1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::BlindedPath;
35 use crate::blinded_path::payment::{PaymentConstraints, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::merkle::SignError;
65 use crate::offers::offer::{Offer, OfferBuilder};
66 use crate::offers::parse::Bolt12SemanticError;
67 use crate::offers::refund::{Refund, RefundBuilder};
68 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
69 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
70 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
71 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
72 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
73 use crate::util::wakers::{Future, Notifier};
74 use crate::util::scid_utils::fake_scid;
75 use crate::util::string::UntrustedString;
76 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
77 use crate::util::logger::{Level, Logger, WithContext};
78 use crate::util::errors::APIError;
79 #[cfg(not(c_bindings))]
81 crate::offers::offer::DerivedMetadata,
82 crate::routing::router::DefaultRouter,
83 crate::routing::gossip::NetworkGraph,
84 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
85 crate::sign::KeysManager,
89 crate::offers::offer::OfferWithDerivedMetadataBuilder,
90 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
93 use alloc::collections::{btree_map, BTreeMap};
96 use crate::prelude::*;
98 use core::cell::RefCell;
100 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
101 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
102 use core::time::Duration;
103 use core::ops::Deref;
105 // Re-export this for use in the public API.
106 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
107 use crate::ln::script::ShutdownScript;
109 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
111 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
112 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
113 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
115 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
116 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
117 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
118 // before we forward it.
120 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
121 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
122 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
123 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
124 // our payment, which we can use to decode errors or inform the user that the payment was sent.
126 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 #[cfg_attr(test, derive(Debug, PartialEq))]
129 pub enum PendingHTLCRouting {
130 /// An HTLC which should be forwarded on to another node.
132 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
133 /// do with the HTLC.
134 onion_packet: msgs::OnionPacket,
135 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
137 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
138 /// to the receiving node, such as one returned from
139 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
140 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
141 /// Set if this HTLC is being forwarded within a blinded path.
142 blinded: Option<BlindedForward>,
144 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
146 /// Note that at this point, we have not checked that the invoice being paid was actually
147 /// generated by us, but rather it's claiming to pay an invoice of ours.
149 /// Information about the amount the sender intended to pay and (potential) proof that this
150 /// is a payment for an invoice we generated. This proof of payment is is also used for
151 /// linking MPP parts of a larger payment.
152 payment_data: msgs::FinalOnionHopData,
153 /// Additional data which we (allegedly) instructed the sender to include in the onion.
155 /// For HTLCs received by LDK, this will ultimately be exposed in
156 /// [`Event::PaymentClaimable::onion_fields`] as
157 /// [`RecipientOnionFields::payment_metadata`].
158 payment_metadata: Option<Vec<u8>>,
159 /// CLTV expiry of the received HTLC.
161 /// Used to track when we should expire pending HTLCs that go unclaimed.
162 incoming_cltv_expiry: u32,
163 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
164 /// provide the onion shared secret used to decrypt the next level of forwarding
166 phantom_shared_secret: Option<[u8; 32]>,
167 /// Custom TLVs which were set by the sender.
169 /// For HTLCs received by LDK, this will ultimately be exposed in
170 /// [`Event::PaymentClaimable::onion_fields`] as
171 /// [`RecipientOnionFields::custom_tlvs`].
172 custom_tlvs: Vec<(u64, Vec<u8>)>,
173 /// Set if this HTLC is the final hop in a multi-hop blinded path.
174 requires_blinded_error: bool,
176 /// The onion indicates that this is for payment to us but which contains the preimage for
177 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
178 /// "keysend" or "spontaneous" payment).
180 /// Information about the amount the sender intended to pay and possibly a token to
181 /// associate MPP parts of a larger payment.
183 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
184 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
185 payment_data: Option<msgs::FinalOnionHopData>,
186 /// Preimage for this onion payment. This preimage is provided by the sender and will be
187 /// used to settle the spontaneous payment.
188 payment_preimage: PaymentPreimage,
189 /// Additional data which we (allegedly) instructed the sender to include in the onion.
191 /// For HTLCs received by LDK, this will ultimately bubble back up as
192 /// [`RecipientOnionFields::payment_metadata`].
193 payment_metadata: Option<Vec<u8>>,
194 /// CLTV expiry of the received HTLC.
196 /// Used to track when we should expire pending HTLCs that go unclaimed.
197 incoming_cltv_expiry: u32,
198 /// Custom TLVs which were set by the sender.
200 /// For HTLCs received by LDK, these will ultimately bubble back up as
201 /// [`RecipientOnionFields::custom_tlvs`].
202 custom_tlvs: Vec<(u64, Vec<u8>)>,
203 /// Set if this HTLC is the final hop in a multi-hop blinded path.
204 requires_blinded_error: bool,
208 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
209 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
210 pub struct BlindedForward {
211 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
212 /// onion payload if we're the introduction node. Useful for calculating the next hop's
213 /// [`msgs::UpdateAddHTLC::blinding_point`].
214 pub inbound_blinding_point: PublicKey,
215 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
216 /// the introduction node.
217 pub failure: BlindedFailure,
220 impl PendingHTLCRouting {
221 // Used to override the onion failure code and data if the HTLC is blinded.
222 fn blinded_failure(&self) -> Option<BlindedFailure> {
224 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
225 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
226 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
232 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
234 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
235 #[cfg_attr(test, derive(Debug, PartialEq))]
236 pub struct PendingHTLCInfo {
237 /// Further routing details based on whether the HTLC is being forwarded or received.
238 pub routing: PendingHTLCRouting,
239 /// The onion shared secret we build with the sender used to decrypt the onion.
241 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
242 pub incoming_shared_secret: [u8; 32],
243 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
244 pub payment_hash: PaymentHash,
245 /// Amount received in the incoming HTLC.
247 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
249 pub incoming_amt_msat: Option<u64>,
250 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
251 /// intended for us to receive for received payments.
253 /// If the received amount is less than this for received payments, an intermediary hop has
254 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
255 /// it along another path).
257 /// Because nodes can take less than their required fees, and because senders may wish to
258 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
259 /// received payments. In such cases, recipients must handle this HTLC as if it had received
260 /// [`Self::outgoing_amt_msat`].
261 pub outgoing_amt_msat: u64,
262 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
263 /// should have been set on the received HTLC for received payments).
264 pub outgoing_cltv_value: u32,
265 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
267 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
270 /// If this is a received payment, this is the fee that our counterparty took.
272 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
274 pub skimmed_fee_msat: Option<u64>,
277 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
278 pub(super) enum HTLCFailureMsg {
279 Relay(msgs::UpdateFailHTLC),
280 Malformed(msgs::UpdateFailMalformedHTLC),
283 /// Stores whether we can't forward an HTLC or relevant forwarding info
284 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
285 pub(super) enum PendingHTLCStatus {
286 Forward(PendingHTLCInfo),
287 Fail(HTLCFailureMsg),
290 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
291 pub(super) struct PendingAddHTLCInfo {
292 pub(super) forward_info: PendingHTLCInfo,
294 // These fields are produced in `forward_htlcs()` and consumed in
295 // `process_pending_htlc_forwards()` for constructing the
296 // `HTLCSource::PreviousHopData` for failed and forwarded
299 // Note that this may be an outbound SCID alias for the associated channel.
300 prev_short_channel_id: u64,
302 prev_channel_id: ChannelId,
303 prev_funding_outpoint: OutPoint,
304 prev_user_channel_id: u128,
307 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
308 pub(super) enum HTLCForwardInfo {
309 AddHTLC(PendingAddHTLCInfo),
312 err_packet: msgs::OnionErrorPacket,
317 sha256_of_onion: [u8; 32],
321 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
322 /// which determines the failure message that should be used.
323 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
324 pub enum BlindedFailure {
325 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
326 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
327 FromIntroductionNode,
328 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
329 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
333 /// Tracks the inbound corresponding to an outbound HTLC
334 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
335 pub(crate) struct HTLCPreviousHopData {
336 // Note that this may be an outbound SCID alias for the associated channel.
337 short_channel_id: u64,
338 user_channel_id: Option<u128>,
340 incoming_packet_shared_secret: [u8; 32],
341 phantom_shared_secret: Option<[u8; 32]>,
342 blinded_failure: Option<BlindedFailure>,
343 channel_id: ChannelId,
345 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
346 // channel with a preimage provided by the forward channel.
351 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
353 /// This is only here for backwards-compatibility in serialization, in the future it can be
354 /// removed, breaking clients running 0.0.106 and earlier.
355 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
357 /// Contains the payer-provided preimage.
358 Spontaneous(PaymentPreimage),
361 /// HTLCs that are to us and can be failed/claimed by the user
362 struct ClaimableHTLC {
363 prev_hop: HTLCPreviousHopData,
365 /// The amount (in msats) of this MPP part
367 /// The amount (in msats) that the sender intended to be sent in this MPP
368 /// part (used for validating total MPP amount)
369 sender_intended_value: u64,
370 onion_payload: OnionPayload,
372 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
373 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
374 total_value_received: Option<u64>,
375 /// The sender intended sum total of all MPP parts specified in the onion
377 /// The extra fee our counterparty skimmed off the top of this HTLC.
378 counterparty_skimmed_fee_msat: Option<u64>,
381 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
382 fn from(val: &ClaimableHTLC) -> Self {
383 events::ClaimedHTLC {
384 channel_id: val.prev_hop.channel_id,
385 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
386 cltv_expiry: val.cltv_expiry,
387 value_msat: val.value,
388 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
393 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
394 /// a payment and ensure idempotency in LDK.
396 /// This is not exported to bindings users as we just use [u8; 32] directly
397 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
398 pub struct PaymentId(pub [u8; Self::LENGTH]);
401 /// Number of bytes in the id.
402 pub const LENGTH: usize = 32;
405 impl Writeable for PaymentId {
406 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
411 impl Readable for PaymentId {
412 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
413 let buf: [u8; 32] = Readable::read(r)?;
418 impl core::fmt::Display for PaymentId {
419 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
420 crate::util::logger::DebugBytes(&self.0).fmt(f)
424 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
426 /// This is not exported to bindings users as we just use [u8; 32] directly
427 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
428 pub struct InterceptId(pub [u8; 32]);
430 impl Writeable for InterceptId {
431 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
436 impl Readable for InterceptId {
437 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
438 let buf: [u8; 32] = Readable::read(r)?;
443 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
444 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
445 pub(crate) enum SentHTLCId {
446 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
447 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
450 pub(crate) fn from_source(source: &HTLCSource) -> Self {
452 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
453 short_channel_id: hop_data.short_channel_id,
454 htlc_id: hop_data.htlc_id,
456 HTLCSource::OutboundRoute { session_priv, .. } =>
457 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
461 impl_writeable_tlv_based_enum!(SentHTLCId,
462 (0, PreviousHopData) => {
463 (0, short_channel_id, required),
464 (2, htlc_id, required),
466 (2, OutboundRoute) => {
467 (0, session_priv, required),
472 /// Tracks the inbound corresponding to an outbound HTLC
473 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
474 #[derive(Clone, Debug, PartialEq, Eq)]
475 pub(crate) enum HTLCSource {
476 PreviousHopData(HTLCPreviousHopData),
479 session_priv: SecretKey,
480 /// Technically we can recalculate this from the route, but we cache it here to avoid
481 /// doing a double-pass on route when we get a failure back
482 first_hop_htlc_msat: u64,
483 payment_id: PaymentId,
486 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
487 impl core::hash::Hash for HTLCSource {
488 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
490 HTLCSource::PreviousHopData(prev_hop_data) => {
492 prev_hop_data.hash(hasher);
494 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
497 session_priv[..].hash(hasher);
498 payment_id.hash(hasher);
499 first_hop_htlc_msat.hash(hasher);
505 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
507 pub fn dummy() -> Self {
508 HTLCSource::OutboundRoute {
509 path: Path { hops: Vec::new(), blinded_tail: None },
510 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
511 first_hop_htlc_msat: 0,
512 payment_id: PaymentId([2; 32]),
516 #[cfg(debug_assertions)]
517 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
518 /// transaction. Useful to ensure different datastructures match up.
519 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
520 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
521 *first_hop_htlc_msat == htlc.amount_msat
523 // There's nothing we can check for forwarded HTLCs
529 /// This enum is used to specify which error data to send to peers when failing back an HTLC
530 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
532 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
533 #[derive(Clone, Copy)]
534 pub enum FailureCode {
535 /// We had a temporary error processing the payment. Useful if no other error codes fit
536 /// and you want to indicate that the payer may want to retry.
537 TemporaryNodeFailure,
538 /// We have a required feature which was not in this onion. For example, you may require
539 /// some additional metadata that was not provided with this payment.
540 RequiredNodeFeatureMissing,
541 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
542 /// the HTLC is too close to the current block height for safe handling.
543 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
544 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
545 IncorrectOrUnknownPaymentDetails,
546 /// We failed to process the payload after the onion was decrypted. You may wish to
547 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
549 /// If available, the tuple data may include the type number and byte offset in the
550 /// decrypted byte stream where the failure occurred.
551 InvalidOnionPayload(Option<(u64, u16)>),
554 impl Into<u16> for FailureCode {
555 fn into(self) -> u16 {
557 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
558 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
559 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
560 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
565 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
566 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
567 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
568 /// peer_state lock. We then return the set of things that need to be done outside the lock in
569 /// this struct and call handle_error!() on it.
571 struct MsgHandleErrInternal {
572 err: msgs::LightningError,
573 closes_channel: bool,
574 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
576 impl MsgHandleErrInternal {
578 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
580 err: LightningError {
582 action: msgs::ErrorAction::SendErrorMessage {
583 msg: msgs::ErrorMessage {
589 closes_channel: false,
590 shutdown_finish: None,
594 fn from_no_close(err: msgs::LightningError) -> Self {
595 Self { err, closes_channel: false, shutdown_finish: None }
598 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
599 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
600 let action = if shutdown_res.monitor_update.is_some() {
601 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
602 // should disconnect our peer such that we force them to broadcast their latest
603 // commitment upon reconnecting.
604 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
606 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
609 err: LightningError { err, action },
610 closes_channel: true,
611 shutdown_finish: Some((shutdown_res, channel_update)),
615 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
618 ChannelError::Warn(msg) => LightningError {
620 action: msgs::ErrorAction::SendWarningMessage {
621 msg: msgs::WarningMessage {
625 log_level: Level::Warn,
628 ChannelError::Ignore(msg) => LightningError {
630 action: msgs::ErrorAction::IgnoreError,
632 ChannelError::Close(msg) => LightningError {
634 action: msgs::ErrorAction::SendErrorMessage {
635 msg: msgs::ErrorMessage {
642 closes_channel: false,
643 shutdown_finish: None,
647 fn closes_channel(&self) -> bool {
652 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
653 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
654 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
655 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
656 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
658 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
659 /// be sent in the order they appear in the return value, however sometimes the order needs to be
660 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
661 /// they were originally sent). In those cases, this enum is also returned.
662 #[derive(Clone, PartialEq)]
663 pub(super) enum RAACommitmentOrder {
664 /// Send the CommitmentUpdate messages first
666 /// Send the RevokeAndACK message first
670 /// Information about a payment which is currently being claimed.
671 struct ClaimingPayment {
673 payment_purpose: events::PaymentPurpose,
674 receiver_node_id: PublicKey,
675 htlcs: Vec<events::ClaimedHTLC>,
676 sender_intended_value: Option<u64>,
678 impl_writeable_tlv_based!(ClaimingPayment, {
679 (0, amount_msat, required),
680 (2, payment_purpose, required),
681 (4, receiver_node_id, required),
682 (5, htlcs, optional_vec),
683 (7, sender_intended_value, option),
686 struct ClaimablePayment {
687 purpose: events::PaymentPurpose,
688 onion_fields: Option<RecipientOnionFields>,
689 htlcs: Vec<ClaimableHTLC>,
692 /// Information about claimable or being-claimed payments
693 struct ClaimablePayments {
694 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
695 /// failed/claimed by the user.
697 /// Note that, no consistency guarantees are made about the channels given here actually
698 /// existing anymore by the time you go to read them!
700 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
701 /// we don't get a duplicate payment.
702 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
704 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
705 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
706 /// as an [`events::Event::PaymentClaimed`].
707 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
710 /// Events which we process internally but cannot be processed immediately at the generation site
711 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
712 /// running normally, and specifically must be processed before any other non-background
713 /// [`ChannelMonitorUpdate`]s are applied.
715 enum BackgroundEvent {
716 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
717 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
718 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
719 /// channel has been force-closed we do not need the counterparty node_id.
721 /// Note that any such events are lost on shutdown, so in general they must be updates which
722 /// are regenerated on startup.
723 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
724 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
725 /// channel to continue normal operation.
727 /// In general this should be used rather than
728 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
729 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
730 /// error the other variant is acceptable.
732 /// Note that any such events are lost on shutdown, so in general they must be updates which
733 /// are regenerated on startup.
734 MonitorUpdateRegeneratedOnStartup {
735 counterparty_node_id: PublicKey,
736 funding_txo: OutPoint,
737 channel_id: ChannelId,
738 update: ChannelMonitorUpdate
740 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
741 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
743 MonitorUpdatesComplete {
744 counterparty_node_id: PublicKey,
745 channel_id: ChannelId,
750 pub(crate) enum MonitorUpdateCompletionAction {
751 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
752 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
753 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
754 /// event can be generated.
755 PaymentClaimed { payment_hash: PaymentHash },
756 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
757 /// operation of another channel.
759 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
760 /// from completing a monitor update which removes the payment preimage until the inbound edge
761 /// completes a monitor update containing the payment preimage. In that case, after the inbound
762 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
764 EmitEventAndFreeOtherChannel {
765 event: events::Event,
766 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
768 /// Indicates we should immediately resume the operation of another channel, unless there is
769 /// some other reason why the channel is blocked. In practice this simply means immediately
770 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
772 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
773 /// from completing a monitor update which removes the payment preimage until the inbound edge
774 /// completes a monitor update containing the payment preimage. However, we use this variant
775 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
776 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
778 /// This variant should thus never be written to disk, as it is processed inline rather than
779 /// stored for later processing.
780 FreeOtherChannelImmediately {
781 downstream_counterparty_node_id: PublicKey,
782 downstream_funding_outpoint: OutPoint,
783 blocking_action: RAAMonitorUpdateBlockingAction,
784 downstream_channel_id: ChannelId,
788 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
789 (0, PaymentClaimed) => { (0, payment_hash, required) },
790 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
791 // *immediately*. However, for simplicity we implement read/write here.
792 (1, FreeOtherChannelImmediately) => {
793 (0, downstream_counterparty_node_id, required),
794 (2, downstream_funding_outpoint, required),
795 (4, blocking_action, required),
796 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
797 // filled in, so we can safely unwrap it here.
798 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
800 (2, EmitEventAndFreeOtherChannel) => {
801 (0, event, upgradable_required),
802 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
803 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
804 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
805 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
806 // downgrades to prior versions.
807 (1, downstream_counterparty_and_funding_outpoint, option),
811 #[derive(Clone, Debug, PartialEq, Eq)]
812 pub(crate) enum EventCompletionAction {
813 ReleaseRAAChannelMonitorUpdate {
814 counterparty_node_id: PublicKey,
815 channel_funding_outpoint: OutPoint,
816 channel_id: ChannelId,
819 impl_writeable_tlv_based_enum!(EventCompletionAction,
820 (0, ReleaseRAAChannelMonitorUpdate) => {
821 (0, channel_funding_outpoint, required),
822 (2, counterparty_node_id, required),
823 // Note that by the time we get past the required read above, channel_funding_outpoint will be
824 // filled in, so we can safely unwrap it here.
825 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
829 #[derive(Clone, PartialEq, Eq, Debug)]
830 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
831 /// the blocked action here. See enum variants for more info.
832 pub(crate) enum RAAMonitorUpdateBlockingAction {
833 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
834 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
836 ForwardedPaymentInboundClaim {
837 /// The upstream channel ID (i.e. the inbound edge).
838 channel_id: ChannelId,
839 /// The HTLC ID on the inbound edge.
844 impl RAAMonitorUpdateBlockingAction {
845 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
846 Self::ForwardedPaymentInboundClaim {
847 channel_id: prev_hop.channel_id,
848 htlc_id: prev_hop.htlc_id,
853 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
854 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
858 /// State we hold per-peer.
859 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
860 /// `channel_id` -> `ChannelPhase`
862 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
863 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
864 /// `temporary_channel_id` -> `InboundChannelRequest`.
866 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
867 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
868 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
869 /// the channel is rejected, then the entry is simply removed.
870 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
871 /// The latest `InitFeatures` we heard from the peer.
872 latest_features: InitFeatures,
873 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
874 /// for broadcast messages, where ordering isn't as strict).
875 pub(super) pending_msg_events: Vec<MessageSendEvent>,
876 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
877 /// user but which have not yet completed.
879 /// Note that the channel may no longer exist. For example if the channel was closed but we
880 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
881 /// for a missing channel.
882 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
883 /// Map from a specific channel to some action(s) that should be taken when all pending
884 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
886 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
887 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
888 /// channels with a peer this will just be one allocation and will amount to a linear list of
889 /// channels to walk, avoiding the whole hashing rigmarole.
891 /// Note that the channel may no longer exist. For example, if a channel was closed but we
892 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
893 /// for a missing channel. While a malicious peer could construct a second channel with the
894 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
895 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
896 /// duplicates do not occur, so such channels should fail without a monitor update completing.
897 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
898 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
899 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
900 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
901 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
902 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
903 /// The peer is currently connected (i.e. we've seen a
904 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
905 /// [`ChannelMessageHandler::peer_disconnected`].
906 pub is_connected: bool,
909 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
910 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
911 /// If true is passed for `require_disconnected`, the function will return false if we haven't
912 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
913 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
914 if require_disconnected && self.is_connected {
917 !self.channel_by_id.iter().any(|(_, phase)|
919 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
920 ChannelPhase::UnfundedInboundV1(_) => false,
922 ChannelPhase::UnfundedOutboundV2(_) => true,
924 ChannelPhase::UnfundedInboundV2(_) => false,
927 && self.monitor_update_blocked_actions.is_empty()
928 && self.in_flight_monitor_updates.is_empty()
931 // Returns a count of all channels we have with this peer, including unfunded channels.
932 fn total_channel_count(&self) -> usize {
933 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
936 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
937 fn has_channel(&self, channel_id: &ChannelId) -> bool {
938 self.channel_by_id.contains_key(channel_id) ||
939 self.inbound_channel_request_by_id.contains_key(channel_id)
943 /// A not-yet-accepted inbound (from counterparty) channel. Once
944 /// accepted, the parameters will be used to construct a channel.
945 pub(super) struct InboundChannelRequest {
946 /// The original OpenChannel message.
947 pub open_channel_msg: msgs::OpenChannel,
948 /// The number of ticks remaining before the request expires.
949 pub ticks_remaining: i32,
952 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
953 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
954 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
956 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
957 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
959 /// For users who don't want to bother doing their own payment preimage storage, we also store that
962 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
963 /// and instead encoding it in the payment secret.
964 struct PendingInboundPayment {
965 /// The payment secret that the sender must use for us to accept this payment
966 payment_secret: PaymentSecret,
967 /// Time at which this HTLC expires - blocks with a header time above this value will result in
968 /// this payment being removed.
970 /// Arbitrary identifier the user specifies (or not)
971 user_payment_id: u64,
972 // Other required attributes of the payment, optionally enforced:
973 payment_preimage: Option<PaymentPreimage>,
974 min_value_msat: Option<u64>,
977 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
978 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
979 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
980 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
981 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
982 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
983 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
984 /// of [`KeysManager`] and [`DefaultRouter`].
986 /// This is not exported to bindings users as type aliases aren't supported in most languages.
987 #[cfg(not(c_bindings))]
988 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
996 Arc<NetworkGraph<Arc<L>>>,
999 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1000 ProbabilisticScoringFeeParameters,
1001 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1006 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1007 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1008 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1009 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1010 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1011 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1012 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1013 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1014 /// of [`KeysManager`] and [`DefaultRouter`].
1016 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1017 #[cfg(not(c_bindings))]
1018 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1027 &'f NetworkGraph<&'g L>,
1030 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1031 ProbabilisticScoringFeeParameters,
1032 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1037 /// A trivial trait which describes any [`ChannelManager`].
1039 /// This is not exported to bindings users as general cover traits aren't useful in other
1041 pub trait AChannelManager {
1042 /// A type implementing [`chain::Watch`].
1043 type Watch: chain::Watch<Self::Signer> + ?Sized;
1044 /// A type that may be dereferenced to [`Self::Watch`].
1045 type M: Deref<Target = Self::Watch>;
1046 /// A type implementing [`BroadcasterInterface`].
1047 type Broadcaster: BroadcasterInterface + ?Sized;
1048 /// A type that may be dereferenced to [`Self::Broadcaster`].
1049 type T: Deref<Target = Self::Broadcaster>;
1050 /// A type implementing [`EntropySource`].
1051 type EntropySource: EntropySource + ?Sized;
1052 /// A type that may be dereferenced to [`Self::EntropySource`].
1053 type ES: Deref<Target = Self::EntropySource>;
1054 /// A type implementing [`NodeSigner`].
1055 type NodeSigner: NodeSigner + ?Sized;
1056 /// A type that may be dereferenced to [`Self::NodeSigner`].
1057 type NS: Deref<Target = Self::NodeSigner>;
1058 /// A type implementing [`WriteableEcdsaChannelSigner`].
1059 type Signer: WriteableEcdsaChannelSigner + Sized;
1060 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1061 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1062 /// A type that may be dereferenced to [`Self::SignerProvider`].
1063 type SP: Deref<Target = Self::SignerProvider>;
1064 /// A type implementing [`FeeEstimator`].
1065 type FeeEstimator: FeeEstimator + ?Sized;
1066 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1067 type F: Deref<Target = Self::FeeEstimator>;
1068 /// A type implementing [`Router`].
1069 type Router: Router + ?Sized;
1070 /// A type that may be dereferenced to [`Self::Router`].
1071 type R: Deref<Target = Self::Router>;
1072 /// A type implementing [`Logger`].
1073 type Logger: Logger + ?Sized;
1074 /// A type that may be dereferenced to [`Self::Logger`].
1075 type L: Deref<Target = Self::Logger>;
1076 /// Returns a reference to the actual [`ChannelManager`] object.
1077 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1080 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1081 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1083 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1084 T::Target: BroadcasterInterface,
1085 ES::Target: EntropySource,
1086 NS::Target: NodeSigner,
1087 SP::Target: SignerProvider,
1088 F::Target: FeeEstimator,
1092 type Watch = M::Target;
1094 type Broadcaster = T::Target;
1096 type EntropySource = ES::Target;
1098 type NodeSigner = NS::Target;
1100 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1101 type SignerProvider = SP::Target;
1103 type FeeEstimator = F::Target;
1105 type Router = R::Target;
1107 type Logger = L::Target;
1109 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1112 /// A lightning node's channel state machine and payment management logic, which facilitates
1113 /// sending, forwarding, and receiving payments through lightning channels.
1115 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1116 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1118 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1119 /// closing channels
1120 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1121 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1122 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1123 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1125 /// - [`Router`] for finding payment paths when initiating and retrying payments
1126 /// - [`Logger`] for logging operational information of varying degrees
1128 /// Additionally, it implements the following traits:
1129 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1130 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1131 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1132 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1133 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1135 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1136 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1138 /// # `ChannelManager` vs `ChannelMonitor`
1140 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1141 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1142 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1143 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1144 /// [`chain::Watch`] of them.
1146 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1147 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1148 /// for any pertinent on-chain activity, enforcing claims as needed.
1150 /// This division of off-chain management and on-chain enforcement allows for interesting node
1151 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1152 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1154 /// # Initialization
1156 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1157 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1158 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1159 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1160 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1163 /// use bitcoin::BlockHash;
1164 /// use bitcoin::network::constants::Network;
1165 /// use lightning::chain::BestBlock;
1166 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1167 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1168 /// # use lightning::routing::gossip::NetworkGraph;
1169 /// use lightning::util::config::UserConfig;
1170 /// use lightning::util::ser::ReadableArgs;
1172 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1175 /// # L: lightning::util::logger::Logger,
1176 /// # ES: lightning::sign::EntropySource,
1177 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1178 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1180 /// # R: lightning::io::Read,
1182 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1183 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1184 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1185 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1187 /// # entropy_source: &ES,
1188 /// # node_signer: &dyn lightning::sign::NodeSigner,
1189 /// # signer_provider: &lightning::sign::DynSignerProvider,
1190 /// # best_block: lightning::chain::BestBlock,
1191 /// # current_timestamp: u32,
1192 /// # mut reader: R,
1193 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1194 /// // Fresh start with no channels
1195 /// let params = ChainParameters {
1196 /// network: Network::Bitcoin,
1199 /// let default_config = UserConfig::default();
1200 /// let channel_manager = ChannelManager::new(
1201 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1202 /// signer_provider, default_config, params, current_timestamp
1205 /// // Restart from deserialized data
1206 /// let mut channel_monitors = read_channel_monitors();
1207 /// let args = ChannelManagerReadArgs::new(
1208 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1209 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1211 /// let (block_hash, channel_manager) =
1212 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1214 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1217 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1218 /// for monitor in channel_monitors {
1219 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1227 /// The following is required for [`ChannelManager`] to function properly:
1228 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1229 /// called by [`PeerManager::read_event`] when processing network I/O)
1230 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1231 /// (typically initiated when [`PeerManager::process_events`] is called)
1232 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1233 /// as documented by those traits
1234 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1236 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1237 /// [`Persister`] such as a [`KVStore`] implementation
1238 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1240 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1241 /// when the last two requirements need to be checked.
1243 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1244 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1245 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1246 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1250 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1251 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1252 /// currently open channels.
1255 /// # use lightning::ln::channelmanager::AChannelManager;
1257 /// # fn example<T: AChannelManager>(channel_manager: T) {
1258 /// # let channel_manager = channel_manager.get_cm();
1259 /// let channels = channel_manager.list_usable_channels();
1260 /// for details in channels {
1261 /// println!("{:?}", details);
1266 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1267 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1268 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1269 /// by [`ChannelManager`].
1271 /// ## Opening Channels
1273 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1274 /// opening an outbound channel, which requires self-funding when handling
1275 /// [`Event::FundingGenerationReady`].
1278 /// # use bitcoin::{ScriptBuf, Transaction};
1279 /// # use bitcoin::secp256k1::PublicKey;
1280 /// # use lightning::ln::channelmanager::AChannelManager;
1281 /// # use lightning::events::{Event, EventsProvider};
1283 /// # trait Wallet {
1284 /// # fn create_funding_transaction(
1285 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1286 /// # ) -> Transaction;
1289 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1290 /// # let channel_manager = channel_manager.get_cm();
1291 /// let value_sats = 1_000_000;
1292 /// let push_msats = 10_000_000;
1293 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1294 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1295 /// Err(e) => println!("Error opening channel: {:?}", e),
1298 /// // On the event processing thread once the peer has responded
1299 /// channel_manager.process_pending_events(&|event| match event {
1300 /// Event::FundingGenerationReady {
1301 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1302 /// user_channel_id, ..
1304 /// assert_eq!(user_channel_id, 42);
1305 /// let funding_transaction = wallet.create_funding_transaction(
1306 /// channel_value_satoshis, output_script
1308 /// match channel_manager.funding_transaction_generated(
1309 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1311 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1312 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1315 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1316 /// assert_eq!(user_channel_id, 42);
1318 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1319 /// former_temporary_channel_id.unwrap()
1322 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1323 /// assert_eq!(user_channel_id, 42);
1324 /// println!("Channel {} ready", channel_id);
1332 /// ## Accepting Channels
1334 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1335 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1336 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1339 /// # use bitcoin::secp256k1::PublicKey;
1340 /// # use lightning::ln::channelmanager::AChannelManager;
1341 /// # use lightning::events::{Event, EventsProvider};
1343 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1345 /// # unimplemented!()
1348 /// # fn example<T: AChannelManager>(channel_manager: T) {
1349 /// # let channel_manager = channel_manager.get_cm();
1350 /// channel_manager.process_pending_events(&|event| match event {
1351 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1352 /// if !is_trusted(counterparty_node_id) {
1353 /// match channel_manager.force_close_without_broadcasting_txn(
1354 /// &temporary_channel_id, &counterparty_node_id
1356 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1357 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1362 /// let user_channel_id = 43;
1363 /// match channel_manager.accept_inbound_channel(
1364 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1366 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1367 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1376 /// ## Closing Channels
1378 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1379 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1380 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1381 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1382 /// once the channel has been closed successfully.
1385 /// # use bitcoin::secp256k1::PublicKey;
1386 /// # use lightning::ln::ChannelId;
1387 /// # use lightning::ln::channelmanager::AChannelManager;
1388 /// # use lightning::events::{Event, EventsProvider};
1390 /// # fn example<T: AChannelManager>(
1391 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1393 /// # let channel_manager = channel_manager.get_cm();
1394 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1395 /// Ok(()) => println!("Closing channel {}", channel_id),
1396 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1399 /// // On the event processing thread
1400 /// channel_manager.process_pending_events(&|event| match event {
1401 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1402 /// assert_eq!(user_channel_id, 42);
1403 /// println!("Channel {} closed", channel_id);
1413 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1414 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1415 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1416 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1417 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1420 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1421 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1422 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1423 /// [`abandon_payment`] is called.
1425 /// ## BOLT 11 Invoices
1427 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1428 /// functions in its `utils` module for constructing invoices that are compatible with
1429 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1430 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1431 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1432 /// the [`lightning-invoice`] `utils` module.
1434 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1435 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1436 /// an [`Event::PaymentClaimed`].
1439 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1440 /// # use lightning::ln::channelmanager::AChannelManager;
1442 /// # fn example<T: AChannelManager>(channel_manager: T) {
1443 /// # let channel_manager = channel_manager.get_cm();
1444 /// // Or use utils::create_invoice_from_channelmanager
1445 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1446 /// Some(10_000_000), 3600, None
1448 /// Ok((payment_hash, _payment_secret)) => {
1449 /// println!("Creating inbound payment {}", payment_hash);
1452 /// Err(()) => panic!("Error creating inbound payment"),
1455 /// // On the event processing thread
1456 /// channel_manager.process_pending_events(&|event| match event {
1457 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1458 /// PaymentPurpose::InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1459 /// assert_eq!(payment_hash, known_payment_hash);
1460 /// println!("Claiming payment {}", payment_hash);
1461 /// channel_manager.claim_funds(payment_preimage);
1463 /// PaymentPurpose::InvoicePayment { payment_preimage: None, .. } => {
1464 /// println!("Unknown payment hash: {}", payment_hash);
1466 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1467 /// assert_ne!(payment_hash, known_payment_hash);
1468 /// println!("Claiming spontaneous payment {}", payment_hash);
1469 /// channel_manager.claim_funds(payment_preimage);
1472 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1473 /// assert_eq!(payment_hash, known_payment_hash);
1474 /// println!("Claimed {} msats", amount_msat);
1482 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1483 /// functions for use with [`send_payment`].
1486 /// # use lightning::events::{Event, EventsProvider};
1487 /// # use lightning::ln::PaymentHash;
1488 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1489 /// # use lightning::routing::router::RouteParameters;
1491 /// # fn example<T: AChannelManager>(
1492 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1493 /// # route_params: RouteParameters, retry: Retry
1495 /// # let channel_manager = channel_manager.get_cm();
1496 /// // let (payment_hash, recipient_onion, route_params) =
1497 /// // payment::payment_parameters_from_invoice(&invoice);
1498 /// let payment_id = PaymentId([42; 32]);
1499 /// match channel_manager.send_payment(
1500 /// payment_hash, recipient_onion, payment_id, route_params, retry
1502 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1503 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1506 /// let expected_payment_id = payment_id;
1507 /// let expected_payment_hash = payment_hash;
1509 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1511 /// RecentPaymentDetails::Pending {
1512 /// payment_id: expected_payment_id,
1513 /// payment_hash: expected_payment_hash,
1519 /// // On the event processing thread
1520 /// channel_manager.process_pending_events(&|event| match event {
1521 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1522 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1529 /// ## BOLT 12 Offers
1531 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1532 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1533 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1534 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1535 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1536 /// stateless just as BOLT 11 invoices are.
1539 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1540 /// # use lightning::ln::channelmanager::AChannelManager;
1541 /// # use lightning::offers::parse::Bolt12SemanticError;
1543 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1544 /// # let channel_manager = channel_manager.get_cm();
1545 /// let offer = channel_manager
1546 /// .create_offer_builder("coffee".to_string())?
1548 /// # // Needed for compiling for c_bindings
1549 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1550 /// # let offer = builder
1551 /// .amount_msats(10_000_000)
1553 /// let bech32_offer = offer.to_string();
1555 /// // On the event processing thread
1556 /// channel_manager.process_pending_events(&|event| match event {
1557 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1558 /// PaymentPurpose::InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1559 /// println!("Claiming payment {}", payment_hash);
1560 /// channel_manager.claim_funds(payment_preimage);
1562 /// PaymentPurpose::InvoicePayment { payment_preimage: None, .. } => {
1563 /// println!("Unknown payment hash: {}", payment_hash);
1568 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1569 /// println!("Claimed {} msats", amount_msat);
1578 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1579 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1580 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1583 /// # use lightning::events::{Event, EventsProvider};
1584 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1585 /// # use lightning::offers::offer::Offer;
1587 /// # fn example<T: AChannelManager>(
1588 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1589 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1591 /// # let channel_manager = channel_manager.get_cm();
1592 /// let payment_id = PaymentId([42; 32]);
1593 /// match channel_manager.pay_for_offer(
1594 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1596 /// Ok(()) => println!("Requesting invoice for offer"),
1597 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1600 /// // First the payment will be waiting on an invoice
1601 /// let expected_payment_id = payment_id;
1603 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1605 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1609 /// // Once the invoice is received, a payment will be sent
1611 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1613 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1617 /// // On the event processing thread
1618 /// channel_manager.process_pending_events(&|event| match event {
1619 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1620 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1621 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1628 /// ## BOLT 12 Refunds
1630 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1631 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1632 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1633 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1636 /// # use core::time::Duration;
1637 /// # use lightning::events::{Event, EventsProvider};
1638 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1639 /// # use lightning::offers::parse::Bolt12SemanticError;
1641 /// # fn example<T: AChannelManager>(
1642 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1643 /// # max_total_routing_fee_msat: Option<u64>
1644 /// # ) -> Result<(), Bolt12SemanticError> {
1645 /// # let channel_manager = channel_manager.get_cm();
1646 /// let payment_id = PaymentId([42; 32]);
1647 /// let refund = channel_manager
1648 /// .create_refund_builder(
1649 /// "coffee".to_string(), amount_msats, absolute_expiry, payment_id, retry,
1650 /// max_total_routing_fee_msat
1653 /// # // Needed for compiling for c_bindings
1654 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1655 /// # let refund = builder
1656 /// .payer_note("refund for order 1234".to_string())
1658 /// let bech32_refund = refund.to_string();
1660 /// // First the payment will be waiting on an invoice
1661 /// let expected_payment_id = payment_id;
1663 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1665 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1669 /// // Once the invoice is received, a payment will be sent
1671 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1673 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1677 /// // On the event processing thread
1678 /// channel_manager.process_pending_events(&|event| match event {
1679 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1680 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1688 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1689 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1692 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1693 /// # use lightning::ln::channelmanager::AChannelManager;
1694 /// # use lightning::offers::refund::Refund;
1696 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1697 /// # let channel_manager = channel_manager.get_cm();
1698 /// match channel_manager.request_refund_payment(refund) {
1699 /// Ok(()) => println!("Requesting payment for refund"),
1700 /// Err(e) => println!("Unable to request payment for refund: {:?}", e),
1703 /// // On the event processing thread
1704 /// channel_manager.process_pending_events(&|event| match event {
1705 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1706 /// PaymentPurpose::InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1707 /// println!("Claiming payment {}", payment_hash);
1708 /// channel_manager.claim_funds(payment_preimage);
1710 /// PaymentPurpose::InvoicePayment { payment_preimage: None, .. } => {
1711 /// println!("Unknown payment hash: {}", payment_hash);
1716 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1717 /// println!("Claimed {} msats", amount_msat);
1727 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1728 /// all peers during write/read (though does not modify this instance, only the instance being
1729 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1730 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1732 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1733 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1734 /// [`ChannelMonitorUpdate`] before returning from
1735 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1736 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1737 /// `ChannelManager` operations from occurring during the serialization process). If the
1738 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1739 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1740 /// will be lost (modulo on-chain transaction fees).
1742 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1743 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1744 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1746 /// # `ChannelUpdate` Messages
1748 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1749 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1750 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1751 /// offline for a full minute. In order to track this, you must call
1752 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1754 /// # DoS Mitigation
1756 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1757 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1758 /// not have a channel with being unable to connect to us or open new channels with us if we have
1759 /// many peers with unfunded channels.
1761 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1762 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1763 /// never limited. Please ensure you limit the count of such channels yourself.
1767 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1768 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1769 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1770 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1771 /// you're using lightning-net-tokio.
1773 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1774 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1775 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1776 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1777 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1778 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1779 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1780 /// [`Persister`]: crate::util::persist::Persister
1781 /// [`KVStore`]: crate::util::persist::KVStore
1782 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1783 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1784 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1785 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1786 /// [`list_channels`]: Self::list_channels
1787 /// [`list_usable_channels`]: Self::list_usable_channels
1788 /// [`create_channel`]: Self::create_channel
1789 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1790 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1791 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1792 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1793 /// [`list_recent_payments`]: Self::list_recent_payments
1794 /// [`abandon_payment`]: Self::abandon_payment
1795 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1796 /// [`create_inbound_payment`]: Self::create_inbound_payment
1797 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1798 /// [`claim_funds`]: Self::claim_funds
1799 /// [`send_payment`]: Self::send_payment
1800 /// [`offers`]: crate::offers
1801 /// [`create_offer_builder`]: Self::create_offer_builder
1802 /// [`pay_for_offer`]: Self::pay_for_offer
1803 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1804 /// [`create_refund_builder`]: Self::create_refund_builder
1805 /// [`request_refund_payment`]: Self::request_refund_payment
1806 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1807 /// [`funding_created`]: msgs::FundingCreated
1808 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1809 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1810 /// [`update_channel`]: chain::Watch::update_channel
1811 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1812 /// [`read`]: ReadableArgs::read
1815 // The tree structure below illustrates the lock order requirements for the different locks of the
1816 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1817 // and should then be taken in the order of the lowest to the highest level in the tree.
1818 // Note that locks on different branches shall not be taken at the same time, as doing so will
1819 // create a new lock order for those specific locks in the order they were taken.
1823 // `pending_offers_messages`
1825 // `total_consistency_lock`
1827 // |__`forward_htlcs`
1829 // | |__`pending_intercepted_htlcs`
1831 // |__`decode_update_add_htlcs`
1833 // |__`per_peer_state`
1835 // |__`pending_inbound_payments`
1837 // |__`claimable_payments`
1839 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1843 // |__`outpoint_to_peer`
1845 // |__`short_to_chan_info`
1847 // |__`outbound_scid_aliases`
1851 // |__`pending_events`
1853 // |__`pending_background_events`
1855 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1857 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1858 T::Target: BroadcasterInterface,
1859 ES::Target: EntropySource,
1860 NS::Target: NodeSigner,
1861 SP::Target: SignerProvider,
1862 F::Target: FeeEstimator,
1866 default_configuration: UserConfig,
1867 chain_hash: ChainHash,
1868 fee_estimator: LowerBoundedFeeEstimator<F>,
1874 /// See `ChannelManager` struct-level documentation for lock order requirements.
1876 pub(super) best_block: RwLock<BestBlock>,
1878 best_block: RwLock<BestBlock>,
1879 secp_ctx: Secp256k1<secp256k1::All>,
1881 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1882 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1883 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1884 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1886 /// See `ChannelManager` struct-level documentation for lock order requirements.
1887 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1889 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1890 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1891 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1892 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1893 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1894 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1895 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1896 /// after reloading from disk while replaying blocks against ChannelMonitors.
1898 /// See `PendingOutboundPayment` documentation for more info.
1900 /// See `ChannelManager` struct-level documentation for lock order requirements.
1901 pending_outbound_payments: OutboundPayments,
1903 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1905 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1906 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1907 /// and via the classic SCID.
1909 /// Note that no consistency guarantees are made about the existence of a channel with the
1910 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1912 /// See `ChannelManager` struct-level documentation for lock order requirements.
1914 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1916 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1917 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1918 /// until the user tells us what we should do with them.
1920 /// See `ChannelManager` struct-level documentation for lock order requirements.
1921 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1923 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1925 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1926 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1927 /// and via the classic SCID.
1929 /// Note that no consistency guarantees are made about the existence of a channel with the
1930 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1932 /// See `ChannelManager` struct-level documentation for lock order requirements.
1933 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1935 /// The sets of payments which are claimable or currently being claimed. See
1936 /// [`ClaimablePayments`]' individual field docs for more info.
1938 /// See `ChannelManager` struct-level documentation for lock order requirements.
1939 claimable_payments: Mutex<ClaimablePayments>,
1941 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1942 /// and some closed channels which reached a usable state prior to being closed. This is used
1943 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1944 /// active channel list on load.
1946 /// See `ChannelManager` struct-level documentation for lock order requirements.
1947 outbound_scid_aliases: Mutex<HashSet<u64>>,
1949 /// Channel funding outpoint -> `counterparty_node_id`.
1951 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1952 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1953 /// the handling of the events.
1955 /// Note that no consistency guarantees are made about the existence of a peer with the
1956 /// `counterparty_node_id` in our other maps.
1959 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1960 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1961 /// would break backwards compatability.
1962 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1963 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1964 /// required to access the channel with the `counterparty_node_id`.
1966 /// See `ChannelManager` struct-level documentation for lock order requirements.
1968 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1970 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1972 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1974 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1975 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1976 /// confirmation depth.
1978 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1979 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1980 /// channel with the `channel_id` in our other maps.
1982 /// See `ChannelManager` struct-level documentation for lock order requirements.
1984 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1986 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1988 our_network_pubkey: PublicKey,
1990 inbound_payment_key: inbound_payment::ExpandedKey,
1992 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1993 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1994 /// we encrypt the namespace identifier using these bytes.
1996 /// [fake scids]: crate::util::scid_utils::fake_scid
1997 fake_scid_rand_bytes: [u8; 32],
1999 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2000 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2001 /// keeping additional state.
2002 probing_cookie_secret: [u8; 32],
2004 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2005 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2006 /// very far in the past, and can only ever be up to two hours in the future.
2007 highest_seen_timestamp: AtomicUsize,
2009 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2010 /// basis, as well as the peer's latest features.
2012 /// If we are connected to a peer we always at least have an entry here, even if no channels
2013 /// are currently open with that peer.
2015 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2016 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2019 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2021 /// See `ChannelManager` struct-level documentation for lock order requirements.
2022 #[cfg(not(any(test, feature = "_test_utils")))]
2023 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2024 #[cfg(any(test, feature = "_test_utils"))]
2025 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2027 /// The set of events which we need to give to the user to handle. In some cases an event may
2028 /// require some further action after the user handles it (currently only blocking a monitor
2029 /// update from being handed to the user to ensure the included changes to the channel state
2030 /// are handled by the user before they're persisted durably to disk). In that case, the second
2031 /// element in the tuple is set to `Some` with further details of the action.
2033 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2034 /// could be in the middle of being processed without the direct mutex held.
2036 /// See `ChannelManager` struct-level documentation for lock order requirements.
2037 #[cfg(not(any(test, feature = "_test_utils")))]
2038 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2039 #[cfg(any(test, feature = "_test_utils"))]
2040 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2042 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2043 pending_events_processor: AtomicBool,
2045 /// If we are running during init (either directly during the deserialization method or in
2046 /// block connection methods which run after deserialization but before normal operation) we
2047 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2048 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2049 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2051 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2053 /// See `ChannelManager` struct-level documentation for lock order requirements.
2055 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2056 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2057 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2058 /// Essentially just when we're serializing ourselves out.
2059 /// Taken first everywhere where we are making changes before any other locks.
2060 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2061 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2062 /// Notifier the lock contains sends out a notification when the lock is released.
2063 total_consistency_lock: RwLock<()>,
2064 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2065 /// received and the monitor has been persisted.
2067 /// This information does not need to be persisted as funding nodes can forget
2068 /// unfunded channels upon disconnection.
2069 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2071 background_events_processed_since_startup: AtomicBool,
2073 event_persist_notifier: Notifier,
2074 needs_persist_flag: AtomicBool,
2076 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2078 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2079 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2083 signer_provider: SP,
2088 /// Chain-related parameters used to construct a new `ChannelManager`.
2090 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2091 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2092 /// are not needed when deserializing a previously constructed `ChannelManager`.
2093 #[derive(Clone, Copy, PartialEq)]
2094 pub struct ChainParameters {
2095 /// The network for determining the `chain_hash` in Lightning messages.
2096 pub network: Network,
2098 /// The hash and height of the latest block successfully connected.
2100 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2101 pub best_block: BestBlock,
2104 #[derive(Copy, Clone, PartialEq)]
2108 SkipPersistHandleEvents,
2109 SkipPersistNoEvents,
2112 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2113 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2114 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2115 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2116 /// sending the aforementioned notification (since the lock being released indicates that the
2117 /// updates are ready for persistence).
2119 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2120 /// notify or not based on whether relevant changes have been made, providing a closure to
2121 /// `optionally_notify` which returns a `NotifyOption`.
2122 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2123 event_persist_notifier: &'a Notifier,
2124 needs_persist_flag: &'a AtomicBool,
2126 // We hold onto this result so the lock doesn't get released immediately.
2127 _read_guard: RwLockReadGuard<'a, ()>,
2130 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2131 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2132 /// events to handle.
2134 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2135 /// other cases where losing the changes on restart may result in a force-close or otherwise
2137 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2138 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2141 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2142 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2143 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2144 let force_notify = cm.get_cm().process_background_events();
2146 PersistenceNotifierGuard {
2147 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2148 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2149 should_persist: move || {
2150 // Pick the "most" action between `persist_check` and the background events
2151 // processing and return that.
2152 let notify = persist_check();
2153 match (notify, force_notify) {
2154 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2155 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2156 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2157 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2158 _ => NotifyOption::SkipPersistNoEvents,
2161 _read_guard: read_guard,
2165 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2166 /// [`ChannelManager::process_background_events`] MUST be called first (or
2167 /// [`Self::optionally_notify`] used).
2168 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2169 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2170 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2172 PersistenceNotifierGuard {
2173 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2174 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2175 should_persist: persist_check,
2176 _read_guard: read_guard,
2181 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2182 fn drop(&mut self) {
2183 match (self.should_persist)() {
2184 NotifyOption::DoPersist => {
2185 self.needs_persist_flag.store(true, Ordering::Release);
2186 self.event_persist_notifier.notify()
2188 NotifyOption::SkipPersistHandleEvents =>
2189 self.event_persist_notifier.notify(),
2190 NotifyOption::SkipPersistNoEvents => {},
2195 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2196 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2198 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2200 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2201 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2202 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2203 /// the maximum required amount in lnd as of March 2021.
2204 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2206 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2207 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2209 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2211 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2212 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2213 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2214 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2215 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2216 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2217 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2218 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2219 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2220 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2221 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2222 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2223 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2225 /// Minimum CLTV difference between the current block height and received inbound payments.
2226 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2228 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2229 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2230 // a payment was being routed, so we add an extra block to be safe.
2231 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2233 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2234 // ie that if the next-hop peer fails the HTLC within
2235 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2236 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2237 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2238 // LATENCY_GRACE_PERIOD_BLOCKS.
2240 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2242 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2243 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2245 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2247 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2248 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2250 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2251 /// until we mark the channel disabled and gossip the update.
2252 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2254 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2255 /// we mark the channel enabled and gossip the update.
2256 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2258 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2259 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2260 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2261 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2263 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2264 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2265 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2267 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2268 /// many peers we reject new (inbound) connections.
2269 const MAX_NO_CHANNEL_PEERS: usize = 250;
2271 /// Information needed for constructing an invoice route hint for this channel.
2272 #[derive(Clone, Debug, PartialEq)]
2273 pub struct CounterpartyForwardingInfo {
2274 /// Base routing fee in millisatoshis.
2275 pub fee_base_msat: u32,
2276 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2277 pub fee_proportional_millionths: u32,
2278 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2279 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2280 /// `cltv_expiry_delta` for more details.
2281 pub cltv_expiry_delta: u16,
2284 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2285 /// to better separate parameters.
2286 #[derive(Clone, Debug, PartialEq)]
2287 pub struct ChannelCounterparty {
2288 /// The node_id of our counterparty
2289 pub node_id: PublicKey,
2290 /// The Features the channel counterparty provided upon last connection.
2291 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2292 /// many routing-relevant features are present in the init context.
2293 pub features: InitFeatures,
2294 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2295 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2296 /// claiming at least this value on chain.
2298 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2300 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2301 pub unspendable_punishment_reserve: u64,
2302 /// Information on the fees and requirements that the counterparty requires when forwarding
2303 /// payments to us through this channel.
2304 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2305 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2306 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2307 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2308 pub outbound_htlc_minimum_msat: Option<u64>,
2309 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2310 pub outbound_htlc_maximum_msat: Option<u64>,
2313 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2314 #[derive(Clone, Debug, PartialEq)]
2315 pub struct ChannelDetails {
2316 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2317 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2318 /// Note that this means this value is *not* persistent - it can change once during the
2319 /// lifetime of the channel.
2320 pub channel_id: ChannelId,
2321 /// Parameters which apply to our counterparty. See individual fields for more information.
2322 pub counterparty: ChannelCounterparty,
2323 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2324 /// our counterparty already.
2325 pub funding_txo: Option<OutPoint>,
2326 /// The features which this channel operates with. See individual features for more info.
2328 /// `None` until negotiation completes and the channel type is finalized.
2329 pub channel_type: Option<ChannelTypeFeatures>,
2330 /// The position of the funding transaction in the chain. None if the funding transaction has
2331 /// not yet been confirmed and the channel fully opened.
2333 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2334 /// payments instead of this. See [`get_inbound_payment_scid`].
2336 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2337 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2339 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2340 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2341 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2342 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2343 /// [`confirmations_required`]: Self::confirmations_required
2344 pub short_channel_id: Option<u64>,
2345 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2346 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2347 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2350 /// This will be `None` as long as the channel is not available for routing outbound payments.
2352 /// [`short_channel_id`]: Self::short_channel_id
2353 /// [`confirmations_required`]: Self::confirmations_required
2354 pub outbound_scid_alias: Option<u64>,
2355 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2356 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2357 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2358 /// when they see a payment to be routed to us.
2360 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2361 /// previous values for inbound payment forwarding.
2363 /// [`short_channel_id`]: Self::short_channel_id
2364 pub inbound_scid_alias: Option<u64>,
2365 /// The value, in satoshis, of this channel as appears in the funding output
2366 pub channel_value_satoshis: u64,
2367 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2368 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2369 /// this value on chain.
2371 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2373 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2375 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2376 pub unspendable_punishment_reserve: Option<u64>,
2377 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2378 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2379 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2380 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2381 /// serialized with LDK versions prior to 0.0.113.
2383 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2384 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2385 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2386 pub user_channel_id: u128,
2387 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2388 /// which is applied to commitment and HTLC transactions.
2390 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2391 pub feerate_sat_per_1000_weight: Option<u32>,
2392 /// Our total balance. This is the amount we would get if we close the channel.
2393 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2394 /// amount is not likely to be recoverable on close.
2396 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2397 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2398 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2399 /// This does not consider any on-chain fees.
2401 /// See also [`ChannelDetails::outbound_capacity_msat`]
2402 pub balance_msat: u64,
2403 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2404 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2405 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2406 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2408 /// See also [`ChannelDetails::balance_msat`]
2410 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2411 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2412 /// should be able to spend nearly this amount.
2413 pub outbound_capacity_msat: u64,
2414 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2415 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2416 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2417 /// to use a limit as close as possible to the HTLC limit we can currently send.
2419 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2420 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2421 pub next_outbound_htlc_limit_msat: u64,
2422 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2423 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2424 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2425 /// route which is valid.
2426 pub next_outbound_htlc_minimum_msat: u64,
2427 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2428 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2429 /// available for inclusion in new inbound HTLCs).
2430 /// Note that there are some corner cases not fully handled here, so the actual available
2431 /// inbound capacity may be slightly higher than this.
2433 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2434 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2435 /// However, our counterparty should be able to spend nearly this amount.
2436 pub inbound_capacity_msat: u64,
2437 /// The number of required confirmations on the funding transaction before the funding will be
2438 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2439 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2440 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2441 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2443 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2445 /// [`is_outbound`]: ChannelDetails::is_outbound
2446 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2447 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2448 pub confirmations_required: Option<u32>,
2449 /// The current number of confirmations on the funding transaction.
2451 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2452 pub confirmations: Option<u32>,
2453 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2454 /// until we can claim our funds after we force-close the channel. During this time our
2455 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2456 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2457 /// time to claim our non-HTLC-encumbered funds.
2459 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2460 pub force_close_spend_delay: Option<u16>,
2461 /// True if the channel was initiated (and thus funded) by us.
2462 pub is_outbound: bool,
2463 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2464 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2465 /// required confirmation count has been reached (and we were connected to the peer at some
2466 /// point after the funding transaction received enough confirmations). The required
2467 /// confirmation count is provided in [`confirmations_required`].
2469 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2470 pub is_channel_ready: bool,
2471 /// The stage of the channel's shutdown.
2472 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2473 pub channel_shutdown_state: Option<ChannelShutdownState>,
2474 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2475 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2477 /// This is a strict superset of `is_channel_ready`.
2478 pub is_usable: bool,
2479 /// True if this channel is (or will be) publicly-announced.
2480 pub is_public: bool,
2481 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2482 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2483 pub inbound_htlc_minimum_msat: Option<u64>,
2484 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2485 pub inbound_htlc_maximum_msat: Option<u64>,
2486 /// Set of configurable parameters that affect channel operation.
2488 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2489 pub config: Option<ChannelConfig>,
2490 /// Pending inbound HTLCs.
2492 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2493 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2494 /// Pending outbound HTLCs.
2496 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2497 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2500 impl ChannelDetails {
2501 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2502 /// This should be used for providing invoice hints or in any other context where our
2503 /// counterparty will forward a payment to us.
2505 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2506 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2507 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2508 self.inbound_scid_alias.or(self.short_channel_id)
2511 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2512 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2513 /// we're sending or forwarding a payment outbound over this channel.
2515 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2516 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2517 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2518 self.short_channel_id.or(self.outbound_scid_alias)
2521 fn from_channel_context<SP: Deref, F: Deref>(
2522 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2523 fee_estimator: &LowerBoundedFeeEstimator<F>
2526 SP::Target: SignerProvider,
2527 F::Target: FeeEstimator
2529 let balance = context.get_available_balances(fee_estimator);
2530 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2531 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2533 channel_id: context.channel_id(),
2534 counterparty: ChannelCounterparty {
2535 node_id: context.get_counterparty_node_id(),
2536 features: latest_features,
2537 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2538 forwarding_info: context.counterparty_forwarding_info(),
2539 // Ensures that we have actually received the `htlc_minimum_msat` value
2540 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2541 // message (as they are always the first message from the counterparty).
2542 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2543 // default `0` value set by `Channel::new_outbound`.
2544 outbound_htlc_minimum_msat: if context.have_received_message() {
2545 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2546 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2548 funding_txo: context.get_funding_txo(),
2549 // Note that accept_channel (or open_channel) is always the first message, so
2550 // `have_received_message` indicates that type negotiation has completed.
2551 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2552 short_channel_id: context.get_short_channel_id(),
2553 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2554 inbound_scid_alias: context.latest_inbound_scid_alias(),
2555 channel_value_satoshis: context.get_value_satoshis(),
2556 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2557 unspendable_punishment_reserve: to_self_reserve_satoshis,
2558 balance_msat: balance.balance_msat,
2559 inbound_capacity_msat: balance.inbound_capacity_msat,
2560 outbound_capacity_msat: balance.outbound_capacity_msat,
2561 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2562 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2563 user_channel_id: context.get_user_id(),
2564 confirmations_required: context.minimum_depth(),
2565 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2566 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2567 is_outbound: context.is_outbound(),
2568 is_channel_ready: context.is_usable(),
2569 is_usable: context.is_live(),
2570 is_public: context.should_announce(),
2571 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2572 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2573 config: Some(context.config()),
2574 channel_shutdown_state: Some(context.shutdown_state()),
2575 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2576 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2581 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2582 /// Further information on the details of the channel shutdown.
2583 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2584 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2585 /// the channel will be removed shortly.
2586 /// Also note, that in normal operation, peers could disconnect at any of these states
2587 /// and require peer re-connection before making progress onto other states
2588 pub enum ChannelShutdownState {
2589 /// Channel has not sent or received a shutdown message.
2591 /// Local node has sent a shutdown message for this channel.
2593 /// Shutdown message exchanges have concluded and the channels are in the midst of
2594 /// resolving all existing open HTLCs before closing can continue.
2596 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2597 NegotiatingClosingFee,
2598 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2599 /// to drop the channel.
2603 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2604 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2605 #[derive(Debug, PartialEq)]
2606 pub enum RecentPaymentDetails {
2607 /// When an invoice was requested and thus a payment has not yet been sent.
2609 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2610 /// a payment and ensure idempotency in LDK.
2611 payment_id: PaymentId,
2613 /// When a payment is still being sent and awaiting successful delivery.
2615 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2616 /// a payment and ensure idempotency in LDK.
2617 payment_id: PaymentId,
2618 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2620 payment_hash: PaymentHash,
2621 /// Total amount (in msat, excluding fees) across all paths for this payment,
2622 /// not just the amount currently inflight.
2625 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2626 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2627 /// payment is removed from tracking.
2629 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2630 /// a payment and ensure idempotency in LDK.
2631 payment_id: PaymentId,
2632 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2633 /// made before LDK version 0.0.104.
2634 payment_hash: Option<PaymentHash>,
2636 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2637 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2638 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2640 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2641 /// a payment and ensure idempotency in LDK.
2642 payment_id: PaymentId,
2643 /// Hash of the payment that we have given up trying to send.
2644 payment_hash: PaymentHash,
2648 /// Route hints used in constructing invoices for [phantom node payents].
2650 /// [phantom node payments]: crate::sign::PhantomKeysManager
2652 pub struct PhantomRouteHints {
2653 /// The list of channels to be included in the invoice route hints.
2654 pub channels: Vec<ChannelDetails>,
2655 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2657 pub phantom_scid: u64,
2658 /// The pubkey of the real backing node that would ultimately receive the payment.
2659 pub real_node_pubkey: PublicKey,
2662 macro_rules! handle_error {
2663 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2664 // In testing, ensure there are no deadlocks where the lock is already held upon
2665 // entering the macro.
2666 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2667 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2671 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2672 let mut msg_event = None;
2674 if let Some((shutdown_res, update_option)) = shutdown_finish {
2675 let counterparty_node_id = shutdown_res.counterparty_node_id;
2676 let channel_id = shutdown_res.channel_id;
2677 let logger = WithContext::from(
2678 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2680 log_error!(logger, "Force-closing channel: {}", err.err);
2682 $self.finish_close_channel(shutdown_res);
2683 if let Some(update) = update_option {
2684 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2685 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2690 log_error!($self.logger, "Got non-closing error: {}", err.err);
2693 if let msgs::ErrorAction::IgnoreError = err.action {
2695 msg_event = Some(events::MessageSendEvent::HandleError {
2696 node_id: $counterparty_node_id,
2697 action: err.action.clone()
2701 if let Some(msg_event) = msg_event {
2702 let per_peer_state = $self.per_peer_state.read().unwrap();
2703 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2704 let mut peer_state = peer_state_mutex.lock().unwrap();
2705 peer_state.pending_msg_events.push(msg_event);
2709 // Return error in case higher-API need one
2716 macro_rules! update_maps_on_chan_removal {
2717 ($self: expr, $channel_context: expr) => {{
2718 if let Some(outpoint) = $channel_context.get_funding_txo() {
2719 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2721 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2722 if let Some(short_id) = $channel_context.get_short_channel_id() {
2723 short_to_chan_info.remove(&short_id);
2725 // If the channel was never confirmed on-chain prior to its closure, remove the
2726 // outbound SCID alias we used for it from the collision-prevention set. While we
2727 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2728 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2729 // opening a million channels with us which are closed before we ever reach the funding
2731 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2732 debug_assert!(alias_removed);
2734 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2738 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2739 macro_rules! convert_chan_phase_err {
2740 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2742 ChannelError::Warn(msg) => {
2743 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2745 ChannelError::Ignore(msg) => {
2746 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2748 ChannelError::Close(msg) => {
2749 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2750 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2751 update_maps_on_chan_removal!($self, $channel.context);
2752 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2753 let shutdown_res = $channel.context.force_shutdown(true, reason);
2755 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2760 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2761 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2763 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2764 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2766 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2767 match $channel_phase {
2768 ChannelPhase::Funded(channel) => {
2769 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2771 ChannelPhase::UnfundedOutboundV1(channel) => {
2772 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2774 ChannelPhase::UnfundedInboundV1(channel) => {
2775 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2777 #[cfg(dual_funding)]
2778 ChannelPhase::UnfundedOutboundV2(channel) => {
2779 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2781 #[cfg(dual_funding)]
2782 ChannelPhase::UnfundedInboundV2(channel) => {
2783 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2789 macro_rules! break_chan_phase_entry {
2790 ($self: ident, $res: expr, $entry: expr) => {
2794 let key = *$entry.key();
2795 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2797 $entry.remove_entry();
2805 macro_rules! try_chan_phase_entry {
2806 ($self: ident, $res: expr, $entry: expr) => {
2810 let key = *$entry.key();
2811 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2813 $entry.remove_entry();
2821 macro_rules! remove_channel_phase {
2822 ($self: expr, $entry: expr) => {
2824 let channel = $entry.remove_entry().1;
2825 update_maps_on_chan_removal!($self, &channel.context());
2831 macro_rules! send_channel_ready {
2832 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2833 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2834 node_id: $channel.context.get_counterparty_node_id(),
2835 msg: $channel_ready_msg,
2837 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2838 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2839 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2840 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2841 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2842 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2843 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2844 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2845 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2846 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2851 macro_rules! emit_channel_pending_event {
2852 ($locked_events: expr, $channel: expr) => {
2853 if $channel.context.should_emit_channel_pending_event() {
2854 $locked_events.push_back((events::Event::ChannelPending {
2855 channel_id: $channel.context.channel_id(),
2856 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2857 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2858 user_channel_id: $channel.context.get_user_id(),
2859 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2860 channel_type: Some($channel.context.get_channel_type().clone()),
2862 $channel.context.set_channel_pending_event_emitted();
2867 macro_rules! emit_channel_ready_event {
2868 ($locked_events: expr, $channel: expr) => {
2869 if $channel.context.should_emit_channel_ready_event() {
2870 debug_assert!($channel.context.channel_pending_event_emitted());
2871 $locked_events.push_back((events::Event::ChannelReady {
2872 channel_id: $channel.context.channel_id(),
2873 user_channel_id: $channel.context.get_user_id(),
2874 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2875 channel_type: $channel.context.get_channel_type().clone(),
2877 $channel.context.set_channel_ready_event_emitted();
2882 macro_rules! handle_monitor_update_completion {
2883 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2884 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2885 let mut updates = $chan.monitor_updating_restored(&&logger,
2886 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2887 $self.best_block.read().unwrap().height);
2888 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2889 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2890 // We only send a channel_update in the case where we are just now sending a
2891 // channel_ready and the channel is in a usable state. We may re-send a
2892 // channel_update later through the announcement_signatures process for public
2893 // channels, but there's no reason not to just inform our counterparty of our fees
2895 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2896 Some(events::MessageSendEvent::SendChannelUpdate {
2897 node_id: counterparty_node_id,
2903 let update_actions = $peer_state.monitor_update_blocked_actions
2904 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2906 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2907 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2908 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2909 updates.funding_broadcastable, updates.channel_ready,
2910 updates.announcement_sigs);
2911 if let Some(upd) = channel_update {
2912 $peer_state.pending_msg_events.push(upd);
2915 let channel_id = $chan.context.channel_id();
2916 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2917 core::mem::drop($peer_state_lock);
2918 core::mem::drop($per_peer_state_lock);
2920 // If the channel belongs to a batch funding transaction, the progress of the batch
2921 // should be updated as we have received funding_signed and persisted the monitor.
2922 if let Some(txid) = unbroadcasted_batch_funding_txid {
2923 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2924 let mut batch_completed = false;
2925 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2926 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2927 *chan_id == channel_id &&
2928 *pubkey == counterparty_node_id
2930 if let Some(channel_state) = channel_state {
2931 channel_state.2 = true;
2933 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2935 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2937 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2940 // When all channels in a batched funding transaction have become ready, it is not necessary
2941 // to track the progress of the batch anymore and the state of the channels can be updated.
2942 if batch_completed {
2943 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2944 let per_peer_state = $self.per_peer_state.read().unwrap();
2945 let mut batch_funding_tx = None;
2946 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2947 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2948 let mut peer_state = peer_state_mutex.lock().unwrap();
2949 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2950 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2951 chan.set_batch_ready();
2952 let mut pending_events = $self.pending_events.lock().unwrap();
2953 emit_channel_pending_event!(pending_events, chan);
2957 if let Some(tx) = batch_funding_tx {
2958 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2959 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2964 $self.handle_monitor_update_completion_actions(update_actions);
2966 if let Some(forwards) = htlc_forwards {
2967 $self.forward_htlcs(&mut [forwards][..]);
2969 if let Some(decode) = decode_update_add_htlcs {
2970 $self.push_decode_update_add_htlcs(decode);
2972 $self.finalize_claims(updates.finalized_claimed_htlcs);
2973 for failure in updates.failed_htlcs.drain(..) {
2974 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2975 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2980 macro_rules! handle_new_monitor_update {
2981 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2982 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2983 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2985 ChannelMonitorUpdateStatus::UnrecoverableError => {
2986 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2987 log_error!(logger, "{}", err_str);
2988 panic!("{}", err_str);
2990 ChannelMonitorUpdateStatus::InProgress => {
2991 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2992 &$chan.context.channel_id());
2995 ChannelMonitorUpdateStatus::Completed => {
3001 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3002 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3003 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3005 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3006 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3007 .or_insert_with(Vec::new);
3008 // During startup, we push monitor updates as background events through to here in
3009 // order to replay updates that were in-flight when we shut down. Thus, we have to
3010 // filter for uniqueness here.
3011 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3012 .unwrap_or_else(|| {
3013 in_flight_updates.push($update);
3014 in_flight_updates.len() - 1
3016 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3017 handle_new_monitor_update!($self, update_res, $chan, _internal,
3019 let _ = in_flight_updates.remove(idx);
3020 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3021 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3027 macro_rules! process_events_body {
3028 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3029 let mut processed_all_events = false;
3030 while !processed_all_events {
3031 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3038 // We'll acquire our total consistency lock so that we can be sure no other
3039 // persists happen while processing monitor events.
3040 let _read_guard = $self.total_consistency_lock.read().unwrap();
3042 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3043 // ensure any startup-generated background events are handled first.
3044 result = $self.process_background_events();
3046 // TODO: This behavior should be documented. It's unintuitive that we query
3047 // ChannelMonitors when clearing other events.
3048 if $self.process_pending_monitor_events() {
3049 result = NotifyOption::DoPersist;
3053 let pending_events = $self.pending_events.lock().unwrap().clone();
3054 let num_events = pending_events.len();
3055 if !pending_events.is_empty() {
3056 result = NotifyOption::DoPersist;
3059 let mut post_event_actions = Vec::new();
3061 for (event, action_opt) in pending_events {
3062 $event_to_handle = event;
3064 if let Some(action) = action_opt {
3065 post_event_actions.push(action);
3070 let mut pending_events = $self.pending_events.lock().unwrap();
3071 pending_events.drain(..num_events);
3072 processed_all_events = pending_events.is_empty();
3073 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3074 // updated here with the `pending_events` lock acquired.
3075 $self.pending_events_processor.store(false, Ordering::Release);
3078 if !post_event_actions.is_empty() {
3079 $self.handle_post_event_actions(post_event_actions);
3080 // If we had some actions, go around again as we may have more events now
3081 processed_all_events = false;
3085 NotifyOption::DoPersist => {
3086 $self.needs_persist_flag.store(true, Ordering::Release);
3087 $self.event_persist_notifier.notify();
3089 NotifyOption::SkipPersistHandleEvents =>
3090 $self.event_persist_notifier.notify(),
3091 NotifyOption::SkipPersistNoEvents => {},
3097 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3099 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3100 T::Target: BroadcasterInterface,
3101 ES::Target: EntropySource,
3102 NS::Target: NodeSigner,
3103 SP::Target: SignerProvider,
3104 F::Target: FeeEstimator,
3108 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3110 /// The current time or latest block header time can be provided as the `current_timestamp`.
3112 /// This is the main "logic hub" for all channel-related actions, and implements
3113 /// [`ChannelMessageHandler`].
3115 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3117 /// Users need to notify the new `ChannelManager` when a new block is connected or
3118 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3119 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3122 /// [`block_connected`]: chain::Listen::block_connected
3123 /// [`block_disconnected`]: chain::Listen::block_disconnected
3124 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3126 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3127 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3128 current_timestamp: u32,
3130 let mut secp_ctx = Secp256k1::new();
3131 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3132 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3133 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3135 default_configuration: config.clone(),
3136 chain_hash: ChainHash::using_genesis_block(params.network),
3137 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3142 best_block: RwLock::new(params.best_block),
3144 outbound_scid_aliases: Mutex::new(new_hash_set()),
3145 pending_inbound_payments: Mutex::new(new_hash_map()),
3146 pending_outbound_payments: OutboundPayments::new(),
3147 forward_htlcs: Mutex::new(new_hash_map()),
3148 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3149 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3150 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3151 outpoint_to_peer: Mutex::new(new_hash_map()),
3152 short_to_chan_info: FairRwLock::new(new_hash_map()),
3154 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3157 inbound_payment_key: expanded_inbound_key,
3158 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3160 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3162 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3164 per_peer_state: FairRwLock::new(new_hash_map()),
3166 pending_events: Mutex::new(VecDeque::new()),
3167 pending_events_processor: AtomicBool::new(false),
3168 pending_background_events: Mutex::new(Vec::new()),
3169 total_consistency_lock: RwLock::new(()),
3170 background_events_processed_since_startup: AtomicBool::new(false),
3171 event_persist_notifier: Notifier::new(),
3172 needs_persist_flag: AtomicBool::new(false),
3173 funding_batch_states: Mutex::new(BTreeMap::new()),
3175 pending_offers_messages: Mutex::new(Vec::new()),
3176 pending_broadcast_messages: Mutex::new(Vec::new()),
3186 /// Gets the current configuration applied to all new channels.
3187 pub fn get_current_default_configuration(&self) -> &UserConfig {
3188 &self.default_configuration
3191 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3192 let height = self.best_block.read().unwrap().height;
3193 let mut outbound_scid_alias = 0;
3196 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3197 outbound_scid_alias += 1;
3199 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3201 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3205 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3210 /// Creates a new outbound channel to the given remote node and with the given value.
3212 /// `user_channel_id` will be provided back as in
3213 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3214 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3215 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3216 /// is simply copied to events and otherwise ignored.
3218 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3219 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3221 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3222 /// generate a shutdown scriptpubkey or destination script set by
3223 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3225 /// Note that we do not check if you are currently connected to the given peer. If no
3226 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3227 /// the channel eventually being silently forgotten (dropped on reload).
3229 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3230 /// channel. Otherwise, a random one will be generated for you.
3232 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3233 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3234 /// [`ChannelDetails::channel_id`] until after
3235 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3236 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3237 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3239 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3240 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3241 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3242 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3243 if channel_value_satoshis < 1000 {
3244 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3247 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3248 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3249 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3251 let per_peer_state = self.per_peer_state.read().unwrap();
3253 let peer_state_mutex = per_peer_state.get(&their_network_key)
3254 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3256 let mut peer_state = peer_state_mutex.lock().unwrap();
3258 if let Some(temporary_channel_id) = temporary_channel_id {
3259 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3260 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3265 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3266 let their_features = &peer_state.latest_features;
3267 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3268 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3269 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3270 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3274 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3279 let res = channel.get_open_channel(self.chain_hash);
3281 let temporary_channel_id = channel.context.channel_id();
3282 match peer_state.channel_by_id.entry(temporary_channel_id) {
3283 hash_map::Entry::Occupied(_) => {
3285 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3287 panic!("RNG is bad???");
3290 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3293 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3294 node_id: their_network_key,
3297 Ok(temporary_channel_id)
3300 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3301 // Allocate our best estimate of the number of channels we have in the `res`
3302 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3303 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3304 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3305 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3306 // the same channel.
3307 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3309 let best_block_height = self.best_block.read().unwrap().height;
3310 let per_peer_state = self.per_peer_state.read().unwrap();
3311 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3312 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3313 let peer_state = &mut *peer_state_lock;
3314 res.extend(peer_state.channel_by_id.iter()
3315 .filter_map(|(chan_id, phase)| match phase {
3316 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3317 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3321 .map(|(_channel_id, channel)| {
3322 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3323 peer_state.latest_features.clone(), &self.fee_estimator)
3331 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3332 /// more information.
3333 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3334 // Allocate our best estimate of the number of channels we have in the `res`
3335 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3336 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3337 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3338 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3339 // the same channel.
3340 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3342 let best_block_height = self.best_block.read().unwrap().height;
3343 let per_peer_state = self.per_peer_state.read().unwrap();
3344 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3345 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3346 let peer_state = &mut *peer_state_lock;
3347 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3348 let details = ChannelDetails::from_channel_context(context, best_block_height,
3349 peer_state.latest_features.clone(), &self.fee_estimator);
3357 /// Gets the list of usable channels, in random order. Useful as an argument to
3358 /// [`Router::find_route`] to ensure non-announced channels are used.
3360 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3361 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3363 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3364 // Note we use is_live here instead of usable which leads to somewhat confused
3365 // internal/external nomenclature, but that's ok cause that's probably what the user
3366 // really wanted anyway.
3367 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3370 /// Gets the list of channels we have with a given counterparty, in random order.
3371 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3372 let best_block_height = self.best_block.read().unwrap().height;
3373 let per_peer_state = self.per_peer_state.read().unwrap();
3375 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3376 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3377 let peer_state = &mut *peer_state_lock;
3378 let features = &peer_state.latest_features;
3379 let context_to_details = |context| {
3380 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3382 return peer_state.channel_by_id
3384 .map(|(_, phase)| phase.context())
3385 .map(context_to_details)
3391 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3392 /// successful path, or have unresolved HTLCs.
3394 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3395 /// result of a crash. If such a payment exists, is not listed here, and an
3396 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3398 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3399 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3400 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3401 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3402 PendingOutboundPayment::AwaitingInvoice { .. } => {
3403 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3405 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3406 PendingOutboundPayment::InvoiceReceived { .. } => {
3407 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3409 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3410 Some(RecentPaymentDetails::Pending {
3411 payment_id: *payment_id,
3412 payment_hash: *payment_hash,
3413 total_msat: *total_msat,
3416 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3417 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3419 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3420 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3422 PendingOutboundPayment::Legacy { .. } => None
3427 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3428 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3430 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3431 let mut shutdown_result = None;
3434 let per_peer_state = self.per_peer_state.read().unwrap();
3436 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3437 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3439 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3440 let peer_state = &mut *peer_state_lock;
3442 match peer_state.channel_by_id.entry(channel_id.clone()) {
3443 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3444 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3445 let funding_txo_opt = chan.context.get_funding_txo();
3446 let their_features = &peer_state.latest_features;
3447 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3448 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3449 failed_htlcs = htlcs;
3451 // We can send the `shutdown` message before updating the `ChannelMonitor`
3452 // here as we don't need the monitor update to complete until we send a
3453 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3454 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3455 node_id: *counterparty_node_id,
3459 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3460 "We can't both complete shutdown and generate a monitor update");
3462 // Update the monitor with the shutdown script if necessary.
3463 if let Some(monitor_update) = monitor_update_opt.take() {
3464 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3465 peer_state_lock, peer_state, per_peer_state, chan);
3468 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3469 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3472 hash_map::Entry::Vacant(_) => {
3473 return Err(APIError::ChannelUnavailable {
3475 "Channel with id {} not found for the passed counterparty node_id {}",
3476 channel_id, counterparty_node_id,
3483 for htlc_source in failed_htlcs.drain(..) {
3484 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3485 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3486 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3489 if let Some(shutdown_result) = shutdown_result {
3490 self.finish_close_channel(shutdown_result);
3496 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3497 /// will be accepted on the given channel, and after additional timeout/the closing of all
3498 /// pending HTLCs, the channel will be closed on chain.
3500 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3501 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3503 /// * If our counterparty is the channel initiator, we will require a channel closing
3504 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3505 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3506 /// counterparty to pay as much fee as they'd like, however.
3508 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3510 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3511 /// generate a shutdown scriptpubkey or destination script set by
3512 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3515 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3516 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3517 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3518 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3519 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3520 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3523 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3524 /// will be accepted on the given channel, and after additional timeout/the closing of all
3525 /// pending HTLCs, the channel will be closed on chain.
3527 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3528 /// the channel being closed or not:
3529 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3530 /// transaction. The upper-bound is set by
3531 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3532 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3533 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3534 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3535 /// will appear on a force-closure transaction, whichever is lower).
3537 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3538 /// Will fail if a shutdown script has already been set for this channel by
3539 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3540 /// also be compatible with our and the counterparty's features.
3542 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3544 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3545 /// generate a shutdown scriptpubkey or destination script set by
3546 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3549 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3550 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3551 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3552 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3553 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3556 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3557 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3558 #[cfg(debug_assertions)]
3559 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3560 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3563 let logger = WithContext::from(
3564 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3567 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3568 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3569 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3570 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3571 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3572 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3573 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3575 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3576 // There isn't anything we can do if we get an update failure - we're already
3577 // force-closing. The monitor update on the required in-memory copy should broadcast
3578 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3579 // ignore the result here.
3580 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3582 let mut shutdown_results = Vec::new();
3583 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3584 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3585 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3586 let per_peer_state = self.per_peer_state.read().unwrap();
3587 let mut has_uncompleted_channel = None;
3588 for (channel_id, counterparty_node_id, state) in affected_channels {
3589 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3590 let mut peer_state = peer_state_mutex.lock().unwrap();
3591 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3592 update_maps_on_chan_removal!(self, &chan.context());
3593 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3596 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3599 has_uncompleted_channel.unwrap_or(true),
3600 "Closing a batch where all channels have completed initial monitor update",
3605 let mut pending_events = self.pending_events.lock().unwrap();
3606 pending_events.push_back((events::Event::ChannelClosed {
3607 channel_id: shutdown_res.channel_id,
3608 user_channel_id: shutdown_res.user_channel_id,
3609 reason: shutdown_res.closure_reason,
3610 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3611 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3612 channel_funding_txo: shutdown_res.channel_funding_txo,
3615 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3616 pending_events.push_back((events::Event::DiscardFunding {
3617 channel_id: shutdown_res.channel_id, transaction
3621 for shutdown_result in shutdown_results.drain(..) {
3622 self.finish_close_channel(shutdown_result);
3626 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3627 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3628 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3629 -> Result<PublicKey, APIError> {
3630 let per_peer_state = self.per_peer_state.read().unwrap();
3631 let peer_state_mutex = per_peer_state.get(peer_node_id)
3632 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3633 let (update_opt, counterparty_node_id) = {
3634 let mut peer_state = peer_state_mutex.lock().unwrap();
3635 let closure_reason = if let Some(peer_msg) = peer_msg {
3636 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3638 ClosureReason::HolderForceClosed
3640 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3641 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3642 log_error!(logger, "Force-closing channel {}", channel_id);
3643 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3644 mem::drop(peer_state);
3645 mem::drop(per_peer_state);
3647 ChannelPhase::Funded(mut chan) => {
3648 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3649 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3651 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3652 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3653 // Unfunded channel has no update
3654 (None, chan_phase.context().get_counterparty_node_id())
3656 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
3657 #[cfg(dual_funding)]
3658 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3659 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3660 // Unfunded channel has no update
3661 (None, chan_phase.context().get_counterparty_node_id())
3664 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3665 log_error!(logger, "Force-closing channel {}", &channel_id);
3666 // N.B. that we don't send any channel close event here: we
3667 // don't have a user_channel_id, and we never sent any opening
3669 (None, *peer_node_id)
3671 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3674 if let Some(update) = update_opt {
3675 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3676 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3677 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3682 Ok(counterparty_node_id)
3685 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3686 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3687 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3688 Ok(counterparty_node_id) => {
3689 let per_peer_state = self.per_peer_state.read().unwrap();
3690 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3691 let mut peer_state = peer_state_mutex.lock().unwrap();
3692 peer_state.pending_msg_events.push(
3693 events::MessageSendEvent::HandleError {
3694 node_id: counterparty_node_id,
3695 action: msgs::ErrorAction::DisconnectPeer {
3696 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3707 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3708 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3709 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3711 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3712 -> Result<(), APIError> {
3713 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3716 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3717 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3718 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3720 /// You can always broadcast the latest local transaction(s) via
3721 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3722 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3723 -> Result<(), APIError> {
3724 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3727 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3728 /// for each to the chain and rejecting new HTLCs on each.
3729 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3730 for chan in self.list_channels() {
3731 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3735 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3736 /// local transaction(s).
3737 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3738 for chan in self.list_channels() {
3739 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3743 fn can_forward_htlc_to_outgoing_channel(
3744 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3745 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3746 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3747 // Note that the behavior here should be identical to the above block - we
3748 // should NOT reveal the existence or non-existence of a private channel if
3749 // we don't allow forwards outbound over them.
3750 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3752 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3753 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3754 // "refuse to forward unless the SCID alias was used", so we pretend
3755 // we don't have the channel here.
3756 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3759 // Note that we could technically not return an error yet here and just hope
3760 // that the connection is reestablished or monitor updated by the time we get
3761 // around to doing the actual forward, but better to fail early if we can and
3762 // hopefully an attacker trying to path-trace payments cannot make this occur
3763 // on a small/per-node/per-channel scale.
3764 if !chan.context.is_live() { // channel_disabled
3765 // If the channel_update we're going to return is disabled (i.e. the
3766 // peer has been disabled for some time), return `channel_disabled`,
3767 // otherwise return `temporary_channel_failure`.
3768 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3769 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3770 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3772 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3775 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3776 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3777 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3779 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3780 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3781 return Err((err, code, chan_update_opt));
3787 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3788 /// `scid`. `None` is returned when the channel is not found.
3789 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3790 &self, scid: u64, callback: C,
3792 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3793 None => return None,
3794 Some((cp_id, id)) => (cp_id, id),
3796 let per_peer_state = self.per_peer_state.read().unwrap();
3797 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3798 if peer_state_mutex_opt.is_none() {
3801 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3802 let peer_state = &mut *peer_state_lock;
3803 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3804 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3807 Some(chan) => Some(callback(chan)),
3811 fn can_forward_htlc(
3812 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3813 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3814 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3815 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3818 Some(Err(e)) => return Err(e),
3820 // If we couldn't find the channel info for the scid, it may be a phantom or
3821 // intercept forward.
3822 if (self.default_configuration.accept_intercept_htlcs &&
3823 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3824 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3826 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3831 let cur_height = self.best_block.read().unwrap().height + 1;
3832 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3833 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3835 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3836 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3838 return Err((err_msg, err_code, chan_update_opt));
3844 fn htlc_failure_from_update_add_err(
3845 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3846 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3847 shared_secret: &[u8; 32]
3848 ) -> HTLCFailureMsg {
3849 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3850 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3851 let chan_update = chan_update.unwrap();
3852 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3853 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3855 else if err_code == 0x1000 | 13 {
3856 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3858 else if err_code == 0x1000 | 20 {
3859 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3860 0u16.write(&mut res).expect("Writes cannot fail");
3862 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3863 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3864 chan_update.write(&mut res).expect("Writes cannot fail");
3865 } else if err_code & 0x1000 == 0x1000 {
3866 // If we're trying to return an error that requires a `channel_update` but
3867 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3868 // generate an update), just use the generic "temporary_node_failure"
3870 err_code = 0x2000 | 2;
3874 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3875 "Failed to accept/forward incoming HTLC: {}", err_msg
3877 // If `msg.blinding_point` is set, we must always fail with malformed.
3878 if msg.blinding_point.is_some() {
3879 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3880 channel_id: msg.channel_id,
3881 htlc_id: msg.htlc_id,
3882 sha256_of_onion: [0; 32],
3883 failure_code: INVALID_ONION_BLINDING,
3887 let (err_code, err_data) = if is_intro_node_blinded_forward {
3888 (INVALID_ONION_BLINDING, &[0; 32][..])
3890 (err_code, &res.0[..])
3892 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3893 channel_id: msg.channel_id,
3894 htlc_id: msg.htlc_id,
3895 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3896 .get_encrypted_failure_packet(shared_secret, &None),
3900 fn decode_update_add_htlc_onion(
3901 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3903 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3905 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3906 msg, &self.node_signer, &self.logger, &self.secp_ctx
3909 let next_packet_details = match next_packet_details_opt {
3910 Some(next_packet_details) => next_packet_details,
3911 // it is a receive, so no need for outbound checks
3912 None => return Ok((next_hop, shared_secret, None)),
3915 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3916 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3917 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3918 let (err_msg, err_code, chan_update_opt) = e;
3919 self.htlc_failure_from_update_add_err(
3920 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3921 next_hop.is_intro_node_blinded_forward(), &shared_secret
3925 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3928 fn construct_pending_htlc_status<'a>(
3929 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3930 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3931 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3932 ) -> PendingHTLCStatus {
3933 macro_rules! return_err {
3934 ($msg: expr, $err_code: expr, $data: expr) => {
3936 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3937 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3938 if msg.blinding_point.is_some() {
3939 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3940 msgs::UpdateFailMalformedHTLC {
3941 channel_id: msg.channel_id,
3942 htlc_id: msg.htlc_id,
3943 sha256_of_onion: [0; 32],
3944 failure_code: INVALID_ONION_BLINDING,
3948 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3949 channel_id: msg.channel_id,
3950 htlc_id: msg.htlc_id,
3951 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3952 .get_encrypted_failure_packet(&shared_secret, &None),
3958 onion_utils::Hop::Receive(next_hop_data) => {
3960 let current_height: u32 = self.best_block.read().unwrap().height;
3961 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3962 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3963 current_height, self.default_configuration.accept_mpp_keysend)
3966 // Note that we could obviously respond immediately with an update_fulfill_htlc
3967 // message, however that would leak that we are the recipient of this payment, so
3968 // instead we stay symmetric with the forwarding case, only responding (after a
3969 // delay) once they've send us a commitment_signed!
3970 PendingHTLCStatus::Forward(info)
3972 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3975 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3976 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3977 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3978 Ok(info) => PendingHTLCStatus::Forward(info),
3979 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3985 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3986 /// public, and thus should be called whenever the result is going to be passed out in a
3987 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3989 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3990 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3991 /// storage and the `peer_state` lock has been dropped.
3993 /// [`channel_update`]: msgs::ChannelUpdate
3994 /// [`internal_closing_signed`]: Self::internal_closing_signed
3995 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3996 if !chan.context.should_announce() {
3997 return Err(LightningError {
3998 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3999 action: msgs::ErrorAction::IgnoreError
4002 if chan.context.get_short_channel_id().is_none() {
4003 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4005 let logger = WithChannelContext::from(&self.logger, &chan.context);
4006 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4007 self.get_channel_update_for_unicast(chan)
4010 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4011 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4012 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4013 /// provided evidence that they know about the existence of the channel.
4015 /// Note that through [`internal_closing_signed`], this function is called without the
4016 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4017 /// removed from the storage and the `peer_state` lock has been dropped.
4019 /// [`channel_update`]: msgs::ChannelUpdate
4020 /// [`internal_closing_signed`]: Self::internal_closing_signed
4021 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4022 let logger = WithChannelContext::from(&self.logger, &chan.context);
4023 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4024 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4025 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4029 self.get_channel_update_for_onion(short_channel_id, chan)
4032 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4033 let logger = WithChannelContext::from(&self.logger, &chan.context);
4034 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4035 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4037 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4038 ChannelUpdateStatus::Enabled => true,
4039 ChannelUpdateStatus::DisabledStaged(_) => true,
4040 ChannelUpdateStatus::Disabled => false,
4041 ChannelUpdateStatus::EnabledStaged(_) => false,
4044 let unsigned = msgs::UnsignedChannelUpdate {
4045 chain_hash: self.chain_hash,
4047 timestamp: chan.context.get_update_time_counter(),
4048 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4049 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4050 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4051 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4052 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4053 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4054 excess_data: Vec::new(),
4056 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4057 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4058 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4060 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4062 Ok(msgs::ChannelUpdate {
4069 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4070 let _lck = self.total_consistency_lock.read().unwrap();
4071 self.send_payment_along_path(SendAlongPathArgs {
4072 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4077 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4078 let SendAlongPathArgs {
4079 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4082 // The top-level caller should hold the total_consistency_lock read lock.
4083 debug_assert!(self.total_consistency_lock.try_write().is_err());
4084 let prng_seed = self.entropy_source.get_secure_random_bytes();
4085 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4087 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4088 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4089 payment_hash, keysend_preimage, prng_seed
4091 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4092 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4096 let err: Result<(), _> = loop {
4097 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4099 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4100 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4101 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4103 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4106 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4108 "Attempting to send payment with payment hash {} along path with next hop {}",
4109 payment_hash, path.hops.first().unwrap().short_channel_id);
4111 let per_peer_state = self.per_peer_state.read().unwrap();
4112 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4113 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4114 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4115 let peer_state = &mut *peer_state_lock;
4116 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4117 match chan_phase_entry.get_mut() {
4118 ChannelPhase::Funded(chan) => {
4119 if !chan.context.is_live() {
4120 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4122 let funding_txo = chan.context.get_funding_txo().unwrap();
4123 let logger = WithChannelContext::from(&self.logger, &chan.context);
4124 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4125 htlc_cltv, HTLCSource::OutboundRoute {
4127 session_priv: session_priv.clone(),
4128 first_hop_htlc_msat: htlc_msat,
4130 }, onion_packet, None, &self.fee_estimator, &&logger);
4131 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4132 Some(monitor_update) => {
4133 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4135 // Note that MonitorUpdateInProgress here indicates (per function
4136 // docs) that we will resend the commitment update once monitor
4137 // updating completes. Therefore, we must return an error
4138 // indicating that it is unsafe to retry the payment wholesale,
4139 // which we do in the send_payment check for
4140 // MonitorUpdateInProgress, below.
4141 return Err(APIError::MonitorUpdateInProgress);
4149 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4152 // The channel was likely removed after we fetched the id from the
4153 // `short_to_chan_info` map, but before we successfully locked the
4154 // `channel_by_id` map.
4155 // This can occur as no consistency guarantees exists between the two maps.
4156 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4160 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4161 Ok(_) => unreachable!(),
4163 Err(APIError::ChannelUnavailable { err: e.err })
4168 /// Sends a payment along a given route.
4170 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4171 /// fields for more info.
4173 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4174 /// [`PeerManager::process_events`]).
4176 /// # Avoiding Duplicate Payments
4178 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4179 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4180 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4181 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4182 /// second payment with the same [`PaymentId`].
4184 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4185 /// tracking of payments, including state to indicate once a payment has completed. Because you
4186 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4187 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4188 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4190 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4191 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4192 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4193 /// [`ChannelManager::list_recent_payments`] for more information.
4195 /// # Possible Error States on [`PaymentSendFailure`]
4197 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4198 /// each entry matching the corresponding-index entry in the route paths, see
4199 /// [`PaymentSendFailure`] for more info.
4201 /// In general, a path may raise:
4202 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4203 /// node public key) is specified.
4204 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4205 /// closed, doesn't exist, or the peer is currently disconnected.
4206 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4207 /// relevant updates.
4209 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4210 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4211 /// different route unless you intend to pay twice!
4213 /// [`RouteHop`]: crate::routing::router::RouteHop
4214 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4215 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4216 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4217 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4218 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4219 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4220 let best_block_height = self.best_block.read().unwrap().height;
4221 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4222 self.pending_outbound_payments
4223 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4224 &self.entropy_source, &self.node_signer, best_block_height,
4225 |args| self.send_payment_along_path(args))
4228 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4229 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4230 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4231 let best_block_height = self.best_block.read().unwrap().height;
4232 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4233 self.pending_outbound_payments
4234 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4235 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4236 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4237 &self.pending_events, |args| self.send_payment_along_path(args))
4241 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4242 let best_block_height = self.best_block.read().unwrap().height;
4243 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4244 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4245 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4246 best_block_height, |args| self.send_payment_along_path(args))
4250 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4251 let best_block_height = self.best_block.read().unwrap().height;
4252 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4256 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4257 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4260 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4261 let best_block_height = self.best_block.read().unwrap().height;
4262 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4263 self.pending_outbound_payments
4264 .send_payment_for_bolt12_invoice(
4265 invoice, payment_id, &self.router, self.list_usable_channels(),
4266 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4267 best_block_height, &self.logger, &self.pending_events,
4268 |args| self.send_payment_along_path(args)
4272 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4273 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4274 /// retries are exhausted.
4276 /// # Event Generation
4278 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4279 /// as there are no remaining pending HTLCs for this payment.
4281 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4282 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4283 /// determine the ultimate status of a payment.
4285 /// # Requested Invoices
4287 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4288 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4289 /// and prevent any attempts at paying it once received. The other events may only be generated
4290 /// once the invoice has been received.
4292 /// # Restart Behavior
4294 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4295 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4296 /// [`Event::InvoiceRequestFailed`].
4298 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4299 pub fn abandon_payment(&self, payment_id: PaymentId) {
4300 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4301 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4304 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4305 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4306 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4307 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4308 /// never reach the recipient.
4310 /// See [`send_payment`] documentation for more details on the return value of this function
4311 /// and idempotency guarantees provided by the [`PaymentId`] key.
4313 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4314 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4316 /// [`send_payment`]: Self::send_payment
4317 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4318 let best_block_height = self.best_block.read().unwrap().height;
4319 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4320 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4321 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4322 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4325 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4326 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4328 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4331 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4332 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4333 let best_block_height = self.best_block.read().unwrap().height;
4334 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4335 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4336 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4337 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4338 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4341 /// Send a payment that is probing the given route for liquidity. We calculate the
4342 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4343 /// us to easily discern them from real payments.
4344 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4345 let best_block_height = self.best_block.read().unwrap().height;
4346 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4347 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4348 &self.entropy_source, &self.node_signer, best_block_height,
4349 |args| self.send_payment_along_path(args))
4352 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4355 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4356 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4359 /// Sends payment probes over all paths of a route that would be used to pay the given
4360 /// amount to the given `node_id`.
4362 /// See [`ChannelManager::send_preflight_probes`] for more information.
4363 pub fn send_spontaneous_preflight_probes(
4364 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4365 liquidity_limit_multiplier: Option<u64>,
4366 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4367 let payment_params =
4368 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4370 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4372 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4375 /// Sends payment probes over all paths of a route that would be used to pay a route found
4376 /// according to the given [`RouteParameters`].
4378 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4379 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4380 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4381 /// confirmation in a wallet UI.
4383 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4384 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4385 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4386 /// payment. To mitigate this issue, channels with available liquidity less than the required
4387 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4388 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4389 pub fn send_preflight_probes(
4390 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4391 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4392 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4394 let payer = self.get_our_node_id();
4395 let usable_channels = self.list_usable_channels();
4396 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4397 let inflight_htlcs = self.compute_inflight_htlcs();
4401 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4403 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4404 ProbeSendFailure::RouteNotFound
4407 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4409 let mut res = Vec::new();
4411 for mut path in route.paths {
4412 // If the last hop is probably an unannounced channel we refrain from probing all the
4413 // way through to the end and instead probe up to the second-to-last channel.
4414 while let Some(last_path_hop) = path.hops.last() {
4415 if last_path_hop.maybe_announced_channel {
4416 // We found a potentially announced last hop.
4419 // Drop the last hop, as it's likely unannounced.
4422 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4423 last_path_hop.short_channel_id
4425 let final_value_msat = path.final_value_msat();
4427 if let Some(new_last) = path.hops.last_mut() {
4428 new_last.fee_msat += final_value_msat;
4433 if path.hops.len() < 2 {
4436 "Skipped sending payment probe over path with less than two hops."
4441 if let Some(first_path_hop) = path.hops.first() {
4442 if let Some(first_hop) = first_hops.iter().find(|h| {
4443 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4445 let path_value = path.final_value_msat() + path.fee_msat();
4446 let used_liquidity =
4447 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4449 if first_hop.next_outbound_htlc_limit_msat
4450 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4452 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4455 *used_liquidity += path_value;
4460 res.push(self.send_probe(path).map_err(|e| {
4461 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4462 ProbeSendFailure::SendingFailed(e)
4469 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4470 /// which checks the correctness of the funding transaction given the associated channel.
4471 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
4472 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4473 mut find_funding_output: FundingOutput,
4474 ) -> Result<(), APIError> {
4475 let per_peer_state = self.per_peer_state.read().unwrap();
4476 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4477 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4479 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4480 let peer_state = &mut *peer_state_lock;
4482 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4483 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4484 funding_txo = find_funding_output(&chan, &funding_transaction)?;
4486 let logger = WithChannelContext::from(&self.logger, &chan.context);
4487 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
4488 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
4489 let channel_id = chan.context.channel_id();
4490 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4491 let shutdown_res = chan.context.force_shutdown(false, reason);
4492 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
4493 } else { unreachable!(); });
4495 Ok(funding_msg) => (chan, funding_msg),
4496 Err((chan, err)) => {
4497 mem::drop(peer_state_lock);
4498 mem::drop(per_peer_state);
4499 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
4500 return Err(APIError::ChannelUnavailable {
4501 err: "Signer refused to sign the initial commitment transaction".to_owned()
4507 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4508 return Err(APIError::APIMisuseError {
4510 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4511 temporary_channel_id, counterparty_node_id),
4514 None => return Err(APIError::ChannelUnavailable {err: format!(
4515 "Channel with id {} not found for the passed counterparty node_id {}",
4516 temporary_channel_id, counterparty_node_id),
4520 if let Some(msg) = msg_opt {
4521 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4522 node_id: chan.context.get_counterparty_node_id(),
4526 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4527 hash_map::Entry::Occupied(_) => {
4528 panic!("Generated duplicate funding txid?");
4530 hash_map::Entry::Vacant(e) => {
4531 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4532 match outpoint_to_peer.entry(funding_txo) {
4533 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4534 hash_map::Entry::Occupied(o) => {
4536 "An existing channel using outpoint {} is open with peer {}",
4537 funding_txo, o.get()
4539 mem::drop(outpoint_to_peer);
4540 mem::drop(peer_state_lock);
4541 mem::drop(per_peer_state);
4542 let reason = ClosureReason::ProcessingError { err: err.clone() };
4543 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4544 return Err(APIError::ChannelUnavailable { err });
4547 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4554 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4555 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4556 Ok(OutPoint { txid: tx.txid(), index: output_index })
4560 /// Call this upon creation of a funding transaction for the given channel.
4562 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4563 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4565 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4566 /// across the p2p network.
4568 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4569 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4571 /// May panic if the output found in the funding transaction is duplicative with some other
4572 /// channel (note that this should be trivially prevented by using unique funding transaction
4573 /// keys per-channel).
4575 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4576 /// counterparty's signature the funding transaction will automatically be broadcast via the
4577 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4579 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4580 /// not currently support replacing a funding transaction on an existing channel. Instead,
4581 /// create a new channel with a conflicting funding transaction.
4583 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4584 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4585 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4586 /// for more details.
4588 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4589 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4590 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4591 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4594 /// Call this upon creation of a batch funding transaction for the given channels.
4596 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4597 /// each individual channel and transaction output.
4599 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4600 /// will only be broadcast when we have safely received and persisted the counterparty's
4601 /// signature for each channel.
4603 /// If there is an error, all channels in the batch are to be considered closed.
4604 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4605 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4606 let mut result = Ok(());
4608 if !funding_transaction.is_coin_base() {
4609 for inp in funding_transaction.input.iter() {
4610 if inp.witness.is_empty() {
4611 result = result.and(Err(APIError::APIMisuseError {
4612 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4617 if funding_transaction.output.len() > u16::max_value() as usize {
4618 result = result.and(Err(APIError::APIMisuseError {
4619 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4623 let height = self.best_block.read().unwrap().height;
4624 // Transactions are evaluated as final by network mempools if their locktime is strictly
4625 // lower than the next block height. However, the modules constituting our Lightning
4626 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4627 // module is ahead of LDK, only allow one more block of headroom.
4628 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4629 funding_transaction.lock_time.is_block_height() &&
4630 funding_transaction.lock_time.to_consensus_u32() > height + 1
4632 result = result.and(Err(APIError::APIMisuseError {
4633 err: "Funding transaction absolute timelock is non-final".to_owned()
4638 let txid = funding_transaction.txid();
4639 let is_batch_funding = temporary_channels.len() > 1;
4640 let mut funding_batch_states = if is_batch_funding {
4641 Some(self.funding_batch_states.lock().unwrap())
4645 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4646 match states.entry(txid) {
4647 btree_map::Entry::Occupied(_) => {
4648 result = result.clone().and(Err(APIError::APIMisuseError {
4649 err: "Batch funding transaction with the same txid already exists".to_owned()
4653 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4656 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4657 result = result.and_then(|_| self.funding_transaction_generated_intern(
4658 temporary_channel_id,
4659 counterparty_node_id,
4660 funding_transaction.clone(),
4663 let mut output_index = None;
4664 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4665 for (idx, outp) in tx.output.iter().enumerate() {
4666 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4667 if output_index.is_some() {
4668 return Err(APIError::APIMisuseError {
4669 err: "Multiple outputs matched the expected script and value".to_owned()
4672 output_index = Some(idx as u16);
4675 if output_index.is_none() {
4676 return Err(APIError::APIMisuseError {
4677 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
4680 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4681 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4682 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4683 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4684 // want to support V2 batching here as well.
4685 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4691 if let Err(ref e) = result {
4692 // Remaining channels need to be removed on any error.
4693 let e = format!("Error in transaction funding: {:?}", e);
4694 let mut channels_to_remove = Vec::new();
4695 channels_to_remove.extend(funding_batch_states.as_mut()
4696 .and_then(|states| states.remove(&txid))
4697 .into_iter().flatten()
4698 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4700 channels_to_remove.extend(temporary_channels.iter()
4701 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4703 let mut shutdown_results = Vec::new();
4705 let per_peer_state = self.per_peer_state.read().unwrap();
4706 for (channel_id, counterparty_node_id) in channels_to_remove {
4707 per_peer_state.get(&counterparty_node_id)
4708 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4709 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4711 update_maps_on_chan_removal!(self, &chan.context());
4712 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4713 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4717 mem::drop(funding_batch_states);
4718 for shutdown_result in shutdown_results.drain(..) {
4719 self.finish_close_channel(shutdown_result);
4725 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4727 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4728 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4729 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4730 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4732 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4733 /// `counterparty_node_id` is provided.
4735 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4736 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4738 /// If an error is returned, none of the updates should be considered applied.
4740 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4741 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4742 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4743 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4744 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4745 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4746 /// [`APIMisuseError`]: APIError::APIMisuseError
4747 pub fn update_partial_channel_config(
4748 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4749 ) -> Result<(), APIError> {
4750 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4751 return Err(APIError::APIMisuseError {
4752 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4756 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4757 let per_peer_state = self.per_peer_state.read().unwrap();
4758 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4759 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4760 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4761 let peer_state = &mut *peer_state_lock;
4763 for channel_id in channel_ids {
4764 if !peer_state.has_channel(channel_id) {
4765 return Err(APIError::ChannelUnavailable {
4766 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4770 for channel_id in channel_ids {
4771 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4772 let mut config = channel_phase.context().config();
4773 config.apply(config_update);
4774 if !channel_phase.context_mut().update_config(&config) {
4777 if let ChannelPhase::Funded(channel) = channel_phase {
4778 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4779 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4780 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4781 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4782 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4783 node_id: channel.context.get_counterparty_node_id(),
4790 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4791 debug_assert!(false);
4792 return Err(APIError::ChannelUnavailable {
4794 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4795 channel_id, counterparty_node_id),
4802 /// Atomically updates the [`ChannelConfig`] for the given channels.
4804 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4805 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4806 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4807 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4809 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4810 /// `counterparty_node_id` is provided.
4812 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4813 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4815 /// If an error is returned, none of the updates should be considered applied.
4817 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4818 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4819 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4820 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4821 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4822 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4823 /// [`APIMisuseError`]: APIError::APIMisuseError
4824 pub fn update_channel_config(
4825 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4826 ) -> Result<(), APIError> {
4827 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4830 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4831 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4833 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4834 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4836 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4837 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4838 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4839 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4840 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4842 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4843 /// you from forwarding more than you received. See
4844 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4847 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4850 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4851 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4852 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4853 // TODO: when we move to deciding the best outbound channel at forward time, only take
4854 // `next_node_id` and not `next_hop_channel_id`
4855 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4856 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4858 let next_hop_scid = {
4859 let peer_state_lock = self.per_peer_state.read().unwrap();
4860 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4861 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4862 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4863 let peer_state = &mut *peer_state_lock;
4864 match peer_state.channel_by_id.get(next_hop_channel_id) {
4865 Some(ChannelPhase::Funded(chan)) => {
4866 if !chan.context.is_usable() {
4867 return Err(APIError::ChannelUnavailable {
4868 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4871 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4873 Some(_) => return Err(APIError::ChannelUnavailable {
4874 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4875 next_hop_channel_id, next_node_id)
4878 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4879 next_hop_channel_id, next_node_id);
4880 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4881 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4882 return Err(APIError::ChannelUnavailable {
4889 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4890 .ok_or_else(|| APIError::APIMisuseError {
4891 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4894 let routing = match payment.forward_info.routing {
4895 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4896 PendingHTLCRouting::Forward {
4897 onion_packet, blinded, short_channel_id: next_hop_scid
4900 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4902 let skimmed_fee_msat =
4903 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4904 let pending_htlc_info = PendingHTLCInfo {
4905 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4906 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4909 let mut per_source_pending_forward = [(
4910 payment.prev_short_channel_id,
4911 payment.prev_funding_outpoint,
4912 payment.prev_channel_id,
4913 payment.prev_user_channel_id,
4914 vec![(pending_htlc_info, payment.prev_htlc_id)]
4916 self.forward_htlcs(&mut per_source_pending_forward);
4920 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4921 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4923 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4926 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4927 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4928 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4930 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4931 .ok_or_else(|| APIError::APIMisuseError {
4932 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4935 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4936 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4937 short_channel_id: payment.prev_short_channel_id,
4938 user_channel_id: Some(payment.prev_user_channel_id),
4939 outpoint: payment.prev_funding_outpoint,
4940 channel_id: payment.prev_channel_id,
4941 htlc_id: payment.prev_htlc_id,
4942 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4943 phantom_shared_secret: None,
4944 blinded_failure: payment.forward_info.routing.blinded_failure(),
4947 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4948 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4949 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4950 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4955 fn process_pending_update_add_htlcs(&self) {
4956 let mut decode_update_add_htlcs = new_hash_map();
4957 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4959 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4960 if let Some(outgoing_scid) = outgoing_scid_opt {
4961 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4962 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4963 HTLCDestination::NextHopChannel {
4964 node_id: Some(*outgoing_counterparty_node_id),
4965 channel_id: *outgoing_channel_id,
4967 None => HTLCDestination::UnknownNextHop {
4968 requested_forward_scid: outgoing_scid,
4972 HTLCDestination::FailedPayment { payment_hash }
4976 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
4977 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
4978 let counterparty_node_id = chan.context.get_counterparty_node_id();
4979 let channel_id = chan.context.channel_id();
4980 let funding_txo = chan.context.get_funding_txo().unwrap();
4981 let user_channel_id = chan.context.get_user_id();
4982 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
4983 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
4986 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
4987 incoming_user_channel_id, incoming_accept_underpaying_htlcs
4988 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
4989 incoming_channel_details
4991 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
4995 let mut htlc_forwards = Vec::new();
4996 let mut htlc_fails = Vec::new();
4997 for update_add_htlc in &update_add_htlcs {
4998 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
4999 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5001 Ok(decoded_onion) => decoded_onion,
5003 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5008 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5009 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5011 // Process the HTLC on the incoming channel.
5012 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5013 let logger = WithChannelContext::from(&self.logger, &chan.context);
5014 chan.can_accept_incoming_htlc(
5015 update_add_htlc, &self.fee_estimator, &logger,
5019 Some(Err((err, code))) => {
5020 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5021 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5022 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5027 let htlc_fail = self.htlc_failure_from_update_add_err(
5028 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5029 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5031 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5032 htlc_fails.push((htlc_fail, htlc_destination));
5035 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5036 None => continue 'outer_loop,
5039 // Now process the HTLC on the outgoing channel if it's a forward.
5040 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5041 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5042 &update_add_htlc, next_packet_details
5044 let htlc_fail = self.htlc_failure_from_update_add_err(
5045 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5046 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5048 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5049 htlc_fails.push((htlc_fail, htlc_destination));
5054 match self.construct_pending_htlc_status(
5055 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5056 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5058 PendingHTLCStatus::Forward(htlc_forward) => {
5059 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5061 PendingHTLCStatus::Fail(htlc_fail) => {
5062 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5063 htlc_fails.push((htlc_fail, htlc_destination));
5068 // Process all of the forwards and failures for the channel in which the HTLCs were
5069 // proposed to as a batch.
5070 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5071 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5072 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5073 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5074 let failure = match htlc_fail {
5075 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5076 htlc_id: fail_htlc.htlc_id,
5077 err_packet: fail_htlc.reason,
5079 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5080 htlc_id: fail_malformed_htlc.htlc_id,
5081 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5082 failure_code: fail_malformed_htlc.failure_code,
5085 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5086 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5087 prev_channel_id: incoming_channel_id,
5088 failed_next_destination: htlc_destination,
5094 /// Processes HTLCs which are pending waiting on random forward delay.
5096 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5097 /// Will likely generate further events.
5098 pub fn process_pending_htlc_forwards(&self) {
5099 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5101 self.process_pending_update_add_htlcs();
5103 let mut new_events = VecDeque::new();
5104 let mut failed_forwards = Vec::new();
5105 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5107 let mut forward_htlcs = new_hash_map();
5108 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5110 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5111 if short_chan_id != 0 {
5112 let mut forwarding_counterparty = None;
5113 macro_rules! forwarding_channel_not_found {
5115 for forward_info in pending_forwards.drain(..) {
5116 match forward_info {
5117 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5118 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5119 prev_user_channel_id, forward_info: PendingHTLCInfo {
5120 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5121 outgoing_cltv_value, ..
5124 macro_rules! failure_handler {
5125 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5126 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5127 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5129 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5130 short_channel_id: prev_short_channel_id,
5131 user_channel_id: Some(prev_user_channel_id),
5132 channel_id: prev_channel_id,
5133 outpoint: prev_funding_outpoint,
5134 htlc_id: prev_htlc_id,
5135 incoming_packet_shared_secret: incoming_shared_secret,
5136 phantom_shared_secret: $phantom_ss,
5137 blinded_failure: routing.blinded_failure(),
5140 let reason = if $next_hop_unknown {
5141 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5143 HTLCDestination::FailedPayment{ payment_hash }
5146 failed_forwards.push((htlc_source, payment_hash,
5147 HTLCFailReason::reason($err_code, $err_data),
5153 macro_rules! fail_forward {
5154 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5156 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5160 macro_rules! failed_payment {
5161 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5163 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5167 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5168 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5169 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5170 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5171 let next_hop = match onion_utils::decode_next_payment_hop(
5172 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5173 payment_hash, None, &self.node_signer
5176 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5177 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5178 // In this scenario, the phantom would have sent us an
5179 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5180 // if it came from us (the second-to-last hop) but contains the sha256
5182 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5184 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5185 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5189 onion_utils::Hop::Receive(hop_data) => {
5190 let current_height: u32 = self.best_block.read().unwrap().height;
5191 match create_recv_pending_htlc_info(hop_data,
5192 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5193 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5194 current_height, self.default_configuration.accept_mpp_keysend)
5196 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5197 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5203 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5206 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5209 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5210 // Channel went away before we could fail it. This implies
5211 // the channel is now on chain and our counterparty is
5212 // trying to broadcast the HTLC-Timeout, but that's their
5213 // problem, not ours.
5219 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5220 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5221 Some((cp_id, chan_id)) => (cp_id, chan_id),
5223 forwarding_channel_not_found!();
5227 forwarding_counterparty = Some(counterparty_node_id);
5228 let per_peer_state = self.per_peer_state.read().unwrap();
5229 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5230 if peer_state_mutex_opt.is_none() {
5231 forwarding_channel_not_found!();
5234 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5235 let peer_state = &mut *peer_state_lock;
5236 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5237 let logger = WithChannelContext::from(&self.logger, &chan.context);
5238 for forward_info in pending_forwards.drain(..) {
5239 let queue_fail_htlc_res = match forward_info {
5240 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5241 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5242 prev_user_channel_id, forward_info: PendingHTLCInfo {
5243 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5244 routing: PendingHTLCRouting::Forward {
5245 onion_packet, blinded, ..
5246 }, skimmed_fee_msat, ..
5249 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5250 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5251 short_channel_id: prev_short_channel_id,
5252 user_channel_id: Some(prev_user_channel_id),
5253 channel_id: prev_channel_id,
5254 outpoint: prev_funding_outpoint,
5255 htlc_id: prev_htlc_id,
5256 incoming_packet_shared_secret: incoming_shared_secret,
5257 // Phantom payments are only PendingHTLCRouting::Receive.
5258 phantom_shared_secret: None,
5259 blinded_failure: blinded.map(|b| b.failure),
5261 let next_blinding_point = blinded.and_then(|b| {
5262 let encrypted_tlvs_ss = self.node_signer.ecdh(
5263 Recipient::Node, &b.inbound_blinding_point, None
5264 ).unwrap().secret_bytes();
5265 onion_utils::next_hop_pubkey(
5266 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5269 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5270 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5271 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5274 if let ChannelError::Ignore(msg) = e {
5275 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5277 panic!("Stated return value requirements in send_htlc() were not met");
5279 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5280 failed_forwards.push((htlc_source, payment_hash,
5281 HTLCFailReason::reason(failure_code, data),
5282 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5288 HTLCForwardInfo::AddHTLC { .. } => {
5289 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5291 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5292 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5293 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5295 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5296 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5297 let res = chan.queue_fail_malformed_htlc(
5298 htlc_id, failure_code, sha256_of_onion, &&logger
5300 Some((res, htlc_id))
5303 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5304 if let Err(e) = queue_fail_htlc_res {
5305 if let ChannelError::Ignore(msg) = e {
5306 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5308 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5310 // fail-backs are best-effort, we probably already have one
5311 // pending, and if not that's OK, if not, the channel is on
5312 // the chain and sending the HTLC-Timeout is their problem.
5318 forwarding_channel_not_found!();
5322 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5323 match forward_info {
5324 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5325 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5326 prev_user_channel_id, forward_info: PendingHTLCInfo {
5327 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5328 skimmed_fee_msat, ..
5331 let blinded_failure = routing.blinded_failure();
5332 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
5333 PendingHTLCRouting::Receive {
5334 payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret,
5335 custom_tlvs, requires_blinded_error: _
5337 let _legacy_hop_data = Some(payment_data.clone());
5338 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5339 payment_metadata, custom_tlvs };
5340 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
5341 Some(payment_data), phantom_shared_secret, onion_fields)
5343 PendingHTLCRouting::ReceiveKeysend {
5344 payment_data, payment_preimage, payment_metadata,
5345 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5347 let onion_fields = RecipientOnionFields {
5348 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5352 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5353 payment_data, None, onion_fields)
5356 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5359 let claimable_htlc = ClaimableHTLC {
5360 prev_hop: HTLCPreviousHopData {
5361 short_channel_id: prev_short_channel_id,
5362 user_channel_id: Some(prev_user_channel_id),
5363 channel_id: prev_channel_id,
5364 outpoint: prev_funding_outpoint,
5365 htlc_id: prev_htlc_id,
5366 incoming_packet_shared_secret: incoming_shared_secret,
5367 phantom_shared_secret,
5370 // We differentiate the received value from the sender intended value
5371 // if possible so that we don't prematurely mark MPP payments complete
5372 // if routing nodes overpay
5373 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5374 sender_intended_value: outgoing_amt_msat,
5376 total_value_received: None,
5377 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5380 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5383 let mut committed_to_claimable = false;
5385 macro_rules! fail_htlc {
5386 ($htlc: expr, $payment_hash: expr) => {
5387 debug_assert!(!committed_to_claimable);
5388 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5389 htlc_msat_height_data.extend_from_slice(
5390 &self.best_block.read().unwrap().height.to_be_bytes(),
5392 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5393 short_channel_id: $htlc.prev_hop.short_channel_id,
5394 user_channel_id: $htlc.prev_hop.user_channel_id,
5395 channel_id: prev_channel_id,
5396 outpoint: prev_funding_outpoint,
5397 htlc_id: $htlc.prev_hop.htlc_id,
5398 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5399 phantom_shared_secret,
5402 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5403 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5405 continue 'next_forwardable_htlc;
5408 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5409 let mut receiver_node_id = self.our_network_pubkey;
5410 if phantom_shared_secret.is_some() {
5411 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5412 .expect("Failed to get node_id for phantom node recipient");
5415 macro_rules! check_total_value {
5416 ($purpose: expr) => {{
5417 let mut payment_claimable_generated = false;
5418 let is_keysend = match $purpose {
5419 events::PaymentPurpose::SpontaneousPayment(_) => true,
5420 events::PaymentPurpose::InvoicePayment { .. } => false,
5422 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5423 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5424 fail_htlc!(claimable_htlc, payment_hash);
5426 let ref mut claimable_payment = claimable_payments.claimable_payments
5427 .entry(payment_hash)
5428 // Note that if we insert here we MUST NOT fail_htlc!()
5429 .or_insert_with(|| {
5430 committed_to_claimable = true;
5432 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5435 if $purpose != claimable_payment.purpose {
5436 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5437 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5438 fail_htlc!(claimable_htlc, payment_hash);
5440 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5441 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5442 fail_htlc!(claimable_htlc, payment_hash);
5444 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5445 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5446 fail_htlc!(claimable_htlc, payment_hash);
5449 claimable_payment.onion_fields = Some(onion_fields);
5451 let ref mut htlcs = &mut claimable_payment.htlcs;
5452 let mut total_value = claimable_htlc.sender_intended_value;
5453 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5454 for htlc in htlcs.iter() {
5455 total_value += htlc.sender_intended_value;
5456 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5457 if htlc.total_msat != claimable_htlc.total_msat {
5458 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5459 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5460 total_value = msgs::MAX_VALUE_MSAT;
5462 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5464 // The condition determining whether an MPP is complete must
5465 // match exactly the condition used in `timer_tick_occurred`
5466 if total_value >= msgs::MAX_VALUE_MSAT {
5467 fail_htlc!(claimable_htlc, payment_hash);
5468 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5469 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5471 fail_htlc!(claimable_htlc, payment_hash);
5472 } else if total_value >= claimable_htlc.total_msat {
5473 #[allow(unused_assignments)] {
5474 committed_to_claimable = true;
5476 htlcs.push(claimable_htlc);
5477 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5478 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5479 let counterparty_skimmed_fee_msat = htlcs.iter()
5480 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5481 debug_assert!(total_value.saturating_sub(amount_msat) <=
5482 counterparty_skimmed_fee_msat);
5483 new_events.push_back((events::Event::PaymentClaimable {
5484 receiver_node_id: Some(receiver_node_id),
5488 counterparty_skimmed_fee_msat,
5489 via_channel_id: Some(prev_channel_id),
5490 via_user_channel_id: Some(prev_user_channel_id),
5491 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5492 onion_fields: claimable_payment.onion_fields.clone(),
5494 payment_claimable_generated = true;
5496 // Nothing to do - we haven't reached the total
5497 // payment value yet, wait until we receive more
5499 htlcs.push(claimable_htlc);
5500 #[allow(unused_assignments)] {
5501 committed_to_claimable = true;
5504 payment_claimable_generated
5508 // Check that the payment hash and secret are known. Note that we
5509 // MUST take care to handle the "unknown payment hash" and
5510 // "incorrect payment secret" cases here identically or we'd expose
5511 // that we are the ultimate recipient of the given payment hash.
5512 // Further, we must not expose whether we have any other HTLCs
5513 // associated with the same payment_hash pending or not.
5514 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5515 match payment_secrets.entry(payment_hash) {
5516 hash_map::Entry::Vacant(_) => {
5517 match claimable_htlc.onion_payload {
5518 OnionPayload::Invoice { .. } => {
5519 let payment_data = payment_data.unwrap();
5520 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5521 Ok(result) => result,
5523 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5524 fail_htlc!(claimable_htlc, payment_hash);
5527 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5528 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5529 if (cltv_expiry as u64) < expected_min_expiry_height {
5530 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5531 &payment_hash, cltv_expiry, expected_min_expiry_height);
5532 fail_htlc!(claimable_htlc, payment_hash);
5535 let purpose = events::PaymentPurpose::InvoicePayment {
5536 payment_preimage: payment_preimage.clone(),
5537 payment_secret: payment_data.payment_secret,
5539 check_total_value!(purpose);
5541 OnionPayload::Spontaneous(preimage) => {
5542 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5543 check_total_value!(purpose);
5547 hash_map::Entry::Occupied(inbound_payment) => {
5548 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
5549 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5550 fail_htlc!(claimable_htlc, payment_hash);
5552 let payment_data = payment_data.unwrap();
5553 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5554 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5555 fail_htlc!(claimable_htlc, payment_hash);
5556 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5557 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5558 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5559 fail_htlc!(claimable_htlc, payment_hash);
5561 let purpose = events::PaymentPurpose::InvoicePayment {
5562 payment_preimage: inbound_payment.get().payment_preimage,
5563 payment_secret: payment_data.payment_secret,
5565 let payment_claimable_generated = check_total_value!(purpose);
5566 if payment_claimable_generated {
5567 inbound_payment.remove_entry();
5573 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5574 panic!("Got pending fail of our own HTLC");
5582 let best_block_height = self.best_block.read().unwrap().height;
5583 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5584 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5585 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5587 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5588 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5590 self.forward_htlcs(&mut phantom_receives);
5592 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5593 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5594 // nice to do the work now if we can rather than while we're trying to get messages in the
5596 self.check_free_holding_cells();
5598 if new_events.is_empty() { return }
5599 let mut events = self.pending_events.lock().unwrap();
5600 events.append(&mut new_events);
5603 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5605 /// Expects the caller to have a total_consistency_lock read lock.
5606 fn process_background_events(&self) -> NotifyOption {
5607 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5609 self.background_events_processed_since_startup.store(true, Ordering::Release);
5611 let mut background_events = Vec::new();
5612 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5613 if background_events.is_empty() {
5614 return NotifyOption::SkipPersistNoEvents;
5617 for event in background_events.drain(..) {
5619 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5620 // The channel has already been closed, so no use bothering to care about the
5621 // monitor updating completing.
5622 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5624 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5625 let mut updated_chan = false;
5627 let per_peer_state = self.per_peer_state.read().unwrap();
5628 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5629 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5630 let peer_state = &mut *peer_state_lock;
5631 match peer_state.channel_by_id.entry(channel_id) {
5632 hash_map::Entry::Occupied(mut chan_phase) => {
5633 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5634 updated_chan = true;
5635 handle_new_monitor_update!(self, funding_txo, update.clone(),
5636 peer_state_lock, peer_state, per_peer_state, chan);
5638 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5641 hash_map::Entry::Vacant(_) => {},
5646 // TODO: Track this as in-flight even though the channel is closed.
5647 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5650 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5651 let per_peer_state = self.per_peer_state.read().unwrap();
5652 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5653 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5654 let peer_state = &mut *peer_state_lock;
5655 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5656 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5658 let update_actions = peer_state.monitor_update_blocked_actions
5659 .remove(&channel_id).unwrap_or(Vec::new());
5660 mem::drop(peer_state_lock);
5661 mem::drop(per_peer_state);
5662 self.handle_monitor_update_completion_actions(update_actions);
5668 NotifyOption::DoPersist
5671 #[cfg(any(test, feature = "_test_utils"))]
5672 /// Process background events, for functional testing
5673 pub fn test_process_background_events(&self) {
5674 let _lck = self.total_consistency_lock.read().unwrap();
5675 let _ = self.process_background_events();
5678 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5679 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5681 let logger = WithChannelContext::from(&self.logger, &chan.context);
5683 // If the feerate has decreased by less than half, don't bother
5684 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5685 return NotifyOption::SkipPersistNoEvents;
5687 if !chan.context.is_live() {
5688 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5689 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5690 return NotifyOption::SkipPersistNoEvents;
5692 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5693 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5695 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5696 NotifyOption::DoPersist
5700 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5701 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5702 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5703 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5704 pub fn maybe_update_chan_fees(&self) {
5705 PersistenceNotifierGuard::optionally_notify(self, || {
5706 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5708 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5709 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5711 let per_peer_state = self.per_peer_state.read().unwrap();
5712 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5713 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5714 let peer_state = &mut *peer_state_lock;
5715 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5716 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5718 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5723 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5724 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5732 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5734 /// This currently includes:
5735 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5736 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5737 /// than a minute, informing the network that they should no longer attempt to route over
5739 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5740 /// with the current [`ChannelConfig`].
5741 /// * Removing peers which have disconnected but and no longer have any channels.
5742 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5743 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5744 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5745 /// The latter is determined using the system clock in `std` and the highest seen block time
5746 /// minus two hours in `no-std`.
5748 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5749 /// estimate fetches.
5751 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5752 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5753 pub fn timer_tick_occurred(&self) {
5754 PersistenceNotifierGuard::optionally_notify(self, || {
5755 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5757 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5758 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5760 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5761 let mut timed_out_mpp_htlcs = Vec::new();
5762 let mut pending_peers_awaiting_removal = Vec::new();
5763 let mut shutdown_channels = Vec::new();
5765 let mut process_unfunded_channel_tick = |
5766 chan_id: &ChannelId,
5767 context: &mut ChannelContext<SP>,
5768 unfunded_context: &mut UnfundedChannelContext,
5769 pending_msg_events: &mut Vec<MessageSendEvent>,
5770 counterparty_node_id: PublicKey,
5772 context.maybe_expire_prev_config();
5773 if unfunded_context.should_expire_unfunded_channel() {
5774 let logger = WithChannelContext::from(&self.logger, context);
5776 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5777 update_maps_on_chan_removal!(self, &context);
5778 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5779 pending_msg_events.push(MessageSendEvent::HandleError {
5780 node_id: counterparty_node_id,
5781 action: msgs::ErrorAction::SendErrorMessage {
5782 msg: msgs::ErrorMessage {
5783 channel_id: *chan_id,
5784 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5795 let per_peer_state = self.per_peer_state.read().unwrap();
5796 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5797 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5798 let peer_state = &mut *peer_state_lock;
5799 let pending_msg_events = &mut peer_state.pending_msg_events;
5800 let counterparty_node_id = *counterparty_node_id;
5801 peer_state.channel_by_id.retain(|chan_id, phase| {
5803 ChannelPhase::Funded(chan) => {
5804 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5809 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5810 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5812 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5813 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5814 handle_errors.push((Err(err), counterparty_node_id));
5815 if needs_close { return false; }
5818 match chan.channel_update_status() {
5819 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5820 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5821 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5822 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5823 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5824 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5825 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5827 if n >= DISABLE_GOSSIP_TICKS {
5828 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5829 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5830 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5831 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5835 should_persist = NotifyOption::DoPersist;
5837 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5840 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5842 if n >= ENABLE_GOSSIP_TICKS {
5843 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5844 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5845 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5846 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5850 should_persist = NotifyOption::DoPersist;
5852 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5858 chan.context.maybe_expire_prev_config();
5860 if chan.should_disconnect_peer_awaiting_response() {
5861 let logger = WithChannelContext::from(&self.logger, &chan.context);
5862 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5863 counterparty_node_id, chan_id);
5864 pending_msg_events.push(MessageSendEvent::HandleError {
5865 node_id: counterparty_node_id,
5866 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5867 msg: msgs::WarningMessage {
5868 channel_id: *chan_id,
5869 data: "Disconnecting due to timeout awaiting response".to_owned(),
5877 ChannelPhase::UnfundedInboundV1(chan) => {
5878 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5879 pending_msg_events, counterparty_node_id)
5881 ChannelPhase::UnfundedOutboundV1(chan) => {
5882 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5883 pending_msg_events, counterparty_node_id)
5885 #[cfg(dual_funding)]
5886 ChannelPhase::UnfundedInboundV2(chan) => {
5887 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5888 pending_msg_events, counterparty_node_id)
5890 #[cfg(dual_funding)]
5891 ChannelPhase::UnfundedOutboundV2(chan) => {
5892 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5893 pending_msg_events, counterparty_node_id)
5898 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5899 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5900 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5901 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5902 peer_state.pending_msg_events.push(
5903 events::MessageSendEvent::HandleError {
5904 node_id: counterparty_node_id,
5905 action: msgs::ErrorAction::SendErrorMessage {
5906 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5912 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5914 if peer_state.ok_to_remove(true) {
5915 pending_peers_awaiting_removal.push(counterparty_node_id);
5920 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5921 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5922 // of to that peer is later closed while still being disconnected (i.e. force closed),
5923 // we therefore need to remove the peer from `peer_state` separately.
5924 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5925 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5926 // negative effects on parallelism as much as possible.
5927 if pending_peers_awaiting_removal.len() > 0 {
5928 let mut per_peer_state = self.per_peer_state.write().unwrap();
5929 for counterparty_node_id in pending_peers_awaiting_removal {
5930 match per_peer_state.entry(counterparty_node_id) {
5931 hash_map::Entry::Occupied(entry) => {
5932 // Remove the entry if the peer is still disconnected and we still
5933 // have no channels to the peer.
5934 let remove_entry = {
5935 let peer_state = entry.get().lock().unwrap();
5936 peer_state.ok_to_remove(true)
5939 entry.remove_entry();
5942 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5947 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5948 if payment.htlcs.is_empty() {
5949 // This should be unreachable
5950 debug_assert!(false);
5953 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5954 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5955 // In this case we're not going to handle any timeouts of the parts here.
5956 // This condition determining whether the MPP is complete here must match
5957 // exactly the condition used in `process_pending_htlc_forwards`.
5958 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5959 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5962 } else if payment.htlcs.iter_mut().any(|htlc| {
5963 htlc.timer_ticks += 1;
5964 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5966 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5967 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5974 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5975 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5976 let reason = HTLCFailReason::from_failure_code(23);
5977 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5978 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
5981 for (err, counterparty_node_id) in handle_errors.drain(..) {
5982 let _ = handle_error!(self, err, counterparty_node_id);
5985 for shutdown_res in shutdown_channels {
5986 self.finish_close_channel(shutdown_res);
5989 #[cfg(feature = "std")]
5990 let duration_since_epoch = std::time::SystemTime::now()
5991 .duration_since(std::time::SystemTime::UNIX_EPOCH)
5992 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
5993 #[cfg(not(feature = "std"))]
5994 let duration_since_epoch = Duration::from_secs(
5995 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
5998 self.pending_outbound_payments.remove_stale_payments(
5999 duration_since_epoch, &self.pending_events
6002 // Technically we don't need to do this here, but if we have holding cell entries in a
6003 // channel that need freeing, it's better to do that here and block a background task
6004 // than block the message queueing pipeline.
6005 if self.check_free_holding_cells() {
6006 should_persist = NotifyOption::DoPersist;
6013 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6014 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6015 /// along the path (including in our own channel on which we received it).
6017 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6018 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6019 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6020 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6022 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6023 /// [`ChannelManager::claim_funds`]), you should still monitor for
6024 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6025 /// startup during which time claims that were in-progress at shutdown may be replayed.
6026 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6027 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6030 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6031 /// reason for the failure.
6033 /// See [`FailureCode`] for valid failure codes.
6034 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6035 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6037 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6038 if let Some(payment) = removed_source {
6039 for htlc in payment.htlcs {
6040 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6041 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6042 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6043 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6048 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6049 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6050 match failure_code {
6051 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6052 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6053 FailureCode::IncorrectOrUnknownPaymentDetails => {
6054 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6055 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6056 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6058 FailureCode::InvalidOnionPayload(data) => {
6059 let fail_data = match data {
6060 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6063 HTLCFailReason::reason(failure_code.into(), fail_data)
6068 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6069 /// that we want to return and a channel.
6071 /// This is for failures on the channel on which the HTLC was *received*, not failures
6073 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6074 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6075 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6076 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6077 // an inbound SCID alias before the real SCID.
6078 let scid_pref = if chan.context.should_announce() {
6079 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6081 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6083 if let Some(scid) = scid_pref {
6084 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6086 (0x4000|10, Vec::new())
6091 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6092 /// that we want to return and a channel.
6093 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6094 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6095 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6096 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6097 if desired_err_code == 0x1000 | 20 {
6098 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6099 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6100 0u16.write(&mut enc).expect("Writes cannot fail");
6102 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6103 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6104 upd.write(&mut enc).expect("Writes cannot fail");
6105 (desired_err_code, enc.0)
6107 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6108 // which means we really shouldn't have gotten a payment to be forwarded over this
6109 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6110 // PERM|no_such_channel should be fine.
6111 (0x4000|10, Vec::new())
6115 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6116 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6117 // be surfaced to the user.
6118 fn fail_holding_cell_htlcs(
6119 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6120 counterparty_node_id: &PublicKey
6122 let (failure_code, onion_failure_data) = {
6123 let per_peer_state = self.per_peer_state.read().unwrap();
6124 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6125 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6126 let peer_state = &mut *peer_state_lock;
6127 match peer_state.channel_by_id.entry(channel_id) {
6128 hash_map::Entry::Occupied(chan_phase_entry) => {
6129 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6130 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6132 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6133 debug_assert!(false);
6134 (0x4000|10, Vec::new())
6137 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6139 } else { (0x4000|10, Vec::new()) }
6142 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6143 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6144 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6145 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6149 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6150 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6151 if push_forward_event { self.push_pending_forwards_ev(); }
6154 /// Fails an HTLC backwards to the sender of it to us.
6155 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6156 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6157 // Ensure that no peer state channel storage lock is held when calling this function.
6158 // This ensures that future code doesn't introduce a lock-order requirement for
6159 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6160 // this function with any `per_peer_state` peer lock acquired would.
6161 #[cfg(debug_assertions)]
6162 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6163 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6166 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6167 //identify whether we sent it or not based on the (I presume) very different runtime
6168 //between the branches here. We should make this async and move it into the forward HTLCs
6171 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6172 // from block_connected which may run during initialization prior to the chain_monitor
6173 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6174 let mut push_forward_event;
6176 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6177 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6178 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6179 &self.pending_events, &self.logger);
6181 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6182 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6183 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6186 WithContext::from(&self.logger, None, Some(*channel_id)),
6187 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6188 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6190 let failure = match blinded_failure {
6191 Some(BlindedFailure::FromIntroductionNode) => {
6192 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6193 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6194 incoming_packet_shared_secret, phantom_shared_secret
6196 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6198 Some(BlindedFailure::FromBlindedNode) => {
6199 HTLCForwardInfo::FailMalformedHTLC {
6201 failure_code: INVALID_ONION_BLINDING,
6202 sha256_of_onion: [0; 32]
6206 let err_packet = onion_error.get_encrypted_failure_packet(
6207 incoming_packet_shared_secret, phantom_shared_secret
6209 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6213 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6214 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6215 push_forward_event &= forward_htlcs.is_empty();
6216 match forward_htlcs.entry(*short_channel_id) {
6217 hash_map::Entry::Occupied(mut entry) => {
6218 entry.get_mut().push(failure);
6220 hash_map::Entry::Vacant(entry) => {
6221 entry.insert(vec!(failure));
6224 mem::drop(forward_htlcs);
6225 let mut pending_events = self.pending_events.lock().unwrap();
6226 pending_events.push_back((events::Event::HTLCHandlingFailed {
6227 prev_channel_id: *channel_id,
6228 failed_next_destination: destination,
6235 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6236 /// [`MessageSendEvent`]s needed to claim the payment.
6238 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6239 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6240 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6241 /// successful. It will generally be available in the next [`process_pending_events`] call.
6243 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6244 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6245 /// event matches your expectation. If you fail to do so and call this method, you may provide
6246 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6248 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6249 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6250 /// [`claim_funds_with_known_custom_tlvs`].
6252 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6253 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6254 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6255 /// [`process_pending_events`]: EventsProvider::process_pending_events
6256 /// [`create_inbound_payment`]: Self::create_inbound_payment
6257 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6258 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6259 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6260 self.claim_payment_internal(payment_preimage, false);
6263 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6264 /// even type numbers.
6268 /// You MUST check you've understood all even TLVs before using this to
6269 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6271 /// [`claim_funds`]: Self::claim_funds
6272 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6273 self.claim_payment_internal(payment_preimage, true);
6276 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6277 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6279 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6282 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6283 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6284 let mut receiver_node_id = self.our_network_pubkey;
6285 for htlc in payment.htlcs.iter() {
6286 if htlc.prev_hop.phantom_shared_secret.is_some() {
6287 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6288 .expect("Failed to get node_id for phantom node recipient");
6289 receiver_node_id = phantom_pubkey;
6294 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6295 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6296 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6297 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6298 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6300 if dup_purpose.is_some() {
6301 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6302 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6306 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6307 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6308 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6309 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6310 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6311 mem::drop(claimable_payments);
6312 for htlc in payment.htlcs {
6313 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6314 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6315 let receiver = HTLCDestination::FailedPayment { payment_hash };
6316 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6325 debug_assert!(!sources.is_empty());
6327 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6328 // and when we got here we need to check that the amount we're about to claim matches the
6329 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6330 // the MPP parts all have the same `total_msat`.
6331 let mut claimable_amt_msat = 0;
6332 let mut prev_total_msat = None;
6333 let mut expected_amt_msat = None;
6334 let mut valid_mpp = true;
6335 let mut errs = Vec::new();
6336 let per_peer_state = self.per_peer_state.read().unwrap();
6337 for htlc in sources.iter() {
6338 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6339 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6340 debug_assert!(false);
6344 prev_total_msat = Some(htlc.total_msat);
6346 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6347 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6348 debug_assert!(false);
6352 expected_amt_msat = htlc.total_value_received;
6353 claimable_amt_msat += htlc.value;
6355 mem::drop(per_peer_state);
6356 if sources.is_empty() || expected_amt_msat.is_none() {
6357 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6358 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6361 if claimable_amt_msat != expected_amt_msat.unwrap() {
6362 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6363 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6364 expected_amt_msat.unwrap(), claimable_amt_msat);
6368 for htlc in sources.drain(..) {
6369 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6370 if let Err((pk, err)) = self.claim_funds_from_hop(
6371 htlc.prev_hop, payment_preimage,
6372 |_, definitely_duplicate| {
6373 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6374 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6377 if let msgs::ErrorAction::IgnoreError = err.err.action {
6378 // We got a temporary failure updating monitor, but will claim the
6379 // HTLC when the monitor updating is restored (or on chain).
6380 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6381 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6382 } else { errs.push((pk, err)); }
6387 for htlc in sources.drain(..) {
6388 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6389 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6390 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6391 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6392 let receiver = HTLCDestination::FailedPayment { payment_hash };
6393 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6395 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6398 // Now we can handle any errors which were generated.
6399 for (counterparty_node_id, err) in errs.drain(..) {
6400 let res: Result<(), _> = Err(err);
6401 let _ = handle_error!(self, res, counterparty_node_id);
6405 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6406 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6407 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6408 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6410 // If we haven't yet run background events assume we're still deserializing and shouldn't
6411 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6412 // `BackgroundEvent`s.
6413 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6415 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6416 // the required mutexes are not held before we start.
6417 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6418 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6421 let per_peer_state = self.per_peer_state.read().unwrap();
6422 let chan_id = prev_hop.channel_id;
6423 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6424 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6428 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6429 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6430 .map(|peer_mutex| peer_mutex.lock().unwrap())
6433 if peer_state_opt.is_some() {
6434 let mut peer_state_lock = peer_state_opt.unwrap();
6435 let peer_state = &mut *peer_state_lock;
6436 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6437 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6438 let counterparty_node_id = chan.context.get_counterparty_node_id();
6439 let logger = WithChannelContext::from(&self.logger, &chan.context);
6440 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6443 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6444 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6445 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6447 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6450 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6451 peer_state, per_peer_state, chan);
6453 // If we're running during init we cannot update a monitor directly -
6454 // they probably haven't actually been loaded yet. Instead, push the
6455 // monitor update as a background event.
6456 self.pending_background_events.lock().unwrap().push(
6457 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6458 counterparty_node_id,
6459 funding_txo: prev_hop.outpoint,
6460 channel_id: prev_hop.channel_id,
6461 update: monitor_update.clone(),
6465 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6466 let action = if let Some(action) = completion_action(None, true) {
6471 mem::drop(peer_state_lock);
6473 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6475 let (node_id, _funding_outpoint, channel_id, blocker) =
6476 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6477 downstream_counterparty_node_id: node_id,
6478 downstream_funding_outpoint: funding_outpoint,
6479 blocking_action: blocker, downstream_channel_id: channel_id,
6481 (node_id, funding_outpoint, channel_id, blocker)
6483 debug_assert!(false,
6484 "Duplicate claims should always free another channel immediately");
6487 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6488 let mut peer_state = peer_state_mtx.lock().unwrap();
6489 if let Some(blockers) = peer_state
6490 .actions_blocking_raa_monitor_updates
6491 .get_mut(&channel_id)
6493 let mut found_blocker = false;
6494 blockers.retain(|iter| {
6495 // Note that we could actually be blocked, in
6496 // which case we need to only remove the one
6497 // blocker which was added duplicatively.
6498 let first_blocker = !found_blocker;
6499 if *iter == blocker { found_blocker = true; }
6500 *iter != blocker || !first_blocker
6502 debug_assert!(found_blocker);
6505 debug_assert!(false);
6514 let preimage_update = ChannelMonitorUpdate {
6515 update_id: CLOSED_CHANNEL_UPDATE_ID,
6516 counterparty_node_id: None,
6517 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6520 channel_id: Some(prev_hop.channel_id),
6524 // We update the ChannelMonitor on the backward link, after
6525 // receiving an `update_fulfill_htlc` from the forward link.
6526 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6527 if update_res != ChannelMonitorUpdateStatus::Completed {
6528 // TODO: This needs to be handled somehow - if we receive a monitor update
6529 // with a preimage we *must* somehow manage to propagate it to the upstream
6530 // channel, or we must have an ability to receive the same event and try
6531 // again on restart.
6532 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6533 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6534 payment_preimage, update_res);
6537 // If we're running during init we cannot update a monitor directly - they probably
6538 // haven't actually been loaded yet. Instead, push the monitor update as a background
6540 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6541 // channel is already closed) we need to ultimately handle the monitor update
6542 // completion action only after we've completed the monitor update. This is the only
6543 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6544 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6545 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6546 // complete the monitor update completion action from `completion_action`.
6547 self.pending_background_events.lock().unwrap().push(
6548 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6549 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6552 // Note that we do process the completion action here. This totally could be a
6553 // duplicate claim, but we have no way of knowing without interrogating the
6554 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6555 // generally always allowed to be duplicative (and it's specifically noted in
6556 // `PaymentForwarded`).
6557 self.handle_monitor_update_completion_actions(completion_action(None, false));
6561 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6562 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6565 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6566 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6567 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6568 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6571 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6572 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6573 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6574 if let Some(pubkey) = next_channel_counterparty_node_id {
6575 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6577 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6578 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6579 counterparty_node_id: path.hops[0].pubkey,
6581 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6582 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6585 HTLCSource::PreviousHopData(hop_data) => {
6586 let prev_channel_id = hop_data.channel_id;
6587 let prev_user_channel_id = hop_data.user_channel_id;
6588 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6589 #[cfg(debug_assertions)]
6590 let claiming_chan_funding_outpoint = hop_data.outpoint;
6591 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6592 |htlc_claim_value_msat, definitely_duplicate| {
6593 let chan_to_release =
6594 if let Some(node_id) = next_channel_counterparty_node_id {
6595 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6597 // We can only get `None` here if we are processing a
6598 // `ChannelMonitor`-originated event, in which case we
6599 // don't care about ensuring we wake the downstream
6600 // channel's monitor updating - the channel is already
6605 if definitely_duplicate && startup_replay {
6606 // On startup we may get redundant claims which are related to
6607 // monitor updates still in flight. In that case, we shouldn't
6608 // immediately free, but instead let that monitor update complete
6609 // in the background.
6610 #[cfg(debug_assertions)] {
6611 let background_events = self.pending_background_events.lock().unwrap();
6612 // There should be a `BackgroundEvent` pending...
6613 assert!(background_events.iter().any(|ev| {
6615 // to apply a monitor update that blocked the claiming channel,
6616 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6617 funding_txo, update, ..
6619 if *funding_txo == claiming_chan_funding_outpoint {
6620 assert!(update.updates.iter().any(|upd|
6621 if let ChannelMonitorUpdateStep::PaymentPreimage {
6622 payment_preimage: update_preimage
6624 payment_preimage == *update_preimage
6630 // or the channel we'd unblock is already closed,
6631 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6632 (funding_txo, _channel_id, monitor_update)
6634 if *funding_txo == next_channel_outpoint {
6635 assert_eq!(monitor_update.updates.len(), 1);
6637 monitor_update.updates[0],
6638 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6643 // or the monitor update has completed and will unblock
6644 // immediately once we get going.
6645 BackgroundEvent::MonitorUpdatesComplete {
6648 *channel_id == prev_channel_id,
6650 }), "{:?}", *background_events);
6653 } else if definitely_duplicate {
6654 if let Some(other_chan) = chan_to_release {
6655 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6656 downstream_counterparty_node_id: other_chan.0,
6657 downstream_funding_outpoint: other_chan.1,
6658 downstream_channel_id: other_chan.2,
6659 blocking_action: other_chan.3,
6663 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6664 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6665 Some(claimed_htlc_value - forwarded_htlc_value)
6668 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6669 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6670 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6671 event: events::Event::PaymentForwarded {
6672 prev_channel_id: Some(prev_channel_id),
6673 next_channel_id: Some(next_channel_id),
6674 prev_user_channel_id,
6675 next_user_channel_id,
6676 total_fee_earned_msat,
6678 claim_from_onchain_tx: from_onchain,
6679 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6681 downstream_counterparty_and_funding_outpoint: chan_to_release,
6685 if let Err((pk, err)) = res {
6686 let result: Result<(), _> = Err(err);
6687 let _ = handle_error!(self, result, pk);
6693 /// Gets the node_id held by this ChannelManager
6694 pub fn get_our_node_id(&self) -> PublicKey {
6695 self.our_network_pubkey.clone()
6698 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6699 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6700 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6701 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6703 for action in actions.into_iter() {
6705 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6706 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6707 if let Some(ClaimingPayment {
6709 payment_purpose: purpose,
6712 sender_intended_value: sender_intended_total_msat,
6714 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6718 receiver_node_id: Some(receiver_node_id),
6720 sender_intended_total_msat,
6724 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6725 event, downstream_counterparty_and_funding_outpoint
6727 self.pending_events.lock().unwrap().push_back((event, None));
6728 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6729 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6732 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6733 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6735 self.handle_monitor_update_release(
6736 downstream_counterparty_node_id,
6737 downstream_funding_outpoint,
6738 downstream_channel_id,
6739 Some(blocking_action),
6746 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6747 /// update completion.
6748 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6749 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6750 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6751 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6752 funding_broadcastable: Option<Transaction>,
6753 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6754 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6755 let logger = WithChannelContext::from(&self.logger, &channel.context);
6756 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6757 &channel.context.channel_id(),
6758 if raa.is_some() { "an" } else { "no" },
6759 if commitment_update.is_some() { "a" } else { "no" },
6760 pending_forwards.len(), pending_update_adds.len(),
6761 if funding_broadcastable.is_some() { "" } else { "not " },
6762 if channel_ready.is_some() { "sending" } else { "without" },
6763 if announcement_sigs.is_some() { "sending" } else { "without" });
6765 let counterparty_node_id = channel.context.get_counterparty_node_id();
6766 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6768 let mut htlc_forwards = None;
6769 if !pending_forwards.is_empty() {
6770 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6771 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6773 let mut decode_update_add_htlcs = None;
6774 if !pending_update_adds.is_empty() {
6775 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6778 if let Some(msg) = channel_ready {
6779 send_channel_ready!(self, pending_msg_events, channel, msg);
6781 if let Some(msg) = announcement_sigs {
6782 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6783 node_id: counterparty_node_id,
6788 macro_rules! handle_cs { () => {
6789 if let Some(update) = commitment_update {
6790 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6791 node_id: counterparty_node_id,
6796 macro_rules! handle_raa { () => {
6797 if let Some(revoke_and_ack) = raa {
6798 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6799 node_id: counterparty_node_id,
6800 msg: revoke_and_ack,
6805 RAACommitmentOrder::CommitmentFirst => {
6809 RAACommitmentOrder::RevokeAndACKFirst => {
6815 if let Some(tx) = funding_broadcastable {
6816 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6817 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6821 let mut pending_events = self.pending_events.lock().unwrap();
6822 emit_channel_pending_event!(pending_events, channel);
6823 emit_channel_ready_event!(pending_events, channel);
6826 (htlc_forwards, decode_update_add_htlcs)
6829 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6830 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6832 let counterparty_node_id = match counterparty_node_id {
6833 Some(cp_id) => cp_id.clone(),
6835 // TODO: Once we can rely on the counterparty_node_id from the
6836 // monitor event, this and the outpoint_to_peer map should be removed.
6837 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6838 match outpoint_to_peer.get(funding_txo) {
6839 Some(cp_id) => cp_id.clone(),
6844 let per_peer_state = self.per_peer_state.read().unwrap();
6845 let mut peer_state_lock;
6846 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6847 if peer_state_mutex_opt.is_none() { return }
6848 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6849 let peer_state = &mut *peer_state_lock;
6851 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6854 let update_actions = peer_state.monitor_update_blocked_actions
6855 .remove(&channel_id).unwrap_or(Vec::new());
6856 mem::drop(peer_state_lock);
6857 mem::drop(per_peer_state);
6858 self.handle_monitor_update_completion_actions(update_actions);
6861 let remaining_in_flight =
6862 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6863 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6866 let logger = WithChannelContext::from(&self.logger, &channel.context);
6867 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6868 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6869 remaining_in_flight);
6870 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6873 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6876 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6878 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6879 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6882 /// The `user_channel_id` parameter will be provided back in
6883 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6884 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6886 /// Note that this method will return an error and reject the channel, if it requires support
6887 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6888 /// used to accept such channels.
6890 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6891 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6892 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6893 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6896 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6897 /// it as confirmed immediately.
6899 /// The `user_channel_id` parameter will be provided back in
6900 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6901 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6903 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6904 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6906 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6907 /// transaction and blindly assumes that it will eventually confirm.
6909 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6910 /// does not pay to the correct script the correct amount, *you will lose funds*.
6912 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6913 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6914 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6915 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6918 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6920 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6921 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6923 let peers_without_funded_channels =
6924 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6925 let per_peer_state = self.per_peer_state.read().unwrap();
6926 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6928 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6929 log_error!(logger, "{}", err_str);
6931 APIError::ChannelUnavailable { err: err_str }
6933 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6934 let peer_state = &mut *peer_state_lock;
6935 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6937 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6938 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6939 // that we can delay allocating the SCID until after we're sure that the checks below will
6941 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6942 Some(unaccepted_channel) => {
6943 let best_block_height = self.best_block.read().unwrap().height;
6944 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6945 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6946 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6947 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6950 let err_str = "No such channel awaiting to be accepted.".to_owned();
6951 log_error!(logger, "{}", err_str);
6953 return Err(APIError::APIMisuseError { err: err_str });
6959 mem::drop(peer_state_lock);
6960 mem::drop(per_peer_state);
6961 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6962 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6964 return Err(APIError::ChannelUnavailable { err: e.err });
6968 Ok(mut channel) => {
6970 // This should have been correctly configured by the call to InboundV1Channel::new.
6971 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6972 } else if channel.context.get_channel_type().requires_zero_conf() {
6973 let send_msg_err_event = events::MessageSendEvent::HandleError {
6974 node_id: channel.context.get_counterparty_node_id(),
6975 action: msgs::ErrorAction::SendErrorMessage{
6976 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
6979 peer_state.pending_msg_events.push(send_msg_err_event);
6980 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
6981 log_error!(logger, "{}", err_str);
6983 return Err(APIError::APIMisuseError { err: err_str });
6985 // If this peer already has some channels, a new channel won't increase our number of peers
6986 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
6987 // channels per-peer we can accept channels from a peer with existing ones.
6988 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
6989 let send_msg_err_event = events::MessageSendEvent::HandleError {
6990 node_id: channel.context.get_counterparty_node_id(),
6991 action: msgs::ErrorAction::SendErrorMessage{
6992 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
6995 peer_state.pending_msg_events.push(send_msg_err_event);
6996 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
6997 log_error!(logger, "{}", err_str);
6999 return Err(APIError::APIMisuseError { err: err_str });
7003 // Now that we know we have a channel, assign an outbound SCID alias.
7004 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7005 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7007 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7008 node_id: channel.context.get_counterparty_node_id(),
7009 msg: channel.accept_inbound_channel(),
7012 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7019 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7020 /// or 0-conf channels.
7022 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7023 /// non-0-conf channels we have with the peer.
7024 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7025 where Filter: Fn(&PeerState<SP>) -> bool {
7026 let mut peers_without_funded_channels = 0;
7027 let best_block_height = self.best_block.read().unwrap().height;
7029 let peer_state_lock = self.per_peer_state.read().unwrap();
7030 for (_, peer_mtx) in peer_state_lock.iter() {
7031 let peer = peer_mtx.lock().unwrap();
7032 if !maybe_count_peer(&*peer) { continue; }
7033 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7034 if num_unfunded_channels == peer.total_channel_count() {
7035 peers_without_funded_channels += 1;
7039 return peers_without_funded_channels;
7042 fn unfunded_channel_count(
7043 peer: &PeerState<SP>, best_block_height: u32
7045 let mut num_unfunded_channels = 0;
7046 for (_, phase) in peer.channel_by_id.iter() {
7048 ChannelPhase::Funded(chan) => {
7049 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7050 // which have not yet had any confirmations on-chain.
7051 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7052 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7054 num_unfunded_channels += 1;
7057 ChannelPhase::UnfundedInboundV1(chan) => {
7058 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7059 num_unfunded_channels += 1;
7062 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
7063 #[cfg(dual_funding)]
7064 ChannelPhase::UnfundedInboundV2(chan) => {
7065 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7066 // included in the unfunded count.
7067 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7068 chan.dual_funding_context.our_funding_satoshis == 0 {
7069 num_unfunded_channels += 1;
7072 ChannelPhase::UnfundedOutboundV1(_) => {
7073 // Outbound channels don't contribute to the unfunded count in the DoS context.
7076 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
7077 #[cfg(dual_funding)]
7078 ChannelPhase::UnfundedOutboundV2(_) => {
7079 // Outbound channels don't contribute to the unfunded count in the DoS context.
7084 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7087 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7088 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7089 // likely to be lost on restart!
7090 if msg.common_fields.chain_hash != self.chain_hash {
7091 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7092 msg.common_fields.temporary_channel_id.clone()));
7095 if !self.default_configuration.accept_inbound_channels {
7096 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7097 msg.common_fields.temporary_channel_id.clone()));
7100 // Get the number of peers with channels, but without funded ones. We don't care too much
7101 // about peers that never open a channel, so we filter by peers that have at least one
7102 // channel, and then limit the number of those with unfunded channels.
7103 let channeled_peers_without_funding =
7104 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7106 let per_peer_state = self.per_peer_state.read().unwrap();
7107 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7109 debug_assert!(false);
7110 MsgHandleErrInternal::send_err_msg_no_close(
7111 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7112 msg.common_fields.temporary_channel_id.clone())
7114 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7115 let peer_state = &mut *peer_state_lock;
7117 // If this peer already has some channels, a new channel won't increase our number of peers
7118 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7119 // channels per-peer we can accept channels from a peer with existing ones.
7120 if peer_state.total_channel_count() == 0 &&
7121 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7122 !self.default_configuration.manually_accept_inbound_channels
7124 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7125 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7126 msg.common_fields.temporary_channel_id.clone()));
7129 let best_block_height = self.best_block.read().unwrap().height;
7130 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7131 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7132 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7133 msg.common_fields.temporary_channel_id.clone()));
7136 let channel_id = msg.common_fields.temporary_channel_id;
7137 let channel_exists = peer_state.has_channel(&channel_id);
7139 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7140 "temporary_channel_id collision for the same peer!".to_owned(),
7141 msg.common_fields.temporary_channel_id.clone()));
7144 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7145 if self.default_configuration.manually_accept_inbound_channels {
7146 let channel_type = channel::channel_type_from_open_channel(
7147 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7149 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7151 let mut pending_events = self.pending_events.lock().unwrap();
7152 pending_events.push_back((events::Event::OpenChannelRequest {
7153 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7154 counterparty_node_id: counterparty_node_id.clone(),
7155 funding_satoshis: msg.common_fields.funding_satoshis,
7156 push_msat: msg.push_msat,
7159 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7160 open_channel_msg: msg.clone(),
7161 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7166 // Otherwise create the channel right now.
7167 let mut random_bytes = [0u8; 16];
7168 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7169 let user_channel_id = u128::from_be_bytes(random_bytes);
7170 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7171 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7172 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7175 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7180 let channel_type = channel.context.get_channel_type();
7181 if channel_type.requires_zero_conf() {
7182 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7183 "No zero confirmation channels accepted".to_owned(),
7184 msg.common_fields.temporary_channel_id.clone()));
7186 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7187 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7188 "No channels with anchor outputs accepted".to_owned(),
7189 msg.common_fields.temporary_channel_id.clone()));
7192 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7193 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7195 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7196 node_id: counterparty_node_id.clone(),
7197 msg: channel.accept_inbound_channel(),
7199 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7203 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7204 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7205 // likely to be lost on restart!
7206 let (value, output_script, user_id) = {
7207 let per_peer_state = self.per_peer_state.read().unwrap();
7208 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7210 debug_assert!(false);
7211 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7213 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7214 let peer_state = &mut *peer_state_lock;
7215 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7216 hash_map::Entry::Occupied(mut phase) => {
7217 match phase.get_mut() {
7218 ChannelPhase::UnfundedOutboundV1(chan) => {
7219 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7220 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7223 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7227 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7230 let mut pending_events = self.pending_events.lock().unwrap();
7231 pending_events.push_back((events::Event::FundingGenerationReady {
7232 temporary_channel_id: msg.common_fields.temporary_channel_id,
7233 counterparty_node_id: *counterparty_node_id,
7234 channel_value_satoshis: value,
7236 user_channel_id: user_id,
7241 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7242 let best_block = *self.best_block.read().unwrap();
7244 let per_peer_state = self.per_peer_state.read().unwrap();
7245 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7247 debug_assert!(false);
7248 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7251 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7252 let peer_state = &mut *peer_state_lock;
7253 let (mut chan, funding_msg_opt, monitor) =
7254 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7255 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7256 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7257 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7259 Err((inbound_chan, err)) => {
7260 // We've already removed this inbound channel from the map in `PeerState`
7261 // above so at this point we just need to clean up any lingering entries
7262 // concerning this channel as it is safe to do so.
7263 debug_assert!(matches!(err, ChannelError::Close(_)));
7264 // Really we should be returning the channel_id the peer expects based
7265 // on their funding info here, but they're horribly confused anyway, so
7266 // there's not a lot we can do to save them.
7267 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7271 Some(mut phase) => {
7272 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7273 let err = ChannelError::Close(err_msg);
7274 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7276 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7279 let funded_channel_id = chan.context.channel_id();
7281 macro_rules! fail_chan { ($err: expr) => { {
7282 // Note that at this point we've filled in the funding outpoint on our
7283 // channel, but its actually in conflict with another channel. Thus, if
7284 // we call `convert_chan_phase_err` immediately (thus calling
7285 // `update_maps_on_chan_removal`), we'll remove the existing channel
7286 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7288 let err = ChannelError::Close($err.to_owned());
7289 chan.unset_funding_info(msg.temporary_channel_id);
7290 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7293 match peer_state.channel_by_id.entry(funded_channel_id) {
7294 hash_map::Entry::Occupied(_) => {
7295 fail_chan!("Already had channel with the new channel_id");
7297 hash_map::Entry::Vacant(e) => {
7298 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7299 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7300 hash_map::Entry::Occupied(_) => {
7301 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7303 hash_map::Entry::Vacant(i_e) => {
7304 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7305 if let Ok(persist_state) = monitor_res {
7306 i_e.insert(chan.context.get_counterparty_node_id());
7307 mem::drop(outpoint_to_peer_lock);
7309 // There's no problem signing a counterparty's funding transaction if our monitor
7310 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7311 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7312 // until we have persisted our monitor.
7313 if let Some(msg) = funding_msg_opt {
7314 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7315 node_id: counterparty_node_id.clone(),
7320 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7321 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7322 per_peer_state, chan, INITIAL_MONITOR);
7324 unreachable!("This must be a funded channel as we just inserted it.");
7328 let logger = WithChannelContext::from(&self.logger, &chan.context);
7329 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7330 fail_chan!("Duplicate funding outpoint");
7338 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7339 let best_block = *self.best_block.read().unwrap();
7340 let per_peer_state = self.per_peer_state.read().unwrap();
7341 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7343 debug_assert!(false);
7344 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7347 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7348 let peer_state = &mut *peer_state_lock;
7349 match peer_state.channel_by_id.entry(msg.channel_id) {
7350 hash_map::Entry::Occupied(chan_phase_entry) => {
7351 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7352 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7353 let logger = WithContext::from(
7355 Some(chan.context.get_counterparty_node_id()),
7356 Some(chan.context.channel_id())
7359 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7361 Ok((mut chan, monitor)) => {
7362 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7363 // We really should be able to insert here without doing a second
7364 // lookup, but sadly rust stdlib doesn't currently allow keeping
7365 // the original Entry around with the value removed.
7366 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7367 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7368 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7369 } else { unreachable!(); }
7372 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7373 // We weren't able to watch the channel to begin with, so no
7374 // updates should be made on it. Previously, full_stack_target
7375 // found an (unreachable) panic when the monitor update contained
7376 // within `shutdown_finish` was applied.
7377 chan.unset_funding_info(msg.channel_id);
7378 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7382 debug_assert!(matches!(e, ChannelError::Close(_)),
7383 "We don't have a channel anymore, so the error better have expected close");
7384 // We've already removed this outbound channel from the map in
7385 // `PeerState` above so at this point we just need to clean up any
7386 // lingering entries concerning this channel as it is safe to do so.
7387 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7391 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7394 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7398 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7399 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7400 // closing a channel), so any changes are likely to be lost on restart!
7401 let per_peer_state = self.per_peer_state.read().unwrap();
7402 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7404 debug_assert!(false);
7405 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7407 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7408 let peer_state = &mut *peer_state_lock;
7409 match peer_state.channel_by_id.entry(msg.channel_id) {
7410 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7411 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7412 let logger = WithChannelContext::from(&self.logger, &chan.context);
7413 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7414 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7415 if let Some(announcement_sigs) = announcement_sigs_opt {
7416 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7417 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7418 node_id: counterparty_node_id.clone(),
7419 msg: announcement_sigs,
7421 } else if chan.context.is_usable() {
7422 // If we're sending an announcement_signatures, we'll send the (public)
7423 // channel_update after sending a channel_announcement when we receive our
7424 // counterparty's announcement_signatures. Thus, we only bother to send a
7425 // channel_update here if the channel is not public, i.e. we're not sending an
7426 // announcement_signatures.
7427 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7428 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7429 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7430 node_id: counterparty_node_id.clone(),
7437 let mut pending_events = self.pending_events.lock().unwrap();
7438 emit_channel_ready_event!(pending_events, chan);
7443 try_chan_phase_entry!(self, Err(ChannelError::Close(
7444 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7447 hash_map::Entry::Vacant(_) => {
7448 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7453 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7454 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7455 let mut finish_shutdown = None;
7457 let per_peer_state = self.per_peer_state.read().unwrap();
7458 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7460 debug_assert!(false);
7461 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7463 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7464 let peer_state = &mut *peer_state_lock;
7465 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7466 let phase = chan_phase_entry.get_mut();
7468 ChannelPhase::Funded(chan) => {
7469 if !chan.received_shutdown() {
7470 let logger = WithChannelContext::from(&self.logger, &chan.context);
7471 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7473 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7476 let funding_txo_opt = chan.context.get_funding_txo();
7477 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7478 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7479 dropped_htlcs = htlcs;
7481 if let Some(msg) = shutdown {
7482 // We can send the `shutdown` message before updating the `ChannelMonitor`
7483 // here as we don't need the monitor update to complete until we send a
7484 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7485 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7486 node_id: *counterparty_node_id,
7490 // Update the monitor with the shutdown script if necessary.
7491 if let Some(monitor_update) = monitor_update_opt {
7492 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7493 peer_state_lock, peer_state, per_peer_state, chan);
7496 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7497 let context = phase.context_mut();
7498 let logger = WithChannelContext::from(&self.logger, context);
7499 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7500 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7501 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7503 // TODO(dual_funding): Combine this match arm with above.
7504 #[cfg(dual_funding)]
7505 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7506 let context = phase.context_mut();
7507 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7508 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7509 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7513 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7516 for htlc_source in dropped_htlcs.drain(..) {
7517 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7518 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7519 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7521 if let Some(shutdown_res) = finish_shutdown {
7522 self.finish_close_channel(shutdown_res);
7528 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7529 let per_peer_state = self.per_peer_state.read().unwrap();
7530 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7532 debug_assert!(false);
7533 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7535 let (tx, chan_option, shutdown_result) = {
7536 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7537 let peer_state = &mut *peer_state_lock;
7538 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7539 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7540 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7541 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7542 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7543 if let Some(msg) = closing_signed {
7544 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7545 node_id: counterparty_node_id.clone(),
7550 // We're done with this channel, we've got a signed closing transaction and
7551 // will send the closing_signed back to the remote peer upon return. This
7552 // also implies there are no pending HTLCs left on the channel, so we can
7553 // fully delete it from tracking (the channel monitor is still around to
7554 // watch for old state broadcasts)!
7555 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7556 } else { (tx, None, shutdown_result) }
7558 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7559 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7562 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7565 if let Some(broadcast_tx) = tx {
7566 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7567 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7568 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7570 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7571 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7572 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7573 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7578 mem::drop(per_peer_state);
7579 if let Some(shutdown_result) = shutdown_result {
7580 self.finish_close_channel(shutdown_result);
7585 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7586 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7587 //determine the state of the payment based on our response/if we forward anything/the time
7588 //we take to respond. We should take care to avoid allowing such an attack.
7590 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7591 //us repeatedly garbled in different ways, and compare our error messages, which are
7592 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7593 //but we should prevent it anyway.
7595 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7596 // closing a channel), so any changes are likely to be lost on restart!
7598 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7599 let per_peer_state = self.per_peer_state.read().unwrap();
7600 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7602 debug_assert!(false);
7603 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7605 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7606 let peer_state = &mut *peer_state_lock;
7607 match peer_state.channel_by_id.entry(msg.channel_id) {
7608 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7609 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7610 let mut pending_forward_info = match decoded_hop_res {
7611 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7612 self.construct_pending_htlc_status(
7613 msg, counterparty_node_id, shared_secret, next_hop,
7614 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7616 Err(e) => PendingHTLCStatus::Fail(e)
7618 let logger = WithChannelContext::from(&self.logger, &chan.context);
7619 // If the update_add is completely bogus, the call will Err and we will close,
7620 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7621 // want to reject the new HTLC and fail it backwards instead of forwarding.
7622 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7623 if msg.blinding_point.is_some() {
7624 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7625 msgs::UpdateFailMalformedHTLC {
7626 channel_id: msg.channel_id,
7627 htlc_id: msg.htlc_id,
7628 sha256_of_onion: [0; 32],
7629 failure_code: INVALID_ONION_BLINDING,
7633 match pending_forward_info {
7634 PendingHTLCStatus::Forward(PendingHTLCInfo {
7635 ref incoming_shared_secret, ref routing, ..
7637 let reason = if routing.blinded_failure().is_some() {
7638 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7639 } else if (error_code & 0x1000) != 0 {
7640 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7641 HTLCFailReason::reason(real_code, error_data)
7643 HTLCFailReason::from_failure_code(error_code)
7644 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7645 let msg = msgs::UpdateFailHTLC {
7646 channel_id: msg.channel_id,
7647 htlc_id: msg.htlc_id,
7650 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7656 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7658 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7659 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7662 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7667 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7669 let next_user_channel_id;
7670 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7671 let per_peer_state = self.per_peer_state.read().unwrap();
7672 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7674 debug_assert!(false);
7675 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7677 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7678 let peer_state = &mut *peer_state_lock;
7679 match peer_state.channel_by_id.entry(msg.channel_id) {
7680 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7681 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7682 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7683 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7684 let logger = WithChannelContext::from(&self.logger, &chan.context);
7686 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7688 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7689 .or_insert_with(Vec::new)
7690 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7692 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7693 // entry here, even though we *do* need to block the next RAA monitor update.
7694 // We do this instead in the `claim_funds_internal` by attaching a
7695 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7696 // outbound HTLC is claimed. This is guaranteed to all complete before we
7697 // process the RAA as messages are processed from single peers serially.
7698 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7699 next_user_channel_id = chan.context.get_user_id();
7702 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7703 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7706 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7709 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7710 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7711 funding_txo, msg.channel_id, Some(next_user_channel_id),
7717 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7718 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7719 // closing a channel), so any changes are likely to be lost on restart!
7720 let per_peer_state = self.per_peer_state.read().unwrap();
7721 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7723 debug_assert!(false);
7724 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7726 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7727 let peer_state = &mut *peer_state_lock;
7728 match peer_state.channel_by_id.entry(msg.channel_id) {
7729 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7730 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7731 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7733 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7734 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7737 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7742 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7743 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7744 // closing a channel), so any changes are likely to be lost on restart!
7745 let per_peer_state = self.per_peer_state.read().unwrap();
7746 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7748 debug_assert!(false);
7749 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7751 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7752 let peer_state = &mut *peer_state_lock;
7753 match peer_state.channel_by_id.entry(msg.channel_id) {
7754 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7755 if (msg.failure_code & 0x8000) == 0 {
7756 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7757 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7759 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7760 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7762 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7763 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7767 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7771 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7772 let per_peer_state = self.per_peer_state.read().unwrap();
7773 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7775 debug_assert!(false);
7776 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7778 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7779 let peer_state = &mut *peer_state_lock;
7780 match peer_state.channel_by_id.entry(msg.channel_id) {
7781 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7782 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7783 let logger = WithChannelContext::from(&self.logger, &chan.context);
7784 let funding_txo = chan.context.get_funding_txo();
7785 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7786 if let Some(monitor_update) = monitor_update_opt {
7787 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7788 peer_state, per_peer_state, chan);
7792 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7793 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7796 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7800 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7801 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7802 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7803 push_forward_event &= decode_update_add_htlcs.is_empty();
7804 let scid = update_add_htlcs.0;
7805 match decode_update_add_htlcs.entry(scid) {
7806 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7807 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7809 if push_forward_event { self.push_pending_forwards_ev(); }
7813 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7814 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7815 if push_forward_event { self.push_pending_forwards_ev() }
7819 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7820 let mut push_forward_event = false;
7821 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7822 let mut new_intercept_events = VecDeque::new();
7823 let mut failed_intercept_forwards = Vec::new();
7824 if !pending_forwards.is_empty() {
7825 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7826 let scid = match forward_info.routing {
7827 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7828 PendingHTLCRouting::Receive { .. } => 0,
7829 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7831 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7832 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7834 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7835 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7836 let forward_htlcs_empty = forward_htlcs.is_empty();
7837 match forward_htlcs.entry(scid) {
7838 hash_map::Entry::Occupied(mut entry) => {
7839 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7840 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7842 hash_map::Entry::Vacant(entry) => {
7843 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7844 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7846 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7847 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7848 match pending_intercepts.entry(intercept_id) {
7849 hash_map::Entry::Vacant(entry) => {
7850 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7851 requested_next_hop_scid: scid,
7852 payment_hash: forward_info.payment_hash,
7853 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7854 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7857 entry.insert(PendingAddHTLCInfo {
7858 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7860 hash_map::Entry::Occupied(_) => {
7861 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7862 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7863 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7864 short_channel_id: prev_short_channel_id,
7865 user_channel_id: Some(prev_user_channel_id),
7866 outpoint: prev_funding_outpoint,
7867 channel_id: prev_channel_id,
7868 htlc_id: prev_htlc_id,
7869 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7870 phantom_shared_secret: None,
7871 blinded_failure: forward_info.routing.blinded_failure(),
7874 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7875 HTLCFailReason::from_failure_code(0x4000 | 10),
7876 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7881 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7882 // payments are being processed.
7883 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7884 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7885 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7892 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7893 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7896 if !new_intercept_events.is_empty() {
7897 let mut events = self.pending_events.lock().unwrap();
7898 events.append(&mut new_intercept_events);
7904 fn push_pending_forwards_ev(&self) {
7905 let mut pending_events = self.pending_events.lock().unwrap();
7906 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7907 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7908 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7910 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7911 // events is done in batches and they are not removed until we're done processing each
7912 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7913 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7914 // payments will need an additional forwarding event before being claimed to make them look
7915 // real by taking more time.
7916 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7917 pending_events.push_back((Event::PendingHTLCsForwardable {
7918 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7923 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7924 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7925 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7926 /// the [`ChannelMonitorUpdate`] in question.
7927 fn raa_monitor_updates_held(&self,
7928 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7929 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7931 actions_blocking_raa_monitor_updates
7932 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7933 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7934 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7935 channel_funding_outpoint,
7937 counterparty_node_id,
7942 #[cfg(any(test, feature = "_test_utils"))]
7943 pub(crate) fn test_raa_monitor_updates_held(&self,
7944 counterparty_node_id: PublicKey, channel_id: ChannelId
7946 let per_peer_state = self.per_peer_state.read().unwrap();
7947 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7948 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7949 let peer_state = &mut *peer_state_lck;
7951 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7952 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7953 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7959 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7960 let htlcs_to_fail = {
7961 let per_peer_state = self.per_peer_state.read().unwrap();
7962 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7964 debug_assert!(false);
7965 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7966 }).map(|mtx| mtx.lock().unwrap())?;
7967 let peer_state = &mut *peer_state_lock;
7968 match peer_state.channel_by_id.entry(msg.channel_id) {
7969 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7970 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7971 let logger = WithChannelContext::from(&self.logger, &chan.context);
7972 let funding_txo_opt = chan.context.get_funding_txo();
7973 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
7974 self.raa_monitor_updates_held(
7975 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
7976 *counterparty_node_id)
7978 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
7979 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
7980 if let Some(monitor_update) = monitor_update_opt {
7981 let funding_txo = funding_txo_opt
7982 .expect("Funding outpoint must have been set for RAA handling to succeed");
7983 handle_new_monitor_update!(self, funding_txo, monitor_update,
7984 peer_state_lock, peer_state, per_peer_state, chan);
7988 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7989 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
7992 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7995 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
7999 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8000 let per_peer_state = self.per_peer_state.read().unwrap();
8001 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8003 debug_assert!(false);
8004 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8006 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8007 let peer_state = &mut *peer_state_lock;
8008 match peer_state.channel_by_id.entry(msg.channel_id) {
8009 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8010 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8011 let logger = WithChannelContext::from(&self.logger, &chan.context);
8012 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8014 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8015 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8018 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8023 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8024 let per_peer_state = self.per_peer_state.read().unwrap();
8025 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8027 debug_assert!(false);
8028 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8030 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8031 let peer_state = &mut *peer_state_lock;
8032 match peer_state.channel_by_id.entry(msg.channel_id) {
8033 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8034 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8035 if !chan.context.is_usable() {
8036 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8039 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8040 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8041 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8042 msg, &self.default_configuration
8043 ), chan_phase_entry),
8044 // Note that announcement_signatures fails if the channel cannot be announced,
8045 // so get_channel_update_for_broadcast will never fail by the time we get here.
8046 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8049 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8050 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8053 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8058 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8059 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8060 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8061 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8063 // It's not a local channel
8064 return Ok(NotifyOption::SkipPersistNoEvents)
8067 let per_peer_state = self.per_peer_state.read().unwrap();
8068 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8069 if peer_state_mutex_opt.is_none() {
8070 return Ok(NotifyOption::SkipPersistNoEvents)
8072 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8073 let peer_state = &mut *peer_state_lock;
8074 match peer_state.channel_by_id.entry(chan_id) {
8075 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8076 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8077 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8078 if chan.context.should_announce() {
8079 // If the announcement is about a channel of ours which is public, some
8080 // other peer may simply be forwarding all its gossip to us. Don't provide
8081 // a scary-looking error message and return Ok instead.
8082 return Ok(NotifyOption::SkipPersistNoEvents);
8084 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8086 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8087 let msg_from_node_one = msg.contents.flags & 1 == 0;
8088 if were_node_one == msg_from_node_one {
8089 return Ok(NotifyOption::SkipPersistNoEvents);
8091 let logger = WithChannelContext::from(&self.logger, &chan.context);
8092 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8093 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8094 // If nothing changed after applying their update, we don't need to bother
8097 return Ok(NotifyOption::SkipPersistNoEvents);
8101 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8102 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8105 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8107 Ok(NotifyOption::DoPersist)
8110 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8111 let need_lnd_workaround = {
8112 let per_peer_state = self.per_peer_state.read().unwrap();
8114 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8116 debug_assert!(false);
8117 MsgHandleErrInternal::send_err_msg_no_close(
8118 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8122 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8123 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8124 let peer_state = &mut *peer_state_lock;
8125 match peer_state.channel_by_id.entry(msg.channel_id) {
8126 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8127 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8128 // Currently, we expect all holding cell update_adds to be dropped on peer
8129 // disconnect, so Channel's reestablish will never hand us any holding cell
8130 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8131 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8132 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8133 msg, &&logger, &self.node_signer, self.chain_hash,
8134 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8135 let mut channel_update = None;
8136 if let Some(msg) = responses.shutdown_msg {
8137 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8138 node_id: counterparty_node_id.clone(),
8141 } else if chan.context.is_usable() {
8142 // If the channel is in a usable state (ie the channel is not being shut
8143 // down), send a unicast channel_update to our counterparty to make sure
8144 // they have the latest channel parameters.
8145 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8146 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8147 node_id: chan.context.get_counterparty_node_id(),
8152 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8153 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8154 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8155 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8156 debug_assert!(htlc_forwards.is_none());
8157 debug_assert!(decode_update_add_htlcs.is_none());
8158 if let Some(upd) = channel_update {
8159 peer_state.pending_msg_events.push(upd);
8163 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8164 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8167 hash_map::Entry::Vacant(_) => {
8168 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8170 // Unfortunately, lnd doesn't force close on errors
8171 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8172 // One of the few ways to get an lnd counterparty to force close is by
8173 // replicating what they do when restoring static channel backups (SCBs). They
8174 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8175 // invalid `your_last_per_commitment_secret`.
8177 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8178 // can assume it's likely the channel closed from our point of view, but it
8179 // remains open on the counterparty's side. By sending this bogus
8180 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8181 // force close broadcasting their latest state. If the closing transaction from
8182 // our point of view remains unconfirmed, it'll enter a race with the
8183 // counterparty's to-be-broadcast latest commitment transaction.
8184 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8185 node_id: *counterparty_node_id,
8186 msg: msgs::ChannelReestablish {
8187 channel_id: msg.channel_id,
8188 next_local_commitment_number: 0,
8189 next_remote_commitment_number: 0,
8190 your_last_per_commitment_secret: [1u8; 32],
8191 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8192 next_funding_txid: None,
8195 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8196 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8197 counterparty_node_id), msg.channel_id)
8203 if let Some(channel_ready_msg) = need_lnd_workaround {
8204 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8206 Ok(NotifyOption::SkipPersistHandleEvents)
8209 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8210 fn process_pending_monitor_events(&self) -> bool {
8211 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8213 let mut failed_channels = Vec::new();
8214 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8215 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8216 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8217 for monitor_event in monitor_events.drain(..) {
8218 match monitor_event {
8219 MonitorEvent::HTLCEvent(htlc_update) => {
8220 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8221 if let Some(preimage) = htlc_update.payment_preimage {
8222 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8223 self.claim_funds_internal(htlc_update.source, preimage,
8224 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8225 false, counterparty_node_id, funding_outpoint, channel_id, None);
8227 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8228 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8229 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8230 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8233 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8234 let counterparty_node_id_opt = match counterparty_node_id {
8235 Some(cp_id) => Some(cp_id),
8237 // TODO: Once we can rely on the counterparty_node_id from the
8238 // monitor event, this and the outpoint_to_peer map should be removed.
8239 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8240 outpoint_to_peer.get(&funding_outpoint).cloned()
8243 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8244 let per_peer_state = self.per_peer_state.read().unwrap();
8245 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8246 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8247 let peer_state = &mut *peer_state_lock;
8248 let pending_msg_events = &mut peer_state.pending_msg_events;
8249 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8250 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8251 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8254 ClosureReason::HolderForceClosed
8256 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8257 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8258 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8259 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8263 pending_msg_events.push(events::MessageSendEvent::HandleError {
8264 node_id: chan.context.get_counterparty_node_id(),
8265 action: msgs::ErrorAction::DisconnectPeer {
8266 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8274 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8275 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8281 for failure in failed_channels.drain(..) {
8282 self.finish_close_channel(failure);
8285 has_pending_monitor_events
8288 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8289 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8290 /// update events as a separate process method here.
8292 pub fn process_monitor_events(&self) {
8293 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8294 self.process_pending_monitor_events();
8297 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8298 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8299 /// update was applied.
8300 fn check_free_holding_cells(&self) -> bool {
8301 let mut has_monitor_update = false;
8302 let mut failed_htlcs = Vec::new();
8304 // Walk our list of channels and find any that need to update. Note that when we do find an
8305 // update, if it includes actions that must be taken afterwards, we have to drop the
8306 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8307 // manage to go through all our peers without finding a single channel to update.
8309 let per_peer_state = self.per_peer_state.read().unwrap();
8310 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8312 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8313 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8314 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8315 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8317 let counterparty_node_id = chan.context.get_counterparty_node_id();
8318 let funding_txo = chan.context.get_funding_txo();
8319 let (monitor_opt, holding_cell_failed_htlcs) =
8320 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8321 if !holding_cell_failed_htlcs.is_empty() {
8322 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8324 if let Some(monitor_update) = monitor_opt {
8325 has_monitor_update = true;
8327 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8328 peer_state_lock, peer_state, per_peer_state, chan);
8329 continue 'peer_loop;
8338 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8339 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8340 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8346 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8347 /// is (temporarily) unavailable, and the operation should be retried later.
8349 /// This method allows for that retry - either checking for any signer-pending messages to be
8350 /// attempted in every channel, or in the specifically provided channel.
8352 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8353 #[cfg(async_signing)]
8354 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8355 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8357 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8358 let node_id = phase.context().get_counterparty_node_id();
8360 ChannelPhase::Funded(chan) => {
8361 let msgs = chan.signer_maybe_unblocked(&self.logger);
8362 if let Some(updates) = msgs.commitment_update {
8363 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8368 if let Some(msg) = msgs.funding_signed {
8369 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8374 if let Some(msg) = msgs.channel_ready {
8375 send_channel_ready!(self, pending_msg_events, chan, msg);
8378 ChannelPhase::UnfundedOutboundV1(chan) => {
8379 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8380 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8386 ChannelPhase::UnfundedInboundV1(_) => {},
8390 let per_peer_state = self.per_peer_state.read().unwrap();
8391 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8392 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8393 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8394 let peer_state = &mut *peer_state_lock;
8395 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8396 unblock_chan(chan, &mut peer_state.pending_msg_events);
8400 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8401 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8402 let peer_state = &mut *peer_state_lock;
8403 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8404 unblock_chan(chan, &mut peer_state.pending_msg_events);
8410 /// Check whether any channels have finished removing all pending updates after a shutdown
8411 /// exchange and can now send a closing_signed.
8412 /// Returns whether any closing_signed messages were generated.
8413 fn maybe_generate_initial_closing_signed(&self) -> bool {
8414 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8415 let mut has_update = false;
8416 let mut shutdown_results = Vec::new();
8418 let per_peer_state = self.per_peer_state.read().unwrap();
8420 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8421 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8422 let peer_state = &mut *peer_state_lock;
8423 let pending_msg_events = &mut peer_state.pending_msg_events;
8424 peer_state.channel_by_id.retain(|channel_id, phase| {
8426 ChannelPhase::Funded(chan) => {
8427 let logger = WithChannelContext::from(&self.logger, &chan.context);
8428 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8429 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8430 if let Some(msg) = msg_opt {
8432 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8433 node_id: chan.context.get_counterparty_node_id(), msg,
8436 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8437 if let Some(shutdown_result) = shutdown_result_opt {
8438 shutdown_results.push(shutdown_result);
8440 if let Some(tx) = tx_opt {
8441 // We're done with this channel. We got a closing_signed and sent back
8442 // a closing_signed with a closing transaction to broadcast.
8443 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8444 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8445 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8450 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8451 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8452 update_maps_on_chan_removal!(self, &chan.context);
8458 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8459 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8464 _ => true, // Retain unfunded channels if present.
8470 for (counterparty_node_id, err) in handle_errors.drain(..) {
8471 let _ = handle_error!(self, err, counterparty_node_id);
8474 for shutdown_result in shutdown_results.drain(..) {
8475 self.finish_close_channel(shutdown_result);
8481 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8482 /// pushing the channel monitor update (if any) to the background events queue and removing the
8484 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8485 for mut failure in failed_channels.drain(..) {
8486 // Either a commitment transactions has been confirmed on-chain or
8487 // Channel::block_disconnected detected that the funding transaction has been
8488 // reorganized out of the main chain.
8489 // We cannot broadcast our latest local state via monitor update (as
8490 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8491 // so we track the update internally and handle it when the user next calls
8492 // timer_tick_occurred, guaranteeing we're running normally.
8493 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8494 assert_eq!(update.updates.len(), 1);
8495 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8496 assert!(should_broadcast);
8497 } else { unreachable!(); }
8498 self.pending_background_events.lock().unwrap().push(
8499 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8500 counterparty_node_id, funding_txo, update, channel_id,
8503 self.finish_close_channel(failure);
8508 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8509 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8510 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8511 /// not have an expiration unless otherwise set on the builder.
8515 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8516 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8517 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8518 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8519 /// order to send the [`InvoiceRequest`].
8521 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8525 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8530 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8532 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8534 /// [`Offer`]: crate::offers::offer::Offer
8535 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8536 pub fn create_offer_builder(
8537 &$self, description: String
8538 ) -> Result<$builder, Bolt12SemanticError> {
8539 let node_id = $self.get_our_node_id();
8540 let expanded_key = &$self.inbound_payment_key;
8541 let entropy = &*$self.entropy_source;
8542 let secp_ctx = &$self.secp_ctx;
8544 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8545 let builder = OfferBuilder::deriving_signing_pubkey(
8546 description, node_id, expanded_key, entropy, secp_ctx
8548 .chain_hash($self.chain_hash)
8555 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8556 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8557 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8561 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8562 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8564 /// The builder will have the provided expiration set. Any changes to the expiration on the
8565 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8566 /// block time minus two hours is used for the current time when determining if the refund has
8569 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8570 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8571 /// with an [`Event::InvoiceRequestFailed`].
8573 /// If `max_total_routing_fee_msat` is not specified, The default from
8574 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8578 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8579 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8580 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8581 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8582 /// order to send the [`Bolt12Invoice`].
8584 /// Also, uses a derived payer id in the refund for payer privacy.
8588 /// Requires a direct connection to an introduction node in the responding
8589 /// [`Bolt12Invoice::payment_paths`].
8594 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8595 /// - `amount_msats` is invalid, or
8596 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8598 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8600 /// [`Refund`]: crate::offers::refund::Refund
8601 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8602 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8603 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8604 pub fn create_refund_builder(
8605 &$self, description: String, amount_msats: u64, absolute_expiry: Duration,
8606 payment_id: PaymentId, retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8607 ) -> Result<$builder, Bolt12SemanticError> {
8608 let node_id = $self.get_our_node_id();
8609 let expanded_key = &$self.inbound_payment_key;
8610 let entropy = &*$self.entropy_source;
8611 let secp_ctx = &$self.secp_ctx;
8613 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8614 let builder = RefundBuilder::deriving_payer_id(
8615 description, node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8617 .chain_hash($self.chain_hash)
8618 .absolute_expiry(absolute_expiry)
8621 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8623 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8624 $self.pending_outbound_payments
8625 .add_new_awaiting_invoice(
8626 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8628 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8634 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8636 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8637 T::Target: BroadcasterInterface,
8638 ES::Target: EntropySource,
8639 NS::Target: NodeSigner,
8640 SP::Target: SignerProvider,
8641 F::Target: FeeEstimator,
8645 #[cfg(not(c_bindings))]
8646 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8647 #[cfg(not(c_bindings))]
8648 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8651 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8653 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8655 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8656 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8657 /// [`Bolt12Invoice`] once it is received.
8659 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8660 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8661 /// The optional parameters are used in the builder, if `Some`:
8662 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8663 /// [`Offer::expects_quantity`] is `true`.
8664 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8665 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8667 /// If `max_total_routing_fee_msat` is not specified, The default from
8668 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8672 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8673 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8676 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8677 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8678 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8682 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8683 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8684 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8685 /// in order to send the [`Bolt12Invoice`].
8689 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8690 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8691 /// [`Bolt12Invoice::payment_paths`].
8696 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8697 /// - the provided parameters are invalid for the offer,
8698 /// - the offer is for an unsupported chain, or
8699 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8702 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8703 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8704 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8705 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8706 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8707 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8708 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8709 pub fn pay_for_offer(
8710 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8711 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8712 max_total_routing_fee_msat: Option<u64>
8713 ) -> Result<(), Bolt12SemanticError> {
8714 let expanded_key = &self.inbound_payment_key;
8715 let entropy = &*self.entropy_source;
8716 let secp_ctx = &self.secp_ctx;
8718 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8719 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8721 let builder = builder.chain_hash(self.chain_hash)?;
8723 let builder = match quantity {
8725 Some(quantity) => builder.quantity(quantity)?,
8727 let builder = match amount_msats {
8729 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8731 let builder = match payer_note {
8733 Some(payer_note) => builder.payer_note(payer_note),
8735 let invoice_request = builder.build_and_sign()?;
8736 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8738 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8740 let expiration = StaleExpiration::TimerTicks(1);
8741 self.pending_outbound_payments
8742 .add_new_awaiting_invoice(
8743 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8745 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8747 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8748 if offer.paths().is_empty() {
8749 let message = new_pending_onion_message(
8750 OffersMessage::InvoiceRequest(invoice_request),
8751 Destination::Node(offer.signing_pubkey()),
8754 pending_offers_messages.push(message);
8756 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8757 // Using only one path could result in a failure if the path no longer exists. But only
8758 // one invoice for a given payment id will be paid, even if more than one is received.
8759 const REQUEST_LIMIT: usize = 10;
8760 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8761 let message = new_pending_onion_message(
8762 OffersMessage::InvoiceRequest(invoice_request.clone()),
8763 Destination::BlindedPath(path.clone()),
8764 Some(reply_path.clone()),
8766 pending_offers_messages.push(message);
8773 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8776 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8777 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8778 /// [`PaymentPreimage`].
8782 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8783 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8784 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8785 /// received and no retries will be made.
8790 /// - the refund is for an unsupported chain, or
8791 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8794 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8795 pub fn request_refund_payment(&self, refund: &Refund) -> Result<(), Bolt12SemanticError> {
8796 let expanded_key = &self.inbound_payment_key;
8797 let entropy = &*self.entropy_source;
8798 let secp_ctx = &self.secp_ctx;
8800 let amount_msats = refund.amount_msats();
8801 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8803 if refund.chain() != self.chain_hash {
8804 return Err(Bolt12SemanticError::UnsupportedChain);
8807 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8809 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8810 Ok((payment_hash, payment_secret)) => {
8811 let payment_paths = self.create_blinded_payment_paths(amount_msats, payment_secret)
8812 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8814 #[cfg(feature = "std")]
8815 let builder = refund.respond_using_derived_keys(
8816 payment_paths, payment_hash, expanded_key, entropy
8818 #[cfg(not(feature = "std"))]
8819 let created_at = Duration::from_secs(
8820 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8822 #[cfg(not(feature = "std"))]
8823 let builder = refund.respond_using_derived_keys_no_std(
8824 payment_paths, payment_hash, created_at, expanded_key, entropy
8826 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8827 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8828 let reply_path = self.create_blinded_path()
8829 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8831 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8832 if refund.paths().is_empty() {
8833 let message = new_pending_onion_message(
8834 OffersMessage::Invoice(invoice),
8835 Destination::Node(refund.payer_id()),
8838 pending_offers_messages.push(message);
8840 for path in refund.paths() {
8841 let message = new_pending_onion_message(
8842 OffersMessage::Invoice(invoice.clone()),
8843 Destination::BlindedPath(path.clone()),
8844 Some(reply_path.clone()),
8846 pending_offers_messages.push(message);
8852 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8856 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8859 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8860 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8862 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
8863 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
8864 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
8865 /// passed directly to [`claim_funds`].
8867 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8869 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8870 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8874 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8875 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8877 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8879 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8880 /// on versions of LDK prior to 0.0.114.
8882 /// [`claim_funds`]: Self::claim_funds
8883 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8884 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8885 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
8886 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
8887 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8888 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8889 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8890 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8891 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8892 min_final_cltv_expiry_delta)
8895 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8896 /// stored external to LDK.
8898 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8899 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8900 /// the `min_value_msat` provided here, if one is provided.
8902 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8903 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8906 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8907 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8908 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8909 /// sender "proof-of-payment" unless they have paid the required amount.
8911 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8912 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8913 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8914 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8915 /// invoices when no timeout is set.
8917 /// Note that we use block header time to time-out pending inbound payments (with some margin
8918 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8919 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8920 /// If you need exact expiry semantics, you should enforce them upon receipt of
8921 /// [`PaymentClaimable`].
8923 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8924 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8926 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8927 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8931 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8932 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8934 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8936 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8937 /// on versions of LDK prior to 0.0.114.
8939 /// [`create_inbound_payment`]: Self::create_inbound_payment
8940 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8941 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8942 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8943 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8944 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8945 min_final_cltv_expiry)
8948 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8949 /// previously returned from [`create_inbound_payment`].
8951 /// [`create_inbound_payment`]: Self::create_inbound_payment
8952 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8953 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8956 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8958 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8959 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8960 let recipient = self.get_our_node_id();
8961 let secp_ctx = &self.secp_ctx;
8963 let peers = self.per_peer_state.read().unwrap()
8965 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
8966 .map(|(node_id, _)| *node_id)
8967 .collect::<Vec<_>>();
8970 .create_blinded_paths(recipient, peers, secp_ctx)
8971 .and_then(|paths| paths.into_iter().next().ok_or(()))
8974 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
8975 /// [`Router::create_blinded_payment_paths`].
8976 fn create_blinded_payment_paths(
8977 &self, amount_msats: u64, payment_secret: PaymentSecret
8978 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
8979 let secp_ctx = &self.secp_ctx;
8981 let first_hops = self.list_usable_channels();
8982 let payee_node_id = self.get_our_node_id();
8983 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
8984 + LATENCY_GRACE_PERIOD_BLOCKS;
8985 let payee_tlvs = ReceiveTlvs {
8987 payment_constraints: PaymentConstraints {
8989 htlc_minimum_msat: 1,
8992 self.router.create_blinded_payment_paths(
8993 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
8997 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
8998 /// are used when constructing the phantom invoice's route hints.
9000 /// [phantom node payments]: crate::sign::PhantomKeysManager
9001 pub fn get_phantom_scid(&self) -> u64 {
9002 let best_block_height = self.best_block.read().unwrap().height;
9003 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9005 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9006 // Ensure the generated scid doesn't conflict with a real channel.
9007 match short_to_chan_info.get(&scid_candidate) {
9008 Some(_) => continue,
9009 None => return scid_candidate
9014 /// Gets route hints for use in receiving [phantom node payments].
9016 /// [phantom node payments]: crate::sign::PhantomKeysManager
9017 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9019 channels: self.list_usable_channels(),
9020 phantom_scid: self.get_phantom_scid(),
9021 real_node_pubkey: self.get_our_node_id(),
9025 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9026 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9027 /// [`ChannelManager::forward_intercepted_htlc`].
9029 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9030 /// times to get a unique scid.
9031 pub fn get_intercept_scid(&self) -> u64 {
9032 let best_block_height = self.best_block.read().unwrap().height;
9033 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9035 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9036 // Ensure the generated scid doesn't conflict with a real channel.
9037 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9038 return scid_candidate
9042 /// Gets inflight HTLC information by processing pending outbound payments that are in
9043 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9044 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9045 let mut inflight_htlcs = InFlightHtlcs::new();
9047 let per_peer_state = self.per_peer_state.read().unwrap();
9048 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9049 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9050 let peer_state = &mut *peer_state_lock;
9051 for chan in peer_state.channel_by_id.values().filter_map(
9052 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9054 for (htlc_source, _) in chan.inflight_htlc_sources() {
9055 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9056 inflight_htlcs.process_path(path, self.get_our_node_id());
9065 #[cfg(any(test, feature = "_test_utils"))]
9066 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9067 let events = core::cell::RefCell::new(Vec::new());
9068 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9069 self.process_pending_events(&event_handler);
9073 #[cfg(feature = "_test_utils")]
9074 pub fn push_pending_event(&self, event: events::Event) {
9075 let mut events = self.pending_events.lock().unwrap();
9076 events.push_back((event, None));
9080 pub fn pop_pending_event(&self) -> Option<events::Event> {
9081 let mut events = self.pending_events.lock().unwrap();
9082 events.pop_front().map(|(e, _)| e)
9086 pub fn has_pending_payments(&self) -> bool {
9087 self.pending_outbound_payments.has_pending_payments()
9091 pub fn clear_pending_payments(&self) {
9092 self.pending_outbound_payments.clear_pending_payments()
9095 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9096 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9097 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9098 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9099 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9100 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9101 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9103 let logger = WithContext::from(
9104 &self.logger, Some(counterparty_node_id), Some(channel_id),
9107 let per_peer_state = self.per_peer_state.read().unwrap();
9108 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9109 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9110 let peer_state = &mut *peer_state_lck;
9111 if let Some(blocker) = completed_blocker.take() {
9112 // Only do this on the first iteration of the loop.
9113 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9114 .get_mut(&channel_id)
9116 blockers.retain(|iter| iter != &blocker);
9120 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9121 channel_funding_outpoint, channel_id, counterparty_node_id) {
9122 // Check that, while holding the peer lock, we don't have anything else
9123 // blocking monitor updates for this channel. If we do, release the monitor
9124 // update(s) when those blockers complete.
9125 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9130 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9132 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9133 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9134 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9135 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9137 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9138 peer_state_lck, peer_state, per_peer_state, chan);
9139 if further_update_exists {
9140 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9145 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9152 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9153 log_pubkey!(counterparty_node_id));
9159 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9160 for action in actions {
9162 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9163 channel_funding_outpoint, channel_id, counterparty_node_id
9165 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9171 /// Processes any events asynchronously in the order they were generated since the last call
9172 /// using the given event handler.
9174 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9175 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9179 process_events_body!(self, ev, { handler(ev).await });
9183 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9185 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9186 T::Target: BroadcasterInterface,
9187 ES::Target: EntropySource,
9188 NS::Target: NodeSigner,
9189 SP::Target: SignerProvider,
9190 F::Target: FeeEstimator,
9194 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9195 /// The returned array will contain `MessageSendEvent`s for different peers if
9196 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9197 /// is always placed next to each other.
9199 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9200 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9201 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9202 /// will randomly be placed first or last in the returned array.
9204 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9205 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9206 /// the `MessageSendEvent`s to the specific peer they were generated under.
9207 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9208 let events = RefCell::new(Vec::new());
9209 PersistenceNotifierGuard::optionally_notify(self, || {
9210 let mut result = NotifyOption::SkipPersistNoEvents;
9212 // TODO: This behavior should be documented. It's unintuitive that we query
9213 // ChannelMonitors when clearing other events.
9214 if self.process_pending_monitor_events() {
9215 result = NotifyOption::DoPersist;
9218 if self.check_free_holding_cells() {
9219 result = NotifyOption::DoPersist;
9221 if self.maybe_generate_initial_closing_signed() {
9222 result = NotifyOption::DoPersist;
9225 let mut is_any_peer_connected = false;
9226 let mut pending_events = Vec::new();
9227 let per_peer_state = self.per_peer_state.read().unwrap();
9228 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9229 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9230 let peer_state = &mut *peer_state_lock;
9231 if peer_state.pending_msg_events.len() > 0 {
9232 pending_events.append(&mut peer_state.pending_msg_events);
9234 if peer_state.is_connected {
9235 is_any_peer_connected = true
9239 // Ensure that we are connected to some peers before getting broadcast messages.
9240 if is_any_peer_connected {
9241 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9242 pending_events.append(&mut broadcast_msgs);
9245 if !pending_events.is_empty() {
9246 events.replace(pending_events);
9255 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9257 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9258 T::Target: BroadcasterInterface,
9259 ES::Target: EntropySource,
9260 NS::Target: NodeSigner,
9261 SP::Target: SignerProvider,
9262 F::Target: FeeEstimator,
9266 /// Processes events that must be periodically handled.
9268 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9269 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9270 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9272 process_events_body!(self, ev, handler.handle_event(ev));
9276 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9278 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9279 T::Target: BroadcasterInterface,
9280 ES::Target: EntropySource,
9281 NS::Target: NodeSigner,
9282 SP::Target: SignerProvider,
9283 F::Target: FeeEstimator,
9287 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9289 let best_block = self.best_block.read().unwrap();
9290 assert_eq!(best_block.block_hash, header.prev_blockhash,
9291 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9292 assert_eq!(best_block.height, height - 1,
9293 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9296 self.transactions_confirmed(header, txdata, height);
9297 self.best_block_updated(header, height);
9300 fn block_disconnected(&self, header: &Header, height: u32) {
9301 let _persistence_guard =
9302 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9303 self, || -> NotifyOption { NotifyOption::DoPersist });
9304 let new_height = height - 1;
9306 let mut best_block = self.best_block.write().unwrap();
9307 assert_eq!(best_block.block_hash, header.block_hash(),
9308 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9309 assert_eq!(best_block.height, height,
9310 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9311 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9314 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9318 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9320 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9321 T::Target: BroadcasterInterface,
9322 ES::Target: EntropySource,
9323 NS::Target: NodeSigner,
9324 SP::Target: SignerProvider,
9325 F::Target: FeeEstimator,
9329 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9330 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9331 // during initialization prior to the chain_monitor being fully configured in some cases.
9332 // See the docs for `ChannelManagerReadArgs` for more.
9334 let block_hash = header.block_hash();
9335 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9337 let _persistence_guard =
9338 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9339 self, || -> NotifyOption { NotifyOption::DoPersist });
9340 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9341 .map(|(a, b)| (a, Vec::new(), b)));
9343 let last_best_block_height = self.best_block.read().unwrap().height;
9344 if height < last_best_block_height {
9345 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9346 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9350 fn best_block_updated(&self, header: &Header, height: u32) {
9351 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9352 // during initialization prior to the chain_monitor being fully configured in some cases.
9353 // See the docs for `ChannelManagerReadArgs` for more.
9355 let block_hash = header.block_hash();
9356 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9358 let _persistence_guard =
9359 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9360 self, || -> NotifyOption { NotifyOption::DoPersist });
9361 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9363 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9365 macro_rules! max_time {
9366 ($timestamp: expr) => {
9368 // Update $timestamp to be the max of its current value and the block
9369 // timestamp. This should keep us close to the current time without relying on
9370 // having an explicit local time source.
9371 // Just in case we end up in a race, we loop until we either successfully
9372 // update $timestamp or decide we don't need to.
9373 let old_serial = $timestamp.load(Ordering::Acquire);
9374 if old_serial >= header.time as usize { break; }
9375 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9381 max_time!(self.highest_seen_timestamp);
9382 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9383 payment_secrets.retain(|_, inbound_payment| {
9384 inbound_payment.expiry_time > header.time as u64
9388 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9389 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9390 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9391 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9392 let peer_state = &mut *peer_state_lock;
9393 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9394 let txid_opt = chan.context.get_funding_txo();
9395 let height_opt = chan.context.get_funding_tx_confirmation_height();
9396 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9397 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9398 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9405 fn transaction_unconfirmed(&self, txid: &Txid) {
9406 let _persistence_guard =
9407 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9408 self, || -> NotifyOption { NotifyOption::DoPersist });
9409 self.do_chain_event(None, |channel| {
9410 if let Some(funding_txo) = channel.context.get_funding_txo() {
9411 if funding_txo.txid == *txid {
9412 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9413 } else { Ok((None, Vec::new(), None)) }
9414 } else { Ok((None, Vec::new(), None)) }
9419 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9421 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9422 T::Target: BroadcasterInterface,
9423 ES::Target: EntropySource,
9424 NS::Target: NodeSigner,
9425 SP::Target: SignerProvider,
9426 F::Target: FeeEstimator,
9430 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9431 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9433 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9434 (&self, height_opt: Option<u32>, f: FN) {
9435 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9436 // during initialization prior to the chain_monitor being fully configured in some cases.
9437 // See the docs for `ChannelManagerReadArgs` for more.
9439 let mut failed_channels = Vec::new();
9440 let mut timed_out_htlcs = Vec::new();
9442 let per_peer_state = self.per_peer_state.read().unwrap();
9443 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9444 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9445 let peer_state = &mut *peer_state_lock;
9446 let pending_msg_events = &mut peer_state.pending_msg_events;
9448 peer_state.channel_by_id.retain(|_, phase| {
9450 // Retain unfunded channels.
9451 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9452 // TODO(dual_funding): Combine this match arm with above.
9453 #[cfg(dual_funding)]
9454 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9455 ChannelPhase::Funded(channel) => {
9456 let res = f(channel);
9457 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9458 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9459 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9460 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9461 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9463 let logger = WithChannelContext::from(&self.logger, &channel.context);
9464 if let Some(channel_ready) = channel_ready_opt {
9465 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9466 if channel.context.is_usable() {
9467 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9468 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9469 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9470 node_id: channel.context.get_counterparty_node_id(),
9475 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9480 let mut pending_events = self.pending_events.lock().unwrap();
9481 emit_channel_ready_event!(pending_events, channel);
9484 if let Some(announcement_sigs) = announcement_sigs {
9485 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9486 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9487 node_id: channel.context.get_counterparty_node_id(),
9488 msg: announcement_sigs,
9490 if let Some(height) = height_opt {
9491 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9492 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9494 // Note that announcement_signatures fails if the channel cannot be announced,
9495 // so get_channel_update_for_broadcast will never fail by the time we get here.
9496 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9501 if channel.is_our_channel_ready() {
9502 if let Some(real_scid) = channel.context.get_short_channel_id() {
9503 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9504 // to the short_to_chan_info map here. Note that we check whether we
9505 // can relay using the real SCID at relay-time (i.e.
9506 // enforce option_scid_alias then), and if the funding tx is ever
9507 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9508 // is always consistent.
9509 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9510 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9511 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9512 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9513 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9516 } else if let Err(reason) = res {
9517 update_maps_on_chan_removal!(self, &channel.context);
9518 // It looks like our counterparty went on-chain or funding transaction was
9519 // reorged out of the main chain. Close the channel.
9520 let reason_message = format!("{}", reason);
9521 failed_channels.push(channel.context.force_shutdown(true, reason));
9522 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9523 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9524 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9528 pending_msg_events.push(events::MessageSendEvent::HandleError {
9529 node_id: channel.context.get_counterparty_node_id(),
9530 action: msgs::ErrorAction::DisconnectPeer {
9531 msg: Some(msgs::ErrorMessage {
9532 channel_id: channel.context.channel_id(),
9533 data: reason_message,
9546 if let Some(height) = height_opt {
9547 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9548 payment.htlcs.retain(|htlc| {
9549 // If height is approaching the number of blocks we think it takes us to get
9550 // our commitment transaction confirmed before the HTLC expires, plus the
9551 // number of blocks we generally consider it to take to do a commitment update,
9552 // just give up on it and fail the HTLC.
9553 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9554 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9555 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9557 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9558 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9559 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9563 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9566 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9567 intercepted_htlcs.retain(|_, htlc| {
9568 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9569 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9570 short_channel_id: htlc.prev_short_channel_id,
9571 user_channel_id: Some(htlc.prev_user_channel_id),
9572 htlc_id: htlc.prev_htlc_id,
9573 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9574 phantom_shared_secret: None,
9575 outpoint: htlc.prev_funding_outpoint,
9576 channel_id: htlc.prev_channel_id,
9577 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9580 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9581 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9582 _ => unreachable!(),
9584 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9585 HTLCFailReason::from_failure_code(0x2000 | 2),
9586 HTLCDestination::InvalidForward { requested_forward_scid }));
9587 let logger = WithContext::from(
9588 &self.logger, None, Some(htlc.prev_channel_id)
9590 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9596 self.handle_init_event_channel_failures(failed_channels);
9598 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9599 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9603 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9604 /// may have events that need processing.
9606 /// In order to check if this [`ChannelManager`] needs persisting, call
9607 /// [`Self::get_and_clear_needs_persistence`].
9609 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9610 /// [`ChannelManager`] and should instead register actions to be taken later.
9611 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9612 self.event_persist_notifier.get_future()
9615 /// Returns true if this [`ChannelManager`] needs to be persisted.
9617 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9618 /// indicates this should be checked.
9619 pub fn get_and_clear_needs_persistence(&self) -> bool {
9620 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9623 #[cfg(any(test, feature = "_test_utils"))]
9624 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9625 self.event_persist_notifier.notify_pending()
9628 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9629 /// [`chain::Confirm`] interfaces.
9630 pub fn current_best_block(&self) -> BestBlock {
9631 self.best_block.read().unwrap().clone()
9634 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9635 /// [`ChannelManager`].
9636 pub fn node_features(&self) -> NodeFeatures {
9637 provided_node_features(&self.default_configuration)
9640 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9641 /// [`ChannelManager`].
9643 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9644 /// or not. Thus, this method is not public.
9645 #[cfg(any(feature = "_test_utils", test))]
9646 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9647 provided_bolt11_invoice_features(&self.default_configuration)
9650 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9651 /// [`ChannelManager`].
9652 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9653 provided_bolt12_invoice_features(&self.default_configuration)
9656 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9657 /// [`ChannelManager`].
9658 pub fn channel_features(&self) -> ChannelFeatures {
9659 provided_channel_features(&self.default_configuration)
9662 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9663 /// [`ChannelManager`].
9664 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9665 provided_channel_type_features(&self.default_configuration)
9668 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9669 /// [`ChannelManager`].
9670 pub fn init_features(&self) -> InitFeatures {
9671 provided_init_features(&self.default_configuration)
9675 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9676 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9678 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9679 T::Target: BroadcasterInterface,
9680 ES::Target: EntropySource,
9681 NS::Target: NodeSigner,
9682 SP::Target: SignerProvider,
9683 F::Target: FeeEstimator,
9687 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9688 // Note that we never need to persist the updated ChannelManager for an inbound
9689 // open_channel message - pre-funded channels are never written so there should be no
9690 // change to the contents.
9691 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9692 let res = self.internal_open_channel(counterparty_node_id, msg);
9693 let persist = match &res {
9694 Err(e) if e.closes_channel() => {
9695 debug_assert!(false, "We shouldn't close a new channel");
9696 NotifyOption::DoPersist
9698 _ => NotifyOption::SkipPersistHandleEvents,
9700 let _ = handle_error!(self, res, *counterparty_node_id);
9705 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9706 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9707 "Dual-funded channels not supported".to_owned(),
9708 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9711 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9712 // Note that we never need to persist the updated ChannelManager for an inbound
9713 // accept_channel message - pre-funded channels are never written so there should be no
9714 // change to the contents.
9715 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9716 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9717 NotifyOption::SkipPersistHandleEvents
9721 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9722 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9723 "Dual-funded channels not supported".to_owned(),
9724 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9727 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9728 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9729 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9732 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9733 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9734 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9737 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9738 // Note that we never need to persist the updated ChannelManager for an inbound
9739 // channel_ready message - while the channel's state will change, any channel_ready message
9740 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9741 // will not force-close the channel on startup.
9742 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9743 let res = self.internal_channel_ready(counterparty_node_id, msg);
9744 let persist = match &res {
9745 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9746 _ => NotifyOption::SkipPersistHandleEvents,
9748 let _ = handle_error!(self, res, *counterparty_node_id);
9753 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9754 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9755 "Quiescence not supported".to_owned(),
9756 msg.channel_id.clone())), *counterparty_node_id);
9759 #[cfg(dual_funding)]
9760 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9761 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9762 "Splicing not supported".to_owned(),
9763 msg.channel_id.clone())), *counterparty_node_id);
9766 #[cfg(dual_funding)]
9767 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9768 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9769 "Splicing not supported (splice_ack)".to_owned(),
9770 msg.channel_id.clone())), *counterparty_node_id);
9773 #[cfg(dual_funding)]
9774 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9775 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9776 "Splicing not supported (splice_locked)".to_owned(),
9777 msg.channel_id.clone())), *counterparty_node_id);
9780 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9781 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9782 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9785 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9786 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9787 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9790 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9791 // Note that we never need to persist the updated ChannelManager for an inbound
9792 // update_add_htlc message - the message itself doesn't change our channel state only the
9793 // `commitment_signed` message afterwards will.
9794 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9795 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9796 let persist = match &res {
9797 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9798 Err(_) => NotifyOption::SkipPersistHandleEvents,
9799 Ok(()) => NotifyOption::SkipPersistNoEvents,
9801 let _ = handle_error!(self, res, *counterparty_node_id);
9806 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9807 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9808 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9811 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9812 // Note that we never need to persist the updated ChannelManager for an inbound
9813 // update_fail_htlc message - the message itself doesn't change our channel state only the
9814 // `commitment_signed` message afterwards will.
9815 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9816 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9817 let persist = match &res {
9818 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9819 Err(_) => NotifyOption::SkipPersistHandleEvents,
9820 Ok(()) => NotifyOption::SkipPersistNoEvents,
9822 let _ = handle_error!(self, res, *counterparty_node_id);
9827 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9828 // Note that we never need to persist the updated ChannelManager for an inbound
9829 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9830 // only the `commitment_signed` message afterwards will.
9831 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9832 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9833 let persist = match &res {
9834 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9835 Err(_) => NotifyOption::SkipPersistHandleEvents,
9836 Ok(()) => NotifyOption::SkipPersistNoEvents,
9838 let _ = handle_error!(self, res, *counterparty_node_id);
9843 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9844 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9845 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9848 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9849 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9850 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9853 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9854 // Note that we never need to persist the updated ChannelManager for an inbound
9855 // update_fee message - the message itself doesn't change our channel state only the
9856 // `commitment_signed` message afterwards will.
9857 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9858 let res = self.internal_update_fee(counterparty_node_id, msg);
9859 let persist = match &res {
9860 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9861 Err(_) => NotifyOption::SkipPersistHandleEvents,
9862 Ok(()) => NotifyOption::SkipPersistNoEvents,
9864 let _ = handle_error!(self, res, *counterparty_node_id);
9869 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9870 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9871 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9874 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9875 PersistenceNotifierGuard::optionally_notify(self, || {
9876 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9879 NotifyOption::DoPersist
9884 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9885 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9886 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9887 let persist = match &res {
9888 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9889 Err(_) => NotifyOption::SkipPersistHandleEvents,
9890 Ok(persist) => *persist,
9892 let _ = handle_error!(self, res, *counterparty_node_id);
9897 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9898 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9899 self, || NotifyOption::SkipPersistHandleEvents);
9900 let mut failed_channels = Vec::new();
9901 let mut per_peer_state = self.per_peer_state.write().unwrap();
9904 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9905 "Marking channels with {} disconnected and generating channel_updates.",
9906 log_pubkey!(counterparty_node_id)
9908 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9909 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9910 let peer_state = &mut *peer_state_lock;
9911 let pending_msg_events = &mut peer_state.pending_msg_events;
9912 peer_state.channel_by_id.retain(|_, phase| {
9913 let context = match phase {
9914 ChannelPhase::Funded(chan) => {
9915 let logger = WithChannelContext::from(&self.logger, &chan.context);
9916 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9917 // We only retain funded channels that are not shutdown.
9922 // We retain UnfundedOutboundV1 channel for some time in case
9923 // peer unexpectedly disconnects, and intends to reconnect again.
9924 ChannelPhase::UnfundedOutboundV1(_) => {
9927 // Unfunded inbound channels will always be removed.
9928 ChannelPhase::UnfundedInboundV1(chan) => {
9931 #[cfg(dual_funding)]
9932 ChannelPhase::UnfundedOutboundV2(chan) => {
9935 #[cfg(dual_funding)]
9936 ChannelPhase::UnfundedInboundV2(chan) => {
9940 // Clean up for removal.
9941 update_maps_on_chan_removal!(self, &context);
9942 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9945 // Note that we don't bother generating any events for pre-accept channels -
9946 // they're not considered "channels" yet from the PoV of our events interface.
9947 peer_state.inbound_channel_request_by_id.clear();
9948 pending_msg_events.retain(|msg| {
9950 // V1 Channel Establishment
9951 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9952 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9953 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9954 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9955 // V2 Channel Establishment
9956 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9957 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9958 // Common Channel Establishment
9959 &events::MessageSendEvent::SendChannelReady { .. } => false,
9960 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9962 &events::MessageSendEvent::SendStfu { .. } => false,
9964 &events::MessageSendEvent::SendSplice { .. } => false,
9965 &events::MessageSendEvent::SendSpliceAck { .. } => false,
9966 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
9967 // Interactive Transaction Construction
9968 &events::MessageSendEvent::SendTxAddInput { .. } => false,
9969 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
9970 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
9971 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
9972 &events::MessageSendEvent::SendTxComplete { .. } => false,
9973 &events::MessageSendEvent::SendTxSignatures { .. } => false,
9974 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
9975 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
9976 &events::MessageSendEvent::SendTxAbort { .. } => false,
9977 // Channel Operations
9978 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
9979 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
9980 &events::MessageSendEvent::SendClosingSigned { .. } => false,
9981 &events::MessageSendEvent::SendShutdown { .. } => false,
9982 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
9983 &events::MessageSendEvent::HandleError { .. } => false,
9985 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
9986 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
9987 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
9988 // This check here is to ensure exhaustivity.
9989 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
9990 debug_assert!(false, "This event shouldn't have been here");
9993 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
9994 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
9995 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
9996 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
9997 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
9998 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10001 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10002 peer_state.is_connected = false;
10003 peer_state.ok_to_remove(true)
10004 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10007 per_peer_state.remove(counterparty_node_id);
10009 mem::drop(per_peer_state);
10011 for failure in failed_channels.drain(..) {
10012 self.finish_close_channel(failure);
10016 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10017 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10018 if !init_msg.features.supports_static_remote_key() {
10019 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10023 let mut res = Ok(());
10025 PersistenceNotifierGuard::optionally_notify(self, || {
10026 // If we have too many peers connected which don't have funded channels, disconnect the
10027 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10028 // unfunded channels taking up space in memory for disconnected peers, we still let new
10029 // peers connect, but we'll reject new channels from them.
10030 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10031 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10034 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10035 match peer_state_lock.entry(counterparty_node_id.clone()) {
10036 hash_map::Entry::Vacant(e) => {
10037 if inbound_peer_limited {
10039 return NotifyOption::SkipPersistNoEvents;
10041 e.insert(Mutex::new(PeerState {
10042 channel_by_id: new_hash_map(),
10043 inbound_channel_request_by_id: new_hash_map(),
10044 latest_features: init_msg.features.clone(),
10045 pending_msg_events: Vec::new(),
10046 in_flight_monitor_updates: BTreeMap::new(),
10047 monitor_update_blocked_actions: BTreeMap::new(),
10048 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10049 is_connected: true,
10052 hash_map::Entry::Occupied(e) => {
10053 let mut peer_state = e.get().lock().unwrap();
10054 peer_state.latest_features = init_msg.features.clone();
10056 let best_block_height = self.best_block.read().unwrap().height;
10057 if inbound_peer_limited &&
10058 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10059 peer_state.channel_by_id.len()
10062 return NotifyOption::SkipPersistNoEvents;
10065 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10066 peer_state.is_connected = true;
10071 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10073 let per_peer_state = self.per_peer_state.read().unwrap();
10074 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10075 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10076 let peer_state = &mut *peer_state_lock;
10077 let pending_msg_events = &mut peer_state.pending_msg_events;
10079 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10081 ChannelPhase::Funded(chan) => {
10082 let logger = WithChannelContext::from(&self.logger, &chan.context);
10083 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10084 node_id: chan.context.get_counterparty_node_id(),
10085 msg: chan.get_channel_reestablish(&&logger),
10089 ChannelPhase::UnfundedOutboundV1(chan) => {
10090 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10091 node_id: chan.context.get_counterparty_node_id(),
10092 msg: chan.get_open_channel(self.chain_hash),
10096 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
10097 #[cfg(dual_funding)]
10098 ChannelPhase::UnfundedOutboundV2(chan) => {
10099 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10100 node_id: chan.context.get_counterparty_node_id(),
10101 msg: chan.get_open_channel_v2(self.chain_hash),
10105 ChannelPhase::UnfundedInboundV1(_) => {
10106 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10107 // they are not persisted and won't be recovered after a crash.
10108 // Therefore, they shouldn't exist at this point.
10109 debug_assert!(false);
10112 // TODO(dual_funding): Combine this match arm with above once #[cfg(dual_funding)] is removed.
10113 #[cfg(dual_funding)]
10114 ChannelPhase::UnfundedInboundV2(channel) => {
10115 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10116 // they are not persisted and won't be recovered after a crash.
10117 // Therefore, they shouldn't exist at this point.
10118 debug_assert!(false);
10124 return NotifyOption::SkipPersistHandleEvents;
10125 //TODO: Also re-broadcast announcement_signatures
10130 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10131 match &msg.data as &str {
10132 "cannot co-op close channel w/ active htlcs"|
10133 "link failed to shutdown" =>
10135 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10136 // send one while HTLCs are still present. The issue is tracked at
10137 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10138 // to fix it but none so far have managed to land upstream. The issue appears to be
10139 // very low priority for the LND team despite being marked "P1".
10140 // We're not going to bother handling this in a sensible way, instead simply
10141 // repeating the Shutdown message on repeat until morale improves.
10142 if !msg.channel_id.is_zero() {
10143 PersistenceNotifierGuard::optionally_notify(
10145 || -> NotifyOption {
10146 let per_peer_state = self.per_peer_state.read().unwrap();
10147 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10148 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10149 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10150 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10151 if let Some(msg) = chan.get_outbound_shutdown() {
10152 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10153 node_id: *counterparty_node_id,
10157 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10158 node_id: *counterparty_node_id,
10159 action: msgs::ErrorAction::SendWarningMessage {
10160 msg: msgs::WarningMessage {
10161 channel_id: msg.channel_id,
10162 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10164 log_level: Level::Trace,
10167 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10168 // a `ChannelManager` write here.
10169 return NotifyOption::SkipPersistHandleEvents;
10171 NotifyOption::SkipPersistNoEvents
10180 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10182 if msg.channel_id.is_zero() {
10183 let channel_ids: Vec<ChannelId> = {
10184 let per_peer_state = self.per_peer_state.read().unwrap();
10185 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10186 if peer_state_mutex_opt.is_none() { return; }
10187 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10188 let peer_state = &mut *peer_state_lock;
10189 // Note that we don't bother generating any events for pre-accept channels -
10190 // they're not considered "channels" yet from the PoV of our events interface.
10191 peer_state.inbound_channel_request_by_id.clear();
10192 peer_state.channel_by_id.keys().cloned().collect()
10194 for channel_id in channel_ids {
10195 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10196 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10200 // First check if we can advance the channel type and try again.
10201 let per_peer_state = self.per_peer_state.read().unwrap();
10202 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10203 if peer_state_mutex_opt.is_none() { return; }
10204 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10205 let peer_state = &mut *peer_state_lock;
10206 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10207 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10208 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10209 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10210 node_id: *counterparty_node_id,
10216 #[cfg(dual_funding)]
10217 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10218 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10219 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10220 node_id: *counterparty_node_id,
10226 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10227 #[cfg(dual_funding)]
10228 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10232 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10233 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10237 fn provided_node_features(&self) -> NodeFeatures {
10238 provided_node_features(&self.default_configuration)
10241 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10242 provided_init_features(&self.default_configuration)
10245 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10246 Some(vec![self.chain_hash])
10249 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10250 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10251 "Dual-funded channels not supported".to_owned(),
10252 msg.channel_id.clone())), *counterparty_node_id);
10255 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10256 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10257 "Dual-funded channels not supported".to_owned(),
10258 msg.channel_id.clone())), *counterparty_node_id);
10261 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10262 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10263 "Dual-funded channels not supported".to_owned(),
10264 msg.channel_id.clone())), *counterparty_node_id);
10267 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10268 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10269 "Dual-funded channels not supported".to_owned(),
10270 msg.channel_id.clone())), *counterparty_node_id);
10273 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10274 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10275 "Dual-funded channels not supported".to_owned(),
10276 msg.channel_id.clone())), *counterparty_node_id);
10279 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10280 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10281 "Dual-funded channels not supported".to_owned(),
10282 msg.channel_id.clone())), *counterparty_node_id);
10285 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10286 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10287 "Dual-funded channels not supported".to_owned(),
10288 msg.channel_id.clone())), *counterparty_node_id);
10291 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10292 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10293 "Dual-funded channels not supported".to_owned(),
10294 msg.channel_id.clone())), *counterparty_node_id);
10297 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10298 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10299 "Dual-funded channels not supported".to_owned(),
10300 msg.channel_id.clone())), *counterparty_node_id);
10304 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10305 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10307 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10308 T::Target: BroadcasterInterface,
10309 ES::Target: EntropySource,
10310 NS::Target: NodeSigner,
10311 SP::Target: SignerProvider,
10312 F::Target: FeeEstimator,
10316 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
10317 let secp_ctx = &self.secp_ctx;
10318 let expanded_key = &self.inbound_payment_key;
10321 OffersMessage::InvoiceRequest(invoice_request) => {
10322 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10325 Ok(amount_msats) => amount_msats,
10326 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
10328 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10329 Ok(invoice_request) => invoice_request,
10331 let error = Bolt12SemanticError::InvalidMetadata;
10332 return Some(OffersMessage::InvoiceError(error.into()));
10336 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10337 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10338 Some(amount_msats), relative_expiry, None
10340 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10342 let error = Bolt12SemanticError::InvalidAmount;
10343 return Some(OffersMessage::InvoiceError(error.into()));
10347 let payment_paths = match self.create_blinded_payment_paths(
10348 amount_msats, payment_secret
10350 Ok(payment_paths) => payment_paths,
10352 let error = Bolt12SemanticError::MissingPaths;
10353 return Some(OffersMessage::InvoiceError(error.into()));
10357 #[cfg(not(feature = "std"))]
10358 let created_at = Duration::from_secs(
10359 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10362 if invoice_request.keys.is_some() {
10363 #[cfg(feature = "std")]
10364 let builder = invoice_request.respond_using_derived_keys(
10365 payment_paths, payment_hash
10367 #[cfg(not(feature = "std"))]
10368 let builder = invoice_request.respond_using_derived_keys_no_std(
10369 payment_paths, payment_hash, created_at
10371 let builder: Result<InvoiceBuilder<DerivedSigningPubkey>, _> =
10372 builder.map(|b| b.into());
10373 match builder.and_then(|b| b.allow_mpp().build_and_sign(secp_ctx)) {
10374 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
10375 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
10378 #[cfg(feature = "std")]
10379 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10380 #[cfg(not(feature = "std"))]
10381 let builder = invoice_request.respond_with_no_std(
10382 payment_paths, payment_hash, created_at
10384 let builder: Result<InvoiceBuilder<ExplicitSigningPubkey>, _> =
10385 builder.map(|b| b.into());
10386 let response = builder.and_then(|builder| builder.allow_mpp().build())
10387 .map_err(|e| OffersMessage::InvoiceError(e.into()))
10388 .and_then(|invoice| {
10390 let mut invoice = invoice;
10391 match invoice.sign(|invoice: &UnsignedBolt12Invoice|
10392 self.node_signer.sign_bolt12_invoice(invoice)
10394 Ok(invoice) => Ok(OffersMessage::Invoice(invoice)),
10395 Err(SignError::Signing) => Err(OffersMessage::InvoiceError(
10396 InvoiceError::from_string("Failed signing invoice".to_string())
10398 Err(SignError::Verification(_)) => Err(OffersMessage::InvoiceError(
10399 InvoiceError::from_string("Failed invoice signature verification".to_string())
10404 Ok(invoice) => Some(invoice),
10405 Err(error) => Some(error),
10409 OffersMessage::Invoice(invoice) => {
10410 match invoice.verify(expanded_key, secp_ctx) {
10412 Some(OffersMessage::InvoiceError(InvoiceError::from_string("Unrecognized invoice".to_owned())))
10414 Ok(_) if invoice.invoice_features().requires_unknown_bits_from(&self.bolt12_invoice_features()) => {
10415 Some(OffersMessage::InvoiceError(Bolt12SemanticError::UnknownRequiredFeatures.into()))
10417 Ok(payment_id) => {
10418 if let Err(e) = self.send_payment_for_bolt12_invoice(&invoice, payment_id) {
10419 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10420 Some(OffersMessage::InvoiceError(InvoiceError::from_string(format!("{:?}", e))))
10427 OffersMessage::InvoiceError(invoice_error) => {
10428 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10434 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10435 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10439 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10440 /// [`ChannelManager`].
10441 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10442 let mut node_features = provided_init_features(config).to_context();
10443 node_features.set_keysend_optional();
10447 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10448 /// [`ChannelManager`].
10450 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10451 /// or not. Thus, this method is not public.
10452 #[cfg(any(feature = "_test_utils", test))]
10453 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10454 provided_init_features(config).to_context()
10457 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10458 /// [`ChannelManager`].
10459 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10460 provided_init_features(config).to_context()
10463 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10464 /// [`ChannelManager`].
10465 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10466 provided_init_features(config).to_context()
10469 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10470 /// [`ChannelManager`].
10471 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10472 ChannelTypeFeatures::from_init(&provided_init_features(config))
10475 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10476 /// [`ChannelManager`].
10477 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10478 // Note that if new features are added here which other peers may (eventually) require, we
10479 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10480 // [`ErroringMessageHandler`].
10481 let mut features = InitFeatures::empty();
10482 features.set_data_loss_protect_required();
10483 features.set_upfront_shutdown_script_optional();
10484 features.set_variable_length_onion_required();
10485 features.set_static_remote_key_required();
10486 features.set_payment_secret_required();
10487 features.set_basic_mpp_optional();
10488 features.set_wumbo_optional();
10489 features.set_shutdown_any_segwit_optional();
10490 features.set_channel_type_optional();
10491 features.set_scid_privacy_optional();
10492 features.set_zero_conf_optional();
10493 features.set_route_blinding_optional();
10494 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10495 features.set_anchors_zero_fee_htlc_tx_optional();
10500 const SERIALIZATION_VERSION: u8 = 1;
10501 const MIN_SERIALIZATION_VERSION: u8 = 1;
10503 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10504 (2, fee_base_msat, required),
10505 (4, fee_proportional_millionths, required),
10506 (6, cltv_expiry_delta, required),
10509 impl_writeable_tlv_based!(ChannelCounterparty, {
10510 (2, node_id, required),
10511 (4, features, required),
10512 (6, unspendable_punishment_reserve, required),
10513 (8, forwarding_info, option),
10514 (9, outbound_htlc_minimum_msat, option),
10515 (11, outbound_htlc_maximum_msat, option),
10518 impl Writeable for ChannelDetails {
10519 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10520 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10521 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10522 let user_channel_id_low = self.user_channel_id as u64;
10523 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10524 write_tlv_fields!(writer, {
10525 (1, self.inbound_scid_alias, option),
10526 (2, self.channel_id, required),
10527 (3, self.channel_type, option),
10528 (4, self.counterparty, required),
10529 (5, self.outbound_scid_alias, option),
10530 (6, self.funding_txo, option),
10531 (7, self.config, option),
10532 (8, self.short_channel_id, option),
10533 (9, self.confirmations, option),
10534 (10, self.channel_value_satoshis, required),
10535 (12, self.unspendable_punishment_reserve, option),
10536 (14, user_channel_id_low, required),
10537 (16, self.balance_msat, required),
10538 (18, self.outbound_capacity_msat, required),
10539 (19, self.next_outbound_htlc_limit_msat, required),
10540 (20, self.inbound_capacity_msat, required),
10541 (21, self.next_outbound_htlc_minimum_msat, required),
10542 (22, self.confirmations_required, option),
10543 (24, self.force_close_spend_delay, option),
10544 (26, self.is_outbound, required),
10545 (28, self.is_channel_ready, required),
10546 (30, self.is_usable, required),
10547 (32, self.is_public, required),
10548 (33, self.inbound_htlc_minimum_msat, option),
10549 (35, self.inbound_htlc_maximum_msat, option),
10550 (37, user_channel_id_high_opt, option),
10551 (39, self.feerate_sat_per_1000_weight, option),
10552 (41, self.channel_shutdown_state, option),
10553 (43, self.pending_inbound_htlcs, optional_vec),
10554 (45, self.pending_outbound_htlcs, optional_vec),
10560 impl Readable for ChannelDetails {
10561 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10562 _init_and_read_len_prefixed_tlv_fields!(reader, {
10563 (1, inbound_scid_alias, option),
10564 (2, channel_id, required),
10565 (3, channel_type, option),
10566 (4, counterparty, required),
10567 (5, outbound_scid_alias, option),
10568 (6, funding_txo, option),
10569 (7, config, option),
10570 (8, short_channel_id, option),
10571 (9, confirmations, option),
10572 (10, channel_value_satoshis, required),
10573 (12, unspendable_punishment_reserve, option),
10574 (14, user_channel_id_low, required),
10575 (16, balance_msat, required),
10576 (18, outbound_capacity_msat, required),
10577 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10578 // filled in, so we can safely unwrap it here.
10579 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10580 (20, inbound_capacity_msat, required),
10581 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10582 (22, confirmations_required, option),
10583 (24, force_close_spend_delay, option),
10584 (26, is_outbound, required),
10585 (28, is_channel_ready, required),
10586 (30, is_usable, required),
10587 (32, is_public, required),
10588 (33, inbound_htlc_minimum_msat, option),
10589 (35, inbound_htlc_maximum_msat, option),
10590 (37, user_channel_id_high_opt, option),
10591 (39, feerate_sat_per_1000_weight, option),
10592 (41, channel_shutdown_state, option),
10593 (43, pending_inbound_htlcs, optional_vec),
10594 (45, pending_outbound_htlcs, optional_vec),
10597 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10598 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10599 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10600 let user_channel_id = user_channel_id_low as u128 +
10601 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10604 inbound_scid_alias,
10605 channel_id: channel_id.0.unwrap(),
10607 counterparty: counterparty.0.unwrap(),
10608 outbound_scid_alias,
10612 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10613 unspendable_punishment_reserve,
10615 balance_msat: balance_msat.0.unwrap(),
10616 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10617 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10618 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10619 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10620 confirmations_required,
10622 force_close_spend_delay,
10623 is_outbound: is_outbound.0.unwrap(),
10624 is_channel_ready: is_channel_ready.0.unwrap(),
10625 is_usable: is_usable.0.unwrap(),
10626 is_public: is_public.0.unwrap(),
10627 inbound_htlc_minimum_msat,
10628 inbound_htlc_maximum_msat,
10629 feerate_sat_per_1000_weight,
10630 channel_shutdown_state,
10631 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10632 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10637 impl_writeable_tlv_based!(PhantomRouteHints, {
10638 (2, channels, required_vec),
10639 (4, phantom_scid, required),
10640 (6, real_node_pubkey, required),
10643 impl_writeable_tlv_based!(BlindedForward, {
10644 (0, inbound_blinding_point, required),
10645 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10648 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10650 (0, onion_packet, required),
10651 (1, blinded, option),
10652 (2, short_channel_id, required),
10655 (0, payment_data, required),
10656 (1, phantom_shared_secret, option),
10657 (2, incoming_cltv_expiry, required),
10658 (3, payment_metadata, option),
10659 (5, custom_tlvs, optional_vec),
10660 (7, requires_blinded_error, (default_value, false)),
10662 (2, ReceiveKeysend) => {
10663 (0, payment_preimage, required),
10664 (1, requires_blinded_error, (default_value, false)),
10665 (2, incoming_cltv_expiry, required),
10666 (3, payment_metadata, option),
10667 (4, payment_data, option), // Added in 0.0.116
10668 (5, custom_tlvs, optional_vec),
10672 impl_writeable_tlv_based!(PendingHTLCInfo, {
10673 (0, routing, required),
10674 (2, incoming_shared_secret, required),
10675 (4, payment_hash, required),
10676 (6, outgoing_amt_msat, required),
10677 (8, outgoing_cltv_value, required),
10678 (9, incoming_amt_msat, option),
10679 (10, skimmed_fee_msat, option),
10683 impl Writeable for HTLCFailureMsg {
10684 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10686 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10687 0u8.write(writer)?;
10688 channel_id.write(writer)?;
10689 htlc_id.write(writer)?;
10690 reason.write(writer)?;
10692 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10693 channel_id, htlc_id, sha256_of_onion, failure_code
10695 1u8.write(writer)?;
10696 channel_id.write(writer)?;
10697 htlc_id.write(writer)?;
10698 sha256_of_onion.write(writer)?;
10699 failure_code.write(writer)?;
10706 impl Readable for HTLCFailureMsg {
10707 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10708 let id: u8 = Readable::read(reader)?;
10711 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10712 channel_id: Readable::read(reader)?,
10713 htlc_id: Readable::read(reader)?,
10714 reason: Readable::read(reader)?,
10718 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10719 channel_id: Readable::read(reader)?,
10720 htlc_id: Readable::read(reader)?,
10721 sha256_of_onion: Readable::read(reader)?,
10722 failure_code: Readable::read(reader)?,
10725 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10726 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10727 // messages contained in the variants.
10728 // In version 0.0.101, support for reading the variants with these types was added, and
10729 // we should migrate to writing these variants when UpdateFailHTLC or
10730 // UpdateFailMalformedHTLC get TLV fields.
10732 let length: BigSize = Readable::read(reader)?;
10733 let mut s = FixedLengthReader::new(reader, length.0);
10734 let res = Readable::read(&mut s)?;
10735 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10736 Ok(HTLCFailureMsg::Relay(res))
10739 let length: BigSize = Readable::read(reader)?;
10740 let mut s = FixedLengthReader::new(reader, length.0);
10741 let res = Readable::read(&mut s)?;
10742 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10743 Ok(HTLCFailureMsg::Malformed(res))
10745 _ => Err(DecodeError::UnknownRequiredFeature),
10750 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10755 impl_writeable_tlv_based_enum!(BlindedFailure,
10756 (0, FromIntroductionNode) => {},
10757 (2, FromBlindedNode) => {}, ;
10760 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10761 (0, short_channel_id, required),
10762 (1, phantom_shared_secret, option),
10763 (2, outpoint, required),
10764 (3, blinded_failure, option),
10765 (4, htlc_id, required),
10766 (6, incoming_packet_shared_secret, required),
10767 (7, user_channel_id, option),
10768 // Note that by the time we get past the required read for type 2 above, outpoint will be
10769 // filled in, so we can safely unwrap it here.
10770 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10773 impl Writeable for ClaimableHTLC {
10774 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10775 let (payment_data, keysend_preimage) = match &self.onion_payload {
10776 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
10777 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
10779 write_tlv_fields!(writer, {
10780 (0, self.prev_hop, required),
10781 (1, self.total_msat, required),
10782 (2, self.value, required),
10783 (3, self.sender_intended_value, required),
10784 (4, payment_data, option),
10785 (5, self.total_value_received, option),
10786 (6, self.cltv_expiry, required),
10787 (8, keysend_preimage, option),
10788 (10, self.counterparty_skimmed_fee_msat, option),
10794 impl Readable for ClaimableHTLC {
10795 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10796 _init_and_read_len_prefixed_tlv_fields!(reader, {
10797 (0, prev_hop, required),
10798 (1, total_msat, option),
10799 (2, value_ser, required),
10800 (3, sender_intended_value, option),
10801 (4, payment_data_opt, option),
10802 (5, total_value_received, option),
10803 (6, cltv_expiry, required),
10804 (8, keysend_preimage, option),
10805 (10, counterparty_skimmed_fee_msat, option),
10807 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10808 let value = value_ser.0.unwrap();
10809 let onion_payload = match keysend_preimage {
10811 if payment_data.is_some() {
10812 return Err(DecodeError::InvalidValue)
10814 if total_msat.is_none() {
10815 total_msat = Some(value);
10817 OnionPayload::Spontaneous(p)
10820 if total_msat.is_none() {
10821 if payment_data.is_none() {
10822 return Err(DecodeError::InvalidValue)
10824 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10826 OnionPayload::Invoice { _legacy_hop_data: payment_data }
10830 prev_hop: prev_hop.0.unwrap(),
10833 sender_intended_value: sender_intended_value.unwrap_or(value),
10834 total_value_received,
10835 total_msat: total_msat.unwrap(),
10837 cltv_expiry: cltv_expiry.0.unwrap(),
10838 counterparty_skimmed_fee_msat,
10843 impl Readable for HTLCSource {
10844 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10845 let id: u8 = Readable::read(reader)?;
10848 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10849 let mut first_hop_htlc_msat: u64 = 0;
10850 let mut path_hops = Vec::new();
10851 let mut payment_id = None;
10852 let mut payment_params: Option<PaymentParameters> = None;
10853 let mut blinded_tail: Option<BlindedTail> = None;
10854 read_tlv_fields!(reader, {
10855 (0, session_priv, required),
10856 (1, payment_id, option),
10857 (2, first_hop_htlc_msat, required),
10858 (4, path_hops, required_vec),
10859 (5, payment_params, (option: ReadableArgs, 0)),
10860 (6, blinded_tail, option),
10862 if payment_id.is_none() {
10863 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10865 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10867 let path = Path { hops: path_hops, blinded_tail };
10868 if path.hops.len() == 0 {
10869 return Err(DecodeError::InvalidValue);
10871 if let Some(params) = payment_params.as_mut() {
10872 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10873 if final_cltv_expiry_delta == &0 {
10874 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10878 Ok(HTLCSource::OutboundRoute {
10879 session_priv: session_priv.0.unwrap(),
10880 first_hop_htlc_msat,
10882 payment_id: payment_id.unwrap(),
10885 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10886 _ => Err(DecodeError::UnknownRequiredFeature),
10891 impl Writeable for HTLCSource {
10892 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10894 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10895 0u8.write(writer)?;
10896 let payment_id_opt = Some(payment_id);
10897 write_tlv_fields!(writer, {
10898 (0, session_priv, required),
10899 (1, payment_id_opt, option),
10900 (2, first_hop_htlc_msat, required),
10901 // 3 was previously used to write a PaymentSecret for the payment.
10902 (4, path.hops, required_vec),
10903 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10904 (6, path.blinded_tail, option),
10907 HTLCSource::PreviousHopData(ref field) => {
10908 1u8.write(writer)?;
10909 field.write(writer)?;
10916 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10917 (0, forward_info, required),
10918 (1, prev_user_channel_id, (default_value, 0)),
10919 (2, prev_short_channel_id, required),
10920 (4, prev_htlc_id, required),
10921 (6, prev_funding_outpoint, required),
10922 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10923 // filled in, so we can safely unwrap it here.
10924 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10927 impl Writeable for HTLCForwardInfo {
10928 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10929 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10931 Self::AddHTLC(info) => {
10935 Self::FailHTLC { htlc_id, err_packet } => {
10936 FAIL_HTLC_VARIANT_ID.write(w)?;
10937 write_tlv_fields!(w, {
10938 (0, htlc_id, required),
10939 (2, err_packet, required),
10942 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
10943 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
10944 // packet so older versions have something to fail back with, but serialize the real data as
10945 // optional TLVs for the benefit of newer versions.
10946 FAIL_HTLC_VARIANT_ID.write(w)?;
10947 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
10948 write_tlv_fields!(w, {
10949 (0, htlc_id, required),
10950 (1, failure_code, required),
10951 (2, dummy_err_packet, required),
10952 (3, sha256_of_onion, required),
10960 impl Readable for HTLCForwardInfo {
10961 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
10962 let id: u8 = Readable::read(r)?;
10964 0 => Self::AddHTLC(Readable::read(r)?),
10966 _init_and_read_len_prefixed_tlv_fields!(r, {
10967 (0, htlc_id, required),
10968 (1, malformed_htlc_failure_code, option),
10969 (2, err_packet, required),
10970 (3, sha256_of_onion, option),
10972 if let Some(failure_code) = malformed_htlc_failure_code {
10973 Self::FailMalformedHTLC {
10974 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
10976 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
10980 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
10981 err_packet: _init_tlv_based_struct_field!(err_packet, required),
10985 _ => return Err(DecodeError::InvalidValue),
10990 impl_writeable_tlv_based!(PendingInboundPayment, {
10991 (0, payment_secret, required),
10992 (2, expiry_time, required),
10993 (4, user_payment_id, required),
10994 (6, payment_preimage, required),
10995 (8, min_value_msat, required),
10998 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11000 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11001 T::Target: BroadcasterInterface,
11002 ES::Target: EntropySource,
11003 NS::Target: NodeSigner,
11004 SP::Target: SignerProvider,
11005 F::Target: FeeEstimator,
11009 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11010 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11012 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11014 self.chain_hash.write(writer)?;
11016 let best_block = self.best_block.read().unwrap();
11017 best_block.height.write(writer)?;
11018 best_block.block_hash.write(writer)?;
11021 let mut serializable_peer_count: u64 = 0;
11023 let per_peer_state = self.per_peer_state.read().unwrap();
11024 let mut number_of_funded_channels = 0;
11025 for (_, peer_state_mutex) in per_peer_state.iter() {
11026 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11027 let peer_state = &mut *peer_state_lock;
11028 if !peer_state.ok_to_remove(false) {
11029 serializable_peer_count += 1;
11032 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11033 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11037 (number_of_funded_channels as u64).write(writer)?;
11039 for (_, peer_state_mutex) in per_peer_state.iter() {
11040 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11041 let peer_state = &mut *peer_state_lock;
11042 for channel in peer_state.channel_by_id.iter().filter_map(
11043 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11044 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11047 channel.write(writer)?;
11053 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11054 (forward_htlcs.len() as u64).write(writer)?;
11055 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11056 short_channel_id.write(writer)?;
11057 (pending_forwards.len() as u64).write(writer)?;
11058 for forward in pending_forwards {
11059 forward.write(writer)?;
11064 let mut decode_update_add_htlcs_opt = None;
11065 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11066 if !decode_update_add_htlcs.is_empty() {
11067 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11070 let per_peer_state = self.per_peer_state.write().unwrap();
11072 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11073 let claimable_payments = self.claimable_payments.lock().unwrap();
11074 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11076 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11077 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11078 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11079 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11080 payment_hash.write(writer)?;
11081 (payment.htlcs.len() as u64).write(writer)?;
11082 for htlc in payment.htlcs.iter() {
11083 htlc.write(writer)?;
11085 htlc_purposes.push(&payment.purpose);
11086 htlc_onion_fields.push(&payment.onion_fields);
11089 let mut monitor_update_blocked_actions_per_peer = None;
11090 let mut peer_states = Vec::new();
11091 for (_, peer_state_mutex) in per_peer_state.iter() {
11092 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11093 // of a lockorder violation deadlock - no other thread can be holding any
11094 // per_peer_state lock at all.
11095 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11098 (serializable_peer_count).write(writer)?;
11099 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11100 // Peers which we have no channels to should be dropped once disconnected. As we
11101 // disconnect all peers when shutting down and serializing the ChannelManager, we
11102 // consider all peers as disconnected here. There's therefore no need write peers with
11104 if !peer_state.ok_to_remove(false) {
11105 peer_pubkey.write(writer)?;
11106 peer_state.latest_features.write(writer)?;
11107 if !peer_state.monitor_update_blocked_actions.is_empty() {
11108 monitor_update_blocked_actions_per_peer
11109 .get_or_insert_with(Vec::new)
11110 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11115 let events = self.pending_events.lock().unwrap();
11116 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11117 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11118 // refuse to read the new ChannelManager.
11119 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11120 if events_not_backwards_compatible {
11121 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11122 // well save the space and not write any events here.
11123 0u64.write(writer)?;
11125 (events.len() as u64).write(writer)?;
11126 for (event, _) in events.iter() {
11127 event.write(writer)?;
11131 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11132 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11133 // the closing monitor updates were always effectively replayed on startup (either directly
11134 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11135 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11136 0u64.write(writer)?;
11138 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11139 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11140 // likely to be identical.
11141 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11142 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11144 (pending_inbound_payments.len() as u64).write(writer)?;
11145 for (hash, pending_payment) in pending_inbound_payments.iter() {
11146 hash.write(writer)?;
11147 pending_payment.write(writer)?;
11150 // For backwards compat, write the session privs and their total length.
11151 let mut num_pending_outbounds_compat: u64 = 0;
11152 for (_, outbound) in pending_outbound_payments.iter() {
11153 if !outbound.is_fulfilled() && !outbound.abandoned() {
11154 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11157 num_pending_outbounds_compat.write(writer)?;
11158 for (_, outbound) in pending_outbound_payments.iter() {
11160 PendingOutboundPayment::Legacy { session_privs } |
11161 PendingOutboundPayment::Retryable { session_privs, .. } => {
11162 for session_priv in session_privs.iter() {
11163 session_priv.write(writer)?;
11166 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11167 PendingOutboundPayment::InvoiceReceived { .. } => {},
11168 PendingOutboundPayment::Fulfilled { .. } => {},
11169 PendingOutboundPayment::Abandoned { .. } => {},
11173 // Encode without retry info for 0.0.101 compatibility.
11174 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11175 for (id, outbound) in pending_outbound_payments.iter() {
11177 PendingOutboundPayment::Legacy { session_privs } |
11178 PendingOutboundPayment::Retryable { session_privs, .. } => {
11179 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11185 let mut pending_intercepted_htlcs = None;
11186 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11187 if our_pending_intercepts.len() != 0 {
11188 pending_intercepted_htlcs = Some(our_pending_intercepts);
11191 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11192 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11193 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11194 // map. Thus, if there are no entries we skip writing a TLV for it.
11195 pending_claiming_payments = None;
11198 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11199 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11200 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11201 if !updates.is_empty() {
11202 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11203 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11208 write_tlv_fields!(writer, {
11209 (1, pending_outbound_payments_no_retry, required),
11210 (2, pending_intercepted_htlcs, option),
11211 (3, pending_outbound_payments, required),
11212 (4, pending_claiming_payments, option),
11213 (5, self.our_network_pubkey, required),
11214 (6, monitor_update_blocked_actions_per_peer, option),
11215 (7, self.fake_scid_rand_bytes, required),
11216 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11217 (9, htlc_purposes, required_vec),
11218 (10, in_flight_monitor_updates, option),
11219 (11, self.probing_cookie_secret, required),
11220 (13, htlc_onion_fields, optional_vec),
11221 (14, decode_update_add_htlcs_opt, option),
11228 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11229 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11230 (self.len() as u64).write(w)?;
11231 for (event, action) in self.iter() {
11234 #[cfg(debug_assertions)] {
11235 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11236 // be persisted and are regenerated on restart. However, if such an event has a
11237 // post-event-handling action we'll write nothing for the event and would have to
11238 // either forget the action or fail on deserialization (which we do below). Thus,
11239 // check that the event is sane here.
11240 let event_encoded = event.encode();
11241 let event_read: Option<Event> =
11242 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11243 if action.is_some() { assert!(event_read.is_some()); }
11249 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11250 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11251 let len: u64 = Readable::read(reader)?;
11252 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11253 let mut events: Self = VecDeque::with_capacity(cmp::min(
11254 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11257 let ev_opt = MaybeReadable::read(reader)?;
11258 let action = Readable::read(reader)?;
11259 if let Some(ev) = ev_opt {
11260 events.push_back((ev, action));
11261 } else if action.is_some() {
11262 return Err(DecodeError::InvalidValue);
11269 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11270 (0, NotShuttingDown) => {},
11271 (2, ShutdownInitiated) => {},
11272 (4, ResolvingHTLCs) => {},
11273 (6, NegotiatingClosingFee) => {},
11274 (8, ShutdownComplete) => {}, ;
11277 /// Arguments for the creation of a ChannelManager that are not deserialized.
11279 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11281 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11282 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11283 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11284 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11285 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11286 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11287 /// same way you would handle a [`chain::Filter`] call using
11288 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11289 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11290 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11291 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11292 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11293 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11295 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11296 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11298 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11299 /// call any other methods on the newly-deserialized [`ChannelManager`].
11301 /// Note that because some channels may be closed during deserialization, it is critical that you
11302 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11303 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11304 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11305 /// not force-close the same channels but consider them live), you may end up revoking a state for
11306 /// which you've already broadcasted the transaction.
11308 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11309 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11311 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11312 T::Target: BroadcasterInterface,
11313 ES::Target: EntropySource,
11314 NS::Target: NodeSigner,
11315 SP::Target: SignerProvider,
11316 F::Target: FeeEstimator,
11320 /// A cryptographically secure source of entropy.
11321 pub entropy_source: ES,
11323 /// A signer that is able to perform node-scoped cryptographic operations.
11324 pub node_signer: NS,
11326 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11327 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11329 pub signer_provider: SP,
11331 /// The fee_estimator for use in the ChannelManager in the future.
11333 /// No calls to the FeeEstimator will be made during deserialization.
11334 pub fee_estimator: F,
11335 /// The chain::Watch for use in the ChannelManager in the future.
11337 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11338 /// you have deserialized ChannelMonitors separately and will add them to your
11339 /// chain::Watch after deserializing this ChannelManager.
11340 pub chain_monitor: M,
11342 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11343 /// used to broadcast the latest local commitment transactions of channels which must be
11344 /// force-closed during deserialization.
11345 pub tx_broadcaster: T,
11346 /// The router which will be used in the ChannelManager in the future for finding routes
11347 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11349 /// No calls to the router will be made during deserialization.
11351 /// The Logger for use in the ChannelManager and which may be used to log information during
11352 /// deserialization.
11354 /// Default settings used for new channels. Any existing channels will continue to use the
11355 /// runtime settings which were stored when the ChannelManager was serialized.
11356 pub default_config: UserConfig,
11358 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11359 /// value.context.get_funding_txo() should be the key).
11361 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11362 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11363 /// is true for missing channels as well. If there is a monitor missing for which we find
11364 /// channel data Err(DecodeError::InvalidValue) will be returned.
11366 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11369 /// This is not exported to bindings users because we have no HashMap bindings
11370 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11373 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11374 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11376 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11377 T::Target: BroadcasterInterface,
11378 ES::Target: EntropySource,
11379 NS::Target: NodeSigner,
11380 SP::Target: SignerProvider,
11381 F::Target: FeeEstimator,
11385 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11386 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11387 /// populate a HashMap directly from C.
11388 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11389 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11391 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11392 channel_monitors: hash_map_from_iter(
11393 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11399 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11400 // SipmleArcChannelManager type:
11401 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11402 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11404 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11405 T::Target: BroadcasterInterface,
11406 ES::Target: EntropySource,
11407 NS::Target: NodeSigner,
11408 SP::Target: SignerProvider,
11409 F::Target: FeeEstimator,
11413 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11414 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11415 Ok((blockhash, Arc::new(chan_manager)))
11419 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11420 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11422 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11423 T::Target: BroadcasterInterface,
11424 ES::Target: EntropySource,
11425 NS::Target: NodeSigner,
11426 SP::Target: SignerProvider,
11427 F::Target: FeeEstimator,
11431 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11432 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11434 let chain_hash: ChainHash = Readable::read(reader)?;
11435 let best_block_height: u32 = Readable::read(reader)?;
11436 let best_block_hash: BlockHash = Readable::read(reader)?;
11438 let mut failed_htlcs = Vec::new();
11440 let channel_count: u64 = Readable::read(reader)?;
11441 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11442 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11443 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11444 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11445 let mut channel_closures = VecDeque::new();
11446 let mut close_background_events = Vec::new();
11447 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11448 for _ in 0..channel_count {
11449 let mut channel: Channel<SP> = Channel::read(reader, (
11450 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11452 let logger = WithChannelContext::from(&args.logger, &channel.context);
11453 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11454 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11455 funding_txo_set.insert(funding_txo.clone());
11456 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11457 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11458 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11459 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11460 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11461 // But if the channel is behind of the monitor, close the channel:
11462 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11463 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11464 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11465 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11466 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11468 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11469 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11470 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11472 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11473 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11474 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11476 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11477 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11478 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11480 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11481 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11482 return Err(DecodeError::InvalidValue);
11484 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11485 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11486 counterparty_node_id, funding_txo, channel_id, update
11489 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11490 channel_closures.push_back((events::Event::ChannelClosed {
11491 channel_id: channel.context.channel_id(),
11492 user_channel_id: channel.context.get_user_id(),
11493 reason: ClosureReason::OutdatedChannelManager,
11494 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11495 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11496 channel_funding_txo: channel.context.get_funding_txo(),
11498 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11499 let mut found_htlc = false;
11500 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11501 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11504 // If we have some HTLCs in the channel which are not present in the newer
11505 // ChannelMonitor, they have been removed and should be failed back to
11506 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11507 // were actually claimed we'd have generated and ensured the previous-hop
11508 // claim update ChannelMonitor updates were persisted prior to persising
11509 // the ChannelMonitor update for the forward leg, so attempting to fail the
11510 // backwards leg of the HTLC will simply be rejected.
11512 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11513 &channel.context.channel_id(), &payment_hash);
11514 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11518 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
11519 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11520 monitor.get_latest_update_id());
11521 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11522 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11524 if let Some(funding_txo) = channel.context.get_funding_txo() {
11525 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11527 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11528 hash_map::Entry::Occupied(mut entry) => {
11529 let by_id_map = entry.get_mut();
11530 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11532 hash_map::Entry::Vacant(entry) => {
11533 let mut by_id_map = new_hash_map();
11534 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11535 entry.insert(by_id_map);
11539 } else if channel.is_awaiting_initial_mon_persist() {
11540 // If we were persisted and shut down while the initial ChannelMonitor persistence
11541 // was in-progress, we never broadcasted the funding transaction and can still
11542 // safely discard the channel.
11543 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11544 channel_closures.push_back((events::Event::ChannelClosed {
11545 channel_id: channel.context.channel_id(),
11546 user_channel_id: channel.context.get_user_id(),
11547 reason: ClosureReason::DisconnectedPeer,
11548 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11549 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11550 channel_funding_txo: channel.context.get_funding_txo(),
11553 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11554 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11555 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11556 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11557 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11558 return Err(DecodeError::InvalidValue);
11562 for (funding_txo, monitor) in args.channel_monitors.iter() {
11563 if !funding_txo_set.contains(funding_txo) {
11564 let logger = WithChannelMonitor::from(&args.logger, monitor);
11565 let channel_id = monitor.channel_id();
11566 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11568 let monitor_update = ChannelMonitorUpdate {
11569 update_id: CLOSED_CHANNEL_UPDATE_ID,
11570 counterparty_node_id: None,
11571 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11572 channel_id: Some(monitor.channel_id()),
11574 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11578 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11579 let forward_htlcs_count: u64 = Readable::read(reader)?;
11580 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11581 for _ in 0..forward_htlcs_count {
11582 let short_channel_id = Readable::read(reader)?;
11583 let pending_forwards_count: u64 = Readable::read(reader)?;
11584 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11585 for _ in 0..pending_forwards_count {
11586 pending_forwards.push(Readable::read(reader)?);
11588 forward_htlcs.insert(short_channel_id, pending_forwards);
11591 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11592 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11593 for _ in 0..claimable_htlcs_count {
11594 let payment_hash = Readable::read(reader)?;
11595 let previous_hops_len: u64 = Readable::read(reader)?;
11596 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11597 for _ in 0..previous_hops_len {
11598 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11600 claimable_htlcs_list.push((payment_hash, previous_hops));
11603 let peer_state_from_chans = |channel_by_id| {
11606 inbound_channel_request_by_id: new_hash_map(),
11607 latest_features: InitFeatures::empty(),
11608 pending_msg_events: Vec::new(),
11609 in_flight_monitor_updates: BTreeMap::new(),
11610 monitor_update_blocked_actions: BTreeMap::new(),
11611 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11612 is_connected: false,
11616 let peer_count: u64 = Readable::read(reader)?;
11617 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11618 for _ in 0..peer_count {
11619 let peer_pubkey = Readable::read(reader)?;
11620 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11621 let mut peer_state = peer_state_from_chans(peer_chans);
11622 peer_state.latest_features = Readable::read(reader)?;
11623 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11626 let event_count: u64 = Readable::read(reader)?;
11627 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11628 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11629 for _ in 0..event_count {
11630 match MaybeReadable::read(reader)? {
11631 Some(event) => pending_events_read.push_back((event, None)),
11636 let background_event_count: u64 = Readable::read(reader)?;
11637 for _ in 0..background_event_count {
11638 match <u8 as Readable>::read(reader)? {
11640 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11641 // however we really don't (and never did) need them - we regenerate all
11642 // on-startup monitor updates.
11643 let _: OutPoint = Readable::read(reader)?;
11644 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11646 _ => return Err(DecodeError::InvalidValue),
11650 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11651 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11653 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11654 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11655 for _ in 0..pending_inbound_payment_count {
11656 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11657 return Err(DecodeError::InvalidValue);
11661 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11662 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11663 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11664 for _ in 0..pending_outbound_payments_count_compat {
11665 let session_priv = Readable::read(reader)?;
11666 let payment = PendingOutboundPayment::Legacy {
11667 session_privs: hash_set_from_iter([session_priv]),
11669 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11670 return Err(DecodeError::InvalidValue)
11674 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11675 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11676 let mut pending_outbound_payments = None;
11677 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11678 let mut received_network_pubkey: Option<PublicKey> = None;
11679 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11680 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11681 let mut claimable_htlc_purposes = None;
11682 let mut claimable_htlc_onion_fields = None;
11683 let mut pending_claiming_payments = Some(new_hash_map());
11684 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11685 let mut events_override = None;
11686 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11687 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11688 read_tlv_fields!(reader, {
11689 (1, pending_outbound_payments_no_retry, option),
11690 (2, pending_intercepted_htlcs, option),
11691 (3, pending_outbound_payments, option),
11692 (4, pending_claiming_payments, option),
11693 (5, received_network_pubkey, option),
11694 (6, monitor_update_blocked_actions_per_peer, option),
11695 (7, fake_scid_rand_bytes, option),
11696 (8, events_override, option),
11697 (9, claimable_htlc_purposes, optional_vec),
11698 (10, in_flight_monitor_updates, option),
11699 (11, probing_cookie_secret, option),
11700 (13, claimable_htlc_onion_fields, optional_vec),
11701 (14, decode_update_add_htlcs, option),
11703 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11704 if fake_scid_rand_bytes.is_none() {
11705 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11708 if probing_cookie_secret.is_none() {
11709 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11712 if let Some(events) = events_override {
11713 pending_events_read = events;
11716 if !channel_closures.is_empty() {
11717 pending_events_read.append(&mut channel_closures);
11720 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11721 pending_outbound_payments = Some(pending_outbound_payments_compat);
11722 } else if pending_outbound_payments.is_none() {
11723 let mut outbounds = new_hash_map();
11724 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11725 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11727 pending_outbound_payments = Some(outbounds);
11729 let pending_outbounds = OutboundPayments {
11730 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11731 retry_lock: Mutex::new(())
11734 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11735 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11736 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11737 // replayed, and for each monitor update we have to replay we have to ensure there's a
11738 // `ChannelMonitor` for it.
11740 // In order to do so we first walk all of our live channels (so that we can check their
11741 // state immediately after doing the update replays, when we have the `update_id`s
11742 // available) and then walk any remaining in-flight updates.
11744 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11745 let mut pending_background_events = Vec::new();
11746 macro_rules! handle_in_flight_updates {
11747 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11748 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11750 let mut max_in_flight_update_id = 0;
11751 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11752 for update in $chan_in_flight_upds.iter() {
11753 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11754 update.update_id, $channel_info_log, &$monitor.channel_id());
11755 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11756 pending_background_events.push(
11757 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11758 counterparty_node_id: $counterparty_node_id,
11759 funding_txo: $funding_txo,
11760 channel_id: $monitor.channel_id(),
11761 update: update.clone(),
11764 if $chan_in_flight_upds.is_empty() {
11765 // We had some updates to apply, but it turns out they had completed before we
11766 // were serialized, we just weren't notified of that. Thus, we may have to run
11767 // the completion actions for any monitor updates, but otherwise are done.
11768 pending_background_events.push(
11769 BackgroundEvent::MonitorUpdatesComplete {
11770 counterparty_node_id: $counterparty_node_id,
11771 channel_id: $monitor.channel_id(),
11774 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11775 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11776 return Err(DecodeError::InvalidValue);
11778 max_in_flight_update_id
11782 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11783 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11784 let peer_state = &mut *peer_state_lock;
11785 for phase in peer_state.channel_by_id.values() {
11786 if let ChannelPhase::Funded(chan) = phase {
11787 let logger = WithChannelContext::from(&args.logger, &chan.context);
11789 // Channels that were persisted have to be funded, otherwise they should have been
11791 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11792 let monitor = args.channel_monitors.get(&funding_txo)
11793 .expect("We already checked for monitor presence when loading channels");
11794 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11795 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11796 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11797 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11798 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11799 funding_txo, monitor, peer_state, logger, ""));
11802 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11803 // If the channel is ahead of the monitor, return DangerousValue:
11804 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11805 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11806 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11807 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11808 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11809 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11810 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11811 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11812 return Err(DecodeError::DangerousValue);
11815 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11816 // created in this `channel_by_id` map.
11817 debug_assert!(false);
11818 return Err(DecodeError::InvalidValue);
11823 if let Some(in_flight_upds) = in_flight_monitor_updates {
11824 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11825 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11826 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11827 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11828 // Now that we've removed all the in-flight monitor updates for channels that are
11829 // still open, we need to replay any monitor updates that are for closed channels,
11830 // creating the neccessary peer_state entries as we go.
11831 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11832 Mutex::new(peer_state_from_chans(new_hash_map()))
11834 let mut peer_state = peer_state_mutex.lock().unwrap();
11835 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11836 funding_txo, monitor, peer_state, logger, "closed ");
11838 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11839 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11840 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11841 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11842 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11843 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11844 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11845 return Err(DecodeError::InvalidValue);
11850 // Note that we have to do the above replays before we push new monitor updates.
11851 pending_background_events.append(&mut close_background_events);
11853 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11854 // should ensure we try them again on the inbound edge. We put them here and do so after we
11855 // have a fully-constructed `ChannelManager` at the end.
11856 let mut pending_claims_to_replay = Vec::new();
11859 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11860 // ChannelMonitor data for any channels for which we do not have authorative state
11861 // (i.e. those for which we just force-closed above or we otherwise don't have a
11862 // corresponding `Channel` at all).
11863 // This avoids several edge-cases where we would otherwise "forget" about pending
11864 // payments which are still in-flight via their on-chain state.
11865 // We only rebuild the pending payments map if we were most recently serialized by
11867 for (_, monitor) in args.channel_monitors.iter() {
11868 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11869 if counterparty_opt.is_none() {
11870 let logger = WithChannelMonitor::from(&args.logger, monitor);
11871 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11872 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11873 if path.hops.is_empty() {
11874 log_error!(logger, "Got an empty path for a pending payment");
11875 return Err(DecodeError::InvalidValue);
11878 let path_amt = path.final_value_msat();
11879 let mut session_priv_bytes = [0; 32];
11880 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11881 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11882 hash_map::Entry::Occupied(mut entry) => {
11883 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11884 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11885 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11887 hash_map::Entry::Vacant(entry) => {
11888 let path_fee = path.fee_msat();
11889 entry.insert(PendingOutboundPayment::Retryable {
11890 retry_strategy: None,
11891 attempts: PaymentAttempts::new(),
11892 payment_params: None,
11893 session_privs: hash_set_from_iter([session_priv_bytes]),
11894 payment_hash: htlc.payment_hash,
11895 payment_secret: None, // only used for retries, and we'll never retry on startup
11896 payment_metadata: None, // only used for retries, and we'll never retry on startup
11897 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11898 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11899 pending_amt_msat: path_amt,
11900 pending_fee_msat: Some(path_fee),
11901 total_msat: path_amt,
11902 starting_block_height: best_block_height,
11903 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11905 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11906 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11911 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11912 match htlc_source {
11913 HTLCSource::PreviousHopData(prev_hop_data) => {
11914 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11915 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11916 info.prev_htlc_id == prev_hop_data.htlc_id
11918 // The ChannelMonitor is now responsible for this HTLC's
11919 // failure/success and will let us know what its outcome is. If we
11920 // still have an entry for this HTLC in `forward_htlcs` or
11921 // `pending_intercepted_htlcs`, we were apparently not persisted after
11922 // the monitor was when forwarding the payment.
11923 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11924 update_add_htlcs.retain(|update_add_htlc| {
11925 let matches = *scid == prev_hop_data.short_channel_id &&
11926 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11928 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11929 &htlc.payment_hash, &monitor.channel_id());
11933 !update_add_htlcs.is_empty()
11935 forward_htlcs.retain(|_, forwards| {
11936 forwards.retain(|forward| {
11937 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11938 if pending_forward_matches_htlc(&htlc_info) {
11939 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11940 &htlc.payment_hash, &monitor.channel_id());
11945 !forwards.is_empty()
11947 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
11948 if pending_forward_matches_htlc(&htlc_info) {
11949 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
11950 &htlc.payment_hash, &monitor.channel_id());
11951 pending_events_read.retain(|(event, _)| {
11952 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
11953 intercepted_id != ev_id
11960 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
11961 if let Some(preimage) = preimage_opt {
11962 let pending_events = Mutex::new(pending_events_read);
11963 // Note that we set `from_onchain` to "false" here,
11964 // deliberately keeping the pending payment around forever.
11965 // Given it should only occur when we have a channel we're
11966 // force-closing for being stale that's okay.
11967 // The alternative would be to wipe the state when claiming,
11968 // generating a `PaymentPathSuccessful` event but regenerating
11969 // it and the `PaymentSent` on every restart until the
11970 // `ChannelMonitor` is removed.
11972 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
11973 channel_funding_outpoint: monitor.get_funding_txo().0,
11974 channel_id: monitor.channel_id(),
11975 counterparty_node_id: path.hops[0].pubkey,
11977 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
11978 path, false, compl_action, &pending_events, &&logger);
11979 pending_events_read = pending_events.into_inner().unwrap();
11986 // Whether the downstream channel was closed or not, try to re-apply any payment
11987 // preimages from it which may be needed in upstream channels for forwarded
11989 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
11991 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
11992 if let HTLCSource::PreviousHopData(_) = htlc_source {
11993 if let Some(payment_preimage) = preimage_opt {
11994 Some((htlc_source, payment_preimage, htlc.amount_msat,
11995 // Check if `counterparty_opt.is_none()` to see if the
11996 // downstream chan is closed (because we don't have a
11997 // channel_id -> peer map entry).
11998 counterparty_opt.is_none(),
11999 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12000 monitor.get_funding_txo().0, monitor.channel_id()))
12003 // If it was an outbound payment, we've handled it above - if a preimage
12004 // came in and we persisted the `ChannelManager` we either handled it and
12005 // are good to go or the channel force-closed - we don't have to handle the
12006 // channel still live case here.
12010 for tuple in outbound_claimed_htlcs_iter {
12011 pending_claims_to_replay.push(tuple);
12016 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12017 // If we have pending HTLCs to forward, assume we either dropped a
12018 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12019 // shut down before the timer hit. Either way, set the time_forwardable to a small
12020 // constant as enough time has likely passed that we should simply handle the forwards
12021 // now, or at least after the user gets a chance to reconnect to our peers.
12022 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12023 time_forwardable: Duration::from_secs(2),
12027 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12028 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12030 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12031 if let Some(purposes) = claimable_htlc_purposes {
12032 if purposes.len() != claimable_htlcs_list.len() {
12033 return Err(DecodeError::InvalidValue);
12035 if let Some(onion_fields) = claimable_htlc_onion_fields {
12036 if onion_fields.len() != claimable_htlcs_list.len() {
12037 return Err(DecodeError::InvalidValue);
12039 for (purpose, (onion, (payment_hash, htlcs))) in
12040 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12042 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12043 purpose, htlcs, onion_fields: onion,
12045 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12048 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12049 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12050 purpose, htlcs, onion_fields: None,
12052 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12056 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12057 // include a `_legacy_hop_data` in the `OnionPayload`.
12058 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12059 if htlcs.is_empty() {
12060 return Err(DecodeError::InvalidValue);
12062 let purpose = match &htlcs[0].onion_payload {
12063 OnionPayload::Invoice { _legacy_hop_data } => {
12064 if let Some(hop_data) = _legacy_hop_data {
12065 events::PaymentPurpose::InvoicePayment {
12066 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12067 Some(inbound_payment) => inbound_payment.payment_preimage,
12068 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12069 Ok((payment_preimage, _)) => payment_preimage,
12071 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12072 return Err(DecodeError::InvalidValue);
12076 payment_secret: hop_data.payment_secret,
12078 } else { return Err(DecodeError::InvalidValue); }
12080 OnionPayload::Spontaneous(payment_preimage) =>
12081 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12083 claimable_payments.insert(payment_hash, ClaimablePayment {
12084 purpose, htlcs, onion_fields: None,
12089 let mut secp_ctx = Secp256k1::new();
12090 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12092 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12094 Err(()) => return Err(DecodeError::InvalidValue)
12096 if let Some(network_pubkey) = received_network_pubkey {
12097 if network_pubkey != our_network_pubkey {
12098 log_error!(args.logger, "Key that was generated does not match the existing key.");
12099 return Err(DecodeError::InvalidValue);
12103 let mut outbound_scid_aliases = new_hash_set();
12104 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12105 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12106 let peer_state = &mut *peer_state_lock;
12107 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12108 if let ChannelPhase::Funded(chan) = phase {
12109 let logger = WithChannelContext::from(&args.logger, &chan.context);
12110 if chan.context.outbound_scid_alias() == 0 {
12111 let mut outbound_scid_alias;
12113 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12114 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12115 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12117 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12118 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12119 // Note that in rare cases its possible to hit this while reading an older
12120 // channel if we just happened to pick a colliding outbound alias above.
12121 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12122 return Err(DecodeError::InvalidValue);
12124 if chan.context.is_usable() {
12125 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12126 // Note that in rare cases its possible to hit this while reading an older
12127 // channel if we just happened to pick a colliding outbound alias above.
12128 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12129 return Err(DecodeError::InvalidValue);
12133 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12134 // created in this `channel_by_id` map.
12135 debug_assert!(false);
12136 return Err(DecodeError::InvalidValue);
12141 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12143 for (_, monitor) in args.channel_monitors.iter() {
12144 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12145 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12146 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12147 let mut claimable_amt_msat = 0;
12148 let mut receiver_node_id = Some(our_network_pubkey);
12149 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12150 if phantom_shared_secret.is_some() {
12151 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12152 .expect("Failed to get node_id for phantom node recipient");
12153 receiver_node_id = Some(phantom_pubkey)
12155 for claimable_htlc in &payment.htlcs {
12156 claimable_amt_msat += claimable_htlc.value;
12158 // Add a holding-cell claim of the payment to the Channel, which should be
12159 // applied ~immediately on peer reconnection. Because it won't generate a
12160 // new commitment transaction we can just provide the payment preimage to
12161 // the corresponding ChannelMonitor and nothing else.
12163 // We do so directly instead of via the normal ChannelMonitor update
12164 // procedure as the ChainMonitor hasn't yet been initialized, implying
12165 // we're not allowed to call it directly yet. Further, we do the update
12166 // without incrementing the ChannelMonitor update ID as there isn't any
12168 // If we were to generate a new ChannelMonitor update ID here and then
12169 // crash before the user finishes block connect we'd end up force-closing
12170 // this channel as well. On the flip side, there's no harm in restarting
12171 // without the new monitor persisted - we'll end up right back here on
12173 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12174 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12175 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12176 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12177 let peer_state = &mut *peer_state_lock;
12178 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12179 let logger = WithChannelContext::from(&args.logger, &channel.context);
12180 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12183 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12184 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12187 pending_events_read.push_back((events::Event::PaymentClaimed {
12190 purpose: payment.purpose,
12191 amount_msat: claimable_amt_msat,
12192 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12193 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12199 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12200 if let Some(peer_state) = per_peer_state.get(&node_id) {
12201 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12202 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12203 for action in actions.iter() {
12204 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12205 downstream_counterparty_and_funding_outpoint:
12206 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12208 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12210 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12211 blocked_channel_id);
12212 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12213 .entry(*blocked_channel_id)
12214 .or_insert_with(Vec::new).push(blocking_action.clone());
12216 // If the channel we were blocking has closed, we don't need to
12217 // worry about it - the blocked monitor update should never have
12218 // been released from the `Channel` object so it can't have
12219 // completed, and if the channel closed there's no reason to bother
12223 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12224 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12228 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12230 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12231 return Err(DecodeError::InvalidValue);
12235 let channel_manager = ChannelManager {
12237 fee_estimator: bounded_fee_estimator,
12238 chain_monitor: args.chain_monitor,
12239 tx_broadcaster: args.tx_broadcaster,
12240 router: args.router,
12242 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12244 inbound_payment_key: expanded_inbound_key,
12245 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12246 pending_outbound_payments: pending_outbounds,
12247 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12249 forward_htlcs: Mutex::new(forward_htlcs),
12250 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12251 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12252 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12253 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12254 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12255 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12257 probing_cookie_secret: probing_cookie_secret.unwrap(),
12259 our_network_pubkey,
12262 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12264 per_peer_state: FairRwLock::new(per_peer_state),
12266 pending_events: Mutex::new(pending_events_read),
12267 pending_events_processor: AtomicBool::new(false),
12268 pending_background_events: Mutex::new(pending_background_events),
12269 total_consistency_lock: RwLock::new(()),
12270 background_events_processed_since_startup: AtomicBool::new(false),
12272 event_persist_notifier: Notifier::new(),
12273 needs_persist_flag: AtomicBool::new(false),
12275 funding_batch_states: Mutex::new(BTreeMap::new()),
12277 pending_offers_messages: Mutex::new(Vec::new()),
12279 pending_broadcast_messages: Mutex::new(Vec::new()),
12281 entropy_source: args.entropy_source,
12282 node_signer: args.node_signer,
12283 signer_provider: args.signer_provider,
12285 logger: args.logger,
12286 default_configuration: args.default_config,
12289 for htlc_source in failed_htlcs.drain(..) {
12290 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12291 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12292 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12293 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12296 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12297 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12298 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12299 // channel is closed we just assume that it probably came from an on-chain claim.
12300 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12301 downstream_closed, true, downstream_node_id, downstream_funding,
12302 downstream_channel_id, None
12306 //TODO: Broadcast channel update for closed channels, but only after we've made a
12307 //connection or two.
12309 Ok((best_block_hash.clone(), channel_manager))
12315 use bitcoin::hashes::Hash;
12316 use bitcoin::hashes::sha256::Hash as Sha256;
12317 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12318 use core::sync::atomic::Ordering;
12319 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12320 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12321 use crate::ln::ChannelId;
12322 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12323 use crate::ln::functional_test_utils::*;
12324 use crate::ln::msgs::{self, ErrorAction};
12325 use crate::ln::msgs::ChannelMessageHandler;
12326 use crate::prelude::*;
12327 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12328 use crate::util::errors::APIError;
12329 use crate::util::ser::Writeable;
12330 use crate::util::test_utils;
12331 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12332 use crate::sign::EntropySource;
12335 fn test_notify_limits() {
12336 // Check that a few cases which don't require the persistence of a new ChannelManager,
12337 // indeed, do not cause the persistence of a new ChannelManager.
12338 let chanmon_cfgs = create_chanmon_cfgs(3);
12339 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12340 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12341 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12343 // All nodes start with a persistable update pending as `create_network` connects each node
12344 // with all other nodes to make most tests simpler.
12345 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12346 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12347 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12349 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12351 // We check that the channel info nodes have doesn't change too early, even though we try
12352 // to connect messages with new values
12353 chan.0.contents.fee_base_msat *= 2;
12354 chan.1.contents.fee_base_msat *= 2;
12355 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12356 &nodes[1].node.get_our_node_id()).pop().unwrap();
12357 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12358 &nodes[0].node.get_our_node_id()).pop().unwrap();
12360 // The first two nodes (which opened a channel) should now require fresh persistence
12361 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12362 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12363 // ... but the last node should not.
12364 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12365 // After persisting the first two nodes they should no longer need fresh persistence.
12366 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12367 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12369 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12370 // about the channel.
12371 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12372 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12373 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12375 // The nodes which are a party to the channel should also ignore messages from unrelated
12377 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12378 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12379 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12380 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12381 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12382 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12384 // At this point the channel info given by peers should still be the same.
12385 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12386 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12388 // An earlier version of handle_channel_update didn't check the directionality of the
12389 // update message and would always update the local fee info, even if our peer was
12390 // (spuriously) forwarding us our own channel_update.
12391 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12392 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12393 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12395 // First deliver each peers' own message, checking that the node doesn't need to be
12396 // persisted and that its channel info remains the same.
12397 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12398 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12399 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12400 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12401 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12402 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12404 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12405 // the channel info has updated.
12406 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12407 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12408 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12409 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12410 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12411 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12415 fn test_keysend_dup_hash_partial_mpp() {
12416 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12418 let chanmon_cfgs = create_chanmon_cfgs(2);
12419 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12420 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12421 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12422 create_announced_chan_between_nodes(&nodes, 0, 1);
12424 // First, send a partial MPP payment.
12425 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12426 let mut mpp_route = route.clone();
12427 mpp_route.paths.push(mpp_route.paths[0].clone());
12429 let payment_id = PaymentId([42; 32]);
12430 // Use the utility function send_payment_along_path to send the payment with MPP data which
12431 // indicates there are more HTLCs coming.
12432 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12433 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12434 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12435 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12436 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12437 check_added_monitors!(nodes[0], 1);
12438 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12439 assert_eq!(events.len(), 1);
12440 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12442 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12443 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12444 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12445 check_added_monitors!(nodes[0], 1);
12446 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12447 assert_eq!(events.len(), 1);
12448 let ev = events.drain(..).next().unwrap();
12449 let payment_event = SendEvent::from_event(ev);
12450 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12451 check_added_monitors!(nodes[1], 0);
12452 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12453 expect_pending_htlcs_forwardable!(nodes[1]);
12454 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12455 check_added_monitors!(nodes[1], 1);
12456 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12457 assert!(updates.update_add_htlcs.is_empty());
12458 assert!(updates.update_fulfill_htlcs.is_empty());
12459 assert_eq!(updates.update_fail_htlcs.len(), 1);
12460 assert!(updates.update_fail_malformed_htlcs.is_empty());
12461 assert!(updates.update_fee.is_none());
12462 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12463 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12464 expect_payment_failed!(nodes[0], our_payment_hash, true);
12466 // Send the second half of the original MPP payment.
12467 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12468 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12469 check_added_monitors!(nodes[0], 1);
12470 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12471 assert_eq!(events.len(), 1);
12472 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12474 // Claim the full MPP payment. Note that we can't use a test utility like
12475 // claim_funds_along_route because the ordering of the messages causes the second half of the
12476 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12477 // lightning messages manually.
12478 nodes[1].node.claim_funds(payment_preimage);
12479 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12480 check_added_monitors!(nodes[1], 2);
12482 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12483 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12484 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12485 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12486 check_added_monitors!(nodes[0], 1);
12487 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12488 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12489 check_added_monitors!(nodes[1], 1);
12490 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12491 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12492 check_added_monitors!(nodes[1], 1);
12493 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12494 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12495 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12496 check_added_monitors!(nodes[0], 1);
12497 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12498 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12499 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12500 check_added_monitors!(nodes[0], 1);
12501 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12502 check_added_monitors!(nodes[1], 1);
12503 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12504 check_added_monitors!(nodes[1], 1);
12505 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12506 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12507 check_added_monitors!(nodes[0], 1);
12509 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12510 // path's success and a PaymentPathSuccessful event for each path's success.
12511 let events = nodes[0].node.get_and_clear_pending_events();
12512 assert_eq!(events.len(), 2);
12514 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12515 assert_eq!(payment_id, *actual_payment_id);
12516 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12517 assert_eq!(route.paths[0], *path);
12519 _ => panic!("Unexpected event"),
12522 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12523 assert_eq!(payment_id, *actual_payment_id);
12524 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12525 assert_eq!(route.paths[0], *path);
12527 _ => panic!("Unexpected event"),
12532 fn test_keysend_dup_payment_hash() {
12533 do_test_keysend_dup_payment_hash(false);
12534 do_test_keysend_dup_payment_hash(true);
12537 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12538 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12539 // outbound regular payment fails as expected.
12540 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12541 // fails as expected.
12542 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12543 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12544 // reject MPP keysend payments, since in this case where the payment has no payment
12545 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12546 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12547 // payment secrets and reject otherwise.
12548 let chanmon_cfgs = create_chanmon_cfgs(2);
12549 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12550 let mut mpp_keysend_cfg = test_default_channel_config();
12551 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12552 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12553 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12554 create_announced_chan_between_nodes(&nodes, 0, 1);
12555 let scorer = test_utils::TestScorer::new();
12556 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12558 // To start (1), send a regular payment but don't claim it.
12559 let expected_route = [&nodes[1]];
12560 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12562 // Next, attempt a keysend payment and make sure it fails.
12563 let route_params = RouteParameters::from_payment_params_and_value(
12564 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12565 TEST_FINAL_CLTV, false), 100_000);
12566 let route = find_route(
12567 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12568 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12570 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12571 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12572 check_added_monitors!(nodes[0], 1);
12573 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12574 assert_eq!(events.len(), 1);
12575 let ev = events.drain(..).next().unwrap();
12576 let payment_event = SendEvent::from_event(ev);
12577 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12578 check_added_monitors!(nodes[1], 0);
12579 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12580 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12581 // fails), the second will process the resulting failure and fail the HTLC backward
12582 expect_pending_htlcs_forwardable!(nodes[1]);
12583 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12584 check_added_monitors!(nodes[1], 1);
12585 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12586 assert!(updates.update_add_htlcs.is_empty());
12587 assert!(updates.update_fulfill_htlcs.is_empty());
12588 assert_eq!(updates.update_fail_htlcs.len(), 1);
12589 assert!(updates.update_fail_malformed_htlcs.is_empty());
12590 assert!(updates.update_fee.is_none());
12591 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12592 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12593 expect_payment_failed!(nodes[0], payment_hash, true);
12595 // Finally, claim the original payment.
12596 claim_payment(&nodes[0], &expected_route, payment_preimage);
12598 // To start (2), send a keysend payment but don't claim it.
12599 let payment_preimage = PaymentPreimage([42; 32]);
12600 let route = find_route(
12601 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12602 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12604 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12605 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12606 check_added_monitors!(nodes[0], 1);
12607 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12608 assert_eq!(events.len(), 1);
12609 let event = events.pop().unwrap();
12610 let path = vec![&nodes[1]];
12611 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12613 // Next, attempt a regular payment and make sure it fails.
12614 let payment_secret = PaymentSecret([43; 32]);
12615 nodes[0].node.send_payment_with_route(&route, payment_hash,
12616 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12617 check_added_monitors!(nodes[0], 1);
12618 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12619 assert_eq!(events.len(), 1);
12620 let ev = events.drain(..).next().unwrap();
12621 let payment_event = SendEvent::from_event(ev);
12622 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12623 check_added_monitors!(nodes[1], 0);
12624 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12625 expect_pending_htlcs_forwardable!(nodes[1]);
12626 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12627 check_added_monitors!(nodes[1], 1);
12628 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12629 assert!(updates.update_add_htlcs.is_empty());
12630 assert!(updates.update_fulfill_htlcs.is_empty());
12631 assert_eq!(updates.update_fail_htlcs.len(), 1);
12632 assert!(updates.update_fail_malformed_htlcs.is_empty());
12633 assert!(updates.update_fee.is_none());
12634 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12635 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12636 expect_payment_failed!(nodes[0], payment_hash, true);
12638 // Finally, succeed the keysend payment.
12639 claim_payment(&nodes[0], &expected_route, payment_preimage);
12641 // To start (3), send a keysend payment but don't claim it.
12642 let payment_id_1 = PaymentId([44; 32]);
12643 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12644 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12645 check_added_monitors!(nodes[0], 1);
12646 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12647 assert_eq!(events.len(), 1);
12648 let event = events.pop().unwrap();
12649 let path = vec![&nodes[1]];
12650 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12652 // Next, attempt a keysend payment and make sure it fails.
12653 let route_params = RouteParameters::from_payment_params_and_value(
12654 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12657 let route = find_route(
12658 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12659 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12661 let payment_id_2 = PaymentId([45; 32]);
12662 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12663 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12664 check_added_monitors!(nodes[0], 1);
12665 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12666 assert_eq!(events.len(), 1);
12667 let ev = events.drain(..).next().unwrap();
12668 let payment_event = SendEvent::from_event(ev);
12669 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12670 check_added_monitors!(nodes[1], 0);
12671 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12672 expect_pending_htlcs_forwardable!(nodes[1]);
12673 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12674 check_added_monitors!(nodes[1], 1);
12675 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12676 assert!(updates.update_add_htlcs.is_empty());
12677 assert!(updates.update_fulfill_htlcs.is_empty());
12678 assert_eq!(updates.update_fail_htlcs.len(), 1);
12679 assert!(updates.update_fail_malformed_htlcs.is_empty());
12680 assert!(updates.update_fee.is_none());
12681 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12682 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12683 expect_payment_failed!(nodes[0], payment_hash, true);
12685 // Finally, claim the original payment.
12686 claim_payment(&nodes[0], &expected_route, payment_preimage);
12690 fn test_keysend_hash_mismatch() {
12691 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12692 // preimage doesn't match the msg's payment hash.
12693 let chanmon_cfgs = create_chanmon_cfgs(2);
12694 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12695 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12696 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12698 let payer_pubkey = nodes[0].node.get_our_node_id();
12699 let payee_pubkey = nodes[1].node.get_our_node_id();
12701 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12702 let route_params = RouteParameters::from_payment_params_and_value(
12703 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12704 let network_graph = nodes[0].network_graph;
12705 let first_hops = nodes[0].node.list_usable_channels();
12706 let scorer = test_utils::TestScorer::new();
12707 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12708 let route = find_route(
12709 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12710 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12713 let test_preimage = PaymentPreimage([42; 32]);
12714 let mismatch_payment_hash = PaymentHash([43; 32]);
12715 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12716 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12717 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12718 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12719 check_added_monitors!(nodes[0], 1);
12721 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12722 assert_eq!(updates.update_add_htlcs.len(), 1);
12723 assert!(updates.update_fulfill_htlcs.is_empty());
12724 assert!(updates.update_fail_htlcs.is_empty());
12725 assert!(updates.update_fail_malformed_htlcs.is_empty());
12726 assert!(updates.update_fee.is_none());
12727 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12729 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12733 fn test_keysend_msg_with_secret_err() {
12734 // Test that we error as expected if we receive a keysend payment that includes a payment
12735 // secret when we don't support MPP keysend.
12736 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12737 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12738 let chanmon_cfgs = create_chanmon_cfgs(2);
12739 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12740 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12741 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12743 let payer_pubkey = nodes[0].node.get_our_node_id();
12744 let payee_pubkey = nodes[1].node.get_our_node_id();
12746 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12747 let route_params = RouteParameters::from_payment_params_and_value(
12748 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12749 let network_graph = nodes[0].network_graph;
12750 let first_hops = nodes[0].node.list_usable_channels();
12751 let scorer = test_utils::TestScorer::new();
12752 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12753 let route = find_route(
12754 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12755 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12758 let test_preimage = PaymentPreimage([42; 32]);
12759 let test_secret = PaymentSecret([43; 32]);
12760 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12761 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12762 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12763 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12764 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12765 PaymentId(payment_hash.0), None, session_privs).unwrap();
12766 check_added_monitors!(nodes[0], 1);
12768 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12769 assert_eq!(updates.update_add_htlcs.len(), 1);
12770 assert!(updates.update_fulfill_htlcs.is_empty());
12771 assert!(updates.update_fail_htlcs.is_empty());
12772 assert!(updates.update_fail_malformed_htlcs.is_empty());
12773 assert!(updates.update_fee.is_none());
12774 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12776 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12780 fn test_multi_hop_missing_secret() {
12781 let chanmon_cfgs = create_chanmon_cfgs(4);
12782 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12783 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12784 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12786 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12787 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12788 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12789 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12791 // Marshall an MPP route.
12792 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12793 let path = route.paths[0].clone();
12794 route.paths.push(path);
12795 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12796 route.paths[0].hops[0].short_channel_id = chan_1_id;
12797 route.paths[0].hops[1].short_channel_id = chan_3_id;
12798 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12799 route.paths[1].hops[0].short_channel_id = chan_2_id;
12800 route.paths[1].hops[1].short_channel_id = chan_4_id;
12802 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12803 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12805 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12806 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12808 _ => panic!("unexpected error")
12813 fn test_channel_update_cached() {
12814 let chanmon_cfgs = create_chanmon_cfgs(3);
12815 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12816 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12817 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12819 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12821 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12822 check_added_monitors!(nodes[0], 1);
12823 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12825 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12826 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12827 assert_eq!(node_1_events.len(), 0);
12830 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12831 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12832 assert_eq!(pending_broadcast_messages.len(), 1);
12835 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12836 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12837 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12839 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12840 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12842 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12843 assert_eq!(node_0_events.len(), 0);
12845 // Now we reconnect to a peer
12846 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12847 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12849 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12850 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12851 }, false).unwrap();
12853 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12854 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12855 assert_eq!(node_0_events.len(), 1);
12856 match &node_0_events[0] {
12857 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12858 _ => panic!("Unexpected event"),
12861 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12862 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12863 assert_eq!(pending_broadcast_messages.len(), 0);
12868 fn test_drop_disconnected_peers_when_removing_channels() {
12869 let chanmon_cfgs = create_chanmon_cfgs(2);
12870 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12871 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12872 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12874 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12876 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12877 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12879 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12880 check_closed_broadcast!(nodes[0], true);
12881 check_added_monitors!(nodes[0], 1);
12882 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12885 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12886 // disconnected and the channel between has been force closed.
12887 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12888 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12889 assert_eq!(nodes_0_per_peer_state.len(), 1);
12890 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12893 nodes[0].node.timer_tick_occurred();
12896 // Assert that nodes[1] has now been removed.
12897 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12902 fn bad_inbound_payment_hash() {
12903 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12904 let chanmon_cfgs = create_chanmon_cfgs(2);
12905 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12906 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12907 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12909 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12910 let payment_data = msgs::FinalOnionHopData {
12912 total_msat: 100_000,
12915 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12916 // payment verification fails as expected.
12917 let mut bad_payment_hash = payment_hash.clone();
12918 bad_payment_hash.0[0] += 1;
12919 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12920 Ok(_) => panic!("Unexpected ok"),
12922 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12926 // Check that using the original payment hash succeeds.
12927 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12931 fn test_outpoint_to_peer_coverage() {
12932 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12933 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12934 // the channel is successfully closed.
12935 let chanmon_cfgs = create_chanmon_cfgs(2);
12936 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12937 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12938 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12940 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12941 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12942 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
12943 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12944 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
12946 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
12947 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
12949 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
12950 // funding transaction, and have the real `channel_id`.
12951 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
12952 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
12955 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
12957 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
12958 // as it has the funding transaction.
12959 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
12960 assert_eq!(nodes_0_lock.len(), 1);
12961 assert!(nodes_0_lock.contains_key(&funding_output));
12964 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
12966 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
12968 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
12970 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
12971 assert_eq!(nodes_0_lock.len(), 1);
12972 assert!(nodes_0_lock.contains_key(&funding_output));
12974 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
12977 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
12978 // soon as it has the funding transaction.
12979 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
12980 assert_eq!(nodes_1_lock.len(), 1);
12981 assert!(nodes_1_lock.contains_key(&funding_output));
12983 check_added_monitors!(nodes[1], 1);
12984 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
12985 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
12986 check_added_monitors!(nodes[0], 1);
12987 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
12988 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
12989 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
12990 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
12992 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
12993 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
12994 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
12995 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
12997 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
12998 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13000 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13001 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13002 // fee for the closing transaction has been negotiated and the parties has the other
13003 // party's signature for the fee negotiated closing transaction.)
13004 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13005 assert_eq!(nodes_0_lock.len(), 1);
13006 assert!(nodes_0_lock.contains_key(&funding_output));
13010 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13011 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13012 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13013 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13014 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13015 assert_eq!(nodes_1_lock.len(), 1);
13016 assert!(nodes_1_lock.contains_key(&funding_output));
13019 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13021 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13022 // therefore has all it needs to fully close the channel (both signatures for the
13023 // closing transaction).
13024 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13025 // fully closed by `nodes[0]`.
13026 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13028 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13029 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13030 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13031 assert_eq!(nodes_1_lock.len(), 1);
13032 assert!(nodes_1_lock.contains_key(&funding_output));
13035 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13037 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13039 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13040 // they both have everything required to fully close the channel.
13041 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13043 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13045 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13046 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13049 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13050 let expected_message = format!("Not connected to node: {}", expected_public_key);
13051 check_api_error_message(expected_message, res_err)
13054 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13055 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13056 check_api_error_message(expected_message, res_err)
13059 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13060 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13061 check_api_error_message(expected_message, res_err)
13064 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13065 let expected_message = "No such channel awaiting to be accepted.".to_string();
13066 check_api_error_message(expected_message, res_err)
13069 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13071 Err(APIError::APIMisuseError { err }) => {
13072 assert_eq!(err, expected_err_message);
13074 Err(APIError::ChannelUnavailable { err }) => {
13075 assert_eq!(err, expected_err_message);
13077 Ok(_) => panic!("Unexpected Ok"),
13078 Err(_) => panic!("Unexpected Error"),
13083 fn test_api_calls_with_unkown_counterparty_node() {
13084 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13085 // expected if the `counterparty_node_id` is an unkown peer in the
13086 // `ChannelManager::per_peer_state` map.
13087 let chanmon_cfg = create_chanmon_cfgs(2);
13088 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13089 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13090 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13093 let channel_id = ChannelId::from_bytes([4; 32]);
13094 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13095 let intercept_id = InterceptId([0; 32]);
13097 // Test the API functions.
13098 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13100 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13102 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13104 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13106 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13108 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13110 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13114 fn test_api_calls_with_unavailable_channel() {
13115 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13116 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13117 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13118 // the given `channel_id`.
13119 let chanmon_cfg = create_chanmon_cfgs(2);
13120 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13121 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13122 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13124 let counterparty_node_id = nodes[1].node.get_our_node_id();
13127 let channel_id = ChannelId::from_bytes([4; 32]);
13129 // Test the API functions.
13130 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13132 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13134 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13136 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13138 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13140 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13144 fn test_connection_limiting() {
13145 // Test that we limit un-channel'd peers and un-funded channels properly.
13146 let chanmon_cfgs = create_chanmon_cfgs(2);
13147 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13148 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13149 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13151 // Note that create_network connects the nodes together for us
13153 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13154 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13156 let mut funding_tx = None;
13157 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13158 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13159 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13162 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13163 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13164 funding_tx = Some(tx.clone());
13165 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13166 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13168 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13169 check_added_monitors!(nodes[1], 1);
13170 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13172 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13174 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13175 check_added_monitors!(nodes[0], 1);
13176 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13178 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13181 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13182 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13183 &nodes[0].keys_manager);
13184 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13185 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13186 open_channel_msg.common_fields.temporary_channel_id);
13188 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13189 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13191 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13192 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13193 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13194 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13195 peer_pks.push(random_pk);
13196 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13197 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13200 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13201 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13202 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13203 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13204 }, true).unwrap_err();
13206 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13207 // them if we have too many un-channel'd peers.
13208 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13209 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13210 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13211 for ev in chan_closed_events {
13212 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13214 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13215 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13217 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13218 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13219 }, true).unwrap_err();
13221 // but of course if the connection is outbound its allowed...
13222 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13223 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13224 }, false).unwrap();
13225 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13227 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13228 // Even though we accept one more connection from new peers, we won't actually let them
13230 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13231 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13232 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13233 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13234 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13236 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13237 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13238 open_channel_msg.common_fields.temporary_channel_id);
13240 // Of course, however, outbound channels are always allowed
13241 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13242 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13244 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13245 // "protected" and can connect again.
13246 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13247 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13248 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13250 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13252 // Further, because the first channel was funded, we can open another channel with
13254 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13255 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13259 fn test_outbound_chans_unlimited() {
13260 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13261 let chanmon_cfgs = create_chanmon_cfgs(2);
13262 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13263 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13264 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13266 // Note that create_network connects the nodes together for us
13268 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13269 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13271 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13272 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13273 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13274 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13277 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13279 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13280 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13281 open_channel_msg.common_fields.temporary_channel_id);
13283 // but we can still open an outbound channel.
13284 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13285 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13287 // but even with such an outbound channel, additional inbound channels will still fail.
13288 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13289 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13290 open_channel_msg.common_fields.temporary_channel_id);
13294 fn test_0conf_limiting() {
13295 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13296 // flag set and (sometimes) accept channels as 0conf.
13297 let chanmon_cfgs = create_chanmon_cfgs(2);
13298 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13299 let mut settings = test_default_channel_config();
13300 settings.manually_accept_inbound_channels = true;
13301 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13302 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13304 // Note that create_network connects the nodes together for us
13306 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13307 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13309 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13310 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13311 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13312 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13313 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13314 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13317 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13318 let events = nodes[1].node.get_and_clear_pending_events();
13320 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13321 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13323 _ => panic!("Unexpected event"),
13325 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13326 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13329 // If we try to accept a channel from another peer non-0conf it will fail.
13330 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13331 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13332 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13333 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13335 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13336 let events = nodes[1].node.get_and_clear_pending_events();
13338 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13339 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13340 Err(APIError::APIMisuseError { err }) =>
13341 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13345 _ => panic!("Unexpected event"),
13347 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13348 open_channel_msg.common_fields.temporary_channel_id);
13350 // ...however if we accept the same channel 0conf it should work just fine.
13351 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13352 let events = nodes[1].node.get_and_clear_pending_events();
13354 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13355 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13357 _ => panic!("Unexpected event"),
13359 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13363 fn reject_excessively_underpaying_htlcs() {
13364 let chanmon_cfg = create_chanmon_cfgs(1);
13365 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13366 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13367 let node = create_network(1, &node_cfg, &node_chanmgr);
13368 let sender_intended_amt_msat = 100;
13369 let extra_fee_msat = 10;
13370 let hop_data = msgs::InboundOnionPayload::Receive {
13371 sender_intended_htlc_amt_msat: 100,
13372 cltv_expiry_height: 42,
13373 payment_metadata: None,
13374 keysend_preimage: None,
13375 payment_data: Some(msgs::FinalOnionHopData {
13376 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13378 custom_tlvs: Vec::new(),
13380 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13381 // intended amount, we fail the payment.
13382 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13383 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13384 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13385 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13386 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13388 assert_eq!(err_code, 19);
13389 } else { panic!(); }
13391 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13392 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13393 sender_intended_htlc_amt_msat: 100,
13394 cltv_expiry_height: 42,
13395 payment_metadata: None,
13396 keysend_preimage: None,
13397 payment_data: Some(msgs::FinalOnionHopData {
13398 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13400 custom_tlvs: Vec::new(),
13402 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13403 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13404 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13405 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13409 fn test_final_incorrect_cltv(){
13410 let chanmon_cfg = create_chanmon_cfgs(1);
13411 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13412 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13413 let node = create_network(1, &node_cfg, &node_chanmgr);
13415 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13416 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13417 sender_intended_htlc_amt_msat: 100,
13418 cltv_expiry_height: 22,
13419 payment_metadata: None,
13420 keysend_preimage: None,
13421 payment_data: Some(msgs::FinalOnionHopData {
13422 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13424 custom_tlvs: Vec::new(),
13425 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13426 node[0].node.default_configuration.accept_mpp_keysend);
13428 // Should not return an error as this condition:
13429 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13430 // is not satisfied.
13431 assert!(result.is_ok());
13435 fn test_inbound_anchors_manual_acceptance() {
13436 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13437 // flag set and (sometimes) accept channels as 0conf.
13438 let mut anchors_cfg = test_default_channel_config();
13439 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13441 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13442 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13444 let chanmon_cfgs = create_chanmon_cfgs(3);
13445 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13446 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13447 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13448 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13450 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13451 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13453 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13454 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13455 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13456 match &msg_events[0] {
13457 MessageSendEvent::HandleError { node_id, action } => {
13458 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13460 ErrorAction::SendErrorMessage { msg } =>
13461 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13462 _ => panic!("Unexpected error action"),
13465 _ => panic!("Unexpected event"),
13468 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13469 let events = nodes[2].node.get_and_clear_pending_events();
13471 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13472 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13473 _ => panic!("Unexpected event"),
13475 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13479 fn test_anchors_zero_fee_htlc_tx_fallback() {
13480 // Tests that if both nodes support anchors, but the remote node does not want to accept
13481 // anchor channels at the moment, an error it sent to the local node such that it can retry
13482 // the channel without the anchors feature.
13483 let chanmon_cfgs = create_chanmon_cfgs(2);
13484 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13485 let mut anchors_config = test_default_channel_config();
13486 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13487 anchors_config.manually_accept_inbound_channels = true;
13488 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13489 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13491 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13492 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13493 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13495 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13496 let events = nodes[1].node.get_and_clear_pending_events();
13498 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13499 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13501 _ => panic!("Unexpected event"),
13504 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13505 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13507 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13508 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13510 // Since nodes[1] should not have accepted the channel, it should
13511 // not have generated any events.
13512 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13516 fn test_update_channel_config() {
13517 let chanmon_cfg = create_chanmon_cfgs(2);
13518 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13519 let mut user_config = test_default_channel_config();
13520 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13521 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13522 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13523 let channel = &nodes[0].node.list_channels()[0];
13525 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13526 let events = nodes[0].node.get_and_clear_pending_msg_events();
13527 assert_eq!(events.len(), 0);
13529 user_config.channel_config.forwarding_fee_base_msat += 10;
13530 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13531 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13532 let events = nodes[0].node.get_and_clear_pending_msg_events();
13533 assert_eq!(events.len(), 1);
13535 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13536 _ => panic!("expected BroadcastChannelUpdate event"),
13539 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13540 let events = nodes[0].node.get_and_clear_pending_msg_events();
13541 assert_eq!(events.len(), 0);
13543 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13544 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13545 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13546 ..Default::default()
13548 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13549 let events = nodes[0].node.get_and_clear_pending_msg_events();
13550 assert_eq!(events.len(), 1);
13552 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13553 _ => panic!("expected BroadcastChannelUpdate event"),
13556 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13557 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13558 forwarding_fee_proportional_millionths: Some(new_fee),
13559 ..Default::default()
13561 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13562 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13563 let events = nodes[0].node.get_and_clear_pending_msg_events();
13564 assert_eq!(events.len(), 1);
13566 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13567 _ => panic!("expected BroadcastChannelUpdate event"),
13570 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13571 // should be applied to ensure update atomicity as specified in the API docs.
13572 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13573 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13574 let new_fee = current_fee + 100;
13577 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13578 forwarding_fee_proportional_millionths: Some(new_fee),
13579 ..Default::default()
13581 Err(APIError::ChannelUnavailable { err: _ }),
13584 // Check that the fee hasn't changed for the channel that exists.
13585 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13586 let events = nodes[0].node.get_and_clear_pending_msg_events();
13587 assert_eq!(events.len(), 0);
13591 fn test_payment_display() {
13592 let payment_id = PaymentId([42; 32]);
13593 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13594 let payment_hash = PaymentHash([42; 32]);
13595 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13596 let payment_preimage = PaymentPreimage([42; 32]);
13597 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13601 fn test_trigger_lnd_force_close() {
13602 let chanmon_cfg = create_chanmon_cfgs(2);
13603 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13604 let user_config = test_default_channel_config();
13605 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13606 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13608 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13609 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13610 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13611 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13612 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13613 check_closed_broadcast(&nodes[0], 1, true);
13614 check_added_monitors(&nodes[0], 1);
13615 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13617 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13618 assert_eq!(txn.len(), 1);
13619 check_spends!(txn[0], funding_tx);
13622 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13623 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13625 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13626 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13628 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13629 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13630 }, false).unwrap();
13631 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13632 let channel_reestablish = get_event_msg!(
13633 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13635 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13637 // Alice should respond with an error since the channel isn't known, but a bogus
13638 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13639 // close even if it was an lnd node.
13640 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13641 assert_eq!(msg_events.len(), 2);
13642 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13643 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13644 assert_eq!(msg.next_local_commitment_number, 0);
13645 assert_eq!(msg.next_remote_commitment_number, 0);
13646 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13647 } else { panic!() };
13648 check_closed_broadcast(&nodes[1], 1, true);
13649 check_added_monitors(&nodes[1], 1);
13650 let expected_close_reason = ClosureReason::ProcessingError {
13651 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13653 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13655 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13656 assert_eq!(txn.len(), 1);
13657 check_spends!(txn[0], funding_tx);
13662 fn test_malformed_forward_htlcs_ser() {
13663 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13664 let chanmon_cfg = create_chanmon_cfgs(1);
13665 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13668 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13669 let deserialized_chanmgr;
13670 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13672 let dummy_failed_htlc = |htlc_id| {
13673 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13675 let dummy_malformed_htlc = |htlc_id| {
13676 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13679 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13680 if htlc_id % 2 == 0 {
13681 dummy_failed_htlc(htlc_id)
13683 dummy_malformed_htlc(htlc_id)
13687 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13688 if htlc_id % 2 == 1 {
13689 dummy_failed_htlc(htlc_id)
13691 dummy_malformed_htlc(htlc_id)
13696 let (scid_1, scid_2) = (42, 43);
13697 let mut forward_htlcs = new_hash_map();
13698 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13699 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13701 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13702 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13703 core::mem::drop(chanmgr_fwd_htlcs);
13705 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13707 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13708 for scid in [scid_1, scid_2].iter() {
13709 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13710 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13712 assert!(deserialized_fwd_htlcs.is_empty());
13713 core::mem::drop(deserialized_fwd_htlcs);
13715 expect_pending_htlcs_forwardable!(nodes[0]);
13721 use crate::chain::Listen;
13722 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13723 use crate::sign::{KeysManager, InMemorySigner};
13724 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13725 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13726 use crate::ln::functional_test_utils::*;
13727 use crate::ln::msgs::{ChannelMessageHandler, Init};
13728 use crate::routing::gossip::NetworkGraph;
13729 use crate::routing::router::{PaymentParameters, RouteParameters};
13730 use crate::util::test_utils;
13731 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13733 use bitcoin::blockdata::locktime::absolute::LockTime;
13734 use bitcoin::hashes::Hash;
13735 use bitcoin::hashes::sha256::Hash as Sha256;
13736 use bitcoin::{Transaction, TxOut};
13738 use crate::sync::{Arc, Mutex, RwLock};
13740 use criterion::Criterion;
13742 type Manager<'a, P> = ChannelManager<
13743 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13744 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13745 &'a test_utils::TestLogger, &'a P>,
13746 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13747 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13748 &'a test_utils::TestLogger>;
13750 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13751 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13753 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13754 type CM = Manager<'chan_mon_cfg, P>;
13756 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13758 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13761 pub fn bench_sends(bench: &mut Criterion) {
13762 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13765 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13766 // Do a simple benchmark of sending a payment back and forth between two nodes.
13767 // Note that this is unrealistic as each payment send will require at least two fsync
13769 let network = bitcoin::Network::Testnet;
13770 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13772 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13773 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13774 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13775 let scorer = RwLock::new(test_utils::TestScorer::new());
13776 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13778 let mut config: UserConfig = Default::default();
13779 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13780 config.channel_handshake_config.minimum_depth = 1;
13782 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13783 let seed_a = [1u8; 32];
13784 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13785 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13787 best_block: BestBlock::from_network(network),
13788 }, genesis_block.header.time);
13789 let node_a_holder = ANodeHolder { node: &node_a };
13791 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13792 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13793 let seed_b = [2u8; 32];
13794 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13795 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13797 best_block: BestBlock::from_network(network),
13798 }, genesis_block.header.time);
13799 let node_b_holder = ANodeHolder { node: &node_b };
13801 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13802 features: node_b.init_features(), networks: None, remote_network_address: None
13804 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13805 features: node_a.init_features(), networks: None, remote_network_address: None
13806 }, false).unwrap();
13807 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13808 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13809 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13812 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13813 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13814 value: 8_000_000, script_pubkey: output_script,
13816 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13817 } else { panic!(); }
13819 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13820 let events_b = node_b.get_and_clear_pending_events();
13821 assert_eq!(events_b.len(), 1);
13822 match events_b[0] {
13823 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13824 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13826 _ => panic!("Unexpected event"),
13829 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13830 let events_a = node_a.get_and_clear_pending_events();
13831 assert_eq!(events_a.len(), 1);
13832 match events_a[0] {
13833 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13834 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13836 _ => panic!("Unexpected event"),
13839 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13841 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13842 Listen::block_connected(&node_a, &block, 1);
13843 Listen::block_connected(&node_b, &block, 1);
13845 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13846 let msg_events = node_a.get_and_clear_pending_msg_events();
13847 assert_eq!(msg_events.len(), 2);
13848 match msg_events[0] {
13849 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13850 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13851 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13855 match msg_events[1] {
13856 MessageSendEvent::SendChannelUpdate { .. } => {},
13860 let events_a = node_a.get_and_clear_pending_events();
13861 assert_eq!(events_a.len(), 1);
13862 match events_a[0] {
13863 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13864 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13866 _ => panic!("Unexpected event"),
13869 let events_b = node_b.get_and_clear_pending_events();
13870 assert_eq!(events_b.len(), 1);
13871 match events_b[0] {
13872 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13873 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13875 _ => panic!("Unexpected event"),
13878 let mut payment_count: u64 = 0;
13879 macro_rules! send_payment {
13880 ($node_a: expr, $node_b: expr) => {
13881 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13882 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13883 let mut payment_preimage = PaymentPreimage([0; 32]);
13884 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13885 payment_count += 1;
13886 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13887 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13889 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13890 PaymentId(payment_hash.0),
13891 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13892 Retry::Attempts(0)).unwrap();
13893 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13894 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13895 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13896 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13897 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13898 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13899 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13901 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13902 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13903 $node_b.claim_funds(payment_preimage);
13904 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13906 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13907 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13908 assert_eq!(node_id, $node_a.get_our_node_id());
13909 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13910 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13912 _ => panic!("Failed to generate claim event"),
13915 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13916 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13917 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13918 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13920 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13924 bench.bench_function(bench_name, |b| b.iter(|| {
13925 send_payment!(node_a, node_b);
13926 send_payment!(node_b, node_a);