handler.
5754         ///
5755         /// See the trait-level documentation of [`EventsProvider`] for requirements.
5756         pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
5757                 &self, handler: H
5758         ) {
5759                 // We'll acquire our total consistency lock until the returned future completes so that
5760                 // we can be sure no other persists happen while processing events.
5761                 let _read_guard = self.total_consistency_lock.read().unwrap();
5762
5763                 let mut result = NotifyOption::SkipPersist;
5764
5765                 // TODO: This behavior should be documented. It's unintuitive that we query
5766                 // ChannelMonitors when clearing other events.
5767                 if self.process_pending_monitor_events() {
5768                         result = NotifyOption::DoPersist;
5769                 }
5770
5771                 let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5772                 if !pending_events.is_empty() {
5773                         result = NotifyOption::DoPersist;
5774                 }
5775
5776                 for event in pending_events {
5777                         handler(event).await;
5778                 }
5779
5780                 if result == NotifyOption::DoPersist {
5781                         self.persistence_notifier.notify();
5782                 }
5783         }
5784 }
5785
5786 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5787 where
5788         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5789         T::Target: BroadcasterInterface,
5790         ES::Target: EntropySource,
5791         NS::Target: NodeSigner,
5792         SP::Target: SignerProvider,
5793         F::Target: FeeEstimator,
5794         R::Target: Router,
5795         L::Target: Logger,
5796 {
5797         /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
5798         /// The returned array will contain `MessageSendEvent`s for different peers if
5799         /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
5800         /// is always placed next to each other.
5801         ///
5802         /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
5803         /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
5804         /// `MessageSendEvent`s  for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
5805         /// will randomly be placed first or last in the returned array.
5806         ///
5807         /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
5808         /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
5809         /// the `MessageSendEvent`s to the specific peer they were generated under.
5810         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5811                 let events = RefCell::new(Vec::new());
5812                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5813                         let mut result = NotifyOption::SkipPersist;
5814
5815                         // TODO: This behavior should be documented. It's unintuitive that we query
5816                         // ChannelMonitors when clearing other events.
5817                         if self.process_pending_monitor_events() {
5818                                 result = NotifyOption::DoPersist;
5819                         }
5820
5821                         if self.check_free_holding_cells() {
5822                                 result = NotifyOption::DoPersist;
5823                         }
5824                         if self.maybe_generate_initial_closing_signed() {
5825                                 result = NotifyOption::DoPersist;
5826                         }
5827
5828                         let mut pending_events = Vec::new();
5829                         let per_peer_state = self.per_peer_state.read().unwrap();
5830                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5831                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5832                                 let peer_state = &mut *peer_state_lock;
5833                                 if peer_state.pending_msg_events.len() > 0 {
5834                                         pending_events.append(&mut peer_state.pending_msg_events);
5835                                 }
5836                         }
5837
5838                         if !pending_events.is_empty() {
5839                                 events.replace(pending_events);
5840                         }
5841
5842                         result
5843                 });
5844                 events.into_inner()
5845         }
5846 }
5847
5848 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
5849 where
5850         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5851         T::Target: BroadcasterInterface,
5852         ES::Target: EntropySource,
5853         NS::Target: NodeSigner,
5854         SP::Target: SignerProvider,
5855         F::Target: FeeEstimator,
5856         R::Target: Router,
5857         L::Target: Logger,
5858 {
5859         /// Processes events that must be periodically handled.
5860         ///
5861         /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5862         /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5863         fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5864                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5865                         let mut result = NotifyOption::SkipPersist;
5866
5867                         // TODO: This behavior should be documented. It's unintuitive that we query
5868                         // ChannelMonitors when clearing other events.
5869                         if self.process_pending_monitor_events() {
5870                                 result = NotifyOption::DoPersist;
5871                         }
5872
5873                         let pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5874                         if !pending_events.is_empty() {
5875                                 result = NotifyOption::DoPersist;
5876                         }
5877
5878                         for event in pending_events {
5879                                 handler.handle_event(event);
5880                         }
5881
5882                         result
5883                 });
5884         }
5885 }
5886
5887 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
5888 where
5889         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5890         T::Target: BroadcasterInterface,
5891         ES::Target: EntropySource,
5892         NS::Target: NodeSigner,
5893         SP::Target: SignerProvider,
5894         F::Target: FeeEstimator,
5895         R::Target: Router,
5896         L::Target: Logger,
5897 {
5898         fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5899                 {
5900                         let best_block = self.best_block.read().unwrap();
5901                         assert_eq!(best_block.block_hash(), header.prev_blockhash,
5902                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5903                         assert_eq!(best_block.height(), height - 1,
5904                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5905                 }
5906
5907                 self.transactions_confirmed(header, txdata, height);
5908                 self.best_block_updated(header, height);
5909         }
5910
5911         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5912                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5913                 let new_height = height - 1;
5914                 {
5915                         let mut best_block = self.best_block.write().unwrap();
5916                         assert_eq!(best_block.block_hash(), header.block_hash(),
5917                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5918                         assert_eq!(best_block.height(), height,
5919                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5920                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
5921                 }
5922
5923                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5924         }
5925 }
5926
5927 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
5928 where
5929         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
5930         T::Target: BroadcasterInterface,
5931         ES::Target: EntropySource,
5932         NS::Target: NodeSigner,
5933         SP::Target: SignerProvider,
5934         F::Target: FeeEstimator,
5935         R::Target: Router,
5936         L::Target: Logger,
5937 {
5938         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5939                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5940                 // during initialization prior to the chain_monitor being fully configured in some cases.
5941                 // See the docs for `ChannelManagerReadArgs` for more.
5942
5943                 let block_hash = header.block_hash();
5944                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5945
5946                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5947                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
5948                         .map(|(a, b)| (a, Vec::new(), b)));
5949
5950                 let last_best_block_height = self.best_block.read().unwrap().height();
5951                 if height < last_best_block_height {
5952                         let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5953                         self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5954                 }
5955         }
5956
5957         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5958                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5959                 // during initialization prior to the chain_monitor being fully configured in some cases.
5960                 // See the docs for `ChannelManagerReadArgs` for more.
5961
5962                 let block_hash = header.block_hash();
5963                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5964
5965                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5966
5967                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5968
5969                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
5970
5971                 macro_rules! max_time {
5972                         ($timestamp: expr) => {
5973                                 loop {
5974                                         // Update $timestamp to be the max of its current value and the block
5975                                         // timestamp. This should keep us close to the current time without relying on
5976                                         // having an explicit local time source.
5977                                         // Just in case we end up in a race, we loop until we either successfully
5978                                         // update $timestamp or decide we don't need to.
5979                                         let old_serial = $timestamp.load(Ordering::Acquire);
5980                                         if old_serial >= header.time as usize { break; }
5981                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5982                                                 break;
5983                                         }
5984                                 }
5985                         }
5986                 }
5987                 max_time!(self.highest_seen_timestamp);
5988                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5989                 payment_secrets.retain(|_, inbound_payment| {
5990                         inbound_payment.expiry_time > header.time as u64
5991                 });
5992         }
5993
5994         fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
5995                 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
5996                 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
5997                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5998                         let peer_state = &mut *peer_state_lock;
5999                         for chan in peer_state.channel_by_id.values() {
6000                                 if let (Some(funding_txo), Some(block_hash)) = (chan.get_funding_txo(), chan.get_funding_tx_confirmed_in()) {
6001                                         res.push((funding_txo.txid, Some(block_hash)));
6002                                 }
6003                         }
6004                 }
6005                 res
6006         }
6007
6008         fn transaction_unconfirmed(&self, txid: &Txid) {
6009                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6010                 self.do_chain_event(None, |channel| {
6011                         if let Some(funding_txo) = channel.get_funding_txo() {
6012                                 if funding_txo.txid == *txid {
6013                                         channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
6014                                 } else { Ok((None, Vec::new(), None)) }
6015                         } else { Ok((None, Vec::new(), None)) }
6016                 });
6017         }
6018 }
6019
6020 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
6021 where
6022         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6023         T::Target: BroadcasterInterface,
6024         ES::Target: EntropySource,
6025         NS::Target: NodeSigner,
6026         SP::Target: SignerProvider,
6027         F::Target: FeeEstimator,
6028         R::Target: Router,
6029         L::Target: Logger,
6030 {
6031         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
6032         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
6033         /// the function.
6034         fn do_chain_event<FN: Fn(&mut Channel<<SP::Target as SignerProvider>::Signer>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
6035                         (&self, height_opt: Option<u32>, f: FN) {
6036                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6037                 // during initialization prior to the chain_monitor being fully configured in some cases.
6038                 // See the docs for `ChannelManagerReadArgs` for more.
6039
6040                 let mut failed_channels = Vec::new();
6041                 let mut timed_out_htlcs = Vec::new();
6042                 {
6043                         let per_peer_state = self.per_peer_state.read().unwrap();
6044                         for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6045                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6046                                 let peer_state = &mut *peer_state_lock;
6047                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6048                                 peer_state.channel_by_id.retain(|_, channel| {
6049                                         let res = f(channel);
6050                                         if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
6051                                                 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
6052                                                         let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
6053                                                         timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
6054                                                                 HTLCDestination::NextHopChannel { node_id: Some(channel.get_counterparty_node_id()), channel_id: channel.channel_id() }));
6055                                                 }
6056                                                 if let Some(channel_ready) = channel_ready_opt {
6057                                                         send_channel_ready!(self, pending_msg_events, channel, channel_ready);
6058                                                         if channel.is_usable() {
6059                                                                 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
6060                                                                 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
6061                                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
6062                                                                                 node_id: channel.get_counterparty_node_id(),
6063                                                                                 msg,
6064                                                                         });
6065                                                                 }
6066                                                         } else {
6067                                                                 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
6068                                                         }
6069                                                 }
6070
6071                                                 {
6072                                                         let mut pending_events = self.pending_events.lock().unwrap();
6073                                                         emit_channel_ready_event!(pending_events, channel);
6074                                                 }
6075
6076                                                 if let Some(announcement_sigs) = announcement_sigs {
6077                                                         log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
6078                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6079                                                                 node_id: channel.get_counterparty_node_id(),
6080                                                                 msg: announcement_sigs,
6081                                                         });
6082                                                         if let Some(height) = height_opt {
6083                                                                 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
6084                                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6085                                                                                 msg: announcement,
6086                                                                                 // Note that announcement_signatures fails if the channel cannot be announced,
6087                                                                                 // so get_channel_update_for_broadcast will never fail by the time we get here.
6088                                                                                 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
6089                                                                         });
6090                                                                 }
6091                                                         }
6092                                                 }
6093                                                 if channel.is_our_channel_ready() {
6094                                                         if let Some(real_scid) = channel.get_short_channel_id() {
6095                                                                 // If we sent a 0conf channel_ready, and now have an SCID, we add it
6096                                                                 // to the short_to_chan_info map here. Note that we check whether we
6097                                                                 // can relay using the real SCID at relay-time (i.e.
6098                                                                 // enforce option_scid_alias then), and if the funding tx is ever
6099                                                                 // un-confirmed we force-close the channel, ensuring short_to_chan_info
6100                                                                 // is always consistent.
6101                                                                 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
6102                                                                 let scid_insert = short_to_chan_info.insert(real_scid, (channel.get_counterparty_node_id(), channel.channel_id()));
6103                                                                 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.get_counterparty_node_id(), channel.channel_id()),
6104                                                                         "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
6105                                                                         fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
6106                                                         }
6107                                                 }
6108                                         } else if let Err(reason) = res {
6109                                                 update_maps_on_chan_removal!(self, channel);
6110                                                 // It looks like our counterparty went on-chain or funding transaction was
6111                                                 // reorged out of the main chain. Close the channel.
6112                                                 failed_channels.push(channel.force_shutdown(true));
6113                                                 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
6114                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6115                                                                 msg: update
6116                                                         });
6117                                                 }
6118                                                 let reason_message = format!("{}", reason);
6119                                                 self.issue_channel_close_events(channel, reason);
6120                                                 pending_msg_events.push(events::MessageSendEvent::HandleError {
6121                                                         node_id: channel.get_counterparty_node_id(),
6122                                                         action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
6123                                                                 channel_id: channel.channel_id(),
6124                                                                 data: reason_message,
6125                                                         } },
6126                                                 });
6127                                                 return false;
6128                                         }
6129                                         true
6130                                 });
6131                         }
6132                 }
6133
6134                 if let Some(height) = height_opt {
6135                         self.claimable_payments.lock().unwrap().claimable_htlcs.retain(|payment_hash, (_, htlcs)| {
6136                                 htlcs.retain(|htlc| {
6137                                         // If height is approaching the number of blocks we think it takes us to get
6138                                         // our commitment transaction confirmed before the HTLC expires, plus the
6139                                         // number of blocks we generally consider it to take to do a commitment update,
6140                                         // just give up on it and fail the HTLC.
6141                                         if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
6142                                                 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6143                                                 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
6144
6145                                                 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
6146                                                         HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
6147                                                         HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
6148                                                 false
6149                                         } else { true }
6150                                 });
6151                                 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
6152                         });
6153
6154                         let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
6155                         intercepted_htlcs.retain(|_, htlc| {
6156                                 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
6157                                         let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6158                                                 short_channel_id: htlc.prev_short_channel_id,
6159                                                 htlc_id: htlc.prev_htlc_id,
6160                                                 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
6161                                                 phantom_shared_secret: None,
6162                                                 outpoint: htlc.prev_funding_outpoint,
6163                                         });
6164
6165                                         let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
6166                                                 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6167                                                 _ => unreachable!(),
6168                                         };
6169                                         timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
6170                                                         HTLCFailReason::from_failure_code(0x2000 | 2),
6171                                                         HTLCDestination::InvalidForward { requested_forward_scid }));
6172                                         log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
6173                                         false
6174                                 } else { true }
6175                         });
6176                 }
6177
6178                 self.handle_init_event_channel_failures(failed_channels);
6179
6180                 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
6181                         self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
6182                 }
6183         }
6184
6185         /// Gets a [`Future`] that completes when this [`ChannelManager`] needs to be persisted.
6186         ///
6187         /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
6188         /// [`ChannelManager`] and should instead register actions to be taken later.
6189         ///
6190         pub fn get_persistable_update_future(&self) -> Future {
6191                 self.persistence_notifier.get_future()
6192         }
6193
6194         #[cfg(any(test, feature = "_test_utils"))]
6195         pub fn get_persistence_condvar_value(&self) -> bool {
6196                 self.persistence_notifier.notify_pending()
6197         }
6198
6199         /// Gets the latest best block which was connected either via the [`chain::Listen`] or
6200         /// [`chain::Confirm`] interfaces.
6201         pub fn current_best_block(&self) -> BestBlock {
6202                 self.best_block.read().unwrap().clone()
6203         }
6204
6205         /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6206         /// [`ChannelManager`].
6207         pub fn node_features(&self) -> NodeFeatures {
6208                 provided_node_features(&self.default_configuration)
6209         }
6210
6211         /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6212         /// [`ChannelManager`].
6213         ///
6214         /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6215         /// or not. Thus, this method is not public.
6216         #[cfg(any(feature = "_test_utils", test))]
6217         pub fn invoice_features(&self) -> InvoiceFeatures {
6218                 provided_invoice_features(&self.default_configuration)
6219         }
6220
6221         /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6222         /// [`ChannelManager`].
6223         pub fn channel_features(&self) -> ChannelFeatures {
6224                 provided_channel_features(&self.default_configuration)
6225         }
6226
6227         /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6228         /// [`ChannelManager`].
6229         pub fn channel_type_features(&self) -> ChannelTypeFeatures {
6230                 provided_channel_type_features(&self.default_configuration)
6231         }
6232
6233         /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6234         /// [`ChannelManager`].
6235         pub fn init_features(&self) -> InitFeatures {
6236                 provided_init_features(&self.default_configuration)
6237         }
6238 }
6239
6240 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
6241         ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
6242 where
6243         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
6244         T::Target: BroadcasterInterface,
6245         ES::Target: EntropySource,
6246         NS::Target: NodeSigner,
6247         SP::Target: SignerProvider,
6248         F::Target: FeeEstimator,
6249         R::Target: Router,
6250         L::Target: Logger,
6251 {
6252         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
6253                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6254                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, msg), *counterparty_node_id);
6255         }
6256
6257         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
6258                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6259                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
6260         }
6261
6262         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
6263                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6264                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
6265         }
6266
6267         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
6268                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6269                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
6270         }
6271
6272         fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
6273                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6274                 let _ = handle_error!(self, self.internal_channel_ready(counterparty_node_id, msg), *counterparty_node_id);
6275         }
6276
6277         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
6278                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6279                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
6280         }
6281
6282         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
6283                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6284                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
6285         }
6286
6287         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
6288                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6289                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
6290         }
6291
6292         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
6293                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6294                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
6295         }
6296
6297         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
6298                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6299                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
6300         }
6301
6302         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
6303                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6304                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
6305         }
6306
6307         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
6308                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6309                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
6310         }
6311
6312         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
6313                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6314                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
6315         }
6316
6317         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
6318                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6319                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
6320         }
6321
6322         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
6323                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6324                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
6325         }
6326
6327         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
6328                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
6329                         if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
6330                                 persist
6331                         } else {
6332                                 NotifyOption::SkipPersist
6333                         }
6334                 });
6335         }
6336
6337         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
6338                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6339                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
6340         }
6341
6342         fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
6343                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6344                 let mut failed_channels = Vec::new();
6345                 let mut per_peer_state = self.per_peer_state.write().unwrap();
6346                 let remove_peer = {
6347                         log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
6348                                 log_pubkey!(counterparty_node_id));
6349                         if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6350                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6351                                 let peer_state = &mut *peer_state_lock;
6352                                 let pending_msg_events = &mut peer_state.pending_msg_events;
6353                                 peer_state.channel_by_id.retain(|_, chan| {
6354                                         chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
6355                                         if chan.is_shutdown() {
6356                                                 update_maps_on_chan_removal!(self, chan);
6357                                                 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
6358                                                 return false;
6359                                         }
6360                                         true
6361                                 });
6362                                 pending_msg_events.retain(|msg| {
6363                                         match msg {
6364                                                 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
6365                                                 &events::MessageSendEvent::SendOpenChannel { .. } => false,
6366                                                 &events::MessageSendEvent::SendFundingCreated { .. } => false,
6367                                                 &events::MessageSendEvent::SendFundingSigned { .. } => false,
6368                                                 &events::MessageSendEvent::SendChannelReady { .. } => false,
6369                                                 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
6370                                                 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
6371                                                 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
6372                                                 &events::MessageSendEvent::SendClosingSigned { .. } => false,
6373                                                 &events::MessageSendEvent::SendShutdown { .. } => false,
6374                                                 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
6375                                                 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
6376                                                 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
6377                                                 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
6378                                                 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
6379                                                 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
6380                                                 &events::MessageSendEvent::HandleError { .. } => false,
6381                                                 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
6382                                                 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
6383                                                 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
6384                                                 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
6385                                         }
6386                                 });
6387                                 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
6388                                 peer_state.is_connected = false;
6389                                 peer_state.ok_to_remove(true)
6390                         } else { debug_assert!(false, "Unconnected peer disconnected"); true }
6391                 };
6392                 if remove_peer {
6393                         per_peer_state.remove(counterparty_node_id);
6394                 }
6395                 mem::drop(per_peer_state);
6396
6397                 for failure in failed_channels.drain(..) {
6398                         self.finish_force_close_channel(failure);
6399                 }
6400         }
6401
6402         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
6403                 if !init_msg.features.supports_static_remote_key() {
6404                         log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
6405                         return Err(());
6406                 }
6407
6408                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6409
6410                 // If we have too many peers connected which don't have funded channels, disconnect the
6411                 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
6412                 // unfunded channels taking up space in memory for disconnected peers, we still let new
6413                 // peers connect, but we'll reject new channels from them.
6414                 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
6415                 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
6416
6417                 {
6418                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
6419                         match peer_state_lock.entry(counterparty_node_id.clone()) {
6420                                 hash_map::Entry::Vacant(e) => {
6421                                         if inbound_peer_limited {
6422                                                 return Err(());
6423                                         }
6424                                         e.insert(Mutex::new(PeerState {
6425                                                 channel_by_id: HashMap::new(),
6426                                                 latest_features: init_msg.features.clone(),
6427                                                 pending_msg_events: Vec::new(),
6428                                                 monitor_update_blocked_actions: BTreeMap::new(),
6429                                                 is_connected: true,
6430                                         }));
6431                                 },
6432                                 hash_map::Entry::Occupied(e) => {
6433                                         let mut peer_state = e.get().lock().unwrap();
6434                                         peer_state.latest_features = init_msg.features.clone();
6435
6436                                         let best_block_height = self.best_block.read().unwrap().height();
6437                                         if inbound_peer_limited &&
6438                                                 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
6439                                                 peer_state.channel_by_id.len()
6440                                         {
6441                                                 return Err(());
6442                                         }
6443
6444                                         debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
6445                                         peer_state.is_connected = true;
6446                                 },
6447                         }
6448                 }
6449
6450                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
6451
6452                 let per_peer_state = self.per_peer_state.read().unwrap();
6453                 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6454                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6455                         let peer_state = &mut *peer_state_lock;
6456                         let pending_msg_events = &mut peer_state.pending_msg_events;
6457                         peer_state.channel_by_id.retain(|_, chan| {
6458                                 let retain = if chan.get_counterparty_node_id() == *counterparty_node_id {
6459                                         if !chan.have_received_message() {
6460                                                 // If we created this (outbound) channel while we were disconnected from the
6461                                                 // peer we probably failed to send the open_channel message, which is now
6462                                                 // lost. We can't have had anything pending related to this channel, so we just
6463                                                 // drop it.
6464                                                 false
6465                                         } else {
6466                                                 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
6467                                                         node_id: chan.get_counterparty_node_id(),
6468                                                         msg: chan.get_channel_reestablish(&self.logger),
6469                                                 });
6470                                                 true
6471                                         }
6472                                 } else { true };
6473                                 if retain && chan.get_counterparty_node_id() != *counterparty_node_id {
6474                                         if let Some(msg) = chan.get_signed_channel_announcement(&self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(), &self.default_configuration) {
6475                                                 if let Ok(update_msg) = self.get_channel_update_for_broadcast(chan) {
6476                                                         pending_msg_events.push(events::MessageSendEvent::SendChannelAnnouncement {
6477                                                                 node_id: *counterparty_node_id,
6478                                                                 msg, update_msg,
6479                                                         });
6480                                                 }
6481                                         }
6482                                 }
6483                                 retain
6484                         });
6485                 }
6486                 //TODO: Also re-broadcast announcement_signatures
6487                 Ok(())
6488         }
6489
6490         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
6491                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
6492
6493                 if msg.channel_id == [0; 32] {
6494                         let channel_ids: Vec<[u8; 32]> = {
6495                                 let per_peer_state = self.per_peer_state.read().unwrap();
6496                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6497                                 if peer_state_mutex_opt.is_none() { return; }
6498                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6499                                 let peer_state = &mut *peer_state_lock;
6500                                 peer_state.channel_by_id.keys().cloned().collect()
6501                         };
6502                         for channel_id in channel_ids {
6503                                 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6504                                 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
6505                         }
6506                 } else {
6507                         {
6508                                 // First check if we can advance the channel type and try again.
6509                                 let per_peer_state = self.per_peer_state.read().unwrap();
6510                                 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
6511                                 if peer_state_mutex_opt.is_none() { return; }
6512                                 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6513                                 let peer_state = &mut *peer_state_lock;
6514                                 if let Some(chan) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
6515                                         if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
6516                                                 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
6517                                                         node_id: *counterparty_node_id,
6518                                                         msg,
6519                                                 });
6520                                                 return;
6521                                         }
6522                                 }
6523                         }
6524
6525                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
6526                         let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
6527                 }
6528         }
6529
6530         fn provided_node_features(&self) -> NodeFeatures {
6531                 provided_node_features(&self.default_configuration)
6532         }
6533
6534         fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
6535                 provided_init_features(&self.default_configuration)
6536         }
6537 }
6538
6539 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
6540 /// [`ChannelManager`].
6541 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
6542         provided_init_features(config).to_context()
6543 }
6544
6545 /// Fetches the set of [`InvoiceFeatures`] flags which are provided by or required by
6546 /// [`ChannelManager`].
6547 ///
6548 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
6549 /// or not. Thus, this method is not public.
6550 #[cfg(any(feature = "_test_utils", test))]
6551 pub(crate) fn provided_invoice_features(config: &UserConfig) -> InvoiceFeatures {
6552         provided_init_features(config).to_context()
6553 }
6554
6555 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
6556 /// [`ChannelManager`].
6557 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
6558         provided_init_features(config).to_context()
6559 }
6560
6561 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
6562 /// [`ChannelManager`].
6563 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
6564         ChannelTypeFeatures::from_init(&provided_init_features(config))
6565 }
6566
6567 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
6568 /// [`ChannelManager`].
6569 pub fn provided_init_features(_config: &UserConfig) -> InitFeatures {
6570         // Note that if new features are added here which other peers may (eventually) require, we
6571         // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
6572         // [`ErroringMessageHandler`].
6573         let mut features = InitFeatures::empty();
6574         features.set_data_loss_protect_optional();
6575         features.set_upfront_shutdown_script_optional();
6576         features.set_variable_length_onion_required();
6577         features.set_static_remote_key_required();
6578         features.set_payment_secret_required();
6579         features.set_basic_mpp_optional();
6580         features.set_wumbo_optional();
6581         features.set_shutdown_any_segwit_optional();
6582         features.set_channel_type_optional();
6583         features.set_scid_privacy_optional();
6584         features.set_zero_conf_optional();
6585         #[cfg(anchors)]
6586         { // Attributes are not allowed on if expressions on our current MSRV of 1.41.
6587                 if _config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
6588                         features.set_anchors_zero_fee_htlc_tx_optional();
6589                 }
6590         }
6591         features
6592 }
6593
6594 const SERIALIZATION_VERSION: u8 = 1;
6595 const MIN_SERIALIZATION_VERSION: u8 = 1;
6596
6597 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
6598         (2, fee_base_msat, required),
6599         (4, fee_proportional_millionths, required),
6600         (6, cltv_expiry_delta, required),
6601 });
6602
6603 impl_writeable_tlv_based!(ChannelCounterparty, {
6604         (2, node_id, required),
6605         (4, features, required),
6606         (6, unspendable_punishment_reserve, required),
6607         (8, forwarding_info, option),
6608         (9, outbound_htlc_minimum_msat, option),
6609         (11, outbound_htlc_maximum_msat, option),
6610 });
6611
6612 impl Writeable for ChannelDetails {
6613         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6614                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6615                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6616                 let user_channel_id_low = self.user_channel_id as u64;
6617                 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
6618                 write_tlv_fields!(writer, {
6619                         (1, self.inbound_scid_alias, option),
6620                         (2, self.channel_id, required),
6621                         (3, self.channel_type, option),
6622                         (4, self.counterparty, required),
6623                         (5, self.outbound_scid_alias, option),
6624                         (6, self.funding_txo, option),
6625                         (7, self.config, option),
6626                         (8, self.short_channel_id, option),
6627                         (9, self.confirmations, option),
6628                         (10, self.channel_value_satoshis, required),
6629                         (12, self.unspendable_punishment_reserve, option),
6630                         (14, user_channel_id_low, required),
6631                         (16, self.balance_msat, required),
6632                         (18, self.outbound_capacity_msat, required),
6633                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6634                         // filled in, so we can safely unwrap it here.
6635                         (19, self.next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6636                         (20, self.inbound_capacity_msat, required),
6637                         (22, self.confirmations_required, option),
6638                         (24, self.force_close_spend_delay, option),
6639                         (26, self.is_outbound, required),
6640                         (28, self.is_channel_ready, required),
6641                         (30, self.is_usable, required),
6642                         (32, self.is_public, required),
6643                         (33, self.inbound_htlc_minimum_msat, option),
6644                         (35, self.inbound_htlc_maximum_msat, option),
6645                         (37, user_channel_id_high_opt, option),
6646                         (39, self.feerate_sat_per_1000_weight, option),
6647                 });
6648                 Ok(())
6649         }
6650 }
6651
6652 impl Readable for ChannelDetails {
6653         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6654                 _init_and_read_tlv_fields!(reader, {
6655                         (1, inbound_scid_alias, option),
6656                         (2, channel_id, required),
6657                         (3, channel_type, option),
6658                         (4, counterparty, required),
6659                         (5, outbound_scid_alias, option),
6660                         (6, funding_txo, option),
6661                         (7, config, option),
6662                         (8, short_channel_id, option),
6663                         (9, confirmations, option),
6664                         (10, channel_value_satoshis, required),
6665                         (12, unspendable_punishment_reserve, option),
6666                         (14, user_channel_id_low, required),
6667                         (16, balance_msat, required),
6668                         (18, outbound_capacity_msat, required),
6669                         // Note that by the time we get past the required read above, outbound_capacity_msat will be
6670                         // filled in, so we can safely unwrap it here.
6671                         (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
6672                         (20, inbound_capacity_msat, required),
6673                         (22, confirmations_required, option),
6674                         (24, force_close_spend_delay, option),
6675                         (26, is_outbound, required),
6676                         (28, is_channel_ready, required),
6677                         (30, is_usable, required),
6678                         (32, is_public, required),
6679                         (33, inbound_htlc_minimum_msat, option),
6680                         (35, inbound_htlc_maximum_msat, option),
6681                         (37, user_channel_id_high_opt, option),
6682                         (39, feerate_sat_per_1000_weight, option),
6683                 });
6684
6685                 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
6686                 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
6687                 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
6688                 let user_channel_id = user_channel_id_low as u128 +
6689                         ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
6690
6691                 Ok(Self {
6692                         inbound_scid_alias,
6693                         channel_id: channel_id.0.unwrap(),
6694                         channel_type,
6695                         counterparty: counterparty.0.unwrap(),
6696                         outbound_scid_alias,
6697                         funding_txo,
6698                         config,
6699                         short_channel_id,
6700                         channel_value_satoshis: channel_value_satoshis.0.unwrap(),
6701                         unspendable_punishment_reserve,
6702                         user_channel_id,
6703                         balance_msat: balance_msat.0.unwrap(),
6704                         outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
6705                         next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
6706                         inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
6707                         confirmations_required,
6708                         confirmations,
6709                         force_close_spend_delay,
6710                         is_outbound: is_outbound.0.unwrap(),
6711                         is_channel_ready: is_channel_ready.0.unwrap(),
6712                         is_usable: is_usable.0.unwrap(),
6713                         is_public: is_public.0.unwrap(),
6714                         inbound_htlc_minimum_msat,
6715                         inbound_htlc_maximum_msat,
6716                         feerate_sat_per_1000_weight,
6717                 })
6718         }
6719 }
6720
6721 impl_writeable_tlv_based!(PhantomRouteHints, {
6722         (2, channels, vec_type),
6723         (4, phantom_scid, required),
6724         (6, real_node_pubkey, required),
6725 });
6726
6727 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
6728         (0, Forward) => {
6729                 (0, onion_packet, required),
6730                 (2, short_channel_id, required),
6731         },
6732         (1, Receive) => {
6733                 (0, payment_data, required),
6734                 (1, phantom_shared_secret, option),
6735                 (2, incoming_cltv_expiry, required),
6736         },
6737         (2, ReceiveKeysend) => {
6738                 (0, payment_preimage, required),
6739                 (2, incoming_cltv_expiry, required),
6740         },
6741 ;);
6742
6743 impl_writeable_tlv_based!(PendingHTLCInfo, {
6744         (0, routing, required),
6745         (2, incoming_shared_secret, required),
6746         (4, payment_hash, required),
6747         (6, outgoing_amt_msat, required),
6748         (8, outgoing_cltv_value, required),
6749         (9, incoming_amt_msat, option),
6750 });
6751
6752
6753 impl Writeable for HTLCFailureMsg {
6754         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6755                 match self {
6756                         HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
6757                                 0u8.write(writer)?;
6758                                 channel_id.write(writer)?;
6759                                 htlc_id.write(writer)?;
6760                                 reason.write(writer)?;
6761                         },
6762                         HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6763                                 channel_id, htlc_id, sha256_of_onion, failure_code
6764                         }) => {
6765                                 1u8.write(writer)?;
6766                                 channel_id.write(writer)?;
6767                                 htlc_id.write(writer)?;
6768                                 sha256_of_onion.write(writer)?;
6769                                 failure_code.write(writer)?;
6770                         },
6771                 }
6772                 Ok(())
6773         }
6774 }
6775
6776 impl Readable for HTLCFailureMsg {
6777         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6778                 let id: u8 = Readable::read(reader)?;
6779                 match id {
6780                         0 => {
6781                                 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6782                                         channel_id: Readable::read(reader)?,
6783                                         htlc_id: Readable::read(reader)?,
6784                                         reason: Readable::read(reader)?,
6785                                 }))
6786                         },
6787                         1 => {
6788                                 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6789                                         channel_id: Readable::read(reader)?,
6790                                         htlc_id: Readable::read(reader)?,
6791                                         sha256_of_onion: Readable::read(reader)?,
6792                                         failure_code: Readable::read(reader)?,
6793                                 }))
6794                         },
6795                         // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6796                         // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6797                         // messages contained in the variants.
6798                         // In version 0.0.101, support for reading the variants with these types was added, and
6799                         // we should migrate to writing these variants when UpdateFailHTLC or
6800                         // UpdateFailMalformedHTLC get TLV fields.
6801                         2 => {
6802                                 let length: BigSize = Readable::read(reader)?;
6803                                 let mut s = FixedLengthReader::new(reader, length.0);
6804                                 let res = Readable::read(&mut s)?;
6805                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6806                                 Ok(HTLCFailureMsg::Relay(res))
6807                         },
6808                         3 => {
6809                                 let length: BigSize = Readable::read(reader)?;
6810                                 let mut s = FixedLengthReader::new(reader, length.0);
6811                                 let res = Readable::read(&mut s)?;
6812                                 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6813                                 Ok(HTLCFailureMsg::Malformed(res))
6814                         },
6815                         _ => Err(DecodeError::UnknownRequiredFeature),
6816                 }
6817         }
6818 }
6819
6820 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6821         (0, Forward),
6822         (1, Fail),
6823 );
6824
6825 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6826         (0, short_channel_id, required),
6827         (1, phantom_shared_secret, option),
6828         (2, outpoint, required),
6829         (4, htlc_id, required),
6830         (6, incoming_packet_shared_secret, required)
6831 });
6832
6833 impl Writeable for ClaimableHTLC {
6834         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6835                 let (payment_data, keysend_preimage) = match &self.onion_payload {
6836                         OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
6837                         OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
6838                 };
6839                 write_tlv_fields!(writer, {
6840                         (0, self.prev_hop, required),
6841                         (1, self.total_msat, required),
6842                         (2, self.value, required),
6843                         (3, self.sender_intended_value, required),
6844                         (4, payment_data, option),
6845                         (5, self.total_value_received, option),
6846                         (6, self.cltv_expiry, required),
6847                         (8, keysend_preimage, option),
6848                 });
6849                 Ok(())
6850         }
6851 }
6852
6853 impl Readable for ClaimableHTLC {
6854         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6855                 let mut prev_hop = crate::util::ser::RequiredWrapper(None);
6856                 let mut value = 0;
6857                 let mut sender_intended_value = None;
6858                 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6859                 let mut cltv_expiry = 0;
6860                 let mut total_value_received = None;
6861                 let mut total_msat = None;
6862                 let mut keysend_preimage: Option<PaymentPreimage> = None;
6863                 read_tlv_fields!(reader, {
6864                         (0, prev_hop, required),
6865                         (1, total_msat, option),
6866                         (2, value, required),
6867                         (3, sender_intended_value, option),
6868                         (4, payment_data, option),
6869                         (5, total_value_received, option),
6870                         (6, cltv_expiry, required),
6871                         (8, keysend_preimage, option)
6872                 });
6873                 let onion_payload = match keysend_preimage {
6874                         Some(p) => {
6875                                 if payment_data.is_some() {
6876                                         return Err(DecodeError::InvalidValue)
6877                                 }
6878                                 if total_msat.is_none() {
6879                                         total_msat = Some(value);
6880                                 }
6881                                 OnionPayload::Spontaneous(p)
6882                         },
6883                         None => {
6884                                 if total_msat.is_none() {
6885                                         if payment_data.is_none() {
6886                                                 return Err(DecodeError::InvalidValue)
6887                                         }
6888                                         total_msat = Some(payment_data.as_ref().unwrap().total_msat);
6889                                 }
6890                                 OnionPayload::Invoice { _legacy_hop_data: payment_data }
6891                         },
6892                 };
6893                 Ok(Self {
6894                         prev_hop: prev_hop.0.unwrap(),
6895                         timer_ticks: 0,
6896                         value,
6897                         sender_intended_value: sender_intended_value.unwrap_or(value),
6898                         total_value_received,
6899                         total_msat: total_msat.unwrap(),
6900                         onion_payload,
6901                         cltv_expiry,
6902                 })
6903         }
6904 }
6905
6906 impl Readable for HTLCSource {
6907         fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6908                 let id: u8 = Readable::read(reader)?;
6909                 match id {
6910                         0 => {
6911                                 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
6912                                 let mut first_hop_htlc_msat: u64 = 0;
6913                                 let mut path: Option<Vec<RouteHop>> = Some(Vec::new());
6914                                 let mut payment_id = None;
6915                                 let mut payment_secret = None;
6916                                 let mut payment_params: Option<PaymentParameters> = None;
6917                                 read_tlv_fields!(reader, {
6918                                         (0, session_priv, required),
6919                                         (1, payment_id, option),
6920                                         (2, first_hop_htlc_msat, required),
6921                                         (3, payment_secret, option),
6922                                         (4, path, vec_type),
6923                                         (5, payment_params, (option: ReadableArgs, 0)),
6924                                 });
6925                                 if payment_id.is_none() {
6926                                         // For backwards compat, if there was no payment_id written, use the session_priv bytes
6927                                         // instead.
6928                                         payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6929                                 }
6930                                 if path.is_none() || path.as_ref().unwrap().is_empty() {
6931                                         return Err(DecodeError::InvalidValue);
6932                                 }
6933                                 let path = path.unwrap();
6934                                 if let Some(params) = payment_params.as_mut() {
6935                                         if params.final_cltv_expiry_delta == 0 {
6936                                                 params.final_cltv_expiry_delta = path.last().unwrap().cltv_expiry_delta;
6937                                         }
6938                                 }
6939                                 Ok(HTLCSource::OutboundRoute {
6940                                         session_priv: session_priv.0.unwrap(),
6941                                         first_hop_htlc_msat,
6942                                         path,
6943                                         payment_id: payment_id.unwrap(),
6944                                         payment_secret,
6945                                 })
6946                         }
6947                         1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6948                         _ => Err(DecodeError::UnknownRequiredFeature),
6949                 }
6950         }
6951 }
6952
6953 impl Writeable for HTLCSource {
6954         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
6955                 match self {
6956                         HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret } => {
6957                                 0u8.write(writer)?;
6958                                 let payment_id_opt = Some(payment_id);
6959                                 write_tlv_fields!(writer, {
6960                                         (0, session_priv, required),
6961                                         (1, payment_id_opt, option),
6962                                         (2, first_hop_htlc_msat, required),
6963                                         (3, payment_secret, option),
6964                                         (4, *path, vec_type),
6965                                         (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
6966                                  });
6967                         }
6968                         HTLCSource::PreviousHopData(ref field) => {
6969                                 1u8.write(writer)?;
6970                                 field.write(writer)?;
6971                         }
6972                 }
6973                 Ok(())
6974         }
6975 }
6976
6977 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
6978         (0, forward_info, required),
6979         (1, prev_user_channel_id, (default_value, 0)),
6980         (2, prev_short_channel_id, required),
6981         (4, prev_htlc_id, required),
6982         (6, prev_funding_outpoint, required),
6983 });
6984
6985 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6986         (1, FailHTLC) => {
6987                 (0, htlc_id, required),
6988                 (2, err_packet, required),
6989         };
6990         (0, AddHTLC)
6991 );
6992
6993 impl_writeable_tlv_based!(PendingInboundPayment, {
6994         (0, payment_secret, required),
6995         (2, expiry_time, required),
6996         (4, user_payment_id, required),
6997         (6, payment_preimage, required),
6998         (8, min_value_msat, required),
6999 });
7000
7001 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
7002 where
7003         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7004         T::Target: BroadcasterInterface,
7005         ES::Target: EntropySource,
7006         NS::Target: NodeSigner,
7007         SP::Target: SignerProvider,
7008         F::Target: FeeEstimator,
7009         R::Target: Router,
7010         L::Target: Logger,
7011 {
7012         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
7013                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
7014
7015                 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
7016
7017                 self.genesis_hash.write(writer)?;
7018                 {
7019                         let best_block = self.best_block.read().unwrap();
7020                         best_block.height().write(writer)?;
7021                         best_block.block_hash().write(writer)?;
7022                 }
7023
7024                 let mut serializable_peer_count: u64 = 0;
7025                 {
7026                         let per_peer_state = self.per_peer_state.read().unwrap();
7027                         let mut unfunded_channels = 0;
7028                         let mut number_of_channels = 0;
7029                         for (_, peer_state_mutex) in per_peer_state.iter() {
7030                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7031                                 let peer_state = &mut *peer_state_lock;
7032                                 if !peer_state.ok_to_remove(false) {
7033                                         serializable_peer_count += 1;
7034                                 }
7035                                 number_of_channels += peer_state.channel_by_id.len();
7036                                 for (_, channel) in peer_state.channel_by_id.iter() {
7037                                         if !channel.is_funding_initiated() {
7038                                                 unfunded_channels += 1;
7039                                         }
7040                                 }
7041                         }
7042
7043                         ((number_of_channels - unfunded_channels) as u64).write(writer)?;
7044
7045                         for (_, peer_state_mutex) in per_peer_state.iter() {
7046                                 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7047                                 let peer_state = &mut *peer_state_lock;
7048                                 for (_, channel) in peer_state.channel_by_id.iter() {
7049                                         if channel.is_funding_initiated() {
7050                                                 channel.write(writer)?;
7051                                         }
7052                                 }
7053                         }
7054                 }
7055
7056                 {
7057                         let forward_htlcs = self.forward_htlcs.lock().unwrap();
7058                         (forward_htlcs.len() as u64).write(writer)?;
7059                         for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
7060                                 short_channel_id.write(writer)?;
7061                                 (pending_forwards.len() as u64).write(writer)?;
7062                                 for forward in pending_forwards {
7063                                         forward.write(writer)?;
7064                                 }
7065                         }
7066                 }
7067
7068                 let per_peer_state = self.per_peer_state.write().unwrap();
7069
7070                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
7071                 let claimable_payments = self.claimable_payments.lock().unwrap();
7072                 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
7073
7074                 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
7075                 (claimable_payments.claimable_htlcs.len() as u64).write(writer)?;
7076                 for (payment_hash, (purpose, previous_hops)) in claimable_payments.claimable_htlcs.iter() {
7077                         payment_hash.write(writer)?;
7078                         (previous_hops.len() as u64).write(writer)?;
7079                         for htlc in previous_hops.iter() {
7080                                 htlc.write(writer)?;
7081                         }
7082                         htlc_purposes.push(purpose);
7083                 }
7084
7085                 let mut monitor_update_blocked_actions_per_peer = None;
7086                 let mut peer_states = Vec::new();
7087                 for (_, peer_state_mutex) in per_peer_state.iter() {
7088                         // Because we're holding the owning `per_peer_state` write lock here there's no chance
7089                         // of a lockorder violation deadlock - no other thread can be holding any
7090                         // per_peer_state lock at all.
7091                         peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
7092                 }
7093
7094                 (serializable_peer_count).write(writer)?;
7095                 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
7096                         // Peers which we have no channels to should be dropped once disconnected. As we
7097                         // disconnect all peers when shutting down and serializing the ChannelManager, we
7098                         // consider all peers as disconnected here. There's therefore no need write peers with
7099                         // no channels.
7100                         if !peer_state.ok_to_remove(false) {
7101                                 peer_pubkey.write(writer)?;
7102                                 peer_state.latest_features.write(writer)?;
7103                                 if !peer_state.monitor_update_blocked_actions.is_empty() {
7104                                         monitor_update_blocked_actions_per_peer
7105                                                 .get_or_insert_with(Vec::new)
7106                                                 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
7107                                 }
7108                         }
7109                 }
7110
7111                 let events = self.pending_events.lock().unwrap();
7112                 (events.len() as u64).write(writer)?;
7113                 for event in events.iter() {
7114                         event.write(writer)?;
7115                 }
7116
7117                 let background_events = self.pending_background_events.lock().unwrap();
7118                 (background_events.len() as u64).write(writer)?;
7119                 for event in background_events.iter() {
7120                         match event {
7121                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
7122                                         0u8.write(writer)?;
7123                                         funding_txo.write(writer)?;
7124                                         monitor_update.write(writer)?;
7125                                 },
7126                         }
7127                 }
7128
7129                 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
7130                 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
7131                 // likely to be identical.
7132                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7133                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
7134
7135                 (pending_inbound_payments.len() as u64).write(writer)?;
7136                 for (hash, pending_payment) in pending_inbound_payments.iter() {
7137                         hash.write(writer)?;
7138                         pending_payment.write(writer)?;
7139                 }
7140
7141                 // For backwards compat, write the session privs and their total length.
7142                 let mut num_pending_outbounds_compat: u64 = 0;
7143                 for (_, outbound) in pending_outbound_payments.iter() {
7144                         if !outbound.is_fulfilled() && !outbound.abandoned() {
7145                                 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
7146                         }
7147                 }
7148                 num_pending_outbounds_compat.write(writer)?;
7149                 for (_, outbound) in pending_outbound_payments.iter() {
7150                         match outbound {
7151                                 PendingOutboundPayment::Legacy { session_privs } |
7152                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7153                                         for session_priv in session_privs.iter() {
7154                                                 session_priv.write(writer)?;
7155                                         }
7156                                 }
7157                                 PendingOutboundPayment::Fulfilled { .. } => {},
7158                                 PendingOutboundPayment::Abandoned { .. } => {},
7159                         }
7160                 }
7161
7162                 // Encode without retry info for 0.0.101 compatibility.
7163                 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
7164                 for (id, outbound) in pending_outbound_payments.iter() {
7165                         match outbound {
7166                                 PendingOutboundPayment::Legacy { session_privs } |
7167                                 PendingOutboundPayment::Retryable { session_privs, .. } => {
7168                                         pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
7169                                 },
7170                                 _ => {},
7171                         }
7172                 }
7173
7174                 let mut pending_intercepted_htlcs = None;
7175                 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7176                 if our_pending_intercepts.len() != 0 {
7177                         pending_intercepted_htlcs = Some(our_pending_intercepts);
7178                 }
7179
7180                 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
7181                 if pending_claiming_payments.as_ref().unwrap().is_empty() {
7182                         // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
7183                         // map. Thus, if there are no entries we skip writing a TLV for it.
7184                         pending_claiming_payments = None;
7185                 }
7186
7187                 write_tlv_fields!(writer, {
7188                         (1, pending_outbound_payments_no_retry, required),
7189                         (2, pending_intercepted_htlcs, option),
7190                         (3, pending_outbound_payments, required),
7191                         (4, pending_claiming_payments, option),
7192                         (5, self.our_network_pubkey, required),
7193                         (6, monitor_update_blocked_actions_per_peer, option),
7194                         (7, self.fake_scid_rand_bytes, required),
7195                         (9, htlc_purposes, vec_type),
7196                         (11, self.probing_cookie_secret, required),
7197                 });
7198
7199                 Ok(())
7200         }
7201 }
7202
7203 /// Arguments for the creation of a ChannelManager that are not deserialized.
7204 ///
7205 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
7206 /// is:
7207 /// 1) Deserialize all stored [`ChannelMonitor`]s.
7208 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
7209 ///    `<(BlockHash, ChannelManager)>::read(reader, args)`
7210 ///    This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
7211 ///    [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
7212 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
7213 ///    same way you would handle a [`chain::Filter`] call using
7214 ///    [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
7215 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
7216 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
7217 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
7218 ///    Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
7219 ///    will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
7220 ///    the next step.
7221 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
7222 ///    [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
7223 ///
7224 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
7225 /// call any other methods on the newly-deserialized [`ChannelManager`].
7226 ///
7227 /// Note that because some channels may be closed during deserialization, it is critical that you
7228 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
7229 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
7230 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
7231 /// not force-close the same channels but consider them live), you may end up revoking a state for
7232 /// which you've already broadcasted the transaction.
7233 ///
7234 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
7235 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7236 where
7237         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7238         T::Target: BroadcasterInterface,
7239         ES::Target: EntropySource,
7240         NS::Target: NodeSigner,
7241         SP::Target: SignerProvider,
7242         F::Target: FeeEstimator,
7243         R::Target: Router,
7244         L::Target: Logger,
7245 {
7246         /// A cryptographically secure source of entropy.
7247         pub entropy_source: ES,
7248
7249         /// A signer that is able to perform node-scoped cryptographic operations.
7250         pub node_signer: NS,
7251
7252         /// The keys provider which will give us relevant keys. Some keys will be loaded during
7253         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
7254         /// signing data.
7255         pub signer_provider: SP,
7256
7257         /// The fee_estimator for use in the ChannelManager in the future.
7258         ///
7259         /// No calls to the FeeEstimator will be made during deserialization.
7260         pub fee_estimator: F,
7261         /// The chain::Watch for use in the ChannelManager in the future.
7262         ///
7263         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
7264         /// you have deserialized ChannelMonitors separately and will add them to your
7265         /// chain::Watch after deserializing this ChannelManager.
7266         pub chain_monitor: M,
7267
7268         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
7269         /// used to broadcast the latest local commitment transactions of channels which must be
7270         /// force-closed during deserialization.
7271         pub tx_broadcaster: T,
7272         /// The router which will be used in the ChannelManager in the future for finding routes
7273         /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
7274         ///
7275         /// No calls to the router will be made during deserialization.
7276         pub router: R,
7277         /// The Logger for use in the ChannelManager and which may be used to log information during
7278         /// deserialization.
7279         pub logger: L,
7280         /// Default settings used for new channels. Any existing channels will continue to use the
7281         /// runtime settings which were stored when the ChannelManager was serialized.
7282         pub default_config: UserConfig,
7283
7284         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
7285         /// value.get_funding_txo() should be the key).
7286         ///
7287         /// If a monitor is inconsistent with the channel state during deserialization the channel will
7288         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
7289         /// is true for missing channels as well. If there is a monitor missing for which we find
7290         /// channel data Err(DecodeError::InvalidValue) will be returned.
7291         ///
7292         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
7293         /// this struct.
7294         ///
7295         /// This is not exported to bindings users because we have no HashMap bindings
7296         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
7297 }
7298
7299 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7300                 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
7301 where
7302         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7303         T::Target: BroadcasterInterface,
7304         ES::Target: EntropySource,
7305         NS::Target: NodeSigner,
7306         SP::Target: SignerProvider,
7307         F::Target: FeeEstimator,
7308         R::Target: Router,
7309         L::Target: Logger,
7310 {
7311         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
7312         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
7313         /// populate a HashMap directly from C.
7314         pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
7315                         mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
7316                 Self {
7317                         entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
7318                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
7319                 }
7320         }
7321 }
7322
7323 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
7324 // SipmleArcChannelManager type:
7325 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7326         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
7327 where
7328         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7329         T::Target: BroadcasterInterface,
7330         ES::Target: EntropySource,
7331         NS::Target: NodeSigner,
7332         SP::Target: SignerProvider,
7333         F::Target: FeeEstimator,
7334         R::Target: Router,
7335         L::Target: Logger,
7336 {
7337         fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7338                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
7339                 Ok((blockhash, Arc::new(chan_manager)))
7340         }
7341 }
7342
7343 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7344         ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
7345 where
7346         M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7347         T::Target: BroadcasterInterface,
7348         ES::Target: EntropySource,
7349         NS::Target: NodeSigner,
7350         SP::Target: SignerProvider,
7351         F::Target: FeeEstimator,
7352         R::Target: Router,
7353         L::Target: Logger,
7354 {
7355         fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
7356                 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
7357
7358                 let genesis_hash: BlockHash = Readable::read(reader)?;
7359                 let best_block_height: u32 = Readable::read(reader)?;
7360                 let best_block_hash: BlockHash = Readable::read(reader)?;
7361
7362                 let mut failed_htlcs = Vec::new();
7363
7364                 let channel_count: u64 = Readable::read(reader)?;
7365                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
7366                 let mut peer_channels: HashMap<PublicKey, HashMap<[u8; 32], Channel<<SP::Target as SignerProvider>::Signer>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7367                 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7368                 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
7369                 let mut channel_closures = Vec::new();
7370                 let mut pending_background_events = Vec::new();
7371                 for _ in 0..channel_count {
7372                         let mut channel: Channel<<SP::Target as SignerProvider>::Signer> = Channel::read(reader, (
7373                                 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
7374                         ))?;
7375                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
7376                         funding_txo_set.insert(funding_txo.clone());
7377                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
7378                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
7379                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
7380                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
7381                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
7382                                         // If the channel is ahead of the monitor, return InvalidValue:
7383                                         log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
7384                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7385                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7386                                         log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7387                                         log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7388                                         log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
7389                                         log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7390                                         return Err(DecodeError::InvalidValue);
7391                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
7392                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
7393                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
7394                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
7395                                         // But if the channel is behind of the monitor, close the channel:
7396                                         log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
7397                                         log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
7398                                         log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
7399                                                 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
7400                                         let (monitor_update, mut new_failed_htlcs) = channel.force_shutdown(true);
7401                                         if let Some(monitor_update) = monitor_update {
7402                                                 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate(monitor_update));
7403                                         }
7404                                         failed_htlcs.append(&mut new_failed_htlcs);
7405                                         channel_closures.push(events::Event::ChannelClosed {
7406                                                 channel_id: channel.channel_id(),
7407                                                 user_channel_id: channel.get_user_id(),
7408                                                 reason: ClosureReason::OutdatedChannelManager
7409                                         });
7410                                         for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
7411                                                 let mut found_htlc = false;
7412                                                 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
7413                                                         if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
7414                                                 }
7415                                                 if !found_htlc {
7416                                                         // If we have some HTLCs in the channel which are not present in the newer
7417                                                         // ChannelMonitor, they have been removed and should be failed back to
7418                                                         // ensure we don't forget them entirely. Note that if the missing HTLC(s)
7419                                                         // were actually claimed we'd have generated and ensured the previous-hop
7420                                                         // claim update ChannelMonitor updates were persisted prior to persising
7421                                                         // the ChannelMonitor update for the forward leg, so attempting to fail the
7422                                                         // backwards leg of the HTLC will simply be rejected.
7423                                                         log_info!(args.logger,
7424                                                                 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
7425                                                                 log_bytes!(channel.channel_id()), log_bytes!(payment_hash.0));
7426                                                         failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.get_counterparty_node_id(), channel.channel_id()));
7427                                                 }
7428                                         }
7429                                 } else {
7430                                         log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
7431                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
7432                                                 short_to_chan_info.insert(short_channel_id, (channel.get_counterparty_node_id(), channel.channel_id()));
7433                                         }
7434                                         if channel.is_funding_initiated() {
7435                                                 id_to_peer.insert(channel.channel_id(), channel.get_counterparty_node_id());
7436                                         }
7437                                         match peer_channels.entry(channel.get_counterparty_node_id()) {
7438                                                 hash_map::Entry::Occupied(mut entry) => {
7439                                                         let by_id_map = entry.get_mut();
7440                                                         by_id_map.insert(channel.channel_id(), channel);
7441                                                 },
7442                                                 hash_map::Entry::Vacant(entry) => {
7443                                                         let mut by_id_map = HashMap::new();
7444                                                         by_id_map.insert(channel.channel_id(), channel);
7445                                                         entry.insert(by_id_map);
7446                                                 }
7447                                         }
7448                                 }
7449                         } else if channel.is_awaiting_initial_mon_persist() {
7450                                 // If we were persisted and shut down while the initial ChannelMonitor persistence
7451                                 // was in-progress, we never broadcasted the funding transaction and can still
7452                                 // safely discard the channel.
7453                                 let _ = channel.force_shutdown(false);
7454                                 channel_closures.push(events::Event::ChannelClosed {
7455                                         channel_id: channel.channel_id(),
7456                                         user_channel_id: channel.get_user_id(),
7457                                         reason: ClosureReason::DisconnectedPeer,
7458                                 });
7459                         } else {
7460                                 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
7461                                 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
7462                                 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
7463                                 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
7464                                 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
7465                                 return Err(DecodeError::InvalidValue);
7466                         }
7467                 }
7468
7469                 for (funding_txo, _) in args.channel_monitors.iter() {
7470                         if !funding_txo_set.contains(funding_txo) {
7471                                 let monitor_update = ChannelMonitorUpdate {
7472                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
7473                                         updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
7474                                 };
7475                                 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((*funding_txo, monitor_update)));
7476                         }
7477                 }
7478
7479                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
7480                 let forward_htlcs_count: u64 = Readable::read(reader)?;
7481                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
7482                 for _ in 0..forward_htlcs_count {
7483                         let short_channel_id = Readable::read(reader)?;
7484                         let pending_forwards_count: u64 = Readable::read(reader)?;
7485                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
7486                         for _ in 0..pending_forwards_count {
7487                                 pending_forwards.push(Readable::read(reader)?);
7488                         }
7489                         forward_htlcs.insert(short_channel_id, pending_forwards);
7490                 }
7491
7492                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
7493                 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
7494                 for _ in 0..claimable_htlcs_count {
7495                         let payment_hash = Readable::read(reader)?;
7496                         let previous_hops_len: u64 = Readable::read(reader)?;
7497                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
7498                         for _ in 0..previous_hops_len {
7499                                 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
7500                         }
7501                         claimable_htlcs_list.push((payment_hash, previous_hops));
7502                 }
7503
7504                 let peer_count: u64 = Readable::read(reader)?;
7505                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<<SP::Target as SignerProvider>::Signer>>)>()));
7506                 for _ in 0..peer_count {
7507                         let peer_pubkey = Readable::read(reader)?;
7508                         let peer_state = PeerState {
7509                                 channel_by_id: peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new()),
7510                                 latest_features: Readable::read(reader)?,
7511                                 pending_msg_events: Vec::new(),
7512                                 monitor_update_blocked_actions: BTreeMap::new(),
7513                                 is_connected: false,
7514                         };
7515                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
7516                 }
7517
7518                 let event_count: u64 = Readable::read(reader)?;
7519                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
7520                 for _ in 0..event_count {
7521                         match MaybeReadable::read(reader)? {
7522                                 Some(event) => pending_events_read.push(event),
7523                                 None => continue,
7524                         }
7525                 }
7526
7527                 let background_event_count: u64 = Readable::read(reader)?;
7528                 for _ in 0..background_event_count {
7529                         match <u8 as Readable>::read(reader)? {
7530                                 0 => {
7531                                         let (funding_txo, monitor_update): (OutPoint, ChannelMonitorUpdate) = (Readable::read(reader)?, Readable::read(reader)?);
7532                                         if pending_background_events.iter().find(|e| {
7533                                                 let BackgroundEvent::ClosingMonitorUpdate((pending_funding_txo, pending_monitor_update)) = e;
7534                                                 *pending_funding_txo == funding_txo && *pending_monitor_update == monitor_update
7535                                         }).is_none() {
7536                                                 pending_background_events.push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)));
7537                                         }
7538                                 }
7539                                 _ => return Err(DecodeError::InvalidValue),
7540                         }
7541                 }
7542
7543                 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
7544                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
7545
7546                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
7547                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
7548                 for _ in 0..pending_inbound_payment_count {
7549                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
7550                                 return Err(DecodeError::InvalidValue);
7551                         }
7552                 }
7553
7554                 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
7555                 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
7556                         HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
7557                 for _ in 0..pending_outbound_payments_count_compat {
7558                         let session_priv = Readable::read(reader)?;
7559                         let payment = PendingOutboundPayment::Legacy {
7560                                 session_privs: [session_priv].iter().cloned().collect()
7561                         };
7562                         if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
7563                                 return Err(DecodeError::InvalidValue)
7564                         };
7565                 }
7566
7567                 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
7568                 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
7569                 let mut pending_outbound_payments = None;
7570                 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
7571                 let mut received_network_pubkey: Option<PublicKey> = None;
7572                 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
7573                 let mut probing_cookie_secret: Option<[u8; 32]> = None;
7574                 let mut claimable_htlc_purposes = None;
7575                 let mut pending_claiming_payments = Some(HashMap::new());
7576                 let mut monitor_update_blocked_actions_per_peer = Some(Vec::new());
7577                 read_tlv_fields!(reader, {
7578                         (1, pending_outbound_payments_no_retry, option),
7579                         (2, pending_intercepted_htlcs, option),
7580                         (3, pending_outbound_payments, option),
7581                         (4, pending_claiming_payments, option),
7582                         (5, received_network_pubkey, option),
7583                         (6, monitor_update_blocked_actions_per_peer, option),
7584                         (7, fake_scid_rand_bytes, option),
7585                         (9, claimable_htlc_purposes, vec_type),
7586                         (11, probing_cookie_secret, option),
7587                 });
7588                 if fake_scid_rand_bytes.is_none() {
7589                         fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
7590                 }
7591
7592                 if probing_cookie_secret.is_none() {
7593                         probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
7594                 }
7595
7596                 if !channel_closures.is_empty() {
7597                         pending_events_read.append(&mut channel_closures);
7598                 }
7599
7600                 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
7601                         pending_outbound_payments = Some(pending_outbound_payments_compat);
7602                 } else if pending_outbound_payments.is_none() {
7603                         let mut outbounds = HashMap::new();
7604                         for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
7605                                 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
7606                         }
7607                         pending_outbound_payments = Some(outbounds);
7608                 }
7609                 let pending_outbounds = OutboundPayments {
7610                         pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
7611                         retry_lock: Mutex::new(())
7612                 };
7613
7614                 {
7615                         // If we're tracking pending payments, ensure we haven't lost any by looking at the
7616                         // ChannelMonitor data for any channels for which we do not have authorative state
7617                         // (i.e. those for which we just force-closed above or we otherwise don't have a
7618                         // corresponding `Channel` at all).
7619                         // This avoids several edge-cases where we would otherwise "forget" about pending
7620                         // payments which are still in-flight via their on-chain state.
7621                         // We only rebuild the pending payments map if we were most recently serialized by
7622                         // 0.0.102+
7623                         for (_, monitor) in args.channel_monitors.iter() {
7624                                 if id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
7625                                         for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
7626                                                 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
7627                                                         if path.is_empty() {
7628                                                                 log_error!(args.logger, "Got an empty path for a pending payment");
7629                                                                 return Err(DecodeError::InvalidValue);
7630                                                         }
7631
7632                                                         let path_amt = path.last().unwrap().fee_msat;
7633                                                         let mut session_priv_bytes = [0; 32];
7634                                                         session_priv_bytes[..].copy_from_slice(&session_priv[..]);
7635                                                         match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
7636                                                                 hash_map::Entry::Occupied(mut entry) => {
7637                                                                         let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
7638                                                                         log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
7639                                                                                 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
7640                                                                 },
7641                                                                 hash_map::Entry::Vacant(entry) => {
7642                                                                         let path_fee = path.get_path_fees();
7643                                                                         entry.insert(PendingOutboundPayment::Retryable {
7644                                                                                 retry_strategy: None,
7645                                                                                 attempts: PaymentAttempts::new(),
7646                                                                                 payment_params: None,
7647                                                                                 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
7648                                                                                 payment_hash: htlc.payment_hash,
7649                                                                                 payment_secret,
7650                                                                                 keysend_preimage: None, // only used for retries, and we'll never retry on startup
7651                                                                                 pending_amt_msat: path_amt,
7652                                                                                 pending_fee_msat: Some(path_fee),
7653                                                                                 total_msat: path_amt,
7654                                                                                 starting_block_height: best_block_height,
7655                                                                         });
7656                                                                         log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
7657                                                                                 path_amt, log_bytes!(htlc.payment_hash.0),  log_bytes!(session_priv_bytes));
7658                                                                 }
7659                                                         }
7660                                                 }
7661                                         }
7662                                         for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
7663                                                 match htlc_source {
7664                                                         HTLCSource::PreviousHopData(prev_hop_data) => {
7665                                                                 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
7666                                                                         info.prev_funding_outpoint == prev_hop_data.outpoint &&
7667                                                                                 info.prev_htlc_id == prev_hop_data.htlc_id
7668                                                                 };
7669                                                                 // The ChannelMonitor is now responsible for this HTLC's
7670                                                                 // failure/success and will let us know what its outcome is. If we
7671                                                                 // still have an entry for this HTLC in `forward_htlcs` or
7672                                                                 // `pending_intercepted_htlcs`, we were apparently not persisted after
7673                                                                 // the monitor was when forwarding the payment.
7674                                                                 forward_htlcs.retain(|_, forwards| {
7675                                                                         forwards.retain(|forward| {
7676                                                                                 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
7677                                                                                         if pending_forward_matches_htlc(&htlc_info) {
7678                                                                                                 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
7679                                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7680                                                                                                 false
7681                                                                                         } else { true }
7682                                                                                 } else { true }
7683                                                                         });
7684                                                                         !forwards.is_empty()
7685                                                                 });
7686                                                                 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
7687                                                                         if pending_forward_matches_htlc(&htlc_info) {
7688                                                                                 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
7689                                                                                         log_bytes!(htlc.payment_hash.0), log_bytes!(monitor.get_funding_txo().0.to_channel_id()));
7690                                                                                 pending_events_read.retain(|event| {
7691                                                                                         if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
7692                                                                                                 intercepted_id != ev_id
7693                                                                                         } else { true }
7694                                                                                 });
7695                                                                                 false
7696                                                                         } else { true }
7697                                                                 });
7698                                                         },
7699                                                         HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
7700                                                                 if let Some(preimage) = preimage_opt {
7701                                                                         let pending_events = Mutex::new(pending_events_read);
7702                                                                         // Note that we set `from_onchain` to "false" here,
7703                                                                         // deliberately keeping the pending payment around forever.
7704                                                                         // Given it should only occur when we have a channel we're
7705                                                                         // force-closing for being stale that's okay.
7706                                                                         // The alternative would be to wipe the state when claiming,
7707                                                                         // generating a `PaymentPathSuccessful` event but regenerating
7708                                                                         // it and the `PaymentSent` on every restart until the
7709                                                                         // `ChannelMonitor` is removed.
7710                                                                         pending_outbounds.claim_htlc(payment_id, preimage, session_priv, path, false, &pending_events, &args.logger);
7711                                                                         pending_events_read = pending_events.into_inner().unwrap();
7712                                                                 }
7713                                                         },
7714                                                 }
7715                                         }
7716                                 }
7717                         }
7718                 }
7719
7720                 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
7721                         // If we have pending HTLCs to forward, assume we either dropped a
7722                         // `PendingHTLCsForwardable` or the user received it but never processed it as they
7723                         // shut down before the timer hit. Either way, set the time_forwardable to a small
7724                         // constant as enough time has likely passed that we should simply handle the forwards
7725                         // now, or at least after the user gets a chance to reconnect to our peers.
7726                         pending_events_read.push(events::Event::PendingHTLCsForwardable {
7727                                 time_forwardable: Duration::from_secs(2),
7728                         });
7729                 }
7730
7731                 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
7732                 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
7733
7734                 let mut claimable_htlcs = HashMap::with_capacity(claimable_htlcs_list.len());
7735                 if let Some(mut purposes) = claimable_htlc_purposes {
7736                         if purposes.len() != claimable_htlcs_list.len() {
7737                                 return Err(DecodeError::InvalidValue);
7738                         }
7739                         for (purpose, (payment_hash, previous_hops)) in purposes.drain(..).zip(claimable_htlcs_list.drain(..)) {
7740                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7741                         }
7742                 } else {
7743                         // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
7744                         // include a `_legacy_hop_data` in the `OnionPayload`.
7745                         for (payment_hash, previous_hops) in claimable_htlcs_list.drain(..) {
7746                                 if previous_hops.is_empty() {
7747                                         return Err(DecodeError::InvalidValue);
7748                                 }
7749                                 let purpose = match &previous_hops[0].onion_payload {
7750                                         OnionPayload::Invoice { _legacy_hop_data } => {
7751                                                 if let Some(hop_data) = _legacy_hop_data {
7752                                                         events::PaymentPurpose::InvoicePayment {
7753                                                                 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
7754                                                                         Some(inbound_payment) => inbound_payment.payment_preimage,
7755                                                                         None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
7756                                                                                 Ok((payment_preimage, _)) => payment_preimage,
7757                                                                                 Err(()) => {
7758                                                                                         log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", log_bytes!(payment_hash.0));
7759                                                                                         return Err(DecodeError::InvalidValue);
7760                                                                                 }
7761                                                                         }
7762                                                                 },
7763                                                                 payment_secret: hop_data.payment_secret,
7764                                                         }
7765                                                 } else { return Err(DecodeError::InvalidValue); }
7766                                         },
7767                                         OnionPayload::Spontaneous(payment_preimage) =>
7768                                                 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
7769                                 };
7770                                 claimable_htlcs.insert(payment_hash, (purpose, previous_hops));
7771                         }
7772                 }
7773
7774                 let mut secp_ctx = Secp256k1::new();
7775                 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
7776
7777                 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
7778                         Ok(key) => key,
7779                         Err(()) => return Err(DecodeError::InvalidValue)
7780                 };
7781                 if let Some(network_pubkey) = received_network_pubkey {
7782                         if network_pubkey != our_network_pubkey {
7783                                 log_error!(args.logger, "Key that was generated does not match the existing key.");
7784                                 return Err(DecodeError::InvalidValue);
7785                         }
7786                 }
7787
7788                 let mut outbound_scid_aliases = HashSet::new();
7789                 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
7790                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7791                         let peer_state = &mut *peer_state_lock;
7792                         for (chan_id, chan) in peer_state.channel_by_id.iter_mut() {
7793                                 if chan.outbound_scid_alias() == 0 {
7794                                         let mut outbound_scid_alias;
7795                                         loop {
7796                                                 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
7797                                                         .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
7798                                                 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
7799                                         }
7800                                         chan.set_outbound_scid_alias(outbound_scid_alias);
7801                                 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
7802                                         // Note that in rare cases its possible to hit this while reading an older
7803                                         // channel if we just happened to pick a colliding outbound alias above.
7804                                         log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7805                                         return Err(DecodeError::InvalidValue);
7806                                 }
7807                                 if chan.is_usable() {
7808                                         if short_to_chan_info.insert(chan.outbound_scid_alias(), (chan.get_counterparty_node_id(), *chan_id)).is_some() {
7809                                                 // Note that in rare cases its possible to hit this while reading an older
7810                                                 // channel if we just happened to pick a colliding outbound alias above.
7811                                                 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
7812                                                 return Err(DecodeError::InvalidValue);
7813                                         }
7814                                 }
7815                         }
7816                 }
7817
7818                 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
7819
7820                 for (_, monitor) in args.channel_monitors.iter() {
7821                         for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
7822                                 if let Some((payment_purpose, claimable_htlcs)) = claimable_htlcs.remove(&payment_hash) {
7823                                         log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", log_bytes!(payment_hash.0));
7824                                         let mut claimable_amt_msat = 0;
7825                                         let mut receiver_node_id = Some(our_network_pubkey);
7826                                         let phantom_shared_secret = claimable_htlcs[0].prev_hop.phantom_shared_secret;
7827                                         if phantom_shared_secret.is_some() {
7828                                                 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
7829                                                         .expect("Failed to get node_id for phantom node recipient");
7830                                                 receiver_node_id = Some(phantom_pubkey)
7831                                         }
7832                                         for claimable_htlc in claimable_htlcs {
7833                                                 claimable_amt_msat += claimable_htlc.value;
7834
7835                                                 // Add a holding-cell claim of the payment to the Channel, which should be
7836                                                 // applied ~immediately on peer reconnection. Because it won't generate a
7837                                                 // new commitment transaction we can just provide the payment preimage to
7838                                                 // the corresponding ChannelMonitor and nothing else.
7839                                                 //
7840                                                 // We do so directly instead of via the normal ChannelMonitor update
7841                                                 // procedure as the ChainMonitor hasn't yet been initialized, implying
7842                                                 // we're not allowed to call it directly yet. Further, we do the update
7843                                                 // without incrementing the ChannelMonitor update ID as there isn't any
7844                                                 // reason to.
7845                                                 // If we were to generate a new ChannelMonitor update ID here and then
7846                                                 // crash before the user finishes block connect we'd end up force-closing
7847                                                 // this channel as well. On the flip side, there's no harm in restarting
7848                                                 // without the new monitor persisted - we'll end up right back here on
7849                                                 // restart.
7850                                                 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
7851                                                 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
7852                                                         let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
7853                                                         let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7854                                                         let peer_state = &mut *peer_state_lock;
7855                                                         if let Some(channel) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
7856                                                                 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
7857                                                         }
7858                                                 }
7859                                                 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
7860                                                         previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
7861                                                 }
7862                                         }
7863                                         pending_events_read.push(events::Event::PaymentClaimed {
7864                                                 receiver_node_id,
7865                                                 payment_hash,
7866                                                 purpose: payment_purpose,
7867                                                 amount_msat: claimable_amt_msat,
7868                                         });
7869                                 }
7870                         }
7871                 }
7872
7873                 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
7874                         if let Some(peer_state) = per_peer_state.get_mut(&node_id) {
7875                                 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
7876                         } else {
7877                                 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
7878                                 return Err(DecodeError::InvalidValue);
7879                         }
7880                 }
7881
7882                 let channel_manager = ChannelManager {
7883                         genesis_hash,
7884                         fee_estimator: bounded_fee_estimator,
7885                         chain_monitor: args.chain_monitor,
7886                         tx_broadcaster: args.tx_broadcaster,
7887                         router: args.router,
7888
7889                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
7890
7891                         inbound_payment_key: expanded_inbound_key,
7892                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
7893                         pending_outbound_payments: pending_outbounds,
7894                         pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
7895
7896                         forward_htlcs: Mutex::new(forward_htlcs),
7897                         claimable_payments: Mutex::new(ClaimablePayments { claimable_htlcs, pending_claiming_payments: pending_claiming_payments.unwrap() }),
7898                         outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
7899                         id_to_peer: Mutex::new(id_to_peer),
7900                         short_to_chan_info: FairRwLock::new(short_to_chan_info),
7901                         fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
7902
7903                         probing_cookie_secret: probing_cookie_secret.unwrap(),
7904
7905                         our_network_pubkey,
7906                         secp_ctx,
7907
7908                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
7909
7910                         per_peer_state: FairRwLock::new(per_peer_state),
7911
7912                         pending_events: Mutex::new(pending_events_read),
7913                         pending_background_events: Mutex::new(pending_background_events),
7914                         total_consistency_lock: RwLock::new(()),
7915                         persistence_notifier: Notifier::new(),
7916
7917                         entropy_source: args.entropy_source,
7918                         node_signer: args.node_signer,
7919                         signer_provider: args.signer_provider,
7920
7921                         logger: args.logger,
7922                         default_configuration: args.default_config,
7923                 };
7924
7925                 for htlc_source in failed_htlcs.drain(..) {
7926                         let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
7927                         let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
7928                         let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7929                         channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
7930                 }
7931
7932                 //TODO: Broadcast channel update for closed channels, but only after we've made a
7933                 //connection or two.
7934
7935                 Ok((best_block_hash.clone(), channel_manager))
7936         }
7937 }
7938
7939 #[cfg(test)]
7940 mod tests {
7941         use bitcoin::hashes::Hash;
7942         use bitcoin::hashes::sha256::Hash as Sha256;
7943         use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
7944         #[cfg(feature = "std")]
7945         use core::time::Duration;
7946         use core::sync::atomic::Ordering;
7947         use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
7948         use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
7949         use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, InterceptId};
7950         use crate::ln::functional_test_utils::*;
7951         use crate::ln::msgs;
7952         use crate::ln::msgs::ChannelMessageHandler;
7953         use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
7954         use crate::util::errors::APIError;
7955         use crate::util::test_utils;
7956         use crate::util::config::ChannelConfig;
7957         use crate::chain::keysinterface::EntropySource;
7958
7959         #[test]
7960         fn test_notify_limits() {
7961                 // Check that a few cases which don't require the persistence of a new ChannelManager,
7962                 // indeed, do not cause the persistence of a new ChannelManager.
7963                 let chanmon_cfgs = create_chanmon_cfgs(3);
7964                 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
7965                 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
7966                 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
7967
7968                 // All nodes start with a persistable update pending as `create_network` connects each node
7969                 // with all other nodes to make most tests simpler.
7970                 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
7971                 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
7972                 assert!(nodes[2].node.get_persistable_update_future().poll_is_complete());
7973
7974                 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
7975
7976                 // We check that the channel info nodes have doesn't change too early, even though we try
7977                 // to connect messages with new values
7978                 chan.0.contents.fee_base_msat *= 2;
7979                 chan.1.contents.fee_base_msat *= 2;
7980                 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
7981                         &nodes[1].node.get_our_node_id()).pop().unwrap();
7982                 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
7983                         &nodes[0].node.get_our_node_id()).pop().unwrap();
7984
7985                 // The first two nodes (which opened a channel) should now require fresh persistence
7986                 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
7987                 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
7988                 // ... but the last node should not.
7989                 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
7990                 // After persisting the first two nodes they should no longer need fresh persistence.
7991                 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
7992                 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
7993
7994                 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
7995                 // about the channel.
7996                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
7997                 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
7998                 assert!(!nodes[2].node.get_persistable_update_future().poll_is_complete());
7999
8000                 // The nodes which are a party to the channel should also ignore messages from unrelated
8001                 // parties.
8002                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8003                 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8004                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
8005                 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
8006                 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8007                 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8008
8009                 // At this point the channel info given by peers should still be the same.
8010                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8011                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8012
8013                 // An earlier version of handle_channel_update didn't check the directionality of the
8014                 // update message and would always update the local fee info, even if our peer was
8015                 // (spuriously) forwarding us our own channel_update.
8016                 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
8017                 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
8018                 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
8019
8020                 // First deliver each peers' own message, checking that the node doesn't need to be
8021                 // persisted and that its channel info remains the same.
8022                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
8023                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
8024                 assert!(!nodes[0].node.get_persistable_update_future().poll_is_complete());
8025                 assert!(!nodes[1].node.get_persistable_update_future().poll_is_complete());
8026                 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
8027                 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
8028
8029                 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
8030                 // the channel info has updated.
8031                 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
8032                 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
8033                 assert!(nodes[0].node.get_persistable_update_future().poll_is_complete());
8034                 assert!(nodes[1].node.get_persistable_update_future().poll_is_complete());
8035                 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
8036                 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
8037         }
8038
8039         #[test]
8040         fn test_keysend_dup_hash_partial_mpp() {
8041                 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
8042                 // expected.
8043                 let chanmon_cfgs = create_chanmon_cfgs(2);
8044                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8045                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8046                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8047                 create_announced_chan_between_nodes(&nodes, 0, 1);
8048
8049                 // First, send a partial MPP payment.
8050                 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
8051                 let mut mpp_route = route.clone();
8052                 mpp_route.paths.push(mpp_route.paths[0].clone());
8053
8054                 let payment_id = PaymentId([42; 32]);
8055                 // Use the utility function send_payment_along_path to send the payment with MPP data which
8056                 // indicates there are more HTLCs coming.
8057                 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
8058                 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash, Some(payment_secret), payment_id, &mpp_route).unwrap();
8059                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
8060                 check_added_monitors!(nodes[0], 1);
8061                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8062                 assert_eq!(events.len(), 1);
8063                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
8064
8065                 // Next, send a keysend payment with the same payment_hash and make sure it fails.
8066                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8067                 check_added_monitors!(nodes[0], 1);
8068                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8069                 assert_eq!(events.len(), 1);
8070                 let ev = events.drain(..).next().unwrap();
8071                 let payment_event = SendEvent::from_event(ev);
8072                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8073                 check_added_monitors!(nodes[1], 0);
8074                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8075                 expect_pending_htlcs_forwardable!(nodes[1]);
8076                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
8077                 check_added_monitors!(nodes[1], 1);
8078                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8079                 assert!(updates.update_add_htlcs.is_empty());
8080                 assert!(updates.update_fulfill_htlcs.is_empty());
8081                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8082                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8083                 assert!(updates.update_fee.is_none());
8084                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8085                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8086                 expect_payment_failed!(nodes[0], our_payment_hash, true);
8087
8088                 // Send the second half of the original MPP payment.
8089                 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
8090                 check_added_monitors!(nodes[0], 1);
8091                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8092                 assert_eq!(events.len(), 1);
8093                 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
8094
8095                 // Claim the full MPP payment. Note that we can't use a test utility like
8096                 // claim_funds_along_route because the ordering of the messages causes the second half of the
8097                 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
8098                 // lightning messages manually.
8099                 nodes[1].node.claim_funds(payment_preimage);
8100                 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
8101                 check_added_monitors!(nodes[1], 2);
8102
8103                 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8104                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
8105                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
8106                 check_added_monitors!(nodes[0], 1);
8107                 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8108                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
8109                 check_added_monitors!(nodes[1], 1);
8110                 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8111                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
8112                 check_added_monitors!(nodes[1], 1);
8113                 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8114                 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
8115                 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
8116                 check_added_monitors!(nodes[0], 1);
8117                 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
8118                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
8119                 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8120                 check_added_monitors!(nodes[0], 1);
8121                 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
8122                 check_added_monitors!(nodes[1], 1);
8123                 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
8124                 check_added_monitors!(nodes[1], 1);
8125                 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
8126                 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
8127                 check_added_monitors!(nodes[0], 1);
8128
8129                 // Note that successful MPP payments will generate a single PaymentSent event upon the first
8130                 // path's success and a PaymentPathSuccessful event for each path's success.
8131                 let events = nodes[0].node.get_and_clear_pending_events();
8132                 assert_eq!(events.len(), 3);
8133                 match events[0] {
8134                         Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
8135                                 assert_eq!(Some(payment_id), *id);
8136                                 assert_eq!(payment_preimage, *preimage);
8137                                 assert_eq!(our_payment_hash, *hash);
8138                         },
8139                         _ => panic!("Unexpected event"),
8140                 }
8141                 match events[1] {
8142                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8143                                 assert_eq!(payment_id, *actual_payment_id);
8144                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8145                                 assert_eq!(route.paths[0], *path);
8146                         },
8147                         _ => panic!("Unexpected event"),
8148                 }
8149                 match events[2] {
8150                         Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
8151                                 assert_eq!(payment_id, *actual_payment_id);
8152                                 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
8153                                 assert_eq!(route.paths[0], *path);
8154                         },
8155                         _ => panic!("Unexpected event"),
8156                 }
8157         }
8158
8159         #[test]
8160         fn test_keysend_dup_payment_hash() {
8161                 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
8162                 //      outbound regular payment fails as expected.
8163                 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
8164                 //      fails as expected.
8165                 let chanmon_cfgs = create_chanmon_cfgs(2);
8166                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8167                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8168                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8169                 create_announced_chan_between_nodes(&nodes, 0, 1);
8170                 let scorer = test_utils::TestScorer::new();
8171                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8172
8173                 // To start (1), send a regular payment but don't claim it.
8174                 let expected_route = [&nodes[1]];
8175                 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
8176
8177                 // Next, attempt a keysend payment and make sure it fails.
8178                 let route_params = RouteParameters {
8179                         payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV),
8180                         final_value_msat: 100_000,
8181                 };
8182                 let route = find_route(
8183                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8184                         None, nodes[0].logger, &scorer, &random_seed_bytes
8185                 ).unwrap();
8186                 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8187                 check_added_monitors!(nodes[0], 1);
8188                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8189                 assert_eq!(events.len(), 1);
8190                 let ev = events.drain(..).next().unwrap();
8191                 let payment_event = SendEvent::from_event(ev);
8192                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8193                 check_added_monitors!(nodes[1], 0);
8194                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8195                 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
8196                 // fails), the second will process the resulting failure and fail the HTLC backward
8197                 expect_pending_htlcs_forwardable!(nodes[1]);
8198                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8199                 check_added_monitors!(nodes[1], 1);
8200                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8201                 assert!(updates.update_add_htlcs.is_empty());
8202                 assert!(updates.update_fulfill_htlcs.is_empty());
8203                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8204                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8205                 assert!(updates.update_fee.is_none());
8206                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8207                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8208                 expect_payment_failed!(nodes[0], payment_hash, true);
8209
8210                 // Finally, claim the original payment.
8211                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8212
8213                 // To start (2), send a keysend payment but don't claim it.
8214                 let payment_preimage = PaymentPreimage([42; 32]);
8215                 let route = find_route(
8216                         &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
8217                         None, nodes[0].logger, &scorer, &random_seed_bytes
8218                 ).unwrap();
8219                 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage), PaymentId(payment_preimage.0)).unwrap();
8220                 check_added_monitors!(nodes[0], 1);
8221                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8222                 assert_eq!(events.len(), 1);
8223                 let event = events.pop().unwrap();
8224                 let path = vec![&nodes[1]];
8225                 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
8226
8227                 // Next, attempt a regular payment and make sure it fails.
8228                 let payment_secret = PaymentSecret([43; 32]);
8229                 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
8230                 check_added_monitors!(nodes[0], 1);
8231                 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
8232                 assert_eq!(events.len(), 1);
8233                 let ev = events.drain(..).next().unwrap();
8234                 let payment_event = SendEvent::from_event(ev);
8235                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
8236                 check_added_monitors!(nodes[1], 0);
8237                 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
8238                 expect_pending_htlcs_forwardable!(nodes[1]);
8239                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
8240                 check_added_monitors!(nodes[1], 1);
8241                 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
8242                 assert!(updates.update_add_htlcs.is_empty());
8243                 assert!(updates.update_fulfill_htlcs.is_empty());
8244                 assert_eq!(updates.update_fail_htlcs.len(), 1);
8245                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8246                 assert!(updates.update_fee.is_none());
8247                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
8248                 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
8249                 expect_payment_failed!(nodes[0], payment_hash, true);
8250
8251                 // Finally, succeed the keysend payment.
8252                 claim_payment(&nodes[0], &expected_route, payment_preimage);
8253         }
8254
8255         #[test]
8256         fn test_keysend_hash_mismatch() {
8257                 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
8258                 // preimage doesn't match the msg's payment hash.
8259                 let chanmon_cfgs = create_chanmon_cfgs(2);
8260                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8261                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8262                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8263
8264                 let payer_pubkey = nodes[0].node.get_our_node_id();
8265                 let payee_pubkey = nodes[1].node.get_our_node_id();
8266
8267                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8268                 let route_params = RouteParameters {
8269                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8270                         final_value_msat: 10_000,
8271                 };
8272                 let network_graph = nodes[0].network_graph.clone();
8273                 let first_hops = nodes[0].node.list_usable_channels();
8274                 let scorer = test_utils::TestScorer::new();
8275                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8276                 let route = find_route(
8277                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8278                         nodes[0].logger, &scorer, &random_seed_bytes
8279                 ).unwrap();
8280
8281                 let test_preimage = PaymentPreimage([42; 32]);
8282                 let mismatch_payment_hash = PaymentHash([43; 32]);
8283                 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash, None, PaymentId(mismatch_payment_hash.0), &route).unwrap();
8284                 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
8285                 check_added_monitors!(nodes[0], 1);
8286
8287                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8288                 assert_eq!(updates.update_add_htlcs.len(), 1);
8289                 assert!(updates.update_fulfill_htlcs.is_empty());
8290                 assert!(updates.update_fail_htlcs.is_empty());
8291                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8292                 assert!(updates.update_fee.is_none());
8293                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8294
8295                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
8296         }
8297
8298         #[test]
8299         fn test_keysend_msg_with_secret_err() {
8300                 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
8301                 let chanmon_cfgs = create_chanmon_cfgs(2);
8302                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8303                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8304                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8305
8306                 let payer_pubkey = nodes[0].node.get_our_node_id();
8307                 let payee_pubkey = nodes[1].node.get_our_node_id();
8308
8309                 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
8310                 let route_params = RouteParameters {
8311                         payment_params: PaymentParameters::for_keysend(payee_pubkey, 40),
8312                         final_value_msat: 10_000,
8313                 };
8314                 let network_graph = nodes[0].network_graph.clone();
8315                 let first_hops = nodes[0].node.list_usable_channels();
8316                 let scorer = test_utils::TestScorer::new();
8317                 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
8318                 let route = find_route(
8319                         &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
8320                         nodes[0].logger, &scorer, &random_seed_bytes
8321                 ).unwrap();
8322
8323                 let test_preimage = PaymentPreimage([42; 32]);
8324                 let test_secret = PaymentSecret([43; 32]);
8325                 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
8326                 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash, Some(test_secret), PaymentId(payment_hash.0), &route).unwrap();
8327                 nodes[0].node.test_send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), PaymentId(payment_hash.0), None, session_privs).unwrap();
8328                 check_added_monitors!(nodes[0], 1);
8329
8330                 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
8331                 assert_eq!(updates.update_add_htlcs.len(), 1);
8332                 assert!(updates.update_fulfill_htlcs.is_empty());
8333                 assert!(updates.update_fail_htlcs.is_empty());
8334                 assert!(updates.update_fail_malformed_htlcs.is_empty());
8335                 assert!(updates.update_fee.is_none());
8336                 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
8337
8338                 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
8339         }
8340
8341         #[test]
8342         fn test_multi_hop_missing_secret() {
8343                 let chanmon_cfgs = create_chanmon_cfgs(4);
8344                 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
8345                 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
8346                 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
8347
8348                 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
8349                 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
8350                 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
8351                 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
8352
8353                 // Marshall an MPP route.
8354                 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
8355                 let path = route.paths[0].clone();
8356                 route.paths.push(path);
8357                 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
8358                 route.paths[0][0].short_channel_id = chan_1_id;
8359                 route.paths[0][1].short_channel_id = chan_3_id;
8360                 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
8361                 route.paths[1][0].short_channel_id = chan_2_id;
8362                 route.paths[1][1].short_channel_id = chan_4_id;
8363
8364                 match nodes[0].node.send_payment(&route, payment_hash, &None, PaymentId(payment_hash.0)).unwrap_err() {
8365                         PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
8366                                 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
8367                         },
8368                         _ => panic!("unexpected error")
8369                 }
8370         }
8371
8372         #[test]
8373         fn test_drop_disconnected_peers_when_removing_channels() {
8374                 let chanmon_cfgs = create_chanmon_cfgs(2);
8375                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8376                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8377                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8378
8379                 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
8380
8381                 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
8382                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8383
8384                 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
8385                 check_closed_broadcast!(nodes[0], true);
8386                 check_added_monitors!(nodes[0], 1);
8387                 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
8388
8389                 {
8390                         // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
8391                         // disconnected and the channel between has been force closed.
8392                         let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
8393                         // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
8394                         assert_eq!(nodes_0_per_peer_state.len(), 1);
8395                         assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
8396                 }
8397
8398                 nodes[0].node.timer_tick_occurred();
8399
8400                 {
8401                         // Assert that nodes[1] has now been removed.
8402                         assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
8403                 }
8404         }
8405
8406         #[test]
8407         fn bad_inbound_payment_hash() {
8408                 // Add coverage for checking that a user-provided payment hash matches the payment secret.
8409                 let chanmon_cfgs = create_chanmon_cfgs(2);
8410                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8411                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8412                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8413
8414                 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
8415                 let payment_data = msgs::FinalOnionHopData {
8416                         payment_secret,
8417                         total_msat: 100_000,
8418                 };
8419
8420                 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
8421                 // payment verification fails as expected.
8422                 let mut bad_payment_hash = payment_hash.clone();
8423                 bad_payment_hash.0[0] += 1;
8424                 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
8425                         Ok(_) => panic!("Unexpected ok"),
8426                         Err(()) => {
8427                                 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
8428                         }
8429                 }
8430
8431                 // Check that using the original payment hash succeeds.
8432                 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
8433         }
8434
8435         #[test]
8436         fn test_id_to_peer_coverage() {
8437                 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
8438                 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
8439                 // the channel is successfully closed.
8440                 let chanmon_cfgs = create_chanmon_cfgs(2);
8441                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8442                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8443                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8444
8445                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
8446                 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8447                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
8448                 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8449                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8450
8451                 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
8452                 let channel_id = &tx.txid().into_inner();
8453                 {
8454                         // Ensure that the `id_to_peer` map is empty until either party has received the
8455                         // funding transaction, and have the real `channel_id`.
8456                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8457                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8458                 }
8459
8460                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
8461                 {
8462                         // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
8463                         // as it has the funding transaction.
8464                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8465                         assert_eq!(nodes_0_lock.len(), 1);
8466                         assert!(nodes_0_lock.contains_key(channel_id));
8467                 }
8468
8469                 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8470
8471                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8472
8473                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8474                 {
8475                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8476                         assert_eq!(nodes_0_lock.len(), 1);
8477                         assert!(nodes_0_lock.contains_key(channel_id));
8478                 }
8479                 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8480
8481                 {
8482                         // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
8483                         // as it has the funding transaction.
8484                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8485                         assert_eq!(nodes_1_lock.len(), 1);
8486                         assert!(nodes_1_lock.contains_key(channel_id));
8487                 }
8488                 check_added_monitors!(nodes[1], 1);
8489                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8490                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8491                 check_added_monitors!(nodes[0], 1);
8492                 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8493                 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
8494                 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
8495                 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
8496
8497                 nodes[0].node.close_channel(channel_id, &nodes[1].node.get_our_node_id()).unwrap();
8498                 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
8499                 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
8500                 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
8501
8502                 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
8503                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
8504                 {
8505                         // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
8506                         // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
8507                         // fee for the closing transaction has been negotiated and the parties has the other
8508                         // party's signature for the fee negotiated closing transaction.)
8509                         let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
8510                         assert_eq!(nodes_0_lock.len(), 1);
8511                         assert!(nodes_0_lock.contains_key(channel_id));
8512                 }
8513
8514                 {
8515                         // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
8516                         // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
8517                         // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
8518                         // kept in the `nodes[1]`'s `id_to_peer` map.
8519                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8520                         assert_eq!(nodes_1_lock.len(), 1);
8521                         assert!(nodes_1_lock.contains_key(channel_id));
8522                 }
8523
8524                 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
8525                 {
8526                         // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
8527                         // therefore has all it needs to fully close the channel (both signatures for the
8528                         // closing transaction).
8529                         // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
8530                         // fully closed by `nodes[0]`.
8531                         assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
8532
8533                         // Assert that the channel is still in `nodes[1]`'s  `id_to_peer` map, as `nodes[1]`
8534                         // doesn't have `nodes[0]`'s signature for the closing transaction yet.
8535                         let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
8536                         assert_eq!(nodes_1_lock.len(), 1);
8537                         assert!(nodes_1_lock.contains_key(channel_id));
8538                 }
8539
8540                 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
8541
8542                 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
8543                 {
8544                         // Assert that the channel has now been removed from both parties `id_to_peer` map once
8545                         // they both have everything required to fully close the channel.
8546                         assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
8547                 }
8548                 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
8549
8550                 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure);
8551                 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure);
8552         }
8553
8554         fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8555                 let expected_message = format!("Not connected to node: {}", expected_public_key);
8556                 check_api_error_message(expected_message, res_err)
8557         }
8558
8559         fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
8560                 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
8561                 check_api_error_message(expected_message, res_err)
8562         }
8563
8564         fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
8565                 match res_err {
8566                         Err(APIError::APIMisuseError { err }) => {
8567                                 assert_eq!(err, expected_err_message);
8568                         },
8569                         Err(APIError::ChannelUnavailable { err }) => {
8570                                 assert_eq!(err, expected_err_message);
8571                         },
8572                         Ok(_) => panic!("Unexpected Ok"),
8573                         Err(_) => panic!("Unexpected Error"),
8574                 }
8575         }
8576
8577         #[test]
8578         fn test_api_calls_with_unkown_counterparty_node() {
8579                 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
8580                 // expected if the `counterparty_node_id` is an unkown peer in the
8581                 // `ChannelManager::per_peer_state` map.
8582                 let chanmon_cfg = create_chanmon_cfgs(2);
8583                 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
8584                 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
8585                 let nodes = create_network(2, &node_cfg, &node_chanmgr);
8586
8587                 // Dummy values
8588                 let channel_id = [4; 32];
8589                 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
8590                 let intercept_id = InterceptId([0; 32]);
8591
8592                 // Test the API functions.
8593                 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
8594
8595                 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
8596
8597                 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
8598
8599                 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
8600
8601                 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
8602
8603                 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
8604
8605                 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
8606         }
8607
8608         #[test]
8609         fn test_connection_limiting() {
8610                 // Test that we limit un-channel'd peers and un-funded channels properly.
8611                 let chanmon_cfgs = create_chanmon_cfgs(2);
8612                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8613                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8614                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8615
8616                 // Note that create_network connects the nodes together for us
8617
8618                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8619                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8620
8621                 let mut funding_tx = None;
8622                 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8623                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8624                         let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8625
8626                         if idx == 0 {
8627                                 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
8628                                 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
8629                                 funding_tx = Some(tx.clone());
8630                                 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
8631                                 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
8632
8633                                 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
8634                                 check_added_monitors!(nodes[1], 1);
8635                                 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
8636
8637                                 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
8638
8639                                 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
8640                                 check_added_monitors!(nodes[0], 1);
8641                                 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
8642                         }
8643                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8644                 }
8645
8646                 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
8647                 open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8648                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8649                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8650                         open_channel_msg.temporary_channel_id);
8651
8652                 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
8653                 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
8654                 // limit.
8655                 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
8656                 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
8657                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8658                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8659                         peer_pks.push(random_pk);
8660                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8661                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8662                 }
8663                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8664                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8665                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8666                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8667
8668                 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
8669                 // them if we have too many un-channel'd peers.
8670                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8671                 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
8672                 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
8673                 for ev in chan_closed_events {
8674                         if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
8675                 }
8676                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8677                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8678                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8679                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap_err();
8680
8681                 // but of course if the connection is outbound its allowed...
8682                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8683                         features: nodes[0].node.init_features(), remote_network_address: None }, false).unwrap();
8684                 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
8685
8686                 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
8687                 // Even though we accept one more connection from new peers, we won't actually let them
8688                 // open channels.
8689                 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
8690                 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8691                         nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
8692                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
8693                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8694                 }
8695                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8696                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8697                         open_channel_msg.temporary_channel_id);
8698
8699                 // Of course, however, outbound channels are always allowed
8700                 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
8701                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
8702
8703                 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
8704                 // "protected" and can connect again.
8705                 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
8706                 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
8707                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8708                 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
8709
8710                 // Further, because the first channel was funded, we can open another channel with
8711                 // last_random_pk.
8712                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8713                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8714         }
8715
8716         #[test]
8717         fn test_outbound_chans_unlimited() {
8718                 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
8719                 let chanmon_cfgs = create_chanmon_cfgs(2);
8720                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8721                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
8722                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8723
8724                 // Note that create_network connects the nodes together for us
8725
8726                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8727                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8728
8729                 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
8730                         nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8731                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
8732                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8733                 }
8734
8735                 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
8736                 // rejected.
8737                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8738                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8739                         open_channel_msg.temporary_channel_id);
8740
8741                 // but we can still open an outbound channel.
8742                 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8743                 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
8744
8745                 // but even with such an outbound channel, additional inbound channels will still fail.
8746                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8747                 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
8748                         open_channel_msg.temporary_channel_id);
8749         }
8750
8751         #[test]
8752         fn test_0conf_limiting() {
8753                 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
8754                 // flag set and (sometimes) accept channels as 0conf.
8755                 let chanmon_cfgs = create_chanmon_cfgs(2);
8756                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8757                 let mut settings = test_default_channel_config();
8758                 settings.manually_accept_inbound_channels = true;
8759                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
8760                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8761
8762                 // Note that create_network connects the nodes together for us
8763
8764                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
8765                 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8766
8767                 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
8768                 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
8769                         let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8770                                 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8771                         nodes[1].node.peer_connected(&random_pk, &msgs::Init {
8772                                 features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8773
8774                         nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
8775                         let events = nodes[1].node.get_and_clear_pending_events();
8776                         match events[0] {
8777                                 Event::OpenChannelRequest { temporary_channel_id, .. } => {
8778                                         nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
8779                                 }
8780                                 _ => panic!("Unexpected event"),
8781                         }
8782                         get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
8783                         open_channel_msg.temporary_channel_id = nodes[0].keys_manager.get_secure_random_bytes();
8784                 }
8785
8786                 // If we try to accept a channel from another peer non-0conf it will fail.
8787                 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
8788                         &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
8789                 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
8790                         features: nodes[0].node.init_features(), remote_network_address: None }, true).unwrap();
8791                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8792                 let events = nodes[1].node.get_and_clear_pending_events();
8793                 match events[0] {
8794                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8795                                 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
8796                                         Err(APIError::APIMisuseError { err }) =>
8797                                                 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
8798                                         _ => panic!(),
8799                                 }
8800                         }
8801                         _ => panic!("Unexpected event"),
8802                 }
8803                 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
8804                         open_channel_msg.temporary_channel_id);
8805
8806                 // ...however if we accept the same channel 0conf it should work just fine.
8807                 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
8808                 let events = nodes[1].node.get_and_clear_pending_events();
8809                 match events[0] {
8810                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8811                                 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
8812                         }
8813                         _ => panic!("Unexpected event"),
8814                 }
8815                 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
8816         }
8817
8818         #[cfg(anchors)]
8819         #[test]
8820         fn test_anchors_zero_fee_htlc_tx_fallback() {
8821                 // Tests that if both nodes support anchors, but the remote node does not want to accept
8822                 // anchor channels at the moment, an error it sent to the local node such that it can retry
8823                 // the channel without the anchors feature.
8824                 let chanmon_cfgs = create_chanmon_cfgs(2);
8825                 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
8826                 let mut anchors_config = test_default_channel_config();
8827                 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
8828                 anchors_config.manually_accept_inbound_channels = true;
8829                 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
8830                 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
8831
8832                 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
8833                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8834                 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
8835
8836                 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
8837                 let events = nodes[1].node.get_and_clear_pending_events();
8838                 match events[0] {
8839                         Event::OpenChannelRequest { temporary_channel_id, .. } => {
8840                                 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
8841                         }
8842                         _ => panic!("Unexpected event"),
8843                 }
8844
8845                 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
8846                 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
8847
8848                 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
8849                 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
8850
8851                 check_closed_event!(nodes[1], 1, ClosureReason::HolderForceClosed);
8852         }
8853 }
8854
8855 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
8856 pub mod bench {
8857         use crate::chain::Listen;
8858         use crate::chain::chainmonitor::{ChainMonitor, Persist};
8859         use crate::chain::keysinterface::{EntropySource, KeysManager, InMemorySigner};
8860         use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
8861         use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId};
8862         use crate::ln::functional_test_utils::*;
8863         use crate::ln::msgs::{ChannelMessageHandler, Init};
8864         use crate::routing::gossip::NetworkGraph;
8865         use crate::routing::router::{PaymentParameters, get_route};
8866         use crate::util::test_utils;
8867         use crate::util::config::UserConfig;
8868
8869         use bitcoin::hashes::Hash;
8870         use bitcoin::hashes::sha256::Hash as Sha256;
8871         use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
8872
8873         use crate::sync::{Arc, Mutex};
8874
8875         use test::Bencher;
8876
8877         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
8878                 node: &'a ChannelManager<
8879                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
8880                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
8881                                 &'a test_utils::TestLogger, &'a P>,
8882                         &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
8883                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
8884                         &'a test_utils::TestLogger>,
8885         }
8886
8887         #[cfg(test)]
8888         #[bench]
8889         fn bench_sends(bench: &mut Bencher) {
8890                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
8891         }
8892
8893         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
8894                 // Do a simple benchmark of sending a payment back and forth between two nodes.
8895                 // Note that this is unrealistic as each payment send will require at least two fsync
8896                 // calls per node.
8897                 let network = bitcoin::Network::Testnet;
8898
8899                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
8900                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
8901                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
8902                 let scorer = Mutex::new(test_utils::TestScorer::new());
8903                 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
8904
8905                 let mut config: UserConfig = Default::default();
8906                 config.channel_handshake_config.minimum_depth = 1;
8907
8908                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
8909                 let seed_a = [1u8; 32];
8910                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
8911                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
8912                         network,
8913                         best_block: BestBlock::from_network(network),
8914                 });
8915                 let node_a_holder = NodeHolder { node: &node_a };
8916
8917                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
8918                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
8919                 let seed_b = [2u8; 32];
8920                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
8921                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
8922                         network,
8923                         best_block: BestBlock::from_network(network),
8924                 });
8925                 let node_b_holder = NodeHolder { node: &node_b };
8926
8927                 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: node_b.init_features(), remote_network_address: None }, true).unwrap();
8928                 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: node_a.init_features(), remote_network_address: None }, false).unwrap();
8929                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
8930                 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
8931                 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
8932
8933                 let tx;
8934                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
8935                         tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
8936                                 value: 8_000_000, script_pubkey: output_script,
8937                         }]};
8938                         node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
8939                 } else { panic!(); }
8940
8941                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
8942                 let events_b = node_b.get_and_clear_pending_events();
8943                 assert_eq!(events_b.len(), 1);
8944                 match events_b[0] {
8945                         Event::ChannelPending{ ref counterparty_node_id, .. } => {
8946                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8947                         },
8948                         _ => panic!("Unexpected event"),
8949                 }
8950
8951                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
8952                 let events_a = node_a.get_and_clear_pending_events();
8953                 assert_eq!(events_a.len(), 1);
8954                 match events_a[0] {
8955                         Event::ChannelPending{ ref counterparty_node_id, .. } => {
8956                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8957                         },
8958                         _ => panic!("Unexpected event"),
8959                 }
8960
8961                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
8962
8963                 let block = Block {
8964                         header: BlockHeader { version: 0x20000000, prev_blockhash: BestBlock::from_network(network).block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 },
8965                         txdata: vec![tx],
8966                 };
8967                 Listen::block_connected(&node_a, &block, 1);
8968                 Listen::block_connected(&node_b, &block, 1);
8969
8970                 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
8971                 let msg_events = node_a.get_and_clear_pending_msg_events();
8972                 assert_eq!(msg_events.len(), 2);
8973                 match msg_events[0] {
8974                         MessageSendEvent::SendChannelReady { ref msg, .. } => {
8975                                 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
8976                                 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
8977                         },
8978                         _ => panic!(),
8979                 }
8980                 match msg_events[1] {
8981                         MessageSendEvent::SendChannelUpdate { .. } => {},
8982                         _ => panic!(),
8983                 }
8984
8985                 let events_a = node_a.get_and_clear_pending_events();
8986                 assert_eq!(events_a.len(), 1);
8987                 match events_a[0] {
8988                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8989                                 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
8990                         },
8991                         _ => panic!("Unexpected event"),
8992                 }
8993
8994                 let events_b = node_b.get_and_clear_pending_events();
8995                 assert_eq!(events_b.len(), 1);
8996                 match events_b[0] {
8997                         Event::ChannelReady{ ref counterparty_node_id, .. } => {
8998                                 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
8999                         },
9000                         _ => panic!("Unexpected event"),
9001                 }
9002
9003                 let dummy_graph = NetworkGraph::new(network, &logger_a);
9004
9005                 let mut payment_count: u64 = 0;
9006                 macro_rules! send_payment {
9007                         ($node_a: expr, $node_b: expr) => {
9008                                 let usable_channels = $node_a.list_usable_channels();
9009                                 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
9010                                         .with_features($node_b.invoice_features());
9011                                 let scorer = test_utils::TestScorer::new();
9012                                 let seed = [3u8; 32];
9013                                 let keys_manager = KeysManager::new(&seed, 42, 42);
9014                                 let random_seed_bytes = keys_manager.get_secure_random_bytes();
9015                                 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
9016                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
9017
9018                                 let mut payment_preimage = PaymentPreimage([0; 32]);
9019                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
9020                                 payment_count += 1;
9021                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
9022                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
9023
9024                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret), PaymentId(payment_hash.0)).unwrap();
9025                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
9026                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
9027                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
9028                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
9029                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
9030                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
9031                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
9032
9033                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
9034                                 expect_payment_claimable!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
9035                                 $node_b.claim_funds(payment_preimage);
9036                                 expect_payment_claimed!(NodeHolder { node: &$node_b }, payment_hash, 10_000);
9037
9038                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
9039                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
9040                                                 assert_eq!(node_id, $node_a.get_our_node_id());
9041                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
9042                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
9043                                         },
9044                                         _ => panic!("Failed to generate claim event"),
9045                                 }
9046
9047                                 let (raa, cs) = do_get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
9048                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
9049                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
9050                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
9051
9052                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
9053                         }
9054                 }
9055
9056                 bench.iter(|| {
9057                         send_payment!(node_a, node_b);
9058                         send_payment!(node_b, node_a);
9059                 });
9060         }
9061 }