1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::BlockHeader;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::{genesis_block, ChainHash};
23 use bitcoin::network::constants::Network;
25 use bitcoin::hashes::Hash;
26 use bitcoin::hashes::sha256::Hash as Sha256;
27 use bitcoin::hash_types::{BlockHash, Txid};
29 use bitcoin::secp256k1::{SecretKey,PublicKey};
30 use bitcoin::secp256k1::Secp256k1;
31 use bitcoin::{LockTime, secp256k1, Sequence};
34 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
35 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
36 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
37 use crate::chain::transaction::{OutPoint, TransactionData};
39 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
40 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
41 // construct one themselves.
42 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
43 use crate::ln::channel::{Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel};
44 use crate::ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
45 #[cfg(any(feature = "_test_utils", test))]
46 use crate::ln::features::Bolt11InvoiceFeatures;
47 use crate::routing::gossip::NetworkGraph;
48 use crate::routing::router::{BlindedTail, DefaultRouter, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
49 use crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters};
51 use crate::ln::onion_utils;
52 use crate::ln::onion_utils::HTLCFailReason;
53 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
55 use crate::ln::outbound_payment;
56 use crate::ln::outbound_payment::{OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs};
57 use crate::ln::wire::Encode;
58 use crate::sign::{EntropySource, KeysManager, NodeSigner, Recipient, SignerProvider, WriteableEcdsaChannelSigner};
59 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
60 use crate::util::wakers::{Future, Notifier};
61 use crate::util::scid_utils::fake_scid;
62 use crate::util::string::UntrustedString;
63 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
64 use crate::util::logger::{Level, Logger};
65 use crate::util::errors::APIError;
67 use alloc::collections::BTreeMap;
70 use crate::prelude::*;
72 use core::cell::RefCell;
74 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
75 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
76 use core::time::Duration;
79 // Re-export this for use in the public API.
80 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
81 use crate::ln::script::ShutdownScript;
83 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
85 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
86 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
87 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
89 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
90 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
91 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
92 // before we forward it.
94 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
95 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
96 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
97 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
98 // our payment, which we can use to decode errors or inform the user that the payment was sent.
100 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
101 pub(super) enum PendingHTLCRouting {
103 onion_packet: msgs::OnionPacket,
104 /// The SCID from the onion that we should forward to. This could be a real SCID or a fake one
105 /// generated using `get_fake_scid` from the scid_utils::fake_scid module.
106 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
109 payment_data: msgs::FinalOnionHopData,
110 payment_metadata: Option<Vec<u8>>,
111 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
112 phantom_shared_secret: Option<[u8; 32]>,
113 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
114 custom_tlvs: Vec<(u64, Vec<u8>)>,
117 /// This was added in 0.0.116 and will break deserialization on downgrades.
118 payment_data: Option<msgs::FinalOnionHopData>,
119 payment_preimage: PaymentPreimage,
120 payment_metadata: Option<Vec<u8>>,
121 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
122 /// See [`RecipientOnionFields::custom_tlvs`] for more info.
123 custom_tlvs: Vec<(u64, Vec<u8>)>,
127 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
128 pub(super) struct PendingHTLCInfo {
129 pub(super) routing: PendingHTLCRouting,
130 pub(super) incoming_shared_secret: [u8; 32],
131 payment_hash: PaymentHash,
133 pub(super) incoming_amt_msat: Option<u64>, // Added in 0.0.113
134 /// Sender intended amount to forward or receive (actual amount received
135 /// may overshoot this in either case)
136 pub(super) outgoing_amt_msat: u64,
137 pub(super) outgoing_cltv_value: u32,
138 /// The fee being skimmed off the top of this HTLC. If this is a forward, it'll be the fee we are
139 /// skimming. If we're receiving this HTLC, it's the fee that our counterparty skimmed.
140 pub(super) skimmed_fee_msat: Option<u64>,
143 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
144 pub(super) enum HTLCFailureMsg {
145 Relay(msgs::UpdateFailHTLC),
146 Malformed(msgs::UpdateFailMalformedHTLC),
149 /// Stores whether we can't forward an HTLC or relevant forwarding info
150 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
151 pub(super) enum PendingHTLCStatus {
152 Forward(PendingHTLCInfo),
153 Fail(HTLCFailureMsg),
156 pub(super) struct PendingAddHTLCInfo {
157 pub(super) forward_info: PendingHTLCInfo,
159 // These fields are produced in `forward_htlcs()` and consumed in
160 // `process_pending_htlc_forwards()` for constructing the
161 // `HTLCSource::PreviousHopData` for failed and forwarded
164 // Note that this may be an outbound SCID alias for the associated channel.
165 prev_short_channel_id: u64,
167 prev_funding_outpoint: OutPoint,
168 prev_user_channel_id: u128,
171 pub(super) enum HTLCForwardInfo {
172 AddHTLC(PendingAddHTLCInfo),
175 err_packet: msgs::OnionErrorPacket,
179 /// Tracks the inbound corresponding to an outbound HTLC
180 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
181 pub(crate) struct HTLCPreviousHopData {
182 // Note that this may be an outbound SCID alias for the associated channel.
183 short_channel_id: u64,
184 user_channel_id: Option<u128>,
186 incoming_packet_shared_secret: [u8; 32],
187 phantom_shared_secret: Option<[u8; 32]>,
189 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
190 // channel with a preimage provided by the forward channel.
195 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
197 /// This is only here for backwards-compatibility in serialization, in the future it can be
198 /// removed, breaking clients running 0.0.106 and earlier.
199 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
201 /// Contains the payer-provided preimage.
202 Spontaneous(PaymentPreimage),
205 /// HTLCs that are to us and can be failed/claimed by the user
206 struct ClaimableHTLC {
207 prev_hop: HTLCPreviousHopData,
209 /// The amount (in msats) of this MPP part
211 /// The amount (in msats) that the sender intended to be sent in this MPP
212 /// part (used for validating total MPP amount)
213 sender_intended_value: u64,
214 onion_payload: OnionPayload,
216 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
217 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
218 total_value_received: Option<u64>,
219 /// The sender intended sum total of all MPP parts specified in the onion
221 /// The extra fee our counterparty skimmed off the top of this HTLC.
222 counterparty_skimmed_fee_msat: Option<u64>,
225 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
226 fn from(val: &ClaimableHTLC) -> Self {
227 events::ClaimedHTLC {
228 channel_id: val.prev_hop.outpoint.to_channel_id(),
229 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
230 cltv_expiry: val.cltv_expiry,
231 value_msat: val.value,
236 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
237 /// a payment and ensure idempotency in LDK.
239 /// This is not exported to bindings users as we just use [u8; 32] directly
240 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
241 pub struct PaymentId(pub [u8; Self::LENGTH]);
244 /// Number of bytes in the id.
245 pub const LENGTH: usize = 32;
248 impl Writeable for PaymentId {
249 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
254 impl Readable for PaymentId {
255 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
256 let buf: [u8; 32] = Readable::read(r)?;
261 impl core::fmt::Display for PaymentId {
262 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
263 crate::util::logger::DebugBytes(&self.0).fmt(f)
267 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
269 /// This is not exported to bindings users as we just use [u8; 32] directly
270 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
271 pub struct InterceptId(pub [u8; 32]);
273 impl Writeable for InterceptId {
274 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
279 impl Readable for InterceptId {
280 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
281 let buf: [u8; 32] = Readable::read(r)?;
286 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
287 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
288 pub(crate) enum SentHTLCId {
289 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
290 OutboundRoute { session_priv: SecretKey },
293 pub(crate) fn from_source(source: &HTLCSource) -> Self {
295 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
296 short_channel_id: hop_data.short_channel_id,
297 htlc_id: hop_data.htlc_id,
299 HTLCSource::OutboundRoute { session_priv, .. } =>
300 Self::OutboundRoute { session_priv: *session_priv },
304 impl_writeable_tlv_based_enum!(SentHTLCId,
305 (0, PreviousHopData) => {
306 (0, short_channel_id, required),
307 (2, htlc_id, required),
309 (2, OutboundRoute) => {
310 (0, session_priv, required),
315 /// Tracks the inbound corresponding to an outbound HTLC
316 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
317 #[derive(Clone, Debug, PartialEq, Eq)]
318 pub(crate) enum HTLCSource {
319 PreviousHopData(HTLCPreviousHopData),
322 session_priv: SecretKey,
323 /// Technically we can recalculate this from the route, but we cache it here to avoid
324 /// doing a double-pass on route when we get a failure back
325 first_hop_htlc_msat: u64,
326 payment_id: PaymentId,
329 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
330 impl core::hash::Hash for HTLCSource {
331 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
333 HTLCSource::PreviousHopData(prev_hop_data) => {
335 prev_hop_data.hash(hasher);
337 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
340 session_priv[..].hash(hasher);
341 payment_id.hash(hasher);
342 first_hop_htlc_msat.hash(hasher);
348 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
350 pub fn dummy() -> Self {
351 HTLCSource::OutboundRoute {
352 path: Path { hops: Vec::new(), blinded_tail: None },
353 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
354 first_hop_htlc_msat: 0,
355 payment_id: PaymentId([2; 32]),
359 #[cfg(debug_assertions)]
360 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
361 /// transaction. Useful to ensure different datastructures match up.
362 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
363 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
364 *first_hop_htlc_msat == htlc.amount_msat
366 // There's nothing we can check for forwarded HTLCs
372 struct InboundOnionErr {
378 /// This enum is used to specify which error data to send to peers when failing back an HTLC
379 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
381 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
382 #[derive(Clone, Copy)]
383 pub enum FailureCode {
384 /// We had a temporary error processing the payment. Useful if no other error codes fit
385 /// and you want to indicate that the payer may want to retry.
386 TemporaryNodeFailure,
387 /// We have a required feature which was not in this onion. For example, you may require
388 /// some additional metadata that was not provided with this payment.
389 RequiredNodeFeatureMissing,
390 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
391 /// the HTLC is too close to the current block height for safe handling.
392 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
393 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
394 IncorrectOrUnknownPaymentDetails,
395 /// We failed to process the payload after the onion was decrypted. You may wish to
396 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
398 /// If available, the tuple data may include the type number and byte offset in the
399 /// decrypted byte stream where the failure occurred.
400 InvalidOnionPayload(Option<(u64, u16)>),
403 impl Into<u16> for FailureCode {
404 fn into(self) -> u16 {
406 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
407 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
408 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
409 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
414 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
415 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
416 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
417 /// peer_state lock. We then return the set of things that need to be done outside the lock in
418 /// this struct and call handle_error!() on it.
420 struct MsgHandleErrInternal {
421 err: msgs::LightningError,
422 chan_id: Option<(ChannelId, u128)>, // If Some a channel of ours has been closed
423 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
424 channel_capacity: Option<u64>,
426 impl MsgHandleErrInternal {
428 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
430 err: LightningError {
432 action: msgs::ErrorAction::SendErrorMessage {
433 msg: msgs::ErrorMessage {
440 shutdown_finish: None,
441 channel_capacity: None,
445 fn from_no_close(err: msgs::LightningError) -> Self {
446 Self { err, chan_id: None, shutdown_finish: None, channel_capacity: None }
449 fn from_finish_shutdown(err: String, channel_id: ChannelId, user_channel_id: u128, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>, channel_capacity: u64) -> Self {
451 err: LightningError {
453 action: msgs::ErrorAction::SendErrorMessage {
454 msg: msgs::ErrorMessage {
460 chan_id: Some((channel_id, user_channel_id)),
461 shutdown_finish: Some((shutdown_res, channel_update)),
462 channel_capacity: Some(channel_capacity)
466 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
469 ChannelError::Warn(msg) => LightningError {
471 action: msgs::ErrorAction::SendWarningMessage {
472 msg: msgs::WarningMessage {
476 log_level: Level::Warn,
479 ChannelError::Ignore(msg) => LightningError {
481 action: msgs::ErrorAction::IgnoreError,
483 ChannelError::Close(msg) => LightningError {
485 action: msgs::ErrorAction::SendErrorMessage {
486 msg: msgs::ErrorMessage {
494 shutdown_finish: None,
495 channel_capacity: None,
499 fn closes_channel(&self) -> bool {
500 self.chan_id.is_some()
504 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
505 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
506 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
507 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
508 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
510 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
511 /// be sent in the order they appear in the return value, however sometimes the order needs to be
512 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
513 /// they were originally sent). In those cases, this enum is also returned.
514 #[derive(Clone, PartialEq)]
515 pub(super) enum RAACommitmentOrder {
516 /// Send the CommitmentUpdate messages first
518 /// Send the RevokeAndACK message first
522 /// Information about a payment which is currently being claimed.
523 struct ClaimingPayment {
525 payment_purpose: events::PaymentPurpose,
526 receiver_node_id: PublicKey,
527 htlcs: Vec<events::ClaimedHTLC>,
528 sender_intended_value: Option<u64>,
530 impl_writeable_tlv_based!(ClaimingPayment, {
531 (0, amount_msat, required),
532 (2, payment_purpose, required),
533 (4, receiver_node_id, required),
534 (5, htlcs, optional_vec),
535 (7, sender_intended_value, option),
538 struct ClaimablePayment {
539 purpose: events::PaymentPurpose,
540 onion_fields: Option<RecipientOnionFields>,
541 htlcs: Vec<ClaimableHTLC>,
544 /// Information about claimable or being-claimed payments
545 struct ClaimablePayments {
546 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
547 /// failed/claimed by the user.
549 /// Note that, no consistency guarantees are made about the channels given here actually
550 /// existing anymore by the time you go to read them!
552 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
553 /// we don't get a duplicate payment.
554 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
556 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
557 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
558 /// as an [`events::Event::PaymentClaimed`].
559 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
562 /// Events which we process internally but cannot be processed immediately at the generation site
563 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
564 /// running normally, and specifically must be processed before any other non-background
565 /// [`ChannelMonitorUpdate`]s are applied.
566 enum BackgroundEvent {
567 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
568 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
569 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
570 /// channel has been force-closed we do not need the counterparty node_id.
572 /// Note that any such events are lost on shutdown, so in general they must be updates which
573 /// are regenerated on startup.
574 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelMonitorUpdate)),
575 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
576 /// channel to continue normal operation.
578 /// In general this should be used rather than
579 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
580 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
581 /// error the other variant is acceptable.
583 /// Note that any such events are lost on shutdown, so in general they must be updates which
584 /// are regenerated on startup.
585 MonitorUpdateRegeneratedOnStartup {
586 counterparty_node_id: PublicKey,
587 funding_txo: OutPoint,
588 update: ChannelMonitorUpdate
590 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
591 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
593 MonitorUpdatesComplete {
594 counterparty_node_id: PublicKey,
595 channel_id: ChannelId,
600 pub(crate) enum MonitorUpdateCompletionAction {
601 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
602 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
603 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
604 /// event can be generated.
605 PaymentClaimed { payment_hash: PaymentHash },
606 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
607 /// operation of another channel.
609 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
610 /// from completing a monitor update which removes the payment preimage until the inbound edge
611 /// completes a monitor update containing the payment preimage. In that case, after the inbound
612 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
614 EmitEventAndFreeOtherChannel {
615 event: events::Event,
616 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, RAAMonitorUpdateBlockingAction)>,
620 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
621 (0, PaymentClaimed) => { (0, payment_hash, required) },
622 (2, EmitEventAndFreeOtherChannel) => {
623 (0, event, upgradable_required),
624 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
625 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
626 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
627 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
628 // downgrades to prior versions.
629 (1, downstream_counterparty_and_funding_outpoint, option),
633 #[derive(Clone, Debug, PartialEq, Eq)]
634 pub(crate) enum EventCompletionAction {
635 ReleaseRAAChannelMonitorUpdate {
636 counterparty_node_id: PublicKey,
637 channel_funding_outpoint: OutPoint,
640 impl_writeable_tlv_based_enum!(EventCompletionAction,
641 (0, ReleaseRAAChannelMonitorUpdate) => {
642 (0, channel_funding_outpoint, required),
643 (2, counterparty_node_id, required),
647 #[derive(Clone, PartialEq, Eq, Debug)]
648 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
649 /// the blocked action here. See enum variants for more info.
650 pub(crate) enum RAAMonitorUpdateBlockingAction {
651 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
652 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
654 ForwardedPaymentInboundClaim {
655 /// The upstream channel ID (i.e. the inbound edge).
656 channel_id: ChannelId,
657 /// The HTLC ID on the inbound edge.
662 impl RAAMonitorUpdateBlockingAction {
663 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
664 Self::ForwardedPaymentInboundClaim {
665 channel_id: prev_hop.outpoint.to_channel_id(),
666 htlc_id: prev_hop.htlc_id,
671 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
672 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
676 /// State we hold per-peer.
677 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
678 /// `channel_id` -> `ChannelPhase`
680 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
681 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
682 /// `temporary_channel_id` -> `InboundChannelRequest`.
684 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
685 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
686 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
687 /// the channel is rejected, then the entry is simply removed.
688 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
689 /// The latest `InitFeatures` we heard from the peer.
690 latest_features: InitFeatures,
691 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
692 /// for broadcast messages, where ordering isn't as strict).
693 pub(super) pending_msg_events: Vec<MessageSendEvent>,
694 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
695 /// user but which have not yet completed.
697 /// Note that the channel may no longer exist. For example if the channel was closed but we
698 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
699 /// for a missing channel.
700 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
701 /// Map from a specific channel to some action(s) that should be taken when all pending
702 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
704 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
705 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
706 /// channels with a peer this will just be one allocation and will amount to a linear list of
707 /// channels to walk, avoiding the whole hashing rigmarole.
709 /// Note that the channel may no longer exist. For example, if a channel was closed but we
710 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
711 /// for a missing channel. While a malicious peer could construct a second channel with the
712 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
713 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
714 /// duplicates do not occur, so such channels should fail without a monitor update completing.
715 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
716 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
717 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
718 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
719 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
720 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
721 /// The peer is currently connected (i.e. we've seen a
722 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
723 /// [`ChannelMessageHandler::peer_disconnected`].
727 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
728 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
729 /// If true is passed for `require_disconnected`, the function will return false if we haven't
730 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
731 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
732 if require_disconnected && self.is_connected {
735 self.channel_by_id.iter().filter(|(_, phase)| matches!(phase, ChannelPhase::Funded(_))).count() == 0
736 && self.monitor_update_blocked_actions.is_empty()
737 && self.in_flight_monitor_updates.is_empty()
740 // Returns a count of all channels we have with this peer, including unfunded channels.
741 fn total_channel_count(&self) -> usize {
742 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
745 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
746 fn has_channel(&self, channel_id: &ChannelId) -> bool {
747 self.channel_by_id.contains_key(channel_id) ||
748 self.inbound_channel_request_by_id.contains_key(channel_id)
752 /// A not-yet-accepted inbound (from counterparty) channel. Once
753 /// accepted, the parameters will be used to construct a channel.
754 pub(super) struct InboundChannelRequest {
755 /// The original OpenChannel message.
756 pub open_channel_msg: msgs::OpenChannel,
757 /// The number of ticks remaining before the request expires.
758 pub ticks_remaining: i32,
761 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
762 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
763 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
765 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
766 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
768 /// For users who don't want to bother doing their own payment preimage storage, we also store that
771 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
772 /// and instead encoding it in the payment secret.
773 struct PendingInboundPayment {
774 /// The payment secret that the sender must use for us to accept this payment
775 payment_secret: PaymentSecret,
776 /// Time at which this HTLC expires - blocks with a header time above this value will result in
777 /// this payment being removed.
779 /// Arbitrary identifier the user specifies (or not)
780 user_payment_id: u64,
781 // Other required attributes of the payment, optionally enforced:
782 payment_preimage: Option<PaymentPreimage>,
783 min_value_msat: Option<u64>,
786 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
787 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
788 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
789 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
790 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
791 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
792 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
793 /// of [`KeysManager`] and [`DefaultRouter`].
795 /// This is not exported to bindings users as Arcs don't make sense in bindings
796 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
804 Arc<NetworkGraph<Arc<L>>>,
806 Arc<Mutex<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
807 ProbabilisticScoringFeeParameters,
808 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
813 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
814 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
815 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
816 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
817 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
818 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
819 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
820 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
821 /// of [`KeysManager`] and [`DefaultRouter`].
823 /// This is not exported to bindings users as Arcs don't make sense in bindings
824 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
833 &'f NetworkGraph<&'g L>,
835 &'h Mutex<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
836 ProbabilisticScoringFeeParameters,
837 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
842 /// A trivial trait which describes any [`ChannelManager`].
843 pub trait AChannelManager {
844 /// A type implementing [`chain::Watch`].
845 type Watch: chain::Watch<Self::Signer> + ?Sized;
846 /// A type that may be dereferenced to [`Self::Watch`].
847 type M: Deref<Target = Self::Watch>;
848 /// A type implementing [`BroadcasterInterface`].
849 type Broadcaster: BroadcasterInterface + ?Sized;
850 /// A type that may be dereferenced to [`Self::Broadcaster`].
851 type T: Deref<Target = Self::Broadcaster>;
852 /// A type implementing [`EntropySource`].
853 type EntropySource: EntropySource + ?Sized;
854 /// A type that may be dereferenced to [`Self::EntropySource`].
855 type ES: Deref<Target = Self::EntropySource>;
856 /// A type implementing [`NodeSigner`].
857 type NodeSigner: NodeSigner + ?Sized;
858 /// A type that may be dereferenced to [`Self::NodeSigner`].
859 type NS: Deref<Target = Self::NodeSigner>;
860 /// A type implementing [`WriteableEcdsaChannelSigner`].
861 type Signer: WriteableEcdsaChannelSigner + Sized;
862 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
863 type SignerProvider: SignerProvider<Signer = Self::Signer> + ?Sized;
864 /// A type that may be dereferenced to [`Self::SignerProvider`].
865 type SP: Deref<Target = Self::SignerProvider>;
866 /// A type implementing [`FeeEstimator`].
867 type FeeEstimator: FeeEstimator + ?Sized;
868 /// A type that may be dereferenced to [`Self::FeeEstimator`].
869 type F: Deref<Target = Self::FeeEstimator>;
870 /// A type implementing [`Router`].
871 type Router: Router + ?Sized;
872 /// A type that may be dereferenced to [`Self::Router`].
873 type R: Deref<Target = Self::Router>;
874 /// A type implementing [`Logger`].
875 type Logger: Logger + ?Sized;
876 /// A type that may be dereferenced to [`Self::Logger`].
877 type L: Deref<Target = Self::Logger>;
878 /// Returns a reference to the actual [`ChannelManager`] object.
879 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
882 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
883 for ChannelManager<M, T, ES, NS, SP, F, R, L>
885 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
886 T::Target: BroadcasterInterface,
887 ES::Target: EntropySource,
888 NS::Target: NodeSigner,
889 SP::Target: SignerProvider,
890 F::Target: FeeEstimator,
894 type Watch = M::Target;
896 type Broadcaster = T::Target;
898 type EntropySource = ES::Target;
900 type NodeSigner = NS::Target;
902 type Signer = <SP::Target as SignerProvider>::Signer;
903 type SignerProvider = SP::Target;
905 type FeeEstimator = F::Target;
907 type Router = R::Target;
909 type Logger = L::Target;
911 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
914 /// Manager which keeps track of a number of channels and sends messages to the appropriate
915 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
917 /// Implements [`ChannelMessageHandler`], handling the multi-channel parts and passing things through
918 /// to individual Channels.
920 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
921 /// all peers during write/read (though does not modify this instance, only the instance being
922 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
923 /// called [`funding_transaction_generated`] for outbound channels) being closed.
925 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
926 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
927 /// [`ChannelMonitorUpdate`] before returning from
928 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
929 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
930 /// `ChannelManager` operations from occurring during the serialization process). If the
931 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
932 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
933 /// will be lost (modulo on-chain transaction fees).
935 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
936 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
937 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
939 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
940 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
941 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
942 /// offline for a full minute. In order to track this, you must call
943 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
945 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
946 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
947 /// not have a channel with being unable to connect to us or open new channels with us if we have
948 /// many peers with unfunded channels.
950 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
951 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
952 /// never limited. Please ensure you limit the count of such channels yourself.
954 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
955 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
956 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
957 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
958 /// you're using lightning-net-tokio.
960 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
961 /// [`funding_created`]: msgs::FundingCreated
962 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
963 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
964 /// [`update_channel`]: chain::Watch::update_channel
965 /// [`ChannelUpdate`]: msgs::ChannelUpdate
966 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
967 /// [`read`]: ReadableArgs::read
970 // The tree structure below illustrates the lock order requirements for the different locks of the
971 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
972 // and should then be taken in the order of the lowest to the highest level in the tree.
973 // Note that locks on different branches shall not be taken at the same time, as doing so will
974 // create a new lock order for those specific locks in the order they were taken.
978 // `total_consistency_lock`
980 // |__`forward_htlcs`
982 // | |__`pending_intercepted_htlcs`
984 // |__`per_peer_state`
986 // | |__`pending_inbound_payments`
988 // | |__`claimable_payments`
990 // | |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
996 // | |__`short_to_chan_info`
998 // | |__`outbound_scid_aliases`
1000 // | |__`best_block`
1002 // | |__`pending_events`
1004 // | |__`pending_background_events`
1006 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1008 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
1009 T::Target: BroadcasterInterface,
1010 ES::Target: EntropySource,
1011 NS::Target: NodeSigner,
1012 SP::Target: SignerProvider,
1013 F::Target: FeeEstimator,
1017 default_configuration: UserConfig,
1018 genesis_hash: BlockHash,
1019 fee_estimator: LowerBoundedFeeEstimator<F>,
1025 /// See `ChannelManager` struct-level documentation for lock order requirements.
1027 pub(super) best_block: RwLock<BestBlock>,
1029 best_block: RwLock<BestBlock>,
1030 secp_ctx: Secp256k1<secp256k1::All>,
1032 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1033 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1034 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1035 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1037 /// See `ChannelManager` struct-level documentation for lock order requirements.
1038 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1040 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1041 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1042 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1043 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1044 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1045 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1046 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1047 /// after reloading from disk while replaying blocks against ChannelMonitors.
1049 /// See `PendingOutboundPayment` documentation for more info.
1051 /// See `ChannelManager` struct-level documentation for lock order requirements.
1052 pending_outbound_payments: OutboundPayments,
1054 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1056 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1057 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1058 /// and via the classic SCID.
1060 /// Note that no consistency guarantees are made about the existence of a channel with the
1061 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1063 /// See `ChannelManager` struct-level documentation for lock order requirements.
1065 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1067 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1068 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1069 /// until the user tells us what we should do with them.
1071 /// See `ChannelManager` struct-level documentation for lock order requirements.
1072 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1074 /// The sets of payments which are claimable or currently being claimed. See
1075 /// [`ClaimablePayments`]' individual field docs for more info.
1077 /// See `ChannelManager` struct-level documentation for lock order requirements.
1078 claimable_payments: Mutex<ClaimablePayments>,
1080 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1081 /// and some closed channels which reached a usable state prior to being closed. This is used
1082 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1083 /// active channel list on load.
1085 /// See `ChannelManager` struct-level documentation for lock order requirements.
1086 outbound_scid_aliases: Mutex<HashSet<u64>>,
1088 /// `channel_id` -> `counterparty_node_id`.
1090 /// Only `channel_id`s are allowed as keys in this map, and not `temporary_channel_id`s. As
1091 /// multiple channels with the same `temporary_channel_id` to different peers can exist,
1092 /// allowing `temporary_channel_id`s in this map would cause collisions for such channels.
1094 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1095 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1096 /// the handling of the events.
1098 /// Note that no consistency guarantees are made about the existence of a peer with the
1099 /// `counterparty_node_id` in our other maps.
1102 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1103 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1104 /// would break backwards compatability.
1105 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1106 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1107 /// required to access the channel with the `counterparty_node_id`.
1109 /// See `ChannelManager` struct-level documentation for lock order requirements.
1110 id_to_peer: Mutex<HashMap<ChannelId, PublicKey>>,
1112 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1114 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1115 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1116 /// confirmation depth.
1118 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1119 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1120 /// channel with the `channel_id` in our other maps.
1122 /// See `ChannelManager` struct-level documentation for lock order requirements.
1124 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1126 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
1128 our_network_pubkey: PublicKey,
1130 inbound_payment_key: inbound_payment::ExpandedKey,
1132 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
1133 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
1134 /// we encrypt the namespace identifier using these bytes.
1136 /// [fake scids]: crate::util::scid_utils::fake_scid
1137 fake_scid_rand_bytes: [u8; 32],
1139 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
1140 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
1141 /// keeping additional state.
1142 probing_cookie_secret: [u8; 32],
1144 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
1145 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
1146 /// very far in the past, and can only ever be up to two hours in the future.
1147 highest_seen_timestamp: AtomicUsize,
1149 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
1150 /// basis, as well as the peer's latest features.
1152 /// If we are connected to a peer we always at least have an entry here, even if no channels
1153 /// are currently open with that peer.
1155 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
1156 /// operate on the inner value freely. This opens up for parallel per-peer operation for
1159 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
1161 /// See `ChannelManager` struct-level documentation for lock order requirements.
1162 #[cfg(not(any(test, feature = "_test_utils")))]
1163 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1164 #[cfg(any(test, feature = "_test_utils"))]
1165 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
1167 /// The set of events which we need to give to the user to handle. In some cases an event may
1168 /// require some further action after the user handles it (currently only blocking a monitor
1169 /// update from being handed to the user to ensure the included changes to the channel state
1170 /// are handled by the user before they're persisted durably to disk). In that case, the second
1171 /// element in the tuple is set to `Some` with further details of the action.
1173 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
1174 /// could be in the middle of being processed without the direct mutex held.
1176 /// See `ChannelManager` struct-level documentation for lock order requirements.
1177 #[cfg(not(any(test, feature = "_test_utils")))]
1178 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1179 #[cfg(any(test, feature = "_test_utils"))]
1180 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
1182 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
1183 pending_events_processor: AtomicBool,
1185 /// If we are running during init (either directly during the deserialization method or in
1186 /// block connection methods which run after deserialization but before normal operation) we
1187 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
1188 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
1189 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
1191 /// Thus, we place them here to be handled as soon as possible once we are running normally.
1193 /// See `ChannelManager` struct-level documentation for lock order requirements.
1195 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1196 pending_background_events: Mutex<Vec<BackgroundEvent>>,
1197 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
1198 /// Essentially just when we're serializing ourselves out.
1199 /// Taken first everywhere where we are making changes before any other locks.
1200 /// When acquiring this lock in read mode, rather than acquiring it directly, call
1201 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
1202 /// Notifier the lock contains sends out a notification when the lock is released.
1203 total_consistency_lock: RwLock<()>,
1205 background_events_processed_since_startup: AtomicBool,
1207 event_persist_notifier: Notifier,
1208 needs_persist_flag: AtomicBool,
1212 signer_provider: SP,
1217 /// Chain-related parameters used to construct a new `ChannelManager`.
1219 /// Typically, the block-specific parameters are derived from the best block hash for the network,
1220 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
1221 /// are not needed when deserializing a previously constructed `ChannelManager`.
1222 #[derive(Clone, Copy, PartialEq)]
1223 pub struct ChainParameters {
1224 /// The network for determining the `chain_hash` in Lightning messages.
1225 pub network: Network,
1227 /// The hash and height of the latest block successfully connected.
1229 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
1230 pub best_block: BestBlock,
1233 #[derive(Copy, Clone, PartialEq)]
1237 SkipPersistHandleEvents,
1238 SkipPersistNoEvents,
1241 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
1242 /// desirable to notify any listeners on `await_persistable_update_timeout`/
1243 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
1244 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
1245 /// sending the aforementioned notification (since the lock being released indicates that the
1246 /// updates are ready for persistence).
1248 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
1249 /// notify or not based on whether relevant changes have been made, providing a closure to
1250 /// `optionally_notify` which returns a `NotifyOption`.
1251 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
1252 event_persist_notifier: &'a Notifier,
1253 needs_persist_flag: &'a AtomicBool,
1255 // We hold onto this result so the lock doesn't get released immediately.
1256 _read_guard: RwLockReadGuard<'a, ()>,
1259 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
1260 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
1261 /// events to handle.
1263 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
1264 /// other cases where losing the changes on restart may result in a force-close or otherwise
1266 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1267 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
1270 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
1271 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
1272 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1273 let force_notify = cm.get_cm().process_background_events();
1275 PersistenceNotifierGuard {
1276 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1277 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1278 should_persist: move || {
1279 // Pick the "most" action between `persist_check` and the background events
1280 // processing and return that.
1281 let notify = persist_check();
1282 match (notify, force_notify) {
1283 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
1284 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
1285 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
1286 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
1287 _ => NotifyOption::SkipPersistNoEvents,
1290 _read_guard: read_guard,
1294 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
1295 /// [`ChannelManager::process_background_events`] MUST be called first (or
1296 /// [`Self::optionally_notify`] used).
1297 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
1298 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
1299 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
1301 PersistenceNotifierGuard {
1302 event_persist_notifier: &cm.get_cm().event_persist_notifier,
1303 needs_persist_flag: &cm.get_cm().needs_persist_flag,
1304 should_persist: persist_check,
1305 _read_guard: read_guard,
1310 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
1311 fn drop(&mut self) {
1312 match (self.should_persist)() {
1313 NotifyOption::DoPersist => {
1314 self.needs_persist_flag.store(true, Ordering::Release);
1315 self.event_persist_notifier.notify()
1317 NotifyOption::SkipPersistHandleEvents =>
1318 self.event_persist_notifier.notify(),
1319 NotifyOption::SkipPersistNoEvents => {},
1324 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
1325 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
1327 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
1329 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
1330 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
1331 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
1332 /// the maximum required amount in lnd as of March 2021.
1333 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
1335 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
1336 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
1338 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
1340 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
1341 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
1342 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
1343 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
1344 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
1345 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
1346 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
1347 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
1348 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
1349 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
1350 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
1351 // routing failure for any HTLC sender picking up an LDK node among the first hops.
1352 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
1354 /// Minimum CLTV difference between the current block height and received inbound payments.
1355 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
1357 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
1358 // any payments to succeed. Further, we don't want payments to fail if a block was found while
1359 // a payment was being routed, so we add an extra block to be safe.
1360 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
1362 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
1363 // ie that if the next-hop peer fails the HTLC within
1364 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
1365 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
1366 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
1367 // LATENCY_GRACE_PERIOD_BLOCKS.
1370 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
1372 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
1373 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
1376 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
1378 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
1379 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
1381 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
1382 /// until we mark the channel disabled and gossip the update.
1383 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
1385 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
1386 /// we mark the channel enabled and gossip the update.
1387 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
1389 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
1390 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
1391 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
1392 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
1394 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
1395 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
1396 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
1398 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
1399 /// many peers we reject new (inbound) connections.
1400 const MAX_NO_CHANNEL_PEERS: usize = 250;
1402 /// Information needed for constructing an invoice route hint for this channel.
1403 #[derive(Clone, Debug, PartialEq)]
1404 pub struct CounterpartyForwardingInfo {
1405 /// Base routing fee in millisatoshis.
1406 pub fee_base_msat: u32,
1407 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
1408 pub fee_proportional_millionths: u32,
1409 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
1410 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
1411 /// `cltv_expiry_delta` for more details.
1412 pub cltv_expiry_delta: u16,
1415 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
1416 /// to better separate parameters.
1417 #[derive(Clone, Debug, PartialEq)]
1418 pub struct ChannelCounterparty {
1419 /// The node_id of our counterparty
1420 pub node_id: PublicKey,
1421 /// The Features the channel counterparty provided upon last connection.
1422 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
1423 /// many routing-relevant features are present in the init context.
1424 pub features: InitFeatures,
1425 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
1426 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
1427 /// claiming at least this value on chain.
1429 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
1431 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
1432 pub unspendable_punishment_reserve: u64,
1433 /// Information on the fees and requirements that the counterparty requires when forwarding
1434 /// payments to us through this channel.
1435 pub forwarding_info: Option<CounterpartyForwardingInfo>,
1436 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
1437 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
1438 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
1439 pub outbound_htlc_minimum_msat: Option<u64>,
1440 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
1441 pub outbound_htlc_maximum_msat: Option<u64>,
1444 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
1446 /// Balances of a channel are available through [`ChainMonitor::get_claimable_balances`] and
1447 /// [`ChannelMonitor::get_claimable_balances`], calculated with respect to the corresponding on-chain
1450 /// [`ChainMonitor::get_claimable_balances`]: crate::chain::chainmonitor::ChainMonitor::get_claimable_balances
1451 #[derive(Clone, Debug, PartialEq)]
1452 pub struct ChannelDetails {
1453 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
1454 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
1455 /// Note that this means this value is *not* persistent - it can change once during the
1456 /// lifetime of the channel.
1457 pub channel_id: ChannelId,
1458 /// Parameters which apply to our counterparty. See individual fields for more information.
1459 pub counterparty: ChannelCounterparty,
1460 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
1461 /// our counterparty already.
1463 /// Note that, if this has been set, `channel_id` will be equivalent to
1464 /// `funding_txo.unwrap().to_channel_id()`.
1465 pub funding_txo: Option<OutPoint>,
1466 /// The features which this channel operates with. See individual features for more info.
1468 /// `None` until negotiation completes and the channel type is finalized.
1469 pub channel_type: Option<ChannelTypeFeatures>,
1470 /// The position of the funding transaction in the chain. None if the funding transaction has
1471 /// not yet been confirmed and the channel fully opened.
1473 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
1474 /// payments instead of this. See [`get_inbound_payment_scid`].
1476 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
1477 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
1479 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
1480 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
1481 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
1482 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
1483 /// [`confirmations_required`]: Self::confirmations_required
1484 pub short_channel_id: Option<u64>,
1485 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
1486 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
1487 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
1490 /// This will be `None` as long as the channel is not available for routing outbound payments.
1492 /// [`short_channel_id`]: Self::short_channel_id
1493 /// [`confirmations_required`]: Self::confirmations_required
1494 pub outbound_scid_alias: Option<u64>,
1495 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
1496 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
1497 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
1498 /// when they see a payment to be routed to us.
1500 /// Our counterparty may choose to rotate this value at any time, though will always recognize
1501 /// previous values for inbound payment forwarding.
1503 /// [`short_channel_id`]: Self::short_channel_id
1504 pub inbound_scid_alias: Option<u64>,
1505 /// The value, in satoshis, of this channel as appears in the funding output
1506 pub channel_value_satoshis: u64,
1507 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
1508 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
1509 /// this value on chain.
1511 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
1513 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1515 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
1516 pub unspendable_punishment_reserve: Option<u64>,
1517 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
1518 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
1519 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
1520 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
1521 /// serialized with LDK versions prior to 0.0.113.
1523 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
1524 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
1525 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
1526 pub user_channel_id: u128,
1527 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
1528 /// which is applied to commitment and HTLC transactions.
1530 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
1531 pub feerate_sat_per_1000_weight: Option<u32>,
1532 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
1533 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1534 /// available for inclusion in new outbound HTLCs). This further does not include any pending
1535 /// outgoing HTLCs which are awaiting some other resolution to be sent.
1537 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1538 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
1539 /// should be able to spend nearly this amount.
1540 pub outbound_capacity_msat: u64,
1541 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
1542 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
1543 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
1544 /// to use a limit as close as possible to the HTLC limit we can currently send.
1546 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`] and
1547 /// [`ChannelDetails::outbound_capacity_msat`].
1548 pub next_outbound_htlc_limit_msat: u64,
1549 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
1550 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
1551 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
1552 /// route which is valid.
1553 pub next_outbound_htlc_minimum_msat: u64,
1554 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
1555 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
1556 /// available for inclusion in new inbound HTLCs).
1557 /// Note that there are some corner cases not fully handled here, so the actual available
1558 /// inbound capacity may be slightly higher than this.
1560 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
1561 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
1562 /// However, our counterparty should be able to spend nearly this amount.
1563 pub inbound_capacity_msat: u64,
1564 /// The number of required confirmations on the funding transaction before the funding will be
1565 /// considered "locked". This number is selected by the channel fundee (i.e. us if
1566 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
1567 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
1568 /// [`ChannelHandshakeLimits::max_minimum_depth`].
1570 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1572 /// [`is_outbound`]: ChannelDetails::is_outbound
1573 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
1574 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
1575 pub confirmations_required: Option<u32>,
1576 /// The current number of confirmations on the funding transaction.
1578 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
1579 pub confirmations: Option<u32>,
1580 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
1581 /// until we can claim our funds after we force-close the channel. During this time our
1582 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
1583 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
1584 /// time to claim our non-HTLC-encumbered funds.
1586 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
1587 pub force_close_spend_delay: Option<u16>,
1588 /// True if the channel was initiated (and thus funded) by us.
1589 pub is_outbound: bool,
1590 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
1591 /// channel is not currently being shut down. `channel_ready` message exchange implies the
1592 /// required confirmation count has been reached (and we were connected to the peer at some
1593 /// point after the funding transaction received enough confirmations). The required
1594 /// confirmation count is provided in [`confirmations_required`].
1596 /// [`confirmations_required`]: ChannelDetails::confirmations_required
1597 pub is_channel_ready: bool,
1598 /// The stage of the channel's shutdown.
1599 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
1600 pub channel_shutdown_state: Option<ChannelShutdownState>,
1601 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
1602 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
1604 /// This is a strict superset of `is_channel_ready`.
1605 pub is_usable: bool,
1606 /// True if this channel is (or will be) publicly-announced.
1607 pub is_public: bool,
1608 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
1609 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
1610 pub inbound_htlc_minimum_msat: Option<u64>,
1611 /// The largest value HTLC (in msat) we currently will accept, for this channel.
1612 pub inbound_htlc_maximum_msat: Option<u64>,
1613 /// Set of configurable parameters that affect channel operation.
1615 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
1616 pub config: Option<ChannelConfig>,
1619 impl ChannelDetails {
1620 /// Gets the current SCID which should be used to identify this channel for inbound payments.
1621 /// This should be used for providing invoice hints or in any other context where our
1622 /// counterparty will forward a payment to us.
1624 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
1625 /// [`ChannelDetails::short_channel_id`]. See those for more information.
1626 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
1627 self.inbound_scid_alias.or(self.short_channel_id)
1630 /// Gets the current SCID which should be used to identify this channel for outbound payments.
1631 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
1632 /// we're sending or forwarding a payment outbound over this channel.
1634 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
1635 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
1636 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
1637 self.short_channel_id.or(self.outbound_scid_alias)
1640 fn from_channel_context<SP: Deref, F: Deref>(
1641 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
1642 fee_estimator: &LowerBoundedFeeEstimator<F>
1645 SP::Target: SignerProvider,
1646 F::Target: FeeEstimator
1648 let balance = context.get_available_balances(fee_estimator);
1649 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
1650 context.get_holder_counterparty_selected_channel_reserve_satoshis();
1652 channel_id: context.channel_id(),
1653 counterparty: ChannelCounterparty {
1654 node_id: context.get_counterparty_node_id(),
1655 features: latest_features,
1656 unspendable_punishment_reserve: to_remote_reserve_satoshis,
1657 forwarding_info: context.counterparty_forwarding_info(),
1658 // Ensures that we have actually received the `htlc_minimum_msat` value
1659 // from the counterparty through the `OpenChannel` or `AcceptChannel`
1660 // message (as they are always the first message from the counterparty).
1661 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
1662 // default `0` value set by `Channel::new_outbound`.
1663 outbound_htlc_minimum_msat: if context.have_received_message() {
1664 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
1665 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
1667 funding_txo: context.get_funding_txo(),
1668 // Note that accept_channel (or open_channel) is always the first message, so
1669 // `have_received_message` indicates that type negotiation has completed.
1670 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
1671 short_channel_id: context.get_short_channel_id(),
1672 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
1673 inbound_scid_alias: context.latest_inbound_scid_alias(),
1674 channel_value_satoshis: context.get_value_satoshis(),
1675 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
1676 unspendable_punishment_reserve: to_self_reserve_satoshis,
1677 inbound_capacity_msat: balance.inbound_capacity_msat,
1678 outbound_capacity_msat: balance.outbound_capacity_msat,
1679 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
1680 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
1681 user_channel_id: context.get_user_id(),
1682 confirmations_required: context.minimum_depth(),
1683 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
1684 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
1685 is_outbound: context.is_outbound(),
1686 is_channel_ready: context.is_usable(),
1687 is_usable: context.is_live(),
1688 is_public: context.should_announce(),
1689 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
1690 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
1691 config: Some(context.config()),
1692 channel_shutdown_state: Some(context.shutdown_state()),
1697 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
1698 /// Further information on the details of the channel shutdown.
1699 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
1700 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
1701 /// the channel will be removed shortly.
1702 /// Also note, that in normal operation, peers could disconnect at any of these states
1703 /// and require peer re-connection before making progress onto other states
1704 pub enum ChannelShutdownState {
1705 /// Channel has not sent or received a shutdown message.
1707 /// Local node has sent a shutdown message for this channel.
1709 /// Shutdown message exchanges have concluded and the channels are in the midst of
1710 /// resolving all existing open HTLCs before closing can continue.
1712 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
1713 NegotiatingClosingFee,
1714 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
1715 /// to drop the channel.
1719 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
1720 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
1721 #[derive(Debug, PartialEq)]
1722 pub enum RecentPaymentDetails {
1723 /// When an invoice was requested and thus a payment has not yet been sent.
1725 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1726 /// a payment and ensure idempotency in LDK.
1727 payment_id: PaymentId,
1729 /// When a payment is still being sent and awaiting successful delivery.
1731 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1732 /// a payment and ensure idempotency in LDK.
1733 payment_id: PaymentId,
1734 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
1736 payment_hash: PaymentHash,
1737 /// Total amount (in msat, excluding fees) across all paths for this payment,
1738 /// not just the amount currently inflight.
1741 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
1742 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
1743 /// payment is removed from tracking.
1745 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1746 /// a payment and ensure idempotency in LDK.
1747 payment_id: PaymentId,
1748 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
1749 /// made before LDK version 0.0.104.
1750 payment_hash: Option<PaymentHash>,
1752 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
1753 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
1754 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
1756 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
1757 /// a payment and ensure idempotency in LDK.
1758 payment_id: PaymentId,
1759 /// Hash of the payment that we have given up trying to send.
1760 payment_hash: PaymentHash,
1764 /// Route hints used in constructing invoices for [phantom node payents].
1766 /// [phantom node payments]: crate::sign::PhantomKeysManager
1768 pub struct PhantomRouteHints {
1769 /// The list of channels to be included in the invoice route hints.
1770 pub channels: Vec<ChannelDetails>,
1771 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
1773 pub phantom_scid: u64,
1774 /// The pubkey of the real backing node that would ultimately receive the payment.
1775 pub real_node_pubkey: PublicKey,
1778 macro_rules! handle_error {
1779 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
1780 // In testing, ensure there are no deadlocks where the lock is already held upon
1781 // entering the macro.
1782 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
1783 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
1787 Err(MsgHandleErrInternal { err, chan_id, shutdown_finish, channel_capacity }) => {
1788 let mut msg_events = Vec::with_capacity(2);
1790 if let Some((shutdown_res, update_option)) = shutdown_finish {
1791 $self.finish_force_close_channel(shutdown_res);
1792 if let Some(update) = update_option {
1793 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1797 if let Some((channel_id, user_channel_id)) = chan_id {
1798 $self.pending_events.lock().unwrap().push_back((events::Event::ChannelClosed {
1799 channel_id, user_channel_id,
1800 reason: ClosureReason::ProcessingError { err: err.err.clone() },
1801 counterparty_node_id: Some($counterparty_node_id),
1802 channel_capacity_sats: channel_capacity,
1807 log_error!($self.logger, "{}", err.err);
1808 if let msgs::ErrorAction::IgnoreError = err.action {
1810 msg_events.push(events::MessageSendEvent::HandleError {
1811 node_id: $counterparty_node_id,
1812 action: err.action.clone()
1816 if !msg_events.is_empty() {
1817 let per_peer_state = $self.per_peer_state.read().unwrap();
1818 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
1819 let mut peer_state = peer_state_mutex.lock().unwrap();
1820 peer_state.pending_msg_events.append(&mut msg_events);
1824 // Return error in case higher-API need one
1829 ($self: ident, $internal: expr) => {
1832 Err((chan, msg_handle_err)) => {
1833 let counterparty_node_id = chan.get_counterparty_node_id();
1834 handle_error!($self, Err(msg_handle_err), counterparty_node_id).map_err(|err| (chan, err))
1840 macro_rules! update_maps_on_chan_removal {
1841 ($self: expr, $channel_context: expr) => {{
1842 $self.id_to_peer.lock().unwrap().remove(&$channel_context.channel_id());
1843 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1844 if let Some(short_id) = $channel_context.get_short_channel_id() {
1845 short_to_chan_info.remove(&short_id);
1847 // If the channel was never confirmed on-chain prior to its closure, remove the
1848 // outbound SCID alias we used for it from the collision-prevention set. While we
1849 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
1850 // also don't want a counterparty to be able to trivially cause a memory leak by simply
1851 // opening a million channels with us which are closed before we ever reach the funding
1853 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
1854 debug_assert!(alias_removed);
1856 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
1860 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
1861 macro_rules! convert_chan_phase_err {
1862 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
1864 ChannelError::Warn(msg) => {
1865 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
1867 ChannelError::Ignore(msg) => {
1868 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
1870 ChannelError::Close(msg) => {
1871 log_error!($self.logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
1872 update_maps_on_chan_removal!($self, $channel.context);
1873 let shutdown_res = $channel.context.force_shutdown(true);
1874 let user_id = $channel.context.get_user_id();
1875 let channel_capacity_satoshis = $channel.context.get_value_satoshis();
1877 (true, MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, user_id,
1878 shutdown_res, $channel_update, channel_capacity_satoshis))
1882 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
1883 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
1885 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
1886 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
1888 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
1889 match $channel_phase {
1890 ChannelPhase::Funded(channel) => {
1891 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
1893 ChannelPhase::UnfundedOutboundV1(channel) => {
1894 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1896 ChannelPhase::UnfundedInboundV1(channel) => {
1897 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
1903 macro_rules! break_chan_phase_entry {
1904 ($self: ident, $res: expr, $entry: expr) => {
1908 let key = *$entry.key();
1909 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1911 $entry.remove_entry();
1919 macro_rules! try_chan_phase_entry {
1920 ($self: ident, $res: expr, $entry: expr) => {
1924 let key = *$entry.key();
1925 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
1927 $entry.remove_entry();
1935 macro_rules! remove_channel_phase {
1936 ($self: expr, $entry: expr) => {
1938 let channel = $entry.remove_entry().1;
1939 update_maps_on_chan_removal!($self, &channel.context());
1945 macro_rules! send_channel_ready {
1946 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
1947 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
1948 node_id: $channel.context.get_counterparty_node_id(),
1949 msg: $channel_ready_msg,
1951 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
1952 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
1953 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
1954 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1955 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1956 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1957 if let Some(real_scid) = $channel.context.get_short_channel_id() {
1958 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
1959 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
1960 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
1965 macro_rules! emit_channel_pending_event {
1966 ($locked_events: expr, $channel: expr) => {
1967 if $channel.context.should_emit_channel_pending_event() {
1968 $locked_events.push_back((events::Event::ChannelPending {
1969 channel_id: $channel.context.channel_id(),
1970 former_temporary_channel_id: $channel.context.temporary_channel_id(),
1971 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1972 user_channel_id: $channel.context.get_user_id(),
1973 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
1975 $channel.context.set_channel_pending_event_emitted();
1980 macro_rules! emit_channel_ready_event {
1981 ($locked_events: expr, $channel: expr) => {
1982 if $channel.context.should_emit_channel_ready_event() {
1983 debug_assert!($channel.context.channel_pending_event_emitted());
1984 $locked_events.push_back((events::Event::ChannelReady {
1985 channel_id: $channel.context.channel_id(),
1986 user_channel_id: $channel.context.get_user_id(),
1987 counterparty_node_id: $channel.context.get_counterparty_node_id(),
1988 channel_type: $channel.context.get_channel_type().clone(),
1990 $channel.context.set_channel_ready_event_emitted();
1995 macro_rules! handle_monitor_update_completion {
1996 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
1997 let mut updates = $chan.monitor_updating_restored(&$self.logger,
1998 &$self.node_signer, $self.genesis_hash, &$self.default_configuration,
1999 $self.best_block.read().unwrap().height());
2000 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2001 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2002 // We only send a channel_update in the case where we are just now sending a
2003 // channel_ready and the channel is in a usable state. We may re-send a
2004 // channel_update later through the announcement_signatures process for public
2005 // channels, but there's no reason not to just inform our counterparty of our fees
2007 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2008 Some(events::MessageSendEvent::SendChannelUpdate {
2009 node_id: counterparty_node_id,
2015 let update_actions = $peer_state.monitor_update_blocked_actions
2016 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2018 let htlc_forwards = $self.handle_channel_resumption(
2019 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2020 updates.commitment_update, updates.order, updates.accepted_htlcs,
2021 updates.funding_broadcastable, updates.channel_ready,
2022 updates.announcement_sigs);
2023 if let Some(upd) = channel_update {
2024 $peer_state.pending_msg_events.push(upd);
2027 let channel_id = $chan.context.channel_id();
2028 core::mem::drop($peer_state_lock);
2029 core::mem::drop($per_peer_state_lock);
2031 $self.handle_monitor_update_completion_actions(update_actions);
2033 if let Some(forwards) = htlc_forwards {
2034 $self.forward_htlcs(&mut [forwards][..]);
2036 $self.finalize_claims(updates.finalized_claimed_htlcs);
2037 for failure in updates.failed_htlcs.drain(..) {
2038 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2039 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2044 macro_rules! handle_new_monitor_update {
2045 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2046 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2048 ChannelMonitorUpdateStatus::UnrecoverableError => {
2049 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
2050 log_error!($self.logger, "{}", err_str);
2051 panic!("{}", err_str);
2053 ChannelMonitorUpdateStatus::InProgress => {
2054 log_debug!($self.logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
2055 &$chan.context.channel_id());
2058 ChannelMonitorUpdateStatus::Completed => {
2064 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
2065 handle_new_monitor_update!($self, $update_res, $chan, _internal,
2066 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
2068 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2069 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
2070 .or_insert_with(Vec::new);
2071 // During startup, we push monitor updates as background events through to here in
2072 // order to replay updates that were in-flight when we shut down. Thus, we have to
2073 // filter for uniqueness here.
2074 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
2075 .unwrap_or_else(|| {
2076 in_flight_updates.push($update);
2077 in_flight_updates.len() - 1
2079 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
2080 handle_new_monitor_update!($self, update_res, $chan, _internal,
2082 let _ = in_flight_updates.remove(idx);
2083 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
2084 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
2090 macro_rules! process_events_body {
2091 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
2092 let mut processed_all_events = false;
2093 while !processed_all_events {
2094 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
2101 // We'll acquire our total consistency lock so that we can be sure no other
2102 // persists happen while processing monitor events.
2103 let _read_guard = $self.total_consistency_lock.read().unwrap();
2105 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
2106 // ensure any startup-generated background events are handled first.
2107 result = $self.process_background_events();
2109 // TODO: This behavior should be documented. It's unintuitive that we query
2110 // ChannelMonitors when clearing other events.
2111 if $self.process_pending_monitor_events() {
2112 result = NotifyOption::DoPersist;
2116 let pending_events = $self.pending_events.lock().unwrap().clone();
2117 let num_events = pending_events.len();
2118 if !pending_events.is_empty() {
2119 result = NotifyOption::DoPersist;
2122 let mut post_event_actions = Vec::new();
2124 for (event, action_opt) in pending_events {
2125 $event_to_handle = event;
2127 if let Some(action) = action_opt {
2128 post_event_actions.push(action);
2133 let mut pending_events = $self.pending_events.lock().unwrap();
2134 pending_events.drain(..num_events);
2135 processed_all_events = pending_events.is_empty();
2136 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
2137 // updated here with the `pending_events` lock acquired.
2138 $self.pending_events_processor.store(false, Ordering::Release);
2141 if !post_event_actions.is_empty() {
2142 $self.handle_post_event_actions(post_event_actions);
2143 // If we had some actions, go around again as we may have more events now
2144 processed_all_events = false;
2148 NotifyOption::DoPersist => {
2149 $self.needs_persist_flag.store(true, Ordering::Release);
2150 $self.event_persist_notifier.notify();
2152 NotifyOption::SkipPersistHandleEvents =>
2153 $self.event_persist_notifier.notify(),
2154 NotifyOption::SkipPersistNoEvents => {},
2160 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
2162 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
2163 T::Target: BroadcasterInterface,
2164 ES::Target: EntropySource,
2165 NS::Target: NodeSigner,
2166 SP::Target: SignerProvider,
2167 F::Target: FeeEstimator,
2171 /// Constructs a new `ChannelManager` to hold several channels and route between them.
2173 /// The current time or latest block header time can be provided as the `current_timestamp`.
2175 /// This is the main "logic hub" for all channel-related actions, and implements
2176 /// [`ChannelMessageHandler`].
2178 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
2180 /// Users need to notify the new `ChannelManager` when a new block is connected or
2181 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
2182 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
2185 /// [`block_connected`]: chain::Listen::block_connected
2186 /// [`block_disconnected`]: chain::Listen::block_disconnected
2187 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
2189 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
2190 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
2191 current_timestamp: u32,
2193 let mut secp_ctx = Secp256k1::new();
2194 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
2195 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
2196 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
2198 default_configuration: config.clone(),
2199 genesis_hash: genesis_block(params.network).header.block_hash(),
2200 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
2205 best_block: RwLock::new(params.best_block),
2207 outbound_scid_aliases: Mutex::new(HashSet::new()),
2208 pending_inbound_payments: Mutex::new(HashMap::new()),
2209 pending_outbound_payments: OutboundPayments::new(),
2210 forward_htlcs: Mutex::new(HashMap::new()),
2211 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: HashMap::new(), pending_claiming_payments: HashMap::new() }),
2212 pending_intercepted_htlcs: Mutex::new(HashMap::new()),
2213 id_to_peer: Mutex::new(HashMap::new()),
2214 short_to_chan_info: FairRwLock::new(HashMap::new()),
2216 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
2219 inbound_payment_key: expanded_inbound_key,
2220 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
2222 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
2224 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
2226 per_peer_state: FairRwLock::new(HashMap::new()),
2228 pending_events: Mutex::new(VecDeque::new()),
2229 pending_events_processor: AtomicBool::new(false),
2230 pending_background_events: Mutex::new(Vec::new()),
2231 total_consistency_lock: RwLock::new(()),
2232 background_events_processed_since_startup: AtomicBool::new(false),
2234 event_persist_notifier: Notifier::new(),
2235 needs_persist_flag: AtomicBool::new(false),
2245 /// Gets the current configuration applied to all new channels.
2246 pub fn get_current_default_configuration(&self) -> &UserConfig {
2247 &self.default_configuration
2250 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
2251 let height = self.best_block.read().unwrap().height();
2252 let mut outbound_scid_alias = 0;
2255 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
2256 outbound_scid_alias += 1;
2258 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
2260 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
2264 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
2269 /// Creates a new outbound channel to the given remote node and with the given value.
2271 /// `user_channel_id` will be provided back as in
2272 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
2273 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
2274 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
2275 /// is simply copied to events and otherwise ignored.
2277 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
2278 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
2280 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
2281 /// generate a shutdown scriptpubkey or destination script set by
2282 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
2284 /// Note that we do not check if you are currently connected to the given peer. If no
2285 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
2286 /// the channel eventually being silently forgotten (dropped on reload).
2288 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
2289 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
2290 /// [`ChannelDetails::channel_id`] until after
2291 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
2292 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
2293 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
2295 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
2296 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
2297 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
2298 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
2299 if channel_value_satoshis < 1000 {
2300 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
2303 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2304 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
2305 debug_assert!(&self.total_consistency_lock.try_write().is_err());
2307 let per_peer_state = self.per_peer_state.read().unwrap();
2309 let peer_state_mutex = per_peer_state.get(&their_network_key)
2310 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
2312 let mut peer_state = peer_state_mutex.lock().unwrap();
2314 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
2315 let their_features = &peer_state.latest_features;
2316 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
2317 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
2318 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
2319 self.best_block.read().unwrap().height(), outbound_scid_alias)
2323 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
2328 let res = channel.get_open_channel(self.genesis_hash.clone());
2330 let temporary_channel_id = channel.context.channel_id();
2331 match peer_state.channel_by_id.entry(temporary_channel_id) {
2332 hash_map::Entry::Occupied(_) => {
2334 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
2336 panic!("RNG is bad???");
2339 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
2342 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
2343 node_id: their_network_key,
2346 Ok(temporary_channel_id)
2349 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
2350 // Allocate our best estimate of the number of channels we have in the `res`
2351 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2352 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2353 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2354 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2355 // the same channel.
2356 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2358 let best_block_height = self.best_block.read().unwrap().height();
2359 let per_peer_state = self.per_peer_state.read().unwrap();
2360 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2361 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2362 let peer_state = &mut *peer_state_lock;
2363 res.extend(peer_state.channel_by_id.iter()
2364 .filter_map(|(chan_id, phase)| match phase {
2365 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
2366 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
2370 .map(|(_channel_id, channel)| {
2371 ChannelDetails::from_channel_context(&channel.context, best_block_height,
2372 peer_state.latest_features.clone(), &self.fee_estimator)
2380 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
2381 /// more information.
2382 pub fn list_channels(&self) -> Vec<ChannelDetails> {
2383 // Allocate our best estimate of the number of channels we have in the `res`
2384 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
2385 // a scid or a scid alias, and the `id_to_peer` shouldn't be used outside
2386 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
2387 // unlikely as the `short_to_chan_info` map often contains 2 entries for
2388 // the same channel.
2389 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
2391 let best_block_height = self.best_block.read().unwrap().height();
2392 let per_peer_state = self.per_peer_state.read().unwrap();
2393 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
2394 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2395 let peer_state = &mut *peer_state_lock;
2396 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
2397 let details = ChannelDetails::from_channel_context(context, best_block_height,
2398 peer_state.latest_features.clone(), &self.fee_estimator);
2406 /// Gets the list of usable channels, in random order. Useful as an argument to
2407 /// [`Router::find_route`] to ensure non-announced channels are used.
2409 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
2410 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
2412 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
2413 // Note we use is_live here instead of usable which leads to somewhat confused
2414 // internal/external nomenclature, but that's ok cause that's probably what the user
2415 // really wanted anyway.
2416 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
2419 /// Gets the list of channels we have with a given counterparty, in random order.
2420 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
2421 let best_block_height = self.best_block.read().unwrap().height();
2422 let per_peer_state = self.per_peer_state.read().unwrap();
2424 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
2425 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2426 let peer_state = &mut *peer_state_lock;
2427 let features = &peer_state.latest_features;
2428 let context_to_details = |context| {
2429 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
2431 return peer_state.channel_by_id
2433 .map(|(_, phase)| phase.context())
2434 .map(context_to_details)
2440 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
2441 /// successful path, or have unresolved HTLCs.
2443 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
2444 /// result of a crash. If such a payment exists, is not listed here, and an
2445 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
2447 /// [`Event::PaymentSent`]: events::Event::PaymentSent
2448 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
2449 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
2450 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
2451 PendingOutboundPayment::AwaitingInvoice { .. } => {
2452 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2454 // InvoiceReceived is an intermediate state and doesn't need to be exposed
2455 PendingOutboundPayment::InvoiceReceived { .. } => {
2456 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
2458 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
2459 Some(RecentPaymentDetails::Pending {
2460 payment_id: *payment_id,
2461 payment_hash: *payment_hash,
2462 total_msat: *total_msat,
2465 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
2466 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
2468 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
2469 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
2471 PendingOutboundPayment::Legacy { .. } => None
2476 /// Helper function that issues the channel close events
2477 fn issue_channel_close_events(&self, context: &ChannelContext<SP>, closure_reason: ClosureReason) {
2478 let mut pending_events_lock = self.pending_events.lock().unwrap();
2479 match context.unbroadcasted_funding() {
2480 Some(transaction) => {
2481 pending_events_lock.push_back((events::Event::DiscardFunding {
2482 channel_id: context.channel_id(), transaction
2487 pending_events_lock.push_back((events::Event::ChannelClosed {
2488 channel_id: context.channel_id(),
2489 user_channel_id: context.get_user_id(),
2490 reason: closure_reason,
2491 counterparty_node_id: Some(context.get_counterparty_node_id()),
2492 channel_capacity_sats: Some(context.get_value_satoshis()),
2496 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2497 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2499 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)>;
2501 let per_peer_state = self.per_peer_state.read().unwrap();
2503 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
2504 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
2506 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
2507 let peer_state = &mut *peer_state_lock;
2509 match peer_state.channel_by_id.entry(channel_id.clone()) {
2510 hash_map::Entry::Occupied(mut chan_phase_entry) => {
2511 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
2512 let funding_txo_opt = chan.context.get_funding_txo();
2513 let their_features = &peer_state.latest_features;
2514 let (shutdown_msg, mut monitor_update_opt, htlcs) =
2515 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
2516 failed_htlcs = htlcs;
2518 // We can send the `shutdown` message before updating the `ChannelMonitor`
2519 // here as we don't need the monitor update to complete until we send a
2520 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
2521 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2522 node_id: *counterparty_node_id,
2526 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
2527 "We can't both complete shutdown and generate a monitor update");
2529 // Update the monitor with the shutdown script if necessary.
2530 if let Some(monitor_update) = monitor_update_opt.take() {
2531 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
2532 peer_state_lock, peer_state, per_peer_state, chan);
2536 if chan.is_shutdown() {
2537 if let ChannelPhase::Funded(chan) = remove_channel_phase!(self, chan_phase_entry) {
2538 if let Ok(channel_update) = self.get_channel_update_for_broadcast(&chan) {
2539 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2543 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
2549 hash_map::Entry::Vacant(_) => {
2550 // If we reach this point, it means that the channel_id either refers to an unfunded channel or
2551 // it does not exist for this peer. Either way, we can attempt to force-close it.
2553 // An appropriate error will be returned for non-existence of the channel if that's the case.
2554 return self.force_close_channel_with_peer(&channel_id, counterparty_node_id, None, false).map(|_| ())
2559 for htlc_source in failed_htlcs.drain(..) {
2560 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2561 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
2562 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
2568 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2569 /// will be accepted on the given channel, and after additional timeout/the closing of all
2570 /// pending HTLCs, the channel will be closed on chain.
2572 /// * If we are the channel initiator, we will pay between our [`Background`] and
2573 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2575 /// * If our counterparty is the channel initiator, we will require a channel closing
2576 /// transaction feerate of at least our [`Background`] feerate or the feerate which
2577 /// would appear on a force-closure transaction, whichever is lower. We will allow our
2578 /// counterparty to pay as much fee as they'd like, however.
2580 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2582 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2583 /// generate a shutdown scriptpubkey or destination script set by
2584 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2587 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2588 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2589 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2590 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2591 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
2592 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
2595 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
2596 /// will be accepted on the given channel, and after additional timeout/the closing of all
2597 /// pending HTLCs, the channel will be closed on chain.
2599 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
2600 /// the channel being closed or not:
2601 /// * If we are the channel initiator, we will pay at least this feerate on the closing
2602 /// transaction. The upper-bound is set by
2603 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`Normal`] fee
2604 /// estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
2605 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
2606 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
2607 /// will appear on a force-closure transaction, whichever is lower).
2609 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
2610 /// Will fail if a shutdown script has already been set for this channel by
2611 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
2612 /// also be compatible with our and the counterparty's features.
2614 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
2616 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
2617 /// generate a shutdown scriptpubkey or destination script set by
2618 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
2621 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
2622 /// [`Background`]: crate::chain::chaininterface::ConfirmationTarget::Background
2623 /// [`Normal`]: crate::chain::chaininterface::ConfirmationTarget::Normal
2624 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
2625 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
2626 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
2629 fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
2630 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2631 #[cfg(debug_assertions)]
2632 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
2633 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
2636 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
2637 log_debug!(self.logger, "Finishing force-closure of channel with {} HTLCs to fail", failed_htlcs.len());
2638 for htlc_source in failed_htlcs.drain(..) {
2639 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
2640 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
2641 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2642 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
2644 if let Some((_, funding_txo, monitor_update)) = monitor_update_option {
2645 // There isn't anything we can do if we get an update failure - we're already
2646 // force-closing. The monitor update on the required in-memory copy should broadcast
2647 // the latest local state, which is the best we can do anyway. Thus, it is safe to
2648 // ignore the result here.
2649 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
2653 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
2654 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
2655 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
2656 -> Result<PublicKey, APIError> {
2657 let per_peer_state = self.per_peer_state.read().unwrap();
2658 let peer_state_mutex = per_peer_state.get(peer_node_id)
2659 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
2660 let (update_opt, counterparty_node_id) = {
2661 let mut peer_state = peer_state_mutex.lock().unwrap();
2662 let closure_reason = if let Some(peer_msg) = peer_msg {
2663 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
2665 ClosureReason::HolderForceClosed
2667 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
2668 log_error!(self.logger, "Force-closing channel {}", channel_id);
2669 self.issue_channel_close_events(&chan_phase_entry.get().context(), closure_reason);
2670 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
2671 mem::drop(peer_state);
2672 mem::drop(per_peer_state);
2674 ChannelPhase::Funded(mut chan) => {
2675 self.finish_force_close_channel(chan.context.force_shutdown(broadcast));
2676 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
2678 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
2679 self.finish_force_close_channel(chan_phase.context_mut().force_shutdown(false));
2680 // Unfunded channel has no update
2681 (None, chan_phase.context().get_counterparty_node_id())
2684 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
2685 log_error!(self.logger, "Force-closing channel {}", &channel_id);
2686 // N.B. that we don't send any channel close event here: we
2687 // don't have a user_channel_id, and we never sent any opening
2689 (None, *peer_node_id)
2691 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
2694 if let Some(update) = update_opt {
2695 // Try to send the `BroadcastChannelUpdate` to the peer we just force-closed on, but if
2696 // not try to broadcast it via whatever peer we have.
2697 let per_peer_state = self.per_peer_state.read().unwrap();
2698 let a_peer_state_opt = per_peer_state.get(peer_node_id)
2699 .ok_or(per_peer_state.values().next());
2700 if let Ok(a_peer_state_mutex) = a_peer_state_opt {
2701 let mut a_peer_state = a_peer_state_mutex.lock().unwrap();
2702 a_peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2708 Ok(counterparty_node_id)
2711 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
2712 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
2713 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
2714 Ok(counterparty_node_id) => {
2715 let per_peer_state = self.per_peer_state.read().unwrap();
2716 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2717 let mut peer_state = peer_state_mutex.lock().unwrap();
2718 peer_state.pending_msg_events.push(
2719 events::MessageSendEvent::HandleError {
2720 node_id: counterparty_node_id,
2721 action: msgs::ErrorAction::SendErrorMessage {
2722 msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
2733 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
2734 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
2735 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
2737 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2738 -> Result<(), APIError> {
2739 self.force_close_sending_error(channel_id, counterparty_node_id, true)
2742 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
2743 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
2744 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
2746 /// You can always get the latest local transaction(s) to broadcast from
2747 /// [`ChannelMonitor::get_latest_holder_commitment_txn`].
2748 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
2749 -> Result<(), APIError> {
2750 self.force_close_sending_error(channel_id, counterparty_node_id, false)
2753 /// Force close all channels, immediately broadcasting the latest local commitment transaction
2754 /// for each to the chain and rejecting new HTLCs on each.
2755 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
2756 for chan in self.list_channels() {
2757 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
2761 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
2762 /// local transaction(s).
2763 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
2764 for chan in self.list_channels() {
2765 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
2769 fn construct_fwd_pending_htlc_info(
2770 &self, msg: &msgs::UpdateAddHTLC, hop_data: msgs::InboundOnionPayload, hop_hmac: [u8; 32],
2771 new_packet_bytes: [u8; onion_utils::ONION_DATA_LEN], shared_secret: [u8; 32],
2772 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
2773 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2774 debug_assert!(next_packet_pubkey_opt.is_some());
2775 let outgoing_packet = msgs::OnionPacket {
2777 public_key: next_packet_pubkey_opt.unwrap_or(Err(secp256k1::Error::InvalidPublicKey)),
2778 hop_data: new_packet_bytes,
2782 let (short_channel_id, amt_to_forward, outgoing_cltv_value) = match hop_data {
2783 msgs::InboundOnionPayload::Forward { short_channel_id, amt_to_forward, outgoing_cltv_value } =>
2784 (short_channel_id, amt_to_forward, outgoing_cltv_value),
2785 msgs::InboundOnionPayload::Receive { .. } | msgs::InboundOnionPayload::BlindedReceive { .. } =>
2786 return Err(InboundOnionErr {
2787 msg: "Final Node OnionHopData provided for us as an intermediary node",
2788 err_code: 0x4000 | 22,
2789 err_data: Vec::new(),
2793 Ok(PendingHTLCInfo {
2794 routing: PendingHTLCRouting::Forward {
2795 onion_packet: outgoing_packet,
2798 payment_hash: msg.payment_hash,
2799 incoming_shared_secret: shared_secret,
2800 incoming_amt_msat: Some(msg.amount_msat),
2801 outgoing_amt_msat: amt_to_forward,
2802 outgoing_cltv_value,
2803 skimmed_fee_msat: None,
2807 fn construct_recv_pending_htlc_info(
2808 &self, hop_data: msgs::InboundOnionPayload, shared_secret: [u8; 32], payment_hash: PaymentHash,
2809 amt_msat: u64, cltv_expiry: u32, phantom_shared_secret: Option<[u8; 32]>, allow_underpay: bool,
2810 counterparty_skimmed_fee_msat: Option<u64>,
2811 ) -> Result<PendingHTLCInfo, InboundOnionErr> {
2812 let (payment_data, keysend_preimage, custom_tlvs, onion_amt_msat, outgoing_cltv_value, payment_metadata) = match hop_data {
2813 msgs::InboundOnionPayload::Receive {
2814 payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata, ..
2816 (payment_data, keysend_preimage, custom_tlvs, amt_msat, outgoing_cltv_value, payment_metadata),
2817 msgs::InboundOnionPayload::BlindedReceive {
2818 amt_msat, total_msat, outgoing_cltv_value, payment_secret, ..
2820 let payment_data = msgs::FinalOnionHopData { payment_secret, total_msat };
2821 (Some(payment_data), None, Vec::new(), amt_msat, outgoing_cltv_value, None)
2823 msgs::InboundOnionPayload::Forward { .. } => {
2824 return Err(InboundOnionErr {
2825 err_code: 0x4000|22,
2826 err_data: Vec::new(),
2827 msg: "Got non final data with an HMAC of 0",
2831 // final_incorrect_cltv_expiry
2832 if outgoing_cltv_value > cltv_expiry {
2833 return Err(InboundOnionErr {
2834 msg: "Upstream node set CLTV to less than the CLTV set by the sender",
2836 err_data: cltv_expiry.to_be_bytes().to_vec()
2839 // final_expiry_too_soon
2840 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure
2841 // we have at least HTLC_FAIL_BACK_BUFFER blocks to go.
2843 // Also, ensure that, in the case of an unknown preimage for the received payment hash, our
2844 // payment logic has enough time to fail the HTLC backward before our onchain logic triggers a
2845 // channel closure (see HTLC_FAIL_BACK_BUFFER rationale).
2846 let current_height: u32 = self.best_block.read().unwrap().height();
2847 if (outgoing_cltv_value as u64) <= current_height as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
2848 let mut err_data = Vec::with_capacity(12);
2849 err_data.extend_from_slice(&amt_msat.to_be_bytes());
2850 err_data.extend_from_slice(¤t_height.to_be_bytes());
2851 return Err(InboundOnionErr {
2852 err_code: 0x4000 | 15, err_data,
2853 msg: "The final CLTV expiry is too soon to handle",
2856 if (!allow_underpay && onion_amt_msat > amt_msat) ||
2857 (allow_underpay && onion_amt_msat >
2858 amt_msat.saturating_add(counterparty_skimmed_fee_msat.unwrap_or(0)))
2860 return Err(InboundOnionErr {
2862 err_data: amt_msat.to_be_bytes().to_vec(),
2863 msg: "Upstream node sent less than we were supposed to receive in payment",
2867 let routing = if let Some(payment_preimage) = keysend_preimage {
2868 // We need to check that the sender knows the keysend preimage before processing this
2869 // payment further. Otherwise, an intermediary routing hop forwarding non-keysend-HTLC X
2870 // could discover the final destination of X, by probing the adjacent nodes on the route
2871 // with a keysend payment of identical payment hash to X and observing the processing
2872 // time discrepancies due to a hash collision with X.
2873 let hashed_preimage = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2874 if hashed_preimage != payment_hash {
2875 return Err(InboundOnionErr {
2876 err_code: 0x4000|22,
2877 err_data: Vec::new(),
2878 msg: "Payment preimage didn't match payment hash",
2881 if !self.default_configuration.accept_mpp_keysend && payment_data.is_some() {
2882 return Err(InboundOnionErr {
2883 err_code: 0x4000|22,
2884 err_data: Vec::new(),
2885 msg: "We don't support MPP keysend payments",
2888 PendingHTLCRouting::ReceiveKeysend {
2892 incoming_cltv_expiry: outgoing_cltv_value,
2895 } else if let Some(data) = payment_data {
2896 PendingHTLCRouting::Receive {
2899 incoming_cltv_expiry: outgoing_cltv_value,
2900 phantom_shared_secret,
2904 return Err(InboundOnionErr {
2905 err_code: 0x4000|0x2000|3,
2906 err_data: Vec::new(),
2907 msg: "We require payment_secrets",
2910 Ok(PendingHTLCInfo {
2913 incoming_shared_secret: shared_secret,
2914 incoming_amt_msat: Some(amt_msat),
2915 outgoing_amt_msat: onion_amt_msat,
2916 outgoing_cltv_value,
2917 skimmed_fee_msat: counterparty_skimmed_fee_msat,
2921 fn decode_update_add_htlc_onion(
2922 &self, msg: &msgs::UpdateAddHTLC
2923 ) -> Result<(onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg> {
2924 macro_rules! return_malformed_err {
2925 ($msg: expr, $err_code: expr) => {
2927 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2928 return Err(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
2929 channel_id: msg.channel_id,
2930 htlc_id: msg.htlc_id,
2931 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
2932 failure_code: $err_code,
2938 if let Err(_) = msg.onion_routing_packet.public_key {
2939 return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
2942 let shared_secret = self.node_signer.ecdh(
2943 Recipient::Node, &msg.onion_routing_packet.public_key.unwrap(), None
2944 ).unwrap().secret_bytes();
2946 if msg.onion_routing_packet.version != 0 {
2947 //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
2948 //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
2949 //the hash doesn't really serve any purpose - in the case of hashing all data, the
2950 //receiving node would have to brute force to figure out which version was put in the
2951 //packet by the node that send us the message, in the case of hashing the hop_data, the
2952 //node knows the HMAC matched, so they already know what is there...
2953 return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
2955 macro_rules! return_err {
2956 ($msg: expr, $err_code: expr, $data: expr) => {
2958 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
2959 return Err(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
2960 channel_id: msg.channel_id,
2961 htlc_id: msg.htlc_id,
2962 reason: HTLCFailReason::reason($err_code, $data.to_vec())
2963 .get_encrypted_failure_packet(&shared_secret, &None),
2969 let next_hop = match onion_utils::decode_next_payment_hop(
2970 shared_secret, &msg.onion_routing_packet.hop_data[..], msg.onion_routing_packet.hmac,
2971 msg.payment_hash, &self.node_signer
2974 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
2975 return_malformed_err!(err_msg, err_code);
2977 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
2978 return_err!(err_msg, err_code, &[0; 0]);
2981 let (outgoing_scid, outgoing_amt_msat, outgoing_cltv_value, next_packet_pk_opt) = match next_hop {
2982 onion_utils::Hop::Forward {
2983 next_hop_data: msgs::InboundOnionPayload::Forward {
2984 short_channel_id, amt_to_forward, outgoing_cltv_value
2987 let next_packet_pk = onion_utils::next_hop_pubkey(&self.secp_ctx,
2988 msg.onion_routing_packet.public_key.unwrap(), &shared_secret);
2989 (short_channel_id, amt_to_forward, outgoing_cltv_value, Some(next_packet_pk))
2991 // We'll do receive checks in [`Self::construct_pending_htlc_info`] so we have access to the
2992 // inbound channel's state.
2993 onion_utils::Hop::Receive { .. } => return Ok((next_hop, shared_secret, None)),
2994 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::Receive { .. }, .. } |
2995 onion_utils::Hop::Forward { next_hop_data: msgs::InboundOnionPayload::BlindedReceive { .. }, .. } =>
2997 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0; 0]);
3001 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3002 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3003 if let Some((err, mut code, chan_update)) = loop {
3004 let id_option = self.short_to_chan_info.read().unwrap().get(&outgoing_scid).cloned();
3005 let forwarding_chan_info_opt = match id_option {
3006 None => { // unknown_next_peer
3007 // Note that this is likely a timing oracle for detecting whether an scid is a
3008 // phantom or an intercept.
3009 if (self.default_configuration.accept_intercept_htlcs &&
3010 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)) ||
3011 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, outgoing_scid, &self.genesis_hash)
3015 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3018 Some((cp_id, id)) => Some((cp_id.clone(), id.clone())),
3020 let chan_update_opt = if let Some((counterparty_node_id, forwarding_id)) = forwarding_chan_info_opt {
3021 let per_peer_state = self.per_peer_state.read().unwrap();
3022 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3023 if peer_state_mutex_opt.is_none() {
3024 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3026 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3027 let peer_state = &mut *peer_state_lock;
3028 let chan = match peer_state.channel_by_id.get_mut(&forwarding_id).map(
3029 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3032 // Channel was removed. The short_to_chan_info and channel_by_id maps
3033 // have no consistency guarantees.
3034 break Some(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3038 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3039 // Note that the behavior here should be identical to the above block - we
3040 // should NOT reveal the existence or non-existence of a private channel if
3041 // we don't allow forwards outbound over them.
3042 break Some(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3044 if chan.context.get_channel_type().supports_scid_privacy() && outgoing_scid != chan.context.outbound_scid_alias() {
3045 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3046 // "refuse to forward unless the SCID alias was used", so we pretend
3047 // we don't have the channel here.
3048 break Some(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3050 let chan_update_opt = self.get_channel_update_for_onion(outgoing_scid, chan).ok();
3052 // Note that we could technically not return an error yet here and just hope
3053 // that the connection is reestablished or monitor updated by the time we get
3054 // around to doing the actual forward, but better to fail early if we can and
3055 // hopefully an attacker trying to path-trace payments cannot make this occur
3056 // on a small/per-node/per-channel scale.
3057 if !chan.context.is_live() { // channel_disabled
3058 // If the channel_update we're going to return is disabled (i.e. the
3059 // peer has been disabled for some time), return `channel_disabled`,
3060 // otherwise return `temporary_channel_failure`.
3061 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3062 break Some(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3064 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3067 if outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3068 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3070 if let Err((err, code)) = chan.htlc_satisfies_config(&msg, outgoing_amt_msat, outgoing_cltv_value) {
3071 break Some((err, code, chan_update_opt));
3075 if (msg.cltv_expiry as u64) < (outgoing_cltv_value) as u64 + MIN_CLTV_EXPIRY_DELTA as u64 {
3076 // We really should set `incorrect_cltv_expiry` here but as we're not
3077 // forwarding over a real channel we can't generate a channel_update
3078 // for it. Instead we just return a generic temporary_node_failure.
3080 "Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta",
3087 let cur_height = self.best_block.read().unwrap().height() + 1;
3088 // Theoretically, channel counterparty shouldn't send us a HTLC expiring now,
3089 // but we want to be robust wrt to counterparty packet sanitization (see
3090 // HTLC_FAIL_BACK_BUFFER rationale).
3091 if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
3092 break Some(("CLTV expiry is too close", 0x1000 | 14, chan_update_opt));
3094 if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
3095 break Some(("CLTV expiry is too far in the future", 21, None));
3097 // If the HTLC expires ~now, don't bother trying to forward it to our
3098 // counterparty. They should fail it anyway, but we don't want to bother with
3099 // the round-trips or risk them deciding they definitely want the HTLC and
3100 // force-closing to ensure they get it if we're offline.
3101 // We previously had a much more aggressive check here which tried to ensure
3102 // our counterparty receives an HTLC which has *our* risk threshold met on it,
3103 // but there is no need to do that, and since we're a bit conservative with our
3104 // risk threshold it just results in failing to forward payments.
3105 if (outgoing_cltv_value) as u64 <= (cur_height + LATENCY_GRACE_PERIOD_BLOCKS) as u64 {
3106 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, chan_update_opt));
3112 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3113 if let Some(chan_update) = chan_update {
3114 if code == 0x1000 | 11 || code == 0x1000 | 12 {
3115 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3117 else if code == 0x1000 | 13 {
3118 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3120 else if code == 0x1000 | 20 {
3121 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3122 0u16.write(&mut res).expect("Writes cannot fail");
3124 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3125 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3126 chan_update.write(&mut res).expect("Writes cannot fail");
3127 } else if code & 0x1000 == 0x1000 {
3128 // If we're trying to return an error that requires a `channel_update` but
3129 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3130 // generate an update), just use the generic "temporary_node_failure"
3134 return_err!(err, code, &res.0[..]);
3136 Ok((next_hop, shared_secret, next_packet_pk_opt))
3139 fn construct_pending_htlc_status<'a>(
3140 &self, msg: &msgs::UpdateAddHTLC, shared_secret: [u8; 32], decoded_hop: onion_utils::Hop,
3141 allow_underpay: bool, next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>
3142 ) -> PendingHTLCStatus {
3143 macro_rules! return_err {
3144 ($msg: expr, $err_code: expr, $data: expr) => {
3146 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3147 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3148 channel_id: msg.channel_id,
3149 htlc_id: msg.htlc_id,
3150 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3151 .get_encrypted_failure_packet(&shared_secret, &None),
3157 onion_utils::Hop::Receive(next_hop_data) => {
3159 match self.construct_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3160 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat)
3163 // Note that we could obviously respond immediately with an update_fulfill_htlc
3164 // message, however that would leak that we are the recipient of this payment, so
3165 // instead we stay symmetric with the forwarding case, only responding (after a
3166 // delay) once they've send us a commitment_signed!
3167 PendingHTLCStatus::Forward(info)
3169 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3172 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3173 match self.construct_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3174 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3175 Ok(info) => PendingHTLCStatus::Forward(info),
3176 Err(InboundOnionErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3182 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
3183 /// public, and thus should be called whenever the result is going to be passed out in a
3184 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
3186 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
3187 /// corresponding to the channel's counterparty locked, as the channel been removed from the
3188 /// storage and the `peer_state` lock has been dropped.
3190 /// [`channel_update`]: msgs::ChannelUpdate
3191 /// [`internal_closing_signed`]: Self::internal_closing_signed
3192 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3193 if !chan.context.should_announce() {
3194 return Err(LightningError {
3195 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
3196 action: msgs::ErrorAction::IgnoreError
3199 if chan.context.get_short_channel_id().is_none() {
3200 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
3202 log_trace!(self.logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
3203 self.get_channel_update_for_unicast(chan)
3206 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
3207 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
3208 /// and thus MUST NOT be called unless the recipient of the resulting message has already
3209 /// provided evidence that they know about the existence of the channel.
3211 /// Note that through [`internal_closing_signed`], this function is called without the
3212 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
3213 /// removed from the storage and the `peer_state` lock has been dropped.
3215 /// [`channel_update`]: msgs::ChannelUpdate
3216 /// [`internal_closing_signed`]: Self::internal_closing_signed
3217 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3218 log_trace!(self.logger, "Attempting to generate channel update for channel {}", &chan.context.channel_id());
3219 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
3220 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
3224 self.get_channel_update_for_onion(short_channel_id, chan)
3227 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
3228 log_trace!(self.logger, "Generating channel update for channel {}", &chan.context.channel_id());
3229 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
3231 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
3232 ChannelUpdateStatus::Enabled => true,
3233 ChannelUpdateStatus::DisabledStaged(_) => true,
3234 ChannelUpdateStatus::Disabled => false,
3235 ChannelUpdateStatus::EnabledStaged(_) => false,
3238 let unsigned = msgs::UnsignedChannelUpdate {
3239 chain_hash: self.genesis_hash,
3241 timestamp: chan.context.get_update_time_counter(),
3242 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
3243 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
3244 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
3245 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
3246 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
3247 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
3248 excess_data: Vec::new(),
3250 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
3251 // If we returned an error and the `node_signer` cannot provide a signature for whatever
3252 // reason`, we wouldn't be able to receive inbound payments through the corresponding
3254 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
3256 Ok(msgs::ChannelUpdate {
3263 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
3264 let _lck = self.total_consistency_lock.read().unwrap();
3265 self.send_payment_along_path(SendAlongPathArgs {
3266 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3271 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
3272 let SendAlongPathArgs {
3273 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
3276 // The top-level caller should hold the total_consistency_lock read lock.
3277 debug_assert!(self.total_consistency_lock.try_write().is_err());
3279 log_trace!(self.logger,
3280 "Attempting to send payment with payment hash {} along path with next hop {}",
3281 payment_hash, path.hops.first().unwrap().short_channel_id);
3282 let prng_seed = self.entropy_source.get_secure_random_bytes();
3283 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
3285 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
3286 .map_err(|_| APIError::InvalidRoute{err: "Pubkey along hop was maliciously selected".to_owned()})?;
3287 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, recipient_onion, cur_height, keysend_preimage)?;
3289 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
3290 .map_err(|_| APIError::InvalidRoute { err: "Route size too large considering onion data".to_owned()})?;
3292 let err: Result<(), _> = loop {
3293 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
3294 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
3295 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
3298 let per_peer_state = self.per_peer_state.read().unwrap();
3299 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
3300 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
3301 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3302 let peer_state = &mut *peer_state_lock;
3303 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
3304 match chan_phase_entry.get_mut() {
3305 ChannelPhase::Funded(chan) => {
3306 if !chan.context.is_live() {
3307 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
3309 let funding_txo = chan.context.get_funding_txo().unwrap();
3310 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
3311 htlc_cltv, HTLCSource::OutboundRoute {
3313 session_priv: session_priv.clone(),
3314 first_hop_htlc_msat: htlc_msat,
3316 }, onion_packet, None, &self.fee_estimator, &self.logger);
3317 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
3318 Some(monitor_update) => {
3319 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
3321 // Note that MonitorUpdateInProgress here indicates (per function
3322 // docs) that we will resend the commitment update once monitor
3323 // updating completes. Therefore, we must return an error
3324 // indicating that it is unsafe to retry the payment wholesale,
3325 // which we do in the send_payment check for
3326 // MonitorUpdateInProgress, below.
3327 return Err(APIError::MonitorUpdateInProgress);
3335 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
3338 // The channel was likely removed after we fetched the id from the
3339 // `short_to_chan_info` map, but before we successfully locked the
3340 // `channel_by_id` map.
3341 // This can occur as no consistency guarantees exists between the two maps.
3342 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
3347 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
3348 Ok(_) => unreachable!(),
3350 Err(APIError::ChannelUnavailable { err: e.err })
3355 /// Sends a payment along a given route.
3357 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
3358 /// fields for more info.
3360 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
3361 /// [`PeerManager::process_events`]).
3363 /// # Avoiding Duplicate Payments
3365 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
3366 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
3367 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
3368 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
3369 /// second payment with the same [`PaymentId`].
3371 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
3372 /// tracking of payments, including state to indicate once a payment has completed. Because you
3373 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
3374 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
3375 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
3377 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
3378 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
3379 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
3380 /// [`ChannelManager::list_recent_payments`] for more information.
3382 /// # Possible Error States on [`PaymentSendFailure`]
3384 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
3385 /// each entry matching the corresponding-index entry in the route paths, see
3386 /// [`PaymentSendFailure`] for more info.
3388 /// In general, a path may raise:
3389 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
3390 /// node public key) is specified.
3391 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available for updates
3392 /// (including due to previous monitor update failure or new permanent monitor update
3394 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
3395 /// relevant updates.
3397 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
3398 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
3399 /// different route unless you intend to pay twice!
3401 /// [`RouteHop`]: crate::routing::router::RouteHop
3402 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3403 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
3404 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
3405 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
3406 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
3407 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
3408 let best_block_height = self.best_block.read().unwrap().height();
3409 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3410 self.pending_outbound_payments
3411 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
3412 &self.entropy_source, &self.node_signer, best_block_height,
3413 |args| self.send_payment_along_path(args))
3416 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
3417 /// `route_params` and retry failed payment paths based on `retry_strategy`.
3418 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
3419 let best_block_height = self.best_block.read().unwrap().height();
3420 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3421 self.pending_outbound_payments
3422 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
3423 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
3424 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
3425 &self.pending_events, |args| self.send_payment_along_path(args))
3429 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
3430 let best_block_height = self.best_block.read().unwrap().height();
3431 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3432 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
3433 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
3434 best_block_height, |args| self.send_payment_along_path(args))
3438 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
3439 let best_block_height = self.best_block.read().unwrap().height();
3440 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
3444 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
3445 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
3449 /// Signals that no further attempts for the given payment should occur. Useful if you have a
3450 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
3451 /// retries are exhausted.
3453 /// # Event Generation
3455 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
3456 /// as there are no remaining pending HTLCs for this payment.
3458 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
3459 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
3460 /// determine the ultimate status of a payment.
3462 /// # Requested Invoices
3464 /// In the case of paying a [`Bolt12Invoice`], abandoning the payment prior to receiving the
3465 /// invoice will result in an [`Event::InvoiceRequestFailed`] and prevent any attempts at paying
3466 /// it once received. The other events may only be generated once the invoice has been received.
3468 /// # Restart Behavior
3470 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
3471 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
3472 /// [`Event::InvoiceRequestFailed`].
3474 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
3475 pub fn abandon_payment(&self, payment_id: PaymentId) {
3476 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3477 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
3480 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
3481 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
3482 /// the preimage, it must be a cryptographically secure random value that no intermediate node
3483 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
3484 /// never reach the recipient.
3486 /// See [`send_payment`] documentation for more details on the return value of this function
3487 /// and idempotency guarantees provided by the [`PaymentId`] key.
3489 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
3490 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
3492 /// [`send_payment`]: Self::send_payment
3493 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
3494 let best_block_height = self.best_block.read().unwrap().height();
3495 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3496 self.pending_outbound_payments.send_spontaneous_payment_with_route(
3497 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
3498 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
3501 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
3502 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
3504 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
3507 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
3508 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
3509 let best_block_height = self.best_block.read().unwrap().height();
3510 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3511 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
3512 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
3513 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
3514 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
3517 /// Send a payment that is probing the given route for liquidity. We calculate the
3518 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
3519 /// us to easily discern them from real payments.
3520 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
3521 let best_block_height = self.best_block.read().unwrap().height();
3522 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3523 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
3524 &self.entropy_source, &self.node_signer, best_block_height,
3525 |args| self.send_payment_along_path(args))
3528 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
3531 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
3532 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
3535 /// Sends payment probes over all paths of a route that would be used to pay the given
3536 /// amount to the given `node_id`.
3538 /// See [`ChannelManager::send_preflight_probes`] for more information.
3539 pub fn send_spontaneous_preflight_probes(
3540 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
3541 liquidity_limit_multiplier: Option<u64>,
3542 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3543 let payment_params =
3544 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
3546 let route_params = RouteParameters { payment_params, final_value_msat: amount_msat };
3548 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
3551 /// Sends payment probes over all paths of a route that would be used to pay a route found
3552 /// according to the given [`RouteParameters`].
3554 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
3555 /// the actual payment. Note this is only useful if there likely is sufficient time for the
3556 /// probe to settle before sending out the actual payment, e.g., when waiting for user
3557 /// confirmation in a wallet UI.
3559 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
3560 /// actual payment. Users should therefore be cautious and might avoid sending probes if
3561 /// liquidity is scarce and/or they don't expect the probe to return before they send the
3562 /// payment. To mitigate this issue, channels with available liquidity less than the required
3563 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
3564 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
3565 pub fn send_preflight_probes(
3566 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
3567 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
3568 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
3570 let payer = self.get_our_node_id();
3571 let usable_channels = self.list_usable_channels();
3572 let first_hops = usable_channels.iter().collect::<Vec<_>>();
3573 let inflight_htlcs = self.compute_inflight_htlcs();
3577 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
3579 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
3580 ProbeSendFailure::RouteNotFound
3583 let mut used_liquidity_map = HashMap::with_capacity(first_hops.len());
3585 let mut res = Vec::new();
3587 for mut path in route.paths {
3588 // If the last hop is probably an unannounced channel we refrain from probing all the
3589 // way through to the end and instead probe up to the second-to-last channel.
3590 while let Some(last_path_hop) = path.hops.last() {
3591 if last_path_hop.maybe_announced_channel {
3592 // We found a potentially announced last hop.
3595 // Drop the last hop, as it's likely unannounced.
3598 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
3599 last_path_hop.short_channel_id
3601 let final_value_msat = path.final_value_msat();
3603 if let Some(new_last) = path.hops.last_mut() {
3604 new_last.fee_msat += final_value_msat;
3609 if path.hops.len() < 2 {
3612 "Skipped sending payment probe over path with less than two hops."
3617 if let Some(first_path_hop) = path.hops.first() {
3618 if let Some(first_hop) = first_hops.iter().find(|h| {
3619 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
3621 let path_value = path.final_value_msat() + path.fee_msat();
3622 let used_liquidity =
3623 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
3625 if first_hop.next_outbound_htlc_limit_msat
3626 < (*used_liquidity + path_value) * liquidity_limit_multiplier
3628 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
3631 *used_liquidity += path_value;
3636 res.push(self.send_probe(path).map_err(|e| {
3637 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
3638 ProbeSendFailure::SendingFailed(e)
3645 /// Handles the generation of a funding transaction, optionally (for tests) with a function
3646 /// which checks the correctness of the funding transaction given the associated channel.
3647 fn funding_transaction_generated_intern<FundingOutput: Fn(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
3648 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, find_funding_output: FundingOutput
3649 ) -> Result<(), APIError> {
3650 let per_peer_state = self.per_peer_state.read().unwrap();
3651 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3652 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3654 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3655 let peer_state = &mut *peer_state_lock;
3656 let (chan, msg) = match peer_state.channel_by_id.remove(temporary_channel_id) {
3657 Some(ChannelPhase::UnfundedOutboundV1(chan)) => {
3658 let funding_txo = find_funding_output(&chan, &funding_transaction)?;
3660 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, &self.logger)
3661 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
3662 let channel_id = chan.context.channel_id();
3663 let user_id = chan.context.get_user_id();
3664 let shutdown_res = chan.context.force_shutdown(false);
3665 let channel_capacity = chan.context.get_value_satoshis();
3666 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, user_id, shutdown_res, None, channel_capacity))
3667 } else { unreachable!(); });
3669 Ok((chan, funding_msg)) => (chan, funding_msg),
3670 Err((chan, err)) => {
3671 mem::drop(peer_state_lock);
3672 mem::drop(per_peer_state);
3674 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
3675 return Err(APIError::ChannelUnavailable {
3676 err: "Signer refused to sign the initial commitment transaction".to_owned()
3682 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
3683 return Err(APIError::APIMisuseError {
3685 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
3686 temporary_channel_id, counterparty_node_id),
3689 None => return Err(APIError::ChannelUnavailable {err: format!(
3690 "Channel with id {} not found for the passed counterparty node_id {}",
3691 temporary_channel_id, counterparty_node_id),
3695 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
3696 node_id: chan.context.get_counterparty_node_id(),
3699 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
3700 hash_map::Entry::Occupied(_) => {
3701 panic!("Generated duplicate funding txid?");
3703 hash_map::Entry::Vacant(e) => {
3704 let mut id_to_peer = self.id_to_peer.lock().unwrap();
3705 if id_to_peer.insert(chan.context.channel_id(), chan.context.get_counterparty_node_id()).is_some() {
3706 panic!("id_to_peer map already contained funding txid, which shouldn't be possible");
3708 e.insert(ChannelPhase::Funded(chan));
3715 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
3716 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |_, tx| {
3717 Ok(OutPoint { txid: tx.txid(), index: output_index })
3721 /// Call this upon creation of a funding transaction for the given channel.
3723 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
3724 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
3726 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
3727 /// across the p2p network.
3729 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
3730 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
3732 /// May panic if the output found in the funding transaction is duplicative with some other
3733 /// channel (note that this should be trivially prevented by using unique funding transaction
3734 /// keys per-channel).
3736 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
3737 /// counterparty's signature the funding transaction will automatically be broadcast via the
3738 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
3740 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
3741 /// not currently support replacing a funding transaction on an existing channel. Instead,
3742 /// create a new channel with a conflicting funding transaction.
3744 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
3745 /// the wallet software generating the funding transaction to apply anti-fee sniping as
3746 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
3747 /// for more details.
3749 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
3750 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
3751 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
3752 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3754 if !funding_transaction.is_coin_base() {
3755 for inp in funding_transaction.input.iter() {
3756 if inp.witness.is_empty() {
3757 return Err(APIError::APIMisuseError {
3758 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
3764 let height = self.best_block.read().unwrap().height();
3765 // Transactions are evaluated as final by network mempools if their locktime is strictly
3766 // lower than the next block height. However, the modules constituting our Lightning
3767 // node might not have perfect sync about their blockchain views. Thus, if the wallet
3768 // module is ahead of LDK, only allow one more block of headroom.
3769 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) && LockTime::from(funding_transaction.lock_time).is_block_height() && funding_transaction.lock_time.0 > height + 1 {
3770 return Err(APIError::APIMisuseError {
3771 err: "Funding transaction absolute timelock is non-final".to_owned()
3775 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, |chan, tx| {
3776 if tx.output.len() > u16::max_value() as usize {
3777 return Err(APIError::APIMisuseError {
3778 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
3782 let mut output_index = None;
3783 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
3784 for (idx, outp) in tx.output.iter().enumerate() {
3785 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
3786 if output_index.is_some() {
3787 return Err(APIError::APIMisuseError {
3788 err: "Multiple outputs matched the expected script and value".to_owned()
3791 output_index = Some(idx as u16);
3794 if output_index.is_none() {
3795 return Err(APIError::APIMisuseError {
3796 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
3799 Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
3803 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
3805 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3806 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3807 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3808 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3810 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3811 /// `counterparty_node_id` is provided.
3813 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3814 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3816 /// If an error is returned, none of the updates should be considered applied.
3818 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3819 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3820 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3821 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3822 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3823 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3824 /// [`APIMisuseError`]: APIError::APIMisuseError
3825 pub fn update_partial_channel_config(
3826 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
3827 ) -> Result<(), APIError> {
3828 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
3829 return Err(APIError::APIMisuseError {
3830 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
3834 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3835 let per_peer_state = self.per_peer_state.read().unwrap();
3836 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3837 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3838 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3839 let peer_state = &mut *peer_state_lock;
3840 for channel_id in channel_ids {
3841 if !peer_state.has_channel(channel_id) {
3842 return Err(APIError::ChannelUnavailable {
3843 err: format!("Channel with ID {} was not found for the passed counterparty_node_id {}", channel_id, counterparty_node_id),
3847 for channel_id in channel_ids {
3848 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
3849 let mut config = channel_phase.context().config();
3850 config.apply(config_update);
3851 if !channel_phase.context_mut().update_config(&config) {
3854 if let ChannelPhase::Funded(channel) = channel_phase {
3855 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
3856 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
3857 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
3858 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
3859 node_id: channel.context.get_counterparty_node_id(),
3866 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
3867 debug_assert!(false);
3868 return Err(APIError::ChannelUnavailable {
3870 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
3871 channel_id, counterparty_node_id),
3878 /// Atomically updates the [`ChannelConfig`] for the given channels.
3880 /// Once the updates are applied, each eligible channel (advertised with a known short channel
3881 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
3882 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
3883 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
3885 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
3886 /// `counterparty_node_id` is provided.
3888 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
3889 /// below [`MIN_CLTV_EXPIRY_DELTA`].
3891 /// If an error is returned, none of the updates should be considered applied.
3893 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
3894 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
3895 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
3896 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
3897 /// [`ChannelUpdate`]: msgs::ChannelUpdate
3898 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
3899 /// [`APIMisuseError`]: APIError::APIMisuseError
3900 pub fn update_channel_config(
3901 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
3902 ) -> Result<(), APIError> {
3903 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
3906 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
3907 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
3909 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
3910 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
3912 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
3913 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
3914 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
3915 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
3916 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
3918 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
3919 /// you from forwarding more than you received. See
3920 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
3923 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3926 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
3927 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3928 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
3929 // TODO: when we move to deciding the best outbound channel at forward time, only take
3930 // `next_node_id` and not `next_hop_channel_id`
3931 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
3932 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3934 let next_hop_scid = {
3935 let peer_state_lock = self.per_peer_state.read().unwrap();
3936 let peer_state_mutex = peer_state_lock.get(&next_node_id)
3937 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
3938 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3939 let peer_state = &mut *peer_state_lock;
3940 match peer_state.channel_by_id.get(next_hop_channel_id) {
3941 Some(ChannelPhase::Funded(chan)) => {
3942 if !chan.context.is_usable() {
3943 return Err(APIError::ChannelUnavailable {
3944 err: format!("Channel with id {} not fully established", next_hop_channel_id)
3947 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
3949 Some(_) => return Err(APIError::ChannelUnavailable {
3950 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
3951 next_hop_channel_id, next_node_id)
3953 None => return Err(APIError::ChannelUnavailable {
3954 err: format!("Channel with id {} not found for the passed counterparty node_id {}.",
3955 next_hop_channel_id, next_node_id)
3960 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3961 .ok_or_else(|| APIError::APIMisuseError {
3962 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
3965 let routing = match payment.forward_info.routing {
3966 PendingHTLCRouting::Forward { onion_packet, .. } => {
3967 PendingHTLCRouting::Forward { onion_packet, short_channel_id: next_hop_scid }
3969 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
3971 let skimmed_fee_msat =
3972 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
3973 let pending_htlc_info = PendingHTLCInfo {
3974 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
3975 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
3978 let mut per_source_pending_forward = [(
3979 payment.prev_short_channel_id,
3980 payment.prev_funding_outpoint,
3981 payment.prev_user_channel_id,
3982 vec![(pending_htlc_info, payment.prev_htlc_id)]
3984 self.forward_htlcs(&mut per_source_pending_forward);
3988 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
3989 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
3991 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
3994 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
3995 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
3996 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3998 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
3999 .ok_or_else(|| APIError::APIMisuseError {
4000 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4003 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4004 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4005 short_channel_id: payment.prev_short_channel_id,
4006 user_channel_id: Some(payment.prev_user_channel_id),
4007 outpoint: payment.prev_funding_outpoint,
4008 htlc_id: payment.prev_htlc_id,
4009 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4010 phantom_shared_secret: None,
4013 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4014 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4015 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4016 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4021 /// Processes HTLCs which are pending waiting on random forward delay.
4023 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
4024 /// Will likely generate further events.
4025 pub fn process_pending_htlc_forwards(&self) {
4026 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4028 let mut new_events = VecDeque::new();
4029 let mut failed_forwards = Vec::new();
4030 let mut phantom_receives: Vec<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
4032 let mut forward_htlcs = HashMap::new();
4033 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
4035 for (short_chan_id, mut pending_forwards) in forward_htlcs {
4036 if short_chan_id != 0 {
4037 macro_rules! forwarding_channel_not_found {
4039 for forward_info in pending_forwards.drain(..) {
4040 match forward_info {
4041 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4042 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4043 forward_info: PendingHTLCInfo {
4044 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
4045 outgoing_cltv_value, ..
4048 macro_rules! failure_handler {
4049 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
4050 log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
4052 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4053 short_channel_id: prev_short_channel_id,
4054 user_channel_id: Some(prev_user_channel_id),
4055 outpoint: prev_funding_outpoint,
4056 htlc_id: prev_htlc_id,
4057 incoming_packet_shared_secret: incoming_shared_secret,
4058 phantom_shared_secret: $phantom_ss,
4061 let reason = if $next_hop_unknown {
4062 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
4064 HTLCDestination::FailedPayment{ payment_hash }
4067 failed_forwards.push((htlc_source, payment_hash,
4068 HTLCFailReason::reason($err_code, $err_data),
4074 macro_rules! fail_forward {
4075 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4077 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
4081 macro_rules! failed_payment {
4082 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
4084 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
4088 if let PendingHTLCRouting::Forward { onion_packet, .. } = routing {
4089 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
4090 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.genesis_hash) {
4091 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
4092 let next_hop = match onion_utils::decode_next_payment_hop(
4093 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
4094 payment_hash, &self.node_signer
4097 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
4098 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).into_inner();
4099 // In this scenario, the phantom would have sent us an
4100 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
4101 // if it came from us (the second-to-last hop) but contains the sha256
4103 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
4105 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
4106 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
4110 onion_utils::Hop::Receive(hop_data) => {
4111 match self.construct_recv_pending_htlc_info(hop_data,
4112 incoming_shared_secret, payment_hash, outgoing_amt_msat,
4113 outgoing_cltv_value, Some(phantom_shared_secret), false, None)
4115 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, vec![(info, prev_htlc_id)])),
4116 Err(InboundOnionErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
4122 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4125 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
4128 HTLCForwardInfo::FailHTLC { .. } => {
4129 // Channel went away before we could fail it. This implies
4130 // the channel is now on chain and our counterparty is
4131 // trying to broadcast the HTLC-Timeout, but that's their
4132 // problem, not ours.
4138 let (counterparty_node_id, forward_chan_id) = match self.short_to_chan_info.read().unwrap().get(&short_chan_id) {
4139 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4141 forwarding_channel_not_found!();
4145 let per_peer_state = self.per_peer_state.read().unwrap();
4146 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
4147 if peer_state_mutex_opt.is_none() {
4148 forwarding_channel_not_found!();
4151 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
4152 let peer_state = &mut *peer_state_lock;
4153 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
4154 for forward_info in pending_forwards.drain(..) {
4155 match forward_info {
4156 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4157 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4158 forward_info: PendingHTLCInfo {
4159 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
4160 routing: PendingHTLCRouting::Forward { onion_packet, .. }, skimmed_fee_msat, ..
4163 log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
4164 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4165 short_channel_id: prev_short_channel_id,
4166 user_channel_id: Some(prev_user_channel_id),
4167 outpoint: prev_funding_outpoint,
4168 htlc_id: prev_htlc_id,
4169 incoming_packet_shared_secret: incoming_shared_secret,
4170 // Phantom payments are only PendingHTLCRouting::Receive.
4171 phantom_shared_secret: None,
4173 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
4174 payment_hash, outgoing_cltv_value, htlc_source.clone(),
4175 onion_packet, skimmed_fee_msat, &self.fee_estimator,
4178 if let ChannelError::Ignore(msg) = e {
4179 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
4181 panic!("Stated return value requirements in send_htlc() were not met");
4183 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
4184 failed_forwards.push((htlc_source, payment_hash,
4185 HTLCFailReason::reason(failure_code, data),
4186 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
4191 HTLCForwardInfo::AddHTLC { .. } => {
4192 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
4194 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
4195 log_trace!(self.logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
4196 if let Err(e) = chan.queue_fail_htlc(
4197 htlc_id, err_packet, &self.logger
4199 if let ChannelError::Ignore(msg) = e {
4200 log_trace!(self.logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
4202 panic!("Stated return value requirements in queue_fail_htlc() were not met");
4204 // fail-backs are best-effort, we probably already have one
4205 // pending, and if not that's OK, if not, the channel is on
4206 // the chain and sending the HTLC-Timeout is their problem.
4213 forwarding_channel_not_found!();
4217 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
4218 match forward_info {
4219 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
4220 prev_short_channel_id, prev_htlc_id, prev_funding_outpoint, prev_user_channel_id,
4221 forward_info: PendingHTLCInfo {
4222 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
4223 skimmed_fee_msat, ..
4226 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
4227 PendingHTLCRouting::Receive { payment_data, payment_metadata, incoming_cltv_expiry, phantom_shared_secret, custom_tlvs } => {
4228 let _legacy_hop_data = Some(payment_data.clone());
4229 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
4230 payment_metadata, custom_tlvs };
4231 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
4232 Some(payment_data), phantom_shared_secret, onion_fields)
4234 PendingHTLCRouting::ReceiveKeysend { payment_data, payment_preimage, payment_metadata, incoming_cltv_expiry, custom_tlvs } => {
4235 let onion_fields = RecipientOnionFields {
4236 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
4240 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
4241 payment_data, None, onion_fields)
4244 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
4247 let claimable_htlc = ClaimableHTLC {
4248 prev_hop: HTLCPreviousHopData {
4249 short_channel_id: prev_short_channel_id,
4250 user_channel_id: Some(prev_user_channel_id),
4251 outpoint: prev_funding_outpoint,
4252 htlc_id: prev_htlc_id,
4253 incoming_packet_shared_secret: incoming_shared_secret,
4254 phantom_shared_secret,
4256 // We differentiate the received value from the sender intended value
4257 // if possible so that we don't prematurely mark MPP payments complete
4258 // if routing nodes overpay
4259 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
4260 sender_intended_value: outgoing_amt_msat,
4262 total_value_received: None,
4263 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
4266 counterparty_skimmed_fee_msat: skimmed_fee_msat,
4269 let mut committed_to_claimable = false;
4271 macro_rules! fail_htlc {
4272 ($htlc: expr, $payment_hash: expr) => {
4273 debug_assert!(!committed_to_claimable);
4274 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
4275 htlc_msat_height_data.extend_from_slice(
4276 &self.best_block.read().unwrap().height().to_be_bytes(),
4278 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
4279 short_channel_id: $htlc.prev_hop.short_channel_id,
4280 user_channel_id: $htlc.prev_hop.user_channel_id,
4281 outpoint: prev_funding_outpoint,
4282 htlc_id: $htlc.prev_hop.htlc_id,
4283 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
4284 phantom_shared_secret,
4286 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
4287 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
4289 continue 'next_forwardable_htlc;
4292 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
4293 let mut receiver_node_id = self.our_network_pubkey;
4294 if phantom_shared_secret.is_some() {
4295 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
4296 .expect("Failed to get node_id for phantom node recipient");
4299 macro_rules! check_total_value {
4300 ($purpose: expr) => {{
4301 let mut payment_claimable_generated = false;
4302 let is_keysend = match $purpose {
4303 events::PaymentPurpose::SpontaneousPayment(_) => true,
4304 events::PaymentPurpose::InvoicePayment { .. } => false,
4306 let mut claimable_payments = self.claimable_payments.lock().unwrap();
4307 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
4308 fail_htlc!(claimable_htlc, payment_hash);
4310 let ref mut claimable_payment = claimable_payments.claimable_payments
4311 .entry(payment_hash)
4312 // Note that if we insert here we MUST NOT fail_htlc!()
4313 .or_insert_with(|| {
4314 committed_to_claimable = true;
4316 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
4319 if $purpose != claimable_payment.purpose {
4320 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
4321 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
4322 fail_htlc!(claimable_htlc, payment_hash);
4324 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
4325 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
4326 fail_htlc!(claimable_htlc, payment_hash);
4328 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
4329 if earlier_fields.check_merge(&mut onion_fields).is_err() {
4330 fail_htlc!(claimable_htlc, payment_hash);
4333 claimable_payment.onion_fields = Some(onion_fields);
4335 let ref mut htlcs = &mut claimable_payment.htlcs;
4336 let mut total_value = claimable_htlc.sender_intended_value;
4337 let mut earliest_expiry = claimable_htlc.cltv_expiry;
4338 for htlc in htlcs.iter() {
4339 total_value += htlc.sender_intended_value;
4340 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
4341 if htlc.total_msat != claimable_htlc.total_msat {
4342 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
4343 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
4344 total_value = msgs::MAX_VALUE_MSAT;
4346 if total_value >= msgs::MAX_VALUE_MSAT { break; }
4348 // The condition determining whether an MPP is complete must
4349 // match exactly the condition used in `timer_tick_occurred`
4350 if total_value >= msgs::MAX_VALUE_MSAT {
4351 fail_htlc!(claimable_htlc, payment_hash);
4352 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
4353 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
4355 fail_htlc!(claimable_htlc, payment_hash);
4356 } else if total_value >= claimable_htlc.total_msat {
4357 #[allow(unused_assignments)] {
4358 committed_to_claimable = true;
4360 let prev_channel_id = prev_funding_outpoint.to_channel_id();
4361 htlcs.push(claimable_htlc);
4362 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
4363 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
4364 let counterparty_skimmed_fee_msat = htlcs.iter()
4365 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
4366 debug_assert!(total_value.saturating_sub(amount_msat) <=
4367 counterparty_skimmed_fee_msat);
4368 new_events.push_back((events::Event::PaymentClaimable {
4369 receiver_node_id: Some(receiver_node_id),
4373 counterparty_skimmed_fee_msat,
4374 via_channel_id: Some(prev_channel_id),
4375 via_user_channel_id: Some(prev_user_channel_id),
4376 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
4377 onion_fields: claimable_payment.onion_fields.clone(),
4379 payment_claimable_generated = true;
4381 // Nothing to do - we haven't reached the total
4382 // payment value yet, wait until we receive more
4384 htlcs.push(claimable_htlc);
4385 #[allow(unused_assignments)] {
4386 committed_to_claimable = true;
4389 payment_claimable_generated
4393 // Check that the payment hash and secret are known. Note that we
4394 // MUST take care to handle the "unknown payment hash" and
4395 // "incorrect payment secret" cases here identically or we'd expose
4396 // that we are the ultimate recipient of the given payment hash.
4397 // Further, we must not expose whether we have any other HTLCs
4398 // associated with the same payment_hash pending or not.
4399 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
4400 match payment_secrets.entry(payment_hash) {
4401 hash_map::Entry::Vacant(_) => {
4402 match claimable_htlc.onion_payload {
4403 OnionPayload::Invoice { .. } => {
4404 let payment_data = payment_data.unwrap();
4405 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
4406 Ok(result) => result,
4408 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
4409 fail_htlc!(claimable_htlc, payment_hash);
4412 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
4413 let expected_min_expiry_height = (self.current_best_block().height() + min_final_cltv_expiry_delta as u32) as u64;
4414 if (cltv_expiry as u64) < expected_min_expiry_height {
4415 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
4416 &payment_hash, cltv_expiry, expected_min_expiry_height);
4417 fail_htlc!(claimable_htlc, payment_hash);
4420 let purpose = events::PaymentPurpose::InvoicePayment {
4421 payment_preimage: payment_preimage.clone(),
4422 payment_secret: payment_data.payment_secret,
4424 check_total_value!(purpose);
4426 OnionPayload::Spontaneous(preimage) => {
4427 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
4428 check_total_value!(purpose);
4432 hash_map::Entry::Occupied(inbound_payment) => {
4433 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
4434 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
4435 fail_htlc!(claimable_htlc, payment_hash);
4437 let payment_data = payment_data.unwrap();
4438 if inbound_payment.get().payment_secret != payment_data.payment_secret {
4439 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
4440 fail_htlc!(claimable_htlc, payment_hash);
4441 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
4442 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
4443 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
4444 fail_htlc!(claimable_htlc, payment_hash);
4446 let purpose = events::PaymentPurpose::InvoicePayment {
4447 payment_preimage: inbound_payment.get().payment_preimage,
4448 payment_secret: payment_data.payment_secret,
4450 let payment_claimable_generated = check_total_value!(purpose);
4451 if payment_claimable_generated {
4452 inbound_payment.remove_entry();
4458 HTLCForwardInfo::FailHTLC { .. } => {
4459 panic!("Got pending fail of our own HTLC");
4467 let best_block_height = self.best_block.read().unwrap().height();
4468 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
4469 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4470 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
4472 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
4473 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
4475 self.forward_htlcs(&mut phantom_receives);
4477 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
4478 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
4479 // nice to do the work now if we can rather than while we're trying to get messages in the
4481 self.check_free_holding_cells();
4483 if new_events.is_empty() { return }
4484 let mut events = self.pending_events.lock().unwrap();
4485 events.append(&mut new_events);
4488 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
4490 /// Expects the caller to have a total_consistency_lock read lock.
4491 fn process_background_events(&self) -> NotifyOption {
4492 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
4494 self.background_events_processed_since_startup.store(true, Ordering::Release);
4496 let mut background_events = Vec::new();
4497 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
4498 if background_events.is_empty() {
4499 return NotifyOption::SkipPersistNoEvents;
4502 for event in background_events.drain(..) {
4504 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, update)) => {
4505 // The channel has already been closed, so no use bothering to care about the
4506 // monitor updating completing.
4507 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4509 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, update } => {
4510 let mut updated_chan = false;
4512 let per_peer_state = self.per_peer_state.read().unwrap();
4513 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4514 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4515 let peer_state = &mut *peer_state_lock;
4516 match peer_state.channel_by_id.entry(funding_txo.to_channel_id()) {
4517 hash_map::Entry::Occupied(mut chan_phase) => {
4518 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
4519 updated_chan = true;
4520 handle_new_monitor_update!(self, funding_txo, update.clone(),
4521 peer_state_lock, peer_state, per_peer_state, chan);
4523 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
4526 hash_map::Entry::Vacant(_) => {},
4531 // TODO: Track this as in-flight even though the channel is closed.
4532 let _ = self.chain_monitor.update_channel(funding_txo, &update);
4535 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
4536 let per_peer_state = self.per_peer_state.read().unwrap();
4537 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
4538 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4539 let peer_state = &mut *peer_state_lock;
4540 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
4541 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
4543 let update_actions = peer_state.monitor_update_blocked_actions
4544 .remove(&channel_id).unwrap_or(Vec::new());
4545 mem::drop(peer_state_lock);
4546 mem::drop(per_peer_state);
4547 self.handle_monitor_update_completion_actions(update_actions);
4553 NotifyOption::DoPersist
4556 #[cfg(any(test, feature = "_test_utils"))]
4557 /// Process background events, for functional testing
4558 pub fn test_process_background_events(&self) {
4559 let _lck = self.total_consistency_lock.read().unwrap();
4560 let _ = self.process_background_events();
4563 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
4564 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
4565 // If the feerate has decreased by less than half, don't bother
4566 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
4567 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {}.",
4568 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4569 return NotifyOption::SkipPersistNoEvents;
4571 if !chan.context.is_live() {
4572 log_trace!(self.logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
4573 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4574 return NotifyOption::SkipPersistNoEvents;
4576 log_trace!(self.logger, "Channel {} qualifies for a feerate change from {} to {}.",
4577 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
4579 chan.queue_update_fee(new_feerate, &self.fee_estimator, &self.logger);
4580 NotifyOption::DoPersist
4584 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
4585 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
4586 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
4587 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
4588 pub fn maybe_update_chan_fees(&self) {
4589 PersistenceNotifierGuard::optionally_notify(self, || {
4590 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4592 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4593 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4595 let per_peer_state = self.per_peer_state.read().unwrap();
4596 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
4597 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4598 let peer_state = &mut *peer_state_lock;
4599 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
4600 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
4602 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4607 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4608 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4616 /// Performs actions which should happen on startup and roughly once per minute thereafter.
4618 /// This currently includes:
4619 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
4620 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
4621 /// than a minute, informing the network that they should no longer attempt to route over
4623 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
4624 /// with the current [`ChannelConfig`].
4625 /// * Removing peers which have disconnected but and no longer have any channels.
4626 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
4628 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
4629 /// estimate fetches.
4631 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4632 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
4633 pub fn timer_tick_occurred(&self) {
4634 PersistenceNotifierGuard::optionally_notify(self, || {
4635 let mut should_persist = NotifyOption::SkipPersistNoEvents;
4637 let normal_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::Normal);
4638 let min_mempool_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::MempoolMinimum);
4640 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
4641 let mut timed_out_mpp_htlcs = Vec::new();
4642 let mut pending_peers_awaiting_removal = Vec::new();
4643 let mut shutdown_channels = Vec::new();
4645 let mut process_unfunded_channel_tick = |
4646 chan_id: &ChannelId,
4647 context: &mut ChannelContext<SP>,
4648 unfunded_context: &mut UnfundedChannelContext,
4649 pending_msg_events: &mut Vec<MessageSendEvent>,
4650 counterparty_node_id: PublicKey,
4652 context.maybe_expire_prev_config();
4653 if unfunded_context.should_expire_unfunded_channel() {
4654 log_error!(self.logger,
4655 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
4656 update_maps_on_chan_removal!(self, &context);
4657 self.issue_channel_close_events(&context, ClosureReason::HolderForceClosed);
4658 shutdown_channels.push(context.force_shutdown(false));
4659 pending_msg_events.push(MessageSendEvent::HandleError {
4660 node_id: counterparty_node_id,
4661 action: msgs::ErrorAction::SendErrorMessage {
4662 msg: msgs::ErrorMessage {
4663 channel_id: *chan_id,
4664 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
4675 let per_peer_state = self.per_peer_state.read().unwrap();
4676 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
4677 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4678 let peer_state = &mut *peer_state_lock;
4679 let pending_msg_events = &mut peer_state.pending_msg_events;
4680 let counterparty_node_id = *counterparty_node_id;
4681 peer_state.channel_by_id.retain(|chan_id, phase| {
4683 ChannelPhase::Funded(chan) => {
4684 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
4689 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
4690 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
4692 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
4693 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
4694 handle_errors.push((Err(err), counterparty_node_id));
4695 if needs_close { return false; }
4698 match chan.channel_update_status() {
4699 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
4700 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
4701 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
4702 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
4703 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
4704 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
4705 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
4707 if n >= DISABLE_GOSSIP_TICKS {
4708 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
4709 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4710 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4714 should_persist = NotifyOption::DoPersist;
4716 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
4719 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
4721 if n >= ENABLE_GOSSIP_TICKS {
4722 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
4723 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
4724 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
4728 should_persist = NotifyOption::DoPersist;
4730 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
4736 chan.context.maybe_expire_prev_config();
4738 if chan.should_disconnect_peer_awaiting_response() {
4739 log_debug!(self.logger, "Disconnecting peer {} due to not making any progress on channel {}",
4740 counterparty_node_id, chan_id);
4741 pending_msg_events.push(MessageSendEvent::HandleError {
4742 node_id: counterparty_node_id,
4743 action: msgs::ErrorAction::DisconnectPeerWithWarning {
4744 msg: msgs::WarningMessage {
4745 channel_id: *chan_id,
4746 data: "Disconnecting due to timeout awaiting response".to_owned(),
4754 ChannelPhase::UnfundedInboundV1(chan) => {
4755 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4756 pending_msg_events, counterparty_node_id)
4758 ChannelPhase::UnfundedOutboundV1(chan) => {
4759 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
4760 pending_msg_events, counterparty_node_id)
4765 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
4766 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
4767 log_error!(self.logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
4768 peer_state.pending_msg_events.push(
4769 events::MessageSendEvent::HandleError {
4770 node_id: counterparty_node_id,
4771 action: msgs::ErrorAction::SendErrorMessage {
4772 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
4778 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
4780 if peer_state.ok_to_remove(true) {
4781 pending_peers_awaiting_removal.push(counterparty_node_id);
4786 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
4787 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
4788 // of to that peer is later closed while still being disconnected (i.e. force closed),
4789 // we therefore need to remove the peer from `peer_state` separately.
4790 // To avoid having to take the `per_peer_state` `write` lock once the channels are
4791 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
4792 // negative effects on parallelism as much as possible.
4793 if pending_peers_awaiting_removal.len() > 0 {
4794 let mut per_peer_state = self.per_peer_state.write().unwrap();
4795 for counterparty_node_id in pending_peers_awaiting_removal {
4796 match per_peer_state.entry(counterparty_node_id) {
4797 hash_map::Entry::Occupied(entry) => {
4798 // Remove the entry if the peer is still disconnected and we still
4799 // have no channels to the peer.
4800 let remove_entry = {
4801 let peer_state = entry.get().lock().unwrap();
4802 peer_state.ok_to_remove(true)
4805 entry.remove_entry();
4808 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
4813 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
4814 if payment.htlcs.is_empty() {
4815 // This should be unreachable
4816 debug_assert!(false);
4819 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
4820 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
4821 // In this case we're not going to handle any timeouts of the parts here.
4822 // This condition determining whether the MPP is complete here must match
4823 // exactly the condition used in `process_pending_htlc_forwards`.
4824 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
4825 .fold(0, |total, htlc| total + htlc.sender_intended_value)
4828 } else if payment.htlcs.iter_mut().any(|htlc| {
4829 htlc.timer_ticks += 1;
4830 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
4832 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
4833 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
4840 for htlc_source in timed_out_mpp_htlcs.drain(..) {
4841 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
4842 let reason = HTLCFailReason::from_failure_code(23);
4843 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
4844 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
4847 for (err, counterparty_node_id) in handle_errors.drain(..) {
4848 let _ = handle_error!(self, err, counterparty_node_id);
4851 for shutdown_res in shutdown_channels {
4852 self.finish_force_close_channel(shutdown_res);
4855 self.pending_outbound_payments.remove_stale_payments(&self.pending_events);
4857 // Technically we don't need to do this here, but if we have holding cell entries in a
4858 // channel that need freeing, it's better to do that here and block a background task
4859 // than block the message queueing pipeline.
4860 if self.check_free_holding_cells() {
4861 should_persist = NotifyOption::DoPersist;
4868 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
4869 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
4870 /// along the path (including in our own channel on which we received it).
4872 /// Note that in some cases around unclean shutdown, it is possible the payment may have
4873 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
4874 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
4875 /// may have already been failed automatically by LDK if it was nearing its expiration time.
4877 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
4878 /// [`ChannelManager::claim_funds`]), you should still monitor for
4879 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
4880 /// startup during which time claims that were in-progress at shutdown may be replayed.
4881 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
4882 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
4885 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
4886 /// reason for the failure.
4888 /// See [`FailureCode`] for valid failure codes.
4889 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
4890 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4892 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
4893 if let Some(payment) = removed_source {
4894 for htlc in payment.htlcs {
4895 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
4896 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
4897 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
4898 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
4903 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
4904 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
4905 match failure_code {
4906 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
4907 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
4908 FailureCode::IncorrectOrUnknownPaymentDetails => {
4909 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
4910 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
4911 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
4913 FailureCode::InvalidOnionPayload(data) => {
4914 let fail_data = match data {
4915 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
4918 HTLCFailReason::reason(failure_code.into(), fail_data)
4923 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4924 /// that we want to return and a channel.
4926 /// This is for failures on the channel on which the HTLC was *received*, not failures
4928 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4929 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
4930 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
4931 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
4932 // an inbound SCID alias before the real SCID.
4933 let scid_pref = if chan.context.should_announce() {
4934 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
4936 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
4938 if let Some(scid) = scid_pref {
4939 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
4941 (0x4000|10, Vec::new())
4946 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
4947 /// that we want to return and a channel.
4948 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
4949 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
4950 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
4951 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
4952 if desired_err_code == 0x1000 | 20 {
4953 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
4954 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
4955 0u16.write(&mut enc).expect("Writes cannot fail");
4957 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
4958 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
4959 upd.write(&mut enc).expect("Writes cannot fail");
4960 (desired_err_code, enc.0)
4962 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
4963 // which means we really shouldn't have gotten a payment to be forwarded over this
4964 // channel yet, or if we did it's from a route hint. Either way, returning an error of
4965 // PERM|no_such_channel should be fine.
4966 (0x4000|10, Vec::new())
4970 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
4971 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
4972 // be surfaced to the user.
4973 fn fail_holding_cell_htlcs(
4974 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
4975 counterparty_node_id: &PublicKey
4977 let (failure_code, onion_failure_data) = {
4978 let per_peer_state = self.per_peer_state.read().unwrap();
4979 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
4980 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4981 let peer_state = &mut *peer_state_lock;
4982 match peer_state.channel_by_id.entry(channel_id) {
4983 hash_map::Entry::Occupied(chan_phase_entry) => {
4984 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
4985 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
4987 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
4988 debug_assert!(false);
4989 (0x4000|10, Vec::new())
4992 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
4994 } else { (0x4000|10, Vec::new()) }
4997 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
4998 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
4999 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
5000 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
5004 /// Fails an HTLC backwards to the sender of it to us.
5005 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
5006 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
5007 // Ensure that no peer state channel storage lock is held when calling this function.
5008 // This ensures that future code doesn't introduce a lock-order requirement for
5009 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
5010 // this function with any `per_peer_state` peer lock acquired would.
5011 #[cfg(debug_assertions)]
5012 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
5013 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
5016 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
5017 //identify whether we sent it or not based on the (I presume) very different runtime
5018 //between the branches here. We should make this async and move it into the forward HTLCs
5021 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
5022 // from block_connected which may run during initialization prior to the chain_monitor
5023 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
5025 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
5026 if self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
5027 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
5028 &self.pending_events, &self.logger)
5029 { self.push_pending_forwards_ev(); }
5031 HTLCSource::PreviousHopData(HTLCPreviousHopData { ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret, ref phantom_shared_secret, ref outpoint, .. }) => {
5032 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with {:?}", &payment_hash, onion_error);
5033 let err_packet = onion_error.get_encrypted_failure_packet(incoming_packet_shared_secret, phantom_shared_secret);
5035 let mut push_forward_ev = false;
5036 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
5037 if forward_htlcs.is_empty() {
5038 push_forward_ev = true;
5040 match forward_htlcs.entry(*short_channel_id) {
5041 hash_map::Entry::Occupied(mut entry) => {
5042 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet });
5044 hash_map::Entry::Vacant(entry) => {
5045 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }));
5048 mem::drop(forward_htlcs);
5049 if push_forward_ev { self.push_pending_forwards_ev(); }
5050 let mut pending_events = self.pending_events.lock().unwrap();
5051 pending_events.push_back((events::Event::HTLCHandlingFailed {
5052 prev_channel_id: outpoint.to_channel_id(),
5053 failed_next_destination: destination,
5059 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
5060 /// [`MessageSendEvent`]s needed to claim the payment.
5062 /// This method is guaranteed to ensure the payment has been claimed but only if the current
5063 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
5064 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
5065 /// successful. It will generally be available in the next [`process_pending_events`] call.
5067 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
5068 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
5069 /// event matches your expectation. If you fail to do so and call this method, you may provide
5070 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
5072 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
5073 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
5074 /// [`claim_funds_with_known_custom_tlvs`].
5076 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
5077 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
5078 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
5079 /// [`process_pending_events`]: EventsProvider::process_pending_events
5080 /// [`create_inbound_payment`]: Self::create_inbound_payment
5081 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
5082 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
5083 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
5084 self.claim_payment_internal(payment_preimage, false);
5087 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
5088 /// even type numbers.
5092 /// You MUST check you've understood all even TLVs before using this to
5093 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
5095 /// [`claim_funds`]: Self::claim_funds
5096 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
5097 self.claim_payment_internal(payment_preimage, true);
5100 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
5101 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
5103 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5106 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5107 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
5108 let mut receiver_node_id = self.our_network_pubkey;
5109 for htlc in payment.htlcs.iter() {
5110 if htlc.prev_hop.phantom_shared_secret.is_some() {
5111 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
5112 .expect("Failed to get node_id for phantom node recipient");
5113 receiver_node_id = phantom_pubkey;
5118 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
5119 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
5120 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
5121 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
5122 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
5124 if dup_purpose.is_some() {
5125 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
5126 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
5130 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
5131 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
5132 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
5133 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
5134 claimable_payments.pending_claiming_payments.remove(&payment_hash);
5135 mem::drop(claimable_payments);
5136 for htlc in payment.htlcs {
5137 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
5138 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5139 let receiver = HTLCDestination::FailedPayment { payment_hash };
5140 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5149 debug_assert!(!sources.is_empty());
5151 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
5152 // and when we got here we need to check that the amount we're about to claim matches the
5153 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
5154 // the MPP parts all have the same `total_msat`.
5155 let mut claimable_amt_msat = 0;
5156 let mut prev_total_msat = None;
5157 let mut expected_amt_msat = None;
5158 let mut valid_mpp = true;
5159 let mut errs = Vec::new();
5160 let per_peer_state = self.per_peer_state.read().unwrap();
5161 for htlc in sources.iter() {
5162 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
5163 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
5164 debug_assert!(false);
5168 prev_total_msat = Some(htlc.total_msat);
5170 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
5171 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
5172 debug_assert!(false);
5176 expected_amt_msat = htlc.total_value_received;
5177 claimable_amt_msat += htlc.value;
5179 mem::drop(per_peer_state);
5180 if sources.is_empty() || expected_amt_msat.is_none() {
5181 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5182 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
5185 if claimable_amt_msat != expected_amt_msat.unwrap() {
5186 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5187 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
5188 expected_amt_msat.unwrap(), claimable_amt_msat);
5192 for htlc in sources.drain(..) {
5193 if let Err((pk, err)) = self.claim_funds_from_hop(
5194 htlc.prev_hop, payment_preimage,
5195 |_| Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash }))
5197 if let msgs::ErrorAction::IgnoreError = err.err.action {
5198 // We got a temporary failure updating monitor, but will claim the
5199 // HTLC when the monitor updating is restored (or on chain).
5200 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
5201 } else { errs.push((pk, err)); }
5206 for htlc in sources.drain(..) {
5207 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
5208 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height().to_be_bytes());
5209 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
5210 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
5211 let receiver = HTLCDestination::FailedPayment { payment_hash };
5212 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
5214 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5217 // Now we can handle any errors which were generated.
5218 for (counterparty_node_id, err) in errs.drain(..) {
5219 let res: Result<(), _> = Err(err);
5220 let _ = handle_error!(self, res, counterparty_node_id);
5224 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>) -> Option<MonitorUpdateCompletionAction>>(&self,
5225 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
5226 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
5227 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
5229 // If we haven't yet run background events assume we're still deserializing and shouldn't
5230 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
5231 // `BackgroundEvent`s.
5232 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
5235 let per_peer_state = self.per_peer_state.read().unwrap();
5236 let chan_id = prev_hop.outpoint.to_channel_id();
5237 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
5238 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
5242 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
5243 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
5244 .map(|peer_mutex| peer_mutex.lock().unwrap())
5247 if peer_state_opt.is_some() {
5248 let mut peer_state_lock = peer_state_opt.unwrap();
5249 let peer_state = &mut *peer_state_lock;
5250 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
5251 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5252 let counterparty_node_id = chan.context.get_counterparty_node_id();
5253 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger);
5255 if let UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } = fulfill_res {
5256 if let Some(action) = completion_action(Some(htlc_value_msat)) {
5257 log_trace!(self.logger, "Tracking monitor update completion action for channel {}: {:?}",
5259 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
5262 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
5263 peer_state, per_peer_state, chan);
5265 // If we're running during init we cannot update a monitor directly -
5266 // they probably haven't actually been loaded yet. Instead, push the
5267 // monitor update as a background event.
5268 self.pending_background_events.lock().unwrap().push(
5269 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
5270 counterparty_node_id,
5271 funding_txo: prev_hop.outpoint,
5272 update: monitor_update.clone(),
5281 let preimage_update = ChannelMonitorUpdate {
5282 update_id: CLOSED_CHANNEL_UPDATE_ID,
5283 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
5289 // We update the ChannelMonitor on the backward link, after
5290 // receiving an `update_fulfill_htlc` from the forward link.
5291 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
5292 if update_res != ChannelMonitorUpdateStatus::Completed {
5293 // TODO: This needs to be handled somehow - if we receive a monitor update
5294 // with a preimage we *must* somehow manage to propagate it to the upstream
5295 // channel, or we must have an ability to receive the same event and try
5296 // again on restart.
5297 log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
5298 payment_preimage, update_res);
5301 // If we're running during init we cannot update a monitor directly - they probably
5302 // haven't actually been loaded yet. Instead, push the monitor update as a background
5304 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
5305 // channel is already closed) we need to ultimately handle the monitor update
5306 // completion action only after we've completed the monitor update. This is the only
5307 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
5308 // from a forwarded HTLC the downstream preimage may be deleted before we claim
5309 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
5310 // complete the monitor update completion action from `completion_action`.
5311 self.pending_background_events.lock().unwrap().push(
5312 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
5313 prev_hop.outpoint, preimage_update,
5316 // Note that we do process the completion action here. This totally could be a
5317 // duplicate claim, but we have no way of knowing without interrogating the
5318 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
5319 // generally always allowed to be duplicative (and it's specifically noted in
5320 // `PaymentForwarded`).
5321 self.handle_monitor_update_completion_actions(completion_action(None));
5325 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
5326 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
5329 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
5330 forwarded_htlc_value_msat: Option<u64>, from_onchain: bool,
5331 next_channel_counterparty_node_id: Option<PublicKey>, next_channel_outpoint: OutPoint
5334 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
5335 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
5336 "We don't support claim_htlc claims during startup - monitors may not be available yet");
5337 if let Some(pubkey) = next_channel_counterparty_node_id {
5338 debug_assert_eq!(pubkey, path.hops[0].pubkey);
5340 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
5341 channel_funding_outpoint: next_channel_outpoint,
5342 counterparty_node_id: path.hops[0].pubkey,
5344 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
5345 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
5348 HTLCSource::PreviousHopData(hop_data) => {
5349 let prev_outpoint = hop_data.outpoint;
5350 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
5351 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
5352 |htlc_claim_value_msat| {
5353 if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
5354 let fee_earned_msat = if let Some(claimed_htlc_value) = htlc_claim_value_msat {
5355 Some(claimed_htlc_value - forwarded_htlc_value)
5358 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5359 event: events::Event::PaymentForwarded {
5361 claim_from_onchain_tx: from_onchain,
5362 prev_channel_id: Some(prev_outpoint.to_channel_id()),
5363 next_channel_id: Some(next_channel_outpoint.to_channel_id()),
5364 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
5366 downstream_counterparty_and_funding_outpoint:
5367 if let Some(node_id) = next_channel_counterparty_node_id {
5368 Some((node_id, next_channel_outpoint, completed_blocker))
5370 // We can only get `None` here if we are processing a
5371 // `ChannelMonitor`-originated event, in which case we
5372 // don't care about ensuring we wake the downstream
5373 // channel's monitor updating - the channel is already
5380 if let Err((pk, err)) = res {
5381 let result: Result<(), _> = Err(err);
5382 let _ = handle_error!(self, result, pk);
5388 /// Gets the node_id held by this ChannelManager
5389 pub fn get_our_node_id(&self) -> PublicKey {
5390 self.our_network_pubkey.clone()
5393 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
5394 for action in actions.into_iter() {
5396 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
5397 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
5398 if let Some(ClaimingPayment {
5400 payment_purpose: purpose,
5403 sender_intended_value: sender_intended_total_msat,
5405 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
5409 receiver_node_id: Some(receiver_node_id),
5411 sender_intended_total_msat,
5415 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
5416 event, downstream_counterparty_and_funding_outpoint
5418 self.pending_events.lock().unwrap().push_back((event, None));
5419 if let Some((node_id, funding_outpoint, blocker)) = downstream_counterparty_and_funding_outpoint {
5420 self.handle_monitor_update_release(node_id, funding_outpoint, Some(blocker));
5427 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
5428 /// update completion.
5429 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
5430 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
5431 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
5432 pending_forwards: Vec<(PendingHTLCInfo, u64)>, funding_broadcastable: Option<Transaction>,
5433 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
5434 -> Option<(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)> {
5435 log_trace!(self.logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {}broadcasting funding, {} channel ready, {} announcement",
5436 &channel.context.channel_id(),
5437 if raa.is_some() { "an" } else { "no" },
5438 if commitment_update.is_some() { "a" } else { "no" }, pending_forwards.len(),
5439 if funding_broadcastable.is_some() { "" } else { "not " },
5440 if channel_ready.is_some() { "sending" } else { "without" },
5441 if announcement_sigs.is_some() { "sending" } else { "without" });
5443 let mut htlc_forwards = None;
5445 let counterparty_node_id = channel.context.get_counterparty_node_id();
5446 if !pending_forwards.is_empty() {
5447 htlc_forwards = Some((channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias()),
5448 channel.context.get_funding_txo().unwrap(), channel.context.get_user_id(), pending_forwards));
5451 if let Some(msg) = channel_ready {
5452 send_channel_ready!(self, pending_msg_events, channel, msg);
5454 if let Some(msg) = announcement_sigs {
5455 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5456 node_id: counterparty_node_id,
5461 macro_rules! handle_cs { () => {
5462 if let Some(update) = commitment_update {
5463 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
5464 node_id: counterparty_node_id,
5469 macro_rules! handle_raa { () => {
5470 if let Some(revoke_and_ack) = raa {
5471 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
5472 node_id: counterparty_node_id,
5473 msg: revoke_and_ack,
5478 RAACommitmentOrder::CommitmentFirst => {
5482 RAACommitmentOrder::RevokeAndACKFirst => {
5488 if let Some(tx) = funding_broadcastable {
5489 log_info!(self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
5490 self.tx_broadcaster.broadcast_transactions(&[&tx]);
5494 let mut pending_events = self.pending_events.lock().unwrap();
5495 emit_channel_pending_event!(pending_events, channel);
5496 emit_channel_ready_event!(pending_events, channel);
5502 fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
5503 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
5505 let counterparty_node_id = match counterparty_node_id {
5506 Some(cp_id) => cp_id.clone(),
5508 // TODO: Once we can rely on the counterparty_node_id from the
5509 // monitor event, this and the id_to_peer map should be removed.
5510 let id_to_peer = self.id_to_peer.lock().unwrap();
5511 match id_to_peer.get(&funding_txo.to_channel_id()) {
5512 Some(cp_id) => cp_id.clone(),
5517 let per_peer_state = self.per_peer_state.read().unwrap();
5518 let mut peer_state_lock;
5519 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5520 if peer_state_mutex_opt.is_none() { return }
5521 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5522 let peer_state = &mut *peer_state_lock;
5524 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&funding_txo.to_channel_id()) {
5527 let update_actions = peer_state.monitor_update_blocked_actions
5528 .remove(&funding_txo.to_channel_id()).unwrap_or(Vec::new());
5529 mem::drop(peer_state_lock);
5530 mem::drop(per_peer_state);
5531 self.handle_monitor_update_completion_actions(update_actions);
5534 let remaining_in_flight =
5535 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
5536 pending.retain(|upd| upd.update_id > highest_applied_update_id);
5539 log_trace!(self.logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
5540 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
5541 remaining_in_flight);
5542 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
5545 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
5548 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
5550 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
5551 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
5554 /// The `user_channel_id` parameter will be provided back in
5555 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5556 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5558 /// Note that this method will return an error and reject the channel, if it requires support
5559 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
5560 /// used to accept such channels.
5562 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5563 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5564 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5565 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
5568 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
5569 /// it as confirmed immediately.
5571 /// The `user_channel_id` parameter will be provided back in
5572 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
5573 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
5575 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
5576 /// and (if the counterparty agrees), enables forwarding of payments immediately.
5578 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
5579 /// transaction and blindly assumes that it will eventually confirm.
5581 /// If it does not confirm before we decide to close the channel, or if the funding transaction
5582 /// does not pay to the correct script the correct amount, *you will lose funds*.
5584 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
5585 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
5586 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
5587 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
5590 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
5591 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5593 let peers_without_funded_channels =
5594 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
5595 let per_peer_state = self.per_peer_state.read().unwrap();
5596 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5597 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
5598 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5599 let peer_state = &mut *peer_state_lock;
5600 let is_only_peer_channel = peer_state.total_channel_count() == 1;
5602 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
5603 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
5604 // that we can delay allocating the SCID until after we're sure that the checks below will
5606 let mut channel = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
5607 Some(unaccepted_channel) => {
5608 let best_block_height = self.best_block.read().unwrap().height();
5609 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5610 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
5611 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
5612 &self.logger, accept_0conf).map_err(|e| APIError::ChannelUnavailable { err: e.to_string() })
5614 _ => Err(APIError::APIMisuseError { err: "No such channel awaiting to be accepted.".to_owned() })
5618 // This should have been correctly configured by the call to InboundV1Channel::new.
5619 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
5620 } else if channel.context.get_channel_type().requires_zero_conf() {
5621 let send_msg_err_event = events::MessageSendEvent::HandleError {
5622 node_id: channel.context.get_counterparty_node_id(),
5623 action: msgs::ErrorAction::SendErrorMessage{
5624 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
5627 peer_state.pending_msg_events.push(send_msg_err_event);
5628 return Err(APIError::APIMisuseError { err: "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned() });
5630 // If this peer already has some channels, a new channel won't increase our number of peers
5631 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5632 // channels per-peer we can accept channels from a peer with existing ones.
5633 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
5634 let send_msg_err_event = events::MessageSendEvent::HandleError {
5635 node_id: channel.context.get_counterparty_node_id(),
5636 action: msgs::ErrorAction::SendErrorMessage{
5637 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
5640 peer_state.pending_msg_events.push(send_msg_err_event);
5641 return Err(APIError::APIMisuseError { err: "Too many peers with unfunded channels, refusing to accept new ones".to_owned() });
5645 // Now that we know we have a channel, assign an outbound SCID alias.
5646 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5647 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5649 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5650 node_id: channel.context.get_counterparty_node_id(),
5651 msg: channel.accept_inbound_channel(),
5654 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
5659 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
5660 /// or 0-conf channels.
5662 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
5663 /// non-0-conf channels we have with the peer.
5664 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
5665 where Filter: Fn(&PeerState<SP>) -> bool {
5666 let mut peers_without_funded_channels = 0;
5667 let best_block_height = self.best_block.read().unwrap().height();
5669 let peer_state_lock = self.per_peer_state.read().unwrap();
5670 for (_, peer_mtx) in peer_state_lock.iter() {
5671 let peer = peer_mtx.lock().unwrap();
5672 if !maybe_count_peer(&*peer) { continue; }
5673 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
5674 if num_unfunded_channels == peer.total_channel_count() {
5675 peers_without_funded_channels += 1;
5679 return peers_without_funded_channels;
5682 fn unfunded_channel_count(
5683 peer: &PeerState<SP>, best_block_height: u32
5685 let mut num_unfunded_channels = 0;
5686 for (_, phase) in peer.channel_by_id.iter() {
5688 ChannelPhase::Funded(chan) => {
5689 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
5690 // which have not yet had any confirmations on-chain.
5691 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
5692 chan.context.get_funding_tx_confirmations(best_block_height) == 0
5694 num_unfunded_channels += 1;
5697 ChannelPhase::UnfundedInboundV1(chan) => {
5698 if chan.context.minimum_depth().unwrap_or(1) != 0 {
5699 num_unfunded_channels += 1;
5702 ChannelPhase::UnfundedOutboundV1(_) => {
5703 // Outbound channels don't contribute to the unfunded count in the DoS context.
5708 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
5711 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
5712 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5713 // likely to be lost on restart!
5714 if msg.chain_hash != self.genesis_hash {
5715 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
5718 if !self.default_configuration.accept_inbound_channels {
5719 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5722 // Get the number of peers with channels, but without funded ones. We don't care too much
5723 // about peers that never open a channel, so we filter by peers that have at least one
5724 // channel, and then limit the number of those with unfunded channels.
5725 let channeled_peers_without_funding =
5726 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
5728 let per_peer_state = self.per_peer_state.read().unwrap();
5729 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5731 debug_assert!(false);
5732 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id.clone())
5734 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5735 let peer_state = &mut *peer_state_lock;
5737 // If this peer already has some channels, a new channel won't increase our number of peers
5738 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
5739 // channels per-peer we can accept channels from a peer with existing ones.
5740 if peer_state.total_channel_count() == 0 &&
5741 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
5742 !self.default_configuration.manually_accept_inbound_channels
5744 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5745 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
5746 msg.temporary_channel_id.clone()));
5749 let best_block_height = self.best_block.read().unwrap().height();
5750 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
5751 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5752 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
5753 msg.temporary_channel_id.clone()));
5756 let channel_id = msg.temporary_channel_id;
5757 let channel_exists = peer_state.has_channel(&channel_id);
5759 return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision for the same peer!".to_owned(), msg.temporary_channel_id.clone()));
5762 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
5763 if self.default_configuration.manually_accept_inbound_channels {
5764 let mut pending_events = self.pending_events.lock().unwrap();
5765 pending_events.push_back((events::Event::OpenChannelRequest {
5766 temporary_channel_id: msg.temporary_channel_id.clone(),
5767 counterparty_node_id: counterparty_node_id.clone(),
5768 funding_satoshis: msg.funding_satoshis,
5769 push_msat: msg.push_msat,
5770 channel_type: msg.channel_type.clone().unwrap(),
5772 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
5773 open_channel_msg: msg.clone(),
5774 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
5779 // Otherwise create the channel right now.
5780 let mut random_bytes = [0u8; 16];
5781 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
5782 let user_channel_id = u128::from_be_bytes(random_bytes);
5783 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
5784 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
5785 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
5788 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id));
5793 let channel_type = channel.context.get_channel_type();
5794 if channel_type.requires_zero_conf() {
5795 return Err(MsgHandleErrInternal::send_err_msg_no_close("No zero confirmation channels accepted".to_owned(), msg.temporary_channel_id.clone()));
5797 if channel_type.requires_anchors_zero_fee_htlc_tx() {
5798 return Err(MsgHandleErrInternal::send_err_msg_no_close("No channels with anchor outputs accepted".to_owned(), msg.temporary_channel_id.clone()));
5801 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
5802 channel.context.set_outbound_scid_alias(outbound_scid_alias);
5804 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
5805 node_id: counterparty_node_id.clone(),
5806 msg: channel.accept_inbound_channel(),
5808 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
5812 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
5813 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
5814 // likely to be lost on restart!
5815 let (value, output_script, user_id) = {
5816 let per_peer_state = self.per_peer_state.read().unwrap();
5817 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5819 debug_assert!(false);
5820 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5822 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5823 let peer_state = &mut *peer_state_lock;
5824 match peer_state.channel_by_id.entry(msg.temporary_channel_id) {
5825 hash_map::Entry::Occupied(mut phase) => {
5826 match phase.get_mut() {
5827 ChannelPhase::UnfundedOutboundV1(chan) => {
5828 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
5829 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
5832 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
5836 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5839 let mut pending_events = self.pending_events.lock().unwrap();
5840 pending_events.push_back((events::Event::FundingGenerationReady {
5841 temporary_channel_id: msg.temporary_channel_id,
5842 counterparty_node_id: *counterparty_node_id,
5843 channel_value_satoshis: value,
5845 user_channel_id: user_id,
5850 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
5851 let best_block = *self.best_block.read().unwrap();
5853 let per_peer_state = self.per_peer_state.read().unwrap();
5854 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5856 debug_assert!(false);
5857 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
5860 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5861 let peer_state = &mut *peer_state_lock;
5862 let (chan, funding_msg, monitor) =
5863 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
5864 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
5865 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &self.logger) {
5867 Err((mut inbound_chan, err)) => {
5868 // We've already removed this inbound channel from the map in `PeerState`
5869 // above so at this point we just need to clean up any lingering entries
5870 // concerning this channel as it is safe to do so.
5871 update_maps_on_chan_removal!(self, &inbound_chan.context);
5872 let user_id = inbound_chan.context.get_user_id();
5873 let shutdown_res = inbound_chan.context.force_shutdown(false);
5874 return Err(MsgHandleErrInternal::from_finish_shutdown(format!("{}", err),
5875 msg.temporary_channel_id, user_id, shutdown_res, None, inbound_chan.context.get_value_satoshis()));
5879 Some(ChannelPhase::Funded(_)) | Some(ChannelPhase::UnfundedOutboundV1(_)) => {
5880 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id));
5882 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
5885 match peer_state.channel_by_id.entry(funding_msg.channel_id) {
5886 hash_map::Entry::Occupied(_) => {
5887 Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
5889 hash_map::Entry::Vacant(e) => {
5890 let mut id_to_peer_lock = self.id_to_peer.lock().unwrap();
5891 match id_to_peer_lock.entry(chan.context.channel_id()) {
5892 hash_map::Entry::Occupied(_) => {
5893 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5894 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
5895 funding_msg.channel_id))
5897 hash_map::Entry::Vacant(i_e) => {
5898 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
5899 if let Ok(persist_state) = monitor_res {
5900 i_e.insert(chan.context.get_counterparty_node_id());
5901 mem::drop(id_to_peer_lock);
5903 // There's no problem signing a counterparty's funding transaction if our monitor
5904 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
5905 // accepted payment from yet. We do, however, need to wait to send our channel_ready
5906 // until we have persisted our monitor.
5907 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
5908 node_id: counterparty_node_id.clone(),
5912 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
5913 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
5914 per_peer_state, chan, INITIAL_MONITOR);
5916 unreachable!("This must be a funded channel as we just inserted it.");
5920 log_error!(self.logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
5921 return Err(MsgHandleErrInternal::send_err_msg_no_close(
5922 "The funding_created message had the same funding_txid as an existing channel - funding is not possible".to_owned(),
5923 funding_msg.channel_id));
5931 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
5932 let best_block = *self.best_block.read().unwrap();
5933 let per_peer_state = self.per_peer_state.read().unwrap();
5934 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5936 debug_assert!(false);
5937 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5940 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5941 let peer_state = &mut *peer_state_lock;
5942 match peer_state.channel_by_id.entry(msg.channel_id) {
5943 hash_map::Entry::Occupied(mut chan_phase_entry) => {
5944 match chan_phase_entry.get_mut() {
5945 ChannelPhase::Funded(ref mut chan) => {
5946 let monitor = try_chan_phase_entry!(self,
5947 chan.funding_signed(&msg, best_block, &self.signer_provider, &self.logger), chan_phase_entry);
5948 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
5949 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
5952 try_chan_phase_entry!(self, Err(ChannelError::Close("Channel funding outpoint was a duplicate".to_owned())), chan_phase_entry)
5956 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
5960 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
5964 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
5965 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
5966 // closing a channel), so any changes are likely to be lost on restart!
5967 let per_peer_state = self.per_peer_state.read().unwrap();
5968 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
5970 debug_assert!(false);
5971 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
5973 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5974 let peer_state = &mut *peer_state_lock;
5975 match peer_state.channel_by_id.entry(msg.channel_id) {
5976 hash_map::Entry::Occupied(mut chan_phase_entry) => {
5977 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
5978 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
5979 self.genesis_hash.clone(), &self.default_configuration, &self.best_block.read().unwrap(), &self.logger), chan_phase_entry);
5980 if let Some(announcement_sigs) = announcement_sigs_opt {
5981 log_trace!(self.logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
5982 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
5983 node_id: counterparty_node_id.clone(),
5984 msg: announcement_sigs,
5986 } else if chan.context.is_usable() {
5987 // If we're sending an announcement_signatures, we'll send the (public)
5988 // channel_update after sending a channel_announcement when we receive our
5989 // counterparty's announcement_signatures. Thus, we only bother to send a
5990 // channel_update here if the channel is not public, i.e. we're not sending an
5991 // announcement_signatures.
5992 log_trace!(self.logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
5993 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
5994 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
5995 node_id: counterparty_node_id.clone(),
6002 let mut pending_events = self.pending_events.lock().unwrap();
6003 emit_channel_ready_event!(pending_events, chan);
6008 try_chan_phase_entry!(self, Err(ChannelError::Close(
6009 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
6012 hash_map::Entry::Vacant(_) => {
6013 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6018 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
6019 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
6020 let mut finish_shutdown = None;
6022 let per_peer_state = self.per_peer_state.read().unwrap();
6023 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6025 debug_assert!(false);
6026 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6028 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6029 let peer_state = &mut *peer_state_lock;
6030 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6031 let phase = chan_phase_entry.get_mut();
6033 ChannelPhase::Funded(chan) => {
6034 if !chan.received_shutdown() {
6035 log_info!(self.logger, "Received a shutdown message from our counterparty for channel {}{}.",
6037 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
6040 let funding_txo_opt = chan.context.get_funding_txo();
6041 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
6042 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
6043 dropped_htlcs = htlcs;
6045 if let Some(msg) = shutdown {
6046 // We can send the `shutdown` message before updating the `ChannelMonitor`
6047 // here as we don't need the monitor update to complete until we send a
6048 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
6049 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6050 node_id: *counterparty_node_id,
6054 // Update the monitor with the shutdown script if necessary.
6055 if let Some(monitor_update) = monitor_update_opt {
6056 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
6057 peer_state_lock, peer_state, per_peer_state, chan);
6060 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
6061 let context = phase.context_mut();
6062 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
6063 self.issue_channel_close_events(&context, ClosureReason::CounterpartyCoopClosedUnfundedChannel);
6064 let mut chan = remove_channel_phase!(self, chan_phase_entry);
6065 finish_shutdown = Some(chan.context_mut().force_shutdown(false));
6069 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6072 for htlc_source in dropped_htlcs.drain(..) {
6073 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
6074 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6075 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
6077 if let Some(shutdown_res) = finish_shutdown {
6078 self.finish_force_close_channel(shutdown_res);
6084 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
6085 let per_peer_state = self.per_peer_state.read().unwrap();
6086 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6088 debug_assert!(false);
6089 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6091 let (tx, chan_option) = {
6092 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6093 let peer_state = &mut *peer_state_lock;
6094 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
6095 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6096 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6097 let (closing_signed, tx) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
6098 if let Some(msg) = closing_signed {
6099 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6100 node_id: counterparty_node_id.clone(),
6105 // We're done with this channel, we've got a signed closing transaction and
6106 // will send the closing_signed back to the remote peer upon return. This
6107 // also implies there are no pending HTLCs left on the channel, so we can
6108 // fully delete it from tracking (the channel monitor is still around to
6109 // watch for old state broadcasts)!
6110 (tx, Some(remove_channel_phase!(self, chan_phase_entry)))
6111 } else { (tx, None) }
6113 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6114 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
6117 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6120 if let Some(broadcast_tx) = tx {
6121 log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
6122 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
6124 if let Some(ChannelPhase::Funded(chan)) = chan_option {
6125 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6126 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6127 let peer_state = &mut *peer_state_lock;
6128 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6132 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6137 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
6138 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
6139 //determine the state of the payment based on our response/if we forward anything/the time
6140 //we take to respond. We should take care to avoid allowing such an attack.
6142 //TODO: There exists a further attack where a node may garble the onion data, forward it to
6143 //us repeatedly garbled in different ways, and compare our error messages, which are
6144 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
6145 //but we should prevent it anyway.
6147 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6148 // closing a channel), so any changes are likely to be lost on restart!
6150 let decoded_hop_res = self.decode_update_add_htlc_onion(msg);
6151 let per_peer_state = self.per_peer_state.read().unwrap();
6152 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6154 debug_assert!(false);
6155 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6157 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6158 let peer_state = &mut *peer_state_lock;
6159 match peer_state.channel_by_id.entry(msg.channel_id) {
6160 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6161 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6162 let pending_forward_info = match decoded_hop_res {
6163 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
6164 self.construct_pending_htlc_status(msg, shared_secret, next_hop,
6165 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt),
6166 Err(e) => PendingHTLCStatus::Fail(e)
6168 let create_pending_htlc_status = |chan: &Channel<SP>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
6169 // If the update_add is completely bogus, the call will Err and we will close,
6170 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
6171 // want to reject the new HTLC and fail it backwards instead of forwarding.
6172 match pending_forward_info {
6173 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
6174 let reason = if (error_code & 0x1000) != 0 {
6175 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
6176 HTLCFailReason::reason(real_code, error_data)
6178 HTLCFailReason::from_failure_code(error_code)
6179 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
6180 let msg = msgs::UpdateFailHTLC {
6181 channel_id: msg.channel_id,
6182 htlc_id: msg.htlc_id,
6185 PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
6187 _ => pending_forward_info
6190 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.fee_estimator, &self.logger), chan_phase_entry);
6192 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6193 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
6196 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6201 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
6203 let (htlc_source, forwarded_htlc_value) = {
6204 let per_peer_state = self.per_peer_state.read().unwrap();
6205 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6207 debug_assert!(false);
6208 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6210 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6211 let peer_state = &mut *peer_state_lock;
6212 match peer_state.channel_by_id.entry(msg.channel_id) {
6213 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6214 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6215 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
6216 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
6217 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
6218 .or_insert_with(Vec::new)
6219 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
6221 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
6222 // entry here, even though we *do* need to block the next RAA monitor update.
6223 // We do this instead in the `claim_funds_internal` by attaching a
6224 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
6225 // outbound HTLC is claimed. This is guaranteed to all complete before we
6226 // process the RAA as messages are processed from single peers serially.
6227 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
6230 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6231 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
6234 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6237 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(), Some(forwarded_htlc_value), false, Some(*counterparty_node_id), funding_txo);
6241 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
6242 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6243 // closing a channel), so any changes are likely to be lost on restart!
6244 let per_peer_state = self.per_peer_state.read().unwrap();
6245 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6247 debug_assert!(false);
6248 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6250 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6251 let peer_state = &mut *peer_state_lock;
6252 match peer_state.channel_by_id.entry(msg.channel_id) {
6253 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6254 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6255 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
6257 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6258 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
6261 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6266 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
6267 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
6268 // closing a channel), so any changes are likely to be lost on restart!
6269 let per_peer_state = self.per_peer_state.read().unwrap();
6270 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6272 debug_assert!(false);
6273 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6275 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6276 let peer_state = &mut *peer_state_lock;
6277 match peer_state.channel_by_id.entry(msg.channel_id) {
6278 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6279 if (msg.failure_code & 0x8000) == 0 {
6280 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
6281 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
6283 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6284 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
6286 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6287 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
6291 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6295 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
6296 let per_peer_state = self.per_peer_state.read().unwrap();
6297 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6299 debug_assert!(false);
6300 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6302 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6303 let peer_state = &mut *peer_state_lock;
6304 match peer_state.channel_by_id.entry(msg.channel_id) {
6305 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6306 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6307 let funding_txo = chan.context.get_funding_txo();
6308 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &self.logger), chan_phase_entry);
6309 if let Some(monitor_update) = monitor_update_opt {
6310 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
6311 peer_state, per_peer_state, chan);
6315 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6316 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
6319 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6324 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, u128, Vec<(PendingHTLCInfo, u64)>)]) {
6325 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
6326 let mut push_forward_event = false;
6327 let mut new_intercept_events = VecDeque::new();
6328 let mut failed_intercept_forwards = Vec::new();
6329 if !pending_forwards.is_empty() {
6330 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
6331 let scid = match forward_info.routing {
6332 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
6333 PendingHTLCRouting::Receive { .. } => 0,
6334 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
6336 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
6337 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
6339 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6340 let forward_htlcs_empty = forward_htlcs.is_empty();
6341 match forward_htlcs.entry(scid) {
6342 hash_map::Entry::Occupied(mut entry) => {
6343 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6344 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info }));
6346 hash_map::Entry::Vacant(entry) => {
6347 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
6348 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.genesis_hash)
6350 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).into_inner());
6351 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
6352 match pending_intercepts.entry(intercept_id) {
6353 hash_map::Entry::Vacant(entry) => {
6354 new_intercept_events.push_back((events::Event::HTLCIntercepted {
6355 requested_next_hop_scid: scid,
6356 payment_hash: forward_info.payment_hash,
6357 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
6358 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
6361 entry.insert(PendingAddHTLCInfo {
6362 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info });
6364 hash_map::Entry::Occupied(_) => {
6365 log_info!(self.logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
6366 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
6367 short_channel_id: prev_short_channel_id,
6368 user_channel_id: Some(prev_user_channel_id),
6369 outpoint: prev_funding_outpoint,
6370 htlc_id: prev_htlc_id,
6371 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
6372 phantom_shared_secret: None,
6375 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
6376 HTLCFailReason::from_failure_code(0x4000 | 10),
6377 HTLCDestination::InvalidForward { requested_forward_scid: scid },
6382 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
6383 // payments are being processed.
6384 if forward_htlcs_empty {
6385 push_forward_event = true;
6387 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
6388 prev_short_channel_id, prev_funding_outpoint, prev_htlc_id, prev_user_channel_id, forward_info })));
6395 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
6396 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
6399 if !new_intercept_events.is_empty() {
6400 let mut events = self.pending_events.lock().unwrap();
6401 events.append(&mut new_intercept_events);
6403 if push_forward_event { self.push_pending_forwards_ev() }
6407 fn push_pending_forwards_ev(&self) {
6408 let mut pending_events = self.pending_events.lock().unwrap();
6409 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
6410 let num_forward_events = pending_events.iter().filter(|(ev, _)|
6411 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
6413 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
6414 // events is done in batches and they are not removed until we're done processing each
6415 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
6416 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
6417 // payments will need an additional forwarding event before being claimed to make them look
6418 // real by taking more time.
6419 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
6420 pending_events.push_back((Event::PendingHTLCsForwardable {
6421 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
6426 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
6427 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
6428 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
6429 /// the [`ChannelMonitorUpdate`] in question.
6430 fn raa_monitor_updates_held(&self,
6431 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
6432 channel_funding_outpoint: OutPoint, counterparty_node_id: PublicKey
6434 actions_blocking_raa_monitor_updates
6435 .get(&channel_funding_outpoint.to_channel_id()).map(|v| !v.is_empty()).unwrap_or(false)
6436 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
6437 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6438 channel_funding_outpoint,
6439 counterparty_node_id,
6444 #[cfg(any(test, feature = "_test_utils"))]
6445 pub(crate) fn test_raa_monitor_updates_held(&self,
6446 counterparty_node_id: PublicKey, channel_id: ChannelId
6448 let per_peer_state = self.per_peer_state.read().unwrap();
6449 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
6450 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
6451 let peer_state = &mut *peer_state_lck;
6453 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
6454 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
6455 chan.context().get_funding_txo().unwrap(), counterparty_node_id);
6461 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
6462 let htlcs_to_fail = {
6463 let per_peer_state = self.per_peer_state.read().unwrap();
6464 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
6466 debug_assert!(false);
6467 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6468 }).map(|mtx| mtx.lock().unwrap())?;
6469 let peer_state = &mut *peer_state_lock;
6470 match peer_state.channel_by_id.entry(msg.channel_id) {
6471 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6472 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6473 let funding_txo_opt = chan.context.get_funding_txo();
6474 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
6475 self.raa_monitor_updates_held(
6476 &peer_state.actions_blocking_raa_monitor_updates, funding_txo,
6477 *counterparty_node_id)
6479 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
6480 chan.revoke_and_ack(&msg, &self.fee_estimator, &self.logger, mon_update_blocked), chan_phase_entry);
6481 if let Some(monitor_update) = monitor_update_opt {
6482 let funding_txo = funding_txo_opt
6483 .expect("Funding outpoint must have been set for RAA handling to succeed");
6484 handle_new_monitor_update!(self, funding_txo, monitor_update,
6485 peer_state_lock, peer_state, per_peer_state, chan);
6489 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6490 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
6493 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6496 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
6500 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
6501 let per_peer_state = self.per_peer_state.read().unwrap();
6502 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6504 debug_assert!(false);
6505 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6507 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6508 let peer_state = &mut *peer_state_lock;
6509 match peer_state.channel_by_id.entry(msg.channel_id) {
6510 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6511 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6512 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &self.logger), chan_phase_entry);
6514 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6515 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
6518 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6523 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
6524 let per_peer_state = self.per_peer_state.read().unwrap();
6525 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6527 debug_assert!(false);
6528 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6530 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6531 let peer_state = &mut *peer_state_lock;
6532 match peer_state.channel_by_id.entry(msg.channel_id) {
6533 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6534 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6535 if !chan.context.is_usable() {
6536 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
6539 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
6540 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
6541 &self.node_signer, self.genesis_hash.clone(), self.best_block.read().unwrap().height(),
6542 msg, &self.default_configuration
6543 ), chan_phase_entry),
6544 // Note that announcement_signatures fails if the channel cannot be announced,
6545 // so get_channel_update_for_broadcast will never fail by the time we get here.
6546 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
6549 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6550 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
6553 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6558 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
6559 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
6560 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
6561 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
6563 // It's not a local channel
6564 return Ok(NotifyOption::SkipPersistNoEvents)
6567 let per_peer_state = self.per_peer_state.read().unwrap();
6568 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
6569 if peer_state_mutex_opt.is_none() {
6570 return Ok(NotifyOption::SkipPersistNoEvents)
6572 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6573 let peer_state = &mut *peer_state_lock;
6574 match peer_state.channel_by_id.entry(chan_id) {
6575 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6576 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6577 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
6578 if chan.context.should_announce() {
6579 // If the announcement is about a channel of ours which is public, some
6580 // other peer may simply be forwarding all its gossip to us. Don't provide
6581 // a scary-looking error message and return Ok instead.
6582 return Ok(NotifyOption::SkipPersistNoEvents);
6584 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
6586 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
6587 let msg_from_node_one = msg.contents.flags & 1 == 0;
6588 if were_node_one == msg_from_node_one {
6589 return Ok(NotifyOption::SkipPersistNoEvents);
6591 log_debug!(self.logger, "Received channel_update for channel {}.", chan_id);
6592 try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
6595 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6596 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
6599 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
6601 Ok(NotifyOption::DoPersist)
6604 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
6606 let need_lnd_workaround = {
6607 let per_peer_state = self.per_peer_state.read().unwrap();
6609 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6611 debug_assert!(false);
6612 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
6614 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6615 let peer_state = &mut *peer_state_lock;
6616 match peer_state.channel_by_id.entry(msg.channel_id) {
6617 hash_map::Entry::Occupied(mut chan_phase_entry) => {
6618 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6619 // Currently, we expect all holding cell update_adds to be dropped on peer
6620 // disconnect, so Channel's reestablish will never hand us any holding cell
6621 // freed HTLCs to fail backwards. If in the future we no longer drop pending
6622 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
6623 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
6624 msg, &self.logger, &self.node_signer, self.genesis_hash,
6625 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
6626 let mut channel_update = None;
6627 if let Some(msg) = responses.shutdown_msg {
6628 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
6629 node_id: counterparty_node_id.clone(),
6632 } else if chan.context.is_usable() {
6633 // If the channel is in a usable state (ie the channel is not being shut
6634 // down), send a unicast channel_update to our counterparty to make sure
6635 // they have the latest channel parameters.
6636 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
6637 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
6638 node_id: chan.context.get_counterparty_node_id(),
6643 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
6644 htlc_forwards = self.handle_channel_resumption(
6645 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
6646 Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
6647 if let Some(upd) = channel_update {
6648 peer_state.pending_msg_events.push(upd);
6652 return try_chan_phase_entry!(self, Err(ChannelError::Close(
6653 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
6656 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
6660 let mut persist = NotifyOption::SkipPersistHandleEvents;
6661 if let Some(forwards) = htlc_forwards {
6662 self.forward_htlcs(&mut [forwards][..]);
6663 persist = NotifyOption::DoPersist;
6666 if let Some(channel_ready_msg) = need_lnd_workaround {
6667 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
6672 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
6673 fn process_pending_monitor_events(&self) -> bool {
6674 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6676 let mut failed_channels = Vec::new();
6677 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
6678 let has_pending_monitor_events = !pending_monitor_events.is_empty();
6679 for (funding_outpoint, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
6680 for monitor_event in monitor_events.drain(..) {
6681 match monitor_event {
6682 MonitorEvent::HTLCEvent(htlc_update) => {
6683 if let Some(preimage) = htlc_update.payment_preimage {
6684 log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", preimage);
6685 self.claim_funds_internal(htlc_update.source, preimage, htlc_update.htlc_value_satoshis.map(|v| v * 1000), true, counterparty_node_id, funding_outpoint);
6687 log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
6688 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id: funding_outpoint.to_channel_id() };
6689 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
6690 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
6693 MonitorEvent::HolderForceClosed(funding_outpoint) => {
6694 let counterparty_node_id_opt = match counterparty_node_id {
6695 Some(cp_id) => Some(cp_id),
6697 // TODO: Once we can rely on the counterparty_node_id from the
6698 // monitor event, this and the id_to_peer map should be removed.
6699 let id_to_peer = self.id_to_peer.lock().unwrap();
6700 id_to_peer.get(&funding_outpoint.to_channel_id()).cloned()
6703 if let Some(counterparty_node_id) = counterparty_node_id_opt {
6704 let per_peer_state = self.per_peer_state.read().unwrap();
6705 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
6706 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6707 let peer_state = &mut *peer_state_lock;
6708 let pending_msg_events = &mut peer_state.pending_msg_events;
6709 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(funding_outpoint.to_channel_id()) {
6710 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
6711 failed_channels.push(chan.context.force_shutdown(false));
6712 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6713 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6717 self.issue_channel_close_events(&chan.context, ClosureReason::HolderForceClosed);
6718 pending_msg_events.push(events::MessageSendEvent::HandleError {
6719 node_id: chan.context.get_counterparty_node_id(),
6720 action: msgs::ErrorAction::SendErrorMessage {
6721 msg: msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: "Channel force-closed".to_owned() }
6729 MonitorEvent::Completed { funding_txo, monitor_update_id } => {
6730 self.channel_monitor_updated(&funding_txo, monitor_update_id, counterparty_node_id.as_ref());
6736 for failure in failed_channels.drain(..) {
6737 self.finish_force_close_channel(failure);
6740 has_pending_monitor_events
6743 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
6744 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
6745 /// update events as a separate process method here.
6747 pub fn process_monitor_events(&self) {
6748 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6749 self.process_pending_monitor_events();
6752 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
6753 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
6754 /// update was applied.
6755 fn check_free_holding_cells(&self) -> bool {
6756 let mut has_monitor_update = false;
6757 let mut failed_htlcs = Vec::new();
6759 // Walk our list of channels and find any that need to update. Note that when we do find an
6760 // update, if it includes actions that must be taken afterwards, we have to drop the
6761 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
6762 // manage to go through all our peers without finding a single channel to update.
6764 let per_peer_state = self.per_peer_state.read().unwrap();
6765 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6767 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6768 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
6769 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
6770 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
6772 let counterparty_node_id = chan.context.get_counterparty_node_id();
6773 let funding_txo = chan.context.get_funding_txo();
6774 let (monitor_opt, holding_cell_failed_htlcs) =
6775 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &self.logger);
6776 if !holding_cell_failed_htlcs.is_empty() {
6777 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
6779 if let Some(monitor_update) = monitor_opt {
6780 has_monitor_update = true;
6782 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
6783 peer_state_lock, peer_state, per_peer_state, chan);
6784 continue 'peer_loop;
6793 let has_update = has_monitor_update || !failed_htlcs.is_empty();
6794 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
6795 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
6801 /// Check whether any channels have finished removing all pending updates after a shutdown
6802 /// exchange and can now send a closing_signed.
6803 /// Returns whether any closing_signed messages were generated.
6804 fn maybe_generate_initial_closing_signed(&self) -> bool {
6805 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
6806 let mut has_update = false;
6808 let per_peer_state = self.per_peer_state.read().unwrap();
6810 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
6811 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6812 let peer_state = &mut *peer_state_lock;
6813 let pending_msg_events = &mut peer_state.pending_msg_events;
6814 peer_state.channel_by_id.retain(|channel_id, phase| {
6816 ChannelPhase::Funded(chan) => {
6817 match chan.maybe_propose_closing_signed(&self.fee_estimator, &self.logger) {
6818 Ok((msg_opt, tx_opt)) => {
6819 if let Some(msg) = msg_opt {
6821 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
6822 node_id: chan.context.get_counterparty_node_id(), msg,
6825 if let Some(tx) = tx_opt {
6826 // We're done with this channel. We got a closing_signed and sent back
6827 // a closing_signed with a closing transaction to broadcast.
6828 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
6829 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
6834 self.issue_channel_close_events(&chan.context, ClosureReason::CooperativeClosure);
6836 log_info!(self.logger, "Broadcasting {}", log_tx!(tx));
6837 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6838 update_maps_on_chan_removal!(self, &chan.context);
6844 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
6845 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
6850 _ => true, // Retain unfunded channels if present.
6856 for (counterparty_node_id, err) in handle_errors.drain(..) {
6857 let _ = handle_error!(self, err, counterparty_node_id);
6863 /// Handle a list of channel failures during a block_connected or block_disconnected call,
6864 /// pushing the channel monitor update (if any) to the background events queue and removing the
6866 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
6867 for mut failure in failed_channels.drain(..) {
6868 // Either a commitment transactions has been confirmed on-chain or
6869 // Channel::block_disconnected detected that the funding transaction has been
6870 // reorganized out of the main chain.
6871 // We cannot broadcast our latest local state via monitor update (as
6872 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
6873 // so we track the update internally and handle it when the user next calls
6874 // timer_tick_occurred, guaranteeing we're running normally.
6875 if let Some((counterparty_node_id, funding_txo, update)) = failure.0.take() {
6876 assert_eq!(update.updates.len(), 1);
6877 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
6878 assert!(should_broadcast);
6879 } else { unreachable!(); }
6880 self.pending_background_events.lock().unwrap().push(
6881 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6882 counterparty_node_id, funding_txo, update
6885 self.finish_force_close_channel(failure);
6889 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
6892 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
6893 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
6895 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`], which
6896 /// will have the [`PaymentClaimable::purpose`] be [`PaymentPurpose::InvoicePayment`] with
6897 /// its [`PaymentPurpose::InvoicePayment::payment_preimage`] field filled in. That should then be
6898 /// passed directly to [`claim_funds`].
6900 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
6902 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6903 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6907 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6908 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6910 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6912 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6913 /// on versions of LDK prior to 0.0.114.
6915 /// [`claim_funds`]: Self::claim_funds
6916 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6917 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
6918 /// [`PaymentPurpose::InvoicePayment`]: events::PaymentPurpose::InvoicePayment
6919 /// [`PaymentPurpose::InvoicePayment::payment_preimage`]: events::PaymentPurpose::InvoicePayment::payment_preimage
6920 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6921 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
6922 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
6923 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
6924 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6925 min_final_cltv_expiry_delta)
6928 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
6929 /// stored external to LDK.
6931 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
6932 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
6933 /// the `min_value_msat` provided here, if one is provided.
6935 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
6936 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
6939 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
6940 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
6941 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
6942 /// sender "proof-of-payment" unless they have paid the required amount.
6944 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
6945 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
6946 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
6947 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
6948 /// invoices when no timeout is set.
6950 /// Note that we use block header time to time-out pending inbound payments (with some margin
6951 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
6952 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
6953 /// If you need exact expiry semantics, you should enforce them upon receipt of
6954 /// [`PaymentClaimable`].
6956 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
6957 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
6959 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
6960 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
6964 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
6965 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
6967 /// Errors if `min_value_msat` is greater than total bitcoin supply.
6969 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
6970 /// on versions of LDK prior to 0.0.114.
6972 /// [`create_inbound_payment`]: Self::create_inbound_payment
6973 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
6974 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
6975 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
6976 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
6977 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
6978 min_final_cltv_expiry)
6981 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
6982 /// previously returned from [`create_inbound_payment`].
6984 /// [`create_inbound_payment`]: Self::create_inbound_payment
6985 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
6986 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
6989 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
6990 /// are used when constructing the phantom invoice's route hints.
6992 /// [phantom node payments]: crate::sign::PhantomKeysManager
6993 pub fn get_phantom_scid(&self) -> u64 {
6994 let best_block_height = self.best_block.read().unwrap().height();
6995 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
6997 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
6998 // Ensure the generated scid doesn't conflict with a real channel.
6999 match short_to_chan_info.get(&scid_candidate) {
7000 Some(_) => continue,
7001 None => return scid_candidate
7006 /// Gets route hints for use in receiving [phantom node payments].
7008 /// [phantom node payments]: crate::sign::PhantomKeysManager
7009 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
7011 channels: self.list_usable_channels(),
7012 phantom_scid: self.get_phantom_scid(),
7013 real_node_pubkey: self.get_our_node_id(),
7017 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
7018 /// used when constructing the route hints for HTLCs intended to be intercepted. See
7019 /// [`ChannelManager::forward_intercepted_htlc`].
7021 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
7022 /// times to get a unique scid.
7023 pub fn get_intercept_scid(&self) -> u64 {
7024 let best_block_height = self.best_block.read().unwrap().height();
7025 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
7027 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.genesis_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
7028 // Ensure the generated scid doesn't conflict with a real channel.
7029 if short_to_chan_info.contains_key(&scid_candidate) { continue }
7030 return scid_candidate
7034 /// Gets inflight HTLC information by processing pending outbound payments that are in
7035 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
7036 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
7037 let mut inflight_htlcs = InFlightHtlcs::new();
7039 let per_peer_state = self.per_peer_state.read().unwrap();
7040 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7041 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7042 let peer_state = &mut *peer_state_lock;
7043 for chan in peer_state.channel_by_id.values().filter_map(
7044 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
7046 for (htlc_source, _) in chan.inflight_htlc_sources() {
7047 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
7048 inflight_htlcs.process_path(path, self.get_our_node_id());
7057 #[cfg(any(test, feature = "_test_utils"))]
7058 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
7059 let events = core::cell::RefCell::new(Vec::new());
7060 let event_handler = |event: events::Event| events.borrow_mut().push(event);
7061 self.process_pending_events(&event_handler);
7065 #[cfg(feature = "_test_utils")]
7066 pub fn push_pending_event(&self, event: events::Event) {
7067 let mut events = self.pending_events.lock().unwrap();
7068 events.push_back((event, None));
7072 pub fn pop_pending_event(&self) -> Option<events::Event> {
7073 let mut events = self.pending_events.lock().unwrap();
7074 events.pop_front().map(|(e, _)| e)
7078 pub fn has_pending_payments(&self) -> bool {
7079 self.pending_outbound_payments.has_pending_payments()
7083 pub fn clear_pending_payments(&self) {
7084 self.pending_outbound_payments.clear_pending_payments()
7087 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
7088 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
7089 /// operation. It will double-check that nothing *else* is also blocking the same channel from
7090 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
7091 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey, channel_funding_outpoint: OutPoint, mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
7093 let per_peer_state = self.per_peer_state.read().unwrap();
7094 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7095 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7096 let peer_state = &mut *peer_state_lck;
7098 if let Some(blocker) = completed_blocker.take() {
7099 // Only do this on the first iteration of the loop.
7100 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
7101 .get_mut(&channel_funding_outpoint.to_channel_id())
7103 blockers.retain(|iter| iter != &blocker);
7107 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7108 channel_funding_outpoint, counterparty_node_id) {
7109 // Check that, while holding the peer lock, we don't have anything else
7110 // blocking monitor updates for this channel. If we do, release the monitor
7111 // update(s) when those blockers complete.
7112 log_trace!(self.logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
7113 &channel_funding_outpoint.to_channel_id());
7117 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(channel_funding_outpoint.to_channel_id()) {
7118 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7119 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
7120 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
7121 log_debug!(self.logger, "Unlocking monitor updating for channel {} and updating monitor",
7122 channel_funding_outpoint.to_channel_id());
7123 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
7124 peer_state_lck, peer_state, per_peer_state, chan);
7125 if further_update_exists {
7126 // If there are more `ChannelMonitorUpdate`s to process, restart at the
7131 log_trace!(self.logger, "Unlocked monitor updating for channel {} without monitors to update",
7132 channel_funding_outpoint.to_channel_id());
7137 log_debug!(self.logger,
7138 "Got a release post-RAA monitor update for peer {} but the channel is gone",
7139 log_pubkey!(counterparty_node_id));
7145 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
7146 for action in actions {
7148 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7149 channel_funding_outpoint, counterparty_node_id
7151 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, None);
7157 /// Processes any events asynchronously in the order they were generated since the last call
7158 /// using the given event handler.
7160 /// See the trait-level documentation of [`EventsProvider`] for requirements.
7161 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
7165 process_events_body!(self, ev, { handler(ev).await });
7169 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7171 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7172 T::Target: BroadcasterInterface,
7173 ES::Target: EntropySource,
7174 NS::Target: NodeSigner,
7175 SP::Target: SignerProvider,
7176 F::Target: FeeEstimator,
7180 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
7181 /// The returned array will contain `MessageSendEvent`s for different peers if
7182 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
7183 /// is always placed next to each other.
7185 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
7186 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
7187 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
7188 /// will randomly be placed first or last in the returned array.
7190 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
7191 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be pleaced among
7192 /// the `MessageSendEvent`s to the specific peer they were generated under.
7193 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
7194 let events = RefCell::new(Vec::new());
7195 PersistenceNotifierGuard::optionally_notify(self, || {
7196 let mut result = NotifyOption::SkipPersistNoEvents;
7198 // TODO: This behavior should be documented. It's unintuitive that we query
7199 // ChannelMonitors when clearing other events.
7200 if self.process_pending_monitor_events() {
7201 result = NotifyOption::DoPersist;
7204 if self.check_free_holding_cells() {
7205 result = NotifyOption::DoPersist;
7207 if self.maybe_generate_initial_closing_signed() {
7208 result = NotifyOption::DoPersist;
7211 let mut pending_events = Vec::new();
7212 let per_peer_state = self.per_peer_state.read().unwrap();
7213 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7214 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7215 let peer_state = &mut *peer_state_lock;
7216 if peer_state.pending_msg_events.len() > 0 {
7217 pending_events.append(&mut peer_state.pending_msg_events);
7221 if !pending_events.is_empty() {
7222 events.replace(pending_events);
7231 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
7233 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7234 T::Target: BroadcasterInterface,
7235 ES::Target: EntropySource,
7236 NS::Target: NodeSigner,
7237 SP::Target: SignerProvider,
7238 F::Target: FeeEstimator,
7242 /// Processes events that must be periodically handled.
7244 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
7245 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
7246 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
7248 process_events_body!(self, ev, handler.handle_event(ev));
7252 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
7254 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7255 T::Target: BroadcasterInterface,
7256 ES::Target: EntropySource,
7257 NS::Target: NodeSigner,
7258 SP::Target: SignerProvider,
7259 F::Target: FeeEstimator,
7263 fn filtered_block_connected(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7265 let best_block = self.best_block.read().unwrap();
7266 assert_eq!(best_block.block_hash(), header.prev_blockhash,
7267 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
7268 assert_eq!(best_block.height(), height - 1,
7269 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
7272 self.transactions_confirmed(header, txdata, height);
7273 self.best_block_updated(header, height);
7276 fn block_disconnected(&self, header: &BlockHeader, height: u32) {
7277 let _persistence_guard =
7278 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7279 self, || -> NotifyOption { NotifyOption::DoPersist });
7280 let new_height = height - 1;
7282 let mut best_block = self.best_block.write().unwrap();
7283 assert_eq!(best_block.block_hash(), header.block_hash(),
7284 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
7285 assert_eq!(best_block.height(), height,
7286 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
7287 *best_block = BestBlock::new(header.prev_blockhash, new_height)
7290 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7294 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
7296 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7297 T::Target: BroadcasterInterface,
7298 ES::Target: EntropySource,
7299 NS::Target: NodeSigner,
7300 SP::Target: SignerProvider,
7301 F::Target: FeeEstimator,
7305 fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
7306 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7307 // during initialization prior to the chain_monitor being fully configured in some cases.
7308 // See the docs for `ChannelManagerReadArgs` for more.
7310 let block_hash = header.block_hash();
7311 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
7313 let _persistence_guard =
7314 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7315 self, || -> NotifyOption { NotifyOption::DoPersist });
7316 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger)
7317 .map(|(a, b)| (a, Vec::new(), b)));
7319 let last_best_block_height = self.best_block.read().unwrap().height();
7320 if height < last_best_block_height {
7321 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
7322 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7326 fn best_block_updated(&self, header: &BlockHeader, height: u32) {
7327 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7328 // during initialization prior to the chain_monitor being fully configured in some cases.
7329 // See the docs for `ChannelManagerReadArgs` for more.
7331 let block_hash = header.block_hash();
7332 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
7334 let _persistence_guard =
7335 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7336 self, || -> NotifyOption { NotifyOption::DoPersist });
7337 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
7339 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.genesis_hash.clone(), &self.node_signer, &self.default_configuration, &self.logger));
7341 macro_rules! max_time {
7342 ($timestamp: expr) => {
7344 // Update $timestamp to be the max of its current value and the block
7345 // timestamp. This should keep us close to the current time without relying on
7346 // having an explicit local time source.
7347 // Just in case we end up in a race, we loop until we either successfully
7348 // update $timestamp or decide we don't need to.
7349 let old_serial = $timestamp.load(Ordering::Acquire);
7350 if old_serial >= header.time as usize { break; }
7351 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
7357 max_time!(self.highest_seen_timestamp);
7358 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
7359 payment_secrets.retain(|_, inbound_payment| {
7360 inbound_payment.expiry_time > header.time as u64
7364 fn get_relevant_txids(&self) -> Vec<(Txid, Option<BlockHash>)> {
7365 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
7366 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
7367 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7368 let peer_state = &mut *peer_state_lock;
7369 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
7370 if let (Some(funding_txo), Some(block_hash)) = (chan.context.get_funding_txo(), chan.context.get_funding_tx_confirmed_in()) {
7371 res.push((funding_txo.txid, Some(block_hash)));
7378 fn transaction_unconfirmed(&self, txid: &Txid) {
7379 let _persistence_guard =
7380 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
7381 self, || -> NotifyOption { NotifyOption::DoPersist });
7382 self.do_chain_event(None, |channel| {
7383 if let Some(funding_txo) = channel.context.get_funding_txo() {
7384 if funding_txo.txid == *txid {
7385 channel.funding_transaction_unconfirmed(&self.logger).map(|()| (None, Vec::new(), None))
7386 } else { Ok((None, Vec::new(), None)) }
7387 } else { Ok((None, Vec::new(), None)) }
7392 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
7394 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7395 T::Target: BroadcasterInterface,
7396 ES::Target: EntropySource,
7397 NS::Target: NodeSigner,
7398 SP::Target: SignerProvider,
7399 F::Target: FeeEstimator,
7403 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
7404 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
7406 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
7407 (&self, height_opt: Option<u32>, f: FN) {
7408 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
7409 // during initialization prior to the chain_monitor being fully configured in some cases.
7410 // See the docs for `ChannelManagerReadArgs` for more.
7412 let mut failed_channels = Vec::new();
7413 let mut timed_out_htlcs = Vec::new();
7415 let per_peer_state = self.per_peer_state.read().unwrap();
7416 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
7417 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7418 let peer_state = &mut *peer_state_lock;
7419 let pending_msg_events = &mut peer_state.pending_msg_events;
7420 peer_state.channel_by_id.retain(|_, phase| {
7422 // Retain unfunded channels.
7423 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
7424 ChannelPhase::Funded(channel) => {
7425 let res = f(channel);
7426 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
7427 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
7428 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
7429 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
7430 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
7432 if let Some(channel_ready) = channel_ready_opt {
7433 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
7434 if channel.context.is_usable() {
7435 log_trace!(self.logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
7436 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
7437 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7438 node_id: channel.context.get_counterparty_node_id(),
7443 log_trace!(self.logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
7448 let mut pending_events = self.pending_events.lock().unwrap();
7449 emit_channel_ready_event!(pending_events, channel);
7452 if let Some(announcement_sigs) = announcement_sigs {
7453 log_trace!(self.logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
7454 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7455 node_id: channel.context.get_counterparty_node_id(),
7456 msg: announcement_sigs,
7458 if let Some(height) = height_opt {
7459 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.genesis_hash, height, &self.default_configuration) {
7460 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
7462 // Note that announcement_signatures fails if the channel cannot be announced,
7463 // so get_channel_update_for_broadcast will never fail by the time we get here.
7464 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
7469 if channel.is_our_channel_ready() {
7470 if let Some(real_scid) = channel.context.get_short_channel_id() {
7471 // If we sent a 0conf channel_ready, and now have an SCID, we add it
7472 // to the short_to_chan_info map here. Note that we check whether we
7473 // can relay using the real SCID at relay-time (i.e.
7474 // enforce option_scid_alias then), and if the funding tx is ever
7475 // un-confirmed we force-close the channel, ensuring short_to_chan_info
7476 // is always consistent.
7477 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
7478 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
7479 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
7480 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
7481 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
7484 } else if let Err(reason) = res {
7485 update_maps_on_chan_removal!(self, &channel.context);
7486 // It looks like our counterparty went on-chain or funding transaction was
7487 // reorged out of the main chain. Close the channel.
7488 failed_channels.push(channel.context.force_shutdown(true));
7489 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
7490 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
7494 let reason_message = format!("{}", reason);
7495 self.issue_channel_close_events(&channel.context, reason);
7496 pending_msg_events.push(events::MessageSendEvent::HandleError {
7497 node_id: channel.context.get_counterparty_node_id(),
7498 action: msgs::ErrorAction::SendErrorMessage { msg: msgs::ErrorMessage {
7499 channel_id: channel.context.channel_id(),
7500 data: reason_message,
7512 if let Some(height) = height_opt {
7513 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
7514 payment.htlcs.retain(|htlc| {
7515 // If height is approaching the number of blocks we think it takes us to get
7516 // our commitment transaction confirmed before the HTLC expires, plus the
7517 // number of blocks we generally consider it to take to do a commitment update,
7518 // just give up on it and fail the HTLC.
7519 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
7520 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
7521 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
7523 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
7524 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
7525 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
7529 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
7532 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
7533 intercepted_htlcs.retain(|_, htlc| {
7534 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
7535 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7536 short_channel_id: htlc.prev_short_channel_id,
7537 user_channel_id: Some(htlc.prev_user_channel_id),
7538 htlc_id: htlc.prev_htlc_id,
7539 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
7540 phantom_shared_secret: None,
7541 outpoint: htlc.prev_funding_outpoint,
7544 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
7545 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7546 _ => unreachable!(),
7548 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
7549 HTLCFailReason::from_failure_code(0x2000 | 2),
7550 HTLCDestination::InvalidForward { requested_forward_scid }));
7551 log_trace!(self.logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
7557 self.handle_init_event_channel_failures(failed_channels);
7559 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
7560 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
7564 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
7565 /// may have events that need processing.
7567 /// In order to check if this [`ChannelManager`] needs persisting, call
7568 /// [`Self::get_and_clear_needs_persistence`].
7570 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
7571 /// [`ChannelManager`] and should instead register actions to be taken later.
7572 pub fn get_event_or_persistence_needed_future(&self) -> Future {
7573 self.event_persist_notifier.get_future()
7576 /// Returns true if this [`ChannelManager`] needs to be persisted.
7577 pub fn get_and_clear_needs_persistence(&self) -> bool {
7578 self.needs_persist_flag.swap(false, Ordering::AcqRel)
7581 #[cfg(any(test, feature = "_test_utils"))]
7582 pub fn get_event_or_persist_condvar_value(&self) -> bool {
7583 self.event_persist_notifier.notify_pending()
7586 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
7587 /// [`chain::Confirm`] interfaces.
7588 pub fn current_best_block(&self) -> BestBlock {
7589 self.best_block.read().unwrap().clone()
7592 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
7593 /// [`ChannelManager`].
7594 pub fn node_features(&self) -> NodeFeatures {
7595 provided_node_features(&self.default_configuration)
7598 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
7599 /// [`ChannelManager`].
7601 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
7602 /// or not. Thus, this method is not public.
7603 #[cfg(any(feature = "_test_utils", test))]
7604 pub fn invoice_features(&self) -> Bolt11InvoiceFeatures {
7605 provided_invoice_features(&self.default_configuration)
7608 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
7609 /// [`ChannelManager`].
7610 pub fn channel_features(&self) -> ChannelFeatures {
7611 provided_channel_features(&self.default_configuration)
7614 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
7615 /// [`ChannelManager`].
7616 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
7617 provided_channel_type_features(&self.default_configuration)
7620 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
7621 /// [`ChannelManager`].
7622 pub fn init_features(&self) -> InitFeatures {
7623 provided_init_features(&self.default_configuration)
7627 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
7628 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
7630 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
7631 T::Target: BroadcasterInterface,
7632 ES::Target: EntropySource,
7633 NS::Target: NodeSigner,
7634 SP::Target: SignerProvider,
7635 F::Target: FeeEstimator,
7639 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
7640 // Note that we never need to persist the updated ChannelManager for an inbound
7641 // open_channel message - pre-funded channels are never written so there should be no
7642 // change to the contents.
7643 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7644 let res = self.internal_open_channel(counterparty_node_id, msg);
7645 let persist = match &res {
7646 Err(e) if e.closes_channel() => {
7647 debug_assert!(false, "We shouldn't close a new channel");
7648 NotifyOption::DoPersist
7650 _ => NotifyOption::SkipPersistHandleEvents,
7652 let _ = handle_error!(self, res, *counterparty_node_id);
7657 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
7658 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7659 "Dual-funded channels not supported".to_owned(),
7660 msg.temporary_channel_id.clone())), *counterparty_node_id);
7663 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
7664 // Note that we never need to persist the updated ChannelManager for an inbound
7665 // accept_channel message - pre-funded channels are never written so there should be no
7666 // change to the contents.
7667 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7668 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
7669 NotifyOption::SkipPersistHandleEvents
7673 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
7674 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
7675 "Dual-funded channels not supported".to_owned(),
7676 msg.temporary_channel_id.clone())), *counterparty_node_id);
7679 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
7680 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7681 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
7684 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
7685 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7686 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
7689 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
7690 // Note that we never need to persist the updated ChannelManager for an inbound
7691 // channel_ready message - while the channel's state will change, any channel_ready message
7692 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
7693 // will not force-close the channel on startup.
7694 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7695 let res = self.internal_channel_ready(counterparty_node_id, msg);
7696 let persist = match &res {
7697 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7698 _ => NotifyOption::SkipPersistHandleEvents,
7700 let _ = handle_error!(self, res, *counterparty_node_id);
7705 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
7706 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7707 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
7710 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
7711 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7712 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
7715 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
7716 // Note that we never need to persist the updated ChannelManager for an inbound
7717 // update_add_htlc message - the message itself doesn't change our channel state only the
7718 // `commitment_signed` message afterwards will.
7719 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7720 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
7721 let persist = match &res {
7722 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7723 Err(_) => NotifyOption::SkipPersistHandleEvents,
7724 Ok(()) => NotifyOption::SkipPersistNoEvents,
7726 let _ = handle_error!(self, res, *counterparty_node_id);
7731 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
7732 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7733 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
7736 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
7737 // Note that we never need to persist the updated ChannelManager for an inbound
7738 // update_fail_htlc message - the message itself doesn't change our channel state only the
7739 // `commitment_signed` message afterwards will.
7740 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7741 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
7742 let persist = match &res {
7743 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7744 Err(_) => NotifyOption::SkipPersistHandleEvents,
7745 Ok(()) => NotifyOption::SkipPersistNoEvents,
7747 let _ = handle_error!(self, res, *counterparty_node_id);
7752 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
7753 // Note that we never need to persist the updated ChannelManager for an inbound
7754 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
7755 // only the `commitment_signed` message afterwards will.
7756 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7757 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
7758 let persist = match &res {
7759 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7760 Err(_) => NotifyOption::SkipPersistHandleEvents,
7761 Ok(()) => NotifyOption::SkipPersistNoEvents,
7763 let _ = handle_error!(self, res, *counterparty_node_id);
7768 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
7769 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7770 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
7773 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
7774 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7775 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
7778 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
7779 // Note that we never need to persist the updated ChannelManager for an inbound
7780 // update_fee message - the message itself doesn't change our channel state only the
7781 // `commitment_signed` message afterwards will.
7782 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7783 let res = self.internal_update_fee(counterparty_node_id, msg);
7784 let persist = match &res {
7785 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7786 Err(_) => NotifyOption::SkipPersistHandleEvents,
7787 Ok(()) => NotifyOption::SkipPersistNoEvents,
7789 let _ = handle_error!(self, res, *counterparty_node_id);
7794 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
7795 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
7796 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
7799 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
7800 PersistenceNotifierGuard::optionally_notify(self, || {
7801 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
7804 NotifyOption::DoPersist
7809 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
7810 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
7811 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
7812 let persist = match &res {
7813 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
7814 Err(_) => NotifyOption::SkipPersistHandleEvents,
7815 Ok(persist) => *persist,
7817 let _ = handle_error!(self, res, *counterparty_node_id);
7822 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
7823 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
7824 self, || NotifyOption::SkipPersistHandleEvents);
7826 let mut failed_channels = Vec::new();
7827 let mut per_peer_state = self.per_peer_state.write().unwrap();
7829 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates.",
7830 log_pubkey!(counterparty_node_id));
7831 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
7832 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7833 let peer_state = &mut *peer_state_lock;
7834 let pending_msg_events = &mut peer_state.pending_msg_events;
7835 peer_state.channel_by_id.retain(|_, phase| {
7836 let context = match phase {
7837 ChannelPhase::Funded(chan) => {
7838 chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
7839 // We only retain funded channels that are not shutdown.
7840 if !chan.is_shutdown() {
7845 // Unfunded channels will always be removed.
7846 ChannelPhase::UnfundedOutboundV1(chan) => {
7849 ChannelPhase::UnfundedInboundV1(chan) => {
7853 // Clean up for removal.
7854 update_maps_on_chan_removal!(self, &context);
7855 self.issue_channel_close_events(&context, ClosureReason::DisconnectedPeer);
7858 // Note that we don't bother generating any events for pre-accept channels -
7859 // they're not considered "channels" yet from the PoV of our events interface.
7860 peer_state.inbound_channel_request_by_id.clear();
7861 pending_msg_events.retain(|msg| {
7863 // V1 Channel Establishment
7864 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
7865 &events::MessageSendEvent::SendOpenChannel { .. } => false,
7866 &events::MessageSendEvent::SendFundingCreated { .. } => false,
7867 &events::MessageSendEvent::SendFundingSigned { .. } => false,
7868 // V2 Channel Establishment
7869 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
7870 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
7871 // Common Channel Establishment
7872 &events::MessageSendEvent::SendChannelReady { .. } => false,
7873 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
7874 // Interactive Transaction Construction
7875 &events::MessageSendEvent::SendTxAddInput { .. } => false,
7876 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
7877 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
7878 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
7879 &events::MessageSendEvent::SendTxComplete { .. } => false,
7880 &events::MessageSendEvent::SendTxSignatures { .. } => false,
7881 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
7882 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
7883 &events::MessageSendEvent::SendTxAbort { .. } => false,
7884 // Channel Operations
7885 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
7886 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
7887 &events::MessageSendEvent::SendClosingSigned { .. } => false,
7888 &events::MessageSendEvent::SendShutdown { .. } => false,
7889 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
7890 &events::MessageSendEvent::HandleError { .. } => false,
7892 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
7893 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
7894 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
7895 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
7896 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
7897 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
7898 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
7899 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
7900 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
7903 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
7904 peer_state.is_connected = false;
7905 peer_state.ok_to_remove(true)
7906 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
7909 per_peer_state.remove(counterparty_node_id);
7911 mem::drop(per_peer_state);
7913 for failure in failed_channels.drain(..) {
7914 self.finish_force_close_channel(failure);
7918 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
7919 if !init_msg.features.supports_static_remote_key() {
7920 log_debug!(self.logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
7924 let mut res = Ok(());
7926 PersistenceNotifierGuard::optionally_notify(self, || {
7927 // If we have too many peers connected which don't have funded channels, disconnect the
7928 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
7929 // unfunded channels taking up space in memory for disconnected peers, we still let new
7930 // peers connect, but we'll reject new channels from them.
7931 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
7932 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
7935 let mut peer_state_lock = self.per_peer_state.write().unwrap();
7936 match peer_state_lock.entry(counterparty_node_id.clone()) {
7937 hash_map::Entry::Vacant(e) => {
7938 if inbound_peer_limited {
7940 return NotifyOption::SkipPersistNoEvents;
7942 e.insert(Mutex::new(PeerState {
7943 channel_by_id: HashMap::new(),
7944 inbound_channel_request_by_id: HashMap::new(),
7945 latest_features: init_msg.features.clone(),
7946 pending_msg_events: Vec::new(),
7947 in_flight_monitor_updates: BTreeMap::new(),
7948 monitor_update_blocked_actions: BTreeMap::new(),
7949 actions_blocking_raa_monitor_updates: BTreeMap::new(),
7953 hash_map::Entry::Occupied(e) => {
7954 let mut peer_state = e.get().lock().unwrap();
7955 peer_state.latest_features = init_msg.features.clone();
7957 let best_block_height = self.best_block.read().unwrap().height();
7958 if inbound_peer_limited &&
7959 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
7960 peer_state.channel_by_id.len()
7963 return NotifyOption::SkipPersistNoEvents;
7966 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
7967 peer_state.is_connected = true;
7972 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
7974 let per_peer_state = self.per_peer_state.read().unwrap();
7975 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
7976 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7977 let peer_state = &mut *peer_state_lock;
7978 let pending_msg_events = &mut peer_state.pending_msg_events;
7980 peer_state.channel_by_id.iter_mut().filter_map(|(_, phase)|
7981 if let ChannelPhase::Funded(chan) = phase { Some(chan) } else {
7982 // Since unfunded channel maps are cleared upon disconnecting a peer, and they're not persisted
7983 // (so won't be recovered after a crash), they shouldn't exist here and we would never need to
7984 // worry about closing and removing them.
7985 debug_assert!(false);
7989 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
7990 node_id: chan.context.get_counterparty_node_id(),
7991 msg: chan.get_channel_reestablish(&self.logger),
7996 return NotifyOption::SkipPersistHandleEvents;
7997 //TODO: Also re-broadcast announcement_signatures
8002 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
8003 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8005 match &msg.data as &str {
8006 "cannot co-op close channel w/ active htlcs"|
8007 "link failed to shutdown" =>
8009 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
8010 // send one while HTLCs are still present. The issue is tracked at
8011 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
8012 // to fix it but none so far have managed to land upstream. The issue appears to be
8013 // very low priority for the LND team despite being marked "P1".
8014 // We're not going to bother handling this in a sensible way, instead simply
8015 // repeating the Shutdown message on repeat until morale improves.
8016 if !msg.channel_id.is_zero() {
8017 let per_peer_state = self.per_peer_state.read().unwrap();
8018 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8019 if peer_state_mutex_opt.is_none() { return; }
8020 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
8021 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
8022 if let Some(msg) = chan.get_outbound_shutdown() {
8023 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8024 node_id: *counterparty_node_id,
8028 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
8029 node_id: *counterparty_node_id,
8030 action: msgs::ErrorAction::SendWarningMessage {
8031 msg: msgs::WarningMessage {
8032 channel_id: msg.channel_id,
8033 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
8035 log_level: Level::Trace,
8045 if msg.channel_id.is_zero() {
8046 let channel_ids: Vec<ChannelId> = {
8047 let per_peer_state = self.per_peer_state.read().unwrap();
8048 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8049 if peer_state_mutex_opt.is_none() { return; }
8050 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8051 let peer_state = &mut *peer_state_lock;
8052 // Note that we don't bother generating any events for pre-accept channels -
8053 // they're not considered "channels" yet from the PoV of our events interface.
8054 peer_state.inbound_channel_request_by_id.clear();
8055 peer_state.channel_by_id.keys().cloned().collect()
8057 for channel_id in channel_ids {
8058 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8059 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
8063 // First check if we can advance the channel type and try again.
8064 let per_peer_state = self.per_peer_state.read().unwrap();
8065 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
8066 if peer_state_mutex_opt.is_none() { return; }
8067 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8068 let peer_state = &mut *peer_state_lock;
8069 if let Some(ChannelPhase::UnfundedOutboundV1(chan)) = peer_state.channel_by_id.get_mut(&msg.channel_id) {
8070 if let Ok(msg) = chan.maybe_handle_error_without_close(self.genesis_hash, &self.fee_estimator) {
8071 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
8072 node_id: *counterparty_node_id,
8080 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
8081 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
8085 fn provided_node_features(&self) -> NodeFeatures {
8086 provided_node_features(&self.default_configuration)
8089 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
8090 provided_init_features(&self.default_configuration)
8093 fn get_genesis_hashes(&self) -> Option<Vec<ChainHash>> {
8094 Some(vec![ChainHash::from(&self.genesis_hash[..])])
8097 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
8098 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8099 "Dual-funded channels not supported".to_owned(),
8100 msg.channel_id.clone())), *counterparty_node_id);
8103 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
8104 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8105 "Dual-funded channels not supported".to_owned(),
8106 msg.channel_id.clone())), *counterparty_node_id);
8109 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
8110 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8111 "Dual-funded channels not supported".to_owned(),
8112 msg.channel_id.clone())), *counterparty_node_id);
8115 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
8116 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8117 "Dual-funded channels not supported".to_owned(),
8118 msg.channel_id.clone())), *counterparty_node_id);
8121 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
8122 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8123 "Dual-funded channels not supported".to_owned(),
8124 msg.channel_id.clone())), *counterparty_node_id);
8127 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
8128 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8129 "Dual-funded channels not supported".to_owned(),
8130 msg.channel_id.clone())), *counterparty_node_id);
8133 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
8134 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8135 "Dual-funded channels not supported".to_owned(),
8136 msg.channel_id.clone())), *counterparty_node_id);
8139 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
8140 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8141 "Dual-funded channels not supported".to_owned(),
8142 msg.channel_id.clone())), *counterparty_node_id);
8145 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
8146 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
8147 "Dual-funded channels not supported".to_owned(),
8148 msg.channel_id.clone())), *counterparty_node_id);
8152 /// Fetches the set of [`NodeFeatures`] flags which are provided by or required by
8153 /// [`ChannelManager`].
8154 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
8155 let mut node_features = provided_init_features(config).to_context();
8156 node_features.set_keysend_optional();
8160 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags which are provided by or required by
8161 /// [`ChannelManager`].
8163 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
8164 /// or not. Thus, this method is not public.
8165 #[cfg(any(feature = "_test_utils", test))]
8166 pub(crate) fn provided_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
8167 provided_init_features(config).to_context()
8170 /// Fetches the set of [`ChannelFeatures`] flags which are provided by or required by
8171 /// [`ChannelManager`].
8172 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
8173 provided_init_features(config).to_context()
8176 /// Fetches the set of [`ChannelTypeFeatures`] flags which are provided by or required by
8177 /// [`ChannelManager`].
8178 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
8179 ChannelTypeFeatures::from_init(&provided_init_features(config))
8182 /// Fetches the set of [`InitFeatures`] flags which are provided by or required by
8183 /// [`ChannelManager`].
8184 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
8185 // Note that if new features are added here which other peers may (eventually) require, we
8186 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
8187 // [`ErroringMessageHandler`].
8188 let mut features = InitFeatures::empty();
8189 features.set_data_loss_protect_required();
8190 features.set_upfront_shutdown_script_optional();
8191 features.set_variable_length_onion_required();
8192 features.set_static_remote_key_required();
8193 features.set_payment_secret_required();
8194 features.set_basic_mpp_optional();
8195 features.set_wumbo_optional();
8196 features.set_shutdown_any_segwit_optional();
8197 features.set_channel_type_optional();
8198 features.set_scid_privacy_optional();
8199 features.set_zero_conf_optional();
8200 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
8201 features.set_anchors_zero_fee_htlc_tx_optional();
8206 const SERIALIZATION_VERSION: u8 = 1;
8207 const MIN_SERIALIZATION_VERSION: u8 = 1;
8209 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
8210 (2, fee_base_msat, required),
8211 (4, fee_proportional_millionths, required),
8212 (6, cltv_expiry_delta, required),
8215 impl_writeable_tlv_based!(ChannelCounterparty, {
8216 (2, node_id, required),
8217 (4, features, required),
8218 (6, unspendable_punishment_reserve, required),
8219 (8, forwarding_info, option),
8220 (9, outbound_htlc_minimum_msat, option),
8221 (11, outbound_htlc_maximum_msat, option),
8224 impl Writeable for ChannelDetails {
8225 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8226 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8227 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8228 let user_channel_id_low = self.user_channel_id as u64;
8229 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
8230 write_tlv_fields!(writer, {
8231 (1, self.inbound_scid_alias, option),
8232 (2, self.channel_id, required),
8233 (3, self.channel_type, option),
8234 (4, self.counterparty, required),
8235 (5, self.outbound_scid_alias, option),
8236 (6, self.funding_txo, option),
8237 (7, self.config, option),
8238 (8, self.short_channel_id, option),
8239 (9, self.confirmations, option),
8240 (10, self.channel_value_satoshis, required),
8241 (12, self.unspendable_punishment_reserve, option),
8242 (14, user_channel_id_low, required),
8243 (16, self.next_outbound_htlc_limit_msat, required), // Forwards compatibility for removed balance_msat field.
8244 (18, self.outbound_capacity_msat, required),
8245 (19, self.next_outbound_htlc_limit_msat, required),
8246 (20, self.inbound_capacity_msat, required),
8247 (21, self.next_outbound_htlc_minimum_msat, required),
8248 (22, self.confirmations_required, option),
8249 (24, self.force_close_spend_delay, option),
8250 (26, self.is_outbound, required),
8251 (28, self.is_channel_ready, required),
8252 (30, self.is_usable, required),
8253 (32, self.is_public, required),
8254 (33, self.inbound_htlc_minimum_msat, option),
8255 (35, self.inbound_htlc_maximum_msat, option),
8256 (37, user_channel_id_high_opt, option),
8257 (39, self.feerate_sat_per_1000_weight, option),
8258 (41, self.channel_shutdown_state, option),
8264 impl Readable for ChannelDetails {
8265 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8266 _init_and_read_len_prefixed_tlv_fields!(reader, {
8267 (1, inbound_scid_alias, option),
8268 (2, channel_id, required),
8269 (3, channel_type, option),
8270 (4, counterparty, required),
8271 (5, outbound_scid_alias, option),
8272 (6, funding_txo, option),
8273 (7, config, option),
8274 (8, short_channel_id, option),
8275 (9, confirmations, option),
8276 (10, channel_value_satoshis, required),
8277 (12, unspendable_punishment_reserve, option),
8278 (14, user_channel_id_low, required),
8279 (16, _balance_msat, option), // Backwards compatibility for removed balance_msat field.
8280 (18, outbound_capacity_msat, required),
8281 // Note that by the time we get past the required read above, outbound_capacity_msat will be
8282 // filled in, so we can safely unwrap it here.
8283 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
8284 (20, inbound_capacity_msat, required),
8285 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
8286 (22, confirmations_required, option),
8287 (24, force_close_spend_delay, option),
8288 (26, is_outbound, required),
8289 (28, is_channel_ready, required),
8290 (30, is_usable, required),
8291 (32, is_public, required),
8292 (33, inbound_htlc_minimum_msat, option),
8293 (35, inbound_htlc_maximum_msat, option),
8294 (37, user_channel_id_high_opt, option),
8295 (39, feerate_sat_per_1000_weight, option),
8296 (41, channel_shutdown_state, option),
8299 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
8300 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
8301 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
8302 let user_channel_id = user_channel_id_low as u128 +
8303 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
8305 let _balance_msat: Option<u64> = _balance_msat;
8309 channel_id: channel_id.0.unwrap(),
8311 counterparty: counterparty.0.unwrap(),
8312 outbound_scid_alias,
8316 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
8317 unspendable_punishment_reserve,
8319 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
8320 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
8321 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
8322 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
8323 confirmations_required,
8325 force_close_spend_delay,
8326 is_outbound: is_outbound.0.unwrap(),
8327 is_channel_ready: is_channel_ready.0.unwrap(),
8328 is_usable: is_usable.0.unwrap(),
8329 is_public: is_public.0.unwrap(),
8330 inbound_htlc_minimum_msat,
8331 inbound_htlc_maximum_msat,
8332 feerate_sat_per_1000_weight,
8333 channel_shutdown_state,
8338 impl_writeable_tlv_based!(PhantomRouteHints, {
8339 (2, channels, required_vec),
8340 (4, phantom_scid, required),
8341 (6, real_node_pubkey, required),
8344 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
8346 (0, onion_packet, required),
8347 (2, short_channel_id, required),
8350 (0, payment_data, required),
8351 (1, phantom_shared_secret, option),
8352 (2, incoming_cltv_expiry, required),
8353 (3, payment_metadata, option),
8354 (5, custom_tlvs, optional_vec),
8356 (2, ReceiveKeysend) => {
8357 (0, payment_preimage, required),
8358 (2, incoming_cltv_expiry, required),
8359 (3, payment_metadata, option),
8360 (4, payment_data, option), // Added in 0.0.116
8361 (5, custom_tlvs, optional_vec),
8365 impl_writeable_tlv_based!(PendingHTLCInfo, {
8366 (0, routing, required),
8367 (2, incoming_shared_secret, required),
8368 (4, payment_hash, required),
8369 (6, outgoing_amt_msat, required),
8370 (8, outgoing_cltv_value, required),
8371 (9, incoming_amt_msat, option),
8372 (10, skimmed_fee_msat, option),
8376 impl Writeable for HTLCFailureMsg {
8377 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8379 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
8381 channel_id.write(writer)?;
8382 htlc_id.write(writer)?;
8383 reason.write(writer)?;
8385 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8386 channel_id, htlc_id, sha256_of_onion, failure_code
8389 channel_id.write(writer)?;
8390 htlc_id.write(writer)?;
8391 sha256_of_onion.write(writer)?;
8392 failure_code.write(writer)?;
8399 impl Readable for HTLCFailureMsg {
8400 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8401 let id: u8 = Readable::read(reader)?;
8404 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
8405 channel_id: Readable::read(reader)?,
8406 htlc_id: Readable::read(reader)?,
8407 reason: Readable::read(reader)?,
8411 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
8412 channel_id: Readable::read(reader)?,
8413 htlc_id: Readable::read(reader)?,
8414 sha256_of_onion: Readable::read(reader)?,
8415 failure_code: Readable::read(reader)?,
8418 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
8419 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
8420 // messages contained in the variants.
8421 // In version 0.0.101, support for reading the variants with these types was added, and
8422 // we should migrate to writing these variants when UpdateFailHTLC or
8423 // UpdateFailMalformedHTLC get TLV fields.
8425 let length: BigSize = Readable::read(reader)?;
8426 let mut s = FixedLengthReader::new(reader, length.0);
8427 let res = Readable::read(&mut s)?;
8428 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8429 Ok(HTLCFailureMsg::Relay(res))
8432 let length: BigSize = Readable::read(reader)?;
8433 let mut s = FixedLengthReader::new(reader, length.0);
8434 let res = Readable::read(&mut s)?;
8435 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
8436 Ok(HTLCFailureMsg::Malformed(res))
8438 _ => Err(DecodeError::UnknownRequiredFeature),
8443 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
8448 impl_writeable_tlv_based!(HTLCPreviousHopData, {
8449 (0, short_channel_id, required),
8450 (1, phantom_shared_secret, option),
8451 (2, outpoint, required),
8452 (4, htlc_id, required),
8453 (6, incoming_packet_shared_secret, required),
8454 (7, user_channel_id, option),
8457 impl Writeable for ClaimableHTLC {
8458 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8459 let (payment_data, keysend_preimage) = match &self.onion_payload {
8460 OnionPayload::Invoice { _legacy_hop_data } => (_legacy_hop_data.as_ref(), None),
8461 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
8463 write_tlv_fields!(writer, {
8464 (0, self.prev_hop, required),
8465 (1, self.total_msat, required),
8466 (2, self.value, required),
8467 (3, self.sender_intended_value, required),
8468 (4, payment_data, option),
8469 (5, self.total_value_received, option),
8470 (6, self.cltv_expiry, required),
8471 (8, keysend_preimage, option),
8472 (10, self.counterparty_skimmed_fee_msat, option),
8478 impl Readable for ClaimableHTLC {
8479 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8480 _init_and_read_len_prefixed_tlv_fields!(reader, {
8481 (0, prev_hop, required),
8482 (1, total_msat, option),
8483 (2, value_ser, required),
8484 (3, sender_intended_value, option),
8485 (4, payment_data_opt, option),
8486 (5, total_value_received, option),
8487 (6, cltv_expiry, required),
8488 (8, keysend_preimage, option),
8489 (10, counterparty_skimmed_fee_msat, option),
8491 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
8492 let value = value_ser.0.unwrap();
8493 let onion_payload = match keysend_preimage {
8495 if payment_data.is_some() {
8496 return Err(DecodeError::InvalidValue)
8498 if total_msat.is_none() {
8499 total_msat = Some(value);
8501 OnionPayload::Spontaneous(p)
8504 if total_msat.is_none() {
8505 if payment_data.is_none() {
8506 return Err(DecodeError::InvalidValue)
8508 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
8510 OnionPayload::Invoice { _legacy_hop_data: payment_data }
8514 prev_hop: prev_hop.0.unwrap(),
8517 sender_intended_value: sender_intended_value.unwrap_or(value),
8518 total_value_received,
8519 total_msat: total_msat.unwrap(),
8521 cltv_expiry: cltv_expiry.0.unwrap(),
8522 counterparty_skimmed_fee_msat,
8527 impl Readable for HTLCSource {
8528 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8529 let id: u8 = Readable::read(reader)?;
8532 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
8533 let mut first_hop_htlc_msat: u64 = 0;
8534 let mut path_hops = Vec::new();
8535 let mut payment_id = None;
8536 let mut payment_params: Option<PaymentParameters> = None;
8537 let mut blinded_tail: Option<BlindedTail> = None;
8538 read_tlv_fields!(reader, {
8539 (0, session_priv, required),
8540 (1, payment_id, option),
8541 (2, first_hop_htlc_msat, required),
8542 (4, path_hops, required_vec),
8543 (5, payment_params, (option: ReadableArgs, 0)),
8544 (6, blinded_tail, option),
8546 if payment_id.is_none() {
8547 // For backwards compat, if there was no payment_id written, use the session_priv bytes
8549 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
8551 let path = Path { hops: path_hops, blinded_tail };
8552 if path.hops.len() == 0 {
8553 return Err(DecodeError::InvalidValue);
8555 if let Some(params) = payment_params.as_mut() {
8556 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
8557 if final_cltv_expiry_delta == &0 {
8558 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
8562 Ok(HTLCSource::OutboundRoute {
8563 session_priv: session_priv.0.unwrap(),
8564 first_hop_htlc_msat,
8566 payment_id: payment_id.unwrap(),
8569 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
8570 _ => Err(DecodeError::UnknownRequiredFeature),
8575 impl Writeable for HTLCSource {
8576 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
8578 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
8580 let payment_id_opt = Some(payment_id);
8581 write_tlv_fields!(writer, {
8582 (0, session_priv, required),
8583 (1, payment_id_opt, option),
8584 (2, first_hop_htlc_msat, required),
8585 // 3 was previously used to write a PaymentSecret for the payment.
8586 (4, path.hops, required_vec),
8587 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
8588 (6, path.blinded_tail, option),
8591 HTLCSource::PreviousHopData(ref field) => {
8593 field.write(writer)?;
8600 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
8601 (0, forward_info, required),
8602 (1, prev_user_channel_id, (default_value, 0)),
8603 (2, prev_short_channel_id, required),
8604 (4, prev_htlc_id, required),
8605 (6, prev_funding_outpoint, required),
8608 impl_writeable_tlv_based_enum!(HTLCForwardInfo,
8610 (0, htlc_id, required),
8611 (2, err_packet, required),
8616 impl_writeable_tlv_based!(PendingInboundPayment, {
8617 (0, payment_secret, required),
8618 (2, expiry_time, required),
8619 (4, user_payment_id, required),
8620 (6, payment_preimage, required),
8621 (8, min_value_msat, required),
8624 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
8626 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8627 T::Target: BroadcasterInterface,
8628 ES::Target: EntropySource,
8629 NS::Target: NodeSigner,
8630 SP::Target: SignerProvider,
8631 F::Target: FeeEstimator,
8635 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
8636 let _consistency_lock = self.total_consistency_lock.write().unwrap();
8638 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
8640 self.genesis_hash.write(writer)?;
8642 let best_block = self.best_block.read().unwrap();
8643 best_block.height().write(writer)?;
8644 best_block.block_hash().write(writer)?;
8647 let mut serializable_peer_count: u64 = 0;
8649 let per_peer_state = self.per_peer_state.read().unwrap();
8650 let mut number_of_funded_channels = 0;
8651 for (_, peer_state_mutex) in per_peer_state.iter() {
8652 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8653 let peer_state = &mut *peer_state_lock;
8654 if !peer_state.ok_to_remove(false) {
8655 serializable_peer_count += 1;
8658 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
8659 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_initiated() } else { false }
8663 (number_of_funded_channels as u64).write(writer)?;
8665 for (_, peer_state_mutex) in per_peer_state.iter() {
8666 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8667 let peer_state = &mut *peer_state_lock;
8668 for channel in peer_state.channel_by_id.iter().filter_map(
8669 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
8670 if channel.context.is_funding_initiated() { Some(channel) } else { None }
8673 channel.write(writer)?;
8679 let forward_htlcs = self.forward_htlcs.lock().unwrap();
8680 (forward_htlcs.len() as u64).write(writer)?;
8681 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
8682 short_channel_id.write(writer)?;
8683 (pending_forwards.len() as u64).write(writer)?;
8684 for forward in pending_forwards {
8685 forward.write(writer)?;
8690 let per_peer_state = self.per_peer_state.write().unwrap();
8692 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
8693 let claimable_payments = self.claimable_payments.lock().unwrap();
8694 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
8696 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
8697 let mut htlc_onion_fields: Vec<&_> = Vec::new();
8698 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
8699 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
8700 payment_hash.write(writer)?;
8701 (payment.htlcs.len() as u64).write(writer)?;
8702 for htlc in payment.htlcs.iter() {
8703 htlc.write(writer)?;
8705 htlc_purposes.push(&payment.purpose);
8706 htlc_onion_fields.push(&payment.onion_fields);
8709 let mut monitor_update_blocked_actions_per_peer = None;
8710 let mut peer_states = Vec::new();
8711 for (_, peer_state_mutex) in per_peer_state.iter() {
8712 // Because we're holding the owning `per_peer_state` write lock here there's no chance
8713 // of a lockorder violation deadlock - no other thread can be holding any
8714 // per_peer_state lock at all.
8715 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
8718 (serializable_peer_count).write(writer)?;
8719 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8720 // Peers which we have no channels to should be dropped once disconnected. As we
8721 // disconnect all peers when shutting down and serializing the ChannelManager, we
8722 // consider all peers as disconnected here. There's therefore no need write peers with
8724 if !peer_state.ok_to_remove(false) {
8725 peer_pubkey.write(writer)?;
8726 peer_state.latest_features.write(writer)?;
8727 if !peer_state.monitor_update_blocked_actions.is_empty() {
8728 monitor_update_blocked_actions_per_peer
8729 .get_or_insert_with(Vec::new)
8730 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
8735 let events = self.pending_events.lock().unwrap();
8736 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
8737 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
8738 // refuse to read the new ChannelManager.
8739 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
8740 if events_not_backwards_compatible {
8741 // If we're gonna write a even TLV that will overwrite our events anyway we might as
8742 // well save the space and not write any events here.
8743 0u64.write(writer)?;
8745 (events.len() as u64).write(writer)?;
8746 for (event, _) in events.iter() {
8747 event.write(writer)?;
8751 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
8752 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
8753 // the closing monitor updates were always effectively replayed on startup (either directly
8754 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
8755 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
8756 0u64.write(writer)?;
8758 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
8759 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
8760 // likely to be identical.
8761 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8762 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
8764 (pending_inbound_payments.len() as u64).write(writer)?;
8765 for (hash, pending_payment) in pending_inbound_payments.iter() {
8766 hash.write(writer)?;
8767 pending_payment.write(writer)?;
8770 // For backwards compat, write the session privs and their total length.
8771 let mut num_pending_outbounds_compat: u64 = 0;
8772 for (_, outbound) in pending_outbound_payments.iter() {
8773 if !outbound.is_fulfilled() && !outbound.abandoned() {
8774 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
8777 num_pending_outbounds_compat.write(writer)?;
8778 for (_, outbound) in pending_outbound_payments.iter() {
8780 PendingOutboundPayment::Legacy { session_privs } |
8781 PendingOutboundPayment::Retryable { session_privs, .. } => {
8782 for session_priv in session_privs.iter() {
8783 session_priv.write(writer)?;
8786 PendingOutboundPayment::AwaitingInvoice { .. } => {},
8787 PendingOutboundPayment::InvoiceReceived { .. } => {},
8788 PendingOutboundPayment::Fulfilled { .. } => {},
8789 PendingOutboundPayment::Abandoned { .. } => {},
8793 // Encode without retry info for 0.0.101 compatibility.
8794 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = HashMap::new();
8795 for (id, outbound) in pending_outbound_payments.iter() {
8797 PendingOutboundPayment::Legacy { session_privs } |
8798 PendingOutboundPayment::Retryable { session_privs, .. } => {
8799 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
8805 let mut pending_intercepted_htlcs = None;
8806 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
8807 if our_pending_intercepts.len() != 0 {
8808 pending_intercepted_htlcs = Some(our_pending_intercepts);
8811 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
8812 if pending_claiming_payments.as_ref().unwrap().is_empty() {
8813 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
8814 // map. Thus, if there are no entries we skip writing a TLV for it.
8815 pending_claiming_payments = None;
8818 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
8819 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
8820 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
8821 if !updates.is_empty() {
8822 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(HashMap::new()); }
8823 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
8828 write_tlv_fields!(writer, {
8829 (1, pending_outbound_payments_no_retry, required),
8830 (2, pending_intercepted_htlcs, option),
8831 (3, pending_outbound_payments, required),
8832 (4, pending_claiming_payments, option),
8833 (5, self.our_network_pubkey, required),
8834 (6, monitor_update_blocked_actions_per_peer, option),
8835 (7, self.fake_scid_rand_bytes, required),
8836 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
8837 (9, htlc_purposes, required_vec),
8838 (10, in_flight_monitor_updates, option),
8839 (11, self.probing_cookie_secret, required),
8840 (13, htlc_onion_fields, optional_vec),
8847 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
8848 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
8849 (self.len() as u64).write(w)?;
8850 for (event, action) in self.iter() {
8853 #[cfg(debug_assertions)] {
8854 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
8855 // be persisted and are regenerated on restart. However, if such an event has a
8856 // post-event-handling action we'll write nothing for the event and would have to
8857 // either forget the action or fail on deserialization (which we do below). Thus,
8858 // check that the event is sane here.
8859 let event_encoded = event.encode();
8860 let event_read: Option<Event> =
8861 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
8862 if action.is_some() { assert!(event_read.is_some()); }
8868 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
8869 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
8870 let len: u64 = Readable::read(reader)?;
8871 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
8872 let mut events: Self = VecDeque::with_capacity(cmp::min(
8873 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
8876 let ev_opt = MaybeReadable::read(reader)?;
8877 let action = Readable::read(reader)?;
8878 if let Some(ev) = ev_opt {
8879 events.push_back((ev, action));
8880 } else if action.is_some() {
8881 return Err(DecodeError::InvalidValue);
8888 impl_writeable_tlv_based_enum!(ChannelShutdownState,
8889 (0, NotShuttingDown) => {},
8890 (2, ShutdownInitiated) => {},
8891 (4, ResolvingHTLCs) => {},
8892 (6, NegotiatingClosingFee) => {},
8893 (8, ShutdownComplete) => {}, ;
8896 /// Arguments for the creation of a ChannelManager that are not deserialized.
8898 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
8900 /// 1) Deserialize all stored [`ChannelMonitor`]s.
8901 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
8902 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
8903 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
8904 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
8905 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
8906 /// same way you would handle a [`chain::Filter`] call using
8907 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
8908 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
8909 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
8910 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
8911 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
8912 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
8914 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
8915 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
8917 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
8918 /// call any other methods on the newly-deserialized [`ChannelManager`].
8920 /// Note that because some channels may be closed during deserialization, it is critical that you
8921 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
8922 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
8923 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
8924 /// not force-close the same channels but consider them live), you may end up revoking a state for
8925 /// which you've already broadcasted the transaction.
8927 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
8928 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8930 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8931 T::Target: BroadcasterInterface,
8932 ES::Target: EntropySource,
8933 NS::Target: NodeSigner,
8934 SP::Target: SignerProvider,
8935 F::Target: FeeEstimator,
8939 /// A cryptographically secure source of entropy.
8940 pub entropy_source: ES,
8942 /// A signer that is able to perform node-scoped cryptographic operations.
8943 pub node_signer: NS,
8945 /// The keys provider which will give us relevant keys. Some keys will be loaded during
8946 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
8948 pub signer_provider: SP,
8950 /// The fee_estimator for use in the ChannelManager in the future.
8952 /// No calls to the FeeEstimator will be made during deserialization.
8953 pub fee_estimator: F,
8954 /// The chain::Watch for use in the ChannelManager in the future.
8956 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
8957 /// you have deserialized ChannelMonitors separately and will add them to your
8958 /// chain::Watch after deserializing this ChannelManager.
8959 pub chain_monitor: M,
8961 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
8962 /// used to broadcast the latest local commitment transactions of channels which must be
8963 /// force-closed during deserialization.
8964 pub tx_broadcaster: T,
8965 /// The router which will be used in the ChannelManager in the future for finding routes
8966 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
8968 /// No calls to the router will be made during deserialization.
8970 /// The Logger for use in the ChannelManager and which may be used to log information during
8971 /// deserialization.
8973 /// Default settings used for new channels. Any existing channels will continue to use the
8974 /// runtime settings which were stored when the ChannelManager was serialized.
8975 pub default_config: UserConfig,
8977 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
8978 /// value.context.get_funding_txo() should be the key).
8980 /// If a monitor is inconsistent with the channel state during deserialization the channel will
8981 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
8982 /// is true for missing channels as well. If there is a monitor missing for which we find
8983 /// channel data Err(DecodeError::InvalidValue) will be returned.
8985 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
8988 /// This is not exported to bindings users because we have no HashMap bindings
8989 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>,
8992 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
8993 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
8995 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
8996 T::Target: BroadcasterInterface,
8997 ES::Target: EntropySource,
8998 NS::Target: NodeSigner,
8999 SP::Target: SignerProvider,
9000 F::Target: FeeEstimator,
9004 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
9005 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
9006 /// populate a HashMap directly from C.
9007 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
9008 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::Signer>>) -> Self {
9010 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
9011 channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
9016 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
9017 // SipmleArcChannelManager type:
9018 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9019 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
9021 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9022 T::Target: BroadcasterInterface,
9023 ES::Target: EntropySource,
9024 NS::Target: NodeSigner,
9025 SP::Target: SignerProvider,
9026 F::Target: FeeEstimator,
9030 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9031 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
9032 Ok((blockhash, Arc::new(chan_manager)))
9036 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9037 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
9039 M::Target: chain::Watch<<SP::Target as SignerProvider>::Signer>,
9040 T::Target: BroadcasterInterface,
9041 ES::Target: EntropySource,
9042 NS::Target: NodeSigner,
9043 SP::Target: SignerProvider,
9044 F::Target: FeeEstimator,
9048 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
9049 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
9051 let genesis_hash: BlockHash = Readable::read(reader)?;
9052 let best_block_height: u32 = Readable::read(reader)?;
9053 let best_block_hash: BlockHash = Readable::read(reader)?;
9055 let mut failed_htlcs = Vec::new();
9057 let channel_count: u64 = Readable::read(reader)?;
9058 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
9059 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9060 let mut id_to_peer = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9061 let mut short_to_chan_info = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
9062 let mut channel_closures = VecDeque::new();
9063 let mut close_background_events = Vec::new();
9064 for _ in 0..channel_count {
9065 let mut channel: Channel<SP> = Channel::read(reader, (
9066 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
9068 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9069 funding_txo_set.insert(funding_txo.clone());
9070 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
9071 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
9072 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
9073 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
9074 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9075 // But if the channel is behind of the monitor, close the channel:
9076 log_error!(args.logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
9077 log_error!(args.logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
9078 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
9079 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
9080 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
9082 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
9083 log_error!(args.logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
9084 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
9086 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
9087 log_error!(args.logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
9088 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
9090 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
9091 log_error!(args.logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
9092 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
9094 let (monitor_update, mut new_failed_htlcs) = channel.context.force_shutdown(true);
9095 if let Some((counterparty_node_id, funding_txo, update)) = monitor_update {
9096 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9097 counterparty_node_id, funding_txo, update
9100 failed_htlcs.append(&mut new_failed_htlcs);
9101 channel_closures.push_back((events::Event::ChannelClosed {
9102 channel_id: channel.context.channel_id(),
9103 user_channel_id: channel.context.get_user_id(),
9104 reason: ClosureReason::OutdatedChannelManager,
9105 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9106 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9108 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
9109 let mut found_htlc = false;
9110 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
9111 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
9114 // If we have some HTLCs in the channel which are not present in the newer
9115 // ChannelMonitor, they have been removed and should be failed back to
9116 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
9117 // were actually claimed we'd have generated and ensured the previous-hop
9118 // claim update ChannelMonitor updates were persisted prior to persising
9119 // the ChannelMonitor update for the forward leg, so attempting to fail the
9120 // backwards leg of the HTLC will simply be rejected.
9121 log_info!(args.logger,
9122 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
9123 &channel.context.channel_id(), &payment_hash);
9124 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9128 log_info!(args.logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
9129 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
9130 monitor.get_latest_update_id());
9131 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
9132 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9134 if channel.context.is_funding_initiated() {
9135 id_to_peer.insert(channel.context.channel_id(), channel.context.get_counterparty_node_id());
9137 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
9138 hash_map::Entry::Occupied(mut entry) => {
9139 let by_id_map = entry.get_mut();
9140 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9142 hash_map::Entry::Vacant(entry) => {
9143 let mut by_id_map = HashMap::new();
9144 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
9145 entry.insert(by_id_map);
9149 } else if channel.is_awaiting_initial_mon_persist() {
9150 // If we were persisted and shut down while the initial ChannelMonitor persistence
9151 // was in-progress, we never broadcasted the funding transaction and can still
9152 // safely discard the channel.
9153 let _ = channel.context.force_shutdown(false);
9154 channel_closures.push_back((events::Event::ChannelClosed {
9155 channel_id: channel.context.channel_id(),
9156 user_channel_id: channel.context.get_user_id(),
9157 reason: ClosureReason::DisconnectedPeer,
9158 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
9159 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
9162 log_error!(args.logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
9163 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9164 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9165 log_error!(args.logger, " Without the ChannelMonitor we cannot continue without risking funds.");
9166 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9167 return Err(DecodeError::InvalidValue);
9171 for (funding_txo, _) in args.channel_monitors.iter() {
9172 if !funding_txo_set.contains(funding_txo) {
9173 log_info!(args.logger, "Queueing monitor update to ensure missing channel {} is force closed",
9174 &funding_txo.to_channel_id());
9175 let monitor_update = ChannelMonitorUpdate {
9176 update_id: CLOSED_CHANNEL_UPDATE_ID,
9177 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
9179 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, monitor_update)));
9183 const MAX_ALLOC_SIZE: usize = 1024 * 64;
9184 let forward_htlcs_count: u64 = Readable::read(reader)?;
9185 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
9186 for _ in 0..forward_htlcs_count {
9187 let short_channel_id = Readable::read(reader)?;
9188 let pending_forwards_count: u64 = Readable::read(reader)?;
9189 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
9190 for _ in 0..pending_forwards_count {
9191 pending_forwards.push(Readable::read(reader)?);
9193 forward_htlcs.insert(short_channel_id, pending_forwards);
9196 let claimable_htlcs_count: u64 = Readable::read(reader)?;
9197 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
9198 for _ in 0..claimable_htlcs_count {
9199 let payment_hash = Readable::read(reader)?;
9200 let previous_hops_len: u64 = Readable::read(reader)?;
9201 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
9202 for _ in 0..previous_hops_len {
9203 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
9205 claimable_htlcs_list.push((payment_hash, previous_hops));
9208 let peer_state_from_chans = |channel_by_id| {
9211 inbound_channel_request_by_id: HashMap::new(),
9212 latest_features: InitFeatures::empty(),
9213 pending_msg_events: Vec::new(),
9214 in_flight_monitor_updates: BTreeMap::new(),
9215 monitor_update_blocked_actions: BTreeMap::new(),
9216 actions_blocking_raa_monitor_updates: BTreeMap::new(),
9217 is_connected: false,
9221 let peer_count: u64 = Readable::read(reader)?;
9222 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
9223 for _ in 0..peer_count {
9224 let peer_pubkey = Readable::read(reader)?;
9225 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(HashMap::new());
9226 let mut peer_state = peer_state_from_chans(peer_chans);
9227 peer_state.latest_features = Readable::read(reader)?;
9228 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
9231 let event_count: u64 = Readable::read(reader)?;
9232 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
9233 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
9234 for _ in 0..event_count {
9235 match MaybeReadable::read(reader)? {
9236 Some(event) => pending_events_read.push_back((event, None)),
9241 let background_event_count: u64 = Readable::read(reader)?;
9242 for _ in 0..background_event_count {
9243 match <u8 as Readable>::read(reader)? {
9245 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
9246 // however we really don't (and never did) need them - we regenerate all
9247 // on-startup monitor updates.
9248 let _: OutPoint = Readable::read(reader)?;
9249 let _: ChannelMonitorUpdate = Readable::read(reader)?;
9251 _ => return Err(DecodeError::InvalidValue),
9255 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
9256 let highest_seen_timestamp: u32 = Readable::read(reader)?;
9258 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
9259 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
9260 for _ in 0..pending_inbound_payment_count {
9261 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
9262 return Err(DecodeError::InvalidValue);
9266 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
9267 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
9268 HashMap::with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
9269 for _ in 0..pending_outbound_payments_count_compat {
9270 let session_priv = Readable::read(reader)?;
9271 let payment = PendingOutboundPayment::Legacy {
9272 session_privs: [session_priv].iter().cloned().collect()
9274 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
9275 return Err(DecodeError::InvalidValue)
9279 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
9280 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
9281 let mut pending_outbound_payments = None;
9282 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(HashMap::new());
9283 let mut received_network_pubkey: Option<PublicKey> = None;
9284 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
9285 let mut probing_cookie_secret: Option<[u8; 32]> = None;
9286 let mut claimable_htlc_purposes = None;
9287 let mut claimable_htlc_onion_fields = None;
9288 let mut pending_claiming_payments = Some(HashMap::new());
9289 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
9290 let mut events_override = None;
9291 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
9292 read_tlv_fields!(reader, {
9293 (1, pending_outbound_payments_no_retry, option),
9294 (2, pending_intercepted_htlcs, option),
9295 (3, pending_outbound_payments, option),
9296 (4, pending_claiming_payments, option),
9297 (5, received_network_pubkey, option),
9298 (6, monitor_update_blocked_actions_per_peer, option),
9299 (7, fake_scid_rand_bytes, option),
9300 (8, events_override, option),
9301 (9, claimable_htlc_purposes, optional_vec),
9302 (10, in_flight_monitor_updates, option),
9303 (11, probing_cookie_secret, option),
9304 (13, claimable_htlc_onion_fields, optional_vec),
9306 if fake_scid_rand_bytes.is_none() {
9307 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
9310 if probing_cookie_secret.is_none() {
9311 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
9314 if let Some(events) = events_override {
9315 pending_events_read = events;
9318 if !channel_closures.is_empty() {
9319 pending_events_read.append(&mut channel_closures);
9322 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
9323 pending_outbound_payments = Some(pending_outbound_payments_compat);
9324 } else if pending_outbound_payments.is_none() {
9325 let mut outbounds = HashMap::new();
9326 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
9327 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
9329 pending_outbound_payments = Some(outbounds);
9331 let pending_outbounds = OutboundPayments {
9332 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
9333 retry_lock: Mutex::new(())
9336 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
9337 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
9338 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
9339 // replayed, and for each monitor update we have to replay we have to ensure there's a
9340 // `ChannelMonitor` for it.
9342 // In order to do so we first walk all of our live channels (so that we can check their
9343 // state immediately after doing the update replays, when we have the `update_id`s
9344 // available) and then walk any remaining in-flight updates.
9346 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
9347 let mut pending_background_events = Vec::new();
9348 macro_rules! handle_in_flight_updates {
9349 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
9350 $monitor: expr, $peer_state: expr, $channel_info_log: expr
9352 let mut max_in_flight_update_id = 0;
9353 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
9354 for update in $chan_in_flight_upds.iter() {
9355 log_trace!(args.logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
9356 update.update_id, $channel_info_log, &$funding_txo.to_channel_id());
9357 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
9358 pending_background_events.push(
9359 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
9360 counterparty_node_id: $counterparty_node_id,
9361 funding_txo: $funding_txo,
9362 update: update.clone(),
9365 if $chan_in_flight_upds.is_empty() {
9366 // We had some updates to apply, but it turns out they had completed before we
9367 // were serialized, we just weren't notified of that. Thus, we may have to run
9368 // the completion actions for any monitor updates, but otherwise are done.
9369 pending_background_events.push(
9370 BackgroundEvent::MonitorUpdatesComplete {
9371 counterparty_node_id: $counterparty_node_id,
9372 channel_id: $funding_txo.to_channel_id(),
9375 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
9376 log_error!(args.logger, "Duplicate in-flight monitor update set for the same channel!");
9377 return Err(DecodeError::InvalidValue);
9379 max_in_flight_update_id
9383 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
9384 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
9385 let peer_state = &mut *peer_state_lock;
9386 for phase in peer_state.channel_by_id.values() {
9387 if let ChannelPhase::Funded(chan) = phase {
9388 // Channels that were persisted have to be funded, otherwise they should have been
9390 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
9391 let monitor = args.channel_monitors.get(&funding_txo)
9392 .expect("We already checked for monitor presence when loading channels");
9393 let mut max_in_flight_update_id = monitor.get_latest_update_id();
9394 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
9395 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
9396 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
9397 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
9398 funding_txo, monitor, peer_state, ""));
9401 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
9402 // If the channel is ahead of the monitor, return InvalidValue:
9403 log_error!(args.logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
9404 log_error!(args.logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
9405 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
9406 log_error!(args.logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
9407 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9408 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9409 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9410 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9411 return Err(DecodeError::InvalidValue);
9414 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9415 // created in this `channel_by_id` map.
9416 debug_assert!(false);
9417 return Err(DecodeError::InvalidValue);
9422 if let Some(in_flight_upds) = in_flight_monitor_updates {
9423 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
9424 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
9425 // Now that we've removed all the in-flight monitor updates for channels that are
9426 // still open, we need to replay any monitor updates that are for closed channels,
9427 // creating the neccessary peer_state entries as we go.
9428 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
9429 Mutex::new(peer_state_from_chans(HashMap::new()))
9431 let mut peer_state = peer_state_mutex.lock().unwrap();
9432 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
9433 funding_txo, monitor, peer_state, "closed ");
9435 log_error!(args.logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
9436 log_error!(args.logger, " The ChannelMonitor for channel {} is missing.",
9437 &funding_txo.to_channel_id());
9438 log_error!(args.logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
9439 log_error!(args.logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
9440 log_error!(args.logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
9441 log_error!(args.logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
9442 return Err(DecodeError::InvalidValue);
9447 // Note that we have to do the above replays before we push new monitor updates.
9448 pending_background_events.append(&mut close_background_events);
9450 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
9451 // should ensure we try them again on the inbound edge. We put them here and do so after we
9452 // have a fully-constructed `ChannelManager` at the end.
9453 let mut pending_claims_to_replay = Vec::new();
9456 // If we're tracking pending payments, ensure we haven't lost any by looking at the
9457 // ChannelMonitor data for any channels for which we do not have authorative state
9458 // (i.e. those for which we just force-closed above or we otherwise don't have a
9459 // corresponding `Channel` at all).
9460 // This avoids several edge-cases where we would otherwise "forget" about pending
9461 // payments which are still in-flight via their on-chain state.
9462 // We only rebuild the pending payments map if we were most recently serialized by
9464 for (_, monitor) in args.channel_monitors.iter() {
9465 let counterparty_opt = id_to_peer.get(&monitor.get_funding_txo().0.to_channel_id());
9466 if counterparty_opt.is_none() {
9467 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
9468 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
9469 if path.hops.is_empty() {
9470 log_error!(args.logger, "Got an empty path for a pending payment");
9471 return Err(DecodeError::InvalidValue);
9474 let path_amt = path.final_value_msat();
9475 let mut session_priv_bytes = [0; 32];
9476 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
9477 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
9478 hash_map::Entry::Occupied(mut entry) => {
9479 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
9480 log_info!(args.logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
9481 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), &htlc.payment_hash);
9483 hash_map::Entry::Vacant(entry) => {
9484 let path_fee = path.fee_msat();
9485 entry.insert(PendingOutboundPayment::Retryable {
9486 retry_strategy: None,
9487 attempts: PaymentAttempts::new(),
9488 payment_params: None,
9489 session_privs: [session_priv_bytes].iter().map(|a| *a).collect(),
9490 payment_hash: htlc.payment_hash,
9491 payment_secret: None, // only used for retries, and we'll never retry on startup
9492 payment_metadata: None, // only used for retries, and we'll never retry on startup
9493 keysend_preimage: None, // only used for retries, and we'll never retry on startup
9494 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
9495 pending_amt_msat: path_amt,
9496 pending_fee_msat: Some(path_fee),
9497 total_msat: path_amt,
9498 starting_block_height: best_block_height,
9500 log_info!(args.logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
9501 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
9506 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
9508 HTLCSource::PreviousHopData(prev_hop_data) => {
9509 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
9510 info.prev_funding_outpoint == prev_hop_data.outpoint &&
9511 info.prev_htlc_id == prev_hop_data.htlc_id
9513 // The ChannelMonitor is now responsible for this HTLC's
9514 // failure/success and will let us know what its outcome is. If we
9515 // still have an entry for this HTLC in `forward_htlcs` or
9516 // `pending_intercepted_htlcs`, we were apparently not persisted after
9517 // the monitor was when forwarding the payment.
9518 forward_htlcs.retain(|_, forwards| {
9519 forwards.retain(|forward| {
9520 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
9521 if pending_forward_matches_htlc(&htlc_info) {
9522 log_info!(args.logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
9523 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9528 !forwards.is_empty()
9530 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
9531 if pending_forward_matches_htlc(&htlc_info) {
9532 log_info!(args.logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
9533 &htlc.payment_hash, &monitor.get_funding_txo().0.to_channel_id());
9534 pending_events_read.retain(|(event, _)| {
9535 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
9536 intercepted_id != ev_id
9543 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
9544 if let Some(preimage) = preimage_opt {
9545 let pending_events = Mutex::new(pending_events_read);
9546 // Note that we set `from_onchain` to "false" here,
9547 // deliberately keeping the pending payment around forever.
9548 // Given it should only occur when we have a channel we're
9549 // force-closing for being stale that's okay.
9550 // The alternative would be to wipe the state when claiming,
9551 // generating a `PaymentPathSuccessful` event but regenerating
9552 // it and the `PaymentSent` on every restart until the
9553 // `ChannelMonitor` is removed.
9555 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9556 channel_funding_outpoint: monitor.get_funding_txo().0,
9557 counterparty_node_id: path.hops[0].pubkey,
9559 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
9560 path, false, compl_action, &pending_events, &args.logger);
9561 pending_events_read = pending_events.into_inner().unwrap();
9568 // Whether the downstream channel was closed or not, try to re-apply any payment
9569 // preimages from it which may be needed in upstream channels for forwarded
9571 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
9573 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
9574 if let HTLCSource::PreviousHopData(_) = htlc_source {
9575 if let Some(payment_preimage) = preimage_opt {
9576 Some((htlc_source, payment_preimage, htlc.amount_msat,
9577 // Check if `counterparty_opt.is_none()` to see if the
9578 // downstream chan is closed (because we don't have a
9579 // channel_id -> peer map entry).
9580 counterparty_opt.is_none(),
9581 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
9582 monitor.get_funding_txo().0))
9585 // If it was an outbound payment, we've handled it above - if a preimage
9586 // came in and we persisted the `ChannelManager` we either handled it and
9587 // are good to go or the channel force-closed - we don't have to handle the
9588 // channel still live case here.
9592 for tuple in outbound_claimed_htlcs_iter {
9593 pending_claims_to_replay.push(tuple);
9598 if !forward_htlcs.is_empty() || pending_outbounds.needs_abandon() {
9599 // If we have pending HTLCs to forward, assume we either dropped a
9600 // `PendingHTLCsForwardable` or the user received it but never processed it as they
9601 // shut down before the timer hit. Either way, set the time_forwardable to a small
9602 // constant as enough time has likely passed that we should simply handle the forwards
9603 // now, or at least after the user gets a chance to reconnect to our peers.
9604 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
9605 time_forwardable: Duration::from_secs(2),
9609 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
9610 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
9612 let mut claimable_payments = HashMap::with_capacity(claimable_htlcs_list.len());
9613 if let Some(purposes) = claimable_htlc_purposes {
9614 if purposes.len() != claimable_htlcs_list.len() {
9615 return Err(DecodeError::InvalidValue);
9617 if let Some(onion_fields) = claimable_htlc_onion_fields {
9618 if onion_fields.len() != claimable_htlcs_list.len() {
9619 return Err(DecodeError::InvalidValue);
9621 for (purpose, (onion, (payment_hash, htlcs))) in
9622 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
9624 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9625 purpose, htlcs, onion_fields: onion,
9627 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9630 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
9631 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
9632 purpose, htlcs, onion_fields: None,
9634 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
9638 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
9639 // include a `_legacy_hop_data` in the `OnionPayload`.
9640 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
9641 if htlcs.is_empty() {
9642 return Err(DecodeError::InvalidValue);
9644 let purpose = match &htlcs[0].onion_payload {
9645 OnionPayload::Invoice { _legacy_hop_data } => {
9646 if let Some(hop_data) = _legacy_hop_data {
9647 events::PaymentPurpose::InvoicePayment {
9648 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
9649 Some(inbound_payment) => inbound_payment.payment_preimage,
9650 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
9651 Ok((payment_preimage, _)) => payment_preimage,
9653 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
9654 return Err(DecodeError::InvalidValue);
9658 payment_secret: hop_data.payment_secret,
9660 } else { return Err(DecodeError::InvalidValue); }
9662 OnionPayload::Spontaneous(payment_preimage) =>
9663 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
9665 claimable_payments.insert(payment_hash, ClaimablePayment {
9666 purpose, htlcs, onion_fields: None,
9671 let mut secp_ctx = Secp256k1::new();
9672 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
9674 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
9676 Err(()) => return Err(DecodeError::InvalidValue)
9678 if let Some(network_pubkey) = received_network_pubkey {
9679 if network_pubkey != our_network_pubkey {
9680 log_error!(args.logger, "Key that was generated does not match the existing key.");
9681 return Err(DecodeError::InvalidValue);
9685 let mut outbound_scid_aliases = HashSet::new();
9686 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
9687 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9688 let peer_state = &mut *peer_state_lock;
9689 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
9690 if let ChannelPhase::Funded(chan) = phase {
9691 if chan.context.outbound_scid_alias() == 0 {
9692 let mut outbound_scid_alias;
9694 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
9695 .get_fake_scid(best_block_height, &genesis_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
9696 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
9698 chan.context.set_outbound_scid_alias(outbound_scid_alias);
9699 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
9700 // Note that in rare cases its possible to hit this while reading an older
9701 // channel if we just happened to pick a colliding outbound alias above.
9702 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9703 return Err(DecodeError::InvalidValue);
9705 if chan.context.is_usable() {
9706 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
9707 // Note that in rare cases its possible to hit this while reading an older
9708 // channel if we just happened to pick a colliding outbound alias above.
9709 log_error!(args.logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
9710 return Err(DecodeError::InvalidValue);
9714 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
9715 // created in this `channel_by_id` map.
9716 debug_assert!(false);
9717 return Err(DecodeError::InvalidValue);
9722 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
9724 for (_, monitor) in args.channel_monitors.iter() {
9725 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
9726 if let Some(payment) = claimable_payments.remove(&payment_hash) {
9727 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
9728 let mut claimable_amt_msat = 0;
9729 let mut receiver_node_id = Some(our_network_pubkey);
9730 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
9731 if phantom_shared_secret.is_some() {
9732 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
9733 .expect("Failed to get node_id for phantom node recipient");
9734 receiver_node_id = Some(phantom_pubkey)
9736 for claimable_htlc in &payment.htlcs {
9737 claimable_amt_msat += claimable_htlc.value;
9739 // Add a holding-cell claim of the payment to the Channel, which should be
9740 // applied ~immediately on peer reconnection. Because it won't generate a
9741 // new commitment transaction we can just provide the payment preimage to
9742 // the corresponding ChannelMonitor and nothing else.
9744 // We do so directly instead of via the normal ChannelMonitor update
9745 // procedure as the ChainMonitor hasn't yet been initialized, implying
9746 // we're not allowed to call it directly yet. Further, we do the update
9747 // without incrementing the ChannelMonitor update ID as there isn't any
9749 // If we were to generate a new ChannelMonitor update ID here and then
9750 // crash before the user finishes block connect we'd end up force-closing
9751 // this channel as well. On the flip side, there's no harm in restarting
9752 // without the new monitor persisted - we'll end up right back here on
9754 let previous_channel_id = claimable_htlc.prev_hop.outpoint.to_channel_id();
9755 if let Some(peer_node_id) = id_to_peer.get(&previous_channel_id){
9756 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
9757 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9758 let peer_state = &mut *peer_state_lock;
9759 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
9760 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &args.logger);
9763 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
9764 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
9767 pending_events_read.push_back((events::Event::PaymentClaimed {
9770 purpose: payment.purpose,
9771 amount_msat: claimable_amt_msat,
9772 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
9773 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
9779 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
9780 if let Some(peer_state) = per_peer_state.get(&node_id) {
9781 for (_, actions) in monitor_update_blocked_actions.iter() {
9782 for action in actions.iter() {
9783 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
9784 downstream_counterparty_and_funding_outpoint:
9785 Some((blocked_node_id, blocked_channel_outpoint, blocking_action)), ..
9787 if let Some(blocked_peer_state) = per_peer_state.get(&blocked_node_id) {
9788 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
9789 .entry(blocked_channel_outpoint.to_channel_id())
9790 .or_insert_with(Vec::new).push(blocking_action.clone());
9792 // If the channel we were blocking has closed, we don't need to
9793 // worry about it - the blocked monitor update should never have
9794 // been released from the `Channel` object so it can't have
9795 // completed, and if the channel closed there's no reason to bother
9801 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
9803 log_error!(args.logger, "Got blocked actions without a per-peer-state for {}", node_id);
9804 return Err(DecodeError::InvalidValue);
9808 let channel_manager = ChannelManager {
9810 fee_estimator: bounded_fee_estimator,
9811 chain_monitor: args.chain_monitor,
9812 tx_broadcaster: args.tx_broadcaster,
9813 router: args.router,
9815 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
9817 inbound_payment_key: expanded_inbound_key,
9818 pending_inbound_payments: Mutex::new(pending_inbound_payments),
9819 pending_outbound_payments: pending_outbounds,
9820 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
9822 forward_htlcs: Mutex::new(forward_htlcs),
9823 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
9824 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
9825 id_to_peer: Mutex::new(id_to_peer),
9826 short_to_chan_info: FairRwLock::new(short_to_chan_info),
9827 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
9829 probing_cookie_secret: probing_cookie_secret.unwrap(),
9834 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
9836 per_peer_state: FairRwLock::new(per_peer_state),
9838 pending_events: Mutex::new(pending_events_read),
9839 pending_events_processor: AtomicBool::new(false),
9840 pending_background_events: Mutex::new(pending_background_events),
9841 total_consistency_lock: RwLock::new(()),
9842 background_events_processed_since_startup: AtomicBool::new(false),
9844 event_persist_notifier: Notifier::new(),
9845 needs_persist_flag: AtomicBool::new(false),
9847 entropy_source: args.entropy_source,
9848 node_signer: args.node_signer,
9849 signer_provider: args.signer_provider,
9851 logger: args.logger,
9852 default_configuration: args.default_config,
9855 for htlc_source in failed_htlcs.drain(..) {
9856 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
9857 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
9858 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
9859 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
9862 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding) in pending_claims_to_replay {
9863 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
9864 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
9865 // channel is closed we just assume that it probably came from an on-chain claim.
9866 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value),
9867 downstream_closed, downstream_node_id, downstream_funding);
9870 //TODO: Broadcast channel update for closed channels, but only after we've made a
9871 //connection or two.
9873 Ok((best_block_hash.clone(), channel_manager))
9879 use bitcoin::hashes::Hash;
9880 use bitcoin::hashes::sha256::Hash as Sha256;
9881 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
9882 use core::sync::atomic::Ordering;
9883 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
9884 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
9885 use crate::ln::ChannelId;
9886 use crate::ln::channelmanager::{inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
9887 use crate::ln::functional_test_utils::*;
9888 use crate::ln::msgs::{self, ErrorAction};
9889 use crate::ln::msgs::ChannelMessageHandler;
9890 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
9891 use crate::util::errors::APIError;
9892 use crate::util::test_utils;
9893 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
9894 use crate::sign::EntropySource;
9897 fn test_notify_limits() {
9898 // Check that a few cases which don't require the persistence of a new ChannelManager,
9899 // indeed, do not cause the persistence of a new ChannelManager.
9900 let chanmon_cfgs = create_chanmon_cfgs(3);
9901 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
9902 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
9903 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
9905 // All nodes start with a persistable update pending as `create_network` connects each node
9906 // with all other nodes to make most tests simpler.
9907 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9908 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9909 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
9911 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
9913 // We check that the channel info nodes have doesn't change too early, even though we try
9914 // to connect messages with new values
9915 chan.0.contents.fee_base_msat *= 2;
9916 chan.1.contents.fee_base_msat *= 2;
9917 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
9918 &nodes[1].node.get_our_node_id()).pop().unwrap();
9919 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
9920 &nodes[0].node.get_our_node_id()).pop().unwrap();
9922 // The first two nodes (which opened a channel) should now require fresh persistence
9923 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9924 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9925 // ... but the last node should not.
9926 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
9927 // After persisting the first two nodes they should no longer need fresh persistence.
9928 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9929 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9931 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
9932 // about the channel.
9933 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
9934 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
9935 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
9937 // The nodes which are a party to the channel should also ignore messages from unrelated
9939 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
9940 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
9941 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
9942 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
9943 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9944 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9946 // At this point the channel info given by peers should still be the same.
9947 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
9948 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
9950 // An earlier version of handle_channel_update didn't check the directionality of the
9951 // update message and would always update the local fee info, even if our peer was
9952 // (spuriously) forwarding us our own channel_update.
9953 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
9954 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
9955 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
9957 // First deliver each peers' own message, checking that the node doesn't need to be
9958 // persisted and that its channel info remains the same.
9959 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
9960 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
9961 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9962 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9963 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
9964 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
9966 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
9967 // the channel info has updated.
9968 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
9969 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
9970 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
9971 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
9972 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
9973 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
9977 fn test_keysend_dup_hash_partial_mpp() {
9978 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
9980 let chanmon_cfgs = create_chanmon_cfgs(2);
9981 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
9982 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
9983 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
9984 create_announced_chan_between_nodes(&nodes, 0, 1);
9986 // First, send a partial MPP payment.
9987 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
9988 let mut mpp_route = route.clone();
9989 mpp_route.paths.push(mpp_route.paths[0].clone());
9991 let payment_id = PaymentId([42; 32]);
9992 // Use the utility function send_payment_along_path to send the payment with MPP data which
9993 // indicates there are more HTLCs coming.
9994 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
9995 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
9996 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
9997 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
9998 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
9999 check_added_monitors!(nodes[0], 1);
10000 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10001 assert_eq!(events.len(), 1);
10002 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
10004 // Next, send a keysend payment with the same payment_hash and make sure it fails.
10005 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10006 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10007 check_added_monitors!(nodes[0], 1);
10008 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10009 assert_eq!(events.len(), 1);
10010 let ev = events.drain(..).next().unwrap();
10011 let payment_event = SendEvent::from_event(ev);
10012 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10013 check_added_monitors!(nodes[1], 0);
10014 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10015 expect_pending_htlcs_forwardable!(nodes[1]);
10016 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
10017 check_added_monitors!(nodes[1], 1);
10018 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10019 assert!(updates.update_add_htlcs.is_empty());
10020 assert!(updates.update_fulfill_htlcs.is_empty());
10021 assert_eq!(updates.update_fail_htlcs.len(), 1);
10022 assert!(updates.update_fail_malformed_htlcs.is_empty());
10023 assert!(updates.update_fee.is_none());
10024 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10025 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10026 expect_payment_failed!(nodes[0], our_payment_hash, true);
10028 // Send the second half of the original MPP payment.
10029 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
10030 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
10031 check_added_monitors!(nodes[0], 1);
10032 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10033 assert_eq!(events.len(), 1);
10034 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
10036 // Claim the full MPP payment. Note that we can't use a test utility like
10037 // claim_funds_along_route because the ordering of the messages causes the second half of the
10038 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
10039 // lightning messages manually.
10040 nodes[1].node.claim_funds(payment_preimage);
10041 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
10042 check_added_monitors!(nodes[1], 2);
10044 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10045 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
10046 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
10047 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
10048 check_added_monitors!(nodes[0], 1);
10049 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10050 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
10051 check_added_monitors!(nodes[1], 1);
10052 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10053 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
10054 check_added_monitors!(nodes[1], 1);
10055 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10056 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
10057 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
10058 check_added_monitors!(nodes[0], 1);
10059 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
10060 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
10061 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10062 check_added_monitors!(nodes[0], 1);
10063 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
10064 check_added_monitors!(nodes[1], 1);
10065 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
10066 check_added_monitors!(nodes[1], 1);
10067 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
10068 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
10069 check_added_monitors!(nodes[0], 1);
10071 // Note that successful MPP payments will generate a single PaymentSent event upon the first
10072 // path's success and a PaymentPathSuccessful event for each path's success.
10073 let events = nodes[0].node.get_and_clear_pending_events();
10074 assert_eq!(events.len(), 2);
10076 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10077 assert_eq!(payment_id, *actual_payment_id);
10078 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10079 assert_eq!(route.paths[0], *path);
10081 _ => panic!("Unexpected event"),
10084 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
10085 assert_eq!(payment_id, *actual_payment_id);
10086 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
10087 assert_eq!(route.paths[0], *path);
10089 _ => panic!("Unexpected event"),
10094 fn test_keysend_dup_payment_hash() {
10095 do_test_keysend_dup_payment_hash(false);
10096 do_test_keysend_dup_payment_hash(true);
10099 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
10100 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
10101 // outbound regular payment fails as expected.
10102 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
10103 // fails as expected.
10104 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
10105 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
10106 // reject MPP keysend payments, since in this case where the payment has no payment
10107 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
10108 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
10109 // payment secrets and reject otherwise.
10110 let chanmon_cfgs = create_chanmon_cfgs(2);
10111 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10112 let mut mpp_keysend_cfg = test_default_channel_config();
10113 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
10114 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
10115 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10116 create_announced_chan_between_nodes(&nodes, 0, 1);
10117 let scorer = test_utils::TestScorer::new();
10118 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10120 // To start (1), send a regular payment but don't claim it.
10121 let expected_route = [&nodes[1]];
10122 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
10124 // Next, attempt a keysend payment and make sure it fails.
10125 let route_params = RouteParameters::from_payment_params_and_value(
10126 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
10127 TEST_FINAL_CLTV, false), 100_000);
10128 let route = find_route(
10129 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10130 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10132 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10133 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10134 check_added_monitors!(nodes[0], 1);
10135 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10136 assert_eq!(events.len(), 1);
10137 let ev = events.drain(..).next().unwrap();
10138 let payment_event = SendEvent::from_event(ev);
10139 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10140 check_added_monitors!(nodes[1], 0);
10141 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10142 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
10143 // fails), the second will process the resulting failure and fail the HTLC backward
10144 expect_pending_htlcs_forwardable!(nodes[1]);
10145 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10146 check_added_monitors!(nodes[1], 1);
10147 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10148 assert!(updates.update_add_htlcs.is_empty());
10149 assert!(updates.update_fulfill_htlcs.is_empty());
10150 assert_eq!(updates.update_fail_htlcs.len(), 1);
10151 assert!(updates.update_fail_malformed_htlcs.is_empty());
10152 assert!(updates.update_fee.is_none());
10153 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10154 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10155 expect_payment_failed!(nodes[0], payment_hash, true);
10157 // Finally, claim the original payment.
10158 claim_payment(&nodes[0], &expected_route, payment_preimage);
10160 // To start (2), send a keysend payment but don't claim it.
10161 let payment_preimage = PaymentPreimage([42; 32]);
10162 let route = find_route(
10163 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10164 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10166 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10167 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
10168 check_added_monitors!(nodes[0], 1);
10169 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10170 assert_eq!(events.len(), 1);
10171 let event = events.pop().unwrap();
10172 let path = vec![&nodes[1]];
10173 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10175 // Next, attempt a regular payment and make sure it fails.
10176 let payment_secret = PaymentSecret([43; 32]);
10177 nodes[0].node.send_payment_with_route(&route, payment_hash,
10178 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
10179 check_added_monitors!(nodes[0], 1);
10180 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10181 assert_eq!(events.len(), 1);
10182 let ev = events.drain(..).next().unwrap();
10183 let payment_event = SendEvent::from_event(ev);
10184 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10185 check_added_monitors!(nodes[1], 0);
10186 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10187 expect_pending_htlcs_forwardable!(nodes[1]);
10188 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10189 check_added_monitors!(nodes[1], 1);
10190 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10191 assert!(updates.update_add_htlcs.is_empty());
10192 assert!(updates.update_fulfill_htlcs.is_empty());
10193 assert_eq!(updates.update_fail_htlcs.len(), 1);
10194 assert!(updates.update_fail_malformed_htlcs.is_empty());
10195 assert!(updates.update_fee.is_none());
10196 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10197 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10198 expect_payment_failed!(nodes[0], payment_hash, true);
10200 // Finally, succeed the keysend payment.
10201 claim_payment(&nodes[0], &expected_route, payment_preimage);
10203 // To start (3), send a keysend payment but don't claim it.
10204 let payment_id_1 = PaymentId([44; 32]);
10205 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10206 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
10207 check_added_monitors!(nodes[0], 1);
10208 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10209 assert_eq!(events.len(), 1);
10210 let event = events.pop().unwrap();
10211 let path = vec![&nodes[1]];
10212 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
10214 // Next, attempt a keysend payment and make sure it fails.
10215 let route_params = RouteParameters::from_payment_params_and_value(
10216 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
10219 let route = find_route(
10220 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
10221 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10223 let payment_id_2 = PaymentId([45; 32]);
10224 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
10225 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
10226 check_added_monitors!(nodes[0], 1);
10227 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
10228 assert_eq!(events.len(), 1);
10229 let ev = events.drain(..).next().unwrap();
10230 let payment_event = SendEvent::from_event(ev);
10231 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
10232 check_added_monitors!(nodes[1], 0);
10233 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
10234 expect_pending_htlcs_forwardable!(nodes[1]);
10235 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
10236 check_added_monitors!(nodes[1], 1);
10237 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
10238 assert!(updates.update_add_htlcs.is_empty());
10239 assert!(updates.update_fulfill_htlcs.is_empty());
10240 assert_eq!(updates.update_fail_htlcs.len(), 1);
10241 assert!(updates.update_fail_malformed_htlcs.is_empty());
10242 assert!(updates.update_fee.is_none());
10243 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
10244 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
10245 expect_payment_failed!(nodes[0], payment_hash, true);
10247 // Finally, claim the original payment.
10248 claim_payment(&nodes[0], &expected_route, payment_preimage);
10252 fn test_keysend_hash_mismatch() {
10253 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
10254 // preimage doesn't match the msg's payment hash.
10255 let chanmon_cfgs = create_chanmon_cfgs(2);
10256 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10257 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10258 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10260 let payer_pubkey = nodes[0].node.get_our_node_id();
10261 let payee_pubkey = nodes[1].node.get_our_node_id();
10263 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10264 let route_params = RouteParameters::from_payment_params_and_value(
10265 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10266 let network_graph = nodes[0].network_graph.clone();
10267 let first_hops = nodes[0].node.list_usable_channels();
10268 let scorer = test_utils::TestScorer::new();
10269 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10270 let route = find_route(
10271 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10272 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10275 let test_preimage = PaymentPreimage([42; 32]);
10276 let mismatch_payment_hash = PaymentHash([43; 32]);
10277 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
10278 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
10279 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
10280 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
10281 check_added_monitors!(nodes[0], 1);
10283 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10284 assert_eq!(updates.update_add_htlcs.len(), 1);
10285 assert!(updates.update_fulfill_htlcs.is_empty());
10286 assert!(updates.update_fail_htlcs.is_empty());
10287 assert!(updates.update_fail_malformed_htlcs.is_empty());
10288 assert!(updates.update_fee.is_none());
10289 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10291 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
10295 fn test_keysend_msg_with_secret_err() {
10296 // Test that we error as expected if we receive a keysend payment that includes a payment
10297 // secret when we don't support MPP keysend.
10298 let mut reject_mpp_keysend_cfg = test_default_channel_config();
10299 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
10300 let chanmon_cfgs = create_chanmon_cfgs(2);
10301 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10302 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
10303 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10305 let payer_pubkey = nodes[0].node.get_our_node_id();
10306 let payee_pubkey = nodes[1].node.get_our_node_id();
10308 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
10309 let route_params = RouteParameters::from_payment_params_and_value(
10310 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
10311 let network_graph = nodes[0].network_graph.clone();
10312 let first_hops = nodes[0].node.list_usable_channels();
10313 let scorer = test_utils::TestScorer::new();
10314 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
10315 let route = find_route(
10316 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
10317 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
10320 let test_preimage = PaymentPreimage([42; 32]);
10321 let test_secret = PaymentSecret([43; 32]);
10322 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).into_inner());
10323 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
10324 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
10325 nodes[0].node.test_send_payment_internal(&route, payment_hash,
10326 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
10327 PaymentId(payment_hash.0), None, session_privs).unwrap();
10328 check_added_monitors!(nodes[0], 1);
10330 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
10331 assert_eq!(updates.update_add_htlcs.len(), 1);
10332 assert!(updates.update_fulfill_htlcs.is_empty());
10333 assert!(updates.update_fail_htlcs.is_empty());
10334 assert!(updates.update_fail_malformed_htlcs.is_empty());
10335 assert!(updates.update_fee.is_none());
10336 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
10338 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
10342 fn test_multi_hop_missing_secret() {
10343 let chanmon_cfgs = create_chanmon_cfgs(4);
10344 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
10345 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
10346 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
10348 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
10349 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
10350 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
10351 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
10353 // Marshall an MPP route.
10354 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
10355 let path = route.paths[0].clone();
10356 route.paths.push(path);
10357 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
10358 route.paths[0].hops[0].short_channel_id = chan_1_id;
10359 route.paths[0].hops[1].short_channel_id = chan_3_id;
10360 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
10361 route.paths[1].hops[0].short_channel_id = chan_2_id;
10362 route.paths[1].hops[1].short_channel_id = chan_4_id;
10364 match nodes[0].node.send_payment_with_route(&route, payment_hash,
10365 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
10367 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
10368 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
10370 _ => panic!("unexpected error")
10375 fn test_drop_disconnected_peers_when_removing_channels() {
10376 let chanmon_cfgs = create_chanmon_cfgs(2);
10377 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10378 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10379 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10381 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
10383 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
10384 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10386 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
10387 check_closed_broadcast!(nodes[0], true);
10388 check_added_monitors!(nodes[0], 1);
10389 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
10392 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
10393 // disconnected and the channel between has been force closed.
10394 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
10395 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
10396 assert_eq!(nodes_0_per_peer_state.len(), 1);
10397 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
10400 nodes[0].node.timer_tick_occurred();
10403 // Assert that nodes[1] has now been removed.
10404 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
10409 fn bad_inbound_payment_hash() {
10410 // Add coverage for checking that a user-provided payment hash matches the payment secret.
10411 let chanmon_cfgs = create_chanmon_cfgs(2);
10412 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10413 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10414 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10416 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
10417 let payment_data = msgs::FinalOnionHopData {
10419 total_msat: 100_000,
10422 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
10423 // payment verification fails as expected.
10424 let mut bad_payment_hash = payment_hash.clone();
10425 bad_payment_hash.0[0] += 1;
10426 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
10427 Ok(_) => panic!("Unexpected ok"),
10429 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
10433 // Check that using the original payment hash succeeds.
10434 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
10438 fn test_id_to_peer_coverage() {
10439 // Test that the `ChannelManager:id_to_peer` contains channels which have been assigned
10440 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
10441 // the channel is successfully closed.
10442 let chanmon_cfgs = create_chanmon_cfgs(2);
10443 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10444 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10445 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10447 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None).unwrap();
10448 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10449 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
10450 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10451 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10453 let (temporary_channel_id, tx, _funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
10454 let channel_id = ChannelId::from_bytes(tx.txid().into_inner());
10456 // Ensure that the `id_to_peer` map is empty until either party has received the
10457 // funding transaction, and have the real `channel_id`.
10458 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10459 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10462 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
10464 // Assert that `nodes[0]`'s `id_to_peer` map is populated with the channel as soon as
10465 // as it has the funding transaction.
10466 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10467 assert_eq!(nodes_0_lock.len(), 1);
10468 assert!(nodes_0_lock.contains_key(&channel_id));
10471 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10473 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10475 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10477 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10478 assert_eq!(nodes_0_lock.len(), 1);
10479 assert!(nodes_0_lock.contains_key(&channel_id));
10481 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10484 // Assert that `nodes[1]`'s `id_to_peer` map is populated with the channel as soon as
10485 // as it has the funding transaction.
10486 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10487 assert_eq!(nodes_1_lock.len(), 1);
10488 assert!(nodes_1_lock.contains_key(&channel_id));
10490 check_added_monitors!(nodes[1], 1);
10491 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10492 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10493 check_added_monitors!(nodes[0], 1);
10494 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10495 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
10496 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
10497 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
10499 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
10500 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
10501 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
10502 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
10504 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
10505 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
10507 // Assert that the channel is kept in the `id_to_peer` map for both nodes until the
10508 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
10509 // fee for the closing transaction has been negotiated and the parties has the other
10510 // party's signature for the fee negotiated closing transaction.)
10511 let nodes_0_lock = nodes[0].node.id_to_peer.lock().unwrap();
10512 assert_eq!(nodes_0_lock.len(), 1);
10513 assert!(nodes_0_lock.contains_key(&channel_id));
10517 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
10518 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
10519 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
10520 // kept in the `nodes[1]`'s `id_to_peer` map.
10521 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10522 assert_eq!(nodes_1_lock.len(), 1);
10523 assert!(nodes_1_lock.contains_key(&channel_id));
10526 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
10528 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
10529 // therefore has all it needs to fully close the channel (both signatures for the
10530 // closing transaction).
10531 // Assert that the channel is removed from `nodes[0]`'s `id_to_peer` map as it can be
10532 // fully closed by `nodes[0]`.
10533 assert_eq!(nodes[0].node.id_to_peer.lock().unwrap().len(), 0);
10535 // Assert that the channel is still in `nodes[1]`'s `id_to_peer` map, as `nodes[1]`
10536 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
10537 let nodes_1_lock = nodes[1].node.id_to_peer.lock().unwrap();
10538 assert_eq!(nodes_1_lock.len(), 1);
10539 assert!(nodes_1_lock.contains_key(&channel_id));
10542 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
10544 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
10546 // Assert that the channel has now been removed from both parties `id_to_peer` map once
10547 // they both have everything required to fully close the channel.
10548 assert_eq!(nodes[1].node.id_to_peer.lock().unwrap().len(), 0);
10550 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
10552 check_closed_event!(nodes[0], 1, ClosureReason::CooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
10553 check_closed_event!(nodes[1], 1, ClosureReason::CooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
10556 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10557 let expected_message = format!("Not connected to node: {}", expected_public_key);
10558 check_api_error_message(expected_message, res_err)
10561 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
10562 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
10563 check_api_error_message(expected_message, res_err)
10566 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
10568 Err(APIError::APIMisuseError { err }) => {
10569 assert_eq!(err, expected_err_message);
10571 Err(APIError::ChannelUnavailable { err }) => {
10572 assert_eq!(err, expected_err_message);
10574 Ok(_) => panic!("Unexpected Ok"),
10575 Err(_) => panic!("Unexpected Error"),
10580 fn test_api_calls_with_unkown_counterparty_node() {
10581 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
10582 // expected if the `counterparty_node_id` is an unkown peer in the
10583 // `ChannelManager::per_peer_state` map.
10584 let chanmon_cfg = create_chanmon_cfgs(2);
10585 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10586 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
10587 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10590 let channel_id = ChannelId::from_bytes([4; 32]);
10591 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
10592 let intercept_id = InterceptId([0; 32]);
10594 // Test the API functions.
10595 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None), unkown_public_key);
10597 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
10599 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
10601 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
10603 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
10605 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
10607 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
10611 fn test_connection_limiting() {
10612 // Test that we limit un-channel'd peers and un-funded channels properly.
10613 let chanmon_cfgs = create_chanmon_cfgs(2);
10614 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10615 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10616 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10618 // Note that create_network connects the nodes together for us
10620 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10621 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10623 let mut funding_tx = None;
10624 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10625 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10626 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10629 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
10630 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
10631 funding_tx = Some(tx.clone());
10632 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
10633 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
10635 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
10636 check_added_monitors!(nodes[1], 1);
10637 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
10639 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
10641 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
10642 check_added_monitors!(nodes[0], 1);
10643 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
10645 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10648 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
10649 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10650 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10651 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10652 open_channel_msg.temporary_channel_id);
10654 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
10655 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
10657 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
10658 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
10659 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10660 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10661 peer_pks.push(random_pk);
10662 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10663 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10666 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10667 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10668 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10669 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10670 }, true).unwrap_err();
10672 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
10673 // them if we have too many un-channel'd peers.
10674 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10675 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
10676 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
10677 for ev in chan_closed_events {
10678 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
10680 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10681 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10683 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10684 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10685 }, true).unwrap_err();
10687 // but of course if the connection is outbound its allowed...
10688 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10689 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10690 }, false).unwrap();
10691 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
10693 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
10694 // Even though we accept one more connection from new peers, we won't actually let them
10696 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
10697 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10698 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
10699 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
10700 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10702 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10703 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10704 open_channel_msg.temporary_channel_id);
10706 // Of course, however, outbound channels are always allowed
10707 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None).unwrap();
10708 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
10710 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
10711 // "protected" and can connect again.
10712 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
10713 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
10714 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10716 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
10718 // Further, because the first channel was funded, we can open another channel with
10720 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10721 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10725 fn test_outbound_chans_unlimited() {
10726 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
10727 let chanmon_cfgs = create_chanmon_cfgs(2);
10728 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10729 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
10730 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10732 // Note that create_network connects the nodes together for us
10734 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10735 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10737 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
10738 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10739 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10740 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10743 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
10745 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10746 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10747 open_channel_msg.temporary_channel_id);
10749 // but we can still open an outbound channel.
10750 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10751 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
10753 // but even with such an outbound channel, additional inbound channels will still fail.
10754 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10755 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
10756 open_channel_msg.temporary_channel_id);
10760 fn test_0conf_limiting() {
10761 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10762 // flag set and (sometimes) accept channels as 0conf.
10763 let chanmon_cfgs = create_chanmon_cfgs(2);
10764 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10765 let mut settings = test_default_channel_config();
10766 settings.manually_accept_inbound_channels = true;
10767 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
10768 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10770 // Note that create_network connects the nodes together for us
10772 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10773 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10775 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
10776 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
10777 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10778 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10779 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
10780 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10783 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
10784 let events = nodes[1].node.get_and_clear_pending_events();
10786 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10787 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
10789 _ => panic!("Unexpected event"),
10791 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
10792 open_channel_msg.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
10795 // If we try to accept a channel from another peer non-0conf it will fail.
10796 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
10797 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
10798 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
10799 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
10801 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10802 let events = nodes[1].node.get_and_clear_pending_events();
10804 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10805 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
10806 Err(APIError::APIMisuseError { err }) =>
10807 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
10811 _ => panic!("Unexpected event"),
10813 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
10814 open_channel_msg.temporary_channel_id);
10816 // ...however if we accept the same channel 0conf it should work just fine.
10817 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
10818 let events = nodes[1].node.get_and_clear_pending_events();
10820 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10821 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
10823 _ => panic!("Unexpected event"),
10825 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
10829 fn reject_excessively_underpaying_htlcs() {
10830 let chanmon_cfg = create_chanmon_cfgs(1);
10831 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
10832 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
10833 let node = create_network(1, &node_cfg, &node_chanmgr);
10834 let sender_intended_amt_msat = 100;
10835 let extra_fee_msat = 10;
10836 let hop_data = msgs::InboundOnionPayload::Receive {
10838 outgoing_cltv_value: 42,
10839 payment_metadata: None,
10840 keysend_preimage: None,
10841 payment_data: Some(msgs::FinalOnionHopData {
10842 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
10844 custom_tlvs: Vec::new(),
10846 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
10847 // intended amount, we fail the payment.
10848 if let Err(crate::ln::channelmanager::InboundOnionErr { err_code, .. }) =
10849 node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
10850 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat))
10852 assert_eq!(err_code, 19);
10853 } else { panic!(); }
10855 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
10856 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
10858 outgoing_cltv_value: 42,
10859 payment_metadata: None,
10860 keysend_preimage: None,
10861 payment_data: Some(msgs::FinalOnionHopData {
10862 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
10864 custom_tlvs: Vec::new(),
10866 assert!(node[0].node.construct_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
10867 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat)).is_ok());
10871 fn test_inbound_anchors_manual_acceptance() {
10872 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
10873 // flag set and (sometimes) accept channels as 0conf.
10874 let mut anchors_cfg = test_default_channel_config();
10875 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
10877 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
10878 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
10880 let chanmon_cfgs = create_chanmon_cfgs(3);
10881 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
10882 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
10883 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
10884 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
10886 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None).unwrap();
10887 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10889 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10890 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
10891 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
10892 match &msg_events[0] {
10893 MessageSendEvent::HandleError { node_id, action } => {
10894 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
10896 ErrorAction::SendErrorMessage { msg } =>
10897 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
10898 _ => panic!("Unexpected error action"),
10901 _ => panic!("Unexpected event"),
10904 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10905 let events = nodes[2].node.get_and_clear_pending_events();
10907 Event::OpenChannelRequest { temporary_channel_id, .. } =>
10908 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
10909 _ => panic!("Unexpected event"),
10911 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
10915 fn test_anchors_zero_fee_htlc_tx_fallback() {
10916 // Tests that if both nodes support anchors, but the remote node does not want to accept
10917 // anchor channels at the moment, an error it sent to the local node such that it can retry
10918 // the channel without the anchors feature.
10919 let chanmon_cfgs = create_chanmon_cfgs(2);
10920 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
10921 let mut anchors_config = test_default_channel_config();
10922 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
10923 anchors_config.manually_accept_inbound_channels = true;
10924 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
10925 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
10927 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None).unwrap();
10928 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10929 assert!(open_channel_msg.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
10931 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
10932 let events = nodes[1].node.get_and_clear_pending_events();
10934 Event::OpenChannelRequest { temporary_channel_id, .. } => {
10935 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
10937 _ => panic!("Unexpected event"),
10940 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
10941 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
10943 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
10944 assert!(!open_channel_msg.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
10946 // Since nodes[1] should not have accepted the channel, it should
10947 // not have generated any events.
10948 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
10952 fn test_update_channel_config() {
10953 let chanmon_cfg = create_chanmon_cfgs(2);
10954 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
10955 let mut user_config = test_default_channel_config();
10956 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
10957 let nodes = create_network(2, &node_cfg, &node_chanmgr);
10958 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
10959 let channel = &nodes[0].node.list_channels()[0];
10961 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
10962 let events = nodes[0].node.get_and_clear_pending_msg_events();
10963 assert_eq!(events.len(), 0);
10965 user_config.channel_config.forwarding_fee_base_msat += 10;
10966 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
10967 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
10968 let events = nodes[0].node.get_and_clear_pending_msg_events();
10969 assert_eq!(events.len(), 1);
10971 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10972 _ => panic!("expected BroadcastChannelUpdate event"),
10975 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
10976 let events = nodes[0].node.get_and_clear_pending_msg_events();
10977 assert_eq!(events.len(), 0);
10979 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
10980 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
10981 cltv_expiry_delta: Some(new_cltv_expiry_delta),
10982 ..Default::default()
10984 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
10985 let events = nodes[0].node.get_and_clear_pending_msg_events();
10986 assert_eq!(events.len(), 1);
10988 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
10989 _ => panic!("expected BroadcastChannelUpdate event"),
10992 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
10993 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
10994 forwarding_fee_proportional_millionths: Some(new_fee),
10995 ..Default::default()
10997 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
10998 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
10999 let events = nodes[0].node.get_and_clear_pending_msg_events();
11000 assert_eq!(events.len(), 1);
11002 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
11003 _ => panic!("expected BroadcastChannelUpdate event"),
11006 // If we provide a channel_id not associated with the peer, we should get an error and no updates
11007 // should be applied to ensure update atomicity as specified in the API docs.
11008 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
11009 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
11010 let new_fee = current_fee + 100;
11013 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
11014 forwarding_fee_proportional_millionths: Some(new_fee),
11015 ..Default::default()
11017 Err(APIError::ChannelUnavailable { err: _ }),
11020 // Check that the fee hasn't changed for the channel that exists.
11021 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
11022 let events = nodes[0].node.get_and_clear_pending_msg_events();
11023 assert_eq!(events.len(), 0);
11027 fn test_payment_display() {
11028 let payment_id = PaymentId([42; 32]);
11029 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11030 let payment_hash = PaymentHash([42; 32]);
11031 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11032 let payment_preimage = PaymentPreimage([42; 32]);
11033 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
11039 use crate::chain::Listen;
11040 use crate::chain::chainmonitor::{ChainMonitor, Persist};
11041 use crate::sign::{KeysManager, InMemorySigner};
11042 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
11043 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
11044 use crate::ln::functional_test_utils::*;
11045 use crate::ln::msgs::{ChannelMessageHandler, Init};
11046 use crate::routing::gossip::NetworkGraph;
11047 use crate::routing::router::{PaymentParameters, RouteParameters};
11048 use crate::util::test_utils;
11049 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
11051 use bitcoin::hashes::Hash;
11052 use bitcoin::hashes::sha256::Hash as Sha256;
11053 use bitcoin::{Block, BlockHeader, PackedLockTime, Transaction, TxMerkleNode, TxOut};
11055 use crate::sync::{Arc, Mutex, RwLock};
11057 use criterion::Criterion;
11059 type Manager<'a, P> = ChannelManager<
11060 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
11061 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
11062 &'a test_utils::TestLogger, &'a P>,
11063 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
11064 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
11065 &'a test_utils::TestLogger>;
11067 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
11068 node: &'node_cfg Manager<'chan_mon_cfg, P>,
11070 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
11071 type CM = Manager<'chan_mon_cfg, P>;
11073 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
11075 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
11078 pub fn bench_sends(bench: &mut Criterion) {
11079 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
11082 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
11083 // Do a simple benchmark of sending a payment back and forth between two nodes.
11084 // Note that this is unrealistic as each payment send will require at least two fsync
11086 let network = bitcoin::Network::Testnet;
11087 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
11089 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
11090 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
11091 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
11092 let scorer = RwLock::new(test_utils::TestScorer::new());
11093 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &scorer);
11095 let mut config: UserConfig = Default::default();
11096 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
11097 config.channel_handshake_config.minimum_depth = 1;
11099 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
11100 let seed_a = [1u8; 32];
11101 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
11102 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
11104 best_block: BestBlock::from_network(network),
11105 }, genesis_block.header.time);
11106 let node_a_holder = ANodeHolder { node: &node_a };
11108 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
11109 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
11110 let seed_b = [2u8; 32];
11111 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
11112 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
11114 best_block: BestBlock::from_network(network),
11115 }, genesis_block.header.time);
11116 let node_b_holder = ANodeHolder { node: &node_b };
11118 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
11119 features: node_b.init_features(), networks: None, remote_network_address: None
11121 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
11122 features: node_a.init_features(), networks: None, remote_network_address: None
11123 }, false).unwrap();
11124 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
11125 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
11126 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
11129 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
11130 tx = Transaction { version: 2, lock_time: PackedLockTime::ZERO, input: Vec::new(), output: vec![TxOut {
11131 value: 8_000_000, script_pubkey: output_script,
11133 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
11134 } else { panic!(); }
11136 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
11137 let events_b = node_b.get_and_clear_pending_events();
11138 assert_eq!(events_b.len(), 1);
11139 match events_b[0] {
11140 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11141 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11143 _ => panic!("Unexpected event"),
11146 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
11147 let events_a = node_a.get_and_clear_pending_events();
11148 assert_eq!(events_a.len(), 1);
11149 match events_a[0] {
11150 Event::ChannelPending{ ref counterparty_node_id, .. } => {
11151 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11153 _ => panic!("Unexpected event"),
11156 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
11158 let block = create_dummy_block(BestBlock::from_network(network).block_hash(), 42, vec![tx]);
11159 Listen::block_connected(&node_a, &block, 1);
11160 Listen::block_connected(&node_b, &block, 1);
11162 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
11163 let msg_events = node_a.get_and_clear_pending_msg_events();
11164 assert_eq!(msg_events.len(), 2);
11165 match msg_events[0] {
11166 MessageSendEvent::SendChannelReady { ref msg, .. } => {
11167 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
11168 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
11172 match msg_events[1] {
11173 MessageSendEvent::SendChannelUpdate { .. } => {},
11177 let events_a = node_a.get_and_clear_pending_events();
11178 assert_eq!(events_a.len(), 1);
11179 match events_a[0] {
11180 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11181 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
11183 _ => panic!("Unexpected event"),
11186 let events_b = node_b.get_and_clear_pending_events();
11187 assert_eq!(events_b.len(), 1);
11188 match events_b[0] {
11189 Event::ChannelReady{ ref counterparty_node_id, .. } => {
11190 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
11192 _ => panic!("Unexpected event"),
11195 let mut payment_count: u64 = 0;
11196 macro_rules! send_payment {
11197 ($node_a: expr, $node_b: expr) => {
11198 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
11199 .with_bolt11_features($node_b.invoice_features()).unwrap();
11200 let mut payment_preimage = PaymentPreimage([0; 32]);
11201 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
11202 payment_count += 1;
11203 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
11204 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
11206 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
11207 PaymentId(payment_hash.0),
11208 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
11209 Retry::Attempts(0)).unwrap();
11210 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
11211 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
11212 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
11213 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
11214 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
11215 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
11216 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
11218 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
11219 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
11220 $node_b.claim_funds(payment_preimage);
11221 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
11223 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
11224 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
11225 assert_eq!(node_id, $node_a.get_our_node_id());
11226 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
11227 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
11229 _ => panic!("Failed to generate claim event"),
11232 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
11233 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
11234 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
11235 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
11237 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
11241 bench.bench_function(bench_name, |b| b.iter(|| {
11242 send_payment!(node_a, node_b);
11243 send_payment!(node_b, node_a);