1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
21 use bitcoin::blockdata::block::BlockHeader;
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
29 use bitcoin::hash_types::{BlockHash, Txid};
31 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
32 use bitcoin::secp256k1::Secp256k1;
33 use bitcoin::secp256k1::ecdh::SharedSecret;
34 use bitcoin::secp256k1;
37 use chain::{Confirm, ChannelMonitorUpdateErr, Watch, BestBlock};
38 use chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator};
39 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use chain::transaction::{OutPoint, TransactionData};
41 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
42 // construct one themselves.
43 use ln::{inbound_payment, PaymentHash, PaymentPreimage, PaymentSecret};
44 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus, UpdateFulfillCommitFetch};
45 use ln::features::{ChannelTypeFeatures, InitFeatures, NodeFeatures};
46 use routing::router::{PaymentParameters, Route, RouteHop, RoutePath, RouteParameters};
48 use ln::msgs::NetAddress;
50 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, MAX_VALUE_MSAT, OptionalField};
51 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner, Recipient};
52 use util::config::UserConfig;
53 use util::events::{EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
54 use util::{byte_utils, events};
55 use util::scid_utils::fake_scid;
56 use util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
57 use util::logger::{Level, Logger};
58 use util::errors::APIError;
63 use core::cell::RefCell;
65 use sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
66 use core::sync::atomic::{AtomicUsize, Ordering};
67 use core::time::Duration;
70 #[cfg(any(test, feature = "std"))]
71 use std::time::Instant;
72 use util::crypto::sign;
74 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
77 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
78 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
81 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
82 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
83 // before we forward it.
85 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
86 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
87 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
88 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
89 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
92 pub(super) enum PendingHTLCRouting {
94 onion_packet: msgs::OnionPacket,
95 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
98 payment_data: msgs::FinalOnionHopData,
99 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
100 phantom_shared_secret: Option<[u8; 32]>,
103 payment_preimage: PaymentPreimage,
104 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
108 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
109 pub(super) struct PendingHTLCInfo {
110 pub(super) routing: PendingHTLCRouting,
111 pub(super) incoming_shared_secret: [u8; 32],
112 payment_hash: PaymentHash,
113 pub(super) amt_to_forward: u64,
114 pub(super) outgoing_cltv_value: u32,
117 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
118 pub(super) enum HTLCFailureMsg {
119 Relay(msgs::UpdateFailHTLC),
120 Malformed(msgs::UpdateFailMalformedHTLC),
123 /// Stores whether we can't forward an HTLC or relevant forwarding info
124 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
125 pub(super) enum PendingHTLCStatus {
126 Forward(PendingHTLCInfo),
127 Fail(HTLCFailureMsg),
130 pub(super) enum HTLCForwardInfo {
132 forward_info: PendingHTLCInfo,
134 // These fields are produced in `forward_htlcs()` and consumed in
135 // `process_pending_htlc_forwards()` for constructing the
136 // `HTLCSource::PreviousHopData` for failed and forwarded
138 prev_short_channel_id: u64,
140 prev_funding_outpoint: OutPoint,
144 err_packet: msgs::OnionErrorPacket,
148 /// Tracks the inbound corresponding to an outbound HTLC
149 #[derive(Clone, Hash, PartialEq, Eq)]
150 pub(crate) struct HTLCPreviousHopData {
151 short_channel_id: u64,
153 incoming_packet_shared_secret: [u8; 32],
154 phantom_shared_secret: Option<[u8; 32]>,
156 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
157 // channel with a preimage provided by the forward channel.
162 /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
163 /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
164 /// are part of the same payment.
165 Invoice(msgs::FinalOnionHopData),
166 /// Contains the payer-provided preimage.
167 Spontaneous(PaymentPreimage),
170 struct ClaimableHTLC {
171 prev_hop: HTLCPreviousHopData,
174 onion_payload: OnionPayload,
178 /// A payment identifier used to uniquely identify a payment to LDK.
179 /// (C-not exported) as we just use [u8; 32] directly
180 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
181 pub struct PaymentId(pub [u8; 32]);
183 impl Writeable for PaymentId {
184 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
189 impl Readable for PaymentId {
190 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
191 let buf: [u8; 32] = Readable::read(r)?;
195 /// Tracks the inbound corresponding to an outbound HTLC
196 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
197 #[derive(Clone, PartialEq, Eq)]
198 pub(crate) enum HTLCSource {
199 PreviousHopData(HTLCPreviousHopData),
202 session_priv: SecretKey,
203 /// Technically we can recalculate this from the route, but we cache it here to avoid
204 /// doing a double-pass on route when we get a failure back
205 first_hop_htlc_msat: u64,
206 payment_id: PaymentId,
207 payment_secret: Option<PaymentSecret>,
208 payment_params: Option<PaymentParameters>,
211 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
212 impl core::hash::Hash for HTLCSource {
213 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
215 HTLCSource::PreviousHopData(prev_hop_data) => {
217 prev_hop_data.hash(hasher);
219 HTLCSource::OutboundRoute { path, session_priv, payment_id, payment_secret, first_hop_htlc_msat, payment_params } => {
222 session_priv[..].hash(hasher);
223 payment_id.hash(hasher);
224 payment_secret.hash(hasher);
225 first_hop_htlc_msat.hash(hasher);
226 payment_params.hash(hasher);
231 #[cfg(not(feature = "grind_signatures"))]
234 pub fn dummy() -> Self {
235 HTLCSource::OutboundRoute {
237 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
238 first_hop_htlc_msat: 0,
239 payment_id: PaymentId([2; 32]),
240 payment_secret: None,
241 payment_params: None,
246 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
247 pub(super) enum HTLCFailReason {
249 err: msgs::OnionErrorPacket,
257 struct ReceiveError {
263 /// Return value for claim_funds_from_hop
264 enum ClaimFundsFromHop {
266 MonitorUpdateFail(PublicKey, MsgHandleErrInternal, Option<u64>),
271 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
273 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
274 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
275 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
276 /// channel_state lock. We then return the set of things that need to be done outside the lock in
277 /// this struct and call handle_error!() on it.
279 struct MsgHandleErrInternal {
280 err: msgs::LightningError,
281 chan_id: Option<([u8; 32], u64)>, // If Some a channel of ours has been closed
282 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
284 impl MsgHandleErrInternal {
286 fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
288 err: LightningError {
290 action: msgs::ErrorAction::SendErrorMessage {
291 msg: msgs::ErrorMessage {
298 shutdown_finish: None,
302 fn ignore_no_close(err: String) -> Self {
304 err: LightningError {
306 action: msgs::ErrorAction::IgnoreError,
309 shutdown_finish: None,
313 fn from_no_close(err: msgs::LightningError) -> Self {
314 Self { err, chan_id: None, shutdown_finish: None }
317 fn from_finish_shutdown(err: String, channel_id: [u8; 32], user_channel_id: u64, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
319 err: LightningError {
321 action: msgs::ErrorAction::SendErrorMessage {
322 msg: msgs::ErrorMessage {
328 chan_id: Some((channel_id, user_channel_id)),
329 shutdown_finish: Some((shutdown_res, channel_update)),
333 fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
336 ChannelError::Warn(msg) => LightningError {
338 action: msgs::ErrorAction::SendWarningMessage {
339 msg: msgs::WarningMessage {
343 log_level: Level::Warn,
346 ChannelError::Ignore(msg) => LightningError {
348 action: msgs::ErrorAction::IgnoreError,
350 ChannelError::Close(msg) => LightningError {
352 action: msgs::ErrorAction::SendErrorMessage {
353 msg: msgs::ErrorMessage {
359 ChannelError::CloseDelayBroadcast(msg) => LightningError {
361 action: msgs::ErrorAction::SendErrorMessage {
362 msg: msgs::ErrorMessage {
370 shutdown_finish: None,
375 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
376 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
377 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
378 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
379 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
381 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
382 /// be sent in the order they appear in the return value, however sometimes the order needs to be
383 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
384 /// they were originally sent). In those cases, this enum is also returned.
385 #[derive(Clone, PartialEq)]
386 pub(super) enum RAACommitmentOrder {
387 /// Send the CommitmentUpdate messages first
389 /// Send the RevokeAndACK message first
393 // Note this is only exposed in cfg(test):
394 pub(super) struct ChannelHolder<Signer: Sign> {
395 pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
396 /// SCIDs (and outbound SCID aliases) to the real channel id. Outbound SCID aliases are added
397 /// here once the channel is available for normal use, with SCIDs being added once the funding
398 /// transaction is confirmed at the channel's required confirmation depth.
399 pub(super) short_to_id: HashMap<u64, [u8; 32]>,
400 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
402 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
403 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
404 /// and via the classic SCID.
406 /// Note that while this is held in the same mutex as the channels themselves, no consistency
407 /// guarantees are made about the existence of a channel with the short id here, nor the short
408 /// ids in the PendingHTLCInfo!
409 pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
410 /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
411 /// Note that while this is held in the same mutex as the channels themselves, no consistency
412 /// guarantees are made about the channels given here actually existing anymore by the time you
414 claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
415 /// Messages to send to peers - pushed to in the same lock that they are generated in (except
416 /// for broadcast messages, where ordering isn't as strict).
417 pub(super) pending_msg_events: Vec<MessageSendEvent>,
420 /// Events which we process internally but cannot be procsesed immediately at the generation site
421 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
422 /// quite some time lag.
423 enum BackgroundEvent {
424 /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
425 /// commitment transaction.
426 ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
429 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
430 /// the latest Init features we heard from the peer.
432 latest_features: InitFeatures,
435 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
436 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
438 /// For users who don't want to bother doing their own payment preimage storage, we also store that
441 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
442 /// and instead encoding it in the payment secret.
443 struct PendingInboundPayment {
444 /// The payment secret that the sender must use for us to accept this payment
445 payment_secret: PaymentSecret,
446 /// Time at which this HTLC expires - blocks with a header time above this value will result in
447 /// this payment being removed.
449 /// Arbitrary identifier the user specifies (or not)
450 user_payment_id: u64,
451 // Other required attributes of the payment, optionally enforced:
452 payment_preimage: Option<PaymentPreimage>,
453 min_value_msat: Option<u64>,
456 /// Stores the session_priv for each part of a payment that is still pending. For versions 0.0.102
457 /// and later, also stores information for retrying the payment.
458 pub(crate) enum PendingOutboundPayment {
460 session_privs: HashSet<[u8; 32]>,
463 session_privs: HashSet<[u8; 32]>,
464 payment_hash: PaymentHash,
465 payment_secret: Option<PaymentSecret>,
466 pending_amt_msat: u64,
467 /// Used to track the fee paid. Only present if the payment was serialized on 0.0.103+.
468 pending_fee_msat: Option<u64>,
469 /// The total payment amount across all paths, used to verify that a retry is not overpaying.
471 /// Our best known block height at the time this payment was initiated.
472 starting_block_height: u32,
474 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
475 /// been resolved. This ensures we don't look up pending payments in ChannelMonitors on restart
476 /// and add a pending payment that was already fulfilled.
478 session_privs: HashSet<[u8; 32]>,
479 payment_hash: Option<PaymentHash>,
481 /// When a payer gives up trying to retry a payment, they inform us, letting us generate a
482 /// `PaymentFailed` event when all HTLCs have irrevocably failed. This avoids a number of race
483 /// conditions in MPP-aware payment retriers (1), where the possibility of multiple
484 /// `PaymentPathFailed` events with `all_paths_failed` can be pending at once, confusing a
485 /// downstream event handler as to when a payment has actually failed.
487 /// (1) https://github.com/lightningdevkit/rust-lightning/issues/1164
489 session_privs: HashSet<[u8; 32]>,
490 payment_hash: PaymentHash,
494 impl PendingOutboundPayment {
495 fn is_retryable(&self) -> bool {
497 PendingOutboundPayment::Retryable { .. } => true,
501 fn is_fulfilled(&self) -> bool {
503 PendingOutboundPayment::Fulfilled { .. } => true,
507 fn abandoned(&self) -> bool {
509 PendingOutboundPayment::Abandoned { .. } => true,
513 fn get_pending_fee_msat(&self) -> Option<u64> {
515 PendingOutboundPayment::Retryable { pending_fee_msat, .. } => pending_fee_msat.clone(),
520 fn payment_hash(&self) -> Option<PaymentHash> {
522 PendingOutboundPayment::Legacy { .. } => None,
523 PendingOutboundPayment::Retryable { payment_hash, .. } => Some(*payment_hash),
524 PendingOutboundPayment::Fulfilled { payment_hash, .. } => *payment_hash,
525 PendingOutboundPayment::Abandoned { payment_hash, .. } => Some(*payment_hash),
529 fn mark_fulfilled(&mut self) {
530 let mut session_privs = HashSet::new();
531 core::mem::swap(&mut session_privs, match self {
532 PendingOutboundPayment::Legacy { session_privs } |
533 PendingOutboundPayment::Retryable { session_privs, .. } |
534 PendingOutboundPayment::Fulfilled { session_privs, .. } |
535 PendingOutboundPayment::Abandoned { session_privs, .. }
538 let payment_hash = self.payment_hash();
539 *self = PendingOutboundPayment::Fulfilled { session_privs, payment_hash };
542 fn mark_abandoned(&mut self) -> Result<(), ()> {
543 let mut session_privs = HashSet::new();
544 let our_payment_hash;
545 core::mem::swap(&mut session_privs, match self {
546 PendingOutboundPayment::Legacy { .. } |
547 PendingOutboundPayment::Fulfilled { .. } =>
549 PendingOutboundPayment::Retryable { session_privs, payment_hash, .. } |
550 PendingOutboundPayment::Abandoned { session_privs, payment_hash, .. } => {
551 our_payment_hash = *payment_hash;
555 *self = PendingOutboundPayment::Abandoned { session_privs, payment_hash: our_payment_hash };
559 /// panics if path is None and !self.is_fulfilled
560 fn remove(&mut self, session_priv: &[u8; 32], path: Option<&Vec<RouteHop>>) -> bool {
561 let remove_res = match self {
562 PendingOutboundPayment::Legacy { session_privs } |
563 PendingOutboundPayment::Retryable { session_privs, .. } |
564 PendingOutboundPayment::Fulfilled { session_privs, .. } |
565 PendingOutboundPayment::Abandoned { session_privs, .. } => {
566 session_privs.remove(session_priv)
570 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
571 let path = path.expect("Fulfilling a payment should always come with a path");
572 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
573 *pending_amt_msat -= path_last_hop.fee_msat;
574 if let Some(fee_msat) = pending_fee_msat.as_mut() {
575 *fee_msat -= path.get_path_fees();
582 fn insert(&mut self, session_priv: [u8; 32], path: &Vec<RouteHop>) -> bool {
583 let insert_res = match self {
584 PendingOutboundPayment::Legacy { session_privs } |
585 PendingOutboundPayment::Retryable { session_privs, .. } => {
586 session_privs.insert(session_priv)
588 PendingOutboundPayment::Fulfilled { .. } => false,
589 PendingOutboundPayment::Abandoned { .. } => false,
592 if let PendingOutboundPayment::Retryable { ref mut pending_amt_msat, ref mut pending_fee_msat, .. } = self {
593 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
594 *pending_amt_msat += path_last_hop.fee_msat;
595 if let Some(fee_msat) = pending_fee_msat.as_mut() {
596 *fee_msat += path.get_path_fees();
603 fn remaining_parts(&self) -> usize {
605 PendingOutboundPayment::Legacy { session_privs } |
606 PendingOutboundPayment::Retryable { session_privs, .. } |
607 PendingOutboundPayment::Fulfilled { session_privs, .. } |
608 PendingOutboundPayment::Abandoned { session_privs, .. } => {
615 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
616 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
617 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
618 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
619 /// issues such as overly long function definitions. Note that the ChannelManager can take any
620 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
621 /// concrete type of the KeysManager.
623 /// (C-not exported) as Arcs don't make sense in bindings
624 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
626 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
627 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
628 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
629 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
630 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
631 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
632 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
633 /// concrete type of the KeysManager.
635 /// (C-not exported) as Arcs don't make sense in bindings
636 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
638 /// Manager which keeps track of a number of channels and sends messages to the appropriate
639 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
641 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
642 /// to individual Channels.
644 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
645 /// all peers during write/read (though does not modify this instance, only the instance being
646 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
647 /// called funding_transaction_generated for outbound channels).
649 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
650 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
651 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
652 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
653 /// the serialization process). If the deserialized version is out-of-date compared to the
654 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
655 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
657 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
658 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
659 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
660 /// block_connected() to step towards your best block) upon deserialization before using the
663 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
664 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
665 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
666 /// offline for a full minute. In order to track this, you must call
667 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
669 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
670 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
671 /// essentially you should default to using a SimpleRefChannelManager, and use a
672 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
673 /// you're using lightning-net-tokio.
674 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
675 where M::Target: chain::Watch<Signer>,
676 T::Target: BroadcasterInterface,
677 K::Target: KeysInterface<Signer = Signer>,
678 F::Target: FeeEstimator,
681 default_configuration: UserConfig,
682 genesis_hash: BlockHash,
688 pub(super) best_block: RwLock<BestBlock>,
690 best_block: RwLock<BestBlock>,
691 secp_ctx: Secp256k1<secp256k1::All>,
693 #[cfg(any(test, feature = "_test_utils"))]
694 pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
695 #[cfg(not(any(test, feature = "_test_utils")))]
696 channel_state: Mutex<ChannelHolder<Signer>>,
698 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
699 /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
700 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
701 /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
702 /// Locked *after* channel_state.
703 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
705 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
706 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
707 /// (if the channel has been force-closed), however we track them here to prevent duplicative
708 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
709 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
710 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
711 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
712 /// after reloading from disk while replaying blocks against ChannelMonitors.
714 /// See `PendingOutboundPayment` documentation for more info.
716 /// Locked *after* channel_state.
717 pending_outbound_payments: Mutex<HashMap<PaymentId, PendingOutboundPayment>>,
719 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
720 /// and some closed channels which reached a usable state prior to being closed. This is used
721 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
722 /// active channel list on load.
723 outbound_scid_aliases: Mutex<HashSet<u64>>,
725 our_network_key: SecretKey,
726 our_network_pubkey: PublicKey,
728 inbound_payment_key: inbound_payment::ExpandedKey,
730 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
731 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
732 /// we encrypt the namespace identifier using these bytes.
734 /// [fake scids]: crate::util::scid_utils::fake_scid
735 fake_scid_rand_bytes: [u8; 32],
737 /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
738 /// value increases strictly since we don't assume access to a time source.
739 last_node_announcement_serial: AtomicUsize,
741 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
742 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
743 /// very far in the past, and can only ever be up to two hours in the future.
744 highest_seen_timestamp: AtomicUsize,
746 /// The bulk of our storage will eventually be here (channels and message queues and the like).
747 /// If we are connected to a peer we always at least have an entry here, even if no channels
748 /// are currently open with that peer.
749 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
750 /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
753 /// If also holding `channel_state` lock, must lock `channel_state` prior to `per_peer_state`.
754 per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
756 pending_events: Mutex<Vec<events::Event>>,
757 pending_background_events: Mutex<Vec<BackgroundEvent>>,
758 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
759 /// Essentially just when we're serializing ourselves out.
760 /// Taken first everywhere where we are making changes before any other locks.
761 /// When acquiring this lock in read mode, rather than acquiring it directly, call
762 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
763 /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
764 total_consistency_lock: RwLock<()>,
766 persistence_notifier: PersistenceNotifier,
773 /// Chain-related parameters used to construct a new `ChannelManager`.
775 /// Typically, the block-specific parameters are derived from the best block hash for the network,
776 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
777 /// are not needed when deserializing a previously constructed `ChannelManager`.
778 #[derive(Clone, Copy, PartialEq)]
779 pub struct ChainParameters {
780 /// The network for determining the `chain_hash` in Lightning messages.
781 pub network: Network,
783 /// The hash and height of the latest block successfully connected.
785 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
786 pub best_block: BestBlock,
789 #[derive(Copy, Clone, PartialEq)]
795 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
796 /// desirable to notify any listeners on `await_persistable_update_timeout`/
797 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
798 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
799 /// sending the aforementioned notification (since the lock being released indicates that the
800 /// updates are ready for persistence).
802 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
803 /// notify or not based on whether relevant changes have been made, providing a closure to
804 /// `optionally_notify` which returns a `NotifyOption`.
805 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
806 persistence_notifier: &'a PersistenceNotifier,
808 // We hold onto this result so the lock doesn't get released immediately.
809 _read_guard: RwLockReadGuard<'a, ()>,
812 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
813 fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
814 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
817 fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
818 let read_guard = lock.read().unwrap();
820 PersistenceNotifierGuard {
821 persistence_notifier: notifier,
822 should_persist: persist_check,
823 _read_guard: read_guard,
828 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
830 if (self.should_persist)() == NotifyOption::DoPersist {
831 self.persistence_notifier.notify();
836 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
837 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
839 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
841 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
842 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
843 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
844 /// the maximum required amount in lnd as of March 2021.
845 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
847 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
848 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
850 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
852 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
853 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
854 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
855 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
856 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
857 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
858 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
860 /// Minimum CLTV difference between the current block height and received inbound payments.
861 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
863 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
864 // any payments to succeed. Further, we don't want payments to fail if a block was found while
865 // a payment was being routed, so we add an extra block to be safe.
866 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
868 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
869 // ie that if the next-hop peer fails the HTLC within
870 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
871 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
872 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
873 // LATENCY_GRACE_PERIOD_BLOCKS.
876 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
878 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
879 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
882 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
884 /// The number of blocks before we consider an outbound payment for expiry if it doesn't have any
885 /// pending HTLCs in flight.
886 pub(crate) const PAYMENT_EXPIRY_BLOCKS: u32 = 3;
888 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
889 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
891 /// Information needed for constructing an invoice route hint for this channel.
892 #[derive(Clone, Debug, PartialEq)]
893 pub struct CounterpartyForwardingInfo {
894 /// Base routing fee in millisatoshis.
895 pub fee_base_msat: u32,
896 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
897 pub fee_proportional_millionths: u32,
898 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
899 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
900 /// `cltv_expiry_delta` for more details.
901 pub cltv_expiry_delta: u16,
904 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
905 /// to better separate parameters.
906 #[derive(Clone, Debug, PartialEq)]
907 pub struct ChannelCounterparty {
908 /// The node_id of our counterparty
909 pub node_id: PublicKey,
910 /// The Features the channel counterparty provided upon last connection.
911 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
912 /// many routing-relevant features are present in the init context.
913 pub features: InitFeatures,
914 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
915 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
916 /// claiming at least this value on chain.
918 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
920 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
921 pub unspendable_punishment_reserve: u64,
922 /// Information on the fees and requirements that the counterparty requires when forwarding
923 /// payments to us through this channel.
924 pub forwarding_info: Option<CounterpartyForwardingInfo>,
925 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
926 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
927 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
928 pub outbound_htlc_minimum_msat: Option<u64>,
929 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
930 pub outbound_htlc_maximum_msat: Option<u64>,
933 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
934 #[derive(Clone, Debug, PartialEq)]
935 pub struct ChannelDetails {
936 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
937 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
938 /// Note that this means this value is *not* persistent - it can change once during the
939 /// lifetime of the channel.
940 pub channel_id: [u8; 32],
941 /// Parameters which apply to our counterparty. See individual fields for more information.
942 pub counterparty: ChannelCounterparty,
943 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
944 /// our counterparty already.
946 /// Note that, if this has been set, `channel_id` will be equivalent to
947 /// `funding_txo.unwrap().to_channel_id()`.
948 pub funding_txo: Option<OutPoint>,
949 /// The features which this channel operates with. See individual features for more info.
951 /// `None` until negotiation completes and the channel type is finalized.
952 pub channel_type: Option<ChannelTypeFeatures>,
953 /// The position of the funding transaction in the chain. None if the funding transaction has
954 /// not yet been confirmed and the channel fully opened.
956 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
957 /// payments instead of this. See [`get_inbound_payment_scid`].
959 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
960 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
961 pub short_channel_id: Option<u64>,
962 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
963 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
964 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
965 /// when they see a payment to be routed to us.
967 /// Our counterparty may choose to rotate this value at any time, though will always recognize
968 /// previous values for inbound payment forwarding.
970 /// [`short_channel_id`]: Self::short_channel_id
971 pub inbound_scid_alias: Option<u64>,
972 /// The value, in satoshis, of this channel as appears in the funding output
973 pub channel_value_satoshis: u64,
974 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
975 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
976 /// this value on chain.
978 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
980 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
982 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
983 pub unspendable_punishment_reserve: Option<u64>,
984 /// The `user_channel_id` passed in to create_channel, or 0 if the channel was inbound.
985 pub user_channel_id: u64,
986 /// Our total balance. This is the amount we would get if we close the channel.
987 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
988 /// amount is not likely to be recoverable on close.
990 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
991 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
992 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
993 /// This does not consider any on-chain fees.
995 /// See also [`ChannelDetails::outbound_capacity_msat`]
996 pub balance_msat: u64,
997 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
998 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
999 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1000 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1002 /// See also [`ChannelDetails::balance_msat`]
1004 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1005 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1006 /// should be able to spend nearly this amount.
1007 pub outbound_capacity_msat: u64,
1008 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1009 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1010 /// available for inclusion in new inbound HTLCs).
1011 /// Note that there are some corner cases not fully handled here, so the actual available
1012 /// inbound capacity may be slightly higher than this.
1014 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1015 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1016 /// However, our counterparty should be able to spend nearly this amount.
1017 pub inbound_capacity_msat: u64,
1018 /// The number of required confirmations on the funding transaction before the funding will be
1019 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1020 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1021 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1022 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1024 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1026 /// [`is_outbound`]: ChannelDetails::is_outbound
1027 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1028 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1029 pub confirmations_required: Option<u32>,
1030 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1031 /// until we can claim our funds after we force-close the channel. During this time our
1032 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1033 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1034 /// time to claim our non-HTLC-encumbered funds.
1036 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1037 pub force_close_spend_delay: Option<u16>,
1038 /// True if the channel was initiated (and thus funded) by us.
1039 pub is_outbound: bool,
1040 /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
1041 /// channel is not currently being shut down. `funding_locked` message exchange implies the
1042 /// required confirmation count has been reached (and we were connected to the peer at some
1043 /// point after the funding transaction received enough confirmations). The required
1044 /// confirmation count is provided in [`confirmations_required`].
1046 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1047 pub is_funding_locked: bool,
1048 /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
1049 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1051 /// This is a strict superset of `is_funding_locked`.
1052 pub is_usable: bool,
1053 /// True if this channel is (or will be) publicly-announced.
1054 pub is_public: bool,
1055 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1056 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1057 pub inbound_htlc_minimum_msat: Option<u64>,
1058 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1059 pub inbound_htlc_maximum_msat: Option<u64>,
1062 impl ChannelDetails {
1063 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1064 /// This should be used for providing invoice hints or in any other context where our
1065 /// counterparty will forward a payment to us.
1067 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1068 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1069 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1070 self.inbound_scid_alias.or(self.short_channel_id)
1074 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
1075 /// Err() type describing which state the payment is in, see the description of individual enum
1076 /// states for more.
1077 #[derive(Clone, Debug)]
1078 pub enum PaymentSendFailure {
1079 /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
1080 /// send the payment at all. No channel state has been changed or messages sent to peers, and
1081 /// once you've changed the parameter at error, you can freely retry the payment in full.
1082 ParameterError(APIError),
1083 /// A parameter in a single path which was passed to send_payment was invalid, preventing us
1084 /// from attempting to send the payment at all. No channel state has been changed or messages
1085 /// sent to peers, and once you've changed the parameter at error, you can freely retry the
1086 /// payment in full.
1088 /// The results here are ordered the same as the paths in the route object which was passed to
1090 PathParameterError(Vec<Result<(), APIError>>),
1091 /// All paths which were attempted failed to send, with no channel state change taking place.
1092 /// You can freely retry the payment in full (though you probably want to do so over different
1093 /// paths than the ones selected).
1094 AllFailedRetrySafe(Vec<APIError>),
1095 /// Some paths which were attempted failed to send, though possibly not all. At least some
1096 /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
1097 /// in over-/re-payment.
1099 /// The results here are ordered the same as the paths in the route object which was passed to
1100 /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
1101 /// retried (though there is currently no API with which to do so).
1103 /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
1104 /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
1105 /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
1106 /// with the latest update_id.
1108 /// The errors themselves, in the same order as the route hops.
1109 results: Vec<Result<(), APIError>>,
1110 /// If some paths failed without irrevocably committing to the new HTLC(s), this will
1111 /// contain a [`RouteParameters`] object which can be used to calculate a new route that
1112 /// will pay all remaining unpaid balance.
1113 failed_paths_retry: Option<RouteParameters>,
1114 /// The payment id for the payment, which is now at least partially pending.
1115 payment_id: PaymentId,
1119 /// Route hints used in constructing invoices for [phantom node payents].
1121 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
1123 pub struct PhantomRouteHints {
1124 /// The list of channels to be included in the invoice route hints.
1125 pub channels: Vec<ChannelDetails>,
1126 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1128 pub phantom_scid: u64,
1129 /// The pubkey of the real backing node that would ultimately receive the payment.
1130 pub real_node_pubkey: PublicKey,
1133 macro_rules! handle_error {
1134 ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
1137 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish }) => {
1138 #[cfg(debug_assertions)]
1140 // In testing, ensure there are no deadlocks where the lock is already held upon
1141 // entering the macro.
1142 assert!($self.channel_state.try_lock().is_ok());
1143 assert!($self.pending_events.try_lock().is_ok());
1146 let mut msg_events = Vec::with_capacity(2);
1148 if let Some((shutdown_res, update_option)) = shutdown_finish {
1149 $self.finish_force_close_channel(shutdown_res);
1150 if let Some(update) = update_option {
1151 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1155 if let Some((channel_id, user_channel_id)) = chan_id {
1156 $self.pending_events.lock().unwrap().push(events::Event::ChannelClosed {
1157 channel_id, user_channel_id,
1158 reason: ClosureReason::ProcessingError { err: err.err.clone() }
1163 log_error!($self.logger, "{}", err.err);
1164 if let msgs::ErrorAction::IgnoreError = err.action {
1166 msg_events.push(events::MessageSendEvent::HandleError {
1167 node_id: $counterparty_node_id,
1168 action: err.action.clone()
1172 if !msg_events.is_empty() {
1173 $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
1176 // Return error in case higher-API need one
1183 macro_rules! update_maps_on_chan_removal {
1184 ($self: expr, $short_to_id: expr, $channel: expr) => {
1185 if let Some(short_id) = $channel.get_short_channel_id() {
1186 $short_to_id.remove(&short_id);
1188 // If the channel was never confirmed on-chain prior to its closure, remove the
1189 // outbound SCID alias we used for it from the collision-prevention set. While we
1190 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1191 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1192 // opening a million channels with us which are closed before we ever reach the funding
1194 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel.outbound_scid_alias());
1195 debug_assert!(alias_removed);
1197 $short_to_id.remove(&$channel.outbound_scid_alias());
1201 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1202 macro_rules! convert_chan_err {
1203 ($self: ident, $err: expr, $short_to_id: expr, $channel: expr, $channel_id: expr) => {
1205 ChannelError::Warn(msg) => {
1206 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), $channel_id.clone()))
1208 ChannelError::Ignore(msg) => {
1209 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $channel_id.clone()))
1211 ChannelError::Close(msg) => {
1212 log_error!($self.logger, "Closing channel {} due to close-required error: {}", log_bytes!($channel_id[..]), msg);
1213 update_maps_on_chan_removal!($self, $short_to_id, $channel);
1214 let shutdown_res = $channel.force_shutdown(true);
1215 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1216 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1218 ChannelError::CloseDelayBroadcast(msg) => {
1219 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($channel_id[..]), msg);
1220 update_maps_on_chan_removal!($self, $short_to_id, $channel);
1221 let shutdown_res = $channel.force_shutdown(false);
1222 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, $channel.get_user_id(),
1223 shutdown_res, $self.get_channel_update_for_broadcast(&$channel).ok()))
1229 macro_rules! break_chan_entry {
1230 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1234 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1236 $entry.remove_entry();
1244 macro_rules! try_chan_entry {
1245 ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
1249 let (drop, res) = convert_chan_err!($self, e, $channel_state.short_to_id, $entry.get_mut(), $entry.key());
1251 $entry.remove_entry();
1259 macro_rules! remove_channel {
1260 ($self: expr, $channel_state: expr, $entry: expr) => {
1262 let channel = $entry.remove_entry().1;
1263 update_maps_on_chan_removal!($self, $channel_state.short_to_id, channel);
1269 macro_rules! handle_monitor_err {
1270 ($self: ident, $err: expr, $short_to_id: expr, $chan: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr, $chan_id: expr) => {
1272 ChannelMonitorUpdateErr::PermanentFailure => {
1273 log_error!($self.logger, "Closing channel {} due to monitor update ChannelMonitorUpdateErr::PermanentFailure", log_bytes!($chan_id[..]));
1274 update_maps_on_chan_removal!($self, $short_to_id, $chan);
1275 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
1276 // chain in a confused state! We need to move them into the ChannelMonitor which
1277 // will be responsible for failing backwards once things confirm on-chain.
1278 // It's ok that we drop $failed_forwards here - at this point we'd rather they
1279 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
1280 // us bother trying to claim it just to forward on to another peer. If we're
1281 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
1282 // given up the preimage yet, so might as well just wait until the payment is
1283 // retried, avoiding the on-chain fees.
1284 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), *$chan_id, $chan.get_user_id(),
1285 $chan.force_shutdown(true), $self.get_channel_update_for_broadcast(&$chan).ok() ));
1288 ChannelMonitorUpdateErr::TemporaryFailure => {
1289 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards, {} fails, and {} fulfill finalizations",
1290 log_bytes!($chan_id[..]),
1291 if $resend_commitment && $resend_raa {
1292 match $action_type {
1293 RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
1294 RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
1296 } else if $resend_commitment { "commitment" }
1297 else if $resend_raa { "RAA" }
1299 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
1300 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len(),
1301 (&$failed_finalized_fulfills as &Vec<HTLCSource>).len());
1302 if !$resend_commitment {
1303 debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
1306 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
1308 $chan.monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills);
1309 (Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$chan_id)), false)
1313 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr, $failed_finalized_fulfills: expr) => { {
1314 let (res, drop) = handle_monitor_err!($self, $err, $channel_state.short_to_id, $entry.get_mut(), $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, $failed_finalized_fulfills, $entry.key());
1316 $entry.remove_entry();
1320 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, COMMITMENT_UPDATE_ONLY) => { {
1321 debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst);
1322 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, true, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1324 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $chan_id: expr, NO_UPDATE) => {
1325 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, false, false, Vec::new(), Vec::new(), Vec::new(), $chan_id)
1327 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1328 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new(), Vec::new())
1330 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1331 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails, Vec::new())
1335 macro_rules! return_monitor_err {
1336 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1337 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
1339 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
1340 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
1344 // Does not break in case of TemporaryFailure!
1345 macro_rules! maybe_break_monitor_err {
1346 ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
1347 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
1348 (e, ChannelMonitorUpdateErr::PermanentFailure) => {
1351 (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
1356 macro_rules! send_funding_locked {
1357 ($short_to_id: expr, $pending_msg_events: expr, $channel: expr, $funding_locked_msg: expr) => {
1358 $pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
1359 node_id: $channel.get_counterparty_node_id(),
1360 msg: $funding_locked_msg,
1362 // Note that we may send a funding locked multiple times for a channel if we reconnect, so
1363 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1364 let outbound_alias_insert = $short_to_id.insert($channel.outbound_scid_alias(), $channel.channel_id());
1365 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == $channel.channel_id(),
1366 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1367 if let Some(real_scid) = $channel.get_short_channel_id() {
1368 let scid_insert = $short_to_id.insert(real_scid, $channel.channel_id());
1369 assert!(scid_insert.is_none() || scid_insert.unwrap() == $channel.channel_id(),
1370 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1375 macro_rules! handle_chan_restoration_locked {
1376 ($self: ident, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
1377 $raa: expr, $commitment_update: expr, $order: expr, $chanmon_update: expr,
1378 $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr, $announcement_sigs: expr) => { {
1379 let mut htlc_forwards = None;
1381 let chanmon_update: Option<ChannelMonitorUpdate> = $chanmon_update; // Force type-checking to resolve
1382 let chanmon_update_is_none = chanmon_update.is_none();
1383 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
1385 let forwards: Vec<(PendingHTLCInfo, u64)> = $pending_forwards; // Force type-checking to resolve
1386 if !forwards.is_empty() {
1387 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
1388 $channel_entry.get().get_funding_txo().unwrap(), forwards));
1391 if chanmon_update.is_some() {
1392 // On reconnect, we, by definition, only resend a funding_locked if there have been
1393 // no commitment updates, so the only channel monitor update which could also be
1394 // associated with a funding_locked would be the funding_created/funding_signed
1395 // monitor update. That monitor update failing implies that we won't send
1396 // funding_locked until it's been updated, so we can't have a funding_locked and a
1397 // monitor update here (so we don't bother to handle it correctly below).
1398 assert!($funding_locked.is_none());
1399 // A channel monitor update makes no sense without either a funding_locked or a
1400 // commitment update to process after it. Since we can't have a funding_locked, we
1401 // only bother to handle the monitor-update + commitment_update case below.
1402 assert!($commitment_update.is_some());
1405 if let Some(msg) = $funding_locked {
1406 // Similar to the above, this implies that we're letting the funding_locked fly
1407 // before it should be allowed to.
1408 assert!(chanmon_update.is_none());
1409 send_funding_locked!($channel_state.short_to_id, $channel_state.pending_msg_events, $channel_entry.get(), msg);
1411 if let Some(msg) = $announcement_sigs {
1412 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
1413 node_id: counterparty_node_id,
1418 let funding_broadcastable: Option<Transaction> = $funding_broadcastable; // Force type-checking to resolve
1419 if let Some(monitor_update) = chanmon_update {
1420 // We only ever broadcast a funding transaction in response to a funding_signed
1421 // message and the resulting monitor update. Thus, on channel_reestablish
1422 // message handling we can't have a funding transaction to broadcast. When
1423 // processing a monitor update finishing resulting in a funding broadcast, we
1424 // cannot have a second monitor update, thus this case would indicate a bug.
1425 assert!(funding_broadcastable.is_none());
1426 // Given we were just reconnected or finished updating a channel monitor, the
1427 // only case where we can get a new ChannelMonitorUpdate would be if we also
1428 // have some commitment updates to send as well.
1429 assert!($commitment_update.is_some());
1430 if let Err(e) = $self.chain_monitor.update_channel($channel_entry.get().get_funding_txo().unwrap(), monitor_update) {
1431 // channel_reestablish doesn't guarantee the order it returns is sensical
1432 // for the messages it returns, but if we're setting what messages to
1433 // re-transmit on monitor update success, we need to make sure it is sane.
1434 let mut order = $order;
1436 order = RAACommitmentOrder::CommitmentFirst;
1438 break handle_monitor_err!($self, e, $channel_state, $channel_entry, order, $raa.is_some(), true);
1442 macro_rules! handle_cs { () => {
1443 if let Some(update) = $commitment_update {
1444 $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1445 node_id: counterparty_node_id,
1450 macro_rules! handle_raa { () => {
1451 if let Some(revoke_and_ack) = $raa {
1452 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
1453 node_id: counterparty_node_id,
1454 msg: revoke_and_ack,
1459 RAACommitmentOrder::CommitmentFirst => {
1463 RAACommitmentOrder::RevokeAndACKFirst => {
1468 if let Some(tx) = funding_broadcastable {
1469 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
1470 $self.tx_broadcaster.broadcast_transaction(&tx);
1475 if chanmon_update_is_none {
1476 // If there was no ChannelMonitorUpdate, we should never generate an Err in the res loop
1477 // above. Doing so would imply calling handle_err!() from channel_monitor_updated() which
1478 // should *never* end up calling back to `chain_monitor.update_channel()`.
1479 assert!(res.is_ok());
1482 (htlc_forwards, res, counterparty_node_id)
1486 macro_rules! post_handle_chan_restoration {
1487 ($self: ident, $locked_res: expr) => { {
1488 let (htlc_forwards, res, counterparty_node_id) = $locked_res;
1490 let _ = handle_error!($self, res, counterparty_node_id);
1492 if let Some(forwards) = htlc_forwards {
1493 $self.forward_htlcs(&mut [forwards][..]);
1498 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
1499 where M::Target: chain::Watch<Signer>,
1500 T::Target: BroadcasterInterface,
1501 K::Target: KeysInterface<Signer = Signer>,
1502 F::Target: FeeEstimator,
1505 /// Constructs a new ChannelManager to hold several channels and route between them.
1507 /// This is the main "logic hub" for all channel-related actions, and implements
1508 /// ChannelMessageHandler.
1510 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
1512 /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
1514 /// Users need to notify the new ChannelManager when a new block is connected or
1515 /// disconnected using its `block_connected` and `block_disconnected` methods, starting
1516 /// from after `params.latest_hash`.
1517 pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
1518 let mut secp_ctx = Secp256k1::new();
1519 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
1520 let inbound_pmt_key_material = keys_manager.get_inbound_payment_key_material();
1521 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
1523 default_configuration: config.clone(),
1524 genesis_hash: genesis_block(params.network).header.block_hash(),
1525 fee_estimator: fee_est,
1529 best_block: RwLock::new(params.best_block),
1531 channel_state: Mutex::new(ChannelHolder{
1532 by_id: HashMap::new(),
1533 short_to_id: HashMap::new(),
1534 forward_htlcs: HashMap::new(),
1535 claimable_htlcs: HashMap::new(),
1536 pending_msg_events: Vec::new(),
1538 outbound_scid_aliases: Mutex::new(HashSet::new()),
1539 pending_inbound_payments: Mutex::new(HashMap::new()),
1540 pending_outbound_payments: Mutex::new(HashMap::new()),
1542 our_network_key: keys_manager.get_node_secret(Recipient::Node).unwrap(),
1543 our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret(Recipient::Node).unwrap()),
1546 inbound_payment_key: expanded_inbound_key,
1547 fake_scid_rand_bytes: keys_manager.get_secure_random_bytes(),
1549 last_node_announcement_serial: AtomicUsize::new(0),
1550 highest_seen_timestamp: AtomicUsize::new(0),
1552 per_peer_state: RwLock::new(HashMap::new()),
1554 pending_events: Mutex::new(Vec::new()),
1555 pending_background_events: Mutex::new(Vec::new()),
1556 total_consistency_lock: RwLock::new(()),
1557 persistence_notifier: PersistenceNotifier::new(),
1565 /// Gets the current configuration applied to all new channels, as
1566 pub fn get_current_default_configuration(&self) -> &UserConfig {
1567 &self.default_configuration
1570 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
1571 let height = self.best_block.read().unwrap().height();
1572 let mut outbound_scid_alias = 0;
1575 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
1576 outbound_scid_alias += 1;
1578 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
1580 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
1584 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
1589 /// Creates a new outbound channel to the given remote node and with the given value.
1591 /// `user_channel_id` will be provided back as in
1592 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
1593 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to 0
1594 /// for inbound channels, so you may wish to avoid using 0 for `user_channel_id` here.
1595 /// `user_channel_id` has no meaning inside of LDK, it is simply copied to events and otherwise
1598 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
1599 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
1601 /// Note that we do not check if you are currently connected to the given peer. If no
1602 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
1603 /// the channel eventually being silently forgotten (dropped on reload).
1605 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
1606 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
1607 /// [`ChannelDetails::channel_id`] until after
1608 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
1609 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
1610 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
1612 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
1613 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
1614 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
1615 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u64, override_config: Option<UserConfig>) -> Result<[u8; 32], APIError> {
1616 if channel_value_satoshis < 1000 {
1617 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1621 let per_peer_state = self.per_peer_state.read().unwrap();
1622 match per_peer_state.get(&their_network_key) {
1623 Some(peer_state) => {
1624 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
1625 let peer_state = peer_state.lock().unwrap();
1626 let their_features = &peer_state.latest_features;
1627 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1628 match Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key,
1629 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
1630 self.best_block.read().unwrap().height(), outbound_scid_alias)
1634 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
1639 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", their_network_key) }),
1642 let res = channel.get_open_channel(self.genesis_hash.clone());
1644 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1645 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1646 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1648 let temporary_channel_id = channel.channel_id();
1649 let mut channel_state = self.channel_state.lock().unwrap();
1650 match channel_state.by_id.entry(temporary_channel_id) {
1651 hash_map::Entry::Occupied(_) => {
1653 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1655 panic!("RNG is bad???");
1658 hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1660 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1661 node_id: their_network_key,
1664 Ok(temporary_channel_id)
1667 fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1668 let mut res = Vec::new();
1670 let channel_state = self.channel_state.lock().unwrap();
1671 res.reserve(channel_state.by_id.len());
1672 for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1673 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1674 let balance_msat = channel.get_balance_msat();
1675 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1676 channel.get_holder_counterparty_selected_channel_reserve_satoshis();
1677 res.push(ChannelDetails {
1678 channel_id: (*channel_id).clone(),
1679 counterparty: ChannelCounterparty {
1680 node_id: channel.get_counterparty_node_id(),
1681 features: InitFeatures::empty(),
1682 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1683 forwarding_info: channel.counterparty_forwarding_info(),
1684 // Ensures that we have actually received the `htlc_minimum_msat` value
1685 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1686 // message (as they are always the first message from the counterparty).
1687 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1688 // default `0` value set by `Channel::new_outbound`.
1689 outbound_htlc_minimum_msat: if channel.have_received_message() {
1690 Some(channel.get_counterparty_htlc_minimum_msat()) } else { None },
1691 outbound_htlc_maximum_msat: channel.get_counterparty_htlc_maximum_msat(),
1693 funding_txo: channel.get_funding_txo(),
1694 // Note that accept_channel (or open_channel) is always the first message, so
1695 // `have_received_message` indicates that type negotiation has completed.
1696 channel_type: if channel.have_received_message() { Some(channel.get_channel_type().clone()) } else { None },
1697 short_channel_id: channel.get_short_channel_id(),
1698 inbound_scid_alias: channel.latest_inbound_scid_alias(),
1699 channel_value_satoshis: channel.get_value_satoshis(),
1700 unspendable_punishment_reserve: to_self_reserve_satoshis,
1702 inbound_capacity_msat,
1703 outbound_capacity_msat,
1704 user_channel_id: channel.get_user_id(),
1705 confirmations_required: channel.minimum_depth(),
1706 force_close_spend_delay: channel.get_counterparty_selected_contest_delay(),
1707 is_outbound: channel.is_outbound(),
1708 is_funding_locked: channel.is_usable(),
1709 is_usable: channel.is_live(),
1710 is_public: channel.should_announce(),
1711 inbound_htlc_minimum_msat: Some(channel.get_holder_htlc_minimum_msat()),
1712 inbound_htlc_maximum_msat: channel.get_holder_htlc_maximum_msat()
1716 let per_peer_state = self.per_peer_state.read().unwrap();
1717 for chan in res.iter_mut() {
1718 if let Some(peer_state) = per_peer_state.get(&chan.counterparty.node_id) {
1719 chan.counterparty.features = peer_state.lock().unwrap().latest_features.clone();
1725 /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1726 /// more information.
1727 pub fn list_channels(&self) -> Vec<ChannelDetails> {
1728 self.list_channels_with_filter(|_| true)
1731 /// Gets the list of usable channels, in random order. Useful as an argument to
1732 /// get_route to ensure non-announced channels are used.
1734 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1735 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1737 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1738 // Note we use is_live here instead of usable which leads to somewhat confused
1739 // internal/external nomenclature, but that's ok cause that's probably what the user
1740 // really wanted anyway.
1741 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1744 /// Helper function that issues the channel close events
1745 fn issue_channel_close_events(&self, channel: &Channel<Signer>, closure_reason: ClosureReason) {
1746 let mut pending_events_lock = self.pending_events.lock().unwrap();
1747 match channel.unbroadcasted_funding() {
1748 Some(transaction) => {
1749 pending_events_lock.push(events::Event::DiscardFunding { channel_id: channel.channel_id(), transaction })
1753 pending_events_lock.push(events::Event::ChannelClosed {
1754 channel_id: channel.channel_id(),
1755 user_channel_id: channel.get_user_id(),
1756 reason: closure_reason
1760 fn close_channel_internal(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: Option<u32>) -> Result<(), APIError> {
1761 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1763 let counterparty_node_id;
1764 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
1765 let result: Result<(), _> = loop {
1766 let mut channel_state_lock = self.channel_state.lock().unwrap();
1767 let channel_state = &mut *channel_state_lock;
1768 match channel_state.by_id.entry(channel_id.clone()) {
1769 hash_map::Entry::Occupied(mut chan_entry) => {
1770 counterparty_node_id = chan_entry.get().get_counterparty_node_id();
1771 let per_peer_state = self.per_peer_state.read().unwrap();
1772 let (shutdown_msg, monitor_update, htlcs) = match per_peer_state.get(&counterparty_node_id) {
1773 Some(peer_state) => {
1774 let peer_state = peer_state.lock().unwrap();
1775 let their_features = &peer_state.latest_features;
1776 chan_entry.get_mut().get_shutdown(&self.keys_manager, their_features, target_feerate_sats_per_1000_weight)?
1778 None => return Err(APIError::ChannelUnavailable { err: format!("Not connected to node: {}", counterparty_node_id) }),
1780 failed_htlcs = htlcs;
1782 // Update the monitor with the shutdown script if necessary.
1783 if let Some(monitor_update) = monitor_update {
1784 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
1785 let (result, is_permanent) =
1786 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
1788 remove_channel!(self, channel_state, chan_entry);
1794 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1795 node_id: counterparty_node_id,
1799 if chan_entry.get().is_shutdown() {
1800 let channel = remove_channel!(self, channel_state, chan_entry);
1801 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&channel) {
1802 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1806 self.issue_channel_close_events(&channel, ClosureReason::HolderForceClosed);
1810 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1814 for htlc_source in failed_htlcs.drain(..) {
1815 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1818 let _ = handle_error!(self, result, counterparty_node_id);
1822 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1823 /// will be accepted on the given channel, and after additional timeout/the closing of all
1824 /// pending HTLCs, the channel will be closed on chain.
1826 /// * If we are the channel initiator, we will pay between our [`Background`] and
1827 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1829 /// * If our counterparty is the channel initiator, we will require a channel closing
1830 /// transaction feerate of at least our [`Background`] feerate or the feerate which
1831 /// would appear on a force-closure transaction, whichever is lower. We will allow our
1832 /// counterparty to pay as much fee as they'd like, however.
1834 /// May generate a SendShutdown message event on success, which should be relayed.
1836 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1837 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1838 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1839 pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1840 self.close_channel_internal(channel_id, None)
1843 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1844 /// will be accepted on the given channel, and after additional timeout/the closing of all
1845 /// pending HTLCs, the channel will be closed on chain.
1847 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
1848 /// the channel being closed or not:
1849 /// * If we are the channel initiator, we will pay at least this feerate on the closing
1850 /// transaction. The upper-bound is set by
1851 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
1852 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
1853 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
1854 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
1855 /// will appear on a force-closure transaction, whichever is lower).
1857 /// May generate a SendShutdown message event on success, which should be relayed.
1859 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
1860 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
1861 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
1862 pub fn close_channel_with_target_feerate(&self, channel_id: &[u8; 32], target_feerate_sats_per_1000_weight: u32) -> Result<(), APIError> {
1863 self.close_channel_internal(channel_id, Some(target_feerate_sats_per_1000_weight))
1867 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1868 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1869 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
1870 for htlc_source in failed_htlcs.drain(..) {
1871 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1873 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1874 // There isn't anything we can do if we get an update failure - we're already
1875 // force-closing. The monitor update on the required in-memory copy should broadcast
1876 // the latest local state, which is the best we can do anyway. Thus, it is safe to
1877 // ignore the result here.
1878 let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1882 /// `peer_node_id` should be set when we receive a message from a peer, but not set when the
1883 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
1884 fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>, peer_msg: Option<&String>) -> Result<PublicKey, APIError> {
1886 let mut channel_state_lock = self.channel_state.lock().unwrap();
1887 let channel_state = &mut *channel_state_lock;
1888 if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1889 if let Some(node_id) = peer_node_id {
1890 if chan.get().get_counterparty_node_id() != *node_id {
1891 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1894 if peer_node_id.is_some() {
1895 if let Some(peer_msg) = peer_msg {
1896 self.issue_channel_close_events(chan.get(),ClosureReason::CounterpartyForceClosed { peer_msg: peer_msg.to_string() });
1899 self.issue_channel_close_events(chan.get(),ClosureReason::HolderForceClosed);
1901 remove_channel!(self, channel_state, chan)
1903 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1906 log_error!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1907 self.finish_force_close_channel(chan.force_shutdown(true));
1908 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
1909 let mut channel_state = self.channel_state.lock().unwrap();
1910 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1915 Ok(chan.get_counterparty_node_id())
1918 /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1919 /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1920 pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1921 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1922 match self.force_close_channel_with_peer(channel_id, None, None) {
1923 Ok(counterparty_node_id) => {
1924 self.channel_state.lock().unwrap().pending_msg_events.push(
1925 events::MessageSendEvent::HandleError {
1926 node_id: counterparty_node_id,
1927 action: msgs::ErrorAction::SendErrorMessage {
1928 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1938 /// Force close all channels, immediately broadcasting the latest local commitment transaction
1939 /// for each to the chain and rejecting new HTLCs on each.
1940 pub fn force_close_all_channels(&self) {
1941 for chan in self.list_channels() {
1942 let _ = self.force_close_channel(&chan.channel_id);
1946 fn construct_recv_pending_htlc_info(&self, hop_data: msgs::OnionHopData, shared_secret: [u8; 32],
1947 payment_hash: PaymentHash, amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>) -> Result<PendingHTLCInfo, ReceiveError>
1949 // final_incorrect_cltv_expiry
1950 if hop_data.outgoing_cltv_value != cltv_expiry {
1951 return Err(ReceiveError {
1952 msg: "Upstream node set CLTV to the wrong value",
1954 err_data: byte_utils::be32_to_array(cltv_expiry).to_vec()
1957 // final_expiry_too_soon
1958 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
1959 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
1960 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
1961 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
1962 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
1963 if (hop_data.outgoing_cltv_value as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1964 return Err(ReceiveError {
1966 err_data: Vec::new(),
1967 msg: "The final CLTV expiry is too soon to handle",
1970 if hop_data.amt_to_forward > amt_msat {
1971 return Err(ReceiveError {
1973 err_data: byte_utils::be64_to_array(amt_msat).to_vec(),
1974 msg: "Upstream node sent less than we were supposed to receive in payment",
1978 let routing = match hop_data.format {
1979 msgs::OnionHopDataFormat::Legacy { .. } => {
1980 return Err(ReceiveError {
1981 err_code: 0x4000|0x2000|3,
1982 err_data: Vec::new(),
1983 msg: "We require payment_secrets",
1986 msgs::OnionHopDataFormat::NonFinalNode { .. } => {
1987 return Err(ReceiveError {
1988 err_code: 0x4000|22,
1989 err_data: Vec::new(),
1990 msg: "Got non final data with an HMAC of 0",
1993 msgs::OnionHopDataFormat::FinalNode { payment_data, keysend_preimage } => {
1994 if payment_data.is_some() && keysend_preimage.is_some() {
1995 return Err(ReceiveError {
1996 err_code: 0x4000|22,
1997 err_data: Vec::new(),
1998 msg: "We don't support MPP keysend payments",
2000 } else if let Some(data) = payment_data {
2001 PendingHTLCRouting::Receive {
2003 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2004 phantom_shared_secret,
2006 } else if let Some(payment_preimage) = keysend_preimage {
2007 // We need to check that the sender knows the keysend preimage before processing this
2008 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2009 // could discover the final destination of X, by probing the adjacent nodes on the route
2010 // with a keysend payment of identical payment hash to X and observing the processing
2011 // time discrepancies due to a hash collision with X.
2012 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2013 if hashed_preimage != payment_hash {
2014 return Err(ReceiveError {
2015 err_code: 0x4000|22,
2016 err_data: Vec::new(),
2017 msg: "Payment preimage didn't match payment hash",
2021 PendingHTLCRouting::ReceiveKeysend {
2023 incoming_cltv_expiry: hop_data.outgoing_cltv_value,
2026 return Err(ReceiveError {
2027 err_code: 0x4000|0x2000|3,
2028 err_data: Vec::new(),
2029 msg: "We require payment_secrets",
2034 Ok(PendingHTLCInfo {
2037 incoming_shared_secret: shared_secret,
2038 amt_to_forward: amt_msat,
2039 outgoing_cltv_value: hop_data.outgoing_cltv_value,
2043 fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
2044 macro_rules! return_malformed_err {
2045 ($msg: expr, $err_code: expr) => {
2047 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2048 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2049 channel_id: msg.channel_id,
2050 htlc_id: msg.htlc_id,
2051 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2052 failure_code: $err_code,
2053 })), self.channel_state.lock().unwrap());
2058 if let Err(_) = msg.onion_routing_packet.public_key {
2059 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2062 let shared_secret = {
2063 let mut arr = [0; 32];
2064 arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
2068 if msg.onion_routing_packet.version != 0 {
2069 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2070 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2071 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2072 //receiving node would have to brute force to figure out which version was put in the
2073 //packet by the node that send us the message, in the case of hashing the hop_data, the
2074 //node knows the HMAC matched, so they already know what is there...
2075 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2078 let mut channel_state = None;
2079 macro_rules! return_err {
2080 ($msg: expr, $err_code: expr, $data: expr) => {
2082 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2083 if channel_state.is_none() {
2084 channel_state = Some(self.channel_state.lock().unwrap());
2086 return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2087 channel_id: msg.channel_id,
2088 htlc_id: msg.htlc_id,
2089 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
2090 })), channel_state.unwrap());
2095 let next_hop = match onion_utils::decode_next_hop(shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac, msg.payment_hash) {
2097 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2098 return_malformed_err!(err_msg, err_code);
2100 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2101 return_err!(err_msg, err_code, &[0; 0]);
2105 let pending_forward_info = match next_hop {
2106 onion_utils::Hop::Receive(next_hop_data) => {
2108 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash, msg.amount_msat, msg.cltv_expiry, None) {
2110 // Note that we could obviously respond immediately with an update_fulfill_htlc
2111 // message, however that would leak that we are the recipient of this payment, so
2112 // instead we stay symmetric with the forwarding case, only responding (after a
2113 // delay) once they've send us a commitment_signed!
2114 PendingHTLCStatus::Forward(info)
2116 Err(ReceiveError { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
2119 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
2120 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
2122 let blinding_factor = {
2123 let mut sha = Sha256::engine();
2124 sha.input(&new_pubkey.serialize()[..]);
2125 sha.input(&shared_secret);
2126 Sha256::from_engine(sha).into_inner()
2129 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
2131 } else { Ok(new_pubkey) };
2133 let outgoing_packet = msgs::OnionPacket {
2136 hop_data: new_packet_bytes,
2137 hmac: next_hop_hmac.clone(),
2140 let short_channel_id = match next_hop_data.format {
2141 msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
2142 msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
2143 msgs::OnionHopDataFormat::FinalNode { .. } => {
2144 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
2148 PendingHTLCStatus::Forward(PendingHTLCInfo {
2149 routing: PendingHTLCRouting::Forward {
2150 onion_packet: outgoing_packet,
2153 payment_hash: msg.payment_hash.clone(),
2154 incoming_shared_secret: shared_secret,
2155 amt_to_forward: next_hop_data.amt_to_forward,
2156 outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
2161 channel_state = Some(self.channel_state.lock().unwrap());
2162 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
2163 // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
2164 // with a short_channel_id of 0. This is important as various things later assume
2165 // short_channel_id is non-0 in any ::Forward.
2166 if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
2167 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
2168 if let Some((err, code, chan_update)) = loop {
2169 let forwarding_id_opt = match id_option {
2170 None => { // unknown_next_peer
2171 // Note that this is likely a timing oracle for detecting whether an scid is a
2173 if fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, *short_channel_id) {
2176 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
2179 Some(id) => Some(id.clone()),
2181 let (chan_update_opt, forwardee_cltv_expiry_delta) = if let Some(forwarding_id) = forwarding_id_opt {
2182 let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
2183 if !chan.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
2184 // Note that the behavior here should be identical to the above block - we
2185 // should NOT reveal the existence or non-existence of a private channel if
2186 // we don't allow forwards outbound over them.
2187 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
2189 if chan.get_channel_type().supports_scid_privacy() && *short_channel_id != chan.outbound_scid_alias() {
2190 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
2191 // "refuse to forward unless the SCID alias was used", so we pretend
2192 // we don't have the channel here.
2193 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
2195 let chan_update_opt = self.get_channel_update_for_onion(*short_channel_id, chan).ok();
2197 // Note that we could technically not return an error yet here and just hope
2198 // that the connection is reestablished or monitor updated by the time we get
2199 // around to doing the actual forward, but better to fail early if we can and
2200 // hopefully an attacker trying to path-trace payments cannot make this occur
2201 // on a small/per-node/per-channel scale.
2202 if !chan.is_live() { // channel_disabled
2203 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, chan_update_opt));
2205 if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
2206 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
2208 let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64)
2209 .and_then(|prop_fee| { (prop_fee / 1000000)
2210 .checked_add(chan.get_outbound_forwarding_fee_base_msat() as u64) });
2211 if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
2212 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, chan_update_opt));
2214 (chan_update_opt, chan.get_cltv_expiry_delta())
2215 } else { (None, MIN_CLTV_EXPIRY_DELTA) };
2217 if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + forwardee_cltv_expiry_delta as u64 { // incorrect_cltv_expiry
2218 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, chan_update_opt));
2220 let cur_height = self.best_block.read().unwrap().height() + 1;
2221 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
2222 // but we want to be robust wrt to counterparty packet sanitization (see
2223 // HTLC_FAIL_BACK_BUFFER rationale).
2224 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
2225 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
2227 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
2228 break Some(("CLTV expiry is too far in the future", 21, None));
2230 // If the HTLC expires ~now, don't bother trying to forward it to our
2231 // counterparty. They should fail it anyway, but we don't want to bother with
2232 // the round-trips or risk them deciding they definitely want the HTLC and
2233 // force-closing to ensure they get it if we're offline.
2234 // We previously had a much more aggressive check here which tried to ensure
2235 // our counterparty receives an HTLC which has *our* risk threshold met on it,
2236 // but there is no need to do that, and since we're a bit conservative with our
2237 // risk threshold it just results in failing to forward payments.
2238 if (*outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
2239 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
2245 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 8 + 2));
2246 if let Some(chan_update) = chan_update {
2247 if code == 0x1000 | 11 || code == 0x1000 | 12 {
2248 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
2250 else if code == 0x1000 | 13 {
2251 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
2253 else if code == 0x1000 | 20 {
2254 // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2255 0u16.write(&mut res).expect("Writes cannot fail");
2257 (chan_update.serialized_length() as u16).write(&mut res).expect("Writes cannot fail");
2258 chan_update.write(&mut res).expect("Writes cannot fail");
2260 return_err!(err, code, &res.0[..]);
2265 (pending_forward_info, channel_state.unwrap())
2268 /// Gets the current channel_update for the given channel. This first checks if the channel is
2269 /// public, and thus should be called whenever the result is going to be passed out in a
2270 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
2272 /// May be called with channel_state already locked!
2273 fn get_channel_update_for_broadcast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2274 if !chan.should_announce() {
2275 return Err(LightningError {
2276 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
2277 action: msgs::ErrorAction::IgnoreError
2280 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", log_bytes!(chan.channel_id()));
2281 self.get_channel_update_for_unicast(chan)
2284 /// Gets the current channel_update for the given channel. This does not check if the channel
2285 /// is public (only returning an Err if the channel does not yet have an assigned short_id),
2286 /// and thus MUST NOT be called unless the recipient of the resulting message has already
2287 /// provided evidence that they know about the existence of the channel.
2288 /// May be called with channel_state already locked!
2289 fn get_channel_update_for_unicast(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2290 log_trace!(self.logger, "Attempting to generate channel update for channel {}", log_bytes!(chan.channel_id()));
2291 let short_channel_id = match chan.get_short_channel_id() {
2292 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
2296 self.get_channel_update_for_onion(short_channel_id, chan)
2298 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
2299 log_trace!(self.logger, "Generating channel update for channel {}", log_bytes!(chan.channel_id()));
2300 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
2302 let unsigned = msgs::UnsignedChannelUpdate {
2303 chain_hash: self.genesis_hash,
2305 timestamp: chan.get_update_time_counter(),
2306 flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
2307 cltv_expiry_delta: chan.get_cltv_expiry_delta(),
2308 htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
2309 htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
2310 fee_base_msat: chan.get_outbound_forwarding_fee_base_msat(),
2311 fee_proportional_millionths: chan.get_fee_proportional_millionths(),
2312 excess_data: Vec::new(),
2315 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
2316 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
2318 Ok(msgs::ChannelUpdate {
2324 // Only public for testing, this should otherwise never be called direcly
2325 pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_params: &Option<PaymentParameters>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>) -> Result<(), APIError> {
2326 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
2327 let prng_seed = self.keys_manager.get_secure_random_bytes();
2328 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
2329 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
2331 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
2332 .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
2333 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height, keysend_preimage)?;
2334 if onion_utils::route_size_insane(&onion_payloads) {
2335 return Err(APIError::RouteError{err: "Route size too large considering onion data"});
2337 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
2339 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2341 let err: Result<(), _> = loop {
2342 let mut channel_lock = self.channel_state.lock().unwrap();
2344 let mut pending_outbounds = self.pending_outbound_payments.lock().unwrap();
2345 let payment_entry = pending_outbounds.entry(payment_id);
2346 if let hash_map::Entry::Occupied(payment) = &payment_entry {
2347 if !payment.get().is_retryable() {
2348 return Err(APIError::RouteError {
2349 err: "Payment already completed"
2354 let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
2355 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
2356 Some(id) => id.clone(),
2359 macro_rules! insert_outbound_payment {
2361 let payment = payment_entry.or_insert_with(|| PendingOutboundPayment::Retryable {
2362 session_privs: HashSet::new(),
2363 pending_amt_msat: 0,
2364 pending_fee_msat: Some(0),
2365 payment_hash: *payment_hash,
2366 payment_secret: *payment_secret,
2367 starting_block_height: self.best_block.read().unwrap().height(),
2368 total_msat: total_value,
2370 assert!(payment.insert(session_priv_bytes, path));
2374 let channel_state = &mut *channel_lock;
2375 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
2377 if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
2378 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
2380 if !chan.get().is_live() {
2381 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
2383 break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(
2384 htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
2386 session_priv: session_priv.clone(),
2387 first_hop_htlc_msat: htlc_msat,
2389 payment_secret: payment_secret.clone(),
2390 payment_params: payment_params.clone(),
2391 }, onion_packet, &self.logger),
2392 channel_state, chan)
2394 Some((update_add, commitment_signed, monitor_update)) => {
2395 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2396 maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
2397 // Note that MonitorUpdateFailed here indicates (per function docs)
2398 // that we will resend the commitment update once monitor updating
2399 // is restored. Therefore, we must return an error indicating that
2400 // it is unsafe to retry the payment wholesale, which we do in the
2401 // send_payment check for MonitorUpdateFailed, below.
2402 insert_outbound_payment!(); // Only do this after possibly break'ing on Perm failure above.
2403 return Err(APIError::MonitorUpdateFailed);
2405 insert_outbound_payment!();
2407 log_debug!(self.logger, "Sending payment along path resulted in a commitment_signed for channel {}", log_bytes!(chan.get().channel_id()));
2408 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2409 node_id: path.first().unwrap().pubkey,
2410 updates: msgs::CommitmentUpdate {
2411 update_add_htlcs: vec![update_add],
2412 update_fulfill_htlcs: Vec::new(),
2413 update_fail_htlcs: Vec::new(),
2414 update_fail_malformed_htlcs: Vec::new(),
2420 None => { insert_outbound_payment!(); },
2422 } else { unreachable!(); }
2426 match handle_error!(self, err, path.first().unwrap().pubkey) {
2427 Ok(_) => unreachable!(),
2429 Err(APIError::ChannelUnavailable { err: e.err })
2434 /// Sends a payment along a given route.
2436 /// Value parameters are provided via the last hop in route, see documentation for RouteHop
2437 /// fields for more info.
2439 /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
2440 /// payment), we don't do anything to stop you! We always try to ensure that if the provided
2441 /// next hop knows the preimage to payment_hash they can claim an additional amount as
2442 /// specified in the last hop in the route! Thus, you should probably do your own
2443 /// payment_preimage tracking (which you should already be doing as they represent "proof of
2444 /// payment") and prevent double-sends yourself.
2446 /// May generate SendHTLCs message(s) event on success, which should be relayed.
2448 /// Each path may have a different return value, and PaymentSendValue may return a Vec with
2449 /// each entry matching the corresponding-index entry in the route paths, see
2450 /// PaymentSendFailure for more info.
2452 /// In general, a path may raise:
2453 /// * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
2454 /// node public key) is specified.
2455 /// * APIError::ChannelUnavailable if the next-hop channel is not available for updates
2456 /// (including due to previous monitor update failure or new permanent monitor update
2458 /// * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
2459 /// relevant updates.
2461 /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
2462 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
2463 /// different route unless you intend to pay twice!
2465 /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
2466 /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
2467 /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
2468 /// must not contain multiple paths as multi-path payments require a recipient-provided
2470 /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
2471 /// bit set (either as required or as available). If multiple paths are present in the Route,
2472 /// we assume the invoice had the basic_mpp feature set.
2473 pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<PaymentId, PaymentSendFailure> {
2474 self.send_payment_internal(route, payment_hash, payment_secret, None, None, None)
2477 fn send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>, keysend_preimage: Option<PaymentPreimage>, payment_id: Option<PaymentId>, recv_value_msat: Option<u64>) -> Result<PaymentId, PaymentSendFailure> {
2478 if route.paths.len() < 1 {
2479 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
2481 if route.paths.len() > 10 {
2482 // This limit is completely arbitrary - there aren't any real fundamental path-count
2483 // limits. After we support retrying individual paths we should likely bump this, but
2484 // for now more than 10 paths likely carries too much one-path failure.
2485 return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
2487 if payment_secret.is_none() && route.paths.len() > 1 {
2488 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError{err: "Payment secret is required for multi-path payments".to_string()}));
2490 let mut total_value = 0;
2491 let our_node_id = self.get_our_node_id();
2492 let mut path_errs = Vec::with_capacity(route.paths.len());
2493 let payment_id = if let Some(id) = payment_id { id } else { PaymentId(self.keys_manager.get_secure_random_bytes()) };
2494 'path_check: for path in route.paths.iter() {
2495 if path.len() < 1 || path.len() > 20 {
2496 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
2497 continue 'path_check;
2499 for (idx, hop) in path.iter().enumerate() {
2500 if idx != path.len() - 1 && hop.pubkey == our_node_id {
2501 path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
2502 continue 'path_check;
2505 total_value += path.last().unwrap().fee_msat;
2506 path_errs.push(Ok(()));
2508 if path_errs.iter().any(|e| e.is_err()) {
2509 return Err(PaymentSendFailure::PathParameterError(path_errs));
2511 if let Some(amt_msat) = recv_value_msat {
2512 debug_assert!(amt_msat >= total_value);
2513 total_value = amt_msat;
2516 let cur_height = self.best_block.read().unwrap().height() + 1;
2517 let mut results = Vec::new();
2518 for path in route.paths.iter() {
2519 results.push(self.send_payment_along_path(&path, &route.payment_params, &payment_hash, payment_secret, total_value, cur_height, payment_id, &keysend_preimage));
2521 let mut has_ok = false;
2522 let mut has_err = false;
2523 let mut pending_amt_unsent = 0;
2524 let mut max_unsent_cltv_delta = 0;
2525 for (res, path) in results.iter().zip(route.paths.iter()) {
2526 if res.is_ok() { has_ok = true; }
2527 if res.is_err() { has_err = true; }
2528 if let &Err(APIError::MonitorUpdateFailed) = res {
2529 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
2533 } else if res.is_err() {
2534 pending_amt_unsent += path.last().unwrap().fee_msat;
2535 max_unsent_cltv_delta = cmp::max(max_unsent_cltv_delta, path.last().unwrap().cltv_expiry_delta);
2538 if has_err && has_ok {
2539 Err(PaymentSendFailure::PartialFailure {
2542 failed_paths_retry: if pending_amt_unsent != 0 {
2543 if let Some(payment_params) = &route.payment_params {
2544 Some(RouteParameters {
2545 payment_params: payment_params.clone(),
2546 final_value_msat: pending_amt_unsent,
2547 final_cltv_expiry_delta: max_unsent_cltv_delta,
2553 // If we failed to send any paths, we shouldn't have inserted the new PaymentId into
2554 // our `pending_outbound_payments` map at all.
2555 debug_assert!(self.pending_outbound_payments.lock().unwrap().get(&payment_id).is_none());
2556 Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
2562 /// Retries a payment along the given [`Route`].
2564 /// Errors returned are a superset of those returned from [`send_payment`], so see
2565 /// [`send_payment`] documentation for more details on errors. This method will also error if the
2566 /// retry amount puts the payment more than 10% over the payment's total amount, if the payment
2567 /// for the given `payment_id` cannot be found (likely due to timeout or success), or if
2568 /// further retries have been disabled with [`abandon_payment`].
2570 /// [`send_payment`]: [`ChannelManager::send_payment`]
2571 /// [`abandon_payment`]: [`ChannelManager::abandon_payment`]
2572 pub fn retry_payment(&self, route: &Route, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
2573 const RETRY_OVERFLOW_PERCENTAGE: u64 = 10;
2574 for path in route.paths.iter() {
2575 if path.len() == 0 {
2576 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2577 err: "length-0 path in route".to_string()
2582 let (total_msat, payment_hash, payment_secret) = {
2583 let outbounds = self.pending_outbound_payments.lock().unwrap();
2584 if let Some(payment) = outbounds.get(&payment_id) {
2586 PendingOutboundPayment::Retryable {
2587 total_msat, payment_hash, payment_secret, pending_amt_msat, ..
2589 let retry_amt_msat: u64 = route.paths.iter().map(|path| path.last().unwrap().fee_msat).sum();
2590 if retry_amt_msat + *pending_amt_msat > *total_msat * (100 + RETRY_OVERFLOW_PERCENTAGE) / 100 {
2591 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2592 err: format!("retry_amt_msat of {} will put pending_amt_msat (currently: {}) more than 10% over total_payment_amt_msat of {}", retry_amt_msat, pending_amt_msat, total_msat).to_string()
2595 (*total_msat, *payment_hash, *payment_secret)
2597 PendingOutboundPayment::Legacy { .. } => {
2598 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2599 err: "Unable to retry payments that were initially sent on LDK versions prior to 0.0.102".to_string()
2602 PendingOutboundPayment::Fulfilled { .. } => {
2603 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2604 err: "Payment already completed".to_owned()
2607 PendingOutboundPayment::Abandoned { .. } => {
2608 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2609 err: "Payment already abandoned (with some HTLCs still pending)".to_owned()
2614 return Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError {
2615 err: format!("Payment with ID {} not found", log_bytes!(payment_id.0)),
2619 return self.send_payment_internal(route, payment_hash, &payment_secret, None, Some(payment_id), Some(total_msat)).map(|_| ())
2622 /// Signals that no further retries for the given payment will occur.
2624 /// After this method returns, any future calls to [`retry_payment`] for the given `payment_id`
2625 /// will fail with [`PaymentSendFailure::ParameterError`]. If no such event has been generated,
2626 /// an [`Event::PaymentFailed`] event will be generated as soon as there are no remaining
2627 /// pending HTLCs for this payment.
2629 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
2630 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
2631 /// determine the ultimate status of a payment.
2633 /// [`retry_payment`]: Self::retry_payment
2634 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
2635 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2636 pub fn abandon_payment(&self, payment_id: PaymentId) {
2637 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2639 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
2640 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
2641 if let Ok(()) = payment.get_mut().mark_abandoned() {
2642 if payment.get().remaining_parts() == 0 {
2643 self.pending_events.lock().unwrap().push(events::Event::PaymentFailed {
2645 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
2653 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
2654 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
2655 /// the preimage, it must be a cryptographically secure random value that no intermediate node
2656 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
2657 /// never reach the recipient.
2659 /// See [`send_payment`] documentation for more details on the return value of this function.
2661 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
2662 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
2664 /// Note that `route` must have exactly one path.
2666 /// [`send_payment`]: Self::send_payment
2667 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
2668 let preimage = match payment_preimage {
2670 None => PaymentPreimage(self.keys_manager.get_secure_random_bytes()),
2672 let payment_hash = PaymentHash(Sha256::hash(&preimage.0).into_inner());
2673 match self.send_payment_internal(route, payment_hash, &None, Some(preimage), None, None) {
2674 Ok(payment_id) => Ok((payment_hash, payment_id)),
2679 /// Handles the generation of a funding transaction, optionally (for tests) with a function
2680 /// which checks the correctness of the funding transaction given the associated channel.
2681 fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
2682 (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
2684 let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
2686 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
2688 (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
2689 .map_err(|e| if let ChannelError::Close(msg) = e {
2690 MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.get_user_id(), chan.force_shutdown(true), None)
2691 } else { unreachable!(); })
2694 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
2696 match handle_error!(self, res, chan.get_counterparty_node_id()) {
2697 Ok(funding_msg) => {
2700 Err(_) => { return Err(APIError::ChannelUnavailable {
2701 err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
2706 let mut channel_state = self.channel_state.lock().unwrap();
2707 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
2708 node_id: chan.get_counterparty_node_id(),
2711 match channel_state.by_id.entry(chan.channel_id()) {
2712 hash_map::Entry::Occupied(_) => {
2713 panic!("Generated duplicate funding txid?");
2715 hash_map::Entry::Vacant(e) => {
2723 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
2724 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
2725 Ok(OutPoint { txid: tx.txid(), index: output_index })
2729 /// Call this upon creation of a funding transaction for the given channel.
2731 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
2732 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
2734 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
2735 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
2737 /// May panic if the output found in the funding transaction is duplicative with some other
2738 /// channel (note that this should be trivially prevented by using unique funding transaction
2739 /// keys per-channel).
2741 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
2742 /// counterparty's signature the funding transaction will automatically be broadcast via the
2743 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
2745 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
2746 /// not currently support replacing a funding transaction on an existing channel. Instead,
2747 /// create a new channel with a conflicting funding transaction.
2749 /// [`Event::FundingGenerationReady`]: crate::util::events::Event::FundingGenerationReady
2750 /// [`Event::ChannelClosed`]: crate::util::events::Event::ChannelClosed
2751 pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
2752 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2754 for inp in funding_transaction.input.iter() {
2755 if inp.witness.is_empty() {
2756 return Err(APIError::APIMisuseError {
2757 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
2761 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
2762 let mut output_index = None;
2763 let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
2764 for (idx, outp) in tx.output.iter().enumerate() {
2765 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
2766 if output_index.is_some() {
2767 return Err(APIError::APIMisuseError {
2768 err: "Multiple outputs matched the expected script and value".to_owned()
2771 if idx > u16::max_value() as usize {
2772 return Err(APIError::APIMisuseError {
2773 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
2776 output_index = Some(idx as u16);
2779 if output_index.is_none() {
2780 return Err(APIError::APIMisuseError {
2781 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
2784 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
2789 // Messages of up to 64KB should never end up more than half full with addresses, as that would
2790 // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
2791 // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
2793 const HALF_MESSAGE_IS_ADDRS: u32 = ::core::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
2796 // ...by failing to compile if the number of addresses that would be half of a message is
2797 // smaller than 500:
2798 const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
2800 /// Regenerates channel_announcements and generates a signed node_announcement from the given
2801 /// arguments, providing them in corresponding events via
2802 /// [`get_and_clear_pending_msg_events`], if at least one public channel has been confirmed
2803 /// on-chain. This effectively re-broadcasts all channel announcements and sends our node
2804 /// announcement to ensure that the lightning P2P network is aware of the channels we have and
2805 /// our network addresses.
2807 /// `rgb` is a node "color" and `alias` is a printable human-readable string to describe this
2808 /// node to humans. They carry no in-protocol meaning.
2810 /// `addresses` represent the set (possibly empty) of socket addresses on which this node
2811 /// accepts incoming connections. These will be included in the node_announcement, publicly
2812 /// tying these addresses together and to this node. If you wish to preserve user privacy,
2813 /// addresses should likely contain only Tor Onion addresses.
2815 /// Panics if `addresses` is absurdly large (more than 500).
2817 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
2818 pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
2819 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2821 if addresses.len() > 500 {
2822 panic!("More than half the message size was taken up by public addresses!");
2825 // While all existing nodes handle unsorted addresses just fine, the spec requires that
2826 // addresses be sorted for future compatibility.
2827 addresses.sort_by_key(|addr| addr.get_id());
2829 let announcement = msgs::UnsignedNodeAnnouncement {
2830 features: NodeFeatures::known(),
2831 timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
2832 node_id: self.get_our_node_id(),
2833 rgb, alias, addresses,
2834 excess_address_data: Vec::new(),
2835 excess_data: Vec::new(),
2837 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
2838 let node_announce_sig = sign(&self.secp_ctx, &msghash, &self.our_network_key);
2840 let mut channel_state_lock = self.channel_state.lock().unwrap();
2841 let channel_state = &mut *channel_state_lock;
2843 let mut announced_chans = false;
2844 for (_, chan) in channel_state.by_id.iter() {
2845 if let Some(msg) = chan.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height()) {
2846 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
2848 update_msg: match self.get_channel_update_for_broadcast(chan) {
2853 announced_chans = true;
2855 // If the channel is not public or has not yet reached funding_locked, check the
2856 // next channel. If we don't yet have any public channels, we'll skip the broadcast
2857 // below as peers may not accept it without channels on chain first.
2861 if announced_chans {
2862 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
2863 msg: msgs::NodeAnnouncement {
2864 signature: node_announce_sig,
2865 contents: announcement
2871 /// Processes HTLCs which are pending waiting on random forward delay.
2873 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
2874 /// Will likely generate further events.
2875 pub fn process_pending_htlc_forwards(&self) {
2876 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2878 let mut new_events = Vec::new();
2879 let mut failed_forwards = Vec::new();
2880 let mut phantom_receives: Vec<(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
2881 let mut handle_errors = Vec::new();
2883 let mut channel_state_lock = self.channel_state.lock().unwrap();
2884 let channel_state = &mut *channel_state_lock;
2886 for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
2887 if short_chan_id != 0 {
2888 let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
2889 Some(chan_id) => chan_id.clone(),
2891 for forward_info in pending_forwards.drain(..) {
2892 match forward_info {
2893 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2894 routing, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2895 prev_funding_outpoint } => {
2896 macro_rules! fail_forward {
2897 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
2899 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2900 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2901 short_channel_id: prev_short_channel_id,
2902 outpoint: prev_funding_outpoint,
2903 htlc_id: prev_htlc_id,
2904 incoming_packet_shared_secret: incoming_shared_secret,
2905 phantom_shared_secret: $phantom_ss,
2907 failed_forwards.push((htlc_source, payment_hash,
2908 HTLCFailReason::Reason { failure_code: $err_code, data: $err_data }
2914 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
2915 let phantom_secret_res = self.keys_manager.get_node_secret(Recipient::PhantomNode);
2916 if phantom_secret_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id) {
2917 let phantom_shared_secret = {
2918 let mut arr = [0; 32];
2919 arr.copy_from_slice(&SharedSecret::new(&onion_packet.public_key.unwrap(), &phantom_secret_res.unwrap())[..]);
2922 let next_hop = match onion_utils::decode_next_hop(phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac, payment_hash) {
2924 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2925 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
2926 // In this scenario, the phantom would have sent us an
2927 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
2928 // if it came from us (the second-to-last hop) but contains the sha256
2930 fail_forward!(err_msg, err_code, sha256_of_onion.to_vec(), None);
2932 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2933 fail_forward!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
2937 onion_utils::Hop::Receive(hop_data) => {
2938 match self.construct_recv_pending_htlc_info(hop_data, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value, Some(phantom_shared_secret)) {
2939 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, vec![(info, prev_htlc_id)])),
2940 Err(ReceiveError { err_code, err_data, msg }) => fail_forward!(msg, err_code, err_data, Some(phantom_shared_secret))
2946 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
2949 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
2952 HTLCForwardInfo::FailHTLC { .. } => {
2953 // Channel went away before we could fail it. This implies
2954 // the channel is now on chain and our counterparty is
2955 // trying to broadcast the HTLC-Timeout, but that's their
2956 // problem, not ours.
2963 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
2964 let mut add_htlc_msgs = Vec::new();
2965 let mut fail_htlc_msgs = Vec::new();
2966 for forward_info in pending_forwards.drain(..) {
2967 match forward_info {
2968 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2969 routing: PendingHTLCRouting::Forward {
2971 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
2972 prev_funding_outpoint } => {
2973 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, log_bytes!(payment_hash.0), short_chan_id);
2974 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
2975 short_channel_id: prev_short_channel_id,
2976 outpoint: prev_funding_outpoint,
2977 htlc_id: prev_htlc_id,
2978 incoming_packet_shared_secret: incoming_shared_secret,
2979 // Phantom payments are only PendingHTLCRouting::Receive.
2980 phantom_shared_secret: None,
2982 match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet, &self.logger) {
2984 if let ChannelError::Ignore(msg) = e {
2985 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
2987 panic!("Stated return value requirements in send_htlc() were not met");
2989 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan.get());
2990 failed_forwards.push((htlc_source, payment_hash,
2991 HTLCFailReason::Reason { failure_code, data }
2997 Some(msg) => { add_htlc_msgs.push(msg); },
2999 // Nothing to do here...we're waiting on a remote
3000 // revoke_and_ack before we can add anymore HTLCs. The Channel
3001 // will automatically handle building the update_add_htlc and
3002 // commitment_signed messages when we can.
3003 // TODO: Do some kind of timer to set the channel as !is_live()
3004 // as we don't really want others relying on us relaying through
3005 // this channel currently :/.
3011 HTLCForwardInfo::AddHTLC { .. } => {
3012 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
3014 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
3015 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
3016 match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet, &self.logger) {
3018 if let ChannelError::Ignore(msg) = e {
3019 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
3021 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
3023 // fail-backs are best-effort, we probably already have one
3024 // pending, and if not that's OK, if not, the channel is on
3025 // the chain and sending the HTLC-Timeout is their problem.
3028 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
3030 // Nothing to do here...we're waiting on a remote
3031 // revoke_and_ack before we can update the commitment
3032 // transaction. The Channel will automatically handle
3033 // building the update_fail_htlc and commitment_signed
3034 // messages when we can.
3035 // We don't need any kind of timer here as they should fail
3036 // the channel onto the chain if they can't get our
3037 // update_fail_htlc in time, it's not our problem.
3044 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
3045 let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
3048 // We surely failed send_commitment due to bad keys, in that case
3049 // close channel and then send error message to peer.
3050 let counterparty_node_id = chan.get().get_counterparty_node_id();
3051 let err: Result<(), _> = match e {
3052 ChannelError::Ignore(_) | ChannelError::Warn(_) => {
3053 panic!("Stated return value requirements in send_commitment() were not met");
3055 ChannelError::Close(msg) => {
3056 log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
3057 let mut channel = remove_channel!(self, channel_state, chan);
3058 // ChannelClosed event is generated by handle_error for us.
3059 Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel.channel_id(), channel.get_user_id(), channel.force_shutdown(true), self.get_channel_update_for_broadcast(&channel).ok()))
3061 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
3063 handle_errors.push((counterparty_node_id, err));
3067 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3068 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
3071 log_debug!(self.logger, "Forwarding HTLCs resulted in a commitment update with {} HTLCs added and {} HTLCs failed for channel {}",
3072 add_htlc_msgs.len(), fail_htlc_msgs.len(), log_bytes!(chan.get().channel_id()));
3073 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3074 node_id: chan.get().get_counterparty_node_id(),
3075 updates: msgs::CommitmentUpdate {
3076 update_add_htlcs: add_htlc_msgs,
3077 update_fulfill_htlcs: Vec::new(),
3078 update_fail_htlcs: fail_htlc_msgs,
3079 update_fail_malformed_htlcs: Vec::new(),
3081 commitment_signed: commitment_msg,
3089 for forward_info in pending_forwards.drain(..) {
3090 match forward_info {
3091 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
3092 routing, incoming_shared_secret, payment_hash, amt_to_forward, .. },
3093 prev_funding_outpoint } => {
3094 let (cltv_expiry, onion_payload, phantom_shared_secret) = match routing {
3095 PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry, phantom_shared_secret } =>
3096 (incoming_cltv_expiry, OnionPayload::Invoice(payment_data), phantom_shared_secret),
3097 PendingHTLCRouting::ReceiveKeysend { payment_preimage, incoming_cltv_expiry } =>
3098 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage), None),
3100 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
3103 let claimable_htlc = ClaimableHTLC {
3104 prev_hop: HTLCPreviousHopData {
3105 short_channel_id: prev_short_channel_id,
3106 outpoint: prev_funding_outpoint,
3107 htlc_id: prev_htlc_id,
3108 incoming_packet_shared_secret: incoming_shared_secret,
3109 phantom_shared_secret,
3111 value: amt_to_forward,
3117 macro_rules! fail_htlc {
3119 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
3120 htlc_msat_height_data.extend_from_slice(
3121 &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
3123 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
3124 short_channel_id: $htlc.prev_hop.short_channel_id,
3125 outpoint: prev_funding_outpoint,
3126 htlc_id: $htlc.prev_hop.htlc_id,
3127 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
3128 phantom_shared_secret,
3130 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
3135 macro_rules! check_total_value {
3136 ($payment_data_total_msat: expr, $payment_secret: expr, $payment_preimage: expr) => {{
3137 let mut payment_received_generated = false;
3138 let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
3139 .or_insert(Vec::new());
3140 if htlcs.len() == 1 {
3141 if let OnionPayload::Spontaneous(_) = htlcs[0].onion_payload {
3142 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash", log_bytes!(payment_hash.0));
3143 fail_htlc!(claimable_htlc);
3147 let mut total_value = claimable_htlc.value;
3148 for htlc in htlcs.iter() {
3149 total_value += htlc.value;
3150 match &htlc.onion_payload {
3151 OnionPayload::Invoice(htlc_payment_data) => {
3152 if htlc_payment_data.total_msat != $payment_data_total_msat {
3153 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
3154 log_bytes!(payment_hash.0), $payment_data_total_msat, htlc_payment_data.total_msat);
3155 total_value = msgs::MAX_VALUE_MSAT;
3157 if total_value >= msgs::MAX_VALUE_MSAT { break; }
3159 _ => unreachable!(),
3162 if total_value >= msgs::MAX_VALUE_MSAT || total_value > $payment_data_total_msat {
3163 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
3164 log_bytes!(payment_hash.0), total_value, $payment_data_total_msat);
3165 fail_htlc!(claimable_htlc);
3166 } else if total_value == $payment_data_total_msat {
3167 htlcs.push(claimable_htlc);
3168 new_events.push(events::Event::PaymentReceived {
3170 purpose: events::PaymentPurpose::InvoicePayment {
3171 payment_preimage: $payment_preimage,
3172 payment_secret: $payment_secret,
3176 payment_received_generated = true;
3178 // Nothing to do - we haven't reached the total
3179 // payment value yet, wait until we receive more
3181 htlcs.push(claimable_htlc);
3183 payment_received_generated
3187 // Check that the payment hash and secret are known. Note that we
3188 // MUST take care to handle the "unknown payment hash" and
3189 // "incorrect payment secret" cases here identically or we'd expose
3190 // that we are the ultimate recipient of the given payment hash.
3191 // Further, we must not expose whether we have any other HTLCs
3192 // associated with the same payment_hash pending or not.
3193 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3194 match payment_secrets.entry(payment_hash) {
3195 hash_map::Entry::Vacant(_) => {
3196 match claimable_htlc.onion_payload {
3197 OnionPayload::Invoice(ref payment_data) => {
3198 let payment_preimage = match inbound_payment::verify(payment_hash, payment_data.clone(), self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
3199 Ok(payment_preimage) => payment_preimage,
3201 fail_htlc!(claimable_htlc);
3205 let payment_data_total_msat = payment_data.total_msat;
3206 let payment_secret = payment_data.payment_secret.clone();
3207 check_total_value!(payment_data_total_msat, payment_secret, payment_preimage);
3209 OnionPayload::Spontaneous(preimage) => {
3210 match channel_state.claimable_htlcs.entry(payment_hash) {
3211 hash_map::Entry::Vacant(e) => {
3212 e.insert(vec![claimable_htlc]);
3213 new_events.push(events::Event::PaymentReceived {
3215 amt: amt_to_forward,
3216 purpose: events::PaymentPurpose::SpontaneousPayment(preimage),
3219 hash_map::Entry::Occupied(_) => {
3220 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} for a duplicative payment hash", log_bytes!(payment_hash.0));
3221 fail_htlc!(claimable_htlc);
3227 hash_map::Entry::Occupied(inbound_payment) => {
3229 if let OnionPayload::Invoice(ref data) = claimable_htlc.onion_payload {
3232 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", log_bytes!(payment_hash.0));
3233 fail_htlc!(claimable_htlc);
3236 if inbound_payment.get().payment_secret != payment_data.payment_secret {
3237 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
3238 fail_htlc!(claimable_htlc);
3239 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
3240 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
3241 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
3242 fail_htlc!(claimable_htlc);
3244 let payment_received_generated = check_total_value!(payment_data.total_msat, payment_data.payment_secret, inbound_payment.get().payment_preimage);
3245 if payment_received_generated {
3246 inbound_payment.remove_entry();
3252 HTLCForwardInfo::FailHTLC { .. } => {
3253 panic!("Got pending fail of our own HTLC");
3261 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
3262 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
3264 self.forward_htlcs(&mut phantom_receives);
3266 for (counterparty_node_id, err) in handle_errors.drain(..) {
3267 let _ = handle_error!(self, err, counterparty_node_id);
3270 if new_events.is_empty() { return }
3271 let mut events = self.pending_events.lock().unwrap();
3272 events.append(&mut new_events);
3275 /// Free the background events, generally called from timer_tick_occurred.
3277 /// Exposed for testing to allow us to process events quickly without generating accidental
3278 /// BroadcastChannelUpdate events in timer_tick_occurred.
3280 /// Expects the caller to have a total_consistency_lock read lock.
3281 fn process_background_events(&self) -> bool {
3282 let mut background_events = Vec::new();
3283 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
3284 if background_events.is_empty() {
3288 for event in background_events.drain(..) {
3290 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
3291 // The channel has already been closed, so no use bothering to care about the
3292 // monitor updating completing.
3293 let _ = self.chain_monitor.update_channel(funding_txo, update);
3300 #[cfg(any(test, feature = "_test_utils"))]
3301 /// Process background events, for functional testing
3302 pub fn test_process_background_events(&self) {
3303 self.process_background_events();
3306 fn update_channel_fee(&self, short_to_id: &mut HashMap<u64, [u8; 32]>, pending_msg_events: &mut Vec<events::MessageSendEvent>, chan_id: &[u8; 32], chan: &mut Channel<Signer>, new_feerate: u32) -> (bool, NotifyOption, Result<(), MsgHandleErrInternal>) {
3307 if !chan.is_outbound() { return (true, NotifyOption::SkipPersist, Ok(())); }
3308 // If the feerate has decreased by less than half, don't bother
3309 if new_feerate <= chan.get_feerate() && new_feerate * 2 > chan.get_feerate() {
3310 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
3311 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3312 return (true, NotifyOption::SkipPersist, Ok(()));
3314 if !chan.is_live() {
3315 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
3316 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3317 return (true, NotifyOption::SkipPersist, Ok(()));
3319 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
3320 log_bytes!(chan_id[..]), chan.get_feerate(), new_feerate);
3322 let mut retain_channel = true;
3323 let res = match chan.send_update_fee_and_commit(new_feerate, &self.logger) {
3326 let (drop, res) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3327 if drop { retain_channel = false; }
3331 let ret_err = match res {
3332 Ok(Some((update_fee, commitment_signed, monitor_update))) => {
3333 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
3334 let (res, drop) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, chan_id, COMMITMENT_UPDATE_ONLY);
3335 if drop { retain_channel = false; }
3338 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3339 node_id: chan.get_counterparty_node_id(),
3340 updates: msgs::CommitmentUpdate {
3341 update_add_htlcs: Vec::new(),
3342 update_fulfill_htlcs: Vec::new(),
3343 update_fail_htlcs: Vec::new(),
3344 update_fail_malformed_htlcs: Vec::new(),
3345 update_fee: Some(update_fee),
3355 (retain_channel, NotifyOption::DoPersist, ret_err)
3359 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
3360 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
3361 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
3362 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
3363 pub fn maybe_update_chan_fees(&self) {
3364 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3365 let mut should_persist = NotifyOption::SkipPersist;
3367 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3369 let mut handle_errors = Vec::new();
3371 let mut channel_state_lock = self.channel_state.lock().unwrap();
3372 let channel_state = &mut *channel_state_lock;
3373 let pending_msg_events = &mut channel_state.pending_msg_events;
3374 let short_to_id = &mut channel_state.short_to_id;
3375 channel_state.by_id.retain(|chan_id, chan| {
3376 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3377 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3379 handle_errors.push(err);
3389 /// Performs actions which should happen on startup and roughly once per minute thereafter.
3391 /// This currently includes:
3392 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
3393 /// * Broadcasting `ChannelUpdate` messages if we've been disconnected from our peer for more
3394 /// than a minute, informing the network that they should no longer attempt to route over
3397 /// Note that this may cause reentrancy through `chain::Watch::update_channel` calls or feerate
3398 /// estimate fetches.
3399 pub fn timer_tick_occurred(&self) {
3400 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
3401 let mut should_persist = NotifyOption::SkipPersist;
3402 if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
3404 let new_feerate = self.fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
3406 let mut handle_errors = Vec::new();
3407 let mut timed_out_mpp_htlcs = Vec::new();
3409 let mut channel_state_lock = self.channel_state.lock().unwrap();
3410 let channel_state = &mut *channel_state_lock;
3411 let pending_msg_events = &mut channel_state.pending_msg_events;
3412 let short_to_id = &mut channel_state.short_to_id;
3413 channel_state.by_id.retain(|chan_id, chan| {
3414 let counterparty_node_id = chan.get_counterparty_node_id();
3415 let (retain_channel, chan_needs_persist, err) = self.update_channel_fee(short_to_id, pending_msg_events, chan_id, chan, new_feerate);
3416 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
3418 handle_errors.push((err, counterparty_node_id));
3420 if !retain_channel { return false; }
3422 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
3423 let (needs_close, err) = convert_chan_err!(self, e, short_to_id, chan, chan_id);
3424 handle_errors.push((Err(err), chan.get_counterparty_node_id()));
3425 if needs_close { return false; }
3428 match chan.channel_update_status() {
3429 ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
3430 ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
3431 ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
3432 ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
3433 ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
3434 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3435 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3439 should_persist = NotifyOption::DoPersist;
3440 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
3442 ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
3443 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
3444 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3448 should_persist = NotifyOption::DoPersist;
3449 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
3457 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3458 if htlcs.is_empty() {
3459 // This should be unreachable
3460 debug_assert!(false);
3463 if let OnionPayload::Invoice(ref final_hop_data) = htlcs[0].onion_payload {
3464 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
3465 // In this case we're not going to handle any timeouts of the parts here.
3466 if final_hop_data.total_msat == htlcs.iter().fold(0, |total, htlc| total + htlc.value) {
3468 } else if htlcs.into_iter().any(|htlc| {
3469 htlc.timer_ticks += 1;
3470 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
3472 timed_out_mpp_htlcs.extend(htlcs.into_iter().map(|htlc| (htlc.prev_hop.clone(), payment_hash.clone())));
3480 for htlc_source in timed_out_mpp_htlcs.drain(..) {
3481 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), HTLCSource::PreviousHopData(htlc_source.0), &htlc_source.1, HTLCFailReason::Reason { failure_code: 23, data: Vec::new() });
3484 for (err, counterparty_node_id) in handle_errors.drain(..) {
3485 let _ = handle_error!(self, err, counterparty_node_id);
3491 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
3492 /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
3493 /// along the path (including in our own channel on which we received it).
3494 /// Returns false if no payment was found to fail backwards, true if the process of failing the
3495 /// HTLC backwards has been started.
3496 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
3497 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3499 let mut channel_state = Some(self.channel_state.lock().unwrap());
3500 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
3501 if let Some(mut sources) = removed_source {
3502 for htlc in sources.drain(..) {
3503 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3504 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3505 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3506 self.best_block.read().unwrap().height()));
3507 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3508 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
3509 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
3515 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3516 /// that we want to return and a channel.
3518 /// This is for failures on the channel on which the HTLC was *received*, not failures
3520 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<Signer>) -> (u16, Vec<u8>) {
3521 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
3522 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
3523 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
3524 // an inbound SCID alias before the real SCID.
3525 let scid_pref = if chan.should_announce() {
3526 chan.get_short_channel_id().or(chan.latest_inbound_scid_alias())
3528 chan.latest_inbound_scid_alias().or(chan.get_short_channel_id())
3530 if let Some(scid) = scid_pref {
3531 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
3533 (0x4000|10, Vec::new())
3538 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
3539 /// that we want to return and a channel.
3540 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<Signer>) -> (u16, Vec<u8>) {
3541 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
3542 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
3543 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 4));
3544 if desired_err_code == 0x1000 | 20 {
3545 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3546 0u16.write(&mut enc).expect("Writes cannot fail");
3548 (upd.serialized_length() as u16).write(&mut enc).expect("Writes cannot fail");
3549 upd.write(&mut enc).expect("Writes cannot fail");
3550 (desired_err_code, enc.0)
3552 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
3553 // which means we really shouldn't have gotten a payment to be forwarded over this
3554 // channel yet, or if we did it's from a route hint. Either way, returning an error of
3555 // PERM|no_such_channel should be fine.
3556 (0x4000|10, Vec::new())
3560 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
3561 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
3562 // be surfaced to the user.
3563 fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
3564 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
3566 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
3567 let (failure_code, onion_failure_data) =
3568 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
3569 hash_map::Entry::Occupied(chan_entry) => {
3570 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan_entry.get())
3572 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
3574 let channel_state = self.channel_state.lock().unwrap();
3575 self.fail_htlc_backwards_internal(channel_state,
3576 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
3578 HTLCSource::OutboundRoute { session_priv, payment_id, path, payment_params, .. } => {
3579 let mut session_priv_bytes = [0; 32];
3580 session_priv_bytes.copy_from_slice(&session_priv[..]);
3581 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3582 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3583 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) && !payment.get().is_fulfilled() {
3584 let retry = if let Some(payment_params_data) = payment_params {
3585 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3586 Some(RouteParameters {
3587 payment_params: payment_params_data,
3588 final_value_msat: path_last_hop.fee_msat,
3589 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3592 let mut pending_events = self.pending_events.lock().unwrap();
3593 pending_events.push(events::Event::PaymentPathFailed {
3594 payment_id: Some(payment_id),
3596 rejected_by_dest: false,
3597 network_update: None,
3598 all_paths_failed: payment.get().remaining_parts() == 0,
3600 short_channel_id: None,
3607 if payment.get().abandoned() && payment.get().remaining_parts() == 0 {
3608 pending_events.push(events::Event::PaymentFailed {
3610 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3616 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3623 /// Fails an HTLC backwards to the sender of it to us.
3624 /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
3625 /// There are several callsites that do stupid things like loop over a list of payment_hashes
3626 /// to fail and take the channel_state lock for each iteration (as we take ownership and may
3627 /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
3628 /// still-available channels.
3629 fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
3630 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
3631 //identify whether we sent it or not based on the (I presume) very different runtime
3632 //between the branches here. We should make this async and move it into the forward HTLCs
3635 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3636 // from block_connected which may run during initialization prior to the chain_monitor
3637 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
3639 HTLCSource::OutboundRoute { ref path, session_priv, payment_id, ref payment_params, .. } => {
3640 let mut session_priv_bytes = [0; 32];
3641 session_priv_bytes.copy_from_slice(&session_priv[..]);
3642 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3643 let mut all_paths_failed = false;
3644 let mut full_failure_ev = None;
3645 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3646 if !payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3647 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3650 if payment.get().is_fulfilled() {
3651 log_trace!(self.logger, "Received failure of HTLC with payment_hash {} after payment completion", log_bytes!(payment_hash.0));
3654 if payment.get().remaining_parts() == 0 {
3655 all_paths_failed = true;
3656 if payment.get().abandoned() {
3657 full_failure_ev = Some(events::Event::PaymentFailed {
3659 payment_hash: payment.get().payment_hash().expect("PendingOutboundPayments::RetriesExceeded always has a payment hash set"),
3665 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3668 mem::drop(channel_state_lock);
3669 let retry = if let Some(payment_params_data) = payment_params {
3670 let path_last_hop = path.last().expect("Outbound payments must have had a valid path");
3671 Some(RouteParameters {
3672 payment_params: payment_params_data.clone(),
3673 final_value_msat: path_last_hop.fee_msat,
3674 final_cltv_expiry_delta: path_last_hop.cltv_expiry_delta,
3677 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
3679 let path_failure = match &onion_error {
3680 &HTLCFailReason::LightningError { ref err } => {
3682 let (network_update, short_channel_id, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3684 let (network_update, short_channel_id, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
3685 // TODO: If we decided to blame ourselves (or one of our channels) in
3686 // process_onion_failure we should close that channel as it implies our
3687 // next-hop is needlessly blaming us!
3688 events::Event::PaymentPathFailed {
3689 payment_id: Some(payment_id),
3690 payment_hash: payment_hash.clone(),
3691 rejected_by_dest: !payment_retryable,
3698 error_code: onion_error_code,
3700 error_data: onion_error_data
3703 &HTLCFailReason::Reason {
3709 // we get a fail_malformed_htlc from the first hop
3710 // TODO: We'd like to generate a NetworkUpdate for temporary
3711 // failures here, but that would be insufficient as get_route
3712 // generally ignores its view of our own channels as we provide them via
3714 // TODO: For non-temporary failures, we really should be closing the
3715 // channel here as we apparently can't relay through them anyway.
3716 events::Event::PaymentPathFailed {
3717 payment_id: Some(payment_id),
3718 payment_hash: payment_hash.clone(),
3719 rejected_by_dest: path.len() == 1,
3720 network_update: None,
3723 short_channel_id: Some(path.first().unwrap().short_channel_id),
3726 error_code: Some(*failure_code),
3728 error_data: Some(data.clone()),
3732 let mut pending_events = self.pending_events.lock().unwrap();
3733 pending_events.push(path_failure);
3734 if let Some(ev) = full_failure_ev { pending_events.push(ev); }
3736 HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, phantom_shared_secret, .. }) => {
3737 let err_packet = match onion_error {
3738 HTLCFailReason::Reason { failure_code, data } => {
3739 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
3740 if let Some(phantom_ss) = phantom_shared_secret {
3741 let phantom_packet = onion_utils::build_failure_packet(&phantom_ss, failure_code, &data[..]).encode();
3742 let encrypted_phantom_packet = onion_utils::encrypt_failure_packet(&phantom_ss, &phantom_packet);
3743 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &encrypted_phantom_packet.data[..])
3745 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
3746 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
3749 HTLCFailReason::LightningError { err } => {
3750 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
3751 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
3755 let mut forward_event = None;
3756 if channel_state_lock.forward_htlcs.is_empty() {
3757 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
3759 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
3760 hash_map::Entry::Occupied(mut entry) => {
3761 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
3763 hash_map::Entry::Vacant(entry) => {
3764 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
3767 mem::drop(channel_state_lock);
3768 if let Some(time) = forward_event {
3769 let mut pending_events = self.pending_events.lock().unwrap();
3770 pending_events.push(events::Event::PendingHTLCsForwardable {
3771 time_forwardable: time
3778 /// Provides a payment preimage in response to [`Event::PaymentReceived`], generating any
3779 /// [`MessageSendEvent`]s needed to claim the payment.
3781 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
3782 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
3783 /// event matches your expectation. If you fail to do so and call this method, you may provide
3784 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
3786 /// Returns whether any HTLCs were claimed, and thus if any new [`MessageSendEvent`]s are now
3787 /// pending for processing via [`get_and_clear_pending_msg_events`].
3789 /// [`Event::PaymentReceived`]: crate::util::events::Event::PaymentReceived
3790 /// [`create_inbound_payment`]: Self::create_inbound_payment
3791 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3792 /// [`get_and_clear_pending_msg_events`]: MessageSendEventsProvider::get_and_clear_pending_msg_events
3793 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
3794 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3796 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3798 let mut channel_state = Some(self.channel_state.lock().unwrap());
3799 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
3800 if let Some(mut sources) = removed_source {
3801 assert!(!sources.is_empty());
3803 // If we are claiming an MPP payment, we have to take special care to ensure that each
3804 // channel exists before claiming all of the payments (inside one lock).
3805 // Note that channel existance is sufficient as we should always get a monitor update
3806 // which will take care of the real HTLC claim enforcement.
3808 // If we find an HTLC which we would need to claim but for which we do not have a
3809 // channel, we will fail all parts of the MPP payment. While we could wait and see if
3810 // the sender retries the already-failed path(s), it should be a pretty rare case where
3811 // we got all the HTLCs and then a channel closed while we were waiting for the user to
3812 // provide the preimage, so worrying too much about the optimal handling isn't worth
3814 let mut valid_mpp = true;
3815 for htlc in sources.iter() {
3816 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
3822 let mut errs = Vec::new();
3823 let mut claimed_any_htlcs = false;
3824 for htlc in sources.drain(..) {
3826 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
3827 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3828 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
3829 self.best_block.read().unwrap().height()));
3830 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
3831 HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
3832 HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
3834 match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
3835 ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) => {
3836 if let msgs::ErrorAction::IgnoreError = err.err.action {
3837 // We got a temporary failure updating monitor, but will claim the
3838 // HTLC when the monitor updating is restored (or on chain).
3839 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
3840 claimed_any_htlcs = true;
3841 } else { errs.push((pk, err)); }
3843 ClaimFundsFromHop::PrevHopForceClosed => unreachable!("We already checked for channel existence, we can't fail here!"),
3844 ClaimFundsFromHop::DuplicateClaim => {
3845 // While we should never get here in most cases, if we do, it likely
3846 // indicates that the HTLC was timed out some time ago and is no longer
3847 // available to be claimed. Thus, it does not make sense to set
3848 // `claimed_any_htlcs`.
3850 ClaimFundsFromHop::Success(_) => claimed_any_htlcs = true,
3855 // Now that we've done the entire above loop in one lock, we can handle any errors
3856 // which were generated.
3857 channel_state.take();
3859 for (counterparty_node_id, err) in errs.drain(..) {
3860 let res: Result<(), _> = Err(err);
3861 let _ = handle_error!(self, res, counterparty_node_id);
3868 fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> ClaimFundsFromHop {
3869 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
3870 let channel_state = &mut **channel_state_lock;
3871 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
3872 Some(chan_id) => chan_id.clone(),
3874 return ClaimFundsFromHop::PrevHopForceClosed
3878 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
3879 match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
3880 Ok(msgs_monitor_option) => {
3881 if let UpdateFulfillCommitFetch::NewClaim { msgs, htlc_value_msat, monitor_update } = msgs_monitor_option {
3882 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3883 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Debug },
3884 "Failed to update channel monitor with preimage {:?}: {:?}",
3885 payment_preimage, e);
3886 return ClaimFundsFromHop::MonitorUpdateFail(
3887 chan.get().get_counterparty_node_id(),
3888 handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err(),
3889 Some(htlc_value_msat)
3892 if let Some((msg, commitment_signed)) = msgs {
3893 log_debug!(self.logger, "Claiming funds for HTLC with preimage {} resulted in a commitment_signed for channel {}",
3894 log_bytes!(payment_preimage.0), log_bytes!(chan.get().channel_id()));
3895 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3896 node_id: chan.get().get_counterparty_node_id(),
3897 updates: msgs::CommitmentUpdate {
3898 update_add_htlcs: Vec::new(),
3899 update_fulfill_htlcs: vec![msg],
3900 update_fail_htlcs: Vec::new(),
3901 update_fail_malformed_htlcs: Vec::new(),
3907 return ClaimFundsFromHop::Success(htlc_value_msat);
3909 return ClaimFundsFromHop::DuplicateClaim;
3912 Err((e, monitor_update)) => {
3913 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3914 log_given_level!(self.logger, if e == ChannelMonitorUpdateErr::PermanentFailure { Level::Error } else { Level::Info },
3915 "Failed to update channel monitor with preimage {:?} immediately prior to force-close: {:?}",
3916 payment_preimage, e);
3918 let counterparty_node_id = chan.get().get_counterparty_node_id();
3919 let (drop, res) = convert_chan_err!(self, e, channel_state.short_to_id, chan.get_mut(), &chan_id);
3921 chan.remove_entry();
3923 return ClaimFundsFromHop::MonitorUpdateFail(counterparty_node_id, res, None);
3926 } else { unreachable!(); }
3929 fn finalize_claims(&self, mut sources: Vec<HTLCSource>) {
3930 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3931 let mut pending_events = self.pending_events.lock().unwrap();
3932 for source in sources.drain(..) {
3933 if let HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } = source {
3934 let mut session_priv_bytes = [0; 32];
3935 session_priv_bytes.copy_from_slice(&session_priv[..]);
3936 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3937 assert!(payment.get().is_fulfilled());
3938 if payment.get_mut().remove(&session_priv_bytes, None) {
3939 pending_events.push(
3940 events::Event::PaymentPathSuccessful {
3942 payment_hash: payment.get().payment_hash(),
3947 if payment.get().remaining_parts() == 0 {
3955 fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage, forwarded_htlc_value_msat: Option<u64>, from_onchain: bool) {
3957 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
3958 mem::drop(channel_state_lock);
3959 let mut session_priv_bytes = [0; 32];
3960 session_priv_bytes.copy_from_slice(&session_priv[..]);
3961 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
3962 if let hash_map::Entry::Occupied(mut payment) = outbounds.entry(payment_id) {
3963 let mut pending_events = self.pending_events.lock().unwrap();
3964 if !payment.get().is_fulfilled() {
3965 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3966 let fee_paid_msat = payment.get().get_pending_fee_msat();
3967 pending_events.push(
3968 events::Event::PaymentSent {
3969 payment_id: Some(payment_id),
3975 payment.get_mut().mark_fulfilled();
3979 // We currently immediately remove HTLCs which were fulfilled on-chain.
3980 // This could potentially lead to removing a pending payment too early,
3981 // with a reorg of one block causing us to re-add the fulfilled payment on
3983 // TODO: We should have a second monitor event that informs us of payments
3984 // irrevocably fulfilled.
3985 if payment.get_mut().remove(&session_priv_bytes, Some(&path)) {
3986 let payment_hash = Some(PaymentHash(Sha256::hash(&payment_preimage.0).into_inner()));
3987 pending_events.push(
3988 events::Event::PaymentPathSuccessful {
3996 if payment.get().remaining_parts() == 0 {
4001 log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
4004 HTLCSource::PreviousHopData(hop_data) => {
4005 let prev_outpoint = hop_data.outpoint;
4006 let res = self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage);
4007 let claimed_htlc = if let ClaimFundsFromHop::DuplicateClaim = res { false } else { true };
4008 let htlc_claim_value_msat = match res {
4009 ClaimFundsFromHop::MonitorUpdateFail(_, _, amt_opt) => amt_opt,
4010 ClaimFundsFromHop::Success(amt) => Some(amt),
4013 if let ClaimFundsFromHop::PrevHopForceClosed = res {
4014 let preimage_update = ChannelMonitorUpdate {
4015 update_id: CLOSED_CHANNEL_UPDATE_ID,
4016 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
4017 payment_preimage: payment_preimage.clone(),
4020 // We update the ChannelMonitor on the backward link, after
4021 // receiving an offchain preimage event from the forward link (the
4022 // event being update_fulfill_htlc).
4023 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
4024 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
4025 payment_preimage, e);
4027 // Note that we do *not* set `claimed_htlc` to false here. In fact, this
4028 // totally could be a duplicate claim, but we have no way of knowing
4029 // without interrogating the `ChannelMonitor` we've provided the above
4030 // update to. Instead, we simply document in `PaymentForwarded` that this
4033 mem::drop(channel_state_lock);
4034 if let ClaimFundsFromHop::MonitorUpdateFail(pk, err, _) = res {
4035 let result: Result<(), _> = Err(err);
4036 let _ = handle_error!(self, result, pk);
4040 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
4041 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
4042 Some(claimed_htlc_value - forwarded_htlc_value)
4045 let mut pending_events = self.pending_events.lock().unwrap();
4047 let source_channel_id = Some(prev_outpoint.to_channel_id());
4048 pending_events.push(events::Event::PaymentForwarded {
4051 claim_from_onchain_tx: from_onchain,
4059 /// Gets the node_id held by this ChannelManager
4060 pub fn get_our_node_id(&self) -> PublicKey {
4061 self.our_network_pubkey.clone()
4064 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
4065 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4067 let chan_restoration_res;
4068 let (mut pending_failures, finalized_claims) = {
4069 let mut channel_lock = self.channel_state.lock().unwrap();
4070 let channel_state = &mut *channel_lock;
4071 let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
4072 hash_map::Entry::Occupied(chan) => chan,
4073 hash_map::Entry::Vacant(_) => return,
4075 if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
4079 let updates = channel.get_mut().monitor_updating_restored(&self.logger, self.get_our_node_id(), self.genesis_hash, self.best_block.read().unwrap().height());
4080 let channel_update = if updates.funding_locked.is_some() && channel.get().is_usable() {
4081 // We only send a channel_update in the case where we are just now sending a
4082 // funding_locked and the channel is in a usable state. We may re-send a
4083 // channel_update later through the announcement_signatures process for public
4084 // channels, but there's no reason not to just inform our counterparty of our fees
4086 if let Ok(msg) = self.get_channel_update_for_unicast(channel.get()) {
4087 Some(events::MessageSendEvent::SendChannelUpdate {
4088 node_id: channel.get().get_counterparty_node_id(),
4093 chan_restoration_res = handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, updates.raa, updates.commitment_update, updates.order, None, updates.accepted_htlcs, updates.funding_broadcastable, updates.funding_locked, updates.announcement_sigs);
4094 if let Some(upd) = channel_update {
4095 channel_state.pending_msg_events.push(upd);
4097 (updates.failed_htlcs, updates.finalized_claimed_htlcs)
4099 post_handle_chan_restoration!(self, chan_restoration_res);
4100 self.finalize_claims(finalized_claims);
4101 for failure in pending_failures.drain(..) {
4102 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4106 /// Called to accept a request to open a channel after [`Event::OpenChannelRequest`] has been
4109 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted.
4111 /// For inbound channels, the `user_channel_id` parameter will be provided back in
4112 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
4113 /// with which `accept_inbound_channel` call.
4115 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
4116 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
4117 pub fn accept_inbound_channel(&self, temporary_channel_id: &[u8; 32], user_channel_id: u64) -> Result<(), APIError> {
4118 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4120 let mut channel_state_lock = self.channel_state.lock().unwrap();
4121 let channel_state = &mut *channel_state_lock;
4122 match channel_state.by_id.entry(temporary_channel_id.clone()) {
4123 hash_map::Entry::Occupied(mut channel) => {
4124 if !channel.get().inbound_is_awaiting_accept() {
4125 return Err(APIError::APIMisuseError { err: "The channel isn't currently awaiting to be accepted.".to_owned() });
4127 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4128 node_id: channel.get().get_counterparty_node_id(),
4129 msg: channel.get_mut().accept_inbound_channel(user_channel_id),
4132 hash_map::Entry::Vacant(_) => {
4133 return Err(APIError::ChannelUnavailable { err: "Can't accept a channel that doesn't exist".to_owned() });
4139 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
4140 if msg.chain_hash != self.genesis_hash {
4141 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
4144 if !self.default_configuration.accept_inbound_channels {
4145 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
4148 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
4149 let mut channel = match Channel::new_from_req(&self.fee_estimator, &self.keys_manager,
4150 counterparty_node_id.clone(), &their_features, msg, 0, &self.default_configuration,
4151 self.best_block.read().unwrap().height(), &self.logger, outbound_scid_alias)
4154 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4155 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
4159 let mut channel_state_lock = self.channel_state.lock().unwrap();
4160 let channel_state = &mut *channel_state_lock;
4161 match channel_state.by_id.entry(channel.channel_id()) {
4162 hash_map::Entry::Occupied(_) => {
4163 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
4164 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone()))
4166 hash_map::Entry::Vacant(entry) => {
4167 if !self.default_configuration.manually_accept_inbound_channels {
4168 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
4169 node_id: counterparty_node_id.clone(),
4170 msg: channel.accept_inbound_channel(0),
4173 let mut pending_events = self.pending_events.lock().unwrap();
4174 pending_events.push(
4175 events::Event::OpenChannelRequest {
4176 temporary_channel_id: msg.temporary_channel_id.clone(),
4177 counterparty_node_id: counterparty_node_id.clone(),
4178 funding_satoshis: msg.funding_satoshis,
4179 push_msat: msg.push_msat,
4180 channel_type: channel.get_channel_type().clone(),
4185 entry.insert(channel);
4191 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
4192 let (value, output_script, user_id) = {
4193 let mut channel_lock = self.channel_state.lock().unwrap();
4194 let channel_state = &mut *channel_lock;
4195 match channel_state.by_id.entry(msg.temporary_channel_id) {
4196 hash_map::Entry::Occupied(mut chan) => {
4197 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4198 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4200 try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration.peer_channel_config_limits, &their_features), channel_state, chan);
4201 (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
4203 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4206 let mut pending_events = self.pending_events.lock().unwrap();
4207 pending_events.push(events::Event::FundingGenerationReady {
4208 temporary_channel_id: msg.temporary_channel_id,
4209 channel_value_satoshis: value,
4211 user_channel_id: user_id,
4216 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
4217 let ((funding_msg, monitor), mut chan) = {
4218 let best_block = *self.best_block.read().unwrap();
4219 let mut channel_lock = self.channel_state.lock().unwrap();
4220 let channel_state = &mut *channel_lock;
4221 match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
4222 hash_map::Entry::Occupied(mut chan) => {
4223 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4224 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
4226 (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
4228 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
4231 // Because we have exclusive ownership of the channel here we can release the channel_state
4232 // lock before watch_channel
4233 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
4235 ChannelMonitorUpdateErr::PermanentFailure => {
4236 // Note that we reply with the new channel_id in error messages if we gave up on the
4237 // channel, not the temporary_channel_id. This is compatible with ourselves, but the
4238 // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
4239 // any messages referencing a previously-closed channel anyway.
4240 // We do not do a force-close here as that would generate a monitor update for
4241 // a monitor that we didn't manage to store (and that we don't care about - we
4242 // don't respond with the funding_signed so the channel can never go on chain).
4243 let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
4244 assert!(failed_htlcs.is_empty());
4245 return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
4247 ChannelMonitorUpdateErr::TemporaryFailure => {
4248 // There's no problem signing a counterparty's funding transaction if our monitor
4249 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
4250 // accepted payment from yet. We do, however, need to wait to send our funding_locked
4251 // until we have persisted our monitor.
4252 chan.monitor_update_failed(false, false, Vec::new(), Vec::new(), Vec::new());
4256 let mut channel_state_lock = self.channel_state.lock().unwrap();
4257 let channel_state = &mut *channel_state_lock;
4258 match channel_state.by_id.entry(funding_msg.channel_id) {
4259 hash_map::Entry::Occupied(_) => {
4260 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
4262 hash_map::Entry::Vacant(e) => {
4263 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
4264 node_id: counterparty_node_id.clone(),
4273 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
4275 let best_block = *self.best_block.read().unwrap();
4276 let mut channel_lock = self.channel_state.lock().unwrap();
4277 let channel_state = &mut *channel_lock;
4278 match channel_state.by_id.entry(msg.channel_id) {
4279 hash_map::Entry::Occupied(mut chan) => {
4280 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4281 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4283 let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
4284 Ok(update) => update,
4285 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
4287 if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
4288 let mut res = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
4289 if let Err(MsgHandleErrInternal { ref mut shutdown_finish, .. }) = res {
4290 // We weren't able to watch the channel to begin with, so no updates should be made on
4291 // it. Previously, full_stack_target found an (unreachable) panic when the
4292 // monitor update contained within `shutdown_finish` was applied.
4293 if let Some((ref mut shutdown_finish, _)) = shutdown_finish {
4294 shutdown_finish.0.take();
4301 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4304 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
4305 self.tx_broadcaster.broadcast_transaction(&funding_tx);
4309 fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
4310 let mut channel_state_lock = self.channel_state.lock().unwrap();
4311 let channel_state = &mut *channel_state_lock;
4312 match channel_state.by_id.entry(msg.channel_id) {
4313 hash_map::Entry::Occupied(mut chan) => {
4314 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4315 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4317 let announcement_sigs_opt = try_chan_entry!(self, chan.get_mut().funding_locked(&msg, self.get_our_node_id(),
4318 self.genesis_hash.clone(), &self.best_block.read().unwrap(), &self.logger), channel_state, chan);
4319 if let Some(announcement_sigs) = announcement_sigs_opt {
4320 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(chan.get().channel_id()));
4321 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
4322 node_id: counterparty_node_id.clone(),
4323 msg: announcement_sigs,
4325 } else if chan.get().is_usable() {
4326 // If we're sending an announcement_signatures, we'll send the (public)
4327 // channel_update after sending a channel_announcement when we receive our
4328 // counterparty's announcement_signatures. Thus, we only bother to send a
4329 // channel_update here if the channel is not public, i.e. we're not sending an
4330 // announcement_signatures.
4331 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", log_bytes!(chan.get().channel_id()));
4332 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4333 channel_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4334 node_id: counterparty_node_id.clone(),
4341 hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4345 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
4346 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)>;
4347 let result: Result<(), _> = loop {
4348 let mut channel_state_lock = self.channel_state.lock().unwrap();
4349 let channel_state = &mut *channel_state_lock;
4351 match channel_state.by_id.entry(msg.channel_id.clone()) {
4352 hash_map::Entry::Occupied(mut chan_entry) => {
4353 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4354 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4357 if !chan_entry.get().received_shutdown() {
4358 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
4359 log_bytes!(msg.channel_id),
4360 if chan_entry.get().sent_shutdown() { " after we initiated shutdown" } else { "" });
4363 let (shutdown, monitor_update, htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.keys_manager, &their_features, &msg), channel_state, chan_entry);
4364 dropped_htlcs = htlcs;
4366 // Update the monitor with the shutdown script if necessary.
4367 if let Some(monitor_update) = monitor_update {
4368 if let Err(e) = self.chain_monitor.update_channel(chan_entry.get().get_funding_txo().unwrap(), monitor_update) {
4369 let (result, is_permanent) =
4370 handle_monitor_err!(self, e, channel_state.short_to_id, chan_entry.get_mut(), RAACommitmentOrder::CommitmentFirst, chan_entry.key(), NO_UPDATE);
4372 remove_channel!(self, channel_state, chan_entry);
4378 if let Some(msg) = shutdown {
4379 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4380 node_id: *counterparty_node_id,
4387 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4390 for htlc_source in dropped_htlcs.drain(..) {
4391 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4394 let _ = handle_error!(self, result, *counterparty_node_id);
4398 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
4399 let (tx, chan_option) = {
4400 let mut channel_state_lock = self.channel_state.lock().unwrap();
4401 let channel_state = &mut *channel_state_lock;
4402 match channel_state.by_id.entry(msg.channel_id.clone()) {
4403 hash_map::Entry::Occupied(mut chan_entry) => {
4404 if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
4405 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4407 let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
4408 if let Some(msg) = closing_signed {
4409 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4410 node_id: counterparty_node_id.clone(),
4415 // We're done with this channel, we've got a signed closing transaction and
4416 // will send the closing_signed back to the remote peer upon return. This
4417 // also implies there are no pending HTLCs left on the channel, so we can
4418 // fully delete it from tracking (the channel monitor is still around to
4419 // watch for old state broadcasts)!
4420 (tx, Some(remove_channel!(self, channel_state, chan_entry)))
4421 } else { (tx, None) }
4423 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4426 if let Some(broadcast_tx) = tx {
4427 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
4428 self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
4430 if let Some(chan) = chan_option {
4431 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4432 let mut channel_state = self.channel_state.lock().unwrap();
4433 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4437 self.issue_channel_close_events(&chan, ClosureReason::CooperativeClosure);
4442 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
4443 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
4444 //determine the state of the payment based on our response/if we forward anything/the time
4445 //we take to respond. We should take care to avoid allowing such an attack.
4447 //TODO: There exists a further attack where a node may garble the onion data, forward it to
4448 //us repeatedly garbled in different ways, and compare our error messages, which are
4449 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
4450 //but we should prevent it anyway.
4452 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
4453 let channel_state = &mut *channel_state_lock;
4455 match channel_state.by_id.entry(msg.channel_id) {
4456 hash_map::Entry::Occupied(mut chan) => {
4457 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4458 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4461 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
4462 // If the update_add is completely bogus, the call will Err and we will close,
4463 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
4464 // want to reject the new HTLC and fail it backwards instead of forwarding.
4465 match pending_forward_info {
4466 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
4467 let reason = if (error_code & 0x1000) != 0 {
4468 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
4469 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, real_code, &error_data)
4471 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &[])
4473 let msg = msgs::UpdateFailHTLC {
4474 channel_id: msg.channel_id,
4475 htlc_id: msg.htlc_id,
4478 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
4480 _ => pending_forward_info
4483 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
4485 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4490 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
4491 let mut channel_lock = self.channel_state.lock().unwrap();
4492 let (htlc_source, forwarded_htlc_value) = {
4493 let channel_state = &mut *channel_lock;
4494 match channel_state.by_id.entry(msg.channel_id) {
4495 hash_map::Entry::Occupied(mut chan) => {
4496 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4497 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4499 try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
4501 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4504 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false);
4508 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
4509 let mut channel_lock = self.channel_state.lock().unwrap();
4510 let channel_state = &mut *channel_lock;
4511 match channel_state.by_id.entry(msg.channel_id) {
4512 hash_map::Entry::Occupied(mut chan) => {
4513 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4514 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4516 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
4518 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4523 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
4524 let mut channel_lock = self.channel_state.lock().unwrap();
4525 let channel_state = &mut *channel_lock;
4526 match channel_state.by_id.entry(msg.channel_id) {
4527 hash_map::Entry::Occupied(mut chan) => {
4528 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4529 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4531 if (msg.failure_code & 0x8000) == 0 {
4532 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
4533 try_chan_entry!(self, Err(chan_err), channel_state, chan);
4535 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
4538 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4542 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
4543 let mut channel_state_lock = self.channel_state.lock().unwrap();
4544 let channel_state = &mut *channel_state_lock;
4545 match channel_state.by_id.entry(msg.channel_id) {
4546 hash_map::Entry::Occupied(mut chan) => {
4547 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4548 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4550 let (revoke_and_ack, commitment_signed, monitor_update) =
4551 match chan.get_mut().commitment_signed(&msg, &self.logger) {
4552 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
4553 Err((Some(update), e)) => {
4554 assert!(chan.get().is_awaiting_monitor_update());
4555 let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
4556 try_chan_entry!(self, Err(e), channel_state, chan);
4561 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
4562 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
4564 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
4565 node_id: counterparty_node_id.clone(),
4566 msg: revoke_and_ack,
4568 if let Some(msg) = commitment_signed {
4569 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4570 node_id: counterparty_node_id.clone(),
4571 updates: msgs::CommitmentUpdate {
4572 update_add_htlcs: Vec::new(),
4573 update_fulfill_htlcs: Vec::new(),
4574 update_fail_htlcs: Vec::new(),
4575 update_fail_malformed_htlcs: Vec::new(),
4577 commitment_signed: msg,
4583 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4588 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
4589 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
4590 let mut forward_event = None;
4591 if !pending_forwards.is_empty() {
4592 let mut channel_state = self.channel_state.lock().unwrap();
4593 if channel_state.forward_htlcs.is_empty() {
4594 forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
4596 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
4597 match channel_state.forward_htlcs.entry(match forward_info.routing {
4598 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
4599 PendingHTLCRouting::Receive { .. } => 0,
4600 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
4602 hash_map::Entry::Occupied(mut entry) => {
4603 entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4604 prev_htlc_id, forward_info });
4606 hash_map::Entry::Vacant(entry) => {
4607 entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
4608 prev_htlc_id, forward_info }));
4613 match forward_event {
4615 let mut pending_events = self.pending_events.lock().unwrap();
4616 pending_events.push(events::Event::PendingHTLCsForwardable {
4617 time_forwardable: time
4625 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
4626 let mut htlcs_to_fail = Vec::new();
4628 let mut channel_state_lock = self.channel_state.lock().unwrap();
4629 let channel_state = &mut *channel_state_lock;
4630 match channel_state.by_id.entry(msg.channel_id) {
4631 hash_map::Entry::Occupied(mut chan) => {
4632 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4633 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4635 let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
4636 let raa_updates = break_chan_entry!(self,
4637 chan.get_mut().revoke_and_ack(&msg, &self.logger), channel_state, chan);
4638 htlcs_to_fail = raa_updates.holding_cell_failed_htlcs;
4639 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), raa_updates.monitor_update) {
4640 if was_frozen_for_monitor {
4641 assert!(raa_updates.commitment_update.is_none());
4642 assert!(raa_updates.accepted_htlcs.is_empty());
4643 assert!(raa_updates.failed_htlcs.is_empty());
4644 assert!(raa_updates.finalized_claimed_htlcs.is_empty());
4645 break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
4647 if let Err(e) = handle_monitor_err!(self, e, channel_state, chan,
4648 RAACommitmentOrder::CommitmentFirst, false,
4649 raa_updates.commitment_update.is_some(),
4650 raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4651 raa_updates.finalized_claimed_htlcs) {
4653 } else { unreachable!(); }
4656 if let Some(updates) = raa_updates.commitment_update {
4657 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4658 node_id: counterparty_node_id.clone(),
4662 break Ok((raa_updates.accepted_htlcs, raa_updates.failed_htlcs,
4663 raa_updates.finalized_claimed_htlcs,
4664 chan.get().get_short_channel_id()
4665 .expect("RAA should only work on a short-id-available channel"),
4666 chan.get().get_funding_txo().unwrap()))
4668 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4671 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
4673 Ok((pending_forwards, mut pending_failures, finalized_claim_htlcs,
4674 short_channel_id, channel_outpoint)) =>
4676 for failure in pending_failures.drain(..) {
4677 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
4679 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
4680 self.finalize_claims(finalized_claim_htlcs);
4687 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
4688 let mut channel_lock = self.channel_state.lock().unwrap();
4689 let channel_state = &mut *channel_lock;
4690 match channel_state.by_id.entry(msg.channel_id) {
4691 hash_map::Entry::Occupied(mut chan) => {
4692 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4693 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4695 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
4697 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4702 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
4703 let mut channel_state_lock = self.channel_state.lock().unwrap();
4704 let channel_state = &mut *channel_state_lock;
4706 match channel_state.by_id.entry(msg.channel_id) {
4707 hash_map::Entry::Occupied(mut chan) => {
4708 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4709 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4711 if !chan.get().is_usable() {
4712 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
4715 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
4716 msg: try_chan_entry!(self, chan.get_mut().announcement_signatures(
4717 self.get_our_node_id(), self.genesis_hash.clone(), self.best_block.read().unwrap().height(), msg), channel_state, chan),
4718 // Note that announcement_signatures fails if the channel cannot be announced,
4719 // so get_channel_update_for_broadcast will never fail by the time we get here.
4720 update_msg: self.get_channel_update_for_broadcast(chan.get()).unwrap(),
4723 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4728 /// Returns ShouldPersist if anything changed, otherwise either SkipPersist or an Err.
4729 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
4730 let mut channel_state_lock = self.channel_state.lock().unwrap();
4731 let channel_state = &mut *channel_state_lock;
4732 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
4733 Some(chan_id) => chan_id.clone(),
4735 // It's not a local channel
4736 return Ok(NotifyOption::SkipPersist)
4739 match channel_state.by_id.entry(chan_id) {
4740 hash_map::Entry::Occupied(mut chan) => {
4741 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4742 if chan.get().should_announce() {
4743 // If the announcement is about a channel of ours which is public, some
4744 // other peer may simply be forwarding all its gossip to us. Don't provide
4745 // a scary-looking error message and return Ok instead.
4746 return Ok(NotifyOption::SkipPersist);
4748 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
4750 let were_node_one = self.get_our_node_id().serialize()[..] < chan.get().get_counterparty_node_id().serialize()[..];
4751 let msg_from_node_one = msg.contents.flags & 1 == 0;
4752 if were_node_one == msg_from_node_one {
4753 return Ok(NotifyOption::SkipPersist);
4755 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
4758 hash_map::Entry::Vacant(_) => unreachable!()
4760 Ok(NotifyOption::DoPersist)
4763 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
4764 let chan_restoration_res;
4765 let (htlcs_failed_forward, need_lnd_workaround) = {
4766 let mut channel_state_lock = self.channel_state.lock().unwrap();
4767 let channel_state = &mut *channel_state_lock;
4769 match channel_state.by_id.entry(msg.channel_id) {
4770 hash_map::Entry::Occupied(mut chan) => {
4771 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
4772 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
4774 // Currently, we expect all holding cell update_adds to be dropped on peer
4775 // disconnect, so Channel's reestablish will never hand us any holding cell
4776 // freed HTLCs to fail backwards. If in the future we no longer drop pending
4777 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
4778 let responses = try_chan_entry!(self, chan.get_mut().channel_reestablish(
4779 msg, &self.logger, self.our_network_pubkey.clone(), self.genesis_hash,
4780 &*self.best_block.read().unwrap()), channel_state, chan);
4781 let mut channel_update = None;
4782 if let Some(msg) = responses.shutdown_msg {
4783 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
4784 node_id: counterparty_node_id.clone(),
4787 } else if chan.get().is_usable() {
4788 // If the channel is in a usable state (ie the channel is not being shut
4789 // down), send a unicast channel_update to our counterparty to make sure
4790 // they have the latest channel parameters.
4791 if let Ok(msg) = self.get_channel_update_for_unicast(chan.get()) {
4792 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
4793 node_id: chan.get().get_counterparty_node_id(),
4798 let need_lnd_workaround = chan.get_mut().workaround_lnd_bug_4006.take();
4799 chan_restoration_res = handle_chan_restoration_locked!(
4800 self, channel_state_lock, channel_state, chan, responses.raa, responses.commitment_update, responses.order,
4801 responses.mon_update, Vec::new(), None, responses.funding_locked, responses.announcement_sigs);
4802 if let Some(upd) = channel_update {
4803 channel_state.pending_msg_events.push(upd);
4805 (responses.holding_cell_failed_htlcs, need_lnd_workaround)
4807 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
4810 post_handle_chan_restoration!(self, chan_restoration_res);
4811 self.fail_holding_cell_htlcs(htlcs_failed_forward, msg.channel_id);
4813 if let Some(funding_locked_msg) = need_lnd_workaround {
4814 self.internal_funding_locked(counterparty_node_id, &funding_locked_msg)?;
4819 /// Process pending events from the `chain::Watch`, returning whether any events were processed.
4820 fn process_pending_monitor_events(&self) -> bool {
4821 let mut failed_channels = Vec::new();
4822 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
4823 let has_pending_monitor_events = !pending_monitor_events.is_empty();
4824 for monitor_event in pending_monitor_events.drain(..) {
4825 match monitor_event {
4826 MonitorEvent::HTLCEvent(htlc_update) => {
4827 if let Some(preimage) = htlc_update.payment_preimage {
4828 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
4829 self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage, htlc_update.onchain_value_satoshis.map(|v| v * 1000), true);
4831 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
4832 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4835 MonitorEvent::CommitmentTxConfirmed(funding_outpoint) |
4836 MonitorEvent::UpdateFailed(funding_outpoint) => {
4837 let mut channel_lock = self.channel_state.lock().unwrap();
4838 let channel_state = &mut *channel_lock;
4839 let by_id = &mut channel_state.by_id;
4840 let pending_msg_events = &mut channel_state.pending_msg_events;
4841 if let hash_map::Entry::Occupied(chan_entry) = by_id.entry(funding_outpoint.to_channel_id()) {
4842 let mut chan = remove_channel!(self, channel_state, chan_entry);
4843 failed_channels.push(chan.force_shutdown(false));
4844 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4845 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4849 let reason = if let MonitorEvent::UpdateFailed(_) = monitor_event {
4850 ClosureReason::ProcessingError { err: "Failed to persist ChannelMonitor update during chain sync".to_string() }
4852 ClosureReason::CommitmentTxConfirmed
4854 self.issue_channel_close_events(&chan, reason);
4855 pending_msg_events.push(events::MessageSendEvent::HandleError {
4856 node_id: chan.get_counterparty_node_id(),
4857 action: msgs::ErrorAction::SendErrorMessage {
4858 msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
4863 MonitorEvent::UpdateCompleted { funding_txo, monitor_update_id } => {
4864 self.channel_monitor_updated(&funding_txo, monitor_update_id);
4869 for failure in failed_channels.drain(..) {
4870 self.finish_force_close_channel(failure);
4873 has_pending_monitor_events
4876 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
4877 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
4878 /// update events as a separate process method here.
4880 pub fn process_monitor_events(&self) {
4881 self.process_pending_monitor_events();
4884 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
4885 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
4886 /// update was applied.
4888 /// This should only apply to HTLCs which were added to the holding cell because we were
4889 /// waiting on a monitor update to finish. In that case, we don't want to free the holding cell
4890 /// directly in `channel_monitor_updated` as it may introduce deadlocks calling back into user
4891 /// code to inform them of a channel monitor update.
4892 fn check_free_holding_cells(&self) -> bool {
4893 let mut has_monitor_update = false;
4894 let mut failed_htlcs = Vec::new();
4895 let mut handle_errors = Vec::new();
4897 let mut channel_state_lock = self.channel_state.lock().unwrap();
4898 let channel_state = &mut *channel_state_lock;
4899 let by_id = &mut channel_state.by_id;
4900 let short_to_id = &mut channel_state.short_to_id;
4901 let pending_msg_events = &mut channel_state.pending_msg_events;
4903 by_id.retain(|channel_id, chan| {
4904 match chan.maybe_free_holding_cell_htlcs(&self.logger) {
4905 Ok((commitment_opt, holding_cell_failed_htlcs)) => {
4906 if !holding_cell_failed_htlcs.is_empty() {
4907 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id));
4909 if let Some((commitment_update, monitor_update)) = commitment_opt {
4910 if let Err(e) = self.chain_monitor.update_channel(chan.get_funding_txo().unwrap(), monitor_update) {
4911 has_monitor_update = true;
4912 let (res, close_channel) = handle_monitor_err!(self, e, short_to_id, chan, RAACommitmentOrder::CommitmentFirst, channel_id, COMMITMENT_UPDATE_ONLY);
4913 handle_errors.push((chan.get_counterparty_node_id(), res));
4914 if close_channel { return false; }
4916 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
4917 node_id: chan.get_counterparty_node_id(),
4918 updates: commitment_update,
4925 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4926 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4927 // ChannelClosed event is generated by handle_error for us
4934 let has_update = has_monitor_update || !failed_htlcs.is_empty() || !handle_errors.is_empty();
4935 for (failures, channel_id) in failed_htlcs.drain(..) {
4936 self.fail_holding_cell_htlcs(failures, channel_id);
4939 for (counterparty_node_id, err) in handle_errors.drain(..) {
4940 let _ = handle_error!(self, err, counterparty_node_id);
4946 /// Check whether any channels have finished removing all pending updates after a shutdown
4947 /// exchange and can now send a closing_signed.
4948 /// Returns whether any closing_signed messages were generated.
4949 fn maybe_generate_initial_closing_signed(&self) -> bool {
4950 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
4951 let mut has_update = false;
4953 let mut channel_state_lock = self.channel_state.lock().unwrap();
4954 let channel_state = &mut *channel_state_lock;
4955 let by_id = &mut channel_state.by_id;
4956 let short_to_id = &mut channel_state.short_to_id;
4957 let pending_msg_events = &mut channel_state.pending_msg_events;
4959 by_id.retain(|channel_id, chan| {
4960 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
4961 Ok((msg_opt, tx_opt)) => {
4962 if let Some(msg) = msg_opt {
4964 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
4965 node_id: chan.get_counterparty_node_id(), msg,
4968 if let Some(tx) = tx_opt {
4969 // We're done with this channel. We got a closing_signed and sent back
4970 // a closing_signed with a closing transaction to broadcast.
4971 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4972 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4977 self.issue_channel_close_events(chan, ClosureReason::CooperativeClosure);
4979 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
4980 self.tx_broadcaster.broadcast_transaction(&tx);
4981 update_maps_on_chan_removal!(self, short_to_id, chan);
4987 let (close_channel, res) = convert_chan_err!(self, e, short_to_id, chan, channel_id);
4988 handle_errors.push((chan.get_counterparty_node_id(), Err(res)));
4995 for (counterparty_node_id, err) in handle_errors.drain(..) {
4996 let _ = handle_error!(self, err, counterparty_node_id);
5002 /// Handle a list of channel failures during a block_connected or block_disconnected call,
5003 /// pushing the channel monitor update (if any) to the background events queue and removing the
5005 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
5006 for mut failure in failed_channels.drain(..) {
5007 // Either a commitment transactions has been confirmed on-chain or
5008 // Channel::block_disconnected detected that the funding transaction has been
5009 // reorganized out of the main chain.
5010 // We cannot broadcast our latest local state via monitor update (as
5011 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
5012 // so we track the update internally and handle it when the user next calls
5013 // timer_tick_occurred, guaranteeing we're running normally.
5014 if let Some((funding_txo, update)) = failure.0.take() {
5015 assert_eq!(update.updates.len(), 1);
5016 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
5017 assert!(should_broadcast);
5018 } else { unreachable!(); }
5019 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
5021 self.finish_force_close_channel(failure);
5025 fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5026 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
5028 if min_value_msat.is_some() && min_value_msat.unwrap() > MAX_VALUE_MSAT {
5029 return Err(APIError::APIMisuseError { err: format!("min_value_msat of {} greater than total 21 million bitcoin supply", min_value_msat.unwrap()) });
5032 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
5034 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5035 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5036 match payment_secrets.entry(payment_hash) {
5037 hash_map::Entry::Vacant(e) => {
5038 e.insert(PendingInboundPayment {
5039 payment_secret, min_value_msat, payment_preimage,
5040 user_payment_id: 0, // For compatibility with version 0.0.103 and earlier
5041 // We assume that highest_seen_timestamp is pretty close to the current time -
5042 // it's updated when we receive a new block with the maximum time we've seen in
5043 // a header. It should never be more than two hours in the future.
5044 // Thus, we add two hours here as a buffer to ensure we absolutely
5045 // never fail a payment too early.
5046 // Note that we assume that received blocks have reasonably up-to-date
5048 expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
5051 hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
5056 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
5059 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
5060 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
5062 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
5063 /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
5064 /// passed directly to [`claim_funds`].
5066 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
5068 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5069 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5073 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5074 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5076 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5078 /// [`claim_funds`]: Self::claim_funds
5079 /// [`PaymentReceived`]: events::Event::PaymentReceived
5080 /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
5081 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5082 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), ()> {
5083 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs, &self.keys_manager, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5086 /// Legacy version of [`create_inbound_payment`]. Use this method if you wish to share
5087 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5089 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5092 /// This method is deprecated and will be removed soon.
5094 /// [`create_inbound_payment`]: Self::create_inbound_payment
5096 pub fn create_inbound_payment_legacy(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<(PaymentHash, PaymentSecret), APIError> {
5097 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
5098 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5099 let payment_secret = self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs)?;
5100 Ok((payment_hash, payment_secret))
5103 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
5104 /// stored external to LDK.
5106 /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
5107 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
5108 /// the `min_value_msat` provided here, if one is provided.
5110 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
5111 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
5114 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
5115 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
5116 /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
5117 /// sender "proof-of-payment" unless they have paid the required amount.
5119 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
5120 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
5121 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
5122 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
5123 /// invoices when no timeout is set.
5125 /// Note that we use block header time to time-out pending inbound payments (with some margin
5126 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
5127 /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
5128 /// If you need exact expiry semantics, you should enforce them upon receipt of
5129 /// [`PaymentReceived`].
5131 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
5132 /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
5134 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
5135 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
5139 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
5140 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
5142 /// Errors if `min_value_msat` is greater than total bitcoin supply.
5144 /// [`create_inbound_payment`]: Self::create_inbound_payment
5145 /// [`PaymentReceived`]: events::Event::PaymentReceived
5146 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, ()> {
5147 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash, invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64)
5150 /// Legacy version of [`create_inbound_payment_for_hash`]. Use this method if you wish to share
5151 /// serialized state with LDK node(s) running 0.0.103 and earlier.
5153 /// May panic if `invoice_expiry_delta_secs` is greater than one year.
5156 /// This method is deprecated and will be removed soon.
5158 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5160 pub fn create_inbound_payment_for_hash_legacy(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32) -> Result<PaymentSecret, APIError> {
5161 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs)
5164 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
5165 /// previously returned from [`create_inbound_payment`].
5167 /// [`create_inbound_payment`]: Self::create_inbound_payment
5168 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
5169 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
5172 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
5173 /// are used when constructing the phantom invoice's route hints.
5175 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5176 pub fn get_phantom_scid(&self) -> u64 {
5177 let mut channel_state = self.channel_state.lock().unwrap();
5178 let best_block = self.best_block.read().unwrap();
5180 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block.height(), &self.genesis_hash, &self.fake_scid_rand_bytes, &self.keys_manager);
5181 // Ensure the generated scid doesn't conflict with a real channel.
5182 match channel_state.short_to_id.entry(scid_candidate) {
5183 hash_map::Entry::Occupied(_) => continue,
5184 hash_map::Entry::Vacant(_) => return scid_candidate
5189 /// Gets route hints for use in receiving [phantom node payments].
5191 /// [phantom node payments]: crate::chain::keysinterface::PhantomKeysManager
5192 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
5194 channels: self.list_usable_channels(),
5195 phantom_scid: self.get_phantom_scid(),
5196 real_node_pubkey: self.get_our_node_id(),
5200 #[cfg(any(test, fuzzing, feature = "_test_utils"))]
5201 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
5202 let events = core::cell::RefCell::new(Vec::new());
5203 let event_handler = |event: &events::Event| events.borrow_mut().push(event.clone());
5204 self.process_pending_events(&event_handler);
5209 pub fn has_pending_payments(&self) -> bool {
5210 !self.pending_outbound_payments.lock().unwrap().is_empty()
5214 pub fn clear_pending_payments(&self) {
5215 self.pending_outbound_payments.lock().unwrap().clear()
5219 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
5220 where M::Target: chain::Watch<Signer>,
5221 T::Target: BroadcasterInterface,
5222 K::Target: KeysInterface<Signer = Signer>,
5223 F::Target: FeeEstimator,
5226 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
5227 let events = RefCell::new(Vec::new());
5228 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5229 let mut result = NotifyOption::SkipPersist;
5231 // TODO: This behavior should be documented. It's unintuitive that we query
5232 // ChannelMonitors when clearing other events.
5233 if self.process_pending_monitor_events() {
5234 result = NotifyOption::DoPersist;
5237 if self.check_free_holding_cells() {
5238 result = NotifyOption::DoPersist;
5240 if self.maybe_generate_initial_closing_signed() {
5241 result = NotifyOption::DoPersist;
5244 let mut pending_events = Vec::new();
5245 let mut channel_state = self.channel_state.lock().unwrap();
5246 mem::swap(&mut pending_events, &mut channel_state.pending_msg_events);
5248 if !pending_events.is_empty() {
5249 events.replace(pending_events);
5258 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
5260 M::Target: chain::Watch<Signer>,
5261 T::Target: BroadcasterInterface,
5262 K::Target: KeysInterface<Signer = Signer>,
5263 F::Target: FeeEstimator,
5266 /// Processes events that must be periodically handled.
5268 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
5269 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
5271 /// Pending events are persisted as part of [`ChannelManager`]. While these events are cleared
5272 /// when processed, an [`EventHandler`] must be able to handle previously seen events when
5273 /// restarting from an old state.
5274 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
5275 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5276 let mut result = NotifyOption::SkipPersist;
5278 // TODO: This behavior should be documented. It's unintuitive that we query
5279 // ChannelMonitors when clearing other events.
5280 if self.process_pending_monitor_events() {
5281 result = NotifyOption::DoPersist;
5284 let mut pending_events = mem::replace(&mut *self.pending_events.lock().unwrap(), vec![]);
5285 if !pending_events.is_empty() {
5286 result = NotifyOption::DoPersist;
5289 for event in pending_events.drain(..) {
5290 handler.handle_event(&event);
5298 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
5300 M::Target: chain::Watch<Signer>,
5301 T::Target: BroadcasterInterface,
5302 K::Target: KeysInterface<Signer = Signer>,
5303 F::Target: FeeEstimator,
5306 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5308 let best_block = self.best_block.read().unwrap();
5309 assert_eq!(best_block.block_hash(), header.prev_blockhash,
5310 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
5311 assert_eq!(best_block.height(), height - 1,
5312 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
5315 self.transactions_confirmed(header, txdata, height);
5316 self.best_block_updated(header, height);
5319 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
5320 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5321 let new_height = height - 1;
5323 let mut best_block = self.best_block.write().unwrap();
5324 assert_eq!(best_block.block_hash(), header.block_hash(),
5325 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
5326 assert_eq!(best_block.height(), height,
5327 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
5328 *best_block = BestBlock::new(header.prev_blockhash, new_height)
5331 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5335 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
5337 M::Target: chain::Watch<Signer>,
5338 T::Target: BroadcasterInterface,
5339 K::Target: KeysInterface<Signer = Signer>,
5340 F::Target: FeeEstimator,
5343 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
5344 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5345 // during initialization prior to the chain_monitor being fully configured in some cases.
5346 // See the docs for `ChannelManagerReadArgs` for more.
5348 let block_hash = header.block_hash();
5349 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
5351 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5352 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger)
5353 .map(|(a, b)| (a, Vec::new(), b)));
5355 let last_best_block_height = self.best_block.read().unwrap().height();
5356 if height < last_best_block_height {
5357 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
5358 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5362 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
5363 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5364 // during initialization prior to the chain_monitor being fully configured in some cases.
5365 // See the docs for `ChannelManagerReadArgs` for more.
5367 let block_hash = header.block_hash();
5368 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
5370 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5372 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
5374 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), self.get_our_node_id(), &self.logger));
5376 macro_rules! max_time {
5377 ($timestamp: expr) => {
5379 // Update $timestamp to be the max of its current value and the block
5380 // timestamp. This should keep us close to the current time without relying on
5381 // having an explicit local time source.
5382 // Just in case we end up in a race, we loop until we either successfully
5383 // update $timestamp or decide we don't need to.
5384 let old_serial = $timestamp.load(Ordering::Acquire);
5385 if old_serial >= header.time as usize { break; }
5386 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
5392 max_time!(self.last_node_announcement_serial);
5393 max_time!(self.highest_seen_timestamp);
5394 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5395 payment_secrets.retain(|_, inbound_payment| {
5396 inbound_payment.expiry_time > header.time as u64
5399 let mut outbounds = self.pending_outbound_payments.lock().unwrap();
5400 let mut pending_events = self.pending_events.lock().unwrap();
5401 outbounds.retain(|payment_id, payment| {
5402 if payment.remaining_parts() != 0 { return true }
5403 if let PendingOutboundPayment::Retryable { starting_block_height, payment_hash, .. } = payment {
5404 if *starting_block_height + PAYMENT_EXPIRY_BLOCKS <= height {
5405 log_info!(self.logger, "Timing out payment with id {} and hash {}", log_bytes!(payment_id.0), log_bytes!(payment_hash.0));
5406 pending_events.push(events::Event::PaymentFailed {
5407 payment_id: *payment_id, payment_hash: *payment_hash,
5415 fn get_relevant_txids(&self) -> Vec<Txid> {
5416 let channel_state = self.channel_state.lock().unwrap();
5417 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
5418 for chan in channel_state.by_id.values() {
5419 if let Some(funding_txo) = chan.get_funding_txo() {
5420 res.push(funding_txo.txid);
5426 fn transaction_unconfirmed(&self, txid: &Txid) {
5427 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5428 self.do_chain_event(None, |channel| {
5429 if let Some(funding_txo) = channel.get_funding_txo() {
5430 if funding_txo.txid == *txid {
5431 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
5432 } else { Ok((None, Vec::new(), None)) }
5433 } else { Ok((None, Vec::new(), None)) }
5438 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
5440 M::Target: chain::Watch<Signer>,
5441 T::Target: BroadcasterInterface,
5442 K::Target: KeysInterface<Signer = Signer>,
5443 F::Target: FeeEstimator,
5446 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
5447 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
5449 fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
5450 (&self, height_opt: Option<u32>, f: FN) {
5451 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5452 // during initialization prior to the chain_monitor being fully configured in some cases.
5453 // See the docs for `ChannelManagerReadArgs` for more.
5455 let mut failed_channels = Vec::new();
5456 let mut timed_out_htlcs = Vec::new();
5458 let mut channel_lock = self.channel_state.lock().unwrap();
5459 let channel_state = &mut *channel_lock;
5460 let short_to_id = &mut channel_state.short_to_id;
5461 let pending_msg_events = &mut channel_state.pending_msg_events;
5462 channel_state.by_id.retain(|_, channel| {
5463 let res = f(channel);
5464 if let Ok((funding_locked_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
5465 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
5466 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
5467 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::Reason {
5471 if let Some(funding_locked) = funding_locked_opt {
5472 send_funding_locked!(short_to_id, pending_msg_events, channel, funding_locked);
5473 if channel.is_usable() {
5474 log_trace!(self.logger, "Sending funding_locked with private initial channel_update for our counterparty on channel {}", log_bytes!(channel.channel_id()));
5475 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
5476 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5477 node_id: channel.get_counterparty_node_id(),
5482 log_trace!(self.logger, "Sending funding_locked WITHOUT channel_update for {}", log_bytes!(channel.channel_id()));
5485 if let Some(announcement_sigs) = announcement_sigs {
5486 log_trace!(self.logger, "Sending announcement_signatures for channel {}", log_bytes!(channel.channel_id()));
5487 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5488 node_id: channel.get_counterparty_node_id(),
5489 msg: announcement_sigs,
5491 if let Some(height) = height_opt {
5492 if let Some(announcement) = channel.get_signed_channel_announcement(self.get_our_node_id(), self.genesis_hash, height) {
5493 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
5495 // Note that announcement_signatures fails if the channel cannot be announced,
5496 // so get_channel_update_for_broadcast will never fail by the time we get here.
5497 update_msg: self.get_channel_update_for_broadcast(channel).unwrap(),
5502 } else if let Err(reason) = res {
5503 update_maps_on_chan_removal!(self, short_to_id, channel);
5504 // It looks like our counterparty went on-chain or funding transaction was
5505 // reorged out of the main chain. Close the channel.
5506 failed_channels.push(channel.force_shutdown(true));
5507 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
5508 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5512 let reason_message = format!("{}", reason);
5513 self.issue_channel_close_events(channel, reason);
5514 pending_msg_events.push(events::MessageSendEvent::HandleError {
5515 node_id: channel.get_counterparty_node_id(),
5516 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
5517 channel_id: channel.channel_id(),
5518 data: reason_message,
5526 if let Some(height) = height_opt {
5527 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
5528 htlcs.retain(|htlc| {
5529 // If height is approaching the number of blocks we think it takes us to get
5530 // our commitment transaction confirmed before the HTLC expires, plus the
5531 // number of blocks we generally consider it to take to do a commitment update,
5532 // just give up on it and fail the HTLC.
5533 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
5534 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
5535 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
5536 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
5537 failure_code: 0x4000 | 15,
5538 data: htlc_msat_height_data
5543 !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
5548 self.handle_init_event_channel_failures(failed_channels);
5550 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
5551 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
5555 /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
5556 /// indicating whether persistence is necessary. Only one listener on
5557 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
5560 /// Note that this method is not available with the `no-std` feature.
5561 #[cfg(any(test, feature = "std"))]
5562 pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
5563 self.persistence_notifier.wait_timeout(max_wait)
5566 /// Blocks until ChannelManager needs to be persisted. Only one listener on
5567 /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
5569 pub fn await_persistable_update(&self) {
5570 self.persistence_notifier.wait()
5573 #[cfg(any(test, feature = "_test_utils"))]
5574 pub fn get_persistence_condvar_value(&self) -> bool {
5575 let mutcond = &self.persistence_notifier.persistence_lock;
5576 let &(ref mtx, _) = mutcond;
5577 let guard = mtx.lock().unwrap();
5581 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
5582 /// [`chain::Confirm`] interfaces.
5583 pub fn current_best_block(&self) -> BestBlock {
5584 self.best_block.read().unwrap().clone()
5588 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
5589 ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
5590 where M::Target: chain::Watch<Signer>,
5591 T::Target: BroadcasterInterface,
5592 K::Target: KeysInterface<Signer = Signer>,
5593 F::Target: FeeEstimator,
5596 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
5597 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5598 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
5601 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
5602 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5603 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
5606 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
5607 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5608 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
5611 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
5612 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5613 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
5616 fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
5617 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5618 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
5621 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
5622 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5623 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
5626 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
5627 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5628 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
5631 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
5632 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5633 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
5636 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
5637 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5638 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
5641 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
5642 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5643 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
5646 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
5647 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5648 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
5651 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
5652 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5653 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
5656 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
5657 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5658 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
5661 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
5662 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5663 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
5666 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
5667 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5668 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
5671 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
5672 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
5673 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
5676 NotifyOption::SkipPersist
5681 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
5682 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5683 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
5686 fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
5687 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5688 let mut failed_channels = Vec::new();
5689 let mut no_channels_remain = true;
5691 let mut channel_state_lock = self.channel_state.lock().unwrap();
5692 let channel_state = &mut *channel_state_lock;
5693 let pending_msg_events = &mut channel_state.pending_msg_events;
5694 let short_to_id = &mut channel_state.short_to_id;
5695 if no_connection_possible {
5696 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
5697 channel_state.by_id.retain(|_, chan| {
5698 if chan.get_counterparty_node_id() == *counterparty_node_id {
5699 update_maps_on_chan_removal!(self, short_to_id, chan);
5700 failed_channels.push(chan.force_shutdown(true));
5701 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5702 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
5706 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5713 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
5714 channel_state.by_id.retain(|_, chan| {
5715 if chan.get_counterparty_node_id() == *counterparty_node_id {
5716 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
5717 if chan.is_shutdown() {
5718 update_maps_on_chan_removal!(self, short_to_id, chan);
5719 self.issue_channel_close_events(chan, ClosureReason::DisconnectedPeer);
5722 no_channels_remain = false;
5728 pending_msg_events.retain(|msg| {
5730 &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
5731 &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
5732 &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
5733 &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5734 &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
5735 &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
5736 &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
5737 &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
5738 &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
5739 &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
5740 &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
5741 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
5742 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
5743 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
5744 &events::MessageSendEvent::SendChannelUpdate { ref node_id, .. } => node_id != counterparty_node_id,
5745 &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
5746 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
5747 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
5748 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
5749 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
5753 if no_channels_remain {
5754 self.per_peer_state.write().unwrap().remove(counterparty_node_id);
5757 for failure in failed_channels.drain(..) {
5758 self.finish_force_close_channel(failure);
5762 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
5763 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
5765 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5768 let mut peer_state_lock = self.per_peer_state.write().unwrap();
5769 match peer_state_lock.entry(counterparty_node_id.clone()) {
5770 hash_map::Entry::Vacant(e) => {
5771 e.insert(Mutex::new(PeerState {
5772 latest_features: init_msg.features.clone(),
5775 hash_map::Entry::Occupied(e) => {
5776 e.get().lock().unwrap().latest_features = init_msg.features.clone();
5781 let mut channel_state_lock = self.channel_state.lock().unwrap();
5782 let channel_state = &mut *channel_state_lock;
5783 let pending_msg_events = &mut channel_state.pending_msg_events;
5784 channel_state.by_id.retain(|_, chan| {
5785 if chan.get_counterparty_node_id() == *counterparty_node_id {
5786 if !chan.have_received_message() {
5787 // If we created this (outbound) channel while we were disconnected from the
5788 // peer we probably failed to send the open_channel message, which is now
5789 // lost. We can't have had anything pending related to this channel, so we just
5793 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
5794 node_id: chan.get_counterparty_node_id(),
5795 msg: chan.get_channel_reestablish(&self.logger),
5801 //TODO: Also re-broadcast announcement_signatures
5804 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
5805 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
5807 if msg.channel_id == [0; 32] {
5808 for chan in self.list_channels() {
5809 if chan.counterparty.node_id == *counterparty_node_id {
5810 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5811 let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id), Some(&msg.data));
5816 // First check if we can advance the channel type and try again.
5817 let mut channel_state = self.channel_state.lock().unwrap();
5818 if let Some(chan) = channel_state.by_id.get_mut(&msg.channel_id) {
5819 if chan.get_counterparty_node_id() != *counterparty_node_id {
5822 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash) {
5823 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
5824 node_id: *counterparty_node_id,
5832 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
5833 let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id), Some(&msg.data));
5838 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
5839 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
5840 struct PersistenceNotifier {
5841 /// Users won't access the persistence_lock directly, but rather wait on its bool using
5842 /// `wait_timeout` and `wait`.
5843 persistence_lock: (Mutex<bool>, Condvar),
5846 impl PersistenceNotifier {
5849 persistence_lock: (Mutex::new(false), Condvar::new()),
5855 let &(ref mtx, ref cvar) = &self.persistence_lock;
5856 let mut guard = mtx.lock().unwrap();
5861 guard = cvar.wait(guard).unwrap();
5862 let result = *guard;
5870 #[cfg(any(test, feature = "std"))]
5871 fn wait_timeout(&self, max_wait: Duration) -> bool {
5872 let current_time = Instant::now();
5874 let &(ref mtx, ref cvar) = &self.persistence_lock;
5875 let mut guard = mtx.lock().unwrap();
5880 guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
5881 // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
5882 // desired wait time has actually passed, and if not then restart the loop with a reduced wait
5883 // time. Note that this logic can be highly simplified through the use of
5884 // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
5886 let elapsed = current_time.elapsed();
5887 let result = *guard;
5888 if result || elapsed >= max_wait {
5892 match max_wait.checked_sub(elapsed) {
5893 None => return result,
5899 // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
5901 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
5902 let mut persistence_lock = persist_mtx.lock().unwrap();
5903 *persistence_lock = true;
5904 mem::drop(persistence_lock);
5909 const SERIALIZATION_VERSION: u8 = 1;
5910 const MIN_SERIALIZATION_VERSION: u8 = 1;
5912 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
5913 (2, fee_base_msat, required),
5914 (4, fee_proportional_millionths, required),
5915 (6, cltv_expiry_delta, required),
5918 impl_writeable_tlv_based!(ChannelCounterparty, {
5919 (2, node_id, required),
5920 (4, features, required),
5921 (6, unspendable_punishment_reserve, required),
5922 (8, forwarding_info, option),
5923 (9, outbound_htlc_minimum_msat, option),
5924 (11, outbound_htlc_maximum_msat, option),
5927 impl_writeable_tlv_based!(ChannelDetails, {
5928 (1, inbound_scid_alias, option),
5929 (2, channel_id, required),
5930 (3, channel_type, option),
5931 (4, counterparty, required),
5932 (6, funding_txo, option),
5933 (8, short_channel_id, option),
5934 (10, channel_value_satoshis, required),
5935 (12, unspendable_punishment_reserve, option),
5936 (14, user_channel_id, required),
5937 (16, balance_msat, required),
5938 (18, outbound_capacity_msat, required),
5939 (20, inbound_capacity_msat, required),
5940 (22, confirmations_required, option),
5941 (24, force_close_spend_delay, option),
5942 (26, is_outbound, required),
5943 (28, is_funding_locked, required),
5944 (30, is_usable, required),
5945 (32, is_public, required),
5946 (33, inbound_htlc_minimum_msat, option),
5947 (35, inbound_htlc_maximum_msat, option),
5950 impl_writeable_tlv_based!(PhantomRouteHints, {
5951 (2, channels, vec_type),
5952 (4, phantom_scid, required),
5953 (6, real_node_pubkey, required),
5956 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
5958 (0, onion_packet, required),
5959 (2, short_channel_id, required),
5962 (0, payment_data, required),
5963 (1, phantom_shared_secret, option),
5964 (2, incoming_cltv_expiry, required),
5966 (2, ReceiveKeysend) => {
5967 (0, payment_preimage, required),
5968 (2, incoming_cltv_expiry, required),
5972 impl_writeable_tlv_based!(PendingHTLCInfo, {
5973 (0, routing, required),
5974 (2, incoming_shared_secret, required),
5975 (4, payment_hash, required),
5976 (6, amt_to_forward, required),
5977 (8, outgoing_cltv_value, required)
5981 impl Writeable for HTLCFailureMsg {
5982 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
5984 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
5986 channel_id.write(writer)?;
5987 htlc_id.write(writer)?;
5988 reason.write(writer)?;
5990 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
5991 channel_id, htlc_id, sha256_of_onion, failure_code
5994 channel_id.write(writer)?;
5995 htlc_id.write(writer)?;
5996 sha256_of_onion.write(writer)?;
5997 failure_code.write(writer)?;
6004 impl Readable for HTLCFailureMsg {
6005 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6006 let id: u8 = Readable::read(reader)?;
6009 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
6010 channel_id: Readable::read(reader)?,
6011 htlc_id: Readable::read(reader)?,
6012 reason: Readable::read(reader)?,
6016 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
6017 channel_id: Readable::read(reader)?,
6018 htlc_id: Readable::read(reader)?,
6019 sha256_of_onion: Readable::read(reader)?,
6020 failure_code: Readable::read(reader)?,
6023 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
6024 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
6025 // messages contained in the variants.
6026 // In version 0.0.101, support for reading the variants with these types was added, and
6027 // we should migrate to writing these variants when UpdateFailHTLC or
6028 // UpdateFailMalformedHTLC get TLV fields.
6030 let length: BigSize = Readable::read(reader)?;
6031 let mut s = FixedLengthReader::new(reader, length.0);
6032 let res = Readable::read(&mut s)?;
6033 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6034 Ok(HTLCFailureMsg::Relay(res))
6037 let length: BigSize = Readable::read(reader)?;
6038 let mut s = FixedLengthReader::new(reader, length.0);
6039 let res = Readable::read(&mut s)?;
6040 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
6041 Ok(HTLCFailureMsg::Malformed(res))
6043 _ => Err(DecodeError::UnknownRequiredFeature),
6048 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
6053 impl_writeable_tlv_based!(HTLCPreviousHopData, {
6054 (0, short_channel_id, required),
6055 (1, phantom_shared_secret, option),
6056 (2, outpoint, required),
6057 (4, htlc_id, required),
6058 (6, incoming_packet_shared_secret, required)
6061 impl Writeable for ClaimableHTLC {
6062 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6063 let payment_data = match &self.onion_payload {
6064 OnionPayload::Invoice(data) => Some(data.clone()),
6067 let keysend_preimage = match self.onion_payload {
6068 OnionPayload::Invoice(_) => None,
6069 OnionPayload::Spontaneous(preimage) => Some(preimage.clone()),
6074 (0, self.prev_hop, required), (2, self.value, required),
6075 (4, payment_data, option), (6, self.cltv_expiry, required),
6076 (8, keysend_preimage, option),
6082 impl Readable for ClaimableHTLC {
6083 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6084 let mut prev_hop = ::util::ser::OptionDeserWrapper(None);
6086 let mut payment_data: Option<msgs::FinalOnionHopData> = None;
6087 let mut cltv_expiry = 0;
6088 let mut keysend_preimage: Option<PaymentPreimage> = None;
6092 (0, prev_hop, required), (2, value, required),
6093 (4, payment_data, option), (6, cltv_expiry, required),
6094 (8, keysend_preimage, option)
6096 let onion_payload = match keysend_preimage {
6098 if payment_data.is_some() {
6099 return Err(DecodeError::InvalidValue)
6101 OnionPayload::Spontaneous(p)
6104 if payment_data.is_none() {
6105 return Err(DecodeError::InvalidValue)
6107 OnionPayload::Invoice(payment_data.unwrap())
6111 prev_hop: prev_hop.0.unwrap(),
6120 impl Readable for HTLCSource {
6121 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
6122 let id: u8 = Readable::read(reader)?;
6125 let mut session_priv: ::util::ser::OptionDeserWrapper<SecretKey> = ::util::ser::OptionDeserWrapper(None);
6126 let mut first_hop_htlc_msat: u64 = 0;
6127 let mut path = Some(Vec::new());
6128 let mut payment_id = None;
6129 let mut payment_secret = None;
6130 let mut payment_params = None;
6131 read_tlv_fields!(reader, {
6132 (0, session_priv, required),
6133 (1, payment_id, option),
6134 (2, first_hop_htlc_msat, required),
6135 (3, payment_secret, option),
6136 (4, path, vec_type),
6137 (5, payment_params, option),
6139 if payment_id.is_none() {
6140 // For backwards compat, if there was no payment_id written, use the session_priv bytes
6142 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
6144 Ok(HTLCSource::OutboundRoute {
6145 session_priv: session_priv.0.unwrap(),
6146 first_hop_htlc_msat: first_hop_htlc_msat,
6147 path: path.unwrap(),
6148 payment_id: payment_id.unwrap(),
6153 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
6154 _ => Err(DecodeError::UnknownRequiredFeature),
6159 impl Writeable for HTLCSource {
6160 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::io::Error> {
6162 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id, payment_secret, payment_params } => {
6164 let payment_id_opt = Some(payment_id);
6165 write_tlv_fields!(writer, {
6166 (0, session_priv, required),
6167 (1, payment_id_opt, option),
6168 (2, first_hop_htlc_msat, required),
6169 (3, payment_secret, option),
6170 (4, path, vec_type),
6171 (5, payment_params, option),
6174 HTLCSource::PreviousHopData(ref field) => {
6176 field.write(writer)?;
6183 impl_writeable_tlv_based_enum!(HTLCFailReason,
6184 (0, LightningError) => {
6188 (0, failure_code, required),
6189 (2, data, vec_type),
6193 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
6195 (0, forward_info, required),
6196 (2, prev_short_channel_id, required),
6197 (4, prev_htlc_id, required),
6198 (6, prev_funding_outpoint, required),
6201 (0, htlc_id, required),
6202 (2, err_packet, required),
6206 impl_writeable_tlv_based!(PendingInboundPayment, {
6207 (0, payment_secret, required),
6208 (2, expiry_time, required),
6209 (4, user_payment_id, required),
6210 (6, payment_preimage, required),
6211 (8, min_value_msat, required),
6214 impl_writeable_tlv_based_enum_upgradable!(PendingOutboundPayment,
6216 (0, session_privs, required),
6219 (0, session_privs, required),
6220 (1, payment_hash, option),
6223 (0, session_privs, required),
6224 (1, pending_fee_msat, option),
6225 (2, payment_hash, required),
6226 (4, payment_secret, option),
6227 (6, total_msat, required),
6228 (8, pending_amt_msat, required),
6229 (10, starting_block_height, required),
6232 (0, session_privs, required),
6233 (2, payment_hash, required),
6237 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
6238 where M::Target: chain::Watch<Signer>,
6239 T::Target: BroadcasterInterface,
6240 K::Target: KeysInterface<Signer = Signer>,
6241 F::Target: FeeEstimator,
6244 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
6245 let _consistency_lock = self.total_consistency_lock.write().unwrap();
6247 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
6249 self.genesis_hash.write(writer)?;
6251 let best_block = self.best_block.read().unwrap();
6252 best_block.height().write(writer)?;
6253 best_block.block_hash().write(writer)?;
6256 let channel_state = self.channel_state.lock().unwrap();
6257 let mut unfunded_channels = 0;
6258 for (_, channel) in channel_state.by_id.iter() {
6259 if !channel.is_funding_initiated() {
6260 unfunded_channels += 1;
6263 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
6264 for (_, channel) in channel_state.by_id.iter() {
6265 if channel.is_funding_initiated() {
6266 channel.write(writer)?;
6270 (channel_state.forward_htlcs.len() as u64).write(writer)?;
6271 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
6272 short_channel_id.write(writer)?;
6273 (pending_forwards.len() as u64).write(writer)?;
6274 for forward in pending_forwards {
6275 forward.write(writer)?;
6279 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
6280 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
6281 payment_hash.write(writer)?;
6282 (previous_hops.len() as u64).write(writer)?;
6283 for htlc in previous_hops.iter() {
6284 htlc.write(writer)?;
6288 let per_peer_state = self.per_peer_state.write().unwrap();
6289 (per_peer_state.len() as u64).write(writer)?;
6290 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
6291 peer_pubkey.write(writer)?;
6292 let peer_state = peer_state_mutex.lock().unwrap();
6293 peer_state.latest_features.write(writer)?;
6296 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
6297 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
6298 let events = self.pending_events.lock().unwrap();
6299 (events.len() as u64).write(writer)?;
6300 for event in events.iter() {
6301 event.write(writer)?;
6304 let background_events = self.pending_background_events.lock().unwrap();
6305 (background_events.len() as u64).write(writer)?;
6306 for event in background_events.iter() {
6308 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
6310 funding_txo.write(writer)?;
6311 monitor_update.write(writer)?;
6316 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
6317 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
6319 (pending_inbound_payments.len() as u64).write(writer)?;
6320 for (hash, pending_payment) in pending_inbound_payments.iter() {
6321 hash.write(writer)?;
6322 pending_payment.write(writer)?;
6325 // For backwards compat, write the session privs and their total length.
6326 let mut num_pending_outbounds_compat: u64 = 0;
6327 for (_, outbound) in pending_outbound_payments.iter() {
6328 if !outbound.is_fulfilled() && !outbound.abandoned() {
6329 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
6332 num_pending_outbounds_compat.write(writer)?;
6333 for (_, outbound) in pending_outbound_payments.iter() {
6335 PendingOutboundPayment::Legacy { session_privs } |
6336 PendingOutboundPayment::Retryable { session_privs, .. } => {
6337 for session_priv in session_privs.iter() {
6338 session_priv.write(writer)?;
6341 PendingOutboundPayment::Fulfilled { .. } => {},
6342 PendingOutboundPayment::Abandoned { .. } => {},
6346 // Encode without retry info for 0.0.101 compatibility.
6347 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
6348 for (id, outbound) in pending_outbound_payments.iter() {
6350 PendingOutboundPayment::Legacy { session_privs } |
6351 PendingOutboundPayment::Retryable { session_privs, .. } => {
6352 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
6357 write_tlv_fields!(writer, {
6358 (1, pending_outbound_payments_no_retry, required),
6359 (3, pending_outbound_payments, required),
6360 (5, self.our_network_pubkey, required),
6361 (7, self.fake_scid_rand_bytes, required),
6368 /// Arguments for the creation of a ChannelManager that are not deserialized.
6370 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
6372 /// 1) Deserialize all stored [`ChannelMonitor`]s.
6373 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
6374 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
6375 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
6376 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
6377 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
6378 /// same way you would handle a [`chain::Filter`] call using
6379 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
6380 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
6381 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
6382 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
6383 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
6384 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
6386 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
6387 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
6389 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
6390 /// call any other methods on the newly-deserialized [`ChannelManager`].
6392 /// Note that because some channels may be closed during deserialization, it is critical that you
6393 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
6394 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
6395 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
6396 /// not force-close the same channels but consider them live), you may end up revoking a state for
6397 /// which you've already broadcasted the transaction.
6399 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
6400 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6401 where M::Target: chain::Watch<Signer>,
6402 T::Target: BroadcasterInterface,
6403 K::Target: KeysInterface<Signer = Signer>,
6404 F::Target: FeeEstimator,
6407 /// The keys provider which will give us relevant keys. Some keys will be loaded during
6408 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
6410 pub keys_manager: K,
6412 /// The fee_estimator for use in the ChannelManager in the future.
6414 /// No calls to the FeeEstimator will be made during deserialization.
6415 pub fee_estimator: F,
6416 /// The chain::Watch for use in the ChannelManager in the future.
6418 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
6419 /// you have deserialized ChannelMonitors separately and will add them to your
6420 /// chain::Watch after deserializing this ChannelManager.
6421 pub chain_monitor: M,
6423 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
6424 /// used to broadcast the latest local commitment transactions of channels which must be
6425 /// force-closed during deserialization.
6426 pub tx_broadcaster: T,
6427 /// The Logger for use in the ChannelManager and which may be used to log information during
6428 /// deserialization.
6430 /// Default settings used for new channels. Any existing channels will continue to use the
6431 /// runtime settings which were stored when the ChannelManager was serialized.
6432 pub default_config: UserConfig,
6434 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
6435 /// value.get_funding_txo() should be the key).
6437 /// If a monitor is inconsistent with the channel state during deserialization the channel will
6438 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
6439 /// is true for missing channels as well. If there is a monitor missing for which we find
6440 /// channel data Err(DecodeError::InvalidValue) will be returned.
6442 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
6445 /// (C-not exported) because we have no HashMap bindings
6446 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
6449 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6450 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
6451 where M::Target: chain::Watch<Signer>,
6452 T::Target: BroadcasterInterface,
6453 K::Target: KeysInterface<Signer = Signer>,
6454 F::Target: FeeEstimator,
6457 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
6458 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
6459 /// populate a HashMap directly from C.
6460 pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
6461 mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
6463 keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
6464 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
6469 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
6470 // SipmleArcChannelManager type:
6471 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6472 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
6473 where M::Target: chain::Watch<Signer>,
6474 T::Target: BroadcasterInterface,
6475 K::Target: KeysInterface<Signer = Signer>,
6476 F::Target: FeeEstimator,
6479 fn read<R: io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6480 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
6481 Ok((blockhash, Arc::new(chan_manager)))
6485 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
6486 ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
6487 where M::Target: chain::Watch<Signer>,
6488 T::Target: BroadcasterInterface,
6489 K::Target: KeysInterface<Signer = Signer>,
6490 F::Target: FeeEstimator,
6493 fn read<R: io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
6494 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
6496 let genesis_hash: BlockHash = Readable::read(reader)?;
6497 let best_block_height: u32 = Readable::read(reader)?;
6498 let best_block_hash: BlockHash = Readable::read(reader)?;
6500 let mut failed_htlcs = Vec::new();
6502 let channel_count: u64 = Readable::read(reader)?;
6503 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
6504 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6505 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
6506 let mut channel_closures = Vec::new();
6507 for _ in 0..channel_count {
6508 let mut channel: Channel<Signer> = Channel::read(reader, (&args.keys_manager, best_block_height))?;
6509 let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
6510 funding_txo_set.insert(funding_txo.clone());
6511 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
6512 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
6513 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
6514 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
6515 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
6516 // If the channel is ahead of the monitor, return InvalidValue:
6517 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
6518 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6519 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6520 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6521 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6522 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
6523 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6524 return Err(DecodeError::InvalidValue);
6525 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
6526 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
6527 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
6528 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
6529 // But if the channel is behind of the monitor, close the channel:
6530 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
6531 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
6532 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
6533 log_bytes!(channel.channel_id()), monitor.get_latest_update_id(), channel.get_latest_monitor_update_id());
6534 let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
6535 failed_htlcs.append(&mut new_failed_htlcs);
6536 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
6537 channel_closures.push(events::Event::ChannelClosed {
6538 channel_id: channel.channel_id(),
6539 user_channel_id: channel.get_user_id(),
6540 reason: ClosureReason::OutdatedChannelManager
6543 log_info!(args.logger, "Successfully loaded channel {}", log_bytes!(channel.channel_id()));
6544 if let Some(short_channel_id) = channel.get_short_channel_id() {
6545 short_to_id.insert(short_channel_id, channel.channel_id());
6547 by_id.insert(channel.channel_id(), channel);
6550 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", log_bytes!(channel.channel_id()));
6551 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
6552 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
6553 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
6554 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
6555 return Err(DecodeError::InvalidValue);
6559 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
6560 if !funding_txo_set.contains(funding_txo) {
6561 log_info!(args.logger, "Broadcasting latest holder commitment transaction for closed channel {}", log_bytes!(funding_txo.to_channel_id()));
6562 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
6566 const MAX_ALLOC_SIZE: usize = 1024 * 64;
6567 let forward_htlcs_count: u64 = Readable::read(reader)?;
6568 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
6569 for _ in 0..forward_htlcs_count {
6570 let short_channel_id = Readable::read(reader)?;
6571 let pending_forwards_count: u64 = Readable::read(reader)?;
6572 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
6573 for _ in 0..pending_forwards_count {
6574 pending_forwards.push(Readable::read(reader)?);
6576 forward_htlcs.insert(short_channel_id, pending_forwards);
6579 let claimable_htlcs_count: u64 = Readable::read(reader)?;
6580 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
6581 for _ in 0..claimable_htlcs_count {
6582 let payment_hash = Readable::read(reader)?;
6583 let previous_hops_len: u64 = Readable::read(reader)?;
6584 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
6585 for _ in 0..previous_hops_len {
6586 previous_hops.push(Readable::read(reader)?);
6588 claimable_htlcs.insert(payment_hash, previous_hops);
6591 let peer_count: u64 = Readable::read(reader)?;
6592 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
6593 for _ in 0..peer_count {
6594 let peer_pubkey = Readable::read(reader)?;
6595 let peer_state = PeerState {
6596 latest_features: Readable::read(reader)?,
6598 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
6601 let event_count: u64 = Readable::read(reader)?;
6602 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
6603 for _ in 0..event_count {
6604 match MaybeReadable::read(reader)? {
6605 Some(event) => pending_events_read.push(event),
6609 if forward_htlcs_count > 0 {
6610 // If we have pending HTLCs to forward, assume we either dropped a
6611 // `PendingHTLCsForwardable` or the user received it but never processed it as they
6612 // shut down before the timer hit. Either way, set the time_forwardable to a small
6613 // constant as enough time has likely passed that we should simply handle the forwards
6614 // now, or at least after the user gets a chance to reconnect to our peers.
6615 pending_events_read.push(events::Event::PendingHTLCsForwardable {
6616 time_forwardable: Duration::from_secs(2),
6620 let background_event_count: u64 = Readable::read(reader)?;
6621 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
6622 for _ in 0..background_event_count {
6623 match <u8 as Readable>::read(reader)? {
6624 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
6625 _ => return Err(DecodeError::InvalidValue),
6629 let last_node_announcement_serial: u32 = Readable::read(reader)?;
6630 let highest_seen_timestamp: u32 = Readable::read(reader)?;
6632 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
6633 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
6634 for _ in 0..pending_inbound_payment_count {
6635 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
6636 return Err(DecodeError::InvalidValue);
6640 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
6641 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
6642 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
6643 for _ in 0..pending_outbound_payments_count_compat {
6644 let session_priv = Readable::read(reader)?;
6645 let payment = PendingOutboundPayment::Legacy {
6646 session_privs: [session_priv].iter().cloned().collect()
6648 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
6649 return Err(DecodeError::InvalidValue)
6653 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
6654 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
6655 let mut pending_outbound_payments = None;
6656 let mut received_network_pubkey: Option<PublicKey> = None;
6657 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
6658 read_tlv_fields!(reader, {
6659 (1, pending_outbound_payments_no_retry, option),
6660 (3, pending_outbound_payments, option),
6661 (5, received_network_pubkey, option),
6662 (7, fake_scid_rand_bytes, option),
6664 if fake_scid_rand_bytes.is_none() {
6665 fake_scid_rand_bytes = Some(args.keys_manager.get_secure_random_bytes());
6668 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
6669 pending_outbound_payments = Some(pending_outbound_payments_compat);
6670 } else if pending_outbound_payments.is_none() {
6671 let mut outbounds = HashMap::new();
6672 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
6673 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
6675 pending_outbound_payments = Some(outbounds);
6677 // If we're tracking pending payments, ensure we haven't lost any by looking at the
6678 // ChannelMonitor data for any channels for which we do not have authorative state
6679 // (i.e. those for which we just force-closed above or we otherwise don't have a
6680 // corresponding `Channel` at all).
6681 // This avoids several edge-cases where we would otherwise "forget" about pending
6682 // payments which are still in-flight via their on-chain state.
6683 // We only rebuild the pending payments map if we were most recently serialized by
6685 for (_, monitor) in args.channel_monitors {
6686 if by_id.get(&monitor.get_funding_txo().0.to_channel_id()).is_none() {
6687 for (htlc_source, htlc) in monitor.get_pending_outbound_htlcs() {
6688 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, payment_secret, .. } = htlc_source {
6689 if path.is_empty() {
6690 log_error!(args.logger, "Got an empty path for a pending payment");
6691 return Err(DecodeError::InvalidValue);
6693 let path_amt = path.last().unwrap().fee_msat;
6694 let mut session_priv_bytes = [0; 32];
6695 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
6696 match pending_outbound_payments.as_mut().unwrap().entry(payment_id) {
6697 hash_map::Entry::Occupied(mut entry) => {
6698 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
6699 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
6700 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), log_bytes!(htlc.payment_hash.0));
6702 hash_map::Entry::Vacant(entry) => {
6703 let path_fee = path.get_path_fees();
6704 entry.insert(PendingOutboundPayment::Retryable {
6705 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
6706 payment_hash: htlc.payment_hash,
6708 pending_amt_msat: path_amt,
6709 pending_fee_msat: Some(path_fee),
6710 total_msat: path_amt,
6711 starting_block_height: best_block_height,
6713 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
6714 path_amt, log_bytes!(htlc.payment_hash.0), log_bytes!(session_priv_bytes));
6723 let mut secp_ctx = Secp256k1::new();
6724 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
6726 if !channel_closures.is_empty() {
6727 pending_events_read.append(&mut channel_closures);
6730 let our_network_key = match args.keys_manager.get_node_secret(Recipient::Node) {
6732 Err(()) => return Err(DecodeError::InvalidValue)
6734 let our_network_pubkey = PublicKey::from_secret_key(&secp_ctx, &our_network_key);
6735 if let Some(network_pubkey) = received_network_pubkey {
6736 if network_pubkey != our_network_pubkey {
6737 log_error!(args.logger, "Key that was generated does not match the existing key.");
6738 return Err(DecodeError::InvalidValue);
6742 let mut outbound_scid_aliases = HashSet::new();
6743 for (chan_id, chan) in by_id.iter_mut() {
6744 if chan.outbound_scid_alias() == 0 {
6745 let mut outbound_scid_alias;
6747 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
6748 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.keys_manager);
6749 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
6751 chan.set_outbound_scid_alias(outbound_scid_alias);
6752 } else if !outbound_scid_aliases.insert(chan.outbound_scid_alias()) {
6753 // Note that in rare cases its possible to hit this while reading an older
6754 // channel if we just happened to pick a colliding outbound alias above.
6755 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
6756 return Err(DecodeError::InvalidValue);
6758 if chan.is_usable() {
6759 if short_to_id.insert(chan.outbound_scid_alias(), *chan_id).is_some() {
6760 // Note that in rare cases its possible to hit this while reading an older
6761 // channel if we just happened to pick a colliding outbound alias above.
6762 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.outbound_scid_alias());
6763 return Err(DecodeError::InvalidValue);
6768 let inbound_pmt_key_material = args.keys_manager.get_inbound_payment_key_material();
6769 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
6770 let channel_manager = ChannelManager {
6772 fee_estimator: args.fee_estimator,
6773 chain_monitor: args.chain_monitor,
6774 tx_broadcaster: args.tx_broadcaster,
6776 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
6778 channel_state: Mutex::new(ChannelHolder {
6783 pending_msg_events: Vec::new(),
6785 inbound_payment_key: expanded_inbound_key,
6786 pending_inbound_payments: Mutex::new(pending_inbound_payments),
6787 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
6789 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
6790 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
6796 last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
6797 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
6799 per_peer_state: RwLock::new(per_peer_state),
6801 pending_events: Mutex::new(pending_events_read),
6802 pending_background_events: Mutex::new(pending_background_events_read),
6803 total_consistency_lock: RwLock::new(()),
6804 persistence_notifier: PersistenceNotifier::new(),
6806 keys_manager: args.keys_manager,
6807 logger: args.logger,
6808 default_configuration: args.default_config,
6811 for htlc_source in failed_htlcs.drain(..) {
6812 channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
6815 //TODO: Broadcast channel update for closed channels, but only after we've made a
6816 //connection or two.
6818 Ok((best_block_hash.clone(), channel_manager))
6824 use bitcoin::hashes::Hash;
6825 use bitcoin::hashes::sha256::Hash as Sha256;
6826 use core::time::Duration;
6827 use core::sync::atomic::Ordering;
6828 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
6829 use ln::channelmanager::{PaymentId, PaymentSendFailure};
6830 use ln::channelmanager::inbound_payment;
6831 use ln::features::InitFeatures;
6832 use ln::functional_test_utils::*;
6834 use ln::msgs::ChannelMessageHandler;
6835 use routing::router::{PaymentParameters, RouteParameters, find_route};
6836 use util::errors::APIError;
6837 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
6838 use util::test_utils;
6839 use chain::keysinterface::KeysInterface;
6841 #[cfg(feature = "std")]
6843 fn test_wait_timeout() {
6844 use ln::channelmanager::PersistenceNotifier;
6846 use core::sync::atomic::AtomicBool;
6849 let persistence_notifier = Arc::new(PersistenceNotifier::new());
6850 let thread_notifier = Arc::clone(&persistence_notifier);
6852 let exit_thread = Arc::new(AtomicBool::new(false));
6853 let exit_thread_clone = exit_thread.clone();
6854 thread::spawn(move || {
6856 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
6857 let mut persistence_lock = persist_mtx.lock().unwrap();
6858 *persistence_lock = true;
6861 if exit_thread_clone.load(Ordering::SeqCst) {
6867 // Check that we can block indefinitely until updates are available.
6868 let _ = persistence_notifier.wait();
6870 // Check that the PersistenceNotifier will return after the given duration if updates are
6873 if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
6878 exit_thread.store(true, Ordering::SeqCst);
6880 // Check that the PersistenceNotifier will return after the given duration even if no updates
6883 if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
6890 fn test_notify_limits() {
6891 // Check that a few cases which don't require the persistence of a new ChannelManager,
6892 // indeed, do not cause the persistence of a new ChannelManager.
6893 let chanmon_cfgs = create_chanmon_cfgs(3);
6894 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
6895 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
6896 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
6898 // All nodes start with a persistable update pending as `create_network` connects each node
6899 // with all other nodes to make most tests simpler.
6900 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6901 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6902 assert!(nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6904 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6906 // We check that the channel info nodes have doesn't change too early, even though we try
6907 // to connect messages with new values
6908 chan.0.contents.fee_base_msat *= 2;
6909 chan.1.contents.fee_base_msat *= 2;
6910 let node_a_chan_info = nodes[0].node.list_channels()[0].clone();
6911 let node_b_chan_info = nodes[1].node.list_channels()[0].clone();
6913 // The first two nodes (which opened a channel) should now require fresh persistence
6914 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6915 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6916 // ... but the last node should not.
6917 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6918 // After persisting the first two nodes they should no longer need fresh persistence.
6919 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6920 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6922 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
6923 // about the channel.
6924 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
6925 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
6926 assert!(!nodes[2].node.await_persistable_update_timeout(Duration::from_millis(1)));
6928 // The nodes which are a party to the channel should also ignore messages from unrelated
6930 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
6931 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
6932 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
6933 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
6934 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6935 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6937 // At this point the channel info given by peers should still be the same.
6938 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
6939 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
6941 // An earlier version of handle_channel_update didn't check the directionality of the
6942 // update message and would always update the local fee info, even if our peer was
6943 // (spuriously) forwarding us our own channel_update.
6944 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
6945 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
6946 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
6948 // First deliver each peers' own message, checking that the node doesn't need to be
6949 // persisted and that its channel info remains the same.
6950 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
6951 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
6952 assert!(!nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6953 assert!(!nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6954 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
6955 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
6957 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
6958 // the channel info has updated.
6959 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
6960 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
6961 assert!(nodes[0].node.await_persistable_update_timeout(Duration::from_millis(1)));
6962 assert!(nodes[1].node.await_persistable_update_timeout(Duration::from_millis(1)));
6963 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
6964 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
6968 fn test_keysend_dup_hash_partial_mpp() {
6969 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
6971 let chanmon_cfgs = create_chanmon_cfgs(2);
6972 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
6973 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
6974 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
6975 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
6977 // First, send a partial MPP payment.
6978 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
6979 let payment_id = PaymentId([42; 32]);
6980 // Use the utility function send_payment_along_path to send the payment with MPP data which
6981 // indicates there are more HTLCs coming.
6982 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
6983 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
6984 check_added_monitors!(nodes[0], 1);
6985 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6986 assert_eq!(events.len(), 1);
6987 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
6989 // Next, send a keysend payment with the same payment_hash and make sure it fails.
6990 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
6991 check_added_monitors!(nodes[0], 1);
6992 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
6993 assert_eq!(events.len(), 1);
6994 let ev = events.drain(..).next().unwrap();
6995 let payment_event = SendEvent::from_event(ev);
6996 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
6997 check_added_monitors!(nodes[1], 0);
6998 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
6999 expect_pending_htlcs_forwardable!(nodes[1]);
7000 expect_pending_htlcs_forwardable!(nodes[1]);
7001 check_added_monitors!(nodes[1], 1);
7002 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7003 assert!(updates.update_add_htlcs.is_empty());
7004 assert!(updates.update_fulfill_htlcs.is_empty());
7005 assert_eq!(updates.update_fail_htlcs.len(), 1);
7006 assert!(updates.update_fail_malformed_htlcs.is_empty());
7007 assert!(updates.update_fee.is_none());
7008 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7009 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7010 expect_payment_failed!(nodes[0], our_payment_hash, true);
7012 // Send the second half of the original MPP payment.
7013 nodes[0].node.send_payment_along_path(&route.paths[0], &route.payment_params, &our_payment_hash, &Some(payment_secret), 200_000, cur_height, payment_id, &None).unwrap();
7014 check_added_monitors!(nodes[0], 1);
7015 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7016 assert_eq!(events.len(), 1);
7017 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
7019 // Claim the full MPP payment. Note that we can't use a test utility like
7020 // claim_funds_along_route because the ordering of the messages causes the second half of the
7021 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
7022 // lightning messages manually.
7023 assert!(nodes[1].node.claim_funds(payment_preimage));
7024 check_added_monitors!(nodes[1], 2);
7025 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7026 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
7027 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
7028 check_added_monitors!(nodes[0], 1);
7029 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7030 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
7031 check_added_monitors!(nodes[1], 1);
7032 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7033 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
7034 check_added_monitors!(nodes[1], 1);
7035 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7036 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
7037 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
7038 check_added_monitors!(nodes[0], 1);
7039 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
7040 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
7041 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7042 check_added_monitors!(nodes[0], 1);
7043 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
7044 check_added_monitors!(nodes[1], 1);
7045 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
7046 check_added_monitors!(nodes[1], 1);
7047 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
7048 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
7049 check_added_monitors!(nodes[0], 1);
7051 // Note that successful MPP payments will generate a single PaymentSent event upon the first
7052 // path's success and a PaymentPathSuccessful event for each path's success.
7053 let events = nodes[0].node.get_and_clear_pending_events();
7054 assert_eq!(events.len(), 3);
7056 Event::PaymentSent { payment_id: ref id, payment_preimage: ref preimage, payment_hash: ref hash, .. } => {
7057 assert_eq!(Some(payment_id), *id);
7058 assert_eq!(payment_preimage, *preimage);
7059 assert_eq!(our_payment_hash, *hash);
7061 _ => panic!("Unexpected event"),
7064 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7065 assert_eq!(payment_id, *actual_payment_id);
7066 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7067 assert_eq!(route.paths[0], *path);
7069 _ => panic!("Unexpected event"),
7072 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
7073 assert_eq!(payment_id, *actual_payment_id);
7074 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
7075 assert_eq!(route.paths[0], *path);
7077 _ => panic!("Unexpected event"),
7082 fn test_keysend_dup_payment_hash() {
7083 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
7084 // outbound regular payment fails as expected.
7085 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
7086 // fails as expected.
7087 let chanmon_cfgs = create_chanmon_cfgs(2);
7088 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7089 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7090 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7091 create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
7092 let scorer = test_utils::TestScorer::with_penalty(0);
7093 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7095 // To start (1), send a regular payment but don't claim it.
7096 let expected_route = [&nodes[1]];
7097 let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &expected_route, 100_000);
7099 // Next, attempt a keysend payment and make sure it fails.
7100 let route_params = RouteParameters {
7101 payment_params: PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id()),
7102 final_value_msat: 100_000,
7103 final_cltv_expiry_delta: TEST_FINAL_CLTV,
7105 let route = find_route(
7106 &nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None,
7107 nodes[0].logger, &scorer, &random_seed_bytes
7109 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7110 check_added_monitors!(nodes[0], 1);
7111 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7112 assert_eq!(events.len(), 1);
7113 let ev = events.drain(..).next().unwrap();
7114 let payment_event = SendEvent::from_event(ev);
7115 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7116 check_added_monitors!(nodes[1], 0);
7117 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7118 expect_pending_htlcs_forwardable!(nodes[1]);
7119 expect_pending_htlcs_forwardable!(nodes[1]);
7120 check_added_monitors!(nodes[1], 1);
7121 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7122 assert!(updates.update_add_htlcs.is_empty());
7123 assert!(updates.update_fulfill_htlcs.is_empty());
7124 assert_eq!(updates.update_fail_htlcs.len(), 1);
7125 assert!(updates.update_fail_malformed_htlcs.is_empty());
7126 assert!(updates.update_fee.is_none());
7127 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7128 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7129 expect_payment_failed!(nodes[0], payment_hash, true);
7131 // Finally, claim the original payment.
7132 claim_payment(&nodes[0], &expected_route, payment_preimage);
7134 // To start (2), send a keysend payment but don't claim it.
7135 let payment_preimage = PaymentPreimage([42; 32]);
7136 let route = find_route(
7137 &nodes[0].node.get_our_node_id(), &route_params, nodes[0].network_graph, None,
7138 nodes[0].logger, &scorer, &random_seed_bytes
7140 let (payment_hash, _) = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage)).unwrap();
7141 check_added_monitors!(nodes[0], 1);
7142 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7143 assert_eq!(events.len(), 1);
7144 let event = events.pop().unwrap();
7145 let path = vec![&nodes[1]];
7146 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
7148 // Next, attempt a regular payment and make sure it fails.
7149 let payment_secret = PaymentSecret([43; 32]);
7150 nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
7151 check_added_monitors!(nodes[0], 1);
7152 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
7153 assert_eq!(events.len(), 1);
7154 let ev = events.drain(..).next().unwrap();
7155 let payment_event = SendEvent::from_event(ev);
7156 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
7157 check_added_monitors!(nodes[1], 0);
7158 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
7159 expect_pending_htlcs_forwardable!(nodes[1]);
7160 expect_pending_htlcs_forwardable!(nodes[1]);
7161 check_added_monitors!(nodes[1], 1);
7162 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
7163 assert!(updates.update_add_htlcs.is_empty());
7164 assert!(updates.update_fulfill_htlcs.is_empty());
7165 assert_eq!(updates.update_fail_htlcs.len(), 1);
7166 assert!(updates.update_fail_malformed_htlcs.is_empty());
7167 assert!(updates.update_fee.is_none());
7168 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
7169 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
7170 expect_payment_failed!(nodes[0], payment_hash, true);
7172 // Finally, succeed the keysend payment.
7173 claim_payment(&nodes[0], &expected_route, payment_preimage);
7177 fn test_keysend_hash_mismatch() {
7178 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
7179 // preimage doesn't match the msg's payment hash.
7180 let chanmon_cfgs = create_chanmon_cfgs(2);
7181 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7182 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7183 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7185 let payer_pubkey = nodes[0].node.get_our_node_id();
7186 let payee_pubkey = nodes[1].node.get_our_node_id();
7187 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7188 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7190 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
7191 let route_params = RouteParameters {
7192 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7193 final_value_msat: 10000,
7194 final_cltv_expiry_delta: 40,
7196 let network_graph = nodes[0].network_graph;
7197 let first_hops = nodes[0].node.list_usable_channels();
7198 let scorer = test_utils::TestScorer::with_penalty(0);
7199 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7200 let route = find_route(
7201 &payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
7202 nodes[0].logger, &scorer, &random_seed_bytes
7205 let test_preimage = PaymentPreimage([42; 32]);
7206 let mismatch_payment_hash = PaymentHash([43; 32]);
7207 let _ = nodes[0].node.send_payment_internal(&route, mismatch_payment_hash, &None, Some(test_preimage), None, None).unwrap();
7208 check_added_monitors!(nodes[0], 1);
7210 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7211 assert_eq!(updates.update_add_htlcs.len(), 1);
7212 assert!(updates.update_fulfill_htlcs.is_empty());
7213 assert!(updates.update_fail_htlcs.is_empty());
7214 assert!(updates.update_fail_malformed_htlcs.is_empty());
7215 assert!(updates.update_fee.is_none());
7216 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7218 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "Payment preimage didn't match payment hash".to_string(), 1);
7222 fn test_keysend_msg_with_secret_err() {
7223 // Test that we error as expected if we receive a keysend payment that includes a payment secret.
7224 let chanmon_cfgs = create_chanmon_cfgs(2);
7225 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7226 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7227 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7229 let payer_pubkey = nodes[0].node.get_our_node_id();
7230 let payee_pubkey = nodes[1].node.get_our_node_id();
7231 nodes[0].node.peer_connected(&payee_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7232 nodes[1].node.peer_connected(&payer_pubkey, &msgs::Init { features: InitFeatures::known(), remote_network_address: None });
7234 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1], InitFeatures::known(), InitFeatures::known());
7235 let route_params = RouteParameters {
7236 payment_params: PaymentParameters::for_keysend(payee_pubkey),
7237 final_value_msat: 10000,
7238 final_cltv_expiry_delta: 40,
7240 let network_graph = nodes[0].network_graph;
7241 let first_hops = nodes[0].node.list_usable_channels();
7242 let scorer = test_utils::TestScorer::with_penalty(0);
7243 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
7244 let route = find_route(
7245 &payer_pubkey, &route_params, network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
7246 nodes[0].logger, &scorer, &random_seed_bytes
7249 let test_preimage = PaymentPreimage([42; 32]);
7250 let test_secret = PaymentSecret([43; 32]);
7251 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
7252 let _ = nodes[0].node.send_payment_internal(&route, payment_hash, &Some(test_secret), Some(test_preimage), None, None).unwrap();
7253 check_added_monitors!(nodes[0], 1);
7255 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
7256 assert_eq!(updates.update_add_htlcs.len(), 1);
7257 assert!(updates.update_fulfill_htlcs.is_empty());
7258 assert!(updates.update_fail_htlcs.is_empty());
7259 assert!(updates.update_fail_malformed_htlcs.is_empty());
7260 assert!(updates.update_fee.is_none());
7261 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
7263 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager".to_string(), "We don't support MPP keysend payments".to_string(), 1);
7267 fn test_multi_hop_missing_secret() {
7268 let chanmon_cfgs = create_chanmon_cfgs(4);
7269 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
7270 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
7271 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
7273 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7274 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7275 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7276 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
7278 // Marshall an MPP route.
7279 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
7280 let path = route.paths[0].clone();
7281 route.paths.push(path);
7282 route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
7283 route.paths[0][0].short_channel_id = chan_1_id;
7284 route.paths[0][1].short_channel_id = chan_3_id;
7285 route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
7286 route.paths[1][0].short_channel_id = chan_2_id;
7287 route.paths[1][1].short_channel_id = chan_4_id;
7289 match nodes[0].node.send_payment(&route, payment_hash, &None).unwrap_err() {
7290 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
7291 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err)) },
7292 _ => panic!("unexpected error")
7297 fn bad_inbound_payment_hash() {
7298 // Add coverage for checking that a user-provided payment hash matches the payment secret.
7299 let chanmon_cfgs = create_chanmon_cfgs(2);
7300 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
7301 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
7302 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
7304 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
7305 let payment_data = msgs::FinalOnionHopData {
7307 total_msat: 100_000,
7310 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
7311 // payment verification fails as expected.
7312 let mut bad_payment_hash = payment_hash.clone();
7313 bad_payment_hash.0[0] += 1;
7314 match inbound_payment::verify(bad_payment_hash, payment_data.clone(), nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
7315 Ok(_) => panic!("Unexpected ok"),
7317 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment".to_string(), "Failing HTLC with user-generated payment_hash".to_string(), 1);
7321 // Check that using the original payment hash succeeds.
7322 assert!(inbound_payment::verify(payment_hash, payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
7326 #[cfg(all(any(test, feature = "_test_utils"), feature = "_bench_unstable"))]
7329 use chain::chainmonitor::{ChainMonitor, Persist};
7330 use chain::keysinterface::{KeysManager, KeysInterface, InMemorySigner};
7331 use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
7332 use ln::features::{InitFeatures, InvoiceFeatures};
7333 use ln::functional_test_utils::*;
7334 use ln::msgs::{ChannelMessageHandler, Init};
7335 use routing::network_graph::NetworkGraph;
7336 use routing::router::{PaymentParameters, get_route};
7337 use util::test_utils;
7338 use util::config::UserConfig;
7339 use util::events::{Event, MessageSendEvent, MessageSendEventsProvider};
7341 use bitcoin::hashes::Hash;
7342 use bitcoin::hashes::sha256::Hash as Sha256;
7343 use bitcoin::{Block, BlockHeader, Transaction, TxOut};
7345 use sync::{Arc, Mutex};
7349 struct NodeHolder<'a, P: Persist<InMemorySigner>> {
7350 node: &'a ChannelManager<InMemorySigner,
7351 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
7352 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
7353 &'a test_utils::TestLogger, &'a P>,
7354 &'a test_utils::TestBroadcaster, &'a KeysManager,
7355 &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
7360 fn bench_sends(bench: &mut Bencher) {
7361 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
7364 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
7365 // Do a simple benchmark of sending a payment back and forth between two nodes.
7366 // Note that this is unrealistic as each payment send will require at least two fsync
7368 let network = bitcoin::Network::Testnet;
7369 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
7371 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new()), blocks: Arc::new(Mutex::new(Vec::new()))};
7372 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
7374 let mut config: UserConfig = Default::default();
7375 config.own_channel_config.minimum_depth = 1;
7377 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
7378 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
7379 let seed_a = [1u8; 32];
7380 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
7381 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
7383 best_block: BestBlock::from_genesis(network),
7385 let node_a_holder = NodeHolder { node: &node_a };
7387 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
7388 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
7389 let seed_b = [2u8; 32];
7390 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
7391 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
7393 best_block: BestBlock::from_genesis(network),
7395 let node_b_holder = NodeHolder { node: &node_b };
7397 node_a.peer_connected(&node_b.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None });
7398 node_b.peer_connected(&node_a.get_our_node_id(), &Init { features: InitFeatures::known(), remote_network_address: None });
7399 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
7400 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
7401 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
7404 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
7405 tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
7406 value: 8_000_000, script_pubkey: output_script,
7408 node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
7409 } else { panic!(); }
7411 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
7412 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
7414 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
7417 header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
7420 Listen::block_connected(&node_a, &block, 1);
7421 Listen::block_connected(&node_b, &block, 1);
7423 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
7424 let msg_events = node_a.get_and_clear_pending_msg_events();
7425 assert_eq!(msg_events.len(), 2);
7426 match msg_events[0] {
7427 MessageSendEvent::SendFundingLocked { ref msg, .. } => {
7428 node_b.handle_funding_locked(&node_a.get_our_node_id(), msg);
7429 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
7433 match msg_events[1] {
7434 MessageSendEvent::SendChannelUpdate { .. } => {},
7438 let dummy_graph = NetworkGraph::new(genesis_hash);
7440 let mut payment_count: u64 = 0;
7441 macro_rules! send_payment {
7442 ($node_a: expr, $node_b: expr) => {
7443 let usable_channels = $node_a.list_usable_channels();
7444 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id())
7445 .with_features(InvoiceFeatures::known());
7446 let scorer = test_utils::TestScorer::with_penalty(0);
7447 let seed = [3u8; 32];
7448 let keys_manager = KeysManager::new(&seed, 42, 42);
7449 let random_seed_bytes = keys_manager.get_secure_random_bytes();
7450 let route = get_route(&$node_a.get_our_node_id(), &payment_params, &dummy_graph.read_only(),
7451 Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), 10_000, TEST_FINAL_CLTV, &logger_a, &scorer, &random_seed_bytes).unwrap();
7453 let mut payment_preimage = PaymentPreimage([0; 32]);
7454 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
7456 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
7457 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200).unwrap();
7459 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
7460 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
7461 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
7462 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
7463 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
7464 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
7465 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
7466 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
7468 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
7469 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
7470 assert!($node_b.claim_funds(payment_preimage));
7472 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
7473 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
7474 assert_eq!(node_id, $node_a.get_our_node_id());
7475 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
7476 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
7478 _ => panic!("Failed to generate claim event"),
7481 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
7482 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
7483 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
7484 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
7486 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
7491 send_payment!(node_a, node_b);
7492 send_payment!(node_b, node_a);