1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::{genesis_block, ChainHash};
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::Bolt11InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
113 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
114 custom_tlvs: Vec<(u64, Vec<u8>)>,
117 /// This was added in 0.0.116 and will break deserialization on downgrades.
118 payment_data: Option<msgs::FinalOnionHopData>,
119 payment_preimage: PaymentPreimage,
120 payment_metadata: Option<Vec<u8>>,
121 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) struct PendingHTLCInfo {
129 pub(super) routing: PendingHTLCRouting,
130 pub(super) incoming_shared_secret: [u8; 32],
131 payment_hash: PaymentHash,
133 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
134 /// Sender intended amount to forward or receive (actual amount received
135 /// may overshoot this in either case)
136 pub(super) outgoing_amt_msat: u64,
137 pub(super) outgoing_cltv_value: u32,
138 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
139 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
140 pub(super) skimmed_fee_msat: Option<u64>,
143 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
144 pub(super) enum HTLCFailureMsg {
145 Relay(msgs::UpdateFailHTLC),
146 Malformed(msgs::UpdateFailMalformedHTLC),
149 /// Stores whether we can't forward an HTLC or relevant forwarding info
150 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
151 pub(super) enum PendingHTLCStatus {
152 Forward(PendingHTLCInfo),
153 Fail(HTLCFailureMsg),
156 pub(super) struct PendingAddHTLCInfo {
157 pub(super) forward_info: PendingHTLCInfo,
159 // These fields are produced in `forward_htlcs()` and consumed in
160 // `process_pending_htlc_forwards()` for constructing the
161 // `HTLCSource::PreviousHopData` for failed and forwarded
164 // Note that this may be an outbound SCID alias for the associated channel.
165 prev_short_channel_id: u64,
167 prev_funding_outpoint: OutPoint,
168 prev_user_channel_id: u128,
171 pub(super) enum HTLCForwardInfo {
172 AddHTLC(PendingAddHTLCInfo),
175 err_packet: msgs::OnionErrorPacket,
179 /// Tracks the inbound corresponding to an outbound HTLC
180 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
181 pub(crate) struct HTLCPreviousHopData {
182 // Note that this may be an outbound SCID alias for the associated channel.
183 short_channel_id: u64,
184 user_channel_id: Option<u128>,
186 incoming_packet_shared_secret: [u8; 32],
187 phantom_shared_secret: Option<[u8; 32]>,
189 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
190 // channel with a preimage provided by the forward channel.
195 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
197 /// This is only here for backwards-compatibility in serialization, in the future it can be
198 /// removed, breaking clients running 0.0.106 and earlier.
199 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
201 /// Contains the payer-provided preimage.
202 Spontaneous(PaymentPreimage),
205 /// HTLCs that are to us and can be failed/claimed by the user
206 struct ClaimableHTLC {
207 prev_hop: HTLCPreviousHopData,
209 /// The amount (in msats) of this MPP part
211 /// The amount (in msats) that the sender intended to be sent in this MPP
212 /// part (used for validating total MPP amount)
213 sender_intended_value: u64,
214 onion_payload: OnionPayload,
216 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
217 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
218 total_value_received: Option<u64>,
219 /// The sender intended sum total of all MPP parts specified in the onion
221 /// The extra fee our counterparty skimmed off the top of this HTLC.
222 counterparty_skimmed_fee_msat: Option<u64>,
225 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
226 fn from(val: &ClaimableHTLC) -> Self {
227 events::ClaimedHTLC {
228 channel_id: val.prev_hop.outpoint.to_channel_id(),
229 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
230 cltv_expiry: val.cltv_expiry,
231 value_msat: val.value,
236 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
237 /// a payment and ensure idempotency in LDK.
239 /// This is not exported to bindings users as we just use [u8; 32] directly
240 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
241 pub struct PaymentId(pub [u8; Self::LENGTH]);
244 /// Number of bytes in the id.
245 pub const LENGTH: usize = 32;
248 impl Writeable for PaymentId {
249 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
254 impl Readable for PaymentId {
255 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
256 let buf: [u8; 32] = Readable::read(r)?;
261 impl core::fmt::Display for PaymentId {
262 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
263 crate::util::logger::DebugBytes(&self.0).fmt(f)
267 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
269 /// This is not exported to bindings users as we just use [u8; 32] directly
270 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
271 pub struct InterceptId(pub [u8; 32]);
273 impl Writeable for InterceptId {
274 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
279 impl Readable for InterceptId {
280 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
281 let buf: [u8; 32] = Readable::read(r)?;
286 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
287 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
288 pub(crate) enum SentHTLCId {
289 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
290 OutboundRoute { session_priv: SecretKey },
293 pub(crate) fn from_source(source: &HTLCSource) -> Self {
295 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
296 short_channel_id: hop_data.short_channel_id,
297 htlc_id: hop_data.htlc_id,
299 HTLCSource::OutboundRoute { session_priv, .. } =>
300 Self::OutboundRoute { session_priv: *session_priv },
304 impl_writeable_tlv_based_enum!(SentHTLCId,
305 (0, PreviousHopData) => {
306 (0, short_channel_id, required),
307 (2, htlc_id, required),
309 (2, OutboundRoute) => {
310 (0, session_priv, required),
315 /// Tracks the inbound corresponding to an outbound HTLC
316 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
317 #[derive(Clone, Debug, PartialEq, Eq)]
318 pub(crate) enum HTLCSource {
319 PreviousHopData(HTLCPreviousHopData),
322 session_priv: SecretKey,
323 /// Technically we can recalculate this from the route, but we cache it here to avoid
324 /// doing a double-pass on route when we get a failure back
325 first_hop_htlc_msat: u64,
326 payment_id: PaymentId,
329 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
330 impl core::hash::Hash for HTLCSource {
331 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
333 HTLCSource::PreviousHopData(prev_hop_data) => {
335 prev_hop_data.hash(hasher);
337 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
340 session_priv[..].hash(hasher);
341 payment_id.hash(hasher);
342 first_hop_htlc_msat.hash(hasher);
348 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
350 pub fn dummy() -> Self {
351 HTLCSource::OutboundRoute {
352 path: Path { hops: Vec::new(), blinded_tail: None },
353 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
354 first_hop_htlc_msat: 0,
355 payment_id: PaymentId([2; 32]),
359 #[cfg(debug_assertions)]
360 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
361 /// transaction. Useful to ensure different datastructures match up.
362 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
363 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
364 *first_hop_htlc_msat == htlc.amount_msat
366 // There's nothing we can check for forwarded HTLCs
372 struct InboundOnionErr {
378 /// This enum is used to specify which error data to send to peers when failing back an HTLC
379 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
381 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
382 #[derive(Clone, Copy)]
383 pub enum FailureCode {
384 /// We had a temporary error processing the payment. Useful if no other error codes fit
385 /// and you want to indicate that the payer may want to retry.
386 TemporaryNodeFailure,
387 /// We have a required feature which was not in this onion. For example, you may require
388 /// some additional metadata that was not provided with this payment.
389 RequiredNodeFeatureMissing,
390 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
391 /// the HTLC is too close to the current block height for safe handling.
392 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
393 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
394 IncorrectOrUnknownPaymentDetails,
395 /// We failed to process the payload after the onion was decrypted. You may wish to
396 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
398 /// If available, the tuple data may include the type number and byte offset in the
399 /// decrypted byte stream where the failure occurred.
400 InvalidOnionPayload(Option<(u64, u16)>),
403 impl Into<u16> for FailureCode {
404 fn into(self) -> u16 {
406 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
407 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
408 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
409 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
414 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
415 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
416 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
417 /// peer_state lock. We then return the set of things that need to be done outside the lock in
418 /// this struct and call handle_error!() on it.
420 struct MsgHandleErrInternal {
421 err: msgs::LightningError,
422 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
423 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
424 channel_capacity: Option<u64>,
426 impl MsgHandleErrInternal {
428 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
430 err: LightningError {
432 action: msgs::ErrorAction::SendErrorMessage {
433 msg: msgs::ErrorMessage {
440 shutdown_finish: None,
441 channel_capacity: None,
445 fn from_no_close(err: msgs::LightningError) -> Self {
446 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
449 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
451 err: LightningError {
453 action: msgs::ErrorAction::SendErrorMessage {
454 msg: msgs::ErrorMessage {
460 chan_id: Some((channel_id, user_channel_id)),
461 shutdown_finish: Some((shutdown_res, channel_update)),
462 channel_capacity: Some(channel_capacity)
466 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
469 ChannelError::Warn(msg) => LightningError {
471 action: msgs::ErrorAction::SendWarningMessage {
472 msg: msgs::WarningMessage {
476 log_level: Level::Warn,
479 ChannelError::Ignore(msg) => LightningError {
481 action: msgs::ErrorAction::IgnoreError,
483 ChannelError::Close(msg) => LightningError {
485 action: msgs::ErrorAction::SendErrorMessage {
486 msg: msgs::ErrorMessage {
494 shutdown_finish: None,
495 channel_capacity: None,
499 fn closes_channel(&self) -> bool {
500 self.chan_id.is_some()
504 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
505 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
506 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
507 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
508 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
510 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
511 /// be sent in the order they appear in the return value, however sometimes the order needs to be
512 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
513 /// they were originally sent). In those cases, this enum is also returned.
514 #[derive(Clone, PartialEq)]
515 pub(super) enum RAACommitmentOrder {
516 /// Send the CommitmentUpdate messages first
518 /// Send the RevokeAndACK message first
522 /// Information about a payment which is currently being claimed.
523 struct ClaimingPayment {
525 payment_purpose: events::PaymentPurpose,
526 receiver_node_id: PublicKey,
527 htlcs: Vec<events::ClaimedHTLC>,
528 sender_intended_value: Option<u64>,
530 impl_writeable_tlv_based!(ClaimingPayment, {
531 (0, amount_msat, required),
532 (2, payment_purpose, required),
533 (4, receiver_node_id, required),
534 (5, htlcs, optional_vec),
535 (7, sender_intended_value, option),
538 struct ClaimablePayment {
539 purpose: events::PaymentPurpose,
540 onion_fields: Option<RecipientOnionFields>,
541 htlcs: Vec<ClaimableHTLC>,
544 /// Information about claimable or being-claimed payments
545 struct ClaimablePayments {
546 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
547 /// failed/claimed by the user.
549 /// Note that, no consistency guarantees are made about the channels given here actually
550 /// existing anymore by the time you go to read them!
552 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
553 /// we don't get a duplicate payment.
554 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
556 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
557 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
558 /// as an [`events::Event::PaymentClaimed`].
559 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
562 /// Events which we process internally but cannot be processed immediately at the generation site
563 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
564 /// running normally, and specifically must be processed before any other non-background
565 /// [`ChannelMonitorUpdate`]s are applied.
566 enum BackgroundEvent {
567 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
568 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
569 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
570 /// channel has been force-closed we do not need the counterparty node_id.
572 /// Note that any such events are lost on shutdown, so in general they must be updates which
573 /// are regenerated on startup.
574 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
575 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
576 /// channel to continue normal operation.
578 /// In general this should be used rather than
579 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
580 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
581 /// error the other variant is acceptable.
583 /// Note that any such events are lost on shutdown, so in general they must be updates which
584 /// are regenerated on startup.
585 MonitorUpdateRegeneratedOnStartup {
586 counterparty_node_id: PublicKey,
587 funding_txo: OutPoint,
588 update: ChannelMonitorUpdate
590 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
591 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
593 MonitorUpdatesComplete {
594 counterparty_node_id: PublicKey,
595 channel_id: ChannelId,
600 pub(crate) enum MonitorUpdateCompletionAction {
601 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
602 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
603 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
604 /// event can be generated.
605 PaymentClaimed { payment_hash: PaymentHash },
606 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
607 /// operation of another channel.
609 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
610 /// from completing a monitor update which removes the payment preimage until the inbound edge
611 /// completes a monitor update containing the payment preimage. In that case, after the inbound
612 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
614 EmitEventAndFreeOtherChannel {
615 event: events::Event,
616 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
620 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
621 (0, PaymentClaimed) => { (0, payment_hash, required) },
622 (2, EmitEventAndFreeOtherChannel) => {
623 (0, event, upgradable_required),
624 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
625 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
626 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
627 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
628 // downgrades to prior versions.
629 (1, downstream_counterparty_and_funding_outpoint, option),
633 #[derive(Clone, Debug, PartialEq, Eq)]
634 pub(crate) enum EventCompletionAction {
635 ReleaseRAAChannelMonitorUpdate {
636 counterparty_node_id: PublicKey,
637 channel_funding_outpoint: OutPoint,
640 impl_writeable_tlv_based_enum!(EventCompletionAction,
641 (0, ReleaseRAAChannelMonitorUpdate) => {
642 (0, channel_funding_outpoint, required),
643 (2, counterparty_node_id, required),
647 #[derive(Clone, PartialEq, Eq, Debug)]
648 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
649 /// the blocked action here. See enum variants for more info.
650 pub(crate) enum RAAMonitorUpdateBlockingAction {
651 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
652 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
654 ForwardedPaymentInboundClaim {
655 /// The upstream channel ID (i.e. the inbound edge).
656 channel_id: ChannelId,
657 /// The HTLC ID on the inbound edge.
662 impl RAAMonitorUpdateBlockingAction {
663 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
664 Self::ForwardedPaymentInboundClaim {
665 channel_id: prev_hop.outpoint.to_channel_id(),
666 htlc_id: prev_hop.htlc_id,
671 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
672 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
676 /// State we hold per-peer.
677 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
678 /// `channel_id` -> `ChannelPhase`
680 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
681 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
682 /// `temporary_channel_id` -> `InboundChannelRequest`.
684 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
685 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
686 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
687 /// the channel is rejected, then the entry is simply removed.
688 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
689 /// The latest `InitFeatures` we heard from the peer.
690 latest_features: InitFeatures,
691 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
692 /// for broadcast messages, where ordering isn't as strict).
693 pub(super) pending_msg_events: Vec<MessageSendEvent>,
694 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
695 /// user but which have not yet completed.
697 /// Note that the channel may no longer exist. For example if the channel was closed but we
698 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
699 /// for a missing channel.
700 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
701 /// Map from a specific channel to some action(s) that should be taken when all pending
702 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
704 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
705 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
706 /// channels with a peer this will just be one allocation and will amount to a linear list of
707 /// channels to walk, avoiding the whole hashing rigmarole.
709 /// Note that the channel may no longer exist. For example, if a channel was closed but we
710 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
711 /// for a missing channel. While a malicious peer could construct a second channel with the
712 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
713 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
714 /// duplicates do not occur, so such channels should fail without a monitor update completing.
715 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
716 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
717 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
718 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
719 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
720 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
721 /// The peer is currently connected (i.e. we've seen a
722 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
723 /// [`ChannelMessageHandler::peer_disconnected`].
727 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
728 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
729 /// If true is passed for `require_disconnected`, the function will return false if we haven't
730 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
731 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
732 if require_disconnected && self.is_connected {
735 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
736 && self.monitor_update_blocked_actions.is_empty()
737 && self.in_flight_monitor_updates.is_empty()
740 // Returns a count of all channels we have with this peer, including unfunded channels.
741 fn total_channel_count(&self) -> usize {
742 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
745 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
746 fn has_channel(&self, channel_id: &ChannelId) -> bool {
747 self.channel_by_id.contains_key(channel_id) ||
748 self.inbound_channel_request_by_id.contains_key(channel_id)
752 /// A not-yet-accepted inbound (from counterparty) channel. Once
753 /// accepted, the parameters will be used to construct a channel.
754 pub(super) struct InboundChannelRequest {
755 /// The original OpenChannel message.
756 pub open_channel_msg: msgs::OpenChannel,
757 /// The number of ticks remaining before the request expires.
758 pub ticks_remaining: i32,
761 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
762 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
763 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
765 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
766 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
768 /// For users who don't want to bother doing their own payment preimage storage, we also store that
771 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
772 /// and instead encoding it in the payment secret.
773 struct PendingInboundPayment {
774 /// The payment secret that the sender must use for us to accept this payment
775 payment_secret: PaymentSecret,
776 /// Time at which this HTLC expires - blocks with a header time above this value will result in
777 /// this payment being removed.
779 /// Arbitrary identifier the user specifies (or not)
780 user_payment_id: u64,
781 // Other required attributes of the payment, optionally enforced:
782 payment_preimage: Option<PaymentPreimage>,
783 min_value_msat: Option<u64>,
786 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
787 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
788 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
789 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
790 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
791 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
792 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
793 /// of [`KeysManager`] and [`DefaultRouter`].
795 /// This is not exported to bindings users as Arcs don't make sense in bindings
796 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
804 Arc<NetworkGraph<Arc<L>>>,
806 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
807 ProbabilisticScoringFeeParameters,
808 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
813 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
814 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
815 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
816 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
817 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
818 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
819 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
820 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
821 /// of [`KeysManager`] and [`DefaultRouter`].
823 /// This is not exported to bindings users as Arcs don't make sense in bindings
824 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
833 &'f NetworkGraph<&'g L>,
835 &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
836 ProbabilisticScoringFeeParameters,
837 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
842 /// A trivial trait which describes any [`ChannelManager`].
843 pub trait AChannelManager {
844 /// A type implementing [`chain::Watch`].
845 type Watch: chain::Watch<Self::Signer> + ?Sized;
846 /// A type that may be dereferenced to [`Self::Watch`].
847 type M: Deref<Target = Self::Watch>;
848 /// A type implementing [`BroadcasterInterface`].
849 type Broadcaster: BroadcasterInterface + ?Sized;
850 /// A type that may be dereferenced to [`Self::Broadcaster`].
851 type T: Deref<Target = Self::Broadcaster>;
852 /// A type implementing [`EntropySource`].
853 type EntropySource: EntropySource + ?Sized;
854 /// A type that may be dereferenced to [`Self::EntropySource`].
855 type ES: Deref<Target = Self::EntropySource>;
856 /// A type implementing [`NodeSigner`].
857 type NodeSigner: NodeSigner + ?Sized;
858 /// A type that may be dereferenced to [`Self::NodeSigner`].
859 type NS: Deref<Target = Self::NodeSigner>;
860 /// A type implementing [`WriteableEcdsaChannelSigner`].
861 type Signer: WriteableEcdsaChannelSigner + Sized;
862 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
863 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
864 /// A type that may be dereferenced to [`Self::SignerProvider`].
865 type SP: Deref<Target = Self::SignerProvider>;
866 /// A type implementing [`FeeEstimator`].
867 type FeeEstimator: FeeEstimator + ?Sized;
868 /// A type that may be dereferenced to [`Self::FeeEstimator`].
869 type F: Deref<Target = Self::FeeEstimator>;
870 /// A type implementing [`Router`].
871 type Router: Router + ?Sized;
872 /// A type that may be dereferenced to [`Self::Router`].
873 type R: Deref<Target = Self::Router>;
874 /// A type implementing [`Logger`].
875 type Logger: Logger + ?Sized;
876 /// A type that may be dereferenced to [`Self::Logger`].
877 type L: Deref<Target = Self::Logger>;
878 /// Returns a reference to the actual [`ChannelManager`] object.
879 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
882 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
883 for ChannelManager<M, T, ES, NS, SP, F, R, L>
885 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
886 T::Target: BroadcasterInterface,
887 ES::Target: EntropySource,
888 NS::Target: NodeSigner,
889 SP::Target: SignerProvider,
890 F::Target: FeeEstimator,
894 type Watch = M::Target;
896 type Broadcaster = T::Target;
898 type EntropySource = ES::Target;
900 type NodeSigner = NS::Target;
902 type Signer = <SP::Target as SignerProvider>::Signer;
903 type SignerProvider = SP::Target;
905 type FeeEstimator = F::Target;
907 type Router = R::Target;
909 type Logger = L::Target;
911 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
914 /// Manager which keeps track of a number of channels and sends messages to the appropriate
915 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
917 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
918 /// to individual Channels.
920 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
921 /// all peers during write/read (though does not modify this instance, only the instance being
922 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
923 /// called [`funding_transaction_generated`] for outbound channels) being closed.
925 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
926 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
927 /// [`ChannelMonitorUpdate`] before returning from
928 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
929 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
930 /// `ChannelManager` operations from occurring during the serialization process). If the
931 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
932 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
933 /// will be lost (modulo on-chain transaction fees).
935 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
936 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
937 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
939 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
940 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
941 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
942 /// offline for a full minute. In order to track this, you must call
943 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
945 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
946 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
947 /// not have a channel with being unable to connect to us or open new channels with us if we have
948 /// many peers with unfunded channels.
950 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
951 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
952 /// never limited. Please ensure you limit the count of such channels yourself.
954 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
955 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
956 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
957 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
958 /// you're using lightning-net-tokio.
960 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
961 /// [`funding_created`]: msgs::FundingCreated
962 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
963 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
964 /// [`update_channel`]: chain::Watch::update_channel
965 /// [`ChannelUpdate`]: msgs::ChannelUpdate
966 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
967 /// [`read`]: ReadableArgs::read
970 // The tree structure below illustrates the lock order requirements for the different locks of the
971 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
972 // and should then be taken in the order of the lowest to the highest level in the tree.
973 // Note that locks on different branches shall not be taken at the same time, as doing so will
974 // create a new lock order for those specific locks in the order they were taken.
978 // `total_consistency_lock`
980 // |__`forward_htlcs`
982 // | |__`pending_intercepted_htlcs`
984 // |__`per_peer_state`
986 // | |__`pending_inbound_payments`
988 // | |__`claimable_payments`
990 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
996 // | |__`short_to_chan_info`
998 // | |__`outbound_scid_aliases`
1000 // | |__`best_block`
1002 // | |__`pending_events`
1004 // | |__`pending_background_events`
1006 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1008 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1009 T::Target: BroadcasterInterface,
1010 ES::Target: EntropySource,
1011 NS::Target: NodeSigner,
1012 SP::Target: SignerProvider,
1013 F::Target: FeeEstimator,
1017 default_configuration: UserConfig,
1018 genesis_hash: BlockHash,
1019 fee_estimator: LowerBoundedFeeEstimator<F>,
1025 /// See `ChannelManager` struct-level documentation for lock order requirements.
1027 pub(super) best_block: RwLock<BestBlock>,
1029 best_block: RwLock<BestBlock>,
1030 secp_ctx: Secp256k1<secp256k1::All>,
1032 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1033 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1034 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1035 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1037 /// See `ChannelManager` struct-level documentation for lock order requirements.
1038 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1040 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1041 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1042 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1043 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1044 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1045 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1046 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1047 /// after reloading from disk while replaying blocks against ChannelMonitors.
1049 /// See `PendingOutboundPayment` documentation for more info.
1051 /// See `ChannelManager` struct-level documentation for lock order requirements.
1052 pending_outbound_payments: OutboundPayments,
1054 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1056 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1057 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1058 /// and via the classic SCID.
1060 /// Note that no consistency guarantees are made about the existence of a channel with the
1061 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1063 /// See `ChannelManager` struct-level documentation for lock order requirements.
1065 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1067 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1068 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1069 /// until the user tells us what we should do with them.
1071 /// See `ChannelManager` struct-level documentation for lock order requirements.
1072 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1074 /// The sets of payments which are claimable or currently being claimed. See
1075 /// [`ClaimablePayments`]' individual field docs for more info.
1077 /// See `ChannelManager` struct-level documentation for lock order requirements.
1078 claimable_payments: Mutex<ClaimablePayments>,
1080 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1081 /// and some closed channels which reached a usable state prior to being closed. This is used
1082 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1083 /// active channel list on load.
1085 /// See `ChannelManager` struct-level documentation for lock order requirements.
1086 outbound_scid_aliases: Mutex<HashSet<u64>>,
1088 /// `channel_id` -> `counterparty_node_id`.
1090 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1091 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1092 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1094 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1095 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1096 /// the handling of the events.
1098 /// Note that no consistency guarantees are made about the existence of a peer with the
1099 /// `counterparty_node_id` in our other maps.
1102 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1103 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1104 /// would break backwards compatability.
1105 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1106 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1107 /// required to access the channel with the `counterparty_node_id`.
1109 /// See `ChannelManager` struct-level documentation for lock order requirements.
1110 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1112 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1114 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1115 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1116 /// confirmation depth.
1118 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1119 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1120 /// channel with the `channel_id` in our other maps.
1122 /// See `ChannelManager` struct-level documentation for lock order requirements.
1124 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1126 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1128 our_network_pubkey: PublicKey,
1130 inbound_payment_key: inbound_payment::ExpandedKey,
1132 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1133 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1134 /// we encrypt the namespace identifier using these bytes.
1136 /// [fake scids]: crate::util::scid_utils::fake_scid
1137 fake_scid_rand_bytes: [u8; 32],
1139 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1140 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1141 /// keeping additional state.
1142 probing_cookie_secret: [u8; 32],
1144 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1145 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1146 /// very far in the past, and can only ever be up to two hours in the future.
1147 highest_seen_timestamp: AtomicUsize,
1149 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1150 /// basis, as well as the peer's latest features.
1152 /// If we are connected to a peer we always at least have an entry here, even if no channels
1153 /// are currently open with that peer.
1155 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1156 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1159 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1161 /// See `ChannelManager` struct-level documentation for lock order requirements.
1162 #[cfg(not(any(test, feature = "_test_utils")))]
1163 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1164 #[cfg(any(test, feature = "_test_utils"))]
1165 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1167 /// The set of events which we need to give to the user to handle. In some cases an event may
1168 /// require some further action after the user handles it (currently only blocking a monitor
1169 /// update from being handed to the user to ensure the included changes to the channel state
1170 /// are handled by the user before they're persisted durably to disk). In that case, the second
1171 /// element in the tuple is set to `Some` with further details of the action.
1173 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1174 /// could be in the middle of being processed without the direct mutex held.
1176 /// See `ChannelManager` struct-level documentation for lock order requirements.
1177 #[cfg(not(any(test, feature = "_test_utils")))]
1178 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1179 #[cfg(any(test, feature = "_test_utils"))]
1180 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1182 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1183 pending_events_processor: AtomicBool,
1185 /// If we are running during init (either directly during the deserialization method or in
1186 /// block connection methods which run after deserialization but before normal operation) we
1187 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1188 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1189 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1191 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1193 /// See `ChannelManager` struct-level documentation for lock order requirements.
1195 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1196 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1197 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1198 /// Essentially just when we're serializing ourselves out.
1199 /// Taken first everywhere where we are making changes before any other locks.
1200 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1201 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1202 /// Notifier the lock contains sends out a notification when the lock is released.
1203 total_consistency_lock: RwLock<()>,
1205 background_events_processed_since_startup: AtomicBool,
1207 event_persist_notifier: Notifier,
1208 needs_persist_flag: AtomicBool,
1212 signer_provider: SP,
1217 /// Chain-related parameters used to construct a new `ChannelManager`.
1219 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1220 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1221 /// are not needed when deserializing a previously constructed `ChannelManager`.
1222 #[derive(Clone, Copy, PartialEq)]
1223 pub struct ChainParameters {
1224 /// The network for determining the `chain_hash` in Lightning messages.
1225 pub network: Network,
1227 /// The hash and height of the latest block successfully connected.
1229 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1230 pub best_block: BestBlock,
1233 #[derive(Copy, Clone, PartialEq)]
1237 SkipPersistHandleEvents,
1238 SkipPersistNoEvents,
1241 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1242 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1243 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1244 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1245 /// sending the aforementioned notification (since the lock being released indicates that the
1246 /// updates are ready for persistence).
1248 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1249 /// notify or not based on whether relevant changes have been made, providing a closure to
1250 /// `optionally_notify` which returns a `NotifyOption`.
1251 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1252 event_persist_notifier: &'a Notifier,
1253 needs_persist_flag: &'a AtomicBool,
1255 // We hold onto this result so the lock doesn't get released immediately.
1256 _read_guard: RwLockReadGuard<'a, ()>,
1259 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1260 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1261 /// events to handle.
1263 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1264 /// other cases where losing the changes on restart may result in a force-close or otherwise
1266 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1267 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1270 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1271 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1272 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1273 let force_notify = cm.get_cm().process_background_events();
1275 PersistenceNotifierGuard {
1276 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1277 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1278 should_persist: move || {
1279 // Pick the "most" action between `persist_check` and the background events
1280 // processing and return that.
1281 let notify = persist_check();
1282 match (notify, force_notify) {
1283 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1284 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1285 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1286 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1287 _ => NotifyOption::SkipPersistNoEvents,
1290 _read_guard: read_guard,
1294 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1295 /// [`ChannelManager::process_background_events`] MUST be called first (or
1296 /// [`Self::optionally_notify`] used).
1297 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1298 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1299 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1301 PersistenceNotifierGuard {
1302 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1303 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1304 should_persist: persist_check,
1305 _read_guard: read_guard,
1310 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1311 fn drop(&mut self) {
1312 match (self.should_persist)() {
1313 NotifyOption::DoPersist => {
1314 self.needs_persist_flag.store(true, Ordering::Release);
1315 self.event_persist_notifier.notify()
1317 NotifyOption::SkipPersistHandleEvents =>
1318 self.event_persist_notifier.notify(),
1319 NotifyOption::SkipPersistNoEvents => {},
1324 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1325 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1327 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1329 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1330 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1331 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1332 /// the maximum required amount in lnd as of March 2021.
1333 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1335 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1336 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1338 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1340 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1341 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1342 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1343 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1344 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1345 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1346 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1347 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1348 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1349 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1350 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1351 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1352 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1354 /// Minimum CLTV difference between the current block height and received inbound payments.
1355 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1357 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1358 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1359 // a payment was being routed, so we add an extra block to be safe.
1360 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1362 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1363 // ie that if the next-hop peer fails the HTLC within
1364 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1365 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1366 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1367 // LATENCY_GRACE_PERIOD_BLOCKS.
1370 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1372 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1373 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1376 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1378 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1379 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1381 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1382 /// until we mark the channel disabled and gossip the update.
1383 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1385 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1386 /// we mark the channel enabled and gossip the update.
1387 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1389 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1390 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1391 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1392 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1394 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1395 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1396 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1398 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1399 /// many peers we reject new (inbound) connections.
1400 const MAX_NO_CHANNEL_PEERS: usize = 250;
1402 /// Information needed for constructing an invoice route hint for this channel.
1403 #[derive(Clone, Debug, PartialEq)]
1404 pub struct CounterpartyForwardingInfo {
1405 /// Base routing fee in millisatoshis.
1406 pub fee_base_msat: u32,
1407 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1408 pub fee_proportional_millionths: u32,
1409 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1410 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1411 /// `cltv_expiry_delta` for more details.
1412 pub cltv_expiry_delta: u16,
1415 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1416 /// to better separate parameters.
1417 #[derive(Clone, Debug, PartialEq)]
1418 pub struct ChannelCounterparty {
1419 /// The node_id of our counterparty
1420 pub node_id: PublicKey,
1421 /// The Features the channel counterparty provided upon last connection.
1422 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1423 /// many routing-relevant features are present in the init context.
1424 pub features: InitFeatures,
1425 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1426 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1427 /// claiming at least this value on chain.
1429 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1431 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1432 pub unspendable_punishment_reserve: u64,
1433 /// Information on the fees and requirements that the counterparty requires when forwarding
1434 /// payments to us through this channel.
1435 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1436 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1437 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1438 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1439 pub outbound_htlc_minimum_msat: Option<u64>,
1440 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1441 pub outbound_htlc_maximum_msat: Option<u64>,
1444 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1446 /// Balances of a channel are available through [`ChainMonitor::get_claimable_balances`] and
1447 /// [`ChannelMonitor::get_claimable_balances`], calculated with respect to the corresponding on-chain
1450 /// [`ChainMonitor::get_claimable_balances`]: crate::chain::chainmonitor::ChainMonitor::get_claimable_balances
1451 #[derive(Clone, Debug, PartialEq)]
1452 pub struct ChannelDetails {
1453 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1454 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1455 /// Note that this means this value is *not* persistent - it can change once during the
1456 /// lifetime of the channel.
1457 pub channel_id: ChannelId,
1458 /// Parameters which apply to our counterparty. See individual fields for more information.
1459 pub counterparty: ChannelCounterparty,
1460 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1461 /// our counterparty already.
1463 /// Note that, if this has been set, `channel_id` will be equivalent to
1464 /// `funding_txo.unwrap().to_channel_id()`.
1465 pub funding_txo: Option<OutPoint>,
1466 /// The features which this channel operates with. See individual features for more info.
1468 /// `None` until negotiation completes and the channel type is finalized.
1469 pub channel_type: Option<ChannelTypeFeatures>,
1470 /// The position of the funding transaction in the chain. None if the funding transaction has
1471 /// not yet been confirmed and the channel fully opened.
1473 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1474 /// payments instead of this. See [`get_inbound_payment_scid`].
1476 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1477 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1479 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1480 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1481 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1482 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1483 /// [`confirmations_required`]: Self::confirmations_required
1484 pub short_channel_id: Option<u64>,
1485 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1486 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1487 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1490 /// This will be `None` as long as the channel is not available for routing outbound payments.
1492 /// [`short_channel_id`]: Self::short_channel_id
1493 /// [`confirmations_required`]: Self::confirmations_required
1494 pub outbound_scid_alias: Option<u64>,
1495 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1496 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1497 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1498 /// when they see a payment to be routed to us.
1500 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1501 /// previous values for inbound payment forwarding.
1503 /// [`short_channel_id`]: Self::short_channel_id
1504 pub inbound_scid_alias: Option<u64>,
1505 /// The value, in satoshis, of this channel as appears in the funding output
1506 pub channel_value_satoshis: u64,
1507 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1508 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1509 /// this value on chain.
1511 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1513 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1515 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1516 pub unspendable_punishment_reserve: Option<u64>,
1517 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1518 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1519 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1520 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1521 /// serialized with LDK versions prior to 0.0.113.
1523 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1524 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1525 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1526 pub user_channel_id: u128,
1527 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1528 /// which is applied to commitment and HTLC transactions.
1530 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1531 pub feerate_sat_per_1000_weight: Option<u32>,
1532 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1533 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1534 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1535 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1537 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1538 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1539 /// should be able to spend nearly this amount.
1540 pub outbound_capacity_msat: u64,
1541 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1542 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1543 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1544 /// to use a limit as close as possible to the HTLC limit we can currently send.
1546 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`] and
1547 /// [`ChannelDetails::outbound_capacity_msat`].
1548 pub next_outbound_htlc_limit_msat: u64,
1549 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1550 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1551 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1552 /// route which is valid.
1553 pub next_outbound_htlc_minimum_msat: u64,
1554 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1555 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1556 /// available for inclusion in new inbound HTLCs).
1557 /// Note that there are some corner cases not fully handled here, so the actual available
1558 /// inbound capacity may be slightly higher than this.
1560 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1561 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1562 /// However, our counterparty should be able to spend nearly this amount.
1563 pub inbound_capacity_msat: u64,
1564 /// The number of required confirmations on the funding transaction before the funding will be
1565 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1566 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1567 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1568 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1570 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1572 /// [`is_outbound`]: ChannelDetails::is_outbound
1573 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1574 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1575 pub confirmations_required: Option<u32>,
1576 /// The current number of confirmations on the funding transaction.
1578 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1579 pub confirmations: Option<u32>,
1580 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1581 /// until we can claim our funds after we force-close the channel. During this time our
1582 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1583 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1584 /// time to claim our non-HTLC-encumbered funds.
1586 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1587 pub force_close_spend_delay: Option<u16>,
1588 /// True if the channel was initiated (and thus funded) by us.
1589 pub is_outbound: bool,
1590 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1591 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1592 /// required confirmation count has been reached (and we were connected to the peer at some
1593 /// point after the funding transaction received enough confirmations). The required
1594 /// confirmation count is provided in [`confirmations_required`].
1596 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1597 pub is_channel_ready: bool,
1598 /// The stage of the channel's shutdown.
1599 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1600 pub channel_shutdown_state: Option<ChannelShutdownState>,
1601 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1602 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1604 /// This is a strict superset of `is_channel_ready`.
1605 pub is_usable: bool,
1606 /// True if this channel is (or will be) publicly-announced.
1607 pub is_public: bool,
1608 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1609 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1610 pub inbound_htlc_minimum_msat: Option<u64>,
1611 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1612 pub inbound_htlc_maximum_msat: Option<u64>,
1613 /// Set of configurable parameters that affect channel operation.
1615 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1616 pub config: Option<ChannelConfig>,
1619 impl ChannelDetails {
1620 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1621 /// This should be used for providing invoice hints or in any other context where our
1622 /// counterparty will forward a payment to us.
1624 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1625 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1626 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1627 self.inbound_scid_alias.or(self.short_channel_id)
1630 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1631 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1632 /// we're sending or forwarding a payment outbound over this channel.
1634 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1635 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1636 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1637 self.short_channel_id.or(self.outbound_scid_alias)
1640 fn from_channel_context<SP: Deref, F: Deref>(
1641 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1642 fee_estimator: &LowerBoundedFeeEstimator<F>
1645 SP::Target: SignerProvider,
1646 F::Target: FeeEstimator
1648 let balance = context.get_available_balances(fee_estimator);
1649 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1650 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1652 channel_id: context.channel_id(),
1653 counterparty: ChannelCounterparty {
1654 node_id: context.get_counterparty_node_id(),
1655 features: latest_features,
1656 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1657 forwarding_info: context.counterparty_forwarding_info(),
1658 // Ensures that we have actually received the `htlc_minimum_msat` value
1659 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1660 // message (as they are always the first message from the counterparty).
1661 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1662 // default `0` value set by `Channel::new_outbound`.
1663 outbound_htlc_minimum_msat: if context.have_received_message() {
1664 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1665 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1667 funding_txo: context.get_funding_txo(),
1668 // Note that accept_channel (or open_channel) is always the first message, so
1669 // `have_received_message` indicates that type negotiation has completed.
1670 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1671 short_channel_id: context.get_short_channel_id(),
1672 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1673 inbound_scid_alias: context.latest_inbound_scid_alias(),
1674 channel_value_satoshis: context.get_value_satoshis(),
1675 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1676 unspendable_punishment_reserve: to_self_reserve_satoshis,
1677 inbound_capacity_msat: balance.inbound_capacity_msat,
1678 outbound_capacity_msat: balance.outbound_capacity_msat,
1679 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1680 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1681 user_channel_id: context.get_user_id(),
1682 confirmations_required: context.minimum_depth(),
1683 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1684 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1685 is_outbound: context.is_outbound(),
1686 is_channel_ready: context.is_usable(),
1687 is_usable: context.is_live(),
1688 is_public: context.should_announce(),
1689 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1690 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1691 config: Some(context.config()),
1692 channel_shutdown_state: Some(context.shutdown_state()),
1697 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1698 /// Further information on the details of the channel shutdown.
1699 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1700 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1701 /// the channel will be removed shortly.
1702 /// Also note, that in normal operation, peers could disconnect at any of these states
1703 /// and require peer re-connection before making progress onto other states
1704 pub enum ChannelShutdownState {
1705 /// Channel has not sent or received a shutdown message.
1707 /// Local node has sent a shutdown message for this channel.
1709 /// Shutdown message exchanges have concluded and the channels are in the midst of
1710 /// resolving all existing open HTLCs before closing can continue.
1712 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1713 NegotiatingClosingFee,
1714 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1715 /// to drop the channel.
1719 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1720 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1721 #[derive(Debug, PartialEq)]
1722 pub enum RecentPaymentDetails {
1723 /// When an invoice was requested and thus a payment has not yet been sent.
1725 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1726 /// a payment and ensure idempotency in LDK.
1727 payment_id: PaymentId,
1729 /// When a payment is still being sent and awaiting successful delivery.
1731 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1732 /// a payment and ensure idempotency in LDK.
1733 payment_id: PaymentId,
1734 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1736 payment_hash: PaymentHash,
1737 /// Total amount (in msat, excluding fees) across all paths for this payment,
1738 /// not just the amount currently inflight.
1741 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1742 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1743 /// payment is removed from tracking.
1745 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1746 /// a payment and ensure idempotency in LDK.
1747 payment_id: PaymentId,
1748 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1749 /// made before LDK version 0.0.104.
1750 payment_hash: Option<PaymentHash>,
1752 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1753 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1754 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1756 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1757 /// a payment and ensure idempotency in LDK.
1758 payment_id: PaymentId,
1759 /// Hash of the payment that we have given up trying to send.
1760 payment_hash: PaymentHash,
1764 /// Route hints used in constructing invoices for [phantom node payents].
1766 /// [phantom node payments]: crate::sign::PhantomKeysManager
1768 pub struct PhantomRouteHints {
1769 /// The list of channels to be included in the invoice route hints.
1770 pub channels: Vec<ChannelDetails>,
1771 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1773 pub phantom_scid: u64,
1774 /// The pubkey of the real backing node that would ultimately receive the payment.
1775 pub real_node_pubkey: PublicKey,
1778 macro_rules! handle_error {
1779 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1780 // In testing, ensure there are no deadlocks where the lock is already held upon
1781 // entering the macro.
1782 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1783 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1787 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1788 let mut msg_events = Vec::with_capacity(2);
1790 if let Some((shutdown_res, update_option)) = shutdown_finish {
1791 $self.finish_force_close_channel(shutdown_res);
1792 if let Some(update) = update_option {
1793 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1797 if let Some((channel_id, user_channel_id)) = chan_id {
1798 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1799 channel_id, user_channel_id,
1800 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1801 counterparty_node_id: Some($counterparty_node_id),
1802 channel_capacity_sats: channel_capacity,
1807 log_error!($self.logger, "{}", err.err);
1808 if let msgs::ErrorAction::IgnoreError = err.action {
1810 msg_events.push(events::MessageSendEvent::HandleError {
1811 node_id: $counterparty_node_id,
1812 action: err.action.clone()
1816 if !msg_events.is_empty() {
1817 let per_peer_state = $self.per_peer_state.read().unwrap();
1818 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1819 let mut peer_state = peer_state_mutex.lock().unwrap();
1820 peer_state.pending_msg_events.append(&mut msg_events);
1824 // Return error in case higher-API need one
1829 ($self: ident, $internal: expr) => {
1832 Err((chan, msg_handle_err)) => {
1833 let counterparty_node_id = chan.get_counterparty_node_id();
1834 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1840 macro_rules! update_maps_on_chan_removal {
1841 ($self: expr, $channel_context: expr) => {{
1842 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1843 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1844 if let Some(short_id) = $channel_context.get_short_channel_id() {
1845 short_to_chan_info.remove(&short_id);
1847 // If the channel was never confirmed on-chain prior to its closure, remove the
1848 // outbound SCID alias we used for it from the collision-prevention set. While we
1849 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1850 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1851 // opening a million channels with us which are closed before we ever reach the funding
1853 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1854 debug_assert!(alias_removed);
1856 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1860 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1861 macro_rules! convert_chan_phase_err {
1862 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1864 ChannelError::Warn(msg) => {
1865 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1867 ChannelError::Ignore(msg) => {
1868 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1870 ChannelError::Close(msg) => {
1871 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1872 update_maps_on_chan_removal!($self, $channel.context);
1873 let shutdown_res = $channel.context.force_shutdown(true);
1874 let user_id = $channel.context.get_user_id();
1875 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1877 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1878 shutdown_res, $channel_update, channel_capacity_satoshis))
1882 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1883 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1885 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1886 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1888 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1889 match $channel_phase {
1890 ChannelPhase::Funded(channel) => {
1891 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1893 ChannelPhase::UnfundedOutboundV1(channel) => {
1894 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1896 ChannelPhase::UnfundedInboundV1(channel) => {
1897 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1903 macro_rules! break_chan_phase_entry {
1904 ($self: ident, $res: expr, $entry: expr) => {
1908 let key = *$entry.key();
1909 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1911 $entry.remove_entry();
1919 macro_rules! try_chan_phase_entry {
1920 ($self: ident, $res: expr, $entry: expr) => {
1924 let key = *$entry.key();
1925 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1927 $entry.remove_entry();
1935 macro_rules! remove_channel_phase {
1936 ($self: expr, $entry: expr) => {
1938 let channel = $entry.remove_entry().1;
1939 update_maps_on_chan_removal!($self, &channel.context());
1945 macro_rules! send_channel_ready {
1946 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1947 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1948 node_id: $channel.context.get_counterparty_node_id(),
1949 msg: $channel_ready_msg,
1951 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1952 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1953 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1954 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1955 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1956 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1957 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1958 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1959 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1960 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1965 macro_rules! emit_channel_pending_event {
1966 ($locked_events: expr, $channel: expr) => {
1967 if $channel.context.should_emit_channel_pending_event() {
1968 $locked_events.push_back((events::Event::ChannelPending {
1969 channel_id: $channel.context.channel_id(),
1970 former_temporary_channel_id: $channel.context.temporary_channel_id(),
1971 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1972 user_channel_id: $channel.context.get_user_id(),
1973 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1975 $channel.context.set_channel_pending_event_emitted();
1980 macro_rules! emit_channel_ready_event {
1981 ($locked_events: expr, $channel: expr) => {
1982 if $channel.context.should_emit_channel_ready_event() {
1983 debug_assert!($channel.context.channel_pending_event_emitted());
1984 $locked_events.push_back((events::Event::ChannelReady {
1985 channel_id: $channel.context.channel_id(),
1986 user_channel_id: $channel.context.get_user_id(),
1987 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1988 channel_type: $channel.context.get_channel_type().clone(),
1990 $channel.context.set_channel_ready_event_emitted();
1995 macro_rules! handle_monitor_update_completion {
1996 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1997 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1998 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1999 $self.best_block.read().unwrap().height());
2000 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2001 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2002 // We only send a channel_update in the case where we are just now sending a
2003 // channel_ready and the channel is in a usable state. We may re-send a
2004 // channel_update later through the announcement_signatures process for public
2005 // channels, but there's no reason not to just inform our counterparty of our fees
2007 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2008 Some(events::MessageSendEvent::SendChannelUpdate {
2009 node_id: counterparty_node_id,
2015 let update_actions = $peer_state.monitor_update_blocked_actions
2016 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2018 let htlc_forwards = $self.handle_channel_resumption(
2019 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2020 updates.commitment_update, updates.order, updates.accepted_htlcs,
2021 updates.funding_broadcastable, updates.channel_ready,
2022 updates.announcement_sigs);
2023 if let Some(upd) = channel_update {
2024 $peer_state.pending_msg_events.push(upd);
2027 let channel_id = $chan.context.channel_id();
2028 core::mem::drop($peer_state_lock);
2029 core::mem::drop($per_peer_state_lock);
2031 $self.handle_monitor_update_completion_actions(update_actions);
2033 if let Some(forwards) = htlc_forwards {
2034 $self.forward_htlcs(&mut [forwards][..]);
2036 $self.finalize_claims(updates.finalized_claimed_htlcs);
2037 for failure in updates.failed_htlcs.drain(..) {
2038 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2039 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2044 macro_rules! handle_new_monitor_update {
2045 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2046 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2048 ChannelMonitorUpdateStatus::UnrecoverableError => {
2049 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2050 log_error!($self.logger, "{}", err_str);
2051 panic!("{}", err_str);
2053 ChannelMonitorUpdateStatus::InProgress => {
2054 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2055 &$chan.context.channel_id());
2058 ChannelMonitorUpdateStatus::Completed => {
2064 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2065 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2066 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2068 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2069 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2070 .or_insert_with(Vec::new);
2071 // During startup, we push monitor updates as background events through to here in
2072 // order to replay updates that were in-flight when we shut down. Thus, we have to
2073 // filter for uniqueness here.
2074 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2075 .unwrap_or_else(|| {
2076 in_flight_updates.push($update);
2077 in_flight_updates.len() - 1
2079 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2080 handle_new_monitor_update!($self, update_res, $chan, _internal,
2082 let _ = in_flight_updates.remove(idx);
2083 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2084 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2090 macro_rules! process_events_body {
2091 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2092 let mut processed_all_events = false;
2093 while !processed_all_events {
2094 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2101 // We'll acquire our total consistency lock so that we can be sure no other
2102 // persists happen while processing monitor events.
2103 let _read_guard = $self.total_consistency_lock.read().unwrap();
2105 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2106 // ensure any startup-generated background events are handled first.
2107 result = $self.process_background_events();
2109 // TODO: This behavior should be documented. It's unintuitive that we query
2110 // ChannelMonitors when clearing other events.
2111 if $self.process_pending_monitor_events() {
2112 result = NotifyOption::DoPersist;
2116 let pending_events = $self.pending_events.lock().unwrap().clone();
2117 let num_events = pending_events.len();
2118 if !pending_events.is_empty() {
2119 result = NotifyOption::DoPersist;
2122 let mut post_event_actions = Vec::new();
2124 for (event, action_opt) in pending_events {
2125 $event_to_handle = event;
2127 if let Some(action) = action_opt {
2128 post_event_actions.push(action);
2133 let mut pending_events = $self.pending_events.lock().unwrap();
2134 pending_events.drain(..num_events);
2135 processed_all_events = pending_events.is_empty();
2136 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2137 // updated here with the `pending_events` lock acquired.
2138 $self.pending_events_processor.store(false, Ordering::Release);
2141 if !post_event_actions.is_empty() {
2142 $self.handle_post_event_actions(post_event_actions);
2143 // If we had some actions, go around again as we may have more events now
2144 processed_all_events = false;
2148 NotifyOption::DoPersist => {
2149 $self.needs_persist_flag.store(true, Ordering::Release);
2150 $self.event_persist_notifier.notify();
2152 NotifyOption::SkipPersistHandleEvents =>
2153 $self.event_persist_notifier.notify(),
2154 NotifyOption::SkipPersistNoEvents => {},
2160 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2162 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2163 T::Target: BroadcasterInterface,
2164 ES::Target: EntropySource,
2165 NS::Target: NodeSigner,
2166 SP::Target: SignerProvider,
2167 F::Target: FeeEstimator,
2171 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2173 /// The current time or latest block header time can be provided as the `current_timestamp`.
2175 /// This is the main "logic hub" for all channel-related actions, and implements
2176 /// [`ChannelMessageHandler`].
2178 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2180 /// Users need to notify the new `ChannelManager` when a new block is connected or
2181 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2182 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2185 /// [`block_connected`]: chain::Listen::block_connected
2186 /// [`block_disconnected`]: chain::Listen::block_disconnected
2187 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2189 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2190 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2191 current_timestamp: u32,
2193 let mut secp_ctx = Secp256k1::new();
2194 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2195 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2196 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2198 default_configuration: config.clone(),
2199 genesis_hash: genesis_block(params.network).header.block_hash(),
2200 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2205 best_block: RwLock::new(params.best_block),
2207 outbound_scid_aliases: Mutex::new(HashSet::new()),
2208 pending_inbound_payments: Mutex::new(HashMap::new()),
2209 pending_outbound_payments: OutboundPayments::new(),
2210 forward_htlcs: Mutex::new(HashMap::new()),
2211 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2212 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2213 id_to_peer: Mutex::new(HashMap::new()),
2214 short_to_chan_info: FairRwLock::new(HashMap::new()),
2216 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2219 inbound_payment_key: expanded_inbound_key,
2220 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2222 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2224 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2226 per_peer_state: FairRwLock::new(HashMap::new()),
2228 pending_events: Mutex::new(VecDeque::new()),
2229 pending_events_processor: AtomicBool::new(false),
2230 pending_background_events: Mutex::new(Vec::new()),
2231 total_consistency_lock: RwLock::new(()),
2232 background_events_processed_since_startup: AtomicBool::new(false),
2234 event_persist_notifier: Notifier::new(),
2235 needs_persist_flag: AtomicBool::new(false),
2245 /// Gets the current configuration applied to all new channels.
2246 pub fn get_current_default_configuration(&self) -> &UserConfig {
2247 &self.default_configuration
2250 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2251 let height = self.best_block.read().unwrap().height();
2252 let mut outbound_scid_alias = 0;
2255 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2256 outbound_scid_alias += 1;
2258 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2260 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2264 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2269 /// Creates a new outbound channel to the given remote node and with the given value.
2271 /// `user_channel_id` will be provided back as in
2272 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2273 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2274 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2275 /// is simply copied to events and otherwise ignored.
2277 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2278 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2280 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2281 /// generate a shutdown scriptpubkey or destination script set by
2282 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2284 /// Note that we do not check if you are currently connected to the given peer. If no
2285 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2286 /// the channel eventually being silently forgotten (dropped on reload).
2288 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2289 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2290 /// [`ChannelDetails::channel_id`] until after
2291 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2292 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2293 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2295 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2296 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2297 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2298 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2299 if channel_value_satoshis < 1000 {
2300 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2303 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2304 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2305 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2307 let per_peer_state = self.per_peer_state.read().unwrap();
2309 let peer_state_mutex = per_peer_state.get(&their_network_key)
2310 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2312 let mut peer_state = peer_state_mutex.lock().unwrap();
2314 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2315 let their_features = &peer_state.latest_features;
2316 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2317 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2318 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2319 self.best_block.read().unwrap().height(), outbound_scid_alias)
2323 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2328 let res = channel.get_open_channel(self.genesis_hash.clone());
2330 let temporary_channel_id = channel.context.channel_id();
2331 match peer_state.channel_by_id.entry(temporary_channel_id) {
2332 hash_map::Entry::Occupied(_) => {
2334 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2336 panic!("RNG is bad???");
2339 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2342 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2343 node_id: their_network_key,
2346 Ok(temporary_channel_id)
2349 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2350 // Allocate our best estimate of the number of channels we have in the `res`
2351 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2352 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2353 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2354 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2355 // the same channel.
2356 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2358 let best_block_height = self.best_block.read().unwrap().height();
2359 let per_peer_state = self.per_peer_state.read().unwrap();
2360 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2361 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2362 let peer_state = &mut *peer_state_lock;
2363 res.extend(peer_state.channel_by_id.iter()
2364 .filter_map(|(chan_id, phase)| match phase {
2365 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2366 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2370 .map(|(_channel_id, channel)| {
2371 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2372 peer_state.latest_features.clone(), &self.fee_estimator)
2380 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2381 /// more information.
2382 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2383 // Allocate our best estimate of the number of channels we have in the `res`
2384 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2385 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2386 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2387 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2388 // the same channel.
2389 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2391 let best_block_height = self.best_block.read().unwrap().height();
2392 let per_peer_state = self.per_peer_state.read().unwrap();
2393 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2394 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2395 let peer_state = &mut *peer_state_lock;
2396 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2397 let details = ChannelDetails::from_channel_context(context, best_block_height,
2398 peer_state.latest_features.clone(), &self.fee_estimator);
2406 /// Gets the list of usable channels, in random order. Useful as an argument to
2407 /// [`Router::find_route`] to ensure non-announced channels are used.
2409 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2410 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2412 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2413 // Note we use is_live here instead of usable which leads to somewhat confused
2414 // internal/external nomenclature, but that's ok cause that's probably what the user
2415 // really wanted anyway.
2416 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2419 /// Gets the list of channels we have with a given counterparty, in random order.
2420 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2421 let best_block_height = self.best_block.read().unwrap().height();
2422 let per_peer_state = self.per_peer_state.read().unwrap();
2424 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2425 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2426 let peer_state = &mut *peer_state_lock;
2427 let features = &peer_state.latest_features;
2428 let context_to_details = |context| {
2429 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2431 return peer_state.channel_by_id
2433 .map(|(_, phase)| phase.context())
2434 .map(context_to_details)
2440 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2441 /// successful path, or have unresolved HTLCs.
2443 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2444 /// result of a crash. If such a payment exists, is not listed here, and an
2445 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2447 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2448 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2449 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2450 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2451 PendingOutboundPayment::AwaitingInvoice { .. } => {
2452 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2454 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2455 PendingOutboundPayment::InvoiceReceived { .. } => {
2456 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2458 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2459 Some(RecentPaymentDetails::Pending {
2460 payment_id: *payment_id,
2461 payment_hash: *payment_hash,
2462 total_msat: *total_msat,
2465 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2466 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2468 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2469 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2471 PendingOutboundPayment::Legacy { .. } => None
2476 /// Helper function that issues the channel close events
2477 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2478 let mut pending_events_lock = self.pending_events.lock().unwrap();
2479 match context.unbroadcasted_funding() {
2480 Some(transaction) => {
2481 pending_events_lock.push_back((events::Event::DiscardFunding {
2482 channel_id: context.channel_id(), transaction
2487 pending_events_lock.push_back((events::Event::ChannelClosed {
2488 channel_id: context.channel_id(),
2489 user_channel_id: context.get_user_id(),
2490 reason: closure_reason,
2491 counterparty_node_id: Some(context.get_counterparty_node_id()),
2492 channel_capacity_sats: Some(context.get_value_satoshis()),
2496 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2497 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2499 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2501 let per_peer_state = self.per_peer_state.read().unwrap();
2503 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2504 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2506 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2507 let peer_state = &mut *peer_state_lock;
2509 match peer_state.channel_by_id.entry(channel_id.clone()) {
2510 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2511 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2512 let funding_txo_opt = chan.context.get_funding_txo();
2513 let their_features = &peer_state.latest_features;
2514 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2515 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2516 failed_htlcs = htlcs;
2518 // We can send the `shutdown` message before updating the `ChannelMonitor`
2519 // here as we don't need the monitor update to complete until we send a
2520 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2521 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2522 node_id: *counterparty_node_id,
2526 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2527 "We can't both complete shutdown and generate a monitor update");
2529 // Update the monitor with the shutdown script if necessary.
2530 if let Some(monitor_update) = monitor_update_opt.take() {
2531 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2532 peer_state_lock, peer_state, per_peer_state, chan);
2536 if chan.is_shutdown() {
2537 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2538 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2539 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2543 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2549 hash_map::Entry::Vacant(_) => {
2550 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2551 // it does not exist for this peer. Either way, we can attempt to force-close it.
2553 // An appropriate error will be returned for non-existence of the channel if that's the case.
2554 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2559 for htlc_source in failed_htlcs.drain(..) {
2560 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2561 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2562 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2568 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2569 /// will be accepted on the given channel, and after additional timeout/the closing of all
2570 /// pending HTLCs, the channel will be closed on chain.
2572 /// * If we are the channel initiator, we will pay between our [`Background`] and
2573 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2575 /// * If our counterparty is the channel initiator, we will require a channel closing
2576 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2577 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2578 /// counterparty to pay as much fee as they'd like, however.
2580 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2582 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2583 /// generate a shutdown scriptpubkey or destination script set by
2584 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2587 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2588 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2589 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2590 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2591 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2592 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2595 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2596 /// will be accepted on the given channel, and after additional timeout/the closing of all
2597 /// pending HTLCs, the channel will be closed on chain.
2599 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2600 /// the channel being closed or not:
2601 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2602 /// transaction. The upper-bound is set by
2603 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2604 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2605 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2606 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2607 /// will appear on a force-closure transaction, whichever is lower).
2609 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2610 /// Will fail if a shutdown script has already been set for this channel by
2611 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2612 /// also be compatible with our and the counterparty's features.
2614 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2616 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2617 /// generate a shutdown scriptpubkey or destination script set by
2618 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2621 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2622 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2623 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2624 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2625 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2626 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2630 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2631 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2632 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2633 for htlc_source in failed_htlcs.drain(..) {
2634 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2635 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2636 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2637 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2639 if let Some((_, funding_txo, monitor_update)) = monitor_update_option {
2640 // There isn't anything we can do if we get an update failure - we're already
2641 // force-closing. The monitor update on the required in-memory copy should broadcast
2642 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2643 // ignore the result here.
2644 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2648 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2649 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2650 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2651 -> Result<PublicKey, APIError> {
2652 let per_peer_state = self.per_peer_state.read().unwrap();
2653 let peer_state_mutex = per_peer_state.get(peer_node_id)
2654 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2655 let (update_opt, counterparty_node_id) = {
2656 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2657 let peer_state = &mut *peer_state_lock;
2658 let closure_reason = if let Some(peer_msg) = peer_msg {
2659 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2661 ClosureReason::HolderForceClosed
2663 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2664 log_error!(self.logger, "Force-closing channel {}", channel_id);
2665 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2666 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2668 ChannelPhase::Funded(mut chan) => {
2669 self.finish_force_close_channel(chan.context.force_shutdown(broadcast));
2670 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2672 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2673 self.finish_force_close_channel(chan_phase.context_mut().force_shutdown(false));
2674 // Unfunded channel has no update
2675 (None, chan_phase.context().get_counterparty_node_id())
2678 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2679 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2680 // N.B. that we don't send any channel close event here: we
2681 // don't have a user_channel_id, and we never sent any opening
2683 (None, *peer_node_id)
2685 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2688 if let Some(update) = update_opt {
2689 let mut peer_state = peer_state_mutex.lock().unwrap();
2690 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2695 Ok(counterparty_node_id)
2698 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2699 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2700 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2701 Ok(counterparty_node_id) => {
2702 let per_peer_state = self.per_peer_state.read().unwrap();
2703 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2704 let mut peer_state = peer_state_mutex.lock().unwrap();
2705 peer_state.pending_msg_events.push(
2706 events::MessageSendEvent::HandleError {
2707 node_id: counterparty_node_id,
2708 action: msgs::ErrorAction::SendErrorMessage {
2709 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2720 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2721 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2722 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2724 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2725 -> Result<(), APIError> {
2726 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2729 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2730 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2731 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2733 /// You can always get the latest local transaction(s) to broadcast from
2734 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2735 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2736 -> Result<(), APIError> {
2737 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2740 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2741 /// for each to the chain and rejecting new HTLCs on each.
2742 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2743 for chan in self.list_channels() {
2744 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2748 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2749 /// local transaction(s).
2750 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2751 for chan in self.list_channels() {
2752 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2756 fn construct_fwd_pending_htlc_info(
2757 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2758 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2759 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2760 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2761 debug_assert!(next_packet_pubkey_opt.is_some());
2762 let outgoing_packet = msgs::OnionPacket {
2764 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2765 hop_data: new_packet_bytes,
2769 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2770 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2771 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2772 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2773 return Err(InboundOnionErr {
2774 msg: "Final Node OnionHopData provided for us as an intermediary node",
2775 err_code: 0x4000 | 22,
2776 err_data: Vec::new(),
2780 Ok(PendingHTLCInfo {
2781 routing: PendingHTLCRouting::Forward {
2782 onion_packet: outgoing_packet,
2785 payment_hash: msg.payment_hash,
2786 incoming_shared_secret: shared_secret,
2787 incoming_amt_msat: Some(msg.amount_msat),
2788 outgoing_amt_msat: amt_to_forward,
2789 outgoing_cltv_value,
2790 skimmed_fee_msat: None,
2794 fn construct_recv_pending_htlc_info(
2795 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2796 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2797 counterparty_skimmed_fee_msat: Option<u64>,
2798 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2799 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2800 msgs::InboundOnionPayload::Receive {
2801 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2803 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2804 msgs::InboundOnionPayload::BlindedReceive {
2805 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2807 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2808 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2810 msgs::InboundOnionPayload::Forward { .. } => {
2811 return Err(InboundOnionErr {
2812 err_code: 0x4000|22,
2813 err_data: Vec::new(),
2814 msg: "Got non final data with an HMAC of 0",
2818 // final_incorrect_cltv_expiry
2819 if outgoing_cltv_value > cltv_expiry {
2820 return Err(InboundOnionErr {
2821 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2823 err_data: cltv_expiry.to_be_bytes().to_vec()
2826 // final_expiry_too_soon
2827 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2828 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2830 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2831 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2832 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2833 let current_height: u32 = self.best_block.read().unwrap().height();
2834 if (outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2835 let mut err_data = Vec::with_capacity(12);
2836 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2837 err_data.extend_from_slice(¤t_height.to_be_bytes());
2838 return Err(InboundOnionErr {
2839 err_code: 0x4000 | 15, err_data,
2840 msg: "The final CLTV expiry is too soon to handle",
2843 if (!allow_underpay && onion_amt_msat > amt_msat) ||
2844 (allow_underpay && onion_amt_msat >
2845 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2847 return Err(InboundOnionErr {
2849 err_data: amt_msat.to_be_bytes().to_vec(),
2850 msg: "Upstream node sent less than we were supposed to receive in payment",
2854 let routing = if let Some(payment_preimage) = keysend_preimage {
2855 // We need to check that the sender knows the keysend preimage before processing this
2856 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2857 // could discover the final destination of X, by probing the adjacent nodes on the route
2858 // with a keysend payment of identical payment hash to X and observing the processing
2859 // time discrepancies due to a hash collision with X.
2860 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2861 if hashed_preimage != payment_hash {
2862 return Err(InboundOnionErr {
2863 err_code: 0x4000|22,
2864 err_data: Vec::new(),
2865 msg: "Payment preimage didn't match payment hash",
2868 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
2869 return Err(InboundOnionErr {
2870 err_code: 0x4000|22,
2871 err_data: Vec::new(),
2872 msg: "We don't support MPP keysend payments",
2875 PendingHTLCRouting::ReceiveKeysend {
2879 incoming_cltv_expiry: outgoing_cltv_value,
2882 } else if let Some(data) = payment_data {
2883 PendingHTLCRouting::Receive {
2886 incoming_cltv_expiry: outgoing_cltv_value,
2887 phantom_shared_secret,
2891 return Err(InboundOnionErr {
2892 err_code: 0x4000|0x2000|3,
2893 err_data: Vec::new(),
2894 msg: "We require payment_secrets",
2897 Ok(PendingHTLCInfo {
2900 incoming_shared_secret: shared_secret,
2901 incoming_amt_msat: Some(amt_msat),
2902 outgoing_amt_msat: onion_amt_msat,
2903 outgoing_cltv_value,
2904 skimmed_fee_msat: counterparty_skimmed_fee_msat,
2908 fn decode_update_add_htlc_onion(
2909 &self, msg: &msgs::UpdateAddHTLC
2910 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
2911 macro_rules! return_malformed_err {
2912 ($msg: expr, $err_code: expr) => {
2914 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2915 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2916 channel_id: msg.channel_id,
2917 htlc_id: msg.htlc_id,
2918 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2919 failure_code: $err_code,
2925 if let Err(_) = msg.onion_routing_packet.public_key {
2926 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2929 let shared_secret = self.node_signer.ecdh(
2930 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2931 ).unwrap().secret_bytes();
2933 if msg.onion_routing_packet.version != 0 {
2934 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2935 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2936 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2937 //receiving node would have to brute force to figure out which version was put in the
2938 //packet by the node that send us the message, in the case of hashing the hop_data, the
2939 //node knows the HMAC matched, so they already know what is there...
2940 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2942 macro_rules! return_err {
2943 ($msg: expr, $err_code: expr, $data: expr) => {
2945 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2946 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2947 channel_id: msg.channel_id,
2948 htlc_id: msg.htlc_id,
2949 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2950 .get_encrypted_failure_packet(&shared_secret, &None),
2956 let next_hop = match onion_utils::decode_next_payment_hop(
2957 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
2958 msg.payment_hash, &self.node_signer
2961 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2962 return_malformed_err!(err_msg, err_code);
2964 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2965 return_err!(err_msg, err_code, &[0; 0]);
2968 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
2969 onion_utils::Hop::Forward {
2970 next_hop_data: msgs::InboundOnionPayload::Forward {
2971 short_channel_id, amt_to_forward, outgoing_cltv_value
2974 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
2975 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
2976 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
2978 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
2979 // inbound channel's state.
2980 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
2981 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
2982 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
2984 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
2988 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
2989 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
2990 if let Some((err, mut code, chan_update)) = loop {
2991 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
2992 let forwarding_chan_info_opt = match id_option {
2993 None => { // unknown_next_peer
2994 // Note that this is likely a timing oracle for detecting whether an scid is a
2995 // phantom or an intercept.
2996 if (self.default_configuration.accept_intercept_htlcs &&
2997 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) ||
2998 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)
3002 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3005 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3007 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3008 let per_peer_state = self.per_peer_state.read().unwrap();
3009 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3010 if peer_state_mutex_opt.is_none() {
3011 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3013 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3014 let peer_state = &mut *peer_state_lock;
3015 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3016 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3019 // Channel was removed. The short_to_chan_info and channel_by_id maps
3020 // have no consistency guarantees.
3021 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3025 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3026 // Note that the behavior here should be identical to the above block - we
3027 // should NOT reveal the existence or non-existence of a private channel if
3028 // we don't allow forwards outbound over them.
3029 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3031 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3032 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3033 // "refuse to forward unless the SCID alias was used", so we pretend
3034 // we don't have the channel here.
3035 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3037 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3039 // Note that we could technically not return an error yet here and just hope
3040 // that the connection is reestablished or monitor updated by the time we get
3041 // around to doing the actual forward, but better to fail early if we can and
3042 // hopefully an attacker trying to path-trace payments cannot make this occur
3043 // on a small/per-node/per-channel scale.
3044 if !chan.context.is_live() { // channel_disabled
3045 // If the channel_update we're going to return is disabled (i.e. the
3046 // peer has been disabled for some time), return `channel_disabled`,
3047 // otherwise return `temporary_channel_failure`.
3048 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3049 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3051 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3054 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3055 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3057 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3058 break Some((err, code, chan_update_opt));
3062 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3063 // We really should set `incorrect_cltv_expiry` here but as we're not
3064 // forwarding over a real channel we can't generate a channel_update
3065 // for it. Instead we just return a generic temporary_node_failure.
3067 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3074 let cur_height = self.best_block.read().unwrap().height() + 1;
3075 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3076 // but we want to be robust wrt to counterparty packet sanitization (see
3077 // HTLC_FAIL_BACK_BUFFER rationale).
3078 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3079 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3081 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3082 break Some(("CLTV expiry is too far in the future", 21, None));
3084 // If the HTLC expires ~now, don't bother trying to forward it to our
3085 // counterparty. They should fail it anyway, but we don't want to bother with
3086 // the round-trips or risk them deciding they definitely want the HTLC and
3087 // force-closing to ensure they get it if we're offline.
3088 // We previously had a much more aggressive check here which tried to ensure
3089 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3090 // but there is no need to do that, and since we're a bit conservative with our
3091 // risk threshold it just results in failing to forward payments.
3092 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3093 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3099 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3100 if let Some(chan_update) = chan_update {
3101 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3102 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3104 else if code == 0x1000 | 13 {
3105 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3107 else if code == 0x1000 | 20 {
3108 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3109 0u16.write(&mut res).expect("Writes cannot fail");
3111 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3112 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3113 chan_update.write(&mut res).expect("Writes cannot fail");
3114 } else if code & 0x1000 == 0x1000 {
3115 // If we're trying to return an error that requires a `channel_update` but
3116 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3117 // generate an update), just use the generic "temporary_node_failure"
3121 return_err!(err, code, &res.0[..]);
3123 Ok((next_hop, shared_secret, next_packet_pk_opt))
3126 fn construct_pending_htlc_status<'a>(
3127 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3128 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3129 ) -> PendingHTLCStatus {
3130 macro_rules! return_err {
3131 ($msg: expr, $err_code: expr, $data: expr) => {
3133 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3134 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3135 channel_id: msg.channel_id,
3136 htlc_id: msg.htlc_id,
3137 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3138 .get_encrypted_failure_packet(&shared_secret, &None),
3144 onion_utils::Hop::Receive(next_hop_data) => {
3146 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3147 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3150 // Note that we could obviously respond immediately with an update_fulfill_htlc
3151 // message, however that would leak that we are the recipient of this payment, so
3152 // instead we stay symmetric with the forwarding case, only responding (after a
3153 // delay) once they've send us a commitment_signed!
3154 PendingHTLCStatus::Forward(info)
3156 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3159 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3160 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3161 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3162 Ok(info) => PendingHTLCStatus::Forward(info),
3163 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3169 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3170 /// public, and thus should be called whenever the result is going to be passed out in a
3171 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3173 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3174 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3175 /// storage and the `peer_state` lock has been dropped.
3177 /// [`channel_update`]: msgs::ChannelUpdate
3178 /// [`internal_closing_signed`]: Self::internal_closing_signed
3179 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3180 if !chan.context.should_announce() {
3181 return Err(LightningError {
3182 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3183 action: msgs::ErrorAction::IgnoreError
3186 if chan.context.get_short_channel_id().is_none() {
3187 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3189 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3190 self.get_channel_update_for_unicast(chan)
3193 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3194 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3195 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3196 /// provided evidence that they know about the existence of the channel.
3198 /// Note that through [`internal_closing_signed`], this function is called without the
3199 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3200 /// removed from the storage and the `peer_state` lock has been dropped.
3202 /// [`channel_update`]: msgs::ChannelUpdate
3203 /// [`internal_closing_signed`]: Self::internal_closing_signed
3204 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3205 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3206 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3207 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3211 self.get_channel_update_for_onion(short_channel_id, chan)
3214 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3215 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3216 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3218 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3219 ChannelUpdateStatus::Enabled => true,
3220 ChannelUpdateStatus::DisabledStaged(_) => true,
3221 ChannelUpdateStatus::Disabled => false,
3222 ChannelUpdateStatus::EnabledStaged(_) => false,
3225 let unsigned = msgs::UnsignedChannelUpdate {
3226 chain_hash: self.genesis_hash,
3228 timestamp: chan.context.get_update_time_counter(),
3229 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3230 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3231 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3232 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3233 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3234 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3235 excess_data: Vec::new(),
3237 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3238 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3239 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3241 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3243 Ok(msgs::ChannelUpdate {
3250 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3251 let _lck = self.total_consistency_lock.read().unwrap();
3252 self.send_payment_along_path(SendAlongPathArgs {
3253 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3258 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3259 let SendAlongPathArgs {
3260 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3263 // The top-level caller should hold the total_consistency_lock read lock.
3264 debug_assert!(self.total_consistency_lock.try_write().is_err());
3266 log_trace!(self.logger,
3267 "Attempting to send payment with payment hash {} along path with next hop {}",
3268 payment_hash, path.hops.first().unwrap().short_channel_id);
3269 let prng_seed = self.entropy_source.get_secure_random_bytes();
3270 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3272 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3273 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3274 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3276 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3277 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3279 let err: Result<(), _> = loop {
3280 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3281 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3282 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3285 let per_peer_state = self.per_peer_state.read().unwrap();
3286 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3287 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3288 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3289 let peer_state = &mut *peer_state_lock;
3290 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3291 match chan_phase_entry.get_mut() {
3292 ChannelPhase::Funded(chan) => {
3293 if !chan.context.is_live() {
3294 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3296 let funding_txo = chan.context.get_funding_txo().unwrap();
3297 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3298 htlc_cltv, HTLCSource::OutboundRoute {
3300 session_priv: session_priv.clone(),
3301 first_hop_htlc_msat: htlc_msat,
3303 }, onion_packet, None, &self.fee_estimator, &self.logger);
3304 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3305 Some(monitor_update) => {
3306 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3308 // Note that MonitorUpdateInProgress here indicates (per function
3309 // docs) that we will resend the commitment update once monitor
3310 // updating completes. Therefore, we must return an error
3311 // indicating that it is unsafe to retry the payment wholesale,
3312 // which we do in the send_payment check for
3313 // MonitorUpdateInProgress, below.
3314 return Err(APIError::MonitorUpdateInProgress);
3322 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3325 // The channel was likely removed after we fetched the id from the
3326 // `short_to_chan_info` map, but before we successfully locked the
3327 // `channel_by_id` map.
3328 // This can occur as no consistency guarantees exists between the two maps.
3329 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3334 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3335 Ok(_) => unreachable!(),
3337 Err(APIError::ChannelUnavailable { err: e.err })
3342 /// Sends a payment along a given route.
3344 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3345 /// fields for more info.
3347 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3348 /// [`PeerManager::process_events`]).
3350 /// # Avoiding Duplicate Payments
3352 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3353 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3354 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3355 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3356 /// second payment with the same [`PaymentId`].
3358 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3359 /// tracking of payments, including state to indicate once a payment has completed. Because you
3360 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3361 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3362 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3364 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3365 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3366 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3367 /// [`ChannelManager::list_recent_payments`] for more information.
3369 /// # Possible Error States on [`PaymentSendFailure`]
3371 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3372 /// each entry matching the corresponding-index entry in the route paths, see
3373 /// [`PaymentSendFailure`] for more info.
3375 /// In general, a path may raise:
3376 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3377 /// node public key) is specified.
3378 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
3379 /// (including due to previous monitor update failure or new permanent monitor update
3381 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3382 /// relevant updates.
3384 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3385 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3386 /// different route unless you intend to pay twice!
3388 /// [`RouteHop`]: crate::routing::router::RouteHop
3389 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3390 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3391 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3392 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3393 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3394 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3395 let best_block_height = self.best_block.read().unwrap().height();
3396 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3397 self.pending_outbound_payments
3398 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3399 &self.entropy_source, &self.node_signer, best_block_height,
3400 |args| self.send_payment_along_path(args))
3403 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3404 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3405 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3406 let best_block_height = self.best_block.read().unwrap().height();
3407 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3408 self.pending_outbound_payments
3409 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3410 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3411 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3412 &self.pending_events, |args| self.send_payment_along_path(args))
3416 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3417 let best_block_height = self.best_block.read().unwrap().height();
3418 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3419 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3420 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3421 best_block_height, |args| self.send_payment_along_path(args))
3425 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3426 let best_block_height = self.best_block.read().unwrap().height();
3427 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3431 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3432 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3436 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3437 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3438 /// retries are exhausted.
3440 /// # Event Generation
3442 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3443 /// as there are no remaining pending HTLCs for this payment.
3445 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3446 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3447 /// determine the ultimate status of a payment.
3449 /// # Requested Invoices
3451 /// In the case of paying a [`Bolt12Invoice`], abandoning the payment prior to receiving the
3452 /// invoice will result in an [`Event::InvoiceRequestFailed`] and prevent any attempts at paying
3453 /// it once received. The other events may only be generated once the invoice has been received.
3455 /// # Restart Behavior
3457 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3458 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3459 /// [`Event::InvoiceRequestFailed`].
3461 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3462 pub fn abandon_payment(&self, payment_id: PaymentId) {
3463 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3464 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3467 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3468 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3469 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3470 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3471 /// never reach the recipient.
3473 /// See [`send_payment`] documentation for more details on the return value of this function
3474 /// and idempotency guarantees provided by the [`PaymentId`] key.
3476 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3477 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3479 /// [`send_payment`]: Self::send_payment
3480 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3481 let best_block_height = self.best_block.read().unwrap().height();
3482 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3483 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3484 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3485 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3488 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3489 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3491 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3494 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3495 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3496 let best_block_height = self.best_block.read().unwrap().height();
3497 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3498 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3499 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3500 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3501 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3504 /// Send a payment that is probing the given route for liquidity. We calculate the
3505 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3506 /// us to easily discern them from real payments.
3507 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3508 let best_block_height = self.best_block.read().unwrap().height();
3509 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3510 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3511 &self.entropy_source, &self.node_signer, best_block_height,
3512 |args| self.send_payment_along_path(args))
3515 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3518 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3519 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3522 /// Sends payment probes over all paths of a route that would be used to pay the given
3523 /// amount to the given `node_id`.
3525 /// See [`ChannelManager::send_preflight_probes`] for more information.
3526 pub fn send_spontaneous_preflight_probes(
3527 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3528 liquidity_limit_multiplier: Option<u64>,
3529 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3530 let payment_params =
3531 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3533 let route_params = RouteParameters { payment_params, final_value_msat: amount_msat };
3535 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3538 /// Sends payment probes over all paths of a route that would be used to pay a route found
3539 /// according to the given [`RouteParameters`].
3541 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3542 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3543 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3544 /// confirmation in a wallet UI.
3546 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3547 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3548 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3549 /// payment. To mitigate this issue, channels with available liquidity less than the required
3550 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3551 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3552 pub fn send_preflight_probes(
3553 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3554 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3555 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3557 let payer = self.get_our_node_id();
3558 let usable_channels = self.list_usable_channels();
3559 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3560 let inflight_htlcs = self.compute_inflight_htlcs();
3564 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3566 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3567 ProbeSendFailure::RouteNotFound
3570 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3572 let mut res = Vec::new();
3574 for mut path in route.paths {
3575 // If the last hop is probably an unannounced channel we refrain from probing all the
3576 // way through to the end and instead probe up to the second-to-last channel.
3577 while let Some(last_path_hop) = path.hops.last() {
3578 if last_path_hop.maybe_announced_channel {
3579 // We found a potentially announced last hop.
3582 // Drop the last hop, as it's likely unannounced.
3585 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3586 last_path_hop.short_channel_id
3588 let final_value_msat = path.final_value_msat();
3590 if let Some(new_last) = path.hops.last_mut() {
3591 new_last.fee_msat += final_value_msat;
3596 if path.hops.len() < 2 {
3599 "Skipped sending payment probe over path with less than two hops."
3604 if let Some(first_path_hop) = path.hops.first() {
3605 if let Some(first_hop) = first_hops.iter().find(|h| {
3606 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3608 let path_value = path.final_value_msat() + path.fee_msat();
3609 let used_liquidity =
3610 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3612 if first_hop.next_outbound_htlc_limit_msat
3613 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3615 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3618 *used_liquidity += path_value;
3623 res.push(self.send_probe(path).map_err(|e| {
3624 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3625 ProbeSendFailure::SendingFailed(e)
3632 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3633 /// which checks the correctness of the funding transaction given the associated channel.
3634 fn funding_transaction_generated_intern<FundingOutput: Fn(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3635 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
3636 ) -> Result<(), APIError> {
3637 let per_peer_state = self.per_peer_state.read().unwrap();
3638 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3639 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3641 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3642 let peer_state = &mut *peer_state_lock;
3643 let (chan, msg) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3644 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3645 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3647 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, &self.logger)
3648 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3649 let channel_id = chan.context.channel_id();
3650 let user_id = chan.context.get_user_id();
3651 let shutdown_res = chan.context.force_shutdown(false);
3652 let channel_capacity = chan.context.get_value_satoshis();
3653 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3654 } else { unreachable!(); });
3656 Ok((chan, funding_msg)) => (chan, funding_msg),
3657 Err((chan, err)) => {
3658 mem::drop(peer_state_lock);
3659 mem::drop(per_peer_state);
3661 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3662 return Err(APIError::ChannelUnavailable {
3663 err: "Signer refused to sign the initial commitment transaction".to_owned()
3669 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3670 return Err(APIError::APIMisuseError {
3672 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3673 temporary_channel_id, counterparty_node_id),
3676 None => return Err(APIError::ChannelUnavailable {err: format!(
3677 "Channel with id {} not found for the passed counterparty node_id {}",
3678 temporary_channel_id, counterparty_node_id),
3682 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3683 node_id: chan.context.get_counterparty_node_id(),
3686 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3687 hash_map::Entry::Occupied(_) => {
3688 panic!("Generated duplicate funding txid?");
3690 hash_map::Entry::Vacant(e) => {
3691 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3692 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3693 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3695 e.insert(ChannelPhase::Funded(chan));
3702 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3703 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
3704 Ok(OutPoint { txid: tx.txid(), index: output_index })
3708 /// Call this upon creation of a funding transaction for the given channel.
3710 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3711 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3713 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3714 /// across the p2p network.
3716 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3717 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3719 /// May panic if the output found in the funding transaction is duplicative with some other
3720 /// channel (note that this should be trivially prevented by using unique funding transaction
3721 /// keys per-channel).
3723 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3724 /// counterparty's signature the funding transaction will automatically be broadcast via the
3725 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3727 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3728 /// not currently support replacing a funding transaction on an existing channel. Instead,
3729 /// create a new channel with a conflicting funding transaction.
3731 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3732 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3733 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3734 /// for more details.
3736 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3737 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3738 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3739 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3741 if !funding_transaction.is_coin_base() {
3742 for inp in funding_transaction.input.iter() {
3743 if inp.witness.is_empty() {
3744 return Err(APIError::APIMisuseError {
3745 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3751 let height = self.best_block.read().unwrap().height();
3752 // Transactions are evaluated as final by network mempools if their locktime is strictly
3753 // lower than the next block height. However, the modules constituting our Lightning
3754 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3755 // module is ahead of LDK, only allow one more block of headroom.
3756 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3757 return Err(APIError::APIMisuseError {
3758 err: "Funding transaction absolute timelock is non-final".to_owned()
3762 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3763 if tx.output.len() > u16::max_value() as usize {
3764 return Err(APIError::APIMisuseError {
3765 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3769 let mut output_index = None;
3770 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3771 for (idx, outp) in tx.output.iter().enumerate() {
3772 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3773 if output_index.is_some() {
3774 return Err(APIError::APIMisuseError {
3775 err: "Multiple outputs matched the expected script and value".to_owned()
3778 output_index = Some(idx as u16);
3781 if output_index.is_none() {
3782 return Err(APIError::APIMisuseError {
3783 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3786 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3790 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3792 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3793 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3794 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3795 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3797 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3798 /// `counterparty_node_id` is provided.
3800 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3801 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3803 /// If an error is returned, none of the updates should be considered applied.
3805 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3806 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3807 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3808 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3809 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3810 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3811 /// [`APIMisuseError`]: APIError::APIMisuseError
3812 pub fn update_partial_channel_config(
3813 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3814 ) -> Result<(), APIError> {
3815 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3816 return Err(APIError::APIMisuseError {
3817 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3821 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3822 let per_peer_state = self.per_peer_state.read().unwrap();
3823 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3824 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3825 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3826 let peer_state = &mut *peer_state_lock;
3827 for channel_id in channel_ids {
3828 if !peer_state.has_channel(channel_id) {
3829 return Err(APIError::ChannelUnavailable {
3830 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", channel_id, counterparty_node_id),
3834 for channel_id in channel_ids {
3835 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3836 let mut config = channel_phase.context().config();
3837 config.apply(config_update);
3838 if !channel_phase.context_mut().update_config(&config) {
3841 if let ChannelPhase::Funded(channel) = channel_phase {
3842 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3843 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3844 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3845 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3846 node_id: channel.context.get_counterparty_node_id(),
3853 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
3854 debug_assert!(false);
3855 return Err(APIError::ChannelUnavailable {
3857 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
3858 channel_id, counterparty_node_id),
3865 /// Atomically updates the [`ChannelConfig`] for the given channels.
3867 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3868 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3869 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3870 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3872 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3873 /// `counterparty_node_id` is provided.
3875 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3876 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3878 /// If an error is returned, none of the updates should be considered applied.
3880 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3881 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3882 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3883 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3884 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3885 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3886 /// [`APIMisuseError`]: APIError::APIMisuseError
3887 pub fn update_channel_config(
3888 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
3889 ) -> Result<(), APIError> {
3890 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
3893 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3894 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3896 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3897 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3899 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3900 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3901 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3902 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3903 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3905 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3906 /// you from forwarding more than you received. See
3907 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
3910 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3913 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3914 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3915 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
3916 // TODO: when we move to deciding the best outbound channel at forward time, only take
3917 // `next_node_id` and not `next_hop_channel_id`
3918 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3919 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3921 let next_hop_scid = {
3922 let peer_state_lock = self.per_peer_state.read().unwrap();
3923 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3924 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3925 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3926 let peer_state = &mut *peer_state_lock;
3927 match peer_state.channel_by_id.get(next_hop_channel_id) {
3928 Some(ChannelPhase::Funded(chan)) => {
3929 if !chan.context.is_usable() {
3930 return Err(APIError::ChannelUnavailable {
3931 err: format!("Channel with id {} not fully established", next_hop_channel_id)
3934 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
3936 Some(_) => return Err(APIError::ChannelUnavailable {
3937 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
3938 next_hop_channel_id, next_node_id)
3940 None => return Err(APIError::ChannelUnavailable {
3941 err: format!("Channel with id {} not found for the passed counterparty node_id {}.",
3942 next_hop_channel_id, next_node_id)
3947 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3948 .ok_or_else(|| APIError::APIMisuseError {
3949 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3952 let routing = match payment.forward_info.routing {
3953 PendingHTLCRouting::Forward { onion_packet, .. } => {
3954 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3956 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3958 let skimmed_fee_msat =
3959 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
3960 let pending_htlc_info = PendingHTLCInfo {
3961 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
3962 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3965 let mut per_source_pending_forward = [(
3966 payment.prev_short_channel_id,
3967 payment.prev_funding_outpoint,
3968 payment.prev_user_channel_id,
3969 vec![(pending_htlc_info, payment.prev_htlc_id)]
3971 self.forward_htlcs(&mut per_source_pending_forward);
3975 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3976 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3978 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3981 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3982 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3983 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3985 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3986 .ok_or_else(|| APIError::APIMisuseError {
3987 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3990 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
3991 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
3992 short_channel_id: payment.prev_short_channel_id,
3993 user_channel_id: Some(payment.prev_user_channel_id),
3994 outpoint: payment.prev_funding_outpoint,
3995 htlc_id: payment.prev_htlc_id,
3996 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
3997 phantom_shared_secret: None,
4000 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4001 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4002 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4003 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4008 /// Processes HTLCs which are pending waiting on random forward delay.
4010 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4011 /// Will likely generate further events.
4012 pub fn process_pending_htlc_forwards(&self) {
4013 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4015 let mut new_events = VecDeque::new();
4016 let mut failed_forwards = Vec::new();
4017 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4019 let mut forward_htlcs = HashMap::new();
4020 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4022 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4023 if short_chan_id != 0 {
4024 macro_rules! forwarding_channel_not_found {
4026 for forward_info in pending_forwards.drain(..) {
4027 match forward_info {
4028 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4029 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4030 forward_info: PendingHTLCInfo {
4031 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4032 outgoing_cltv_value, ..
4035 macro_rules! failure_handler {
4036 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4037 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4039 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4040 short_channel_id: prev_short_channel_id,
4041 user_channel_id: Some(prev_user_channel_id),
4042 outpoint: prev_funding_outpoint,
4043 htlc_id: prev_htlc_id,
4044 incoming_packet_shared_secret: incoming_shared_secret,
4045 phantom_shared_secret: $phantom_ss,
4048 let reason = if $next_hop_unknown {
4049 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4051 HTLCDestination::FailedPayment{ payment_hash }
4054 failed_forwards.push((htlc_source, payment_hash,
4055 HTLCFailReason::reason($err_code, $err_data),
4061 macro_rules! fail_forward {
4062 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4064 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4068 macro_rules! failed_payment {
4069 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4071 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4075 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4076 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4077 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
4078 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4079 let next_hop = match onion_utils::decode_next_payment_hop(
4080 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4081 payment_hash, &self.node_signer
4084 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4085 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4086 // In this scenario, the phantom would have sent us an
4087 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4088 // if it came from us (the second-to-last hop) but contains the sha256
4090 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4092 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4093 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4097 onion_utils::Hop::Receive(hop_data) => {
4098 match self.construct_recv_pending_htlc_info(hop_data,
4099 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4100 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4102 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4103 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4109 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4112 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4115 HTLCForwardInfo::FailHTLC { .. } => {
4116 // Channel went away before we could fail it. This implies
4117 // the channel is now on chain and our counterparty is
4118 // trying to broadcast the HTLC-Timeout, but that's their
4119 // problem, not ours.
4125 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
4126 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4128 forwarding_channel_not_found!();
4132 let per_peer_state = self.per_peer_state.read().unwrap();
4133 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4134 if peer_state_mutex_opt.is_none() {
4135 forwarding_channel_not_found!();
4138 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4139 let peer_state = &mut *peer_state_lock;
4140 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4141 for forward_info in pending_forwards.drain(..) {
4142 match forward_info {
4143 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4144 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4145 forward_info: PendingHTLCInfo {
4146 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4147 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4150 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4151 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4152 short_channel_id: prev_short_channel_id,
4153 user_channel_id: Some(prev_user_channel_id),
4154 outpoint: prev_funding_outpoint,
4155 htlc_id: prev_htlc_id,
4156 incoming_packet_shared_secret: incoming_shared_secret,
4157 // Phantom payments are only PendingHTLCRouting::Receive.
4158 phantom_shared_secret: None,
4160 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4161 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4162 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4165 if let ChannelError::Ignore(msg) = e {
4166 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4168 panic!("Stated return value requirements in send_htlc() were not met");
4170 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4171 failed_forwards.push((htlc_source, payment_hash,
4172 HTLCFailReason::reason(failure_code, data),
4173 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4178 HTLCForwardInfo::AddHTLC { .. } => {
4179 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4181 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4182 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4183 if let Err(e) = chan.queue_fail_htlc(
4184 htlc_id, err_packet, &self.logger
4186 if let ChannelError::Ignore(msg) = e {
4187 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4189 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4191 // fail-backs are best-effort, we probably already have one
4192 // pending, and if not that's OK, if not, the channel is on
4193 // the chain and sending the HTLC-Timeout is their problem.
4200 forwarding_channel_not_found!();
4204 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4205 match forward_info {
4206 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4207 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4208 forward_info: PendingHTLCInfo {
4209 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4210 skimmed_fee_msat, ..
4213 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4214 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4215 let _legacy_hop_data = Some(payment_data.clone());
4216 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4217 payment_metadata, custom_tlvs };
4218 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4219 Some(payment_data), phantom_shared_secret, onion_fields)
4221 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4222 let onion_fields = RecipientOnionFields {
4223 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4227 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4228 payment_data, None, onion_fields)
4231 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4234 let claimable_htlc = ClaimableHTLC {
4235 prev_hop: HTLCPreviousHopData {
4236 short_channel_id: prev_short_channel_id,
4237 user_channel_id: Some(prev_user_channel_id),
4238 outpoint: prev_funding_outpoint,
4239 htlc_id: prev_htlc_id,
4240 incoming_packet_shared_secret: incoming_shared_secret,
4241 phantom_shared_secret,
4243 // We differentiate the received value from the sender intended value
4244 // if possible so that we don't prematurely mark MPP payments complete
4245 // if routing nodes overpay
4246 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4247 sender_intended_value: outgoing_amt_msat,
4249 total_value_received: None,
4250 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4253 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4256 let mut committed_to_claimable = false;
4258 macro_rules! fail_htlc {
4259 ($htlc: expr, $payment_hash: expr) => {
4260 debug_assert!(!committed_to_claimable);
4261 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4262 htlc_msat_height_data.extend_from_slice(
4263 &self.best_block.read().unwrap().height().to_be_bytes(),
4265 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4266 short_channel_id: $htlc.prev_hop.short_channel_id,
4267 user_channel_id: $htlc.prev_hop.user_channel_id,
4268 outpoint: prev_funding_outpoint,
4269 htlc_id: $htlc.prev_hop.htlc_id,
4270 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4271 phantom_shared_secret,
4273 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4274 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4276 continue 'next_forwardable_htlc;
4279 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4280 let mut receiver_node_id = self.our_network_pubkey;
4281 if phantom_shared_secret.is_some() {
4282 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4283 .expect("Failed to get node_id for phantom node recipient");
4286 macro_rules! check_total_value {
4287 ($purpose: expr) => {{
4288 let mut payment_claimable_generated = false;
4289 let is_keysend = match $purpose {
4290 events::PaymentPurpose::SpontaneousPayment(_) => true,
4291 events::PaymentPurpose::InvoicePayment { .. } => false,
4293 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4294 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4295 fail_htlc!(claimable_htlc, payment_hash);
4297 let ref mut claimable_payment = claimable_payments.claimable_payments
4298 .entry(payment_hash)
4299 // Note that if we insert here we MUST NOT fail_htlc!()
4300 .or_insert_with(|| {
4301 committed_to_claimable = true;
4303 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4306 if $purpose != claimable_payment.purpose {
4307 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4308 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4309 fail_htlc!(claimable_htlc, payment_hash);
4311 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4312 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4313 fail_htlc!(claimable_htlc, payment_hash);
4315 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4316 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4317 fail_htlc!(claimable_htlc, payment_hash);
4320 claimable_payment.onion_fields = Some(onion_fields);
4322 let ref mut htlcs = &mut claimable_payment.htlcs;
4323 let mut total_value = claimable_htlc.sender_intended_value;
4324 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4325 for htlc in htlcs.iter() {
4326 total_value += htlc.sender_intended_value;
4327 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4328 if htlc.total_msat != claimable_htlc.total_msat {
4329 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4330 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4331 total_value = msgs::MAX_VALUE_MSAT;
4333 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4335 // The condition determining whether an MPP is complete must
4336 // match exactly the condition used in `timer_tick_occurred`
4337 if total_value >= msgs::MAX_VALUE_MSAT {
4338 fail_htlc!(claimable_htlc, payment_hash);
4339 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4340 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4342 fail_htlc!(claimable_htlc, payment_hash);
4343 } else if total_value >= claimable_htlc.total_msat {
4344 #[allow(unused_assignments)] {
4345 committed_to_claimable = true;
4347 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4348 htlcs.push(claimable_htlc);
4349 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4350 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4351 let counterparty_skimmed_fee_msat = htlcs.iter()
4352 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4353 debug_assert!(total_value.saturating_sub(amount_msat) <=
4354 counterparty_skimmed_fee_msat);
4355 new_events.push_back((events::Event::PaymentClaimable {
4356 receiver_node_id: Some(receiver_node_id),
4360 counterparty_skimmed_fee_msat,
4361 via_channel_id: Some(prev_channel_id),
4362 via_user_channel_id: Some(prev_user_channel_id),
4363 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4364 onion_fields: claimable_payment.onion_fields.clone(),
4366 payment_claimable_generated = true;
4368 // Nothing to do - we haven't reached the total
4369 // payment value yet, wait until we receive more
4371 htlcs.push(claimable_htlc);
4372 #[allow(unused_assignments)] {
4373 committed_to_claimable = true;
4376 payment_claimable_generated
4380 // Check that the payment hash and secret are known. Note that we
4381 // MUST take care to handle the "unknown payment hash" and
4382 // "incorrect payment secret" cases here identically or we'd expose
4383 // that we are the ultimate recipient of the given payment hash.
4384 // Further, we must not expose whether we have any other HTLCs
4385 // associated with the same payment_hash pending or not.
4386 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4387 match payment_secrets.entry(payment_hash) {
4388 hash_map::Entry::Vacant(_) => {
4389 match claimable_htlc.onion_payload {
4390 OnionPayload::Invoice { .. } => {
4391 let payment_data = payment_data.unwrap();
4392 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4393 Ok(result) => result,
4395 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4396 fail_htlc!(claimable_htlc, payment_hash);
4399 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4400 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4401 if (cltv_expiry as u64) < expected_min_expiry_height {
4402 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4403 &payment_hash, cltv_expiry, expected_min_expiry_height);
4404 fail_htlc!(claimable_htlc, payment_hash);
4407 let purpose = events::PaymentPurpose::InvoicePayment {
4408 payment_preimage: payment_preimage.clone(),
4409 payment_secret: payment_data.payment_secret,
4411 check_total_value!(purpose);
4413 OnionPayload::Spontaneous(preimage) => {
4414 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4415 check_total_value!(purpose);
4419 hash_map::Entry::Occupied(inbound_payment) => {
4420 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4421 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4422 fail_htlc!(claimable_htlc, payment_hash);
4424 let payment_data = payment_data.unwrap();
4425 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4426 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4427 fail_htlc!(claimable_htlc, payment_hash);
4428 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4429 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4430 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4431 fail_htlc!(claimable_htlc, payment_hash);
4433 let purpose = events::PaymentPurpose::InvoicePayment {
4434 payment_preimage: inbound_payment.get().payment_preimage,
4435 payment_secret: payment_data.payment_secret,
4437 let payment_claimable_generated = check_total_value!(purpose);
4438 if payment_claimable_generated {
4439 inbound_payment.remove_entry();
4445 HTLCForwardInfo::FailHTLC { .. } => {
4446 panic!("Got pending fail of our own HTLC");
4454 let best_block_height = self.best_block.read().unwrap().height();
4455 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4456 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4457 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4459 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4460 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4462 self.forward_htlcs(&mut phantom_receives);
4464 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4465 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4466 // nice to do the work now if we can rather than while we're trying to get messages in the
4468 self.check_free_holding_cells();
4470 if new_events.is_empty() { return }
4471 let mut events = self.pending_events.lock().unwrap();
4472 events.append(&mut new_events);
4475 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4477 /// Expects the caller to have a total_consistency_lock read lock.
4478 fn process_background_events(&self) -> NotifyOption {
4479 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4481 self.background_events_processed_since_startup.store(true, Ordering::Release);
4483 let mut background_events = Vec::new();
4484 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4485 if background_events.is_empty() {
4486 return NotifyOption::SkipPersistNoEvents;
4489 for event in background_events.drain(..) {
4491 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4492 // The channel has already been closed, so no use bothering to care about the
4493 // monitor updating completing.
4494 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4496 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4497 let mut updated_chan = false;
4499 let per_peer_state = self.per_peer_state.read().unwrap();
4500 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4501 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4502 let peer_state = &mut *peer_state_lock;
4503 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4504 hash_map::Entry::Occupied(mut chan_phase) => {
4505 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4506 updated_chan = true;
4507 handle_new_monitor_update!(self, funding_txo, update.clone(),
4508 peer_state_lock, peer_state, per_peer_state, chan);
4510 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4513 hash_map::Entry::Vacant(_) => {},
4518 // TODO: Track this as in-flight even though the channel is closed.
4519 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4522 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4523 let per_peer_state = self.per_peer_state.read().unwrap();
4524 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4525 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4526 let peer_state = &mut *peer_state_lock;
4527 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4528 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4530 let update_actions = peer_state.monitor_update_blocked_actions
4531 .remove(&channel_id).unwrap_or(Vec::new());
4532 mem::drop(peer_state_lock);
4533 mem::drop(per_peer_state);
4534 self.handle_monitor_update_completion_actions(update_actions);
4540 NotifyOption::DoPersist
4543 #[cfg(any(test, feature = "_test_utils"))]
4544 /// Process background events, for functional testing
4545 pub fn test_process_background_events(&self) {
4546 let _lck = self.total_consistency_lock.read().unwrap();
4547 let _ = self.process_background_events();
4550 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4551 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4552 // If the feerate has decreased by less than half, don't bother
4553 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4554 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4555 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4556 return NotifyOption::SkipPersistNoEvents;
4558 if !chan.context.is_live() {
4559 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4560 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4561 return NotifyOption::SkipPersistNoEvents;
4563 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4564 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4566 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4567 NotifyOption::DoPersist
4571 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4572 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4573 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4574 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4575 pub fn maybe_update_chan_fees(&self) {
4576 PersistenceNotifierGuard::optionally_notify(self, || {
4577 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4579 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4580 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4582 let per_peer_state = self.per_peer_state.read().unwrap();
4583 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4584 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4585 let peer_state = &mut *peer_state_lock;
4586 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4587 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4589 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4594 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4595 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4603 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4605 /// This currently includes:
4606 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4607 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4608 /// than a minute, informing the network that they should no longer attempt to route over
4610 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4611 /// with the current [`ChannelConfig`].
4612 /// * Removing peers which have disconnected but and no longer have any channels.
4613 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4615 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4616 /// estimate fetches.
4618 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4619 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4620 pub fn timer_tick_occurred(&self) {
4621 PersistenceNotifierGuard::optionally_notify(self, || {
4622 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4624 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4625 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4627 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4628 let mut timed_out_mpp_htlcs = Vec::new();
4629 let mut pending_peers_awaiting_removal = Vec::new();
4631 let process_unfunded_channel_tick = |
4632 chan_id: &ChannelId,
4633 context: &mut ChannelContext<SP>,
4634 unfunded_context: &mut UnfundedChannelContext,
4635 pending_msg_events: &mut Vec<MessageSendEvent>,
4636 counterparty_node_id: PublicKey,
4638 context.maybe_expire_prev_config();
4639 if unfunded_context.should_expire_unfunded_channel() {
4640 log_error!(self.logger,
4641 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4642 update_maps_on_chan_removal!(self, &context);
4643 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4644 self.finish_force_close_channel(context.force_shutdown(false));
4645 pending_msg_events.push(MessageSendEvent::HandleError {
4646 node_id: counterparty_node_id,
4647 action: msgs::ErrorAction::SendErrorMessage {
4648 msg: msgs::ErrorMessage {
4649 channel_id: *chan_id,
4650 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4661 let per_peer_state = self.per_peer_state.read().unwrap();
4662 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4663 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4664 let peer_state = &mut *peer_state_lock;
4665 let pending_msg_events = &mut peer_state.pending_msg_events;
4666 let counterparty_node_id = *counterparty_node_id;
4667 peer_state.channel_by_id.retain(|chan_id, phase| {
4669 ChannelPhase::Funded(chan) => {
4670 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4675 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4676 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4678 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4679 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4680 handle_errors.push((Err(err), counterparty_node_id));
4681 if needs_close { return false; }
4684 match chan.channel_update_status() {
4685 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4686 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4687 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4688 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4689 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4690 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4691 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4693 if n >= DISABLE_GOSSIP_TICKS {
4694 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4695 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4696 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4700 should_persist = NotifyOption::DoPersist;
4702 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4705 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4707 if n >= ENABLE_GOSSIP_TICKS {
4708 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4709 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4710 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4714 should_persist = NotifyOption::DoPersist;
4716 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4722 chan.context.maybe_expire_prev_config();
4724 if chan.should_disconnect_peer_awaiting_response() {
4725 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4726 counterparty_node_id, chan_id);
4727 pending_msg_events.push(MessageSendEvent::HandleError {
4728 node_id: counterparty_node_id,
4729 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4730 msg: msgs::WarningMessage {
4731 channel_id: *chan_id,
4732 data: "Disconnecting due to timeout awaiting response".to_owned(),
4740 ChannelPhase::UnfundedInboundV1(chan) => {
4741 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4742 pending_msg_events, counterparty_node_id)
4744 ChannelPhase::UnfundedOutboundV1(chan) => {
4745 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4746 pending_msg_events, counterparty_node_id)
4751 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4752 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4753 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4754 peer_state.pending_msg_events.push(
4755 events::MessageSendEvent::HandleError {
4756 node_id: counterparty_node_id,
4757 action: msgs::ErrorAction::SendErrorMessage {
4758 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4764 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4766 if peer_state.ok_to_remove(true) {
4767 pending_peers_awaiting_removal.push(counterparty_node_id);
4772 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4773 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4774 // of to that peer is later closed while still being disconnected (i.e. force closed),
4775 // we therefore need to remove the peer from `peer_state` separately.
4776 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4777 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4778 // negative effects on parallelism as much as possible.
4779 if pending_peers_awaiting_removal.len() > 0 {
4780 let mut per_peer_state = self.per_peer_state.write().unwrap();
4781 for counterparty_node_id in pending_peers_awaiting_removal {
4782 match per_peer_state.entry(counterparty_node_id) {
4783 hash_map::Entry::Occupied(entry) => {
4784 // Remove the entry if the peer is still disconnected and we still
4785 // have no channels to the peer.
4786 let remove_entry = {
4787 let peer_state = entry.get().lock().unwrap();
4788 peer_state.ok_to_remove(true)
4791 entry.remove_entry();
4794 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4799 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4800 if payment.htlcs.is_empty() {
4801 // This should be unreachable
4802 debug_assert!(false);
4805 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4806 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4807 // In this case we're not going to handle any timeouts of the parts here.
4808 // This condition determining whether the MPP is complete here must match
4809 // exactly the condition used in `process_pending_htlc_forwards`.
4810 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4811 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4814 } else if payment.htlcs.iter_mut().any(|htlc| {
4815 htlc.timer_ticks += 1;
4816 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4818 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4819 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4826 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4827 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4828 let reason = HTLCFailReason::from_failure_code(23);
4829 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4830 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4833 for (err, counterparty_node_id) in handle_errors.drain(..) {
4834 let _ = handle_error!(self, err, counterparty_node_id);
4837 self.pending_outbound_payments.remove_stale_payments(&self.pending_events);
4839 // Technically we don't need to do this here, but if we have holding cell entries in a
4840 // channel that need freeing, it's better to do that here and block a background task
4841 // than block the message queueing pipeline.
4842 if self.check_free_holding_cells() {
4843 should_persist = NotifyOption::DoPersist;
4850 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4851 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4852 /// along the path (including in our own channel on which we received it).
4854 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4855 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4856 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4857 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4859 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4860 /// [`ChannelManager::claim_funds`]), you should still monitor for
4861 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4862 /// startup during which time claims that were in-progress at shutdown may be replayed.
4863 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4864 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4867 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4868 /// reason for the failure.
4870 /// See [`FailureCode`] for valid failure codes.
4871 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4872 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4874 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4875 if let Some(payment) = removed_source {
4876 for htlc in payment.htlcs {
4877 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4878 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4879 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4880 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4885 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4886 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4887 match failure_code {
4888 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
4889 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
4890 FailureCode::IncorrectOrUnknownPaymentDetails => {
4891 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4892 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4893 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
4895 FailureCode::InvalidOnionPayload(data) => {
4896 let fail_data = match data {
4897 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
4900 HTLCFailReason::reason(failure_code.into(), fail_data)
4905 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4906 /// that we want to return and a channel.
4908 /// This is for failures on the channel on which the HTLC was *received*, not failures
4910 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4911 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4912 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
4913 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
4914 // an inbound SCID alias before the real SCID.
4915 let scid_pref = if chan.context.should_announce() {
4916 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
4918 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
4920 if let Some(scid) = scid_pref {
4921 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
4923 (0x4000|10, Vec::new())
4928 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4929 /// that we want to return and a channel.
4930 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4931 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
4932 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
4933 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
4934 if desired_err_code == 0x1000 | 20 {
4935 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
4936 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
4937 0u16.write(&mut enc).expect("Writes cannot fail");
4939 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
4940 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
4941 upd.write(&mut enc).expect("Writes cannot fail");
4942 (desired_err_code, enc.0)
4944 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
4945 // which means we really shouldn't have gotten a payment to be forwarded over this
4946 // channel yet, or if we did it's from a route hint. Either way, returning an error of
4947 // PERM|no_such_channel should be fine.
4948 (0x4000|10, Vec::new())
4952 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
4953 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
4954 // be surfaced to the user.
4955 fn fail_holding_cell_htlcs(
4956 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
4957 counterparty_node_id: &PublicKey
4959 let (failure_code, onion_failure_data) = {
4960 let per_peer_state = self.per_peer_state.read().unwrap();
4961 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
4962 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4963 let peer_state = &mut *peer_state_lock;
4964 match peer_state.channel_by_id.entry(channel_id) {
4965 hash_map::Entry::Occupied(chan_phase_entry) => {
4966 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
4967 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
4969 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
4970 debug_assert!(false);
4971 (0x4000|10, Vec::new())
4974 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
4976 } else { (0x4000|10, Vec::new()) }
4979 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4980 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4981 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
4982 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
4986 /// Fails an HTLC backwards to the sender of it to us.
4987 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
4988 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
4989 // Ensure that no peer state channel storage lock is held when calling this function.
4990 // This ensures that future code doesn't introduce a lock-order requirement for
4991 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
4992 // this function with any `per_peer_state` peer lock acquired would.
4993 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
4994 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
4997 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
4998 //identify whether we sent it or not based on the (I presume) very different runtime
4999 //between the branches here. We should make this async and move it into the forward HTLCs
5002 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5003 // from block_connected which may run during initialization prior to the chain_monitor
5004 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5006 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5007 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5008 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5009 &self.pending_events, &self.logger)
5010 { self.push_pending_forwards_ev(); }
5012 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5013 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5014 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5016 let mut push_forward_ev = false;
5017 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5018 if forward_htlcs.is_empty() {
5019 push_forward_ev = true;
5021 match forward_htlcs.entry(*short_channel_id) {
5022 hash_map::Entry::Occupied(mut entry) => {
5023 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5025 hash_map::Entry::Vacant(entry) => {
5026 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5029 mem::drop(forward_htlcs);
5030 if push_forward_ev { self.push_pending_forwards_ev(); }
5031 let mut pending_events = self.pending_events.lock().unwrap();
5032 pending_events.push_back((events::Event::HTLCHandlingFailed {
5033 prev_channel_id: outpoint.to_channel_id(),
5034 failed_next_destination: destination,
5040 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5041 /// [`MessageSendEvent`]s needed to claim the payment.
5043 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5044 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5045 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5046 /// successful. It will generally be available in the next [`process_pending_events`] call.
5048 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5049 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5050 /// event matches your expectation. If you fail to do so and call this method, you may provide
5051 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5053 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5054 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5055 /// [`claim_funds_with_known_custom_tlvs`].
5057 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5058 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5059 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5060 /// [`process_pending_events`]: EventsProvider::process_pending_events
5061 /// [`create_inbound_payment`]: Self::create_inbound_payment
5062 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5063 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5064 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5065 self.claim_payment_internal(payment_preimage, false);
5068 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5069 /// even type numbers.
5073 /// You MUST check you've understood all even TLVs before using this to
5074 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5076 /// [`claim_funds`]: Self::claim_funds
5077 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5078 self.claim_payment_internal(payment_preimage, true);
5081 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5082 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5084 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5087 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5088 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5089 let mut receiver_node_id = self.our_network_pubkey;
5090 for htlc in payment.htlcs.iter() {
5091 if htlc.prev_hop.phantom_shared_secret.is_some() {
5092 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5093 .expect("Failed to get node_id for phantom node recipient");
5094 receiver_node_id = phantom_pubkey;
5099 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5100 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5101 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5102 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5103 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5105 if dup_purpose.is_some() {
5106 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5107 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5111 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5112 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5113 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5114 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5115 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5116 mem::drop(claimable_payments);
5117 for htlc in payment.htlcs {
5118 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5119 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5120 let receiver = HTLCDestination::FailedPayment { payment_hash };
5121 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5130 debug_assert!(!sources.is_empty());
5132 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5133 // and when we got here we need to check that the amount we're about to claim matches the
5134 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5135 // the MPP parts all have the same `total_msat`.
5136 let mut claimable_amt_msat = 0;
5137 let mut prev_total_msat = None;
5138 let mut expected_amt_msat = None;
5139 let mut valid_mpp = true;
5140 let mut errs = Vec::new();
5141 let per_peer_state = self.per_peer_state.read().unwrap();
5142 for htlc in sources.iter() {
5143 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5144 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5145 debug_assert!(false);
5149 prev_total_msat = Some(htlc.total_msat);
5151 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5152 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5153 debug_assert!(false);
5157 expected_amt_msat = htlc.total_value_received;
5158 claimable_amt_msat += htlc.value;
5160 mem::drop(per_peer_state);
5161 if sources.is_empty() || expected_amt_msat.is_none() {
5162 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5163 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5166 if claimable_amt_msat != expected_amt_msat.unwrap() {
5167 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5168 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5169 expected_amt_msat.unwrap(), claimable_amt_msat);
5173 for htlc in sources.drain(..) {
5174 if let Err((pk, err)) = self.claim_funds_from_hop(
5175 htlc.prev_hop, payment_preimage,
5176 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
5178 if let msgs::ErrorAction::IgnoreError = err.err.action {
5179 // We got a temporary failure updating monitor, but will claim the
5180 // HTLC when the monitor updating is restored (or on chain).
5181 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5182 } else { errs.push((pk, err)); }
5187 for htlc in sources.drain(..) {
5188 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5189 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5190 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5191 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5192 let receiver = HTLCDestination::FailedPayment { payment_hash };
5193 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5195 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5198 // Now we can handle any errors which were generated.
5199 for (counterparty_node_id, err) in errs.drain(..) {
5200 let res: Result<(), _> = Err(err);
5201 let _ = handle_error!(self, res, counterparty_node_id);
5205 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
5206 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5207 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5208 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5210 // If we haven't yet run background events assume we're still deserializing and shouldn't
5211 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5212 // `BackgroundEvent`s.
5213 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5216 let per_peer_state = self.per_peer_state.read().unwrap();
5217 let chan_id = prev_hop.outpoint.to_channel_id();
5218 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5219 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5223 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5224 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5225 .map(|peer_mutex| peer_mutex.lock().unwrap())
5228 if peer_state_opt.is_some() {
5229 let mut peer_state_lock = peer_state_opt.unwrap();
5230 let peer_state = &mut *peer_state_lock;
5231 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5232 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5233 let counterparty_node_id = chan.context.get_counterparty_node_id();
5234 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5236 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
5237 if let Some(action) = completion_action(Some(htlc_value_msat)) {
5238 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5240 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5243 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5244 peer_state, per_peer_state, chan);
5246 // If we're running during init we cannot update a monitor directly -
5247 // they probably haven't actually been loaded yet. Instead, push the
5248 // monitor update as a background event.
5249 self.pending_background_events.lock().unwrap().push(
5250 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5251 counterparty_node_id,
5252 funding_txo: prev_hop.outpoint,
5253 update: monitor_update.clone(),
5262 let preimage_update = ChannelMonitorUpdate {
5263 update_id: CLOSED_CHANNEL_UPDATE_ID,
5264 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5270 // We update the ChannelMonitor on the backward link, after
5271 // receiving an `update_fulfill_htlc` from the forward link.
5272 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5273 if update_res != ChannelMonitorUpdateStatus::Completed {
5274 // TODO: This needs to be handled somehow - if we receive a monitor update
5275 // with a preimage we *must* somehow manage to propagate it to the upstream
5276 // channel, or we must have an ability to receive the same event and try
5277 // again on restart.
5278 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5279 payment_preimage, update_res);
5282 // If we're running during init we cannot update a monitor directly - they probably
5283 // haven't actually been loaded yet. Instead, push the monitor update as a background
5285 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5286 // channel is already closed) we need to ultimately handle the monitor update
5287 // completion action only after we've completed the monitor update. This is the only
5288 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5289 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5290 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5291 // complete the monitor update completion action from `completion_action`.
5292 self.pending_background_events.lock().unwrap().push(
5293 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5294 prev_hop.outpoint, preimage_update,
5297 // Note that we do process the completion action here. This totally could be a
5298 // duplicate claim, but we have no way of knowing without interrogating the
5299 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5300 // generally always allowed to be duplicative (and it's specifically noted in
5301 // `PaymentForwarded`).
5302 self.handle_monitor_update_completion_actions(completion_action(None));
5306 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5307 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5310 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5311 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool,
5312 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5315 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5316 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5317 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5318 if let Some(pubkey) = next_channel_counterparty_node_id {
5319 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5321 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5322 channel_funding_outpoint: next_channel_outpoint,
5323 counterparty_node_id: path.hops[0].pubkey,
5325 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5326 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5329 HTLCSource::PreviousHopData(hop_data) => {
5330 let prev_outpoint = hop_data.outpoint;
5331 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5332 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5333 |htlc_claim_value_msat| {
5334 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5335 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5336 Some(claimed_htlc_value - forwarded_htlc_value)
5339 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5340 event: events::Event::PaymentForwarded {
5342 claim_from_onchain_tx: from_onchain,
5343 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5344 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5345 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5347 downstream_counterparty_and_funding_outpoint:
5348 if let Some(node_id) = next_channel_counterparty_node_id {
5349 Some((node_id, next_channel_outpoint, completed_blocker))
5351 // We can only get `None` here if we are processing a
5352 // `ChannelMonitor`-originated event, in which case we
5353 // don't care about ensuring we wake the downstream
5354 // channel's monitor updating - the channel is already
5361 if let Err((pk, err)) = res {
5362 let result: Result<(), _> = Err(err);
5363 let _ = handle_error!(self, result, pk);
5369 /// Gets the node_id held by this ChannelManager
5370 pub fn get_our_node_id(&self) -> PublicKey {
5371 self.our_network_pubkey.clone()
5374 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5375 for action in actions.into_iter() {
5377 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5378 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5379 if let Some(ClaimingPayment {
5381 payment_purpose: purpose,
5384 sender_intended_value: sender_intended_total_msat,
5386 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5390 receiver_node_id: Some(receiver_node_id),
5392 sender_intended_total_msat,
5396 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5397 event, downstream_counterparty_and_funding_outpoint
5399 self.pending_events.lock().unwrap().push_back((event, None));
5400 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5401 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5408 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5409 /// update completion.
5410 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5411 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5412 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5413 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5414 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5415 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5416 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5417 &channel.context.channel_id(),
5418 if raa.is_some() { "an" } else { "no" },
5419 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5420 if funding_broadcastable.is_some() { "" } else { "not " },
5421 if channel_ready.is_some() { "sending" } else { "without" },
5422 if announcement_sigs.is_some() { "sending" } else { "without" });
5424 let mut htlc_forwards = None;
5426 let counterparty_node_id = channel.context.get_counterparty_node_id();
5427 if !pending_forwards.is_empty() {
5428 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5429 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5432 if let Some(msg) = channel_ready {
5433 send_channel_ready!(self, pending_msg_events, channel, msg);
5435 if let Some(msg) = announcement_sigs {
5436 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5437 node_id: counterparty_node_id,
5442 macro_rules! handle_cs { () => {
5443 if let Some(update) = commitment_update {
5444 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5445 node_id: counterparty_node_id,
5450 macro_rules! handle_raa { () => {
5451 if let Some(revoke_and_ack) = raa {
5452 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5453 node_id: counterparty_node_id,
5454 msg: revoke_and_ack,
5459 RAACommitmentOrder::CommitmentFirst => {
5463 RAACommitmentOrder::RevokeAndACKFirst => {
5469 if let Some(tx) = funding_broadcastable {
5470 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5471 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5475 let mut pending_events = self.pending_events.lock().unwrap();
5476 emit_channel_pending_event!(pending_events, channel);
5477 emit_channel_ready_event!(pending_events, channel);
5483 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5484 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5486 let counterparty_node_id = match counterparty_node_id {
5487 Some(cp_id) => cp_id.clone(),
5489 // TODO: Once we can rely on the counterparty_node_id from the
5490 // monitor event, this and the id_to_peer map should be removed.
5491 let id_to_peer = self.id_to_peer.lock().unwrap();
5492 match id_to_peer.get(&funding_txo.to_channel_id()) {
5493 Some(cp_id) => cp_id.clone(),
5498 let per_peer_state = self.per_peer_state.read().unwrap();
5499 let mut peer_state_lock;
5500 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5501 if peer_state_mutex_opt.is_none() { return }
5502 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5503 let peer_state = &mut *peer_state_lock;
5505 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5508 let update_actions = peer_state.monitor_update_blocked_actions
5509 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5510 mem::drop(peer_state_lock);
5511 mem::drop(per_peer_state);
5512 self.handle_monitor_update_completion_actions(update_actions);
5515 let remaining_in_flight =
5516 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5517 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5520 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5521 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5522 remaining_in_flight);
5523 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5526 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5529 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5531 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5532 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5535 /// The `user_channel_id` parameter will be provided back in
5536 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5537 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5539 /// Note that this method will return an error and reject the channel, if it requires support
5540 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5541 /// used to accept such channels.
5543 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5544 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5545 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5546 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5549 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5550 /// it as confirmed immediately.
5552 /// The `user_channel_id` parameter will be provided back in
5553 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5554 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5556 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5557 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5559 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5560 /// transaction and blindly assumes that it will eventually confirm.
5562 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5563 /// does not pay to the correct script the correct amount, *you will lose funds*.
5565 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5566 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5567 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5568 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5571 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5572 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5574 let peers_without_funded_channels =
5575 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5576 let per_peer_state = self.per_peer_state.read().unwrap();
5577 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5578 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5579 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5580 let peer_state = &mut *peer_state_lock;
5581 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5583 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5584 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5585 // that we can delay allocating the SCID until after we're sure that the checks below will
5587 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5588 Some(unaccepted_channel) => {
5589 let best_block_height = self.best_block.read().unwrap().height();
5590 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5591 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5592 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5593 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5595 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5599 // This should have been correctly configured by the call to InboundV1Channel::new.
5600 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5601 } else if channel.context.get_channel_type().requires_zero_conf() {
5602 let send_msg_err_event = events::MessageSendEvent::HandleError {
5603 node_id: channel.context.get_counterparty_node_id(),
5604 action: msgs::ErrorAction::SendErrorMessage{
5605 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5608 peer_state.pending_msg_events.push(send_msg_err_event);
5609 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5611 // If this peer already has some channels, a new channel won't increase our number of peers
5612 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5613 // channels per-peer we can accept channels from a peer with existing ones.
5614 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5615 let send_msg_err_event = events::MessageSendEvent::HandleError {
5616 node_id: channel.context.get_counterparty_node_id(),
5617 action: msgs::ErrorAction::SendErrorMessage{
5618 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5621 peer_state.pending_msg_events.push(send_msg_err_event);
5622 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5626 // Now that we know we have a channel, assign an outbound SCID alias.
5627 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5628 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5630 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5631 node_id: channel.context.get_counterparty_node_id(),
5632 msg: channel.accept_inbound_channel(),
5635 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5640 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5641 /// or 0-conf channels.
5643 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5644 /// non-0-conf channels we have with the peer.
5645 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5646 where Filter: Fn(&PeerState<SP>) -> bool {
5647 let mut peers_without_funded_channels = 0;
5648 let best_block_height = self.best_block.read().unwrap().height();
5650 let peer_state_lock = self.per_peer_state.read().unwrap();
5651 for (_, peer_mtx) in peer_state_lock.iter() {
5652 let peer = peer_mtx.lock().unwrap();
5653 if !maybe_count_peer(&*peer) { continue; }
5654 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5655 if num_unfunded_channels == peer.total_channel_count() {
5656 peers_without_funded_channels += 1;
5660 return peers_without_funded_channels;
5663 fn unfunded_channel_count(
5664 peer: &PeerState<SP>, best_block_height: u32
5666 let mut num_unfunded_channels = 0;
5667 for (_, phase) in peer.channel_by_id.iter() {
5669 ChannelPhase::Funded(chan) => {
5670 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5671 // which have not yet had any confirmations on-chain.
5672 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5673 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5675 num_unfunded_channels += 1;
5678 ChannelPhase::UnfundedInboundV1(chan) => {
5679 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5680 num_unfunded_channels += 1;
5683 ChannelPhase::UnfundedOutboundV1(_) => {
5684 // Outbound channels don't contribute to the unfunded count in the DoS context.
5689 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5692 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5693 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5694 // likely to be lost on restart!
5695 if msg.chain_hash != self.genesis_hash {
5696 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5699 if !self.default_configuration.accept_inbound_channels {
5700 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5703 // Get the number of peers with channels, but without funded ones. We don't care too much
5704 // about peers that never open a channel, so we filter by peers that have at least one
5705 // channel, and then limit the number of those with unfunded channels.
5706 let channeled_peers_without_funding =
5707 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5709 let per_peer_state = self.per_peer_state.read().unwrap();
5710 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5712 debug_assert!(false);
5713 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5715 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5716 let peer_state = &mut *peer_state_lock;
5718 // If this peer already has some channels, a new channel won't increase our number of peers
5719 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5720 // channels per-peer we can accept channels from a peer with existing ones.
5721 if peer_state.total_channel_count() == 0 &&
5722 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5723 !self.default_configuration.manually_accept_inbound_channels
5725 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5726 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5727 msg.temporary_channel_id.clone()));
5730 let best_block_height = self.best_block.read().unwrap().height();
5731 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5732 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5733 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5734 msg.temporary_channel_id.clone()));
5737 let channel_id = msg.temporary_channel_id;
5738 let channel_exists = peer_state.has_channel(&channel_id);
5740 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5743 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5744 if self.default_configuration.manually_accept_inbound_channels {
5745 let mut pending_events = self.pending_events.lock().unwrap();
5746 pending_events.push_back((events::Event::OpenChannelRequest {
5747 temporary_channel_id: msg.temporary_channel_id.clone(),
5748 counterparty_node_id: counterparty_node_id.clone(),
5749 funding_satoshis: msg.funding_satoshis,
5750 push_msat: msg.push_msat,
5751 channel_type: msg.channel_type.clone().unwrap(),
5753 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5754 open_channel_msg: msg.clone(),
5755 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5760 // Otherwise create the channel right now.
5761 let mut random_bytes = [0u8; 16];
5762 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5763 let user_channel_id = u128::from_be_bytes(random_bytes);
5764 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5765 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5766 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5769 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5774 let channel_type = channel.context.get_channel_type();
5775 if channel_type.requires_zero_conf() {
5776 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5778 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5779 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5782 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5783 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5785 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5786 node_id: counterparty_node_id.clone(),
5787 msg: channel.accept_inbound_channel(),
5789 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
5793 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
5794 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5795 // likely to be lost on restart!
5796 let (value, output_script, user_id) = {
5797 let per_peer_state = self.per_peer_state.read().unwrap();
5798 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5800 debug_assert!(false);
5801 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5803 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5804 let peer_state = &mut *peer_state_lock;
5805 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
5806 hash_map::Entry::Occupied(mut phase) => {
5807 match phase.get_mut() {
5808 ChannelPhase::UnfundedOutboundV1(chan) => {
5809 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
5810 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
5813 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
5817 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5820 let mut pending_events = self.pending_events.lock().unwrap();
5821 pending_events.push_back((events::Event::FundingGenerationReady {
5822 temporary_channel_id: msg.temporary_channel_id,
5823 counterparty_node_id: *counterparty_node_id,
5824 channel_value_satoshis: value,
5826 user_channel_id: user_id,
5831 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
5832 let best_block = *self.best_block.read().unwrap();
5834 let per_peer_state = self.per_peer_state.read().unwrap();
5835 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5837 debug_assert!(false);
5838 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5841 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5842 let peer_state = &mut *peer_state_lock;
5843 let (chan, funding_msg, monitor) =
5844 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
5845 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
5846 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
5848 Err((mut inbound_chan, err)) => {
5849 // We've already removed this inbound channel from the map in `PeerState`
5850 // above so at this point we just need to clean up any lingering entries
5851 // concerning this channel as it is safe to do so.
5852 update_maps_on_chan_removal!(self, &inbound_chan.context);
5853 let user_id = inbound_chan.context.get_user_id();
5854 let shutdown_res = inbound_chan.context.force_shutdown(false);
5855 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
5856 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
5860 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
5861 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
5863 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5866 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
5867 hash_map::Entry::Occupied(_) => {
5868 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
5870 hash_map::Entry::Vacant(e) => {
5871 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
5872 match id_to_peer_lock.entry(chan.context.channel_id()) {
5873 hash_map::Entry::Occupied(_) => {
5874 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5875 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
5876 funding_msg.channel_id))
5878 hash_map::Entry::Vacant(i_e) => {
5879 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
5880 if let Ok(persist_state) = monitor_res {
5881 i_e.insert(chan.context.get_counterparty_node_id());
5882 mem::drop(id_to_peer_lock);
5884 // There's no problem signing a counterparty's funding transaction if our monitor
5885 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
5886 // accepted payment from yet. We do, however, need to wait to send our channel_ready
5887 // until we have persisted our monitor.
5888 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
5889 node_id: counterparty_node_id.clone(),
5893 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
5894 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
5895 per_peer_state, chan, INITIAL_MONITOR);
5897 unreachable!("This must be a funded channel as we just inserted it.");
5901 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
5902 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5903 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
5904 funding_msg.channel_id));
5912 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
5913 let best_block = *self.best_block.read().unwrap();
5914 let per_peer_state = self.per_peer_state.read().unwrap();
5915 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5917 debug_assert!(false);
5918 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5921 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5922 let peer_state = &mut *peer_state_lock;
5923 match peer_state.channel_by_id.entry(msg.channel_id) {
5924 hash_map::Entry::Occupied(mut chan_phase_entry) => {
5925 match chan_phase_entry.get_mut() {
5926 ChannelPhase::Funded(ref mut chan) => {
5927 let monitor = try_chan_phase_entry!(self,
5928 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
5929 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
5930 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
5933 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
5937 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
5941 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5945 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
5946 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
5947 // closing a channel), so any changes are likely to be lost on restart!
5948 let per_peer_state = self.per_peer_state.read().unwrap();
5949 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5951 debug_assert!(false);
5952 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5954 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5955 let peer_state = &mut *peer_state_lock;
5956 match peer_state.channel_by_id.entry(msg.channel_id) {
5957 hash_map::Entry::Occupied(mut chan_phase_entry) => {
5958 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5959 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
5960 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
5961 if let Some(announcement_sigs) = announcement_sigs_opt {
5962 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
5963 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5964 node_id: counterparty_node_id.clone(),
5965 msg: announcement_sigs,
5967 } else if chan.context.is_usable() {
5968 // If we're sending an announcement_signatures, we'll send the (public)
5969 // channel_update after sending a channel_announcement when we receive our
5970 // counterparty's announcement_signatures. Thus, we only bother to send a
5971 // channel_update here if the channel is not public, i.e. we're not sending an
5972 // announcement_signatures.
5973 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
5974 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
5975 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5976 node_id: counterparty_node_id.clone(),
5983 let mut pending_events = self.pending_events.lock().unwrap();
5984 emit_channel_ready_event!(pending_events, chan);
5989 try_chan_phase_entry!(self, Err(ChannelError::Close(
5990 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
5993 hash_map::Entry::Vacant(_) => {
5994 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
5999 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6000 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
6002 let per_peer_state = self.per_peer_state.read().unwrap();
6003 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6005 debug_assert!(false);
6006 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6008 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6009 let peer_state = &mut *peer_state_lock;
6010 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6011 let phase = chan_phase_entry.get_mut();
6013 ChannelPhase::Funded(chan) => {
6014 if !chan.received_shutdown() {
6015 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6017 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6020 let funding_txo_opt = chan.context.get_funding_txo();
6021 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6022 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6023 dropped_htlcs = htlcs;
6025 if let Some(msg) = shutdown {
6026 // We can send the `shutdown` message before updating the `ChannelMonitor`
6027 // here as we don't need the monitor update to complete until we send a
6028 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6029 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6030 node_id: *counterparty_node_id,
6034 // Update the monitor with the shutdown script if necessary.
6035 if let Some(monitor_update) = monitor_update_opt {
6036 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6037 peer_state_lock, peer_state, per_peer_state, chan);
6040 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6041 let context = phase.context_mut();
6042 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6043 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6044 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6045 self.finish_force_close_channel(chan.context_mut().force_shutdown(false));
6050 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6053 for htlc_source in dropped_htlcs.drain(..) {
6054 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6055 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6056 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6062 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6063 let per_peer_state = self.per_peer_state.read().unwrap();
6064 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6066 debug_assert!(false);
6067 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6069 let (tx, chan_option) = {
6070 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6071 let peer_state = &mut *peer_state_lock;
6072 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6073 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6074 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6075 let (closing_signed, tx) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6076 if let Some(msg) = closing_signed {
6077 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6078 node_id: counterparty_node_id.clone(),
6083 // We're done with this channel, we've got a signed closing transaction and
6084 // will send the closing_signed back to the remote peer upon return. This
6085 // also implies there are no pending HTLCs left on the channel, so we can
6086 // fully delete it from tracking (the channel monitor is still around to
6087 // watch for old state broadcasts)!
6088 (tx, Some(remove_channel_phase!(self, chan_phase_entry)))
6089 } else { (tx, None) }
6091 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6092 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6095 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6098 if let Some(broadcast_tx) = tx {
6099 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6100 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6102 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6103 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6104 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6105 let peer_state = &mut *peer_state_lock;
6106 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6110 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6115 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6116 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6117 //determine the state of the payment based on our response/if we forward anything/the time
6118 //we take to respond. We should take care to avoid allowing such an attack.
6120 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6121 //us repeatedly garbled in different ways, and compare our error messages, which are
6122 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6123 //but we should prevent it anyway.
6125 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6126 // closing a channel), so any changes are likely to be lost on restart!
6128 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6129 let per_peer_state = self.per_peer_state.read().unwrap();
6130 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6132 debug_assert!(false);
6133 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6135 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6136 let peer_state = &mut *peer_state_lock;
6137 match peer_state.channel_by_id.entry(msg.channel_id) {
6138 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6139 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6140 let pending_forward_info = match decoded_hop_res {
6141 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6142 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6143 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6144 Err(e) => PendingHTLCStatus::Fail(e)
6146 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6147 // If the update_add is completely bogus, the call will Err and we will close,
6148 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6149 // want to reject the new HTLC and fail it backwards instead of forwarding.
6150 match pending_forward_info {
6151 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6152 let reason = if (error_code & 0x1000) != 0 {
6153 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6154 HTLCFailReason::reason(real_code, error_data)
6156 HTLCFailReason::from_failure_code(error_code)
6157 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6158 let msg = msgs::UpdateFailHTLC {
6159 channel_id: msg.channel_id,
6160 htlc_id: msg.htlc_id,
6163 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6165 _ => pending_forward_info
6168 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6170 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6171 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6174 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6179 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6181 let (htlc_source, forwarded_htlc_value) = {
6182 let per_peer_state = self.per_peer_state.read().unwrap();
6183 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6185 debug_assert!(false);
6186 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6188 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6189 let peer_state = &mut *peer_state_lock;
6190 match peer_state.channel_by_id.entry(msg.channel_id) {
6191 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6192 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6193 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6194 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6195 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6196 .or_insert_with(Vec::new)
6197 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6199 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6200 // entry here, even though we *do* need to block the next RAA monitor update.
6201 // We do this instead in the `claim_funds_internal` by attaching a
6202 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6203 // outbound HTLC is claimed. This is guaranteed to all complete before we
6204 // process the RAA as messages are processed from single peers serially.
6205 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6208 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6209 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6212 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6215 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, Some(*counterparty_node_id), funding_txo);
6219 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6220 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6221 // closing a channel), so any changes are likely to be lost on restart!
6222 let per_peer_state = self.per_peer_state.read().unwrap();
6223 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6225 debug_assert!(false);
6226 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6228 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6229 let peer_state = &mut *peer_state_lock;
6230 match peer_state.channel_by_id.entry(msg.channel_id) {
6231 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6232 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6233 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6235 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6236 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6239 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6244 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6245 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6246 // closing a channel), so any changes are likely to be lost on restart!
6247 let per_peer_state = self.per_peer_state.read().unwrap();
6248 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6250 debug_assert!(false);
6251 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6253 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6254 let peer_state = &mut *peer_state_lock;
6255 match peer_state.channel_by_id.entry(msg.channel_id) {
6256 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6257 if (msg.failure_code & 0x8000) == 0 {
6258 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6259 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6261 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6262 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6264 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6265 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6269 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6273 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6274 let per_peer_state = self.per_peer_state.read().unwrap();
6275 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6277 debug_assert!(false);
6278 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6280 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6281 let peer_state = &mut *peer_state_lock;
6282 match peer_state.channel_by_id.entry(msg.channel_id) {
6283 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6284 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6285 let funding_txo = chan.context.get_funding_txo();
6286 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6287 if let Some(monitor_update) = monitor_update_opt {
6288 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6289 peer_state, per_peer_state, chan);
6293 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6294 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6297 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6302 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6303 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6304 let mut push_forward_event = false;
6305 let mut new_intercept_events = VecDeque::new();
6306 let mut failed_intercept_forwards = Vec::new();
6307 if !pending_forwards.is_empty() {
6308 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6309 let scid = match forward_info.routing {
6310 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6311 PendingHTLCRouting::Receive { .. } => 0,
6312 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6314 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6315 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6317 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6318 let forward_htlcs_empty = forward_htlcs.is_empty();
6319 match forward_htlcs.entry(scid) {
6320 hash_map::Entry::Occupied(mut entry) => {
6321 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6322 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6324 hash_map::Entry::Vacant(entry) => {
6325 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6326 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
6328 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6329 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6330 match pending_intercepts.entry(intercept_id) {
6331 hash_map::Entry::Vacant(entry) => {
6332 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6333 requested_next_hop_scid: scid,
6334 payment_hash: forward_info.payment_hash,
6335 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6336 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6339 entry.insert(PendingAddHTLCInfo {
6340 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6342 hash_map::Entry::Occupied(_) => {
6343 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6344 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6345 short_channel_id: prev_short_channel_id,
6346 user_channel_id: Some(prev_user_channel_id),
6347 outpoint: prev_funding_outpoint,
6348 htlc_id: prev_htlc_id,
6349 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6350 phantom_shared_secret: None,
6353 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6354 HTLCFailReason::from_failure_code(0x4000 | 10),
6355 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6360 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6361 // payments are being processed.
6362 if forward_htlcs_empty {
6363 push_forward_event = true;
6365 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6366 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6373 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6374 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6377 if !new_intercept_events.is_empty() {
6378 let mut events = self.pending_events.lock().unwrap();
6379 events.append(&mut new_intercept_events);
6381 if push_forward_event { self.push_pending_forwards_ev() }
6385 fn push_pending_forwards_ev(&self) {
6386 let mut pending_events = self.pending_events.lock().unwrap();
6387 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6388 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6389 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6391 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6392 // events is done in batches and they are not removed until we're done processing each
6393 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6394 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6395 // payments will need an additional forwarding event before being claimed to make them look
6396 // real by taking more time.
6397 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6398 pending_events.push_back((Event::PendingHTLCsForwardable {
6399 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6404 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6405 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6406 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6407 /// the [`ChannelMonitorUpdate`] in question.
6408 fn raa_monitor_updates_held(&self,
6409 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6410 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6412 actions_blocking_raa_monitor_updates
6413 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6414 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6415 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6416 channel_funding_outpoint,
6417 counterparty_node_id,
6422 #[cfg(any(test, feature = "_test_utils"))]
6423 pub(crate) fn test_raa_monitor_updates_held(&self,
6424 counterparty_node_id: PublicKey, channel_id: ChannelId
6426 let per_peer_state = self.per_peer_state.read().unwrap();
6427 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6428 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6429 let peer_state = &mut *peer_state_lck;
6431 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6432 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6433 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6439 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6440 let htlcs_to_fail = {
6441 let per_peer_state = self.per_peer_state.read().unwrap();
6442 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6444 debug_assert!(false);
6445 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6446 }).map(|mtx| mtx.lock().unwrap())?;
6447 let peer_state = &mut *peer_state_lock;
6448 match peer_state.channel_by_id.entry(msg.channel_id) {
6449 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6450 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6451 let funding_txo_opt = chan.context.get_funding_txo();
6452 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6453 self.raa_monitor_updates_held(
6454 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6455 *counterparty_node_id)
6457 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6458 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6459 if let Some(monitor_update) = monitor_update_opt {
6460 let funding_txo = funding_txo_opt
6461 .expect("Funding outpoint must have been set for RAA handling to succeed");
6462 handle_new_monitor_update!(self, funding_txo, monitor_update,
6463 peer_state_lock, peer_state, per_peer_state, chan);
6467 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6468 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6471 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6474 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6478 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6479 let per_peer_state = self.per_peer_state.read().unwrap();
6480 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6482 debug_assert!(false);
6483 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6485 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6486 let peer_state = &mut *peer_state_lock;
6487 match peer_state.channel_by_id.entry(msg.channel_id) {
6488 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6489 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6490 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6492 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6493 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6496 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6501 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6502 let per_peer_state = self.per_peer_state.read().unwrap();
6503 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6505 debug_assert!(false);
6506 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6508 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6509 let peer_state = &mut *peer_state_lock;
6510 match peer_state.channel_by_id.entry(msg.channel_id) {
6511 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6512 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6513 if !chan.context.is_usable() {
6514 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6517 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6518 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6519 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
6520 msg, &self.default_configuration
6521 ), chan_phase_entry),
6522 // Note that announcement_signatures fails if the channel cannot be announced,
6523 // so get_channel_update_for_broadcast will never fail by the time we get here.
6524 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6527 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6528 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6531 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6536 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6537 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6538 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6539 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6541 // It's not a local channel
6542 return Ok(NotifyOption::SkipPersistNoEvents)
6545 let per_peer_state = self.per_peer_state.read().unwrap();
6546 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6547 if peer_state_mutex_opt.is_none() {
6548 return Ok(NotifyOption::SkipPersistNoEvents)
6550 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6551 let peer_state = &mut *peer_state_lock;
6552 match peer_state.channel_by_id.entry(chan_id) {
6553 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6554 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6555 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6556 if chan.context.should_announce() {
6557 // If the announcement is about a channel of ours which is public, some
6558 // other peer may simply be forwarding all its gossip to us. Don't provide
6559 // a scary-looking error message and return Ok instead.
6560 return Ok(NotifyOption::SkipPersistNoEvents);
6562 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6564 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6565 let msg_from_node_one = msg.contents.flags & 1 == 0;
6566 if were_node_one == msg_from_node_one {
6567 return Ok(NotifyOption::SkipPersistNoEvents);
6569 log_debug!(self.logger, "Received channel_update for channel {}.", chan_id);
6570 try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6573 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6574 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6577 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6579 Ok(NotifyOption::DoPersist)
6582 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6584 let need_lnd_workaround = {
6585 let per_peer_state = self.per_peer_state.read().unwrap();
6587 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6589 debug_assert!(false);
6590 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6592 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6593 let peer_state = &mut *peer_state_lock;
6594 match peer_state.channel_by_id.entry(msg.channel_id) {
6595 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6596 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6597 // Currently, we expect all holding cell update_adds to be dropped on peer
6598 // disconnect, so Channel's reestablish will never hand us any holding cell
6599 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6600 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6601 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6602 msg, &self.logger, &self.node_signer, self.genesis_hash,
6603 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6604 let mut channel_update = None;
6605 if let Some(msg) = responses.shutdown_msg {
6606 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6607 node_id: counterparty_node_id.clone(),
6610 } else if chan.context.is_usable() {
6611 // If the channel is in a usable state (ie the channel is not being shut
6612 // down), send a unicast channel_update to our counterparty to make sure
6613 // they have the latest channel parameters.
6614 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6615 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6616 node_id: chan.context.get_counterparty_node_id(),
6621 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6622 htlc_forwards = self.handle_channel_resumption(
6623 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6624 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6625 if let Some(upd) = channel_update {
6626 peer_state.pending_msg_events.push(upd);
6630 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6631 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6634 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6638 let mut persist = NotifyOption::SkipPersistHandleEvents;
6639 if let Some(forwards) = htlc_forwards {
6640 self.forward_htlcs(&mut [forwards][..]);
6641 persist = NotifyOption::DoPersist;
6644 if let Some(channel_ready_msg) = need_lnd_workaround {
6645 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6650 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6651 fn process_pending_monitor_events(&self) -> bool {
6652 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6654 let mut failed_channels = Vec::new();
6655 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6656 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6657 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6658 for monitor_event in monitor_events.drain(..) {
6659 match monitor_event {
6660 MonitorEvent::HTLCEvent(htlc_update) => {
6661 if let Some(preimage) = htlc_update.payment_preimage {
6662 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6663 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, counterparty_node_id, funding_outpoint);
6665 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6666 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6667 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6668 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6671 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6672 let counterparty_node_id_opt = match counterparty_node_id {
6673 Some(cp_id) => Some(cp_id),
6675 // TODO: Once we can rely on the counterparty_node_id from the
6676 // monitor event, this and the id_to_peer map should be removed.
6677 let id_to_peer = self.id_to_peer.lock().unwrap();
6678 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6681 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6682 let per_peer_state = self.per_peer_state.read().unwrap();
6683 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6684 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6685 let peer_state = &mut *peer_state_lock;
6686 let pending_msg_events = &mut peer_state.pending_msg_events;
6687 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6688 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6689 failed_channels.push(chan.context.force_shutdown(false));
6690 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6691 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6695 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6696 pending_msg_events.push(events::MessageSendEvent::HandleError {
6697 node_id: chan.context.get_counterparty_node_id(),
6698 action: msgs::ErrorAction::SendErrorMessage {
6699 msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() }
6707 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6708 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6714 for failure in failed_channels.drain(..) {
6715 self.finish_force_close_channel(failure);
6718 has_pending_monitor_events
6721 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6722 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6723 /// update events as a separate process method here.
6725 pub fn process_monitor_events(&self) {
6726 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6727 self.process_pending_monitor_events();
6730 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
6731 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
6732 /// update was applied.
6733 fn check_free_holding_cells(&self) -> bool {
6734 let mut has_monitor_update = false;
6735 let mut failed_htlcs = Vec::new();
6737 // Walk our list of channels and find any that need to update. Note that when we do find an
6738 // update, if it includes actions that must be taken afterwards, we have to drop the
6739 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
6740 // manage to go through all our peers without finding a single channel to update.
6742 let per_peer_state = self.per_peer_state.read().unwrap();
6743 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6745 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6746 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
6747 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
6748 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
6750 let counterparty_node_id = chan.context.get_counterparty_node_id();
6751 let funding_txo = chan.context.get_funding_txo();
6752 let (monitor_opt, holding_cell_failed_htlcs) =
6753 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
6754 if !holding_cell_failed_htlcs.is_empty() {
6755 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
6757 if let Some(monitor_update) = monitor_opt {
6758 has_monitor_update = true;
6760 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
6761 peer_state_lock, peer_state, per_peer_state, chan);
6762 continue 'peer_loop;
6771 let has_update = has_monitor_update || !failed_htlcs.is_empty();
6772 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
6773 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
6779 /// Check whether any channels have finished removing all pending updates after a shutdown
6780 /// exchange and can now send a closing_signed.
6781 /// Returns whether any closing_signed messages were generated.
6782 fn maybe_generate_initial_closing_signed(&self) -> bool {
6783 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
6784 let mut has_update = false;
6786 let per_peer_state = self.per_peer_state.read().unwrap();
6788 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6789 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6790 let peer_state = &mut *peer_state_lock;
6791 let pending_msg_events = &mut peer_state.pending_msg_events;
6792 peer_state.channel_by_id.retain(|channel_id, phase| {
6794 ChannelPhase::Funded(chan) => {
6795 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
6796 Ok((msg_opt, tx_opt)) => {
6797 if let Some(msg) = msg_opt {
6799 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6800 node_id: chan.context.get_counterparty_node_id(), msg,
6803 if let Some(tx) = tx_opt {
6804 // We're done with this channel. We got a closing_signed and sent back
6805 // a closing_signed with a closing transaction to broadcast.
6806 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6807 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6812 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6814 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
6815 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6816 update_maps_on_chan_removal!(self, &chan.context);
6822 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
6823 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
6828 _ => true, // Retain unfunded channels if present.
6834 for (counterparty_node_id, err) in handle_errors.drain(..) {
6835 let _ = handle_error!(self, err, counterparty_node_id);
6841 /// Handle a list of channel failures during a block_connected or block_disconnected call,
6842 /// pushing the channel monitor update (if any) to the background events queue and removing the
6844 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
6845 for mut failure in failed_channels.drain(..) {
6846 // Either a commitment transactions has been confirmed on-chain or
6847 // Channel::block_disconnected detected that the funding transaction has been
6848 // reorganized out of the main chain.
6849 // We cannot broadcast our latest local state via monitor update (as
6850 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
6851 // so we track the update internally and handle it when the user next calls
6852 // timer_tick_occurred, guaranteeing we're running normally.
6853 if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() {
6854 assert_eq!(update.updates.len(), 1);
6855 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
6856 assert!(should_broadcast);
6857 } else { unreachable!(); }
6858 self.pending_background_events.lock().unwrap().push(
6859 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6860 counterparty_node_id, funding_txo, update
6863 self.finish_force_close_channel(failure);
6867 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
6870 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
6871 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
6873 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
6874 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
6875 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
6876 /// passed directly to [`claim_funds`].
6878 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
6880 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6881 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6885 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6886 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6888 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6890 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6891 /// on versions of LDK prior to 0.0.114.
6893 /// [`claim_funds`]: Self::claim_funds
6894 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6895 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
6896 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
6897 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
6898 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6899 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
6900 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
6901 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
6902 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6903 min_final_cltv_expiry_delta)
6906 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
6907 /// stored external to LDK.
6909 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
6910 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
6911 /// the `min_value_msat` provided here, if one is provided.
6913 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
6914 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
6917 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
6918 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
6919 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
6920 /// sender "proof-of-payment" unless they have paid the required amount.
6922 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
6923 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
6924 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
6925 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
6926 /// invoices when no timeout is set.
6928 /// Note that we use block header time to time-out pending inbound payments (with some margin
6929 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
6930 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
6931 /// If you need exact expiry semantics, you should enforce them upon receipt of
6932 /// [`PaymentClaimable`].
6934 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
6935 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
6937 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6938 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6942 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6943 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6945 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6947 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6948 /// on versions of LDK prior to 0.0.114.
6950 /// [`create_inbound_payment`]: Self::create_inbound_payment
6951 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6952 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
6953 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
6954 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
6955 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6956 min_final_cltv_expiry)
6959 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
6960 /// previously returned from [`create_inbound_payment`].
6962 /// [`create_inbound_payment`]: Self::create_inbound_payment
6963 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
6964 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
6967 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
6968 /// are used when constructing the phantom invoice's route hints.
6970 /// [phantom node payments]: crate::sign::PhantomKeysManager
6971 pub fn get_phantom_scid(&self) -> u64 {
6972 let best_block_height = self.best_block.read().unwrap().height();
6973 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
6975 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
6976 // Ensure the generated scid doesn't conflict with a real channel.
6977 match short_to_chan_info.get(&scid_candidate) {
6978 Some(_) => continue,
6979 None => return scid_candidate
6984 /// Gets route hints for use in receiving [phantom node payments].
6986 /// [phantom node payments]: crate::sign::PhantomKeysManager
6987 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
6989 channels: self.list_usable_channels(),
6990 phantom_scid: self.get_phantom_scid(),
6991 real_node_pubkey: self.get_our_node_id(),
6995 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
6996 /// used when constructing the route hints for HTLCs intended to be intercepted. See
6997 /// [`ChannelManager::forward_intercepted_htlc`].
6999 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7000 /// times to get a unique scid.
7001 pub fn get_intercept_scid(&self) -> u64 {
7002 let best_block_height = self.best_block.read().unwrap().height();
7003 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7005 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7006 // Ensure the generated scid doesn't conflict with a real channel.
7007 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7008 return scid_candidate
7012 /// Gets inflight HTLC information by processing pending outbound payments that are in
7013 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7014 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7015 let mut inflight_htlcs = InFlightHtlcs::new();
7017 let per_peer_state = self.per_peer_state.read().unwrap();
7018 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7019 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7020 let peer_state = &mut *peer_state_lock;
7021 for chan in peer_state.channel_by_id.values().filter_map(
7022 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7024 for (htlc_source, _) in chan.inflight_htlc_sources() {
7025 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7026 inflight_htlcs.process_path(path, self.get_our_node_id());
7035 #[cfg(any(test, feature = "_test_utils"))]
7036 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7037 let events = core::cell::RefCell::new(Vec::new());
7038 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7039 self.process_pending_events(&event_handler);
7043 #[cfg(feature = "_test_utils")]
7044 pub fn push_pending_event(&self, event: events::Event) {
7045 let mut events = self.pending_events.lock().unwrap();
7046 events.push_back((event, None));
7050 pub fn pop_pending_event(&self) -> Option<events::Event> {
7051 let mut events = self.pending_events.lock().unwrap();
7052 events.pop_front().map(|(e, _)| e)
7056 pub fn has_pending_payments(&self) -> bool {
7057 self.pending_outbound_payments.has_pending_payments()
7061 pub fn clear_pending_payments(&self) {
7062 self.pending_outbound_payments.clear_pending_payments()
7065 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7066 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7067 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7068 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7069 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7071 let per_peer_state = self.per_peer_state.read().unwrap();
7072 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7073 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7074 let peer_state = &mut *peer_state_lck;
7076 if let Some(blocker) = completed_blocker.take() {
7077 // Only do this on the first iteration of the loop.
7078 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7079 .get_mut(&channel_funding_outpoint.to_channel_id())
7081 blockers.retain(|iter| iter != &blocker);
7085 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7086 channel_funding_outpoint, counterparty_node_id) {
7087 // Check that, while holding the peer lock, we don't have anything else
7088 // blocking monitor updates for this channel. If we do, release the monitor
7089 // update(s) when those blockers complete.
7090 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7091 &channel_funding_outpoint.to_channel_id());
7095 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7096 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7097 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7098 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7099 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7100 channel_funding_outpoint.to_channel_id());
7101 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7102 peer_state_lck, peer_state, per_peer_state, chan);
7103 if further_update_exists {
7104 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7109 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7110 channel_funding_outpoint.to_channel_id());
7115 log_debug!(self.logger,
7116 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7117 log_pubkey!(counterparty_node_id));
7123 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7124 for action in actions {
7126 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7127 channel_funding_outpoint, counterparty_node_id
7129 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7135 /// Processes any events asynchronously in the order they were generated since the last call
7136 /// using the given event handler.
7138 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7139 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7143 process_events_body!(self, ev, { handler(ev).await });
7147 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7149 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7150 T::Target: BroadcasterInterface,
7151 ES::Target: EntropySource,
7152 NS::Target: NodeSigner,
7153 SP::Target: SignerProvider,
7154 F::Target: FeeEstimator,
7158 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
7159 /// The returned array will contain `MessageSendEvent`s for different peers if
7160 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
7161 /// is always placed next to each other.
7163 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
7164 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
7165 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
7166 /// will randomly be placed first or last in the returned array.
7168 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
7169 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
7170 /// the `MessageSendEvent`s to the specific peer they were generated under.
7171 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
7172 let events = RefCell::new(Vec::new());
7173 PersistenceNotifierGuard::optionally_notify(self, || {
7174 let mut result = NotifyOption::SkipPersistNoEvents;
7176 // TODO: This behavior should be documented. It's unintuitive that we query
7177 // ChannelMonitors when clearing other events.
7178 if self.process_pending_monitor_events() {
7179 result = NotifyOption::DoPersist;
7182 if self.check_free_holding_cells() {
7183 result = NotifyOption::DoPersist;
7185 if self.maybe_generate_initial_closing_signed() {
7186 result = NotifyOption::DoPersist;
7189 let mut pending_events = Vec::new();
7190 let per_peer_state = self.per_peer_state.read().unwrap();
7191 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7192 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7193 let peer_state = &mut *peer_state_lock;
7194 if peer_state.pending_msg_events.len() > 0 {
7195 pending_events.append(&mut peer_state.pending_msg_events);
7199 if !pending_events.is_empty() {
7200 events.replace(pending_events);
7209 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7211 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7212 T::Target: BroadcasterInterface,
7213 ES::Target: EntropySource,
7214 NS::Target: NodeSigner,
7215 SP::Target: SignerProvider,
7216 F::Target: FeeEstimator,
7220 /// Processes events that must be periodically handled.
7222 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
7223 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
7224 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
7226 process_events_body!(self, ev, handler.handle_event(ev));
7230 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
7232 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7233 T::Target: BroadcasterInterface,
7234 ES::Target: EntropySource,
7235 NS::Target: NodeSigner,
7236 SP::Target: SignerProvider,
7237 F::Target: FeeEstimator,
7241 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7243 let best_block = self.best_block.read().unwrap();
7244 assert_eq!(best_block.block_hash(), header.prev_blockhash,
7245 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
7246 assert_eq!(best_block.height(), height - 1,
7247 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
7250 self.transactions_confirmed(header, txdata, height);
7251 self.best_block_updated(header, height);
7254 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
7255 let _persistence_guard =
7256 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7257 self, || -> NotifyOption { NotifyOption::DoPersist });
7258 let new_height = height - 1;
7260 let mut best_block = self.best_block.write().unwrap();
7261 assert_eq!(best_block.block_hash(), header.block_hash(),
7262 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
7263 assert_eq!(best_block.height(), height,
7264 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
7265 *best_block = BestBlock::new(header.prev_blockhash, new_height)
7268 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7272 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
7274 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7275 T::Target: BroadcasterInterface,
7276 ES::Target: EntropySource,
7277 NS::Target: NodeSigner,
7278 SP::Target: SignerProvider,
7279 F::Target: FeeEstimator,
7283 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7284 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7285 // during initialization prior to the chain_monitor being fully configured in some cases.
7286 // See the docs for `ChannelManagerReadArgs` for more.
7288 let block_hash = header.block_hash();
7289 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
7291 let _persistence_guard =
7292 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7293 self, || -> NotifyOption { NotifyOption::DoPersist });
7294 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
7295 .map(|(a, b)| (a, Vec::new(), b)));
7297 let last_best_block_height = self.best_block.read().unwrap().height();
7298 if height < last_best_block_height {
7299 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
7300 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7304 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
7305 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7306 // during initialization prior to the chain_monitor being fully configured in some cases.
7307 // See the docs for `ChannelManagerReadArgs` for more.
7309 let block_hash = header.block_hash();
7310 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
7312 let _persistence_guard =
7313 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7314 self, || -> NotifyOption { NotifyOption::DoPersist });
7315 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
7317 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7319 macro_rules! max_time {
7320 ($timestamp: expr) => {
7322 // Update $timestamp to be the max of its current value and the block
7323 // timestamp. This should keep us close to the current time without relying on
7324 // having an explicit local time source.
7325 // Just in case we end up in a race, we loop until we either successfully
7326 // update $timestamp or decide we don't need to.
7327 let old_serial = $timestamp.load(Ordering::Acquire);
7328 if old_serial >= header.time as usize { break; }
7329 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
7335 max_time!(self.highest_seen_timestamp);
7336 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
7337 payment_secrets.retain(|_, inbound_payment| {
7338 inbound_payment.expiry_time > header.time as u64
7342 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
7343 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
7344 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
7345 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7346 let peer_state = &mut *peer_state_lock;
7347 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
7348 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
7349 res.push((funding_txo.txid, Some(block_hash)));
7356 fn transaction_unconfirmed(&self, txid: &Txid) {
7357 let _persistence_guard =
7358 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7359 self, || -> NotifyOption { NotifyOption::DoPersist });
7360 self.do_chain_event(None, |channel| {
7361 if let Some(funding_txo) = channel.context.get_funding_txo() {
7362 if funding_txo.txid == *txid {
7363 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
7364 } else { Ok((None, Vec::new(), None)) }
7365 } else { Ok((None, Vec::new(), None)) }
7370 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
7372 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7373 T::Target: BroadcasterInterface,
7374 ES::Target: EntropySource,
7375 NS::Target: NodeSigner,
7376 SP::Target: SignerProvider,
7377 F::Target: FeeEstimator,
7381 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
7382 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
7384 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
7385 (&self, height_opt: Option<u32>, f: FN) {
7386 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7387 // during initialization prior to the chain_monitor being fully configured in some cases.
7388 // See the docs for `ChannelManagerReadArgs` for more.
7390 let mut failed_channels = Vec::new();
7391 let mut timed_out_htlcs = Vec::new();
7393 let per_peer_state = self.per_peer_state.read().unwrap();
7394 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7395 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7396 let peer_state = &mut *peer_state_lock;
7397 let pending_msg_events = &mut peer_state.pending_msg_events;
7398 peer_state.channel_by_id.retain(|_, phase| {
7400 // Retain unfunded channels.
7401 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
7402 ChannelPhase::Funded(channel) => {
7403 let res = f(channel);
7404 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
7405 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
7406 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
7407 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
7408 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
7410 if let Some(channel_ready) = channel_ready_opt {
7411 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
7412 if channel.context.is_usable() {
7413 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
7414 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
7415 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7416 node_id: channel.context.get_counterparty_node_id(),
7421 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
7426 let mut pending_events = self.pending_events.lock().unwrap();
7427 emit_channel_ready_event!(pending_events, channel);
7430 if let Some(announcement_sigs) = announcement_sigs {
7431 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
7432 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7433 node_id: channel.context.get_counterparty_node_id(),
7434 msg: announcement_sigs,
7436 if let Some(height) = height_opt {
7437 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
7438 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7440 // Note that announcement_signatures fails if the channel cannot be announced,
7441 // so get_channel_update_for_broadcast will never fail by the time we get here.
7442 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
7447 if channel.is_our_channel_ready() {
7448 if let Some(real_scid) = channel.context.get_short_channel_id() {
7449 // If we sent a 0conf channel_ready, and now have an SCID, we add it
7450 // to the short_to_chan_info map here. Note that we check whether we
7451 // can relay using the real SCID at relay-time (i.e.
7452 // enforce option_scid_alias then), and if the funding tx is ever
7453 // un-confirmed we force-close the channel, ensuring short_to_chan_info
7454 // is always consistent.
7455 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
7456 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
7457 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
7458 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
7459 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
7462 } else if let Err(reason) = res {
7463 update_maps_on_chan_removal!(self, &channel.context);
7464 // It looks like our counterparty went on-chain or funding transaction was
7465 // reorged out of the main chain. Close the channel.
7466 failed_channels.push(channel.context.force_shutdown(true));
7467 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
7468 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7472 let reason_message = format!("{}", reason);
7473 self.issue_channel_close_events(&channel.context, reason);
7474 pending_msg_events.push(events::MessageSendEvent::HandleError {
7475 node_id: channel.context.get_counterparty_node_id(),
7476 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
7477 channel_id: channel.context.channel_id(),
7478 data: reason_message,
7490 if let Some(height) = height_opt {
7491 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
7492 payment.htlcs.retain(|htlc| {
7493 // If height is approaching the number of blocks we think it takes us to get
7494 // our commitment transaction confirmed before the HTLC expires, plus the
7495 // number of blocks we generally consider it to take to do a commitment update,
7496 // just give up on it and fail the HTLC.
7497 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
7498 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
7499 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
7501 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
7502 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
7503 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
7507 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
7510 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
7511 intercepted_htlcs.retain(|_, htlc| {
7512 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
7513 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7514 short_channel_id: htlc.prev_short_channel_id,
7515 user_channel_id: Some(htlc.prev_user_channel_id),
7516 htlc_id: htlc.prev_htlc_id,
7517 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
7518 phantom_shared_secret: None,
7519 outpoint: htlc.prev_funding_outpoint,
7522 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
7523 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7524 _ => unreachable!(),
7526 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
7527 HTLCFailReason::from_failure_code(0x2000 | 2),
7528 HTLCDestination::InvalidForward { requested_forward_scid }));
7529 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
7535 self.handle_init_event_channel_failures(failed_channels);
7537 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
7538 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
7542 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
7543 /// may have events that need processing.
7545 /// In order to check if this [`ChannelManager`] needs persisting, call
7546 /// [`Self::get_and_clear_needs_persistence`].
7548 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
7549 /// [`ChannelManager`] and should instead register actions to be taken later.
7550 pub fn get_event_or_persistence_needed_future(&self) -> Future {
7551 self.event_persist_notifier.get_future()
7554 /// Returns true if this [`ChannelManager`] needs to be persisted.
7555 pub fn get_and_clear_needs_persistence(&self) -> bool {
7556 self.needs_persist_flag.swap(false, Ordering::AcqRel)
7559 #[cfg(any(test, feature = "_test_utils"))]
7560 pub fn get_event_or_persist_condvar_value(&self) -> bool {
7561 self.event_persist_notifier.notify_pending()
7564 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
7565 /// [`chain::Confirm`] interfaces.
7566 pub fn current_best_block(&self) -> BestBlock {
7567 self.best_block.read().unwrap().clone()
7570 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7571 /// [`ChannelManager`].
7572 pub fn node_features(&self) -> NodeFeatures {
7573 provided_node_features(&self.default_configuration)
7576 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7577 /// [`ChannelManager`].
7579 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7580 /// or not. Thus, this method is not public.
7581 #[cfg(any(feature = "_test_utils", test))]
7582 pub fn invoice_features(&self) -> Bolt11InvoiceFeatures {
7583 provided_invoice_features(&self.default_configuration)
7586 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7587 /// [`ChannelManager`].
7588 pub fn channel_features(&self) -> ChannelFeatures {
7589 provided_channel_features(&self.default_configuration)
7592 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7593 /// [`ChannelManager`].
7594 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
7595 provided_channel_type_features(&self.default_configuration)
7598 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7599 /// [`ChannelManager`].
7600 pub fn init_features(&self) -> InitFeatures {
7601 provided_init_features(&self.default_configuration)
7605 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7606 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
7608 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7609 T::Target: BroadcasterInterface,
7610 ES::Target: EntropySource,
7611 NS::Target: NodeSigner,
7612 SP::Target: SignerProvider,
7613 F::Target: FeeEstimator,
7617 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
7618 // Note that we never need to persist the updated ChannelManager for an inbound
7619 // open_channel message - pre-funded channels are never written so there should be no
7620 // change to the contents.
7621 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7622 let res = self.internal_open_channel(counterparty_node_id, msg);
7623 let persist = match &res {
7624 Err(e) if e.closes_channel() => {
7625 debug_assert!(false, "We shouldn't close a new channel");
7626 NotifyOption::DoPersist
7628 _ => NotifyOption::SkipPersistHandleEvents,
7630 let _ = handle_error!(self, res, *counterparty_node_id);
7635 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
7636 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7637 "Dual-funded channels not supported".to_owned(),
7638 msg.temporary_channel_id.clone())), *counterparty_node_id);
7641 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
7642 // Note that we never need to persist the updated ChannelManager for an inbound
7643 // accept_channel message - pre-funded channels are never written so there should be no
7644 // change to the contents.
7645 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7646 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
7647 NotifyOption::SkipPersistHandleEvents
7651 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
7652 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7653 "Dual-funded channels not supported".to_owned(),
7654 msg.temporary_channel_id.clone())), *counterparty_node_id);
7657 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
7658 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7659 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
7662 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
7663 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7664 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
7667 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
7668 // Note that we never need to persist the updated ChannelManager for an inbound
7669 // channel_ready message - while the channel's state will change, any channel_ready message
7670 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
7671 // will not force-close the channel on startup.
7672 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7673 let res = self.internal_channel_ready(counterparty_node_id, msg);
7674 let persist = match &res {
7675 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7676 _ => NotifyOption::SkipPersistHandleEvents,
7678 let _ = handle_error!(self, res, *counterparty_node_id);
7683 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
7684 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7685 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
7688 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
7689 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7690 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
7693 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
7694 // Note that we never need to persist the updated ChannelManager for an inbound
7695 // update_add_htlc message - the message itself doesn't change our channel state only the
7696 // `commitment_signed` message afterwards will.
7697 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7698 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
7699 let persist = match &res {
7700 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7701 Err(_) => NotifyOption::SkipPersistHandleEvents,
7702 Ok(()) => NotifyOption::SkipPersistNoEvents,
7704 let _ = handle_error!(self, res, *counterparty_node_id);
7709 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
7710 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7711 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
7714 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
7715 // Note that we never need to persist the updated ChannelManager for an inbound
7716 // update_fail_htlc message - the message itself doesn't change our channel state only the
7717 // `commitment_signed` message afterwards will.
7718 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7719 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
7720 let persist = match &res {
7721 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7722 Err(_) => NotifyOption::SkipPersistHandleEvents,
7723 Ok(()) => NotifyOption::SkipPersistNoEvents,
7725 let _ = handle_error!(self, res, *counterparty_node_id);
7730 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
7731 // Note that we never need to persist the updated ChannelManager for an inbound
7732 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
7733 // only the `commitment_signed` message afterwards will.
7734 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7735 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
7736 let persist = match &res {
7737 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7738 Err(_) => NotifyOption::SkipPersistHandleEvents,
7739 Ok(()) => NotifyOption::SkipPersistNoEvents,
7741 let _ = handle_error!(self, res, *counterparty_node_id);
7746 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
7747 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7748 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
7751 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
7752 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7753 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
7756 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
7757 // Note that we never need to persist the updated ChannelManager for an inbound
7758 // update_fee message - the message itself doesn't change our channel state only the
7759 // `commitment_signed` message afterwards will.
7760 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7761 let res = self.internal_update_fee(counterparty_node_id, msg);
7762 let persist = match &res {
7763 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7764 Err(_) => NotifyOption::SkipPersistHandleEvents,
7765 Ok(()) => NotifyOption::SkipPersistNoEvents,
7767 let _ = handle_error!(self, res, *counterparty_node_id);
7772 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
7773 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7774 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
7777 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
7778 PersistenceNotifierGuard::optionally_notify(self, || {
7779 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
7782 NotifyOption::DoPersist
7787 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
7788 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7789 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
7790 let persist = match &res {
7791 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7792 Err(_) => NotifyOption::SkipPersistHandleEvents,
7793 Ok(persist) => *persist,
7795 let _ = handle_error!(self, res, *counterparty_node_id);
7800 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
7801 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
7802 self, || NotifyOption::SkipPersistHandleEvents);
7804 let mut failed_channels = Vec::new();
7805 let mut per_peer_state = self.per_peer_state.write().unwrap();
7807 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
7808 log_pubkey!(counterparty_node_id));
7809 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
7810 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7811 let peer_state = &mut *peer_state_lock;
7812 let pending_msg_events = &mut peer_state.pending_msg_events;
7813 peer_state.channel_by_id.retain(|_, phase| {
7814 let context = match phase {
7815 ChannelPhase::Funded(chan) => {
7816 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
7817 // We only retain funded channels that are not shutdown.
7818 if !chan.is_shutdown() {
7823 // Unfunded channels will always be removed.
7824 ChannelPhase::UnfundedOutboundV1(chan) => {
7827 ChannelPhase::UnfundedInboundV1(chan) => {
7831 // Clean up for removal.
7832 update_maps_on_chan_removal!(self, &context);
7833 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
7836 // Note that we don't bother generating any events for pre-accept channels -
7837 // they're not considered "channels" yet from the PoV of our events interface.
7838 peer_state.inbound_channel_request_by_id.clear();
7839 pending_msg_events.retain(|msg| {
7841 // V1 Channel Establishment
7842 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
7843 &events::MessageSendEvent::SendOpenChannel { .. } => false,
7844 &events::MessageSendEvent::SendFundingCreated { .. } => false,
7845 &events::MessageSendEvent::SendFundingSigned { .. } => false,
7846 // V2 Channel Establishment
7847 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
7848 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
7849 // Common Channel Establishment
7850 &events::MessageSendEvent::SendChannelReady { .. } => false,
7851 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
7852 // Interactive Transaction Construction
7853 &events::MessageSendEvent::SendTxAddInput { .. } => false,
7854 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
7855 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
7856 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
7857 &events::MessageSendEvent::SendTxComplete { .. } => false,
7858 &events::MessageSendEvent::SendTxSignatures { .. } => false,
7859 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
7860 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
7861 &events::MessageSendEvent::SendTxAbort { .. } => false,
7862 // Channel Operations
7863 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
7864 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
7865 &events::MessageSendEvent::SendClosingSigned { .. } => false,
7866 &events::MessageSendEvent::SendShutdown { .. } => false,
7867 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
7868 &events::MessageSendEvent::HandleError { .. } => false,
7870 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
7871 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
7872 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
7873 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
7874 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
7875 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
7876 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
7877 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
7878 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
7881 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
7882 peer_state.is_connected = false;
7883 peer_state.ok_to_remove(true)
7884 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
7887 per_peer_state.remove(counterparty_node_id);
7889 mem::drop(per_peer_state);
7891 for failure in failed_channels.drain(..) {
7892 self.finish_force_close_channel(failure);
7896 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
7897 if !init_msg.features.supports_static_remote_key() {
7898 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
7902 let mut res = Ok(());
7904 PersistenceNotifierGuard::optionally_notify(self, || {
7905 // If we have too many peers connected which don't have funded channels, disconnect the
7906 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
7907 // unfunded channels taking up space in memory for disconnected peers, we still let new
7908 // peers connect, but we'll reject new channels from them.
7909 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
7910 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
7913 let mut peer_state_lock = self.per_peer_state.write().unwrap();
7914 match peer_state_lock.entry(counterparty_node_id.clone()) {
7915 hash_map::Entry::Vacant(e) => {
7916 if inbound_peer_limited {
7918 return NotifyOption::SkipPersistNoEvents;
7920 e.insert(Mutex::new(PeerState {
7921 channel_by_id: HashMap::new(),
7922 inbound_channel_request_by_id: HashMap::new(),
7923 latest_features: init_msg.features.clone(),
7924 pending_msg_events: Vec::new(),
7925 in_flight_monitor_updates: BTreeMap::new(),
7926 monitor_update_blocked_actions: BTreeMap::new(),
7927 actions_blocking_raa_monitor_updates: BTreeMap::new(),
7931 hash_map::Entry::Occupied(e) => {
7932 let mut peer_state = e.get().lock().unwrap();
7933 peer_state.latest_features = init_msg.features.clone();
7935 let best_block_height = self.best_block.read().unwrap().height();
7936 if inbound_peer_limited &&
7937 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
7938 peer_state.channel_by_id.len()
7941 return NotifyOption::SkipPersistNoEvents;
7944 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
7945 peer_state.is_connected = true;
7950 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
7952 let per_peer_state = self.per_peer_state.read().unwrap();
7953 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
7954 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7955 let peer_state = &mut *peer_state_lock;
7956 let pending_msg_events = &mut peer_state.pending_msg_events;
7958 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
7959 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
7960 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
7961 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
7962 // worry about closing and removing them.
7963 debug_assert!(false);
7967 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
7968 node_id: chan.context.get_counterparty_node_id(),
7969 msg: chan.get_channel_reestablish(&self.logger),
7974 return NotifyOption::SkipPersistHandleEvents;
7975 //TODO: Also re-broadcast announcement_signatures
7980 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
7981 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7983 match &msg.data as &str {
7984 "cannot co-op close channel w/ active htlcs"|
7985 "link failed to shutdown" =>
7987 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
7988 // send one while HTLCs are still present. The issue is tracked at
7989 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
7990 // to fix it but none so far have managed to land upstream. The issue appears to be
7991 // very low priority for the LND team despite being marked "P1".
7992 // We're not going to bother handling this in a sensible way, instead simply
7993 // repeating the Shutdown message on repeat until morale improves.
7994 if !msg.channel_id.is_zero() {
7995 let per_peer_state = self.per_peer_state.read().unwrap();
7996 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
7997 if peer_state_mutex_opt.is_none() { return; }
7998 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
7999 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8000 if let Some(msg) = chan.get_outbound_shutdown() {
8001 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8002 node_id: *counterparty_node_id,
8006 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8007 node_id: *counterparty_node_id,
8008 action: msgs::ErrorAction::SendWarningMessage {
8009 msg: msgs::WarningMessage {
8010 channel_id: msg.channel_id,
8011 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8013 log_level: Level::Trace,
8023 if msg.channel_id.is_zero() {
8024 let channel_ids: Vec<ChannelId> = {
8025 let per_peer_state = self.per_peer_state.read().unwrap();
8026 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8027 if peer_state_mutex_opt.is_none() { return; }
8028 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8029 let peer_state = &mut *peer_state_lock;
8030 // Note that we don't bother generating any events for pre-accept channels -
8031 // they're not considered "channels" yet from the PoV of our events interface.
8032 peer_state.inbound_channel_request_by_id.clear();
8033 peer_state.channel_by_id.keys().cloned().collect()
8035 for channel_id in channel_ids {
8036 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8037 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8041 // First check if we can advance the channel type and try again.
8042 let per_peer_state = self.per_peer_state.read().unwrap();
8043 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8044 if peer_state_mutex_opt.is_none() { return; }
8045 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8046 let peer_state = &mut *peer_state_lock;
8047 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8048 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash, &self.fee_estimator) {
8049 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8050 node_id: *counterparty_node_id,
8058 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8059 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8063 fn provided_node_features(&self) -> NodeFeatures {
8064 provided_node_features(&self.default_configuration)
8067 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8068 provided_init_features(&self.default_configuration)
8071 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
8072 Some(vec![ChainHash::from(&self.genesis_hash[..])])
8075 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8076 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8077 "Dual-funded channels not supported".to_owned(),
8078 msg.channel_id.clone())), *counterparty_node_id);
8081 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8082 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8083 "Dual-funded channels not supported".to_owned(),
8084 msg.channel_id.clone())), *counterparty_node_id);
8087 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8088 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8089 "Dual-funded channels not supported".to_owned(),
8090 msg.channel_id.clone())), *counterparty_node_id);
8093 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8094 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8095 "Dual-funded channels not supported".to_owned(),
8096 msg.channel_id.clone())), *counterparty_node_id);
8099 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8100 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8101 "Dual-funded channels not supported".to_owned(),
8102 msg.channel_id.clone())), *counterparty_node_id);
8105 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8106 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8107 "Dual-funded channels not supported".to_owned(),
8108 msg.channel_id.clone())), *counterparty_node_id);
8111 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8112 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8113 "Dual-funded channels not supported".to_owned(),
8114 msg.channel_id.clone())), *counterparty_node_id);
8117 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8118 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8119 "Dual-funded channels not supported".to_owned(),
8120 msg.channel_id.clone())), *counterparty_node_id);
8123 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8124 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8125 "Dual-funded channels not supported".to_owned(),
8126 msg.channel_id.clone())), *counterparty_node_id);
8130 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
8131 /// [`ChannelManager`].
8132 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
8133 let mut node_features = provided_init_features(config).to_context();
8134 node_features.set_keysend_optional();
8138 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
8139 /// [`ChannelManager`].
8141 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8142 /// or not. Thus, this method is not public.
8143 #[cfg(any(feature = "_test_utils", test))]
8144 pub(crate) fn provided_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
8145 provided_init_features(config).to_context()
8148 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
8149 /// [`ChannelManager`].
8150 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
8151 provided_init_features(config).to_context()
8154 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
8155 /// [`ChannelManager`].
8156 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
8157 ChannelTypeFeatures::from_init(&provided_init_features(config))
8160 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
8161 /// [`ChannelManager`].
8162 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
8163 // Note that if new features are added here which other peers may (eventually) require, we
8164 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
8165 // [`ErroringMessageHandler`].
8166 let mut features = InitFeatures::empty();
8167 features.set_data_loss_protect_required();
8168 features.set_upfront_shutdown_script_optional();
8169 features.set_variable_length_onion_required();
8170 features.set_static_remote_key_required();
8171 features.set_payment_secret_required();
8172 features.set_basic_mpp_optional();
8173 features.set_wumbo_optional();
8174 features.set_shutdown_any_segwit_optional();
8175 features.set_channel_type_optional();
8176 features.set_scid_privacy_optional();
8177 features.set_zero_conf_optional();
8178 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
8179 features.set_anchors_zero_fee_htlc_tx_optional();
8184 const SERIALIZATION_VERSION: u8 = 1;
8185 const MIN_SERIALIZATION_VERSION: u8 = 1;
8187 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
8188 (2, fee_base_msat, required),
8189 (4, fee_proportional_millionths, required),
8190 (6, cltv_expiry_delta, required),
8193 impl_writeable_tlv_based!(ChannelCounterparty, {
8194 (2, node_id, required),
8195 (4, features, required),
8196 (6, unspendable_punishment_reserve, required),
8197 (8, forwarding_info, option),
8198 (9, outbound_htlc_minimum_msat, option),
8199 (11, outbound_htlc_maximum_msat, option),
8202 impl Writeable for ChannelDetails {
8203 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8204 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8205 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8206 let user_channel_id_low = self.user_channel_id as u64;
8207 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
8208 write_tlv_fields!(writer, {
8209 (1, self.inbound_scid_alias, option),
8210 (2, self.channel_id, required),
8211 (3, self.channel_type, option),
8212 (4, self.counterparty, required),
8213 (5, self.outbound_scid_alias, option),
8214 (6, self.funding_txo, option),
8215 (7, self.config, option),
8216 (8, self.short_channel_id, option),
8217 (9, self.confirmations, option),
8218 (10, self.channel_value_satoshis, required),
8219 (12, self.unspendable_punishment_reserve, option),
8220 (14, user_channel_id_low, required),
8221 (16, self.next_outbound_htlc_limit_msat, required), // Forwards compatibility for removed balance_msat field.
8222 (18, self.outbound_capacity_msat, required),
8223 (19, self.next_outbound_htlc_limit_msat, required),
8224 (20, self.inbound_capacity_msat, required),
8225 (21, self.next_outbound_htlc_minimum_msat, required),
8226 (22, self.confirmations_required, option),
8227 (24, self.force_close_spend_delay, option),
8228 (26, self.is_outbound, required),
8229 (28, self.is_channel_ready, required),
8230 (30, self.is_usable, required),
8231 (32, self.is_public, required),
8232 (33, self.inbound_htlc_minimum_msat, option),
8233 (35, self.inbound_htlc_maximum_msat, option),
8234 (37, user_channel_id_high_opt, option),
8235 (39, self.feerate_sat_per_1000_weight, option),
8236 (41, self.channel_shutdown_state, option),
8242 impl Readable for ChannelDetails {
8243 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8244 _init_and_read_len_prefixed_tlv_fields!(reader, {
8245 (1, inbound_scid_alias, option),
8246 (2, channel_id, required),
8247 (3, channel_type, option),
8248 (4, counterparty, required),
8249 (5, outbound_scid_alias, option),
8250 (6, funding_txo, option),
8251 (7, config, option),
8252 (8, short_channel_id, option),
8253 (9, confirmations, option),
8254 (10, channel_value_satoshis, required),
8255 (12, unspendable_punishment_reserve, option),
8256 (14, user_channel_id_low, required),
8257 (16, _balance_msat, option), // Backwards compatibility for removed balance_msat field.
8258 (18, outbound_capacity_msat, required),
8259 // Note that by the time we get past the required read above, outbound_capacity_msat will be
8260 // filled in, so we can safely unwrap it here.
8261 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
8262 (20, inbound_capacity_msat, required),
8263 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
8264 (22, confirmations_required, option),
8265 (24, force_close_spend_delay, option),
8266 (26, is_outbound, required),
8267 (28, is_channel_ready, required),
8268 (30, is_usable, required),
8269 (32, is_public, required),
8270 (33, inbound_htlc_minimum_msat, option),
8271 (35, inbound_htlc_maximum_msat, option),
8272 (37, user_channel_id_high_opt, option),
8273 (39, feerate_sat_per_1000_weight, option),
8274 (41, channel_shutdown_state, option),
8277 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8278 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8279 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
8280 let user_channel_id = user_channel_id_low as u128 +
8281 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
8283 let _balance_msat: Option<u64> = _balance_msat;
8287 channel_id: channel_id.0.unwrap(),
8289 counterparty: counterparty.0.unwrap(),
8290 outbound_scid_alias,
8294 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
8295 unspendable_punishment_reserve,
8297 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
8298 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
8299 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
8300 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
8301 confirmations_required,
8303 force_close_spend_delay,
8304 is_outbound: is_outbound.0.unwrap(),
8305 is_channel_ready: is_channel_ready.0.unwrap(),
8306 is_usable: is_usable.0.unwrap(),
8307 is_public: is_public.0.unwrap(),
8308 inbound_htlc_minimum_msat,
8309 inbound_htlc_maximum_msat,
8310 feerate_sat_per_1000_weight,
8311 channel_shutdown_state,
8316 impl_writeable_tlv_based!(PhantomRouteHints, {
8317 (2, channels, required_vec),
8318 (4, phantom_scid, required),
8319 (6, real_node_pubkey, required),
8322 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
8324 (0, onion_packet, required),
8325 (2, short_channel_id, required),
8328 (0, payment_data, required),
8329 (1, phantom_shared_secret, option),
8330 (2, incoming_cltv_expiry, required),
8331 (3, payment_metadata, option),
8332 (5, custom_tlvs, optional_vec),
8334 (2, ReceiveKeysend) => {
8335 (0, payment_preimage, required),
8336 (2, incoming_cltv_expiry, required),
8337 (3, payment_metadata, option),
8338 (4, payment_data, option), // Added in 0.0.116
8339 (5, custom_tlvs, optional_vec),
8343 impl_writeable_tlv_based!(PendingHTLCInfo, {
8344 (0, routing, required),
8345 (2, incoming_shared_secret, required),
8346 (4, payment_hash, required),
8347 (6, outgoing_amt_msat, required),
8348 (8, outgoing_cltv_value, required),
8349 (9, incoming_amt_msat, option),
8350 (10, skimmed_fee_msat, option),
8354 impl Writeable for HTLCFailureMsg {
8355 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8357 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
8359 channel_id.write(writer)?;
8360 htlc_id.write(writer)?;
8361 reason.write(writer)?;
8363 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8364 channel_id, htlc_id, sha256_of_onion, failure_code
8367 channel_id.write(writer)?;
8368 htlc_id.write(writer)?;
8369 sha256_of_onion.write(writer)?;
8370 failure_code.write(writer)?;
8377 impl Readable for HTLCFailureMsg {
8378 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8379 let id: u8 = Readable::read(reader)?;
8382 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8383 channel_id: Readable::read(reader)?,
8384 htlc_id: Readable::read(reader)?,
8385 reason: Readable::read(reader)?,
8389 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8390 channel_id: Readable::read(reader)?,
8391 htlc_id: Readable::read(reader)?,
8392 sha256_of_onion: Readable::read(reader)?,
8393 failure_code: Readable::read(reader)?,
8396 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
8397 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
8398 // messages contained in the variants.
8399 // In version 0.0.101, support for reading the variants with these types was added, and
8400 // we should migrate to writing these variants when UpdateFailHTLC or
8401 // UpdateFailMalformedHTLC get TLV fields.
8403 let length: BigSize = Readable::read(reader)?;
8404 let mut s = FixedLengthReader::new(reader, length.0);
8405 let res = Readable::read(&mut s)?;
8406 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8407 Ok(HTLCFailureMsg::Relay(res))
8410 let length: BigSize = Readable::read(reader)?;
8411 let mut s = FixedLengthReader::new(reader, length.0);
8412 let res = Readable::read(&mut s)?;
8413 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8414 Ok(HTLCFailureMsg::Malformed(res))
8416 _ => Err(DecodeError::UnknownRequiredFeature),
8421 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
8426 impl_writeable_tlv_based!(HTLCPreviousHopData, {
8427 (0, short_channel_id, required),
8428 (1, phantom_shared_secret, option),
8429 (2, outpoint, required),
8430 (4, htlc_id, required),
8431 (6, incoming_packet_shared_secret, required),
8432 (7, user_channel_id, option),
8435 impl Writeable for ClaimableHTLC {
8436 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8437 let (payment_data, keysend_preimage) = match &self.onion_payload {
8438 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
8439 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
8441 write_tlv_fields!(writer, {
8442 (0, self.prev_hop, required),
8443 (1, self.total_msat, required),
8444 (2, self.value, required),
8445 (3, self.sender_intended_value, required),
8446 (4, payment_data, option),
8447 (5, self.total_value_received, option),
8448 (6, self.cltv_expiry, required),
8449 (8, keysend_preimage, option),
8450 (10, self.counterparty_skimmed_fee_msat, option),
8456 impl Readable for ClaimableHTLC {
8457 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8458 _init_and_read_len_prefixed_tlv_fields!(reader, {
8459 (0, prev_hop, required),
8460 (1, total_msat, option),
8461 (2, value_ser, required),
8462 (3, sender_intended_value, option),
8463 (4, payment_data_opt, option),
8464 (5, total_value_received, option),
8465 (6, cltv_expiry, required),
8466 (8, keysend_preimage, option),
8467 (10, counterparty_skimmed_fee_msat, option),
8469 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
8470 let value = value_ser.0.unwrap();
8471 let onion_payload = match keysend_preimage {
8473 if payment_data.is_some() {
8474 return Err(DecodeError::InvalidValue)
8476 if total_msat.is_none() {
8477 total_msat = Some(value);
8479 OnionPayload::Spontaneous(p)
8482 if total_msat.is_none() {
8483 if payment_data.is_none() {
8484 return Err(DecodeError::InvalidValue)
8486 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
8488 OnionPayload::Invoice { _legacy_hop_data: payment_data }
8492 prev_hop: prev_hop.0.unwrap(),
8495 sender_intended_value: sender_intended_value.unwrap_or(value),
8496 total_value_received,
8497 total_msat: total_msat.unwrap(),
8499 cltv_expiry: cltv_expiry.0.unwrap(),
8500 counterparty_skimmed_fee_msat,
8505 impl Readable for HTLCSource {
8506 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8507 let id: u8 = Readable::read(reader)?;
8510 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
8511 let mut first_hop_htlc_msat: u64 = 0;
8512 let mut path_hops = Vec::new();
8513 let mut payment_id = None;
8514 let mut payment_params: Option<PaymentParameters> = None;
8515 let mut blinded_tail: Option<BlindedTail> = None;
8516 read_tlv_fields!(reader, {
8517 (0, session_priv, required),
8518 (1, payment_id, option),
8519 (2, first_hop_htlc_msat, required),
8520 (4, path_hops, required_vec),
8521 (5, payment_params, (option: ReadableArgs, 0)),
8522 (6, blinded_tail, option),
8524 if payment_id.is_none() {
8525 // For backwards compat, if there was no payment_id written, use the session_priv bytes
8527 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
8529 let path = Path { hops: path_hops, blinded_tail };
8530 if path.hops.len() == 0 {
8531 return Err(DecodeError::InvalidValue);
8533 if let Some(params) = payment_params.as_mut() {
8534 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
8535 if final_cltv_expiry_delta == &0 {
8536 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
8540 Ok(HTLCSource::OutboundRoute {
8541 session_priv: session_priv.0.unwrap(),
8542 first_hop_htlc_msat,
8544 payment_id: payment_id.unwrap(),
8547 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
8548 _ => Err(DecodeError::UnknownRequiredFeature),
8553 impl Writeable for HTLCSource {
8554 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
8556 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
8558 let payment_id_opt = Some(payment_id);
8559 write_tlv_fields!(writer, {
8560 (0, session_priv, required),
8561 (1, payment_id_opt, option),
8562 (2, first_hop_htlc_msat, required),
8563 // 3 was previously used to write a PaymentSecret for the payment.
8564 (4, path.hops, required_vec),
8565 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
8566 (6, path.blinded_tail, option),
8569 HTLCSource::PreviousHopData(ref field) => {
8571 field.write(writer)?;
8578 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
8579 (0, forward_info, required),
8580 (1, prev_user_channel_id, (default_value, 0)),
8581 (2, prev_short_channel_id, required),
8582 (4, prev_htlc_id, required),
8583 (6, prev_funding_outpoint, required),
8586 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
8588 (0, htlc_id, required),
8589 (2, err_packet, required),
8594 impl_writeable_tlv_based!(PendingInboundPayment, {
8595 (0, payment_secret, required),
8596 (2, expiry_time, required),
8597 (4, user_payment_id, required),
8598 (6, payment_preimage, required),
8599 (8, min_value_msat, required),
8602 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
8604 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8605 T::Target: BroadcasterInterface,
8606 ES::Target: EntropySource,
8607 NS::Target: NodeSigner,
8608 SP::Target: SignerProvider,
8609 F::Target: FeeEstimator,
8613 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8614 let _consistency_lock = self.total_consistency_lock.write().unwrap();
8616 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
8618 self.genesis_hash.write(writer)?;
8620 let best_block = self.best_block.read().unwrap();
8621 best_block.height().write(writer)?;
8622 best_block.block_hash().write(writer)?;
8625 let mut serializable_peer_count: u64 = 0;
8627 let per_peer_state = self.per_peer_state.read().unwrap();
8628 let mut number_of_funded_channels = 0;
8629 for (_, peer_state_mutex) in per_peer_state.iter() {
8630 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8631 let peer_state = &mut *peer_state_lock;
8632 if !peer_state.ok_to_remove(false) {
8633 serializable_peer_count += 1;
8636 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
8637 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_initiated() } else { false }
8641 (number_of_funded_channels as u64).write(writer)?;
8643 for (_, peer_state_mutex) in per_peer_state.iter() {
8644 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8645 let peer_state = &mut *peer_state_lock;
8646 for channel in peer_state.channel_by_id.iter().filter_map(
8647 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
8648 if channel.context.is_funding_initiated() { Some(channel) } else { None }
8651 channel.write(writer)?;
8657 let forward_htlcs = self.forward_htlcs.lock().unwrap();
8658 (forward_htlcs.len() as u64).write(writer)?;
8659 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
8660 short_channel_id.write(writer)?;
8661 (pending_forwards.len() as u64).write(writer)?;
8662 for forward in pending_forwards {
8663 forward.write(writer)?;
8668 let per_peer_state = self.per_peer_state.write().unwrap();
8670 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
8671 let claimable_payments = self.claimable_payments.lock().unwrap();
8672 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
8674 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
8675 let mut htlc_onion_fields: Vec<&_> = Vec::new();
8676 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
8677 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
8678 payment_hash.write(writer)?;
8679 (payment.htlcs.len() as u64).write(writer)?;
8680 for htlc in payment.htlcs.iter() {
8681 htlc.write(writer)?;
8683 htlc_purposes.push(&payment.purpose);
8684 htlc_onion_fields.push(&payment.onion_fields);
8687 let mut monitor_update_blocked_actions_per_peer = None;
8688 let mut peer_states = Vec::new();
8689 for (_, peer_state_mutex) in per_peer_state.iter() {
8690 // Because we're holding the owning `per_peer_state` write lock here there's no chance
8691 // of a lockorder violation deadlock - no other thread can be holding any
8692 // per_peer_state lock at all.
8693 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
8696 (serializable_peer_count).write(writer)?;
8697 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8698 // Peers which we have no channels to should be dropped once disconnected. As we
8699 // disconnect all peers when shutting down and serializing the ChannelManager, we
8700 // consider all peers as disconnected here. There's therefore no need write peers with
8702 if !peer_state.ok_to_remove(false) {
8703 peer_pubkey.write(writer)?;
8704 peer_state.latest_features.write(writer)?;
8705 if !peer_state.monitor_update_blocked_actions.is_empty() {
8706 monitor_update_blocked_actions_per_peer
8707 .get_or_insert_with(Vec::new)
8708 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
8713 let events = self.pending_events.lock().unwrap();
8714 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
8715 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
8716 // refuse to read the new ChannelManager.
8717 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
8718 if events_not_backwards_compatible {
8719 // If we're gonna write a even TLV that will overwrite our events anyway we might as
8720 // well save the space and not write any events here.
8721 0u64.write(writer)?;
8723 (events.len() as u64).write(writer)?;
8724 for (event, _) in events.iter() {
8725 event.write(writer)?;
8729 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
8730 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
8731 // the closing monitor updates were always effectively replayed on startup (either directly
8732 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
8733 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
8734 0u64.write(writer)?;
8736 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
8737 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
8738 // likely to be identical.
8739 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8740 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8742 (pending_inbound_payments.len() as u64).write(writer)?;
8743 for (hash, pending_payment) in pending_inbound_payments.iter() {
8744 hash.write(writer)?;
8745 pending_payment.write(writer)?;
8748 // For backwards compat, write the session privs and their total length.
8749 let mut num_pending_outbounds_compat: u64 = 0;
8750 for (_, outbound) in pending_outbound_payments.iter() {
8751 if !outbound.is_fulfilled() && !outbound.abandoned() {
8752 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
8755 num_pending_outbounds_compat.write(writer)?;
8756 for (_, outbound) in pending_outbound_payments.iter() {
8758 PendingOutboundPayment::Legacy { session_privs } |
8759 PendingOutboundPayment::Retryable { session_privs, .. } => {
8760 for session_priv in session_privs.iter() {
8761 session_priv.write(writer)?;
8764 PendingOutboundPayment::AwaitingInvoice { .. } => {},
8765 PendingOutboundPayment::InvoiceReceived { .. } => {},
8766 PendingOutboundPayment::Fulfilled { .. } => {},
8767 PendingOutboundPayment::Abandoned { .. } => {},
8771 // Encode without retry info for 0.0.101 compatibility.
8772 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
8773 for (id, outbound) in pending_outbound_payments.iter() {
8775 PendingOutboundPayment::Legacy { session_privs } |
8776 PendingOutboundPayment::Retryable { session_privs, .. } => {
8777 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
8783 let mut pending_intercepted_htlcs = None;
8784 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
8785 if our_pending_intercepts.len() != 0 {
8786 pending_intercepted_htlcs = Some(our_pending_intercepts);
8789 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
8790 if pending_claiming_payments.as_ref().unwrap().is_empty() {
8791 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
8792 // map. Thus, if there are no entries we skip writing a TLV for it.
8793 pending_claiming_payments = None;
8796 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
8797 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8798 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
8799 if !updates.is_empty() {
8800 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
8801 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
8806 write_tlv_fields!(writer, {
8807 (1, pending_outbound_payments_no_retry, required),
8808 (2, pending_intercepted_htlcs, option),
8809 (3, pending_outbound_payments, required),
8810 (4, pending_claiming_payments, option),
8811 (5, self.our_network_pubkey, required),
8812 (6, monitor_update_blocked_actions_per_peer, option),
8813 (7, self.fake_scid_rand_bytes, required),
8814 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
8815 (9, htlc_purposes, required_vec),
8816 (10, in_flight_monitor_updates, option),
8817 (11, self.probing_cookie_secret, required),
8818 (13, htlc_onion_fields, optional_vec),
8825 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
8826 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
8827 (self.len() as u64).write(w)?;
8828 for (event, action) in self.iter() {
8831 #[cfg(debug_assertions)] {
8832 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
8833 // be persisted and are regenerated on restart. However, if such an event has a
8834 // post-event-handling action we'll write nothing for the event and would have to
8835 // either forget the action or fail on deserialization (which we do below). Thus,
8836 // check that the event is sane here.
8837 let event_encoded = event.encode();
8838 let event_read: Option<Event> =
8839 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
8840 if action.is_some() { assert!(event_read.is_some()); }
8846 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
8847 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8848 let len: u64 = Readable::read(reader)?;
8849 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
8850 let mut events: Self = VecDeque::with_capacity(cmp::min(
8851 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
8854 let ev_opt = MaybeReadable::read(reader)?;
8855 let action = Readable::read(reader)?;
8856 if let Some(ev) = ev_opt {
8857 events.push_back((ev, action));
8858 } else if action.is_some() {
8859 return Err(DecodeError::InvalidValue);
8866 impl_writeable_tlv_based_enum!(ChannelShutdownState,
8867 (0, NotShuttingDown) => {},
8868 (2, ShutdownInitiated) => {},
8869 (4, ResolvingHTLCs) => {},
8870 (6, NegotiatingClosingFee) => {},
8871 (8, ShutdownComplete) => {}, ;
8874 /// Arguments for the creation of a ChannelManager that are not deserialized.
8876 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
8878 /// 1) Deserialize all stored [`ChannelMonitor`]s.
8879 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
8880 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
8881 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
8882 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
8883 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
8884 /// same way you would handle a [`chain::Filter`] call using
8885 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
8886 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
8887 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
8888 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
8889 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
8890 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
8892 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
8893 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
8895 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
8896 /// call any other methods on the newly-deserialized [`ChannelManager`].
8898 /// Note that because some channels may be closed during deserialization, it is critical that you
8899 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
8900 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
8901 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
8902 /// not force-close the same channels but consider them live), you may end up revoking a state for
8903 /// which you've already broadcasted the transaction.
8905 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
8906 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8908 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8909 T::Target: BroadcasterInterface,
8910 ES::Target: EntropySource,
8911 NS::Target: NodeSigner,
8912 SP::Target: SignerProvider,
8913 F::Target: FeeEstimator,
8917 /// A cryptographically secure source of entropy.
8918 pub entropy_source: ES,
8920 /// A signer that is able to perform node-scoped cryptographic operations.
8921 pub node_signer: NS,
8923 /// The keys provider which will give us relevant keys. Some keys will be loaded during
8924 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
8926 pub signer_provider: SP,
8928 /// The fee_estimator for use in the ChannelManager in the future.
8930 /// No calls to the FeeEstimator will be made during deserialization.
8931 pub fee_estimator: F,
8932 /// The chain::Watch for use in the ChannelManager in the future.
8934 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
8935 /// you have deserialized ChannelMonitors separately and will add them to your
8936 /// chain::Watch after deserializing this ChannelManager.
8937 pub chain_monitor: M,
8939 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
8940 /// used to broadcast the latest local commitment transactions of channels which must be
8941 /// force-closed during deserialization.
8942 pub tx_broadcaster: T,
8943 /// The router which will be used in the ChannelManager in the future for finding routes
8944 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
8946 /// No calls to the router will be made during deserialization.
8948 /// The Logger for use in the ChannelManager and which may be used to log information during
8949 /// deserialization.
8951 /// Default settings used for new channels. Any existing channels will continue to use the
8952 /// runtime settings which were stored when the ChannelManager was serialized.
8953 pub default_config: UserConfig,
8955 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
8956 /// value.context.get_funding_txo() should be the key).
8958 /// If a monitor is inconsistent with the channel state during deserialization the channel will
8959 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
8960 /// is true for missing channels as well. If there is a monitor missing for which we find
8961 /// channel data Err(DecodeError::InvalidValue) will be returned.
8963 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
8966 /// This is not exported to bindings users because we have no HashMap bindings
8967 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
8970 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8971 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
8973 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8974 T::Target: BroadcasterInterface,
8975 ES::Target: EntropySource,
8976 NS::Target: NodeSigner,
8977 SP::Target: SignerProvider,
8978 F::Target: FeeEstimator,
8982 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
8983 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
8984 /// populate a HashMap directly from C.
8985 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
8986 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
8988 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
8989 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
8994 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
8995 // SipmleArcChannelManager type:
8996 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8997 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
8999 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9000 T::Target: BroadcasterInterface,
9001 ES::Target: EntropySource,
9002 NS::Target: NodeSigner,
9003 SP::Target: SignerProvider,
9004 F::Target: FeeEstimator,
9008 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9009 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9010 Ok((blockhash, Arc::new(chan_manager)))
9014 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9015 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9017 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9018 T::Target: BroadcasterInterface,
9019 ES::Target: EntropySource,
9020 NS::Target: NodeSigner,
9021 SP::Target: SignerProvider,
9022 F::Target: FeeEstimator,
9026 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9027 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
9029 let genesis_hash: BlockHash = Readable::read(reader)?;
9030 let best_block_height: u32 = Readable::read(reader)?;
9031 let best_block_hash: BlockHash = Readable::read(reader)?;
9033 let mut failed_htlcs = Vec::new();
9035 let channel_count: u64 = Readable::read(reader)?;
9036 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
9037 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9038 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9039 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9040 let mut channel_closures = VecDeque::new();
9041 let mut close_background_events = Vec::new();
9042 for _ in 0..channel_count {
9043 let mut channel: Channel<SP> = Channel::read(reader, (
9044 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
9046 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9047 funding_txo_set.insert(funding_txo.clone());
9048 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
9049 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
9050 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
9051 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
9052 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9053 // But if the channel is behind of the monitor, close the channel:
9054 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
9055 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
9056 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9057 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
9058 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
9060 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
9061 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
9062 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
9064 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
9065 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
9066 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
9068 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
9069 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
9070 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
9072 let (monitor_update, mut new_failed_htlcs) = channel.context.force_shutdown(true);
9073 if let Some((counterparty_node_id, funding_txo, update)) = monitor_update {
9074 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9075 counterparty_node_id, funding_txo, update
9078 failed_htlcs.append(&mut new_failed_htlcs);
9079 channel_closures.push_back((events::Event::ChannelClosed {
9080 channel_id: channel.context.channel_id(),
9081 user_channel_id: channel.context.get_user_id(),
9082 reason: ClosureReason::OutdatedChannelManager,
9083 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9084 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9086 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
9087 let mut found_htlc = false;
9088 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
9089 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
9092 // If we have some HTLCs in the channel which are not present in the newer
9093 // ChannelMonitor, they have been removed and should be failed back to
9094 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
9095 // were actually claimed we'd have generated and ensured the previous-hop
9096 // claim update ChannelMonitor updates were persisted prior to persising
9097 // the ChannelMonitor update for the forward leg, so attempting to fail the
9098 // backwards leg of the HTLC will simply be rejected.
9099 log_info!(args.logger,
9100 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
9101 &channel.context.channel_id(), &payment_hash);
9102 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9106 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
9107 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
9108 monitor.get_latest_update_id());
9109 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
9110 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9112 if channel.context.is_funding_initiated() {
9113 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
9115 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
9116 hash_map::Entry::Occupied(mut entry) => {
9117 let by_id_map = entry.get_mut();
9118 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9120 hash_map::Entry::Vacant(entry) => {
9121 let mut by_id_map = HashMap::new();
9122 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9123 entry.insert(by_id_map);
9127 } else if channel.is_awaiting_initial_mon_persist() {
9128 // If we were persisted and shut down while the initial ChannelMonitor persistence
9129 // was in-progress, we never broadcasted the funding transaction and can still
9130 // safely discard the channel.
9131 let _ = channel.context.force_shutdown(false);
9132 channel_closures.push_back((events::Event::ChannelClosed {
9133 channel_id: channel.context.channel_id(),
9134 user_channel_id: channel.context.get_user_id(),
9135 reason: ClosureReason::DisconnectedPeer,
9136 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9137 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9140 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
9141 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9142 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9143 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
9144 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9145 return Err(DecodeError::InvalidValue);
9149 for (funding_txo, _) in args.channel_monitors.iter() {
9150 if !funding_txo_set.contains(funding_txo) {
9151 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
9152 &funding_txo.to_channel_id());
9153 let monitor_update = ChannelMonitorUpdate {
9154 update_id: CLOSED_CHANNEL_UPDATE_ID,
9155 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
9157 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
9161 const MAX_ALLOC_SIZE: usize = 1024 * 64;
9162 let forward_htlcs_count: u64 = Readable::read(reader)?;
9163 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
9164 for _ in 0..forward_htlcs_count {
9165 let short_channel_id = Readable::read(reader)?;
9166 let pending_forwards_count: u64 = Readable::read(reader)?;
9167 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
9168 for _ in 0..pending_forwards_count {
9169 pending_forwards.push(Readable::read(reader)?);
9171 forward_htlcs.insert(short_channel_id, pending_forwards);
9174 let claimable_htlcs_count: u64 = Readable::read(reader)?;
9175 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
9176 for _ in 0..claimable_htlcs_count {
9177 let payment_hash = Readable::read(reader)?;
9178 let previous_hops_len: u64 = Readable::read(reader)?;
9179 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
9180 for _ in 0..previous_hops_len {
9181 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
9183 claimable_htlcs_list.push((payment_hash, previous_hops));
9186 let peer_state_from_chans = |channel_by_id| {
9189 inbound_channel_request_by_id: HashMap::new(),
9190 latest_features: InitFeatures::empty(),
9191 pending_msg_events: Vec::new(),
9192 in_flight_monitor_updates: BTreeMap::new(),
9193 monitor_update_blocked_actions: BTreeMap::new(),
9194 actions_blocking_raa_monitor_updates: BTreeMap::new(),
9195 is_connected: false,
9199 let peer_count: u64 = Readable::read(reader)?;
9200 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
9201 for _ in 0..peer_count {
9202 let peer_pubkey = Readable::read(reader)?;
9203 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
9204 let mut peer_state = peer_state_from_chans(peer_chans);
9205 peer_state.latest_features = Readable::read(reader)?;
9206 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
9209 let event_count: u64 = Readable::read(reader)?;
9210 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
9211 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
9212 for _ in 0..event_count {
9213 match MaybeReadable::read(reader)? {
9214 Some(event) => pending_events_read.push_back((event, None)),
9219 let background_event_count: u64 = Readable::read(reader)?;
9220 for _ in 0..background_event_count {
9221 match <u8 as Readable>::read(reader)? {
9223 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
9224 // however we really don't (and never did) need them - we regenerate all
9225 // on-startup monitor updates.
9226 let _: OutPoint = Readable::read(reader)?;
9227 let _: ChannelMonitorUpdate = Readable::read(reader)?;
9229 _ => return Err(DecodeError::InvalidValue),
9233 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
9234 let highest_seen_timestamp: u32 = Readable::read(reader)?;
9236 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
9237 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
9238 for _ in 0..pending_inbound_payment_count {
9239 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
9240 return Err(DecodeError::InvalidValue);
9244 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
9245 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
9246 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
9247 for _ in 0..pending_outbound_payments_count_compat {
9248 let session_priv = Readable::read(reader)?;
9249 let payment = PendingOutboundPayment::Legacy {
9250 session_privs: [session_priv].iter().cloned().collect()
9252 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
9253 return Err(DecodeError::InvalidValue)
9257 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
9258 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
9259 let mut pending_outbound_payments = None;
9260 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
9261 let mut received_network_pubkey: Option<PublicKey> = None;
9262 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
9263 let mut probing_cookie_secret: Option<[u8; 32]> = None;
9264 let mut claimable_htlc_purposes = None;
9265 let mut claimable_htlc_onion_fields = None;
9266 let mut pending_claiming_payments = Some(HashMap::new());
9267 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
9268 let mut events_override = None;
9269 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
9270 read_tlv_fields!(reader, {
9271 (1, pending_outbound_payments_no_retry, option),
9272 (2, pending_intercepted_htlcs, option),
9273 (3, pending_outbound_payments, option),
9274 (4, pending_claiming_payments, option),
9275 (5, received_network_pubkey, option),
9276 (6, monitor_update_blocked_actions_per_peer, option),
9277 (7, fake_scid_rand_bytes, option),
9278 (8, events_override, option),
9279 (9, claimable_htlc_purposes, optional_vec),
9280 (10, in_flight_monitor_updates, option),
9281 (11, probing_cookie_secret, option),
9282 (13, claimable_htlc_onion_fields, optional_vec),
9284 if fake_scid_rand_bytes.is_none() {
9285 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
9288 if probing_cookie_secret.is_none() {
9289 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
9292 if let Some(events) = events_override {
9293 pending_events_read = events;
9296 if !channel_closures.is_empty() {
9297 pending_events_read.append(&mut channel_closures);
9300 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
9301 pending_outbound_payments = Some(pending_outbound_payments_compat);
9302 } else if pending_outbound_payments.is_none() {
9303 let mut outbounds = HashMap::new();
9304 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
9305 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
9307 pending_outbound_payments = Some(outbounds);
9309 let pending_outbounds = OutboundPayments {
9310 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
9311 retry_lock: Mutex::new(())
9314 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
9315 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
9316 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
9317 // replayed, and for each monitor update we have to replay we have to ensure there's a
9318 // `ChannelMonitor` for it.
9320 // In order to do so we first walk all of our live channels (so that we can check their
9321 // state immediately after doing the update replays, when we have the `update_id`s
9322 // available) and then walk any remaining in-flight updates.
9324 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
9325 let mut pending_background_events = Vec::new();
9326 macro_rules! handle_in_flight_updates {
9327 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
9328 $monitor: expr, $peer_state: expr, $channel_info_log: expr
9330 let mut max_in_flight_update_id = 0;
9331 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
9332 for update in $chan_in_flight_upds.iter() {
9333 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
9334 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
9335 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
9336 pending_background_events.push(
9337 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9338 counterparty_node_id: $counterparty_node_id,
9339 funding_txo: $funding_txo,
9340 update: update.clone(),
9343 if $chan_in_flight_upds.is_empty() {
9344 // We had some updates to apply, but it turns out they had completed before we
9345 // were serialized, we just weren't notified of that. Thus, we may have to run
9346 // the completion actions for any monitor updates, but otherwise are done.
9347 pending_background_events.push(
9348 BackgroundEvent::MonitorUpdatesComplete {
9349 counterparty_node_id: $counterparty_node_id,
9350 channel_id: $funding_txo.to_channel_id(),
9353 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
9354 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
9355 return Err(DecodeError::InvalidValue);
9357 max_in_flight_update_id
9361 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
9362 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
9363 let peer_state = &mut *peer_state_lock;
9364 for phase in peer_state.channel_by_id.values() {
9365 if let ChannelPhase::Funded(chan) = phase {
9366 // Channels that were persisted have to be funded, otherwise they should have been
9368 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9369 let monitor = args.channel_monitors.get(&funding_txo)
9370 .expect("We already checked for monitor presence when loading channels");
9371 let mut max_in_flight_update_id = monitor.get_latest_update_id();
9372 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
9373 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
9374 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
9375 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
9376 funding_txo, monitor, peer_state, ""));
9379 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
9380 // If the channel is ahead of the monitor, return InvalidValue:
9381 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
9382 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
9383 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
9384 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
9385 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9386 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9387 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9388 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9389 return Err(DecodeError::InvalidValue);
9392 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9393 // created in this `channel_by_id` map.
9394 debug_assert!(false);
9395 return Err(DecodeError::InvalidValue);
9400 if let Some(in_flight_upds) = in_flight_monitor_updates {
9401 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
9402 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
9403 // Now that we've removed all the in-flight monitor updates for channels that are
9404 // still open, we need to replay any monitor updates that are for closed channels,
9405 // creating the neccessary peer_state entries as we go.
9406 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
9407 Mutex::new(peer_state_from_chans(HashMap::new()))
9409 let mut peer_state = peer_state_mutex.lock().unwrap();
9410 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
9411 funding_txo, monitor, peer_state, "closed ");
9413 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
9414 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
9415 &funding_txo.to_channel_id());
9416 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9417 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9418 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9419 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9420 return Err(DecodeError::InvalidValue);
9425 // Note that we have to do the above replays before we push new monitor updates.
9426 pending_background_events.append(&mut close_background_events);
9428 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
9429 // should ensure we try them again on the inbound edge. We put them here and do so after we
9430 // have a fully-constructed `ChannelManager` at the end.
9431 let mut pending_claims_to_replay = Vec::new();
9434 // If we're tracking pending payments, ensure we haven't lost any by looking at the
9435 // ChannelMonitor data for any channels for which we do not have authorative state
9436 // (i.e. those for which we just force-closed above or we otherwise don't have a
9437 // corresponding `Channel` at all).
9438 // This avoids several edge-cases where we would otherwise "forget" about pending
9439 // payments which are still in-flight via their on-chain state.
9440 // We only rebuild the pending payments map if we were most recently serialized by
9442 for (_, monitor) in args.channel_monitors.iter() {
9443 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
9444 if counterparty_opt.is_none() {
9445 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
9446 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
9447 if path.hops.is_empty() {
9448 log_error!(args.logger, "Got an empty path for a pending payment");
9449 return Err(DecodeError::InvalidValue);
9452 let path_amt = path.final_value_msat();
9453 let mut session_priv_bytes = [0; 32];
9454 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
9455 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
9456 hash_map::Entry::Occupied(mut entry) => {
9457 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
9458 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
9459 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
9461 hash_map::Entry::Vacant(entry) => {
9462 let path_fee = path.fee_msat();
9463 entry.insert(PendingOutboundPayment::Retryable {
9464 retry_strategy: None,
9465 attempts: PaymentAttempts::new(),
9466 payment_params: None,
9467 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
9468 payment_hash: htlc.payment_hash,
9469 payment_secret: None, // only used for retries, and we'll never retry on startup
9470 payment_metadata: None, // only used for retries, and we'll never retry on startup
9471 keysend_preimage: None, // only used for retries, and we'll never retry on startup
9472 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
9473 pending_amt_msat: path_amt,
9474 pending_fee_msat: Some(path_fee),
9475 total_msat: path_amt,
9476 starting_block_height: best_block_height,
9478 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
9479 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
9484 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
9486 HTLCSource::PreviousHopData(prev_hop_data) => {
9487 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
9488 info.prev_funding_outpoint == prev_hop_data.outpoint &&
9489 info.prev_htlc_id == prev_hop_data.htlc_id
9491 // The ChannelMonitor is now responsible for this HTLC's
9492 // failure/success and will let us know what its outcome is. If we
9493 // still have an entry for this HTLC in `forward_htlcs` or
9494 // `pending_intercepted_htlcs`, we were apparently not persisted after
9495 // the monitor was when forwarding the payment.
9496 forward_htlcs.retain(|_, forwards| {
9497 forwards.retain(|forward| {
9498 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
9499 if pending_forward_matches_htlc(&htlc_info) {
9500 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
9501 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9506 !forwards.is_empty()
9508 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
9509 if pending_forward_matches_htlc(&htlc_info) {
9510 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
9511 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9512 pending_events_read.retain(|(event, _)| {
9513 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
9514 intercepted_id != ev_id
9521 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
9522 if let Some(preimage) = preimage_opt {
9523 let pending_events = Mutex::new(pending_events_read);
9524 // Note that we set `from_onchain` to "false" here,
9525 // deliberately keeping the pending payment around forever.
9526 // Given it should only occur when we have a channel we're
9527 // force-closing for being stale that's okay.
9528 // The alternative would be to wipe the state when claiming,
9529 // generating a `PaymentPathSuccessful` event but regenerating
9530 // it and the `PaymentSent` on every restart until the
9531 // `ChannelMonitor` is removed.
9533 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9534 channel_funding_outpoint: monitor.get_funding_txo().0,
9535 counterparty_node_id: path.hops[0].pubkey,
9537 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
9538 path, false, compl_action, &pending_events, &args.logger);
9539 pending_events_read = pending_events.into_inner().unwrap();
9546 // Whether the downstream channel was closed or not, try to re-apply any payment
9547 // preimages from it which may be needed in upstream channels for forwarded
9549 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
9551 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
9552 if let HTLCSource::PreviousHopData(_) = htlc_source {
9553 if let Some(payment_preimage) = preimage_opt {
9554 Some((htlc_source, payment_preimage, htlc.amount_msat,
9555 // Check if `counterparty_opt.is_none()` to see if the
9556 // downstream chan is closed (because we don't have a
9557 // channel_id -> peer map entry).
9558 counterparty_opt.is_none(),
9559 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
9560 monitor.get_funding_txo().0))
9563 // If it was an outbound payment, we've handled it above - if a preimage
9564 // came in and we persisted the `ChannelManager` we either handled it and
9565 // are good to go or the channel force-closed - we don't have to handle the
9566 // channel still live case here.
9570 for tuple in outbound_claimed_htlcs_iter {
9571 pending_claims_to_replay.push(tuple);
9576 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
9577 // If we have pending HTLCs to forward, assume we either dropped a
9578 // `PendingHTLCsForwardable` or the user received it but never processed it as they
9579 // shut down before the timer hit. Either way, set the time_forwardable to a small
9580 // constant as enough time has likely passed that we should simply handle the forwards
9581 // now, or at least after the user gets a chance to reconnect to our peers.
9582 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
9583 time_forwardable: Duration::from_secs(2),
9587 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
9588 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
9590 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
9591 if let Some(purposes) = claimable_htlc_purposes {
9592 if purposes.len() != claimable_htlcs_list.len() {
9593 return Err(DecodeError::InvalidValue);
9595 if let Some(onion_fields) = claimable_htlc_onion_fields {
9596 if onion_fields.len() != claimable_htlcs_list.len() {
9597 return Err(DecodeError::InvalidValue);
9599 for (purpose, (onion, (payment_hash, htlcs))) in
9600 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
9602 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9603 purpose, htlcs, onion_fields: onion,
9605 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9608 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
9609 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9610 purpose, htlcs, onion_fields: None,
9612 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9616 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
9617 // include a `_legacy_hop_data` in the `OnionPayload`.
9618 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
9619 if htlcs.is_empty() {
9620 return Err(DecodeError::InvalidValue);
9622 let purpose = match &htlcs[0].onion_payload {
9623 OnionPayload::Invoice { _legacy_hop_data } => {
9624 if let Some(hop_data) = _legacy_hop_data {
9625 events::PaymentPurpose::InvoicePayment {
9626 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
9627 Some(inbound_payment) => inbound_payment.payment_preimage,
9628 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
9629 Ok((payment_preimage, _)) => payment_preimage,
9631 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
9632 return Err(DecodeError::InvalidValue);
9636 payment_secret: hop_data.payment_secret,
9638 } else { return Err(DecodeError::InvalidValue); }
9640 OnionPayload::Spontaneous(payment_preimage) =>
9641 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
9643 claimable_payments.insert(payment_hash, ClaimablePayment {
9644 purpose, htlcs, onion_fields: None,
9649 let mut secp_ctx = Secp256k1::new();
9650 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
9652 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
9654 Err(()) => return Err(DecodeError::InvalidValue)
9656 if let Some(network_pubkey) = received_network_pubkey {
9657 if network_pubkey != our_network_pubkey {
9658 log_error!(args.logger, "Key that was generated does not match the existing key.");
9659 return Err(DecodeError::InvalidValue);
9663 let mut outbound_scid_aliases = HashSet::new();
9664 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
9665 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9666 let peer_state = &mut *peer_state_lock;
9667 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
9668 if let ChannelPhase::Funded(chan) = phase {
9669 if chan.context.outbound_scid_alias() == 0 {
9670 let mut outbound_scid_alias;
9672 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
9673 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
9674 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
9676 chan.context.set_outbound_scid_alias(outbound_scid_alias);
9677 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
9678 // Note that in rare cases its possible to hit this while reading an older
9679 // channel if we just happened to pick a colliding outbound alias above.
9680 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9681 return Err(DecodeError::InvalidValue);
9683 if chan.context.is_usable() {
9684 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
9685 // Note that in rare cases its possible to hit this while reading an older
9686 // channel if we just happened to pick a colliding outbound alias above.
9687 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9688 return Err(DecodeError::InvalidValue);
9692 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9693 // created in this `channel_by_id` map.
9694 debug_assert!(false);
9695 return Err(DecodeError::InvalidValue);
9700 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
9702 for (_, monitor) in args.channel_monitors.iter() {
9703 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
9704 if let Some(payment) = claimable_payments.remove(&payment_hash) {
9705 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
9706 let mut claimable_amt_msat = 0;
9707 let mut receiver_node_id = Some(our_network_pubkey);
9708 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
9709 if phantom_shared_secret.is_some() {
9710 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
9711 .expect("Failed to get node_id for phantom node recipient");
9712 receiver_node_id = Some(phantom_pubkey)
9714 for claimable_htlc in &payment.htlcs {
9715 claimable_amt_msat += claimable_htlc.value;
9717 // Add a holding-cell claim of the payment to the Channel, which should be
9718 // applied ~immediately on peer reconnection. Because it won't generate a
9719 // new commitment transaction we can just provide the payment preimage to
9720 // the corresponding ChannelMonitor and nothing else.
9722 // We do so directly instead of via the normal ChannelMonitor update
9723 // procedure as the ChainMonitor hasn't yet been initialized, implying
9724 // we're not allowed to call it directly yet. Further, we do the update
9725 // without incrementing the ChannelMonitor update ID as there isn't any
9727 // If we were to generate a new ChannelMonitor update ID here and then
9728 // crash before the user finishes block connect we'd end up force-closing
9729 // this channel as well. On the flip side, there's no harm in restarting
9730 // without the new monitor persisted - we'll end up right back here on
9732 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
9733 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
9734 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
9735 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9736 let peer_state = &mut *peer_state_lock;
9737 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
9738 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
9741 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
9742 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
9745 pending_events_read.push_back((events::Event::PaymentClaimed {
9748 purpose: payment.purpose,
9749 amount_msat: claimable_amt_msat,
9750 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
9751 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
9757 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
9758 if let Some(peer_state) = per_peer_state.get(&node_id) {
9759 for (_, actions) in monitor_update_blocked_actions.iter() {
9760 for action in actions.iter() {
9761 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
9762 downstream_counterparty_and_funding_outpoint:
9763 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
9765 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
9766 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
9767 .entry(blocked_channel_outpoint.to_channel_id())
9768 .or_insert_with(Vec::new).push(blocking_action.clone());
9770 // If the channel we were blocking has closed, we don't need to
9771 // worry about it - the blocked monitor update should never have
9772 // been released from the `Channel` object so it can't have
9773 // completed, and if the channel closed there's no reason to bother
9779 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
9781 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
9782 return Err(DecodeError::InvalidValue);
9786 let channel_manager = ChannelManager {
9788 fee_estimator: bounded_fee_estimator,
9789 chain_monitor: args.chain_monitor,
9790 tx_broadcaster: args.tx_broadcaster,
9791 router: args.router,
9793 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
9795 inbound_payment_key: expanded_inbound_key,
9796 pending_inbound_payments: Mutex::new(pending_inbound_payments),
9797 pending_outbound_payments: pending_outbounds,
9798 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
9800 forward_htlcs: Mutex::new(forward_htlcs),
9801 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
9802 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
9803 id_to_peer: Mutex::new(id_to_peer),
9804 short_to_chan_info: FairRwLock::new(short_to_chan_info),
9805 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
9807 probing_cookie_secret: probing_cookie_secret.unwrap(),
9812 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
9814 per_peer_state: FairRwLock::new(per_peer_state),
9816 pending_events: Mutex::new(pending_events_read),
9817 pending_events_processor: AtomicBool::new(false),
9818 pending_background_events: Mutex::new(pending_background_events),
9819 total_consistency_lock: RwLock::new(()),
9820 background_events_processed_since_startup: AtomicBool::new(false),
9822 event_persist_notifier: Notifier::new(),
9823 needs_persist_flag: AtomicBool::new(false),
9825 entropy_source: args.entropy_source,
9826 node_signer: args.node_signer,
9827 signer_provider: args.signer_provider,
9829 logger: args.logger,
9830 default_configuration: args.default_config,
9833 for htlc_source in failed_htlcs.drain(..) {
9834 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
9835 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
9836 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
9837 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
9840 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
9841 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
9842 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
9843 // channel is closed we just assume that it probably came from an on-chain claim.
9844 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
9845 downstream_closed, downstream_node_id, downstream_funding);
9848 //TODO: Broadcast channel update for closed channels, but only after we've made a
9849 //connection or two.
9851 Ok((best_block_hash.clone(), channel_manager))
9857 use bitcoin::hashes::Hash;
9858 use bitcoin::hashes::sha256::Hash as Sha256;
9859 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
9860 use core::sync::atomic::Ordering;
9861 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
9862 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
9863 use crate::ln::ChannelId;
9864 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
9865 use crate::ln::functional_test_utils::*;
9866 use crate::ln::msgs::{self, ErrorAction};
9867 use crate::ln::msgs::ChannelMessageHandler;
9868 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
9869 use crate::util::errors::APIError;
9870 use crate::util::test_utils;
9871 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
9872 use crate::sign::EntropySource;
9875 fn test_notify_limits() {
9876 // Check that a few cases which don't require the persistence of a new ChannelManager,
9877 // indeed, do not cause the persistence of a new ChannelManager.
9878 let chanmon_cfgs = create_chanmon_cfgs(3);
9879 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
9880 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
9881 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
9883 // All nodes start with a persistable update pending as `create_network` connects each node
9884 // with all other nodes to make most tests simpler.
9885 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9886 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9887 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
9889 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
9891 // We check that the channel info nodes have doesn't change too early, even though we try
9892 // to connect messages with new values
9893 chan.0.contents.fee_base_msat *= 2;
9894 chan.1.contents.fee_base_msat *= 2;
9895 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
9896 &nodes[1].node.get_our_node_id()).pop().unwrap();
9897 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
9898 &nodes[0].node.get_our_node_id()).pop().unwrap();
9900 // The first two nodes (which opened a channel) should now require fresh persistence
9901 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9902 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9903 // ... but the last node should not.
9904 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
9905 // After persisting the first two nodes they should no longer need fresh persistence.
9906 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9907 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9909 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
9910 // about the channel.
9911 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
9912 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
9913 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
9915 // The nodes which are a party to the channel should also ignore messages from unrelated
9917 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
9918 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
9919 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
9920 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
9921 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9922 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9924 // At this point the channel info given by peers should still be the same.
9925 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
9926 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
9928 // An earlier version of handle_channel_update didn't check the directionality of the
9929 // update message and would always update the local fee info, even if our peer was
9930 // (spuriously) forwarding us our own channel_update.
9931 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
9932 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
9933 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
9935 // First deliver each peers' own message, checking that the node doesn't need to be
9936 // persisted and that its channel info remains the same.
9937 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
9938 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
9939 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9940 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9941 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
9942 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
9944 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
9945 // the channel info has updated.
9946 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
9947 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
9948 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9949 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9950 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
9951 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
9955 fn test_keysend_dup_hash_partial_mpp() {
9956 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
9958 let chanmon_cfgs = create_chanmon_cfgs(2);
9959 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9960 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9961 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9962 create_announced_chan_between_nodes(&nodes, 0, 1);
9964 // First, send a partial MPP payment.
9965 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
9966 let mut mpp_route = route.clone();
9967 mpp_route.paths.push(mpp_route.paths[0].clone());
9969 let payment_id = PaymentId([42; 32]);
9970 // Use the utility function send_payment_along_path to send the payment with MPP data which
9971 // indicates there are more HTLCs coming.
9972 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
9973 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
9974 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
9975 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
9976 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
9977 check_added_monitors!(nodes[0], 1);
9978 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9979 assert_eq!(events.len(), 1);
9980 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
9982 // Next, send a keysend payment with the same payment_hash and make sure it fails.
9983 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
9984 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
9985 check_added_monitors!(nodes[0], 1);
9986 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
9987 assert_eq!(events.len(), 1);
9988 let ev = events.drain(..).next().unwrap();
9989 let payment_event = SendEvent::from_event(ev);
9990 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
9991 check_added_monitors!(nodes[1], 0);
9992 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
9993 expect_pending_htlcs_forwardable!(nodes[1]);
9994 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
9995 check_added_monitors!(nodes[1], 1);
9996 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
9997 assert!(updates.update_add_htlcs.is_empty());
9998 assert!(updates.update_fulfill_htlcs.is_empty());
9999 assert_eq!(updates.update_fail_htlcs.len(), 1);
10000 assert!(updates.update_fail_malformed_htlcs.is_empty());
10001 assert!(updates.update_fee.is_none());
10002 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10003 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10004 expect_payment_failed!(nodes[0], our_payment_hash, true);
10006 // Send the second half of the original MPP payment.
10007 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
10008 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
10009 check_added_monitors!(nodes[0], 1);
10010 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10011 assert_eq!(events.len(), 1);
10012 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
10014 // Claim the full MPP payment. Note that we can't use a test utility like
10015 // claim_funds_along_route because the ordering of the messages causes the second half of the
10016 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
10017 // lightning messages manually.
10018 nodes[1].node.claim_funds(payment_preimage);
10019 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
10020 check_added_monitors!(nodes[1], 2);
10022 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10023 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
10024 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
10025 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
10026 check_added_monitors!(nodes[0], 1);
10027 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10028 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
10029 check_added_monitors!(nodes[1], 1);
10030 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10031 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
10032 check_added_monitors!(nodes[1], 1);
10033 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10034 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
10035 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
10036 check_added_monitors!(nodes[0], 1);
10037 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
10038 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
10039 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10040 check_added_monitors!(nodes[0], 1);
10041 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
10042 check_added_monitors!(nodes[1], 1);
10043 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
10044 check_added_monitors!(nodes[1], 1);
10045 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10046 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
10047 check_added_monitors!(nodes[0], 1);
10049 // Note that successful MPP payments will generate a single PaymentSent event upon the first
10050 // path's success and a PaymentPathSuccessful event for each path's success.
10051 let events = nodes[0].node.get_and_clear_pending_events();
10052 assert_eq!(events.len(), 2);
10054 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10055 assert_eq!(payment_id, *actual_payment_id);
10056 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10057 assert_eq!(route.paths[0], *path);
10059 _ => panic!("Unexpected event"),
10062 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10063 assert_eq!(payment_id, *actual_payment_id);
10064 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10065 assert_eq!(route.paths[0], *path);
10067 _ => panic!("Unexpected event"),
10072 fn test_keysend_dup_payment_hash() {
10073 do_test_keysend_dup_payment_hash(false);
10074 do_test_keysend_dup_payment_hash(true);
10077 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
10078 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
10079 // outbound regular payment fails as expected.
10080 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
10081 // fails as expected.
10082 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
10083 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
10084 // reject MPP keysend payments, since in this case where the payment has no payment
10085 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
10086 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
10087 // payment secrets and reject otherwise.
10088 let chanmon_cfgs = create_chanmon_cfgs(2);
10089 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10090 let mut mpp_keysend_cfg = test_default_channel_config();
10091 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
10092 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
10093 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10094 create_announced_chan_between_nodes(&nodes, 0, 1);
10095 let scorer = test_utils::TestScorer::new();
10096 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10098 // To start (1), send a regular payment but don't claim it.
10099 let expected_route = [&nodes[1]];
10100 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
10102 // Next, attempt a keysend payment and make sure it fails.
10103 let route_params = RouteParameters::from_payment_params_and_value(
10104 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
10105 TEST_FINAL_CLTV, false), 100_000);
10106 let route = find_route(
10107 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10108 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10110 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10111 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10112 check_added_monitors!(nodes[0], 1);
10113 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10114 assert_eq!(events.len(), 1);
10115 let ev = events.drain(..).next().unwrap();
10116 let payment_event = SendEvent::from_event(ev);
10117 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10118 check_added_monitors!(nodes[1], 0);
10119 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10120 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
10121 // fails), the second will process the resulting failure and fail the HTLC backward
10122 expect_pending_htlcs_forwardable!(nodes[1]);
10123 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10124 check_added_monitors!(nodes[1], 1);
10125 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10126 assert!(updates.update_add_htlcs.is_empty());
10127 assert!(updates.update_fulfill_htlcs.is_empty());
10128 assert_eq!(updates.update_fail_htlcs.len(), 1);
10129 assert!(updates.update_fail_malformed_htlcs.is_empty());
10130 assert!(updates.update_fee.is_none());
10131 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10132 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10133 expect_payment_failed!(nodes[0], payment_hash, true);
10135 // Finally, claim the original payment.
10136 claim_payment(&nodes[0], &expected_route, payment_preimage);
10138 // To start (2), send a keysend payment but don't claim it.
10139 let payment_preimage = PaymentPreimage([42; 32]);
10140 let route = find_route(
10141 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10142 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10144 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10145 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10146 check_added_monitors!(nodes[0], 1);
10147 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10148 assert_eq!(events.len(), 1);
10149 let event = events.pop().unwrap();
10150 let path = vec![&nodes[1]];
10151 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10153 // Next, attempt a regular payment and make sure it fails.
10154 let payment_secret = PaymentSecret([43; 32]);
10155 nodes[0].node.send_payment_with_route(&route, payment_hash,
10156 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
10157 check_added_monitors!(nodes[0], 1);
10158 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10159 assert_eq!(events.len(), 1);
10160 let ev = events.drain(..).next().unwrap();
10161 let payment_event = SendEvent::from_event(ev);
10162 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10163 check_added_monitors!(nodes[1], 0);
10164 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10165 expect_pending_htlcs_forwardable!(nodes[1]);
10166 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10167 check_added_monitors!(nodes[1], 1);
10168 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10169 assert!(updates.update_add_htlcs.is_empty());
10170 assert!(updates.update_fulfill_htlcs.is_empty());
10171 assert_eq!(updates.update_fail_htlcs.len(), 1);
10172 assert!(updates.update_fail_malformed_htlcs.is_empty());
10173 assert!(updates.update_fee.is_none());
10174 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10175 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10176 expect_payment_failed!(nodes[0], payment_hash, true);
10178 // Finally, succeed the keysend payment.
10179 claim_payment(&nodes[0], &expected_route, payment_preimage);
10181 // To start (3), send a keysend payment but don't claim it.
10182 let payment_id_1 = PaymentId([44; 32]);
10183 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10184 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
10185 check_added_monitors!(nodes[0], 1);
10186 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10187 assert_eq!(events.len(), 1);
10188 let event = events.pop().unwrap();
10189 let path = vec![&nodes[1]];
10190 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10192 // Next, attempt a keysend payment and make sure it fails.
10193 let route_params = RouteParameters::from_payment_params_and_value(
10194 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
10197 let route = find_route(
10198 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10199 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10201 let payment_id_2 = PaymentId([45; 32]);
10202 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10203 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
10204 check_added_monitors!(nodes[0], 1);
10205 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10206 assert_eq!(events.len(), 1);
10207 let ev = events.drain(..).next().unwrap();
10208 let payment_event = SendEvent::from_event(ev);
10209 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10210 check_added_monitors!(nodes[1], 0);
10211 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10212 expect_pending_htlcs_forwardable!(nodes[1]);
10213 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10214 check_added_monitors!(nodes[1], 1);
10215 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10216 assert!(updates.update_add_htlcs.is_empty());
10217 assert!(updates.update_fulfill_htlcs.is_empty());
10218 assert_eq!(updates.update_fail_htlcs.len(), 1);
10219 assert!(updates.update_fail_malformed_htlcs.is_empty());
10220 assert!(updates.update_fee.is_none());
10221 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10222 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10223 expect_payment_failed!(nodes[0], payment_hash, true);
10225 // Finally, claim the original payment.
10226 claim_payment(&nodes[0], &expected_route, payment_preimage);
10230 fn test_keysend_hash_mismatch() {
10231 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
10232 // preimage doesn't match the msg's payment hash.
10233 let chanmon_cfgs = create_chanmon_cfgs(2);
10234 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10235 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10236 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10238 let payer_pubkey = nodes[0].node.get_our_node_id();
10239 let payee_pubkey = nodes[1].node.get_our_node_id();
10241 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10242 let route_params = RouteParameters::from_payment_params_and_value(
10243 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10244 let network_graph = nodes[0].network_graph.clone();
10245 let first_hops = nodes[0].node.list_usable_channels();
10246 let scorer = test_utils::TestScorer::new();
10247 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10248 let route = find_route(
10249 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10250 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10253 let test_preimage = PaymentPreimage([42; 32]);
10254 let mismatch_payment_hash = PaymentHash([43; 32]);
10255 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
10256 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
10257 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
10258 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
10259 check_added_monitors!(nodes[0], 1);
10261 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10262 assert_eq!(updates.update_add_htlcs.len(), 1);
10263 assert!(updates.update_fulfill_htlcs.is_empty());
10264 assert!(updates.update_fail_htlcs.is_empty());
10265 assert!(updates.update_fail_malformed_htlcs.is_empty());
10266 assert!(updates.update_fee.is_none());
10267 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10269 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
10273 fn test_keysend_msg_with_secret_err() {
10274 // Test that we error as expected if we receive a keysend payment that includes a payment
10275 // secret when we don't support MPP keysend.
10276 let mut reject_mpp_keysend_cfg = test_default_channel_config();
10277 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
10278 let chanmon_cfgs = create_chanmon_cfgs(2);
10279 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10280 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
10281 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10283 let payer_pubkey = nodes[0].node.get_our_node_id();
10284 let payee_pubkey = nodes[1].node.get_our_node_id();
10286 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10287 let route_params = RouteParameters::from_payment_params_and_value(
10288 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10289 let network_graph = nodes[0].network_graph.clone();
10290 let first_hops = nodes[0].node.list_usable_channels();
10291 let scorer = test_utils::TestScorer::new();
10292 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10293 let route = find_route(
10294 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10295 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10298 let test_preimage = PaymentPreimage([42; 32]);
10299 let test_secret = PaymentSecret([43; 32]);
10300 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
10301 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
10302 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
10303 nodes[0].node.test_send_payment_internal(&route, payment_hash,
10304 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
10305 PaymentId(payment_hash.0), None, session_privs).unwrap();
10306 check_added_monitors!(nodes[0], 1);
10308 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10309 assert_eq!(updates.update_add_htlcs.len(), 1);
10310 assert!(updates.update_fulfill_htlcs.is_empty());
10311 assert!(updates.update_fail_htlcs.is_empty());
10312 assert!(updates.update_fail_malformed_htlcs.is_empty());
10313 assert!(updates.update_fee.is_none());
10314 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10316 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
10320 fn test_multi_hop_missing_secret() {
10321 let chanmon_cfgs = create_chanmon_cfgs(4);
10322 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
10323 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
10324 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
10326 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
10327 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
10328 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
10329 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
10331 // Marshall an MPP route.
10332 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
10333 let path = route.paths[0].clone();
10334 route.paths.push(path);
10335 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
10336 route.paths[0].hops[0].short_channel_id = chan_1_id;
10337 route.paths[0].hops[1].short_channel_id = chan_3_id;
10338 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
10339 route.paths[1].hops[0].short_channel_id = chan_2_id;
10340 route.paths[1].hops[1].short_channel_id = chan_4_id;
10342 match nodes[0].node.send_payment_with_route(&route, payment_hash,
10343 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
10345 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
10346 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
10348 _ => panic!("unexpected error")
10353 fn test_drop_disconnected_peers_when_removing_channels() {
10354 let chanmon_cfgs = create_chanmon_cfgs(2);
10355 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10356 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10357 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10359 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10361 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
10362 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10364 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
10365 check_closed_broadcast!(nodes[0], true);
10366 check_added_monitors!(nodes[0], 1);
10367 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
10370 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
10371 // disconnected and the channel between has been force closed.
10372 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
10373 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
10374 assert_eq!(nodes_0_per_peer_state.len(), 1);
10375 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
10378 nodes[0].node.timer_tick_occurred();
10381 // Assert that nodes[1] has now been removed.
10382 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
10387 fn bad_inbound_payment_hash() {
10388 // Add coverage for checking that a user-provided payment hash matches the payment secret.
10389 let chanmon_cfgs = create_chanmon_cfgs(2);
10390 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10391 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10392 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10394 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
10395 let payment_data = msgs::FinalOnionHopData {
10397 total_msat: 100_000,
10400 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
10401 // payment verification fails as expected.
10402 let mut bad_payment_hash = payment_hash.clone();
10403 bad_payment_hash.0[0] += 1;
10404 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
10405 Ok(_) => panic!("Unexpected ok"),
10407 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
10411 // Check that using the original payment hash succeeds.
10412 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
10416 fn test_id_to_peer_coverage() {
10417 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
10418 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
10419 // the channel is successfully closed.
10420 let chanmon_cfgs = create_chanmon_cfgs(2);
10421 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10422 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10423 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10425 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
10426 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10427 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
10428 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10429 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10431 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
10432 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
10434 // Ensure that the `id_to_peer` map is empty until either party has received the
10435 // funding transaction, and have the real `channel_id`.
10436 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10437 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10440 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
10442 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
10443 // as it has the funding transaction.
10444 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10445 assert_eq!(nodes_0_lock.len(), 1);
10446 assert!(nodes_0_lock.contains_key(&channel_id));
10449 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10451 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10453 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10455 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10456 assert_eq!(nodes_0_lock.len(), 1);
10457 assert!(nodes_0_lock.contains_key(&channel_id));
10459 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10462 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
10463 // as it has the funding transaction.
10464 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10465 assert_eq!(nodes_1_lock.len(), 1);
10466 assert!(nodes_1_lock.contains_key(&channel_id));
10468 check_added_monitors!(nodes[1], 1);
10469 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10470 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10471 check_added_monitors!(nodes[0], 1);
10472 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10473 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
10474 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
10475 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
10477 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
10478 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
10479 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
10480 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
10482 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
10483 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
10485 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
10486 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
10487 // fee for the closing transaction has been negotiated and the parties has the other
10488 // party's signature for the fee negotiated closing transaction.)
10489 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10490 assert_eq!(nodes_0_lock.len(), 1);
10491 assert!(nodes_0_lock.contains_key(&channel_id));
10495 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
10496 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
10497 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
10498 // kept in the `nodes[1]`'s `id_to_peer` map.
10499 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10500 assert_eq!(nodes_1_lock.len(), 1);
10501 assert!(nodes_1_lock.contains_key(&channel_id));
10504 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
10506 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
10507 // therefore has all it needs to fully close the channel (both signatures for the
10508 // closing transaction).
10509 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
10510 // fully closed by `nodes[0]`.
10511 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10513 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
10514 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
10515 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10516 assert_eq!(nodes_1_lock.len(), 1);
10517 assert!(nodes_1_lock.contains_key(&channel_id));
10520 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
10522 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
10524 // Assert that the channel has now been removed from both parties `id_to_peer` map once
10525 // they both have everything required to fully close the channel.
10526 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10528 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
10530 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
10531 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
10534 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10535 let expected_message = format!("Not connected to node: {}", expected_public_key);
10536 check_api_error_message(expected_message, res_err)
10539 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10540 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
10541 check_api_error_message(expected_message, res_err)
10544 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
10546 Err(APIError::APIMisuseError { err }) => {
10547 assert_eq!(err, expected_err_message);
10549 Err(APIError::ChannelUnavailable { err }) => {
10550 assert_eq!(err, expected_err_message);
10552 Ok(_) => panic!("Unexpected Ok"),
10553 Err(_) => panic!("Unexpected Error"),
10558 fn test_api_calls_with_unkown_counterparty_node() {
10559 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
10560 // expected if the `counterparty_node_id` is an unkown peer in the
10561 // `ChannelManager::per_peer_state` map.
10562 let chanmon_cfg = create_chanmon_cfgs(2);
10563 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10564 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10565 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10568 let channel_id = ChannelId::from_bytes([4; 32]);
10569 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
10570 let intercept_id = InterceptId([0; 32]);
10572 // Test the API functions.
10573 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
10575 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
10577 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
10579 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
10581 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
10583 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
10585 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
10589 fn test_connection_limiting() {
10590 // Test that we limit un-channel'd peers and un-funded channels properly.
10591 let chanmon_cfgs = create_chanmon_cfgs(2);
10592 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10593 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10594 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10596 // Note that create_network connects the nodes together for us
10598 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10599 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10601 let mut funding_tx = None;
10602 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10603 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10604 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10607 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10608 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
10609 funding_tx = Some(tx.clone());
10610 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
10611 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10613 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10614 check_added_monitors!(nodes[1], 1);
10615 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10617 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10619 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10620 check_added_monitors!(nodes[0], 1);
10621 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10623 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10626 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
10627 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10628 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10629 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10630 open_channel_msg.temporary_channel_id);
10632 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
10633 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
10635 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
10636 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
10637 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10638 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10639 peer_pks.push(random_pk);
10640 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10641 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10644 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10645 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10646 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10647 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10648 }, true).unwrap_err();
10650 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
10651 // them if we have too many un-channel'd peers.
10652 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10653 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
10654 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
10655 for ev in chan_closed_events {
10656 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
10658 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10659 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10661 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10662 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10663 }, true).unwrap_err();
10665 // but of course if the connection is outbound its allowed...
10666 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10667 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10668 }, false).unwrap();
10669 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10671 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
10672 // Even though we accept one more connection from new peers, we won't actually let them
10674 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
10675 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10676 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
10677 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
10678 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10680 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10681 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10682 open_channel_msg.temporary_channel_id);
10684 // Of course, however, outbound channels are always allowed
10685 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
10686 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
10688 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
10689 // "protected" and can connect again.
10690 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
10691 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10692 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10694 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
10696 // Further, because the first channel was funded, we can open another channel with
10698 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10699 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10703 fn test_outbound_chans_unlimited() {
10704 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
10705 let chanmon_cfgs = create_chanmon_cfgs(2);
10706 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10707 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10708 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10710 // Note that create_network connects the nodes together for us
10712 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10713 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10715 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10716 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10717 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10718 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10721 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
10723 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10724 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10725 open_channel_msg.temporary_channel_id);
10727 // but we can still open an outbound channel.
10728 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10729 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
10731 // but even with such an outbound channel, additional inbound channels will still fail.
10732 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10733 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10734 open_channel_msg.temporary_channel_id);
10738 fn test_0conf_limiting() {
10739 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10740 // flag set and (sometimes) accept channels as 0conf.
10741 let chanmon_cfgs = create_chanmon_cfgs(2);
10742 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10743 let mut settings = test_default_channel_config();
10744 settings.manually_accept_inbound_channels = true;
10745 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
10746 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10748 // Note that create_network connects the nodes together for us
10750 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10751 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10753 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
10754 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10755 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10756 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10757 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10758 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10761 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
10762 let events = nodes[1].node.get_and_clear_pending_events();
10764 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10765 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
10767 _ => panic!("Unexpected event"),
10769 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
10770 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10773 // If we try to accept a channel from another peer non-0conf it will fail.
10774 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10775 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10776 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10777 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10779 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10780 let events = nodes[1].node.get_and_clear_pending_events();
10782 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10783 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
10784 Err(APIError::APIMisuseError { err }) =>
10785 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
10789 _ => panic!("Unexpected event"),
10791 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10792 open_channel_msg.temporary_channel_id);
10794 // ...however if we accept the same channel 0conf it should work just fine.
10795 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10796 let events = nodes[1].node.get_and_clear_pending_events();
10798 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10799 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
10801 _ => panic!("Unexpected event"),
10803 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10807 fn reject_excessively_underpaying_htlcs() {
10808 let chanmon_cfg = create_chanmon_cfgs(1);
10809 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
10810 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
10811 let node = create_network(1, &node_cfg, &node_chanmgr);
10812 let sender_intended_amt_msat = 100;
10813 let extra_fee_msat = 10;
10814 let hop_data = msgs::InboundOnionPayload::Receive {
10816 outgoing_cltv_value: 42,
10817 payment_metadata: None,
10818 keysend_preimage: None,
10819 payment_data: Some(msgs::FinalOnionHopData {
10820 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
10822 custom_tlvs: Vec::new(),
10824 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
10825 // intended amount, we fail the payment.
10826 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
10827 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
10828 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
10830 assert_eq!(err_code, 19);
10831 } else { panic!(); }
10833 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
10834 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
10836 outgoing_cltv_value: 42,
10837 payment_metadata: None,
10838 keysend_preimage: None,
10839 payment_data: Some(msgs::FinalOnionHopData {
10840 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
10842 custom_tlvs: Vec::new(),
10844 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
10845 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
10849 fn test_inbound_anchors_manual_acceptance() {
10850 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10851 // flag set and (sometimes) accept channels as 0conf.
10852 let mut anchors_cfg = test_default_channel_config();
10853 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
10855 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
10856 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
10858 let chanmon_cfgs = create_chanmon_cfgs(3);
10859 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10860 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
10861 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
10862 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10864 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10865 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10867 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10868 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
10869 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
10870 match &msg_events[0] {
10871 MessageSendEvent::HandleError { node_id, action } => {
10872 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
10874 ErrorAction::SendErrorMessage { msg } =>
10875 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
10876 _ => panic!("Unexpected error action"),
10879 _ => panic!("Unexpected event"),
10882 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10883 let events = nodes[2].node.get_and_clear_pending_events();
10885 Event::OpenChannelRequest { temporary_channel_id, .. } =>
10886 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
10887 _ => panic!("Unexpected event"),
10889 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10893 fn test_anchors_zero_fee_htlc_tx_fallback() {
10894 // Tests that if both nodes support anchors, but the remote node does not want to accept
10895 // anchor channels at the moment, an error it sent to the local node such that it can retry
10896 // the channel without the anchors feature.
10897 let chanmon_cfgs = create_chanmon_cfgs(2);
10898 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10899 let mut anchors_config = test_default_channel_config();
10900 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
10901 anchors_config.manually_accept_inbound_channels = true;
10902 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
10903 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10905 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
10906 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10907 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
10909 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10910 let events = nodes[1].node.get_and_clear_pending_events();
10912 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10913 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
10915 _ => panic!("Unexpected event"),
10918 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
10919 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
10921 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10922 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
10924 // Since nodes[1] should not have accepted the channel, it should
10925 // not have generated any events.
10926 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
10930 fn test_update_channel_config() {
10931 let chanmon_cfg = create_chanmon_cfgs(2);
10932 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10933 let mut user_config = test_default_channel_config();
10934 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
10935 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10936 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
10937 let channel = &nodes[0].node.list_channels()[0];
10939 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
10940 let events = nodes[0].node.get_and_clear_pending_msg_events();
10941 assert_eq!(events.len(), 0);
10943 user_config.channel_config.forwarding_fee_base_msat += 10;
10944 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
10945 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
10946 let events = nodes[0].node.get_and_clear_pending_msg_events();
10947 assert_eq!(events.len(), 1);
10949 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10950 _ => panic!("expected BroadcastChannelUpdate event"),
10953 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
10954 let events = nodes[0].node.get_and_clear_pending_msg_events();
10955 assert_eq!(events.len(), 0);
10957 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
10958 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
10959 cltv_expiry_delta: Some(new_cltv_expiry_delta),
10960 ..Default::default()
10962 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
10963 let events = nodes[0].node.get_and_clear_pending_msg_events();
10964 assert_eq!(events.len(), 1);
10966 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10967 _ => panic!("expected BroadcastChannelUpdate event"),
10970 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
10971 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
10972 forwarding_fee_proportional_millionths: Some(new_fee),
10973 ..Default::default()
10975 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
10976 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
10977 let events = nodes[0].node.get_and_clear_pending_msg_events();
10978 assert_eq!(events.len(), 1);
10980 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10981 _ => panic!("expected BroadcastChannelUpdate event"),
10984 // If we provide a channel_id not associated with the peer, we should get an error and no updates
10985 // should be applied to ensure update atomicity as specified in the API docs.
10986 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
10987 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
10988 let new_fee = current_fee + 100;
10991 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
10992 forwarding_fee_proportional_millionths: Some(new_fee),
10993 ..Default::default()
10995 Err(APIError::ChannelUnavailable { err: _ }),
10998 // Check that the fee hasn't changed for the channel that exists.
10999 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
11000 let events = nodes[0].node.get_and_clear_pending_msg_events();
11001 assert_eq!(events.len(), 0);
11005 fn test_payment_display() {
11006 let payment_id = PaymentId([42; 32]);
11007 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11008 let payment_hash = PaymentHash([42; 32]);
11009 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11010 let payment_preimage = PaymentPreimage([42; 32]);
11011 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11017 use crate::chain::Listen;
11018 use crate::chain::chainmonitor::{ChainMonitor, Persist};
11019 use crate::sign::{KeysManager, InMemorySigner};
11020 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
11021 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
11022 use crate::ln::functional_test_utils::*;
11023 use crate::ln::msgs::{ChannelMessageHandler, Init};
11024 use crate::routing::gossip::NetworkGraph;
11025 use crate::routing::router::{PaymentParameters, RouteParameters};
11026 use crate::util::test_utils;
11027 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
11029 use bitcoin::hashes::Hash;
11030 use bitcoin::hashes::sha256::Hash as Sha256;
11031 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
11033 use crate::sync::{Arc, Mutex, RwLock};
11035 use criterion::Criterion;
11037 type Manager<'a, P> = ChannelManager<
11038 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
11039 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
11040 &'a test_utils::TestLogger, &'a P>,
11041 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
11042 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
11043 &'a test_utils::TestLogger>;
11045 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
11046 node: &'node_cfg Manager<'chan_mon_cfg, P>,
11048 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
11049 type CM = Manager<'chan_mon_cfg, P>;
11051 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
11053 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
11056 pub fn bench_sends(bench: &mut Criterion) {
11057 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
11060 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
11061 // Do a simple benchmark of sending a payment back and forth between two nodes.
11062 // Note that this is unrealistic as each payment send will require at least two fsync
11064 let network = bitcoin::Network::Testnet;
11065 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
11067 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
11068 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
11069 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
11070 let scorer = RwLock::new(test_utils::TestScorer::new());
11071 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
11073 let mut config: UserConfig = Default::default();
11074 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
11075 config.channel_handshake_config.minimum_depth = 1;
11077 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
11078 let seed_a = [1u8; 32];
11079 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
11080 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
11082 best_block: BestBlock::from_network(network),
11083 }, genesis_block.header.time);
11084 let node_a_holder = ANodeHolder { node: &node_a };
11086 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
11087 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
11088 let seed_b = [2u8; 32];
11089 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
11090 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
11092 best_block: BestBlock::from_network(network),
11093 }, genesis_block.header.time);
11094 let node_b_holder = ANodeHolder { node: &node_b };
11096 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
11097 features: node_b.init_features(), networks: None, remote_network_address: None
11099 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
11100 features: node_a.init_features(), networks: None, remote_network_address: None
11101 }, false).unwrap();
11102 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
11103 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
11104 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
11107 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
11108 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
11109 value: 8_000_000, script_pubkey: output_script,
11111 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
11112 } else { panic!(); }
11114 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
11115 let events_b = node_b.get_and_clear_pending_events();
11116 assert_eq!(events_b.len(), 1);
11117 match events_b[0] {
11118 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11119 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11121 _ => panic!("Unexpected event"),
11124 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
11125 let events_a = node_a.get_and_clear_pending_events();
11126 assert_eq!(events_a.len(), 1);
11127 match events_a[0] {
11128 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11129 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11131 _ => panic!("Unexpected event"),
11134 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
11136 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
11137 Listen::block_connected(&node_a, &block, 1);
11138 Listen::block_connected(&node_b, &block, 1);
11140 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
11141 let msg_events = node_a.get_and_clear_pending_msg_events();
11142 assert_eq!(msg_events.len(), 2);
11143 match msg_events[0] {
11144 MessageSendEvent::SendChannelReady { ref msg, .. } => {
11145 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
11146 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
11150 match msg_events[1] {
11151 MessageSendEvent::SendChannelUpdate { .. } => {},
11155 let events_a = node_a.get_and_clear_pending_events();
11156 assert_eq!(events_a.len(), 1);
11157 match events_a[0] {
11158 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11159 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11161 _ => panic!("Unexpected event"),
11164 let events_b = node_b.get_and_clear_pending_events();
11165 assert_eq!(events_b.len(), 1);
11166 match events_b[0] {
11167 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11168 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11170 _ => panic!("Unexpected event"),
11173 let mut payment_count: u64 = 0;
11174 macro_rules! send_payment {
11175 ($node_a: expr, $node_b: expr) => {
11176 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
11177 .with_bolt11_features($node_b.invoice_features()).unwrap();
11178 let mut payment_preimage = PaymentPreimage([0; 32]);
11179 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
11180 payment_count += 1;
11181 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
11182 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
11184 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
11185 PaymentId(payment_hash.0),
11186 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
11187 Retry::Attempts(0)).unwrap();
11188 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
11189 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
11190 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
11191 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
11192 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
11193 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
11194 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
11196 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
11197 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
11198 $node_b.claim_funds(payment_preimage);
11199 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
11201 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
11202 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
11203 assert_eq!(node_id, $node_a.get_our_node_id());
11204 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
11205 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
11207 _ => panic!("Failed to generate claim event"),
11210 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
11211 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
11212 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
11213 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
11215 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
11219 bench.bench_function(bench_name, |b| b.iter(|| {
11220 send_payment!(node_a, node_b);
11221 send_payment!(node_b, node_a);