1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{Bolt12OfferContext, Bolt12RefundContext, PaymentConstraints, PaymentContext, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::inbound_payment;
46 use crate::ln::types::{ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
47 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
48 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
49 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
50 #[cfg(any(feature = "_test_utils", test))]
51 use crate::ln::features::Bolt11InvoiceFeatures;
52 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
53 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
55 use crate::ln::onion_utils;
56 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
57 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
59 use crate::ln::outbound_payment;
60 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
61 use crate::ln::wire::Encode;
62 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
63 use crate::offers::invoice_error::InvoiceError;
64 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
65 use crate::offers::offer::{Offer, OfferBuilder};
66 use crate::offers::parse::Bolt12SemanticError;
67 use crate::offers::refund::{Refund, RefundBuilder};
68 use crate::onion_message::messenger::{new_pending_onion_message, Destination, MessageRouter, PendingOnionMessage, Responder, ResponseInstruction};
69 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
70 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
71 use crate::sign::ecdsa::EcdsaChannelSigner;
72 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
73 use crate::util::wakers::{Future, Notifier};
74 use crate::util::scid_utils::fake_scid;
75 use crate::util::string::UntrustedString;
76 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
77 use crate::util::logger::{Level, Logger, WithContext};
78 use crate::util::errors::APIError;
80 #[cfg(not(c_bindings))]
82 crate::offers::offer::DerivedMetadata,
83 crate::routing::router::DefaultRouter,
84 crate::routing::gossip::NetworkGraph,
85 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
86 crate::sign::KeysManager,
90 crate::offers::offer::OfferWithDerivedMetadataBuilder,
91 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
94 use alloc::collections::{btree_map, BTreeMap};
97 use crate::prelude::*;
99 use core::cell::RefCell;
101 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
102 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
103 use core::time::Duration;
104 use core::ops::Deref;
106 // Re-export this for use in the public API.
107 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
108 use crate::ln::script::ShutdownScript;
110 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
112 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
113 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
114 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
116 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
117 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
118 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
119 // before we forward it.
121 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
122 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
123 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
124 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
125 // our payment, which we can use to decode errors or inform the user that the payment was sent.
127 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
128 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
129 #[cfg_attr(test, derive(Debug, PartialEq))]
130 pub enum PendingHTLCRouting {
131 /// An HTLC which should be forwarded on to another node.
133 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
134 /// do with the HTLC.
135 onion_packet: msgs::OnionPacket,
136 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
138 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
139 /// to the receiving node, such as one returned from
140 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
141 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
142 /// Set if this HTLC is being forwarded within a blinded path.
143 blinded: Option<BlindedForward>,
145 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
147 /// Note that at this point, we have not checked that the invoice being paid was actually
148 /// generated by us, but rather it's claiming to pay an invoice of ours.
150 /// Information about the amount the sender intended to pay and (potential) proof that this
151 /// is a payment for an invoice we generated. This proof of payment is is also used for
152 /// linking MPP parts of a larger payment.
153 payment_data: msgs::FinalOnionHopData,
154 /// Additional data which we (allegedly) instructed the sender to include in the onion.
156 /// For HTLCs received by LDK, this will ultimately be exposed in
157 /// [`Event::PaymentClaimable::onion_fields`] as
158 /// [`RecipientOnionFields::payment_metadata`].
159 payment_metadata: Option<Vec<u8>>,
160 /// The context of the payment included by the recipient in a blinded path, or `None` if a
161 /// blinded path was not used.
163 /// Used in part to determine the [`events::PaymentPurpose`].
164 payment_context: Option<PaymentContext>,
165 /// CLTV expiry of the received HTLC.
167 /// Used to track when we should expire pending HTLCs that go unclaimed.
168 incoming_cltv_expiry: u32,
169 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
170 /// provide the onion shared secret used to decrypt the next level of forwarding
172 phantom_shared_secret: Option<[u8; 32]>,
173 /// Custom TLVs which were set by the sender.
175 /// For HTLCs received by LDK, this will ultimately be exposed in
176 /// [`Event::PaymentClaimable::onion_fields`] as
177 /// [`RecipientOnionFields::custom_tlvs`].
178 custom_tlvs: Vec<(u64, Vec<u8>)>,
179 /// Set if this HTLC is the final hop in a multi-hop blinded path.
180 requires_blinded_error: bool,
182 /// The onion indicates that this is for payment to us but which contains the preimage for
183 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
184 /// "keysend" or "spontaneous" payment).
186 /// Information about the amount the sender intended to pay and possibly a token to
187 /// associate MPP parts of a larger payment.
189 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
190 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
191 payment_data: Option<msgs::FinalOnionHopData>,
192 /// Preimage for this onion payment. This preimage is provided by the sender and will be
193 /// used to settle the spontaneous payment.
194 payment_preimage: PaymentPreimage,
195 /// Additional data which we (allegedly) instructed the sender to include in the onion.
197 /// For HTLCs received by LDK, this will ultimately bubble back up as
198 /// [`RecipientOnionFields::payment_metadata`].
199 payment_metadata: Option<Vec<u8>>,
200 /// CLTV expiry of the received HTLC.
202 /// Used to track when we should expire pending HTLCs that go unclaimed.
203 incoming_cltv_expiry: u32,
204 /// Custom TLVs which were set by the sender.
206 /// For HTLCs received by LDK, these will ultimately bubble back up as
207 /// [`RecipientOnionFields::custom_tlvs`].
208 custom_tlvs: Vec<(u64, Vec<u8>)>,
209 /// Set if this HTLC is the final hop in a multi-hop blinded path.
210 requires_blinded_error: bool,
214 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
215 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
216 pub struct BlindedForward {
217 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
218 /// onion payload if we're the introduction node. Useful for calculating the next hop's
219 /// [`msgs::UpdateAddHTLC::blinding_point`].
220 pub inbound_blinding_point: PublicKey,
221 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
222 /// the introduction node.
223 pub failure: BlindedFailure,
226 impl PendingHTLCRouting {
227 // Used to override the onion failure code and data if the HTLC is blinded.
228 fn blinded_failure(&self) -> Option<BlindedFailure> {
230 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
231 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
232 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
238 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
240 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
241 #[cfg_attr(test, derive(Debug, PartialEq))]
242 pub struct PendingHTLCInfo {
243 /// Further routing details based on whether the HTLC is being forwarded or received.
244 pub routing: PendingHTLCRouting,
245 /// The onion shared secret we build with the sender used to decrypt the onion.
247 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
248 pub incoming_shared_secret: [u8; 32],
249 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
250 pub payment_hash: PaymentHash,
251 /// Amount received in the incoming HTLC.
253 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
255 pub incoming_amt_msat: Option<u64>,
256 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
257 /// intended for us to receive for received payments.
259 /// If the received amount is less than this for received payments, an intermediary hop has
260 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
261 /// it along another path).
263 /// Because nodes can take less than their required fees, and because senders may wish to
264 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
265 /// received payments. In such cases, recipients must handle this HTLC as if it had received
266 /// [`Self::outgoing_amt_msat`].
267 pub outgoing_amt_msat: u64,
268 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
269 /// should have been set on the received HTLC for received payments).
270 pub outgoing_cltv_value: u32,
271 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
273 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
276 /// If this is a received payment, this is the fee that our counterparty took.
278 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
280 pub skimmed_fee_msat: Option<u64>,
283 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
284 pub(super) enum HTLCFailureMsg {
285 Relay(msgs::UpdateFailHTLC),
286 Malformed(msgs::UpdateFailMalformedHTLC),
289 /// Stores whether we can't forward an HTLC or relevant forwarding info
290 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
291 pub(super) enum PendingHTLCStatus {
292 Forward(PendingHTLCInfo),
293 Fail(HTLCFailureMsg),
296 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
297 pub(super) struct PendingAddHTLCInfo {
298 pub(super) forward_info: PendingHTLCInfo,
300 // These fields are produced in `forward_htlcs()` and consumed in
301 // `process_pending_htlc_forwards()` for constructing the
302 // `HTLCSource::PreviousHopData` for failed and forwarded
305 // Note that this may be an outbound SCID alias for the associated channel.
306 prev_short_channel_id: u64,
308 prev_channel_id: ChannelId,
309 prev_funding_outpoint: OutPoint,
310 prev_user_channel_id: u128,
313 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
314 pub(super) enum HTLCForwardInfo {
315 AddHTLC(PendingAddHTLCInfo),
318 err_packet: msgs::OnionErrorPacket,
323 sha256_of_onion: [u8; 32],
327 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
328 /// which determines the failure message that should be used.
329 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
330 pub enum BlindedFailure {
331 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
332 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
333 FromIntroductionNode,
334 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
335 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
339 /// Tracks the inbound corresponding to an outbound HTLC
340 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
341 pub(crate) struct HTLCPreviousHopData {
342 // Note that this may be an outbound SCID alias for the associated channel.
343 short_channel_id: u64,
344 user_channel_id: Option<u128>,
346 incoming_packet_shared_secret: [u8; 32],
347 phantom_shared_secret: Option<[u8; 32]>,
348 blinded_failure: Option<BlindedFailure>,
349 channel_id: ChannelId,
351 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
352 // channel with a preimage provided by the forward channel.
357 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
359 /// This is only here for backwards-compatibility in serialization, in the future it can be
360 /// removed, breaking clients running 0.0.106 and earlier.
361 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
363 /// Contains the payer-provided preimage.
364 Spontaneous(PaymentPreimage),
367 /// HTLCs that are to us and can be failed/claimed by the user
368 struct ClaimableHTLC {
369 prev_hop: HTLCPreviousHopData,
371 /// The amount (in msats) of this MPP part
373 /// The amount (in msats) that the sender intended to be sent in this MPP
374 /// part (used for validating total MPP amount)
375 sender_intended_value: u64,
376 onion_payload: OnionPayload,
378 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
379 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
380 total_value_received: Option<u64>,
381 /// The sender intended sum total of all MPP parts specified in the onion
383 /// The extra fee our counterparty skimmed off the top of this HTLC.
384 counterparty_skimmed_fee_msat: Option<u64>,
387 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
388 fn from(val: &ClaimableHTLC) -> Self {
389 events::ClaimedHTLC {
390 channel_id: val.prev_hop.channel_id,
391 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
392 cltv_expiry: val.cltv_expiry,
393 value_msat: val.value,
394 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
399 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
400 /// a payment and ensure idempotency in LDK.
402 /// This is not exported to bindings users as we just use [u8; 32] directly
403 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
404 pub struct PaymentId(pub [u8; Self::LENGTH]);
407 /// Number of bytes in the id.
408 pub const LENGTH: usize = 32;
411 impl Writeable for PaymentId {
412 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
417 impl Readable for PaymentId {
418 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
419 let buf: [u8; 32] = Readable::read(r)?;
424 impl core::fmt::Display for PaymentId {
425 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
426 crate::util::logger::DebugBytes(&self.0).fmt(f)
430 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
432 /// This is not exported to bindings users as we just use [u8; 32] directly
433 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
434 pub struct InterceptId(pub [u8; 32]);
436 impl Writeable for InterceptId {
437 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
442 impl Readable for InterceptId {
443 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
444 let buf: [u8; 32] = Readable::read(r)?;
449 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
450 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
451 pub(crate) enum SentHTLCId {
452 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
453 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
456 pub(crate) fn from_source(source: &HTLCSource) -> Self {
458 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
459 short_channel_id: hop_data.short_channel_id,
460 htlc_id: hop_data.htlc_id,
462 HTLCSource::OutboundRoute { session_priv, .. } =>
463 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
467 impl_writeable_tlv_based_enum!(SentHTLCId,
468 (0, PreviousHopData) => {
469 (0, short_channel_id, required),
470 (2, htlc_id, required),
472 (2, OutboundRoute) => {
473 (0, session_priv, required),
478 /// Tracks the inbound corresponding to an outbound HTLC
479 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
480 #[derive(Clone, Debug, PartialEq, Eq)]
481 pub(crate) enum HTLCSource {
482 PreviousHopData(HTLCPreviousHopData),
485 session_priv: SecretKey,
486 /// Technically we can recalculate this from the route, but we cache it here to avoid
487 /// doing a double-pass on route when we get a failure back
488 first_hop_htlc_msat: u64,
489 payment_id: PaymentId,
492 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
493 impl core::hash::Hash for HTLCSource {
494 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
496 HTLCSource::PreviousHopData(prev_hop_data) => {
498 prev_hop_data.hash(hasher);
500 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
503 session_priv[..].hash(hasher);
504 payment_id.hash(hasher);
505 first_hop_htlc_msat.hash(hasher);
511 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
513 pub fn dummy() -> Self {
514 HTLCSource::OutboundRoute {
515 path: Path { hops: Vec::new(), blinded_tail: None },
516 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
517 first_hop_htlc_msat: 0,
518 payment_id: PaymentId([2; 32]),
522 #[cfg(debug_assertions)]
523 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
524 /// transaction. Useful to ensure different datastructures match up.
525 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
526 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
527 *first_hop_htlc_msat == htlc.amount_msat
529 // There's nothing we can check for forwarded HTLCs
535 /// This enum is used to specify which error data to send to peers when failing back an HTLC
536 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
538 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
539 #[derive(Clone, Copy)]
540 pub enum FailureCode {
541 /// We had a temporary error processing the payment. Useful if no other error codes fit
542 /// and you want to indicate that the payer may want to retry.
543 TemporaryNodeFailure,
544 /// We have a required feature which was not in this onion. For example, you may require
545 /// some additional metadata that was not provided with this payment.
546 RequiredNodeFeatureMissing,
547 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
548 /// the HTLC is too close to the current block height for safe handling.
549 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
550 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
551 IncorrectOrUnknownPaymentDetails,
552 /// We failed to process the payload after the onion was decrypted. You may wish to
553 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
555 /// If available, the tuple data may include the type number and byte offset in the
556 /// decrypted byte stream where the failure occurred.
557 InvalidOnionPayload(Option<(u64, u16)>),
560 impl Into<u16> for FailureCode {
561 fn into(self) -> u16 {
563 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
564 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
565 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
566 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
571 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
572 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
573 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
574 /// peer_state lock. We then return the set of things that need to be done outside the lock in
575 /// this struct and call handle_error!() on it.
577 struct MsgHandleErrInternal {
578 err: msgs::LightningError,
579 closes_channel: bool,
580 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
582 impl MsgHandleErrInternal {
584 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
586 err: LightningError {
588 action: msgs::ErrorAction::SendErrorMessage {
589 msg: msgs::ErrorMessage {
595 closes_channel: false,
596 shutdown_finish: None,
600 fn from_no_close(err: msgs::LightningError) -> Self {
601 Self { err, closes_channel: false, shutdown_finish: None }
604 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
605 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
606 let action = if shutdown_res.monitor_update.is_some() {
607 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
608 // should disconnect our peer such that we force them to broadcast their latest
609 // commitment upon reconnecting.
610 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
612 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
615 err: LightningError { err, action },
616 closes_channel: true,
617 shutdown_finish: Some((shutdown_res, channel_update)),
621 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
624 ChannelError::Warn(msg) => LightningError {
626 action: msgs::ErrorAction::SendWarningMessage {
627 msg: msgs::WarningMessage {
631 log_level: Level::Warn,
634 ChannelError::Ignore(msg) => LightningError {
636 action: msgs::ErrorAction::IgnoreError,
638 ChannelError::Close(msg) => LightningError {
640 action: msgs::ErrorAction::SendErrorMessage {
641 msg: msgs::ErrorMessage {
648 closes_channel: false,
649 shutdown_finish: None,
653 fn closes_channel(&self) -> bool {
658 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
659 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
660 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
661 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
662 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
664 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
665 /// be sent in the order they appear in the return value, however sometimes the order needs to be
666 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
667 /// they were originally sent). In those cases, this enum is also returned.
668 #[derive(Clone, PartialEq)]
669 pub(super) enum RAACommitmentOrder {
670 /// Send the CommitmentUpdate messages first
672 /// Send the RevokeAndACK message first
676 /// Information about a payment which is currently being claimed.
677 struct ClaimingPayment {
679 payment_purpose: events::PaymentPurpose,
680 receiver_node_id: PublicKey,
681 htlcs: Vec<events::ClaimedHTLC>,
682 sender_intended_value: Option<u64>,
684 impl_writeable_tlv_based!(ClaimingPayment, {
685 (0, amount_msat, required),
686 (2, payment_purpose, required),
687 (4, receiver_node_id, required),
688 (5, htlcs, optional_vec),
689 (7, sender_intended_value, option),
692 struct ClaimablePayment {
693 purpose: events::PaymentPurpose,
694 onion_fields: Option<RecipientOnionFields>,
695 htlcs: Vec<ClaimableHTLC>,
698 /// Information about claimable or being-claimed payments
699 struct ClaimablePayments {
700 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
701 /// failed/claimed by the user.
703 /// Note that, no consistency guarantees are made about the channels given here actually
704 /// existing anymore by the time you go to read them!
706 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
707 /// we don't get a duplicate payment.
708 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
710 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
711 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
712 /// as an [`events::Event::PaymentClaimed`].
713 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
716 /// Events which we process internally but cannot be processed immediately at the generation site
717 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
718 /// running normally, and specifically must be processed before any other non-background
719 /// [`ChannelMonitorUpdate`]s are applied.
721 enum BackgroundEvent {
722 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
723 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
724 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
725 /// channel has been force-closed we do not need the counterparty node_id.
727 /// Note that any such events are lost on shutdown, so in general they must be updates which
728 /// are regenerated on startup.
729 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
730 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
731 /// channel to continue normal operation.
733 /// In general this should be used rather than
734 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
735 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
736 /// error the other variant is acceptable.
738 /// Note that any such events are lost on shutdown, so in general they must be updates which
739 /// are regenerated on startup.
740 MonitorUpdateRegeneratedOnStartup {
741 counterparty_node_id: PublicKey,
742 funding_txo: OutPoint,
743 channel_id: ChannelId,
744 update: ChannelMonitorUpdate
746 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
747 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
749 MonitorUpdatesComplete {
750 counterparty_node_id: PublicKey,
751 channel_id: ChannelId,
756 pub(crate) enum MonitorUpdateCompletionAction {
757 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
758 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
759 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
760 /// event can be generated.
761 PaymentClaimed { payment_hash: PaymentHash },
762 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
763 /// operation of another channel.
765 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
766 /// from completing a monitor update which removes the payment preimage until the inbound edge
767 /// completes a monitor update containing the payment preimage. In that case, after the inbound
768 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
770 EmitEventAndFreeOtherChannel {
771 event: events::Event,
772 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
774 /// Indicates we should immediately resume the operation of another channel, unless there is
775 /// some other reason why the channel is blocked. In practice this simply means immediately
776 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
778 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
779 /// from completing a monitor update which removes the payment preimage until the inbound edge
780 /// completes a monitor update containing the payment preimage. However, we use this variant
781 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
782 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
784 /// This variant should thus never be written to disk, as it is processed inline rather than
785 /// stored for later processing.
786 FreeOtherChannelImmediately {
787 downstream_counterparty_node_id: PublicKey,
788 downstream_funding_outpoint: OutPoint,
789 blocking_action: RAAMonitorUpdateBlockingAction,
790 downstream_channel_id: ChannelId,
794 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
795 (0, PaymentClaimed) => { (0, payment_hash, required) },
796 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
797 // *immediately*. However, for simplicity we implement read/write here.
798 (1, FreeOtherChannelImmediately) => {
799 (0, downstream_counterparty_node_id, required),
800 (2, downstream_funding_outpoint, required),
801 (4, blocking_action, required),
802 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
803 // filled in, so we can safely unwrap it here.
804 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
806 (2, EmitEventAndFreeOtherChannel) => {
807 (0, event, upgradable_required),
808 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
809 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
810 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
811 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
812 // downgrades to prior versions.
813 (1, downstream_counterparty_and_funding_outpoint, option),
817 #[derive(Clone, Debug, PartialEq, Eq)]
818 pub(crate) enum EventCompletionAction {
819 ReleaseRAAChannelMonitorUpdate {
820 counterparty_node_id: PublicKey,
821 channel_funding_outpoint: OutPoint,
822 channel_id: ChannelId,
825 impl_writeable_tlv_based_enum!(EventCompletionAction,
826 (0, ReleaseRAAChannelMonitorUpdate) => {
827 (0, channel_funding_outpoint, required),
828 (2, counterparty_node_id, required),
829 // Note that by the time we get past the required read above, channel_funding_outpoint will be
830 // filled in, so we can safely unwrap it here.
831 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
835 #[derive(Clone, PartialEq, Eq, Debug)]
836 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
837 /// the blocked action here. See enum variants for more info.
838 pub(crate) enum RAAMonitorUpdateBlockingAction {
839 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
840 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
842 ForwardedPaymentInboundClaim {
843 /// The upstream channel ID (i.e. the inbound edge).
844 channel_id: ChannelId,
845 /// The HTLC ID on the inbound edge.
850 impl RAAMonitorUpdateBlockingAction {
851 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
852 Self::ForwardedPaymentInboundClaim {
853 channel_id: prev_hop.channel_id,
854 htlc_id: prev_hop.htlc_id,
859 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
860 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
864 /// State we hold per-peer.
865 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
866 /// `channel_id` -> `ChannelPhase`
868 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
869 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
870 /// `temporary_channel_id` -> `InboundChannelRequest`.
872 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
873 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
874 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
875 /// the channel is rejected, then the entry is simply removed.
876 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
877 /// The latest `InitFeatures` we heard from the peer.
878 latest_features: InitFeatures,
879 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
880 /// for broadcast messages, where ordering isn't as strict).
881 pub(super) pending_msg_events: Vec<MessageSendEvent>,
882 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
883 /// user but which have not yet completed.
885 /// Note that the channel may no longer exist. For example if the channel was closed but we
886 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
887 /// for a missing channel.
888 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
889 /// Map from a specific channel to some action(s) that should be taken when all pending
890 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
892 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
893 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
894 /// channels with a peer this will just be one allocation and will amount to a linear list of
895 /// channels to walk, avoiding the whole hashing rigmarole.
897 /// Note that the channel may no longer exist. For example, if a channel was closed but we
898 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
899 /// for a missing channel. While a malicious peer could construct a second channel with the
900 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
901 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
902 /// duplicates do not occur, so such channels should fail without a monitor update completing.
903 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
904 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
905 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
906 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
907 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
908 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
909 /// The peer is currently connected (i.e. we've seen a
910 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
911 /// [`ChannelMessageHandler::peer_disconnected`].
912 pub is_connected: bool,
915 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
916 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
917 /// If true is passed for `require_disconnected`, the function will return false if we haven't
918 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
919 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
920 if require_disconnected && self.is_connected {
923 !self.channel_by_id.iter().any(|(_, phase)|
925 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
926 ChannelPhase::UnfundedInboundV1(_) => false,
927 #[cfg(any(dual_funding, splicing))]
928 ChannelPhase::UnfundedOutboundV2(_) => true,
929 #[cfg(any(dual_funding, splicing))]
930 ChannelPhase::UnfundedInboundV2(_) => false,
933 && self.monitor_update_blocked_actions.is_empty()
934 && self.in_flight_monitor_updates.is_empty()
937 // Returns a count of all channels we have with this peer, including unfunded channels.
938 fn total_channel_count(&self) -> usize {
939 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
942 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
943 fn has_channel(&self, channel_id: &ChannelId) -> bool {
944 self.channel_by_id.contains_key(channel_id) ||
945 self.inbound_channel_request_by_id.contains_key(channel_id)
949 /// A not-yet-accepted inbound (from counterparty) channel. Once
950 /// accepted, the parameters will be used to construct a channel.
951 pub(super) struct InboundChannelRequest {
952 /// The original OpenChannel message.
953 pub open_channel_msg: msgs::OpenChannel,
954 /// The number of ticks remaining before the request expires.
955 pub ticks_remaining: i32,
958 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
959 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
960 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
962 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
963 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
965 /// For users who don't want to bother doing their own payment preimage storage, we also store that
968 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
969 /// and instead encoding it in the payment secret.
970 struct PendingInboundPayment {
971 /// The payment secret that the sender must use for us to accept this payment
972 payment_secret: PaymentSecret,
973 /// Time at which this HTLC expires - blocks with a header time above this value will result in
974 /// this payment being removed.
976 /// Arbitrary identifier the user specifies (or not)
977 user_payment_id: u64,
978 // Other required attributes of the payment, optionally enforced:
979 payment_preimage: Option<PaymentPreimage>,
980 min_value_msat: Option<u64>,
983 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
984 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
985 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
986 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
987 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
988 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
989 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
990 /// of [`KeysManager`] and [`DefaultRouter`].
992 /// This is not exported to bindings users as type aliases aren't supported in most languages.
993 #[cfg(not(c_bindings))]
994 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
1002 Arc<NetworkGraph<Arc<L>>>,
1005 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1006 ProbabilisticScoringFeeParameters,
1007 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1012 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1013 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1014 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1015 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1016 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1017 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1018 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1019 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1020 /// of [`KeysManager`] and [`DefaultRouter`].
1022 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1023 #[cfg(not(c_bindings))]
1024 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1033 &'f NetworkGraph<&'g L>,
1036 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1037 ProbabilisticScoringFeeParameters,
1038 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1043 /// A trivial trait which describes any [`ChannelManager`].
1045 /// This is not exported to bindings users as general cover traits aren't useful in other
1047 pub trait AChannelManager {
1048 /// A type implementing [`chain::Watch`].
1049 type Watch: chain::Watch<Self::Signer> + ?Sized;
1050 /// A type that may be dereferenced to [`Self::Watch`].
1051 type M: Deref<Target = Self::Watch>;
1052 /// A type implementing [`BroadcasterInterface`].
1053 type Broadcaster: BroadcasterInterface + ?Sized;
1054 /// A type that may be dereferenced to [`Self::Broadcaster`].
1055 type T: Deref<Target = Self::Broadcaster>;
1056 /// A type implementing [`EntropySource`].
1057 type EntropySource: EntropySource + ?Sized;
1058 /// A type that may be dereferenced to [`Self::EntropySource`].
1059 type ES: Deref<Target = Self::EntropySource>;
1060 /// A type implementing [`NodeSigner`].
1061 type NodeSigner: NodeSigner + ?Sized;
1062 /// A type that may be dereferenced to [`Self::NodeSigner`].
1063 type NS: Deref<Target = Self::NodeSigner>;
1064 /// A type implementing [`EcdsaChannelSigner`].
1065 type Signer: EcdsaChannelSigner + Sized;
1066 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1067 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1068 /// A type that may be dereferenced to [`Self::SignerProvider`].
1069 type SP: Deref<Target = Self::SignerProvider>;
1070 /// A type implementing [`FeeEstimator`].
1071 type FeeEstimator: FeeEstimator + ?Sized;
1072 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1073 type F: Deref<Target = Self::FeeEstimator>;
1074 /// A type implementing [`Router`].
1075 type Router: Router + ?Sized;
1076 /// A type that may be dereferenced to [`Self::Router`].
1077 type R: Deref<Target = Self::Router>;
1078 /// A type implementing [`Logger`].
1079 type Logger: Logger + ?Sized;
1080 /// A type that may be dereferenced to [`Self::Logger`].
1081 type L: Deref<Target = Self::Logger>;
1082 /// Returns a reference to the actual [`ChannelManager`] object.
1083 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1086 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1087 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1089 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1090 T::Target: BroadcasterInterface,
1091 ES::Target: EntropySource,
1092 NS::Target: NodeSigner,
1093 SP::Target: SignerProvider,
1094 F::Target: FeeEstimator,
1098 type Watch = M::Target;
1100 type Broadcaster = T::Target;
1102 type EntropySource = ES::Target;
1104 type NodeSigner = NS::Target;
1106 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1107 type SignerProvider = SP::Target;
1109 type FeeEstimator = F::Target;
1111 type Router = R::Target;
1113 type Logger = L::Target;
1115 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1118 /// A lightning node's channel state machine and payment management logic, which facilitates
1119 /// sending, forwarding, and receiving payments through lightning channels.
1121 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1122 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1124 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1125 /// closing channels
1126 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1127 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1128 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1129 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1131 /// - [`Router`] for finding payment paths when initiating and retrying payments
1132 /// - [`Logger`] for logging operational information of varying degrees
1134 /// Additionally, it implements the following traits:
1135 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1136 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1137 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1138 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1139 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1141 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1142 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1144 /// # `ChannelManager` vs `ChannelMonitor`
1146 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1147 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1148 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1149 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1150 /// [`chain::Watch`] of them.
1152 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1153 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1154 /// for any pertinent on-chain activity, enforcing claims as needed.
1156 /// This division of off-chain management and on-chain enforcement allows for interesting node
1157 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1158 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1160 /// # Initialization
1162 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1163 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1164 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1165 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1166 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1169 /// use bitcoin::BlockHash;
1170 /// use bitcoin::network::constants::Network;
1171 /// use lightning::chain::BestBlock;
1172 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1173 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1174 /// # use lightning::routing::gossip::NetworkGraph;
1175 /// use lightning::util::config::UserConfig;
1176 /// use lightning::util::ser::ReadableArgs;
1178 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1181 /// # L: lightning::util::logger::Logger,
1182 /// # ES: lightning::sign::EntropySource,
1183 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1184 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1186 /// # R: lightning::io::Read,
1188 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1189 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1190 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1191 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1193 /// # entropy_source: &ES,
1194 /// # node_signer: &dyn lightning::sign::NodeSigner,
1195 /// # signer_provider: &lightning::sign::DynSignerProvider,
1196 /// # best_block: lightning::chain::BestBlock,
1197 /// # current_timestamp: u32,
1198 /// # mut reader: R,
1199 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1200 /// // Fresh start with no channels
1201 /// let params = ChainParameters {
1202 /// network: Network::Bitcoin,
1205 /// let default_config = UserConfig::default();
1206 /// let channel_manager = ChannelManager::new(
1207 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1208 /// signer_provider, default_config, params, current_timestamp
1211 /// // Restart from deserialized data
1212 /// let mut channel_monitors = read_channel_monitors();
1213 /// let args = ChannelManagerReadArgs::new(
1214 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1215 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1217 /// let (block_hash, channel_manager) =
1218 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1220 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1223 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1224 /// for monitor in channel_monitors {
1225 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1233 /// The following is required for [`ChannelManager`] to function properly:
1234 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1235 /// called by [`PeerManager::read_event`] when processing network I/O)
1236 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1237 /// (typically initiated when [`PeerManager::process_events`] is called)
1238 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1239 /// as documented by those traits
1240 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1242 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1243 /// [`Persister`] such as a [`KVStore`] implementation
1244 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1246 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1247 /// when the last two requirements need to be checked.
1249 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1250 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1251 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1252 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1256 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1257 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1258 /// currently open channels.
1261 /// # use lightning::ln::channelmanager::AChannelManager;
1263 /// # fn example<T: AChannelManager>(channel_manager: T) {
1264 /// # let channel_manager = channel_manager.get_cm();
1265 /// let channels = channel_manager.list_usable_channels();
1266 /// for details in channels {
1267 /// println!("{:?}", details);
1272 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1273 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1274 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1275 /// by [`ChannelManager`].
1277 /// ## Opening Channels
1279 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1280 /// opening an outbound channel, which requires self-funding when handling
1281 /// [`Event::FundingGenerationReady`].
1284 /// # use bitcoin::{ScriptBuf, Transaction};
1285 /// # use bitcoin::secp256k1::PublicKey;
1286 /// # use lightning::ln::channelmanager::AChannelManager;
1287 /// # use lightning::events::{Event, EventsProvider};
1289 /// # trait Wallet {
1290 /// # fn create_funding_transaction(
1291 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1292 /// # ) -> Transaction;
1295 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1296 /// # let channel_manager = channel_manager.get_cm();
1297 /// let value_sats = 1_000_000;
1298 /// let push_msats = 10_000_000;
1299 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1300 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1301 /// Err(e) => println!("Error opening channel: {:?}", e),
1304 /// // On the event processing thread once the peer has responded
1305 /// channel_manager.process_pending_events(&|event| match event {
1306 /// Event::FundingGenerationReady {
1307 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1308 /// user_channel_id, ..
1310 /// assert_eq!(user_channel_id, 42);
1311 /// let funding_transaction = wallet.create_funding_transaction(
1312 /// channel_value_satoshis, output_script
1314 /// match channel_manager.funding_transaction_generated(
1315 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1317 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1318 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1321 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1322 /// assert_eq!(user_channel_id, 42);
1324 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1325 /// former_temporary_channel_id.unwrap()
1328 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1329 /// assert_eq!(user_channel_id, 42);
1330 /// println!("Channel {} ready", channel_id);
1338 /// ## Accepting Channels
1340 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1341 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1342 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1345 /// # use bitcoin::secp256k1::PublicKey;
1346 /// # use lightning::ln::channelmanager::AChannelManager;
1347 /// # use lightning::events::{Event, EventsProvider};
1349 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1351 /// # unimplemented!()
1354 /// # fn example<T: AChannelManager>(channel_manager: T) {
1355 /// # let channel_manager = channel_manager.get_cm();
1356 /// channel_manager.process_pending_events(&|event| match event {
1357 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1358 /// if !is_trusted(counterparty_node_id) {
1359 /// match channel_manager.force_close_without_broadcasting_txn(
1360 /// &temporary_channel_id, &counterparty_node_id
1362 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1363 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1368 /// let user_channel_id = 43;
1369 /// match channel_manager.accept_inbound_channel(
1370 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1372 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1373 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1382 /// ## Closing Channels
1384 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1385 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1386 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1387 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1388 /// once the channel has been closed successfully.
1391 /// # use bitcoin::secp256k1::PublicKey;
1392 /// # use lightning::ln::types::ChannelId;
1393 /// # use lightning::ln::channelmanager::AChannelManager;
1394 /// # use lightning::events::{Event, EventsProvider};
1396 /// # fn example<T: AChannelManager>(
1397 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1399 /// # let channel_manager = channel_manager.get_cm();
1400 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1401 /// Ok(()) => println!("Closing channel {}", channel_id),
1402 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1405 /// // On the event processing thread
1406 /// channel_manager.process_pending_events(&|event| match event {
1407 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1408 /// assert_eq!(user_channel_id, 42);
1409 /// println!("Channel {} closed", channel_id);
1419 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1420 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1421 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1422 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1423 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1426 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1427 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1428 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1429 /// [`abandon_payment`] is called.
1431 /// ## BOLT 11 Invoices
1433 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1434 /// functions in its `utils` module for constructing invoices that are compatible with
1435 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1436 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1437 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1438 /// the [`lightning-invoice`] `utils` module.
1440 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1441 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1442 /// an [`Event::PaymentClaimed`].
1445 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1446 /// # use lightning::ln::channelmanager::AChannelManager;
1448 /// # fn example<T: AChannelManager>(channel_manager: T) {
1449 /// # let channel_manager = channel_manager.get_cm();
1450 /// // Or use utils::create_invoice_from_channelmanager
1451 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1452 /// Some(10_000_000), 3600, None
1454 /// Ok((payment_hash, _payment_secret)) => {
1455 /// println!("Creating inbound payment {}", payment_hash);
1458 /// Err(()) => panic!("Error creating inbound payment"),
1461 /// // On the event processing thread
1462 /// channel_manager.process_pending_events(&|event| match event {
1463 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1464 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1465 /// assert_eq!(payment_hash, known_payment_hash);
1466 /// println!("Claiming payment {}", payment_hash);
1467 /// channel_manager.claim_funds(payment_preimage);
1469 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: None, .. } => {
1470 /// println!("Unknown payment hash: {}", payment_hash);
1472 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1473 /// assert_ne!(payment_hash, known_payment_hash);
1474 /// println!("Claiming spontaneous payment {}", payment_hash);
1475 /// channel_manager.claim_funds(payment_preimage);
1480 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1481 /// assert_eq!(payment_hash, known_payment_hash);
1482 /// println!("Claimed {} msats", amount_msat);
1490 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1491 /// functions for use with [`send_payment`].
1494 /// # use lightning::events::{Event, EventsProvider};
1495 /// # use lightning::ln::types::PaymentHash;
1496 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1497 /// # use lightning::routing::router::RouteParameters;
1499 /// # fn example<T: AChannelManager>(
1500 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1501 /// # route_params: RouteParameters, retry: Retry
1503 /// # let channel_manager = channel_manager.get_cm();
1504 /// // let (payment_hash, recipient_onion, route_params) =
1505 /// // payment::payment_parameters_from_invoice(&invoice);
1506 /// let payment_id = PaymentId([42; 32]);
1507 /// match channel_manager.send_payment(
1508 /// payment_hash, recipient_onion, payment_id, route_params, retry
1510 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1511 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1514 /// let expected_payment_id = payment_id;
1515 /// let expected_payment_hash = payment_hash;
1517 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1519 /// RecentPaymentDetails::Pending {
1520 /// payment_id: expected_payment_id,
1521 /// payment_hash: expected_payment_hash,
1527 /// // On the event processing thread
1528 /// channel_manager.process_pending_events(&|event| match event {
1529 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1530 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1537 /// ## BOLT 12 Offers
1539 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1540 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1541 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1542 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1543 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1544 /// stateless just as BOLT 11 invoices are.
1547 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1548 /// # use lightning::ln::channelmanager::AChannelManager;
1549 /// # use lightning::offers::parse::Bolt12SemanticError;
1551 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1552 /// # let channel_manager = channel_manager.get_cm();
1553 /// let offer = channel_manager
1554 /// .create_offer_builder()?
1556 /// # // Needed for compiling for c_bindings
1557 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1558 /// # let offer = builder
1559 /// .description("coffee".to_string())
1560 /// .amount_msats(10_000_000)
1562 /// let bech32_offer = offer.to_string();
1564 /// // On the event processing thread
1565 /// channel_manager.process_pending_events(&|event| match event {
1566 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1567 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: Some(payment_preimage), .. } => {
1568 /// println!("Claiming payment {}", payment_hash);
1569 /// channel_manager.claim_funds(payment_preimage);
1571 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: None, .. } => {
1572 /// println!("Unknown payment hash: {}", payment_hash);
1577 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1578 /// println!("Claimed {} msats", amount_msat);
1587 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1588 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1589 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1592 /// # use lightning::events::{Event, EventsProvider};
1593 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1594 /// # use lightning::offers::offer::Offer;
1596 /// # fn example<T: AChannelManager>(
1597 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1598 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1600 /// # let channel_manager = channel_manager.get_cm();
1601 /// let payment_id = PaymentId([42; 32]);
1602 /// match channel_manager.pay_for_offer(
1603 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1605 /// Ok(()) => println!("Requesting invoice for offer"),
1606 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1609 /// // First the payment will be waiting on an invoice
1610 /// let expected_payment_id = payment_id;
1612 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1614 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1618 /// // Once the invoice is received, a payment will be sent
1620 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1622 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1626 /// // On the event processing thread
1627 /// channel_manager.process_pending_events(&|event| match event {
1628 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1629 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1630 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1637 /// ## BOLT 12 Refunds
1639 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1640 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1641 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1642 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1645 /// # use core::time::Duration;
1646 /// # use lightning::events::{Event, EventsProvider};
1647 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1648 /// # use lightning::offers::parse::Bolt12SemanticError;
1650 /// # fn example<T: AChannelManager>(
1651 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1652 /// # max_total_routing_fee_msat: Option<u64>
1653 /// # ) -> Result<(), Bolt12SemanticError> {
1654 /// # let channel_manager = channel_manager.get_cm();
1655 /// let payment_id = PaymentId([42; 32]);
1656 /// let refund = channel_manager
1657 /// .create_refund_builder(
1658 /// amount_msats, absolute_expiry, payment_id, retry, max_total_routing_fee_msat
1661 /// # // Needed for compiling for c_bindings
1662 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1663 /// # let refund = builder
1664 /// .description("coffee".to_string())
1665 /// .payer_note("refund for order 1234".to_string())
1667 /// let bech32_refund = refund.to_string();
1669 /// // First the payment will be waiting on an invoice
1670 /// let expected_payment_id = payment_id;
1672 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1674 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1678 /// // Once the invoice is received, a payment will be sent
1680 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1682 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1686 /// // On the event processing thread
1687 /// channel_manager.process_pending_events(&|event| match event {
1688 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1689 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1697 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1698 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1701 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1702 /// # use lightning::ln::channelmanager::AChannelManager;
1703 /// # use lightning::offers::refund::Refund;
1705 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1706 /// # let channel_manager = channel_manager.get_cm();
1707 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1708 /// Ok(invoice) => {
1709 /// let payment_hash = invoice.payment_hash();
1710 /// println!("Requesting refund payment {}", payment_hash);
1713 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1716 /// // On the event processing thread
1717 /// channel_manager.process_pending_events(&|event| match event {
1718 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1719 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: Some(payment_preimage), .. } => {
1720 /// assert_eq!(payment_hash, known_payment_hash);
1721 /// println!("Claiming payment {}", payment_hash);
1722 /// channel_manager.claim_funds(payment_preimage);
1724 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: None, .. } => {
1725 /// println!("Unknown payment hash: {}", payment_hash);
1730 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1731 /// assert_eq!(payment_hash, known_payment_hash);
1732 /// println!("Claimed {} msats", amount_msat);
1742 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1743 /// all peers during write/read (though does not modify this instance, only the instance being
1744 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1745 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1747 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1748 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1749 /// [`ChannelMonitorUpdate`] before returning from
1750 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1751 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1752 /// `ChannelManager` operations from occurring during the serialization process). If the
1753 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1754 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1755 /// will be lost (modulo on-chain transaction fees).
1757 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1758 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1759 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1761 /// # `ChannelUpdate` Messages
1763 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1764 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1765 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1766 /// offline for a full minute. In order to track this, you must call
1767 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1769 /// # DoS Mitigation
1771 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1772 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1773 /// not have a channel with being unable to connect to us or open new channels with us if we have
1774 /// many peers with unfunded channels.
1776 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1777 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1778 /// never limited. Please ensure you limit the count of such channels yourself.
1782 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1783 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1784 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1785 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1786 /// you're using lightning-net-tokio.
1788 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1789 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1790 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1791 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1792 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1793 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1794 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1795 /// [`Persister`]: crate::util::persist::Persister
1796 /// [`KVStore`]: crate::util::persist::KVStore
1797 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1798 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1799 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1800 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1801 /// [`list_channels`]: Self::list_channels
1802 /// [`list_usable_channels`]: Self::list_usable_channels
1803 /// [`create_channel`]: Self::create_channel
1804 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1805 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1806 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1807 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1808 /// [`list_recent_payments`]: Self::list_recent_payments
1809 /// [`abandon_payment`]: Self::abandon_payment
1810 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1811 /// [`create_inbound_payment`]: Self::create_inbound_payment
1812 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1813 /// [`claim_funds`]: Self::claim_funds
1814 /// [`send_payment`]: Self::send_payment
1815 /// [`offers`]: crate::offers
1816 /// [`create_offer_builder`]: Self::create_offer_builder
1817 /// [`pay_for_offer`]: Self::pay_for_offer
1818 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1819 /// [`create_refund_builder`]: Self::create_refund_builder
1820 /// [`request_refund_payment`]: Self::request_refund_payment
1821 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1822 /// [`funding_created`]: msgs::FundingCreated
1823 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1824 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1825 /// [`update_channel`]: chain::Watch::update_channel
1826 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1827 /// [`read`]: ReadableArgs::read
1830 // The tree structure below illustrates the lock order requirements for the different locks of the
1831 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1832 // and should then be taken in the order of the lowest to the highest level in the tree.
1833 // Note that locks on different branches shall not be taken at the same time, as doing so will
1834 // create a new lock order for those specific locks in the order they were taken.
1838 // `pending_offers_messages`
1840 // `total_consistency_lock`
1842 // |__`forward_htlcs`
1844 // | |__`pending_intercepted_htlcs`
1846 // |__`decode_update_add_htlcs`
1848 // |__`per_peer_state`
1850 // |__`pending_inbound_payments`
1852 // |__`claimable_payments`
1854 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1858 // |__`outpoint_to_peer`
1860 // |__`short_to_chan_info`
1862 // |__`outbound_scid_aliases`
1866 // |__`pending_events`
1868 // |__`pending_background_events`
1870 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1872 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1873 T::Target: BroadcasterInterface,
1874 ES::Target: EntropySource,
1875 NS::Target: NodeSigner,
1876 SP::Target: SignerProvider,
1877 F::Target: FeeEstimator,
1881 default_configuration: UserConfig,
1882 chain_hash: ChainHash,
1883 fee_estimator: LowerBoundedFeeEstimator<F>,
1889 /// See `ChannelManager` struct-level documentation for lock order requirements.
1891 pub(super) best_block: RwLock<BestBlock>,
1893 best_block: RwLock<BestBlock>,
1894 secp_ctx: Secp256k1<secp256k1::All>,
1896 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1897 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1898 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1899 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1901 /// See `ChannelManager` struct-level documentation for lock order requirements.
1902 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1904 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1905 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1906 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1907 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1908 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1909 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1910 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1911 /// after reloading from disk while replaying blocks against ChannelMonitors.
1913 /// See `PendingOutboundPayment` documentation for more info.
1915 /// See `ChannelManager` struct-level documentation for lock order requirements.
1916 pending_outbound_payments: OutboundPayments,
1918 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1920 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1921 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1922 /// and via the classic SCID.
1924 /// Note that no consistency guarantees are made about the existence of a channel with the
1925 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1927 /// See `ChannelManager` struct-level documentation for lock order requirements.
1929 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1931 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1932 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1933 /// until the user tells us what we should do with them.
1935 /// See `ChannelManager` struct-level documentation for lock order requirements.
1936 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1938 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1940 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1941 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1942 /// and via the classic SCID.
1944 /// Note that no consistency guarantees are made about the existence of a channel with the
1945 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1947 /// See `ChannelManager` struct-level documentation for lock order requirements.
1948 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1950 /// The sets of payments which are claimable or currently being claimed. See
1951 /// [`ClaimablePayments`]' individual field docs for more info.
1953 /// See `ChannelManager` struct-level documentation for lock order requirements.
1954 claimable_payments: Mutex<ClaimablePayments>,
1956 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1957 /// and some closed channels which reached a usable state prior to being closed. This is used
1958 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1959 /// active channel list on load.
1961 /// See `ChannelManager` struct-level documentation for lock order requirements.
1962 outbound_scid_aliases: Mutex<HashSet<u64>>,
1964 /// Channel funding outpoint -> `counterparty_node_id`.
1966 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1967 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1968 /// the handling of the events.
1970 /// Note that no consistency guarantees are made about the existence of a peer with the
1971 /// `counterparty_node_id` in our other maps.
1974 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1975 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1976 /// would break backwards compatability.
1977 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1978 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1979 /// required to access the channel with the `counterparty_node_id`.
1981 /// See `ChannelManager` struct-level documentation for lock order requirements.
1983 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1985 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1987 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1989 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1990 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1991 /// confirmation depth.
1993 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1994 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1995 /// channel with the `channel_id` in our other maps.
1997 /// See `ChannelManager` struct-level documentation for lock order requirements.
1999 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2001 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2003 our_network_pubkey: PublicKey,
2005 inbound_payment_key: inbound_payment::ExpandedKey,
2007 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
2008 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
2009 /// we encrypt the namespace identifier using these bytes.
2011 /// [fake scids]: crate::util::scid_utils::fake_scid
2012 fake_scid_rand_bytes: [u8; 32],
2014 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2015 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2016 /// keeping additional state.
2017 probing_cookie_secret: [u8; 32],
2019 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2020 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2021 /// very far in the past, and can only ever be up to two hours in the future.
2022 highest_seen_timestamp: AtomicUsize,
2024 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2025 /// basis, as well as the peer's latest features.
2027 /// If we are connected to a peer we always at least have an entry here, even if no channels
2028 /// are currently open with that peer.
2030 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2031 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2034 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2036 /// See `ChannelManager` struct-level documentation for lock order requirements.
2037 #[cfg(not(any(test, feature = "_test_utils")))]
2038 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2039 #[cfg(any(test, feature = "_test_utils"))]
2040 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2042 /// The set of events which we need to give to the user to handle. In some cases an event may
2043 /// require some further action after the user handles it (currently only blocking a monitor
2044 /// update from being handed to the user to ensure the included changes to the channel state
2045 /// are handled by the user before they're persisted durably to disk). In that case, the second
2046 /// element in the tuple is set to `Some` with further details of the action.
2048 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2049 /// could be in the middle of being processed without the direct mutex held.
2051 /// See `ChannelManager` struct-level documentation for lock order requirements.
2052 #[cfg(not(any(test, feature = "_test_utils")))]
2053 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2054 #[cfg(any(test, feature = "_test_utils"))]
2055 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2057 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2058 pending_events_processor: AtomicBool,
2060 /// If we are running during init (either directly during the deserialization method or in
2061 /// block connection methods which run after deserialization but before normal operation) we
2062 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2063 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2064 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2066 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2068 /// See `ChannelManager` struct-level documentation for lock order requirements.
2070 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2071 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2072 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2073 /// Essentially just when we're serializing ourselves out.
2074 /// Taken first everywhere where we are making changes before any other locks.
2075 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2076 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2077 /// Notifier the lock contains sends out a notification when the lock is released.
2078 total_consistency_lock: RwLock<()>,
2079 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2080 /// received and the monitor has been persisted.
2082 /// This information does not need to be persisted as funding nodes can forget
2083 /// unfunded channels upon disconnection.
2084 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2086 background_events_processed_since_startup: AtomicBool,
2088 event_persist_notifier: Notifier,
2089 needs_persist_flag: AtomicBool,
2091 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2093 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2094 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2098 signer_provider: SP,
2103 /// Chain-related parameters used to construct a new `ChannelManager`.
2105 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2106 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2107 /// are not needed when deserializing a previously constructed `ChannelManager`.
2108 #[derive(Clone, Copy, PartialEq)]
2109 pub struct ChainParameters {
2110 /// The network for determining the `chain_hash` in Lightning messages.
2111 pub network: Network,
2113 /// The hash and height of the latest block successfully connected.
2115 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2116 pub best_block: BestBlock,
2119 #[derive(Copy, Clone, PartialEq)]
2123 SkipPersistHandleEvents,
2124 SkipPersistNoEvents,
2127 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2128 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2129 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2130 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2131 /// sending the aforementioned notification (since the lock being released indicates that the
2132 /// updates are ready for persistence).
2134 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2135 /// notify or not based on whether relevant changes have been made, providing a closure to
2136 /// `optionally_notify` which returns a `NotifyOption`.
2137 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2138 event_persist_notifier: &'a Notifier,
2139 needs_persist_flag: &'a AtomicBool,
2141 // We hold onto this result so the lock doesn't get released immediately.
2142 _read_guard: RwLockReadGuard<'a, ()>,
2145 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2146 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2147 /// events to handle.
2149 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2150 /// other cases where losing the changes on restart may result in a force-close or otherwise
2152 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2153 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2156 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2157 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2158 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2159 let force_notify = cm.get_cm().process_background_events();
2161 PersistenceNotifierGuard {
2162 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2163 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2164 should_persist: move || {
2165 // Pick the "most" action between `persist_check` and the background events
2166 // processing and return that.
2167 let notify = persist_check();
2168 match (notify, force_notify) {
2169 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2170 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2171 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2172 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2173 _ => NotifyOption::SkipPersistNoEvents,
2176 _read_guard: read_guard,
2180 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2181 /// [`ChannelManager::process_background_events`] MUST be called first (or
2182 /// [`Self::optionally_notify`] used).
2183 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2184 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2185 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2187 PersistenceNotifierGuard {
2188 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2189 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2190 should_persist: persist_check,
2191 _read_guard: read_guard,
2196 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2197 fn drop(&mut self) {
2198 match (self.should_persist)() {
2199 NotifyOption::DoPersist => {
2200 self.needs_persist_flag.store(true, Ordering::Release);
2201 self.event_persist_notifier.notify()
2203 NotifyOption::SkipPersistHandleEvents =>
2204 self.event_persist_notifier.notify(),
2205 NotifyOption::SkipPersistNoEvents => {},
2210 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2211 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2213 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2215 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2216 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2217 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2218 /// the maximum required amount in lnd as of March 2021.
2219 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2221 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2222 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2224 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2226 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2227 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2228 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2229 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2230 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2231 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2232 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2233 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2234 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2235 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2236 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2237 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2238 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2240 /// Minimum CLTV difference between the current block height and received inbound payments.
2241 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2243 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2244 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2245 // a payment was being routed, so we add an extra block to be safe.
2246 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2248 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2249 // ie that if the next-hop peer fails the HTLC within
2250 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2251 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2252 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2253 // LATENCY_GRACE_PERIOD_BLOCKS.
2255 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2257 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2258 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2260 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2262 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2263 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2265 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2266 /// until we mark the channel disabled and gossip the update.
2267 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2269 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2270 /// we mark the channel enabled and gossip the update.
2271 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2273 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2274 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2275 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2276 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2278 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2279 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2280 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2282 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2283 /// many peers we reject new (inbound) connections.
2284 const MAX_NO_CHANNEL_PEERS: usize = 250;
2286 /// Information needed for constructing an invoice route hint for this channel.
2287 #[derive(Clone, Debug, PartialEq)]
2288 pub struct CounterpartyForwardingInfo {
2289 /// Base routing fee in millisatoshis.
2290 pub fee_base_msat: u32,
2291 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2292 pub fee_proportional_millionths: u32,
2293 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2294 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2295 /// `cltv_expiry_delta` for more details.
2296 pub cltv_expiry_delta: u16,
2299 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2300 /// to better separate parameters.
2301 #[derive(Clone, Debug, PartialEq)]
2302 pub struct ChannelCounterparty {
2303 /// The node_id of our counterparty
2304 pub node_id: PublicKey,
2305 /// The Features the channel counterparty provided upon last connection.
2306 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2307 /// many routing-relevant features are present in the init context.
2308 pub features: InitFeatures,
2309 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2310 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2311 /// claiming at least this value on chain.
2313 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2315 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2316 pub unspendable_punishment_reserve: u64,
2317 /// Information on the fees and requirements that the counterparty requires when forwarding
2318 /// payments to us through this channel.
2319 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2320 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2321 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2322 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2323 pub outbound_htlc_minimum_msat: Option<u64>,
2324 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2325 pub outbound_htlc_maximum_msat: Option<u64>,
2328 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2329 #[derive(Clone, Debug, PartialEq)]
2330 pub struct ChannelDetails {
2331 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2332 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2333 /// Note that this means this value is *not* persistent - it can change once during the
2334 /// lifetime of the channel.
2335 pub channel_id: ChannelId,
2336 /// Parameters which apply to our counterparty. See individual fields for more information.
2337 pub counterparty: ChannelCounterparty,
2338 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2339 /// our counterparty already.
2340 pub funding_txo: Option<OutPoint>,
2341 /// The features which this channel operates with. See individual features for more info.
2343 /// `None` until negotiation completes and the channel type is finalized.
2344 pub channel_type: Option<ChannelTypeFeatures>,
2345 /// The position of the funding transaction in the chain. None if the funding transaction has
2346 /// not yet been confirmed and the channel fully opened.
2348 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2349 /// payments instead of this. See [`get_inbound_payment_scid`].
2351 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2352 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2354 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2355 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2356 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2357 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2358 /// [`confirmations_required`]: Self::confirmations_required
2359 pub short_channel_id: Option<u64>,
2360 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2361 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2362 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2365 /// This will be `None` as long as the channel is not available for routing outbound payments.
2367 /// [`short_channel_id`]: Self::short_channel_id
2368 /// [`confirmations_required`]: Self::confirmations_required
2369 pub outbound_scid_alias: Option<u64>,
2370 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2371 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2372 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2373 /// when they see a payment to be routed to us.
2375 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2376 /// previous values for inbound payment forwarding.
2378 /// [`short_channel_id`]: Self::short_channel_id
2379 pub inbound_scid_alias: Option<u64>,
2380 /// The value, in satoshis, of this channel as appears in the funding output
2381 pub channel_value_satoshis: u64,
2382 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2383 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2384 /// this value on chain.
2386 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2388 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2390 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2391 pub unspendable_punishment_reserve: Option<u64>,
2392 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2393 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2394 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2395 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2396 /// serialized with LDK versions prior to 0.0.113.
2398 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2399 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2400 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2401 pub user_channel_id: u128,
2402 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2403 /// which is applied to commitment and HTLC transactions.
2405 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2406 pub feerate_sat_per_1000_weight: Option<u32>,
2407 /// Our total balance. This is the amount we would get if we close the channel.
2408 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2409 /// amount is not likely to be recoverable on close.
2411 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2412 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2413 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2414 /// This does not consider any on-chain fees.
2416 /// See also [`ChannelDetails::outbound_capacity_msat`]
2417 pub balance_msat: u64,
2418 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2419 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2420 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2421 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2423 /// See also [`ChannelDetails::balance_msat`]
2425 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2426 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2427 /// should be able to spend nearly this amount.
2428 pub outbound_capacity_msat: u64,
2429 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2430 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2431 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2432 /// to use a limit as close as possible to the HTLC limit we can currently send.
2434 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2435 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2436 pub next_outbound_htlc_limit_msat: u64,
2437 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2438 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2439 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2440 /// route which is valid.
2441 pub next_outbound_htlc_minimum_msat: u64,
2442 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2443 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2444 /// available for inclusion in new inbound HTLCs).
2445 /// Note that there are some corner cases not fully handled here, so the actual available
2446 /// inbound capacity may be slightly higher than this.
2448 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2449 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2450 /// However, our counterparty should be able to spend nearly this amount.
2451 pub inbound_capacity_msat: u64,
2452 /// The number of required confirmations on the funding transaction before the funding will be
2453 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2454 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2455 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2456 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2458 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2460 /// [`is_outbound`]: ChannelDetails::is_outbound
2461 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2462 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2463 pub confirmations_required: Option<u32>,
2464 /// The current number of confirmations on the funding transaction.
2466 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2467 pub confirmations: Option<u32>,
2468 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2469 /// until we can claim our funds after we force-close the channel. During this time our
2470 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2471 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2472 /// time to claim our non-HTLC-encumbered funds.
2474 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2475 pub force_close_spend_delay: Option<u16>,
2476 /// True if the channel was initiated (and thus funded) by us.
2477 pub is_outbound: bool,
2478 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2479 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2480 /// required confirmation count has been reached (and we were connected to the peer at some
2481 /// point after the funding transaction received enough confirmations). The required
2482 /// confirmation count is provided in [`confirmations_required`].
2484 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2485 pub is_channel_ready: bool,
2486 /// The stage of the channel's shutdown.
2487 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2488 pub channel_shutdown_state: Option<ChannelShutdownState>,
2489 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2490 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2492 /// This is a strict superset of `is_channel_ready`.
2493 pub is_usable: bool,
2494 /// True if this channel is (or will be) publicly-announced.
2495 pub is_public: bool,
2496 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2497 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2498 pub inbound_htlc_minimum_msat: Option<u64>,
2499 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2500 pub inbound_htlc_maximum_msat: Option<u64>,
2501 /// Set of configurable parameters that affect channel operation.
2503 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2504 pub config: Option<ChannelConfig>,
2505 /// Pending inbound HTLCs.
2507 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2508 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2509 /// Pending outbound HTLCs.
2511 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2512 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2515 impl ChannelDetails {
2516 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2517 /// This should be used for providing invoice hints or in any other context where our
2518 /// counterparty will forward a payment to us.
2520 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2521 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2522 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2523 self.inbound_scid_alias.or(self.short_channel_id)
2526 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2527 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2528 /// we're sending or forwarding a payment outbound over this channel.
2530 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2531 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2532 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2533 self.short_channel_id.or(self.outbound_scid_alias)
2536 fn from_channel_context<SP: Deref, F: Deref>(
2537 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2538 fee_estimator: &LowerBoundedFeeEstimator<F>
2541 SP::Target: SignerProvider,
2542 F::Target: FeeEstimator
2544 let balance = context.get_available_balances(fee_estimator);
2545 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2546 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2548 channel_id: context.channel_id(),
2549 counterparty: ChannelCounterparty {
2550 node_id: context.get_counterparty_node_id(),
2551 features: latest_features,
2552 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2553 forwarding_info: context.counterparty_forwarding_info(),
2554 // Ensures that we have actually received the `htlc_minimum_msat` value
2555 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2556 // message (as they are always the first message from the counterparty).
2557 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2558 // default `0` value set by `Channel::new_outbound`.
2559 outbound_htlc_minimum_msat: if context.have_received_message() {
2560 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2561 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2563 funding_txo: context.get_funding_txo(),
2564 // Note that accept_channel (or open_channel) is always the first message, so
2565 // `have_received_message` indicates that type negotiation has completed.
2566 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2567 short_channel_id: context.get_short_channel_id(),
2568 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2569 inbound_scid_alias: context.latest_inbound_scid_alias(),
2570 channel_value_satoshis: context.get_value_satoshis(),
2571 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2572 unspendable_punishment_reserve: to_self_reserve_satoshis,
2573 balance_msat: balance.balance_msat,
2574 inbound_capacity_msat: balance.inbound_capacity_msat,
2575 outbound_capacity_msat: balance.outbound_capacity_msat,
2576 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2577 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2578 user_channel_id: context.get_user_id(),
2579 confirmations_required: context.minimum_depth(),
2580 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2581 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2582 is_outbound: context.is_outbound(),
2583 is_channel_ready: context.is_usable(),
2584 is_usable: context.is_live(),
2585 is_public: context.should_announce(),
2586 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2587 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2588 config: Some(context.config()),
2589 channel_shutdown_state: Some(context.shutdown_state()),
2590 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2591 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2596 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2597 /// Further information on the details of the channel shutdown.
2598 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2599 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2600 /// the channel will be removed shortly.
2601 /// Also note, that in normal operation, peers could disconnect at any of these states
2602 /// and require peer re-connection before making progress onto other states
2603 pub enum ChannelShutdownState {
2604 /// Channel has not sent or received a shutdown message.
2606 /// Local node has sent a shutdown message for this channel.
2608 /// Shutdown message exchanges have concluded and the channels are in the midst of
2609 /// resolving all existing open HTLCs before closing can continue.
2611 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2612 NegotiatingClosingFee,
2613 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2614 /// to drop the channel.
2618 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2619 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2620 #[derive(Debug, PartialEq)]
2621 pub enum RecentPaymentDetails {
2622 /// When an invoice was requested and thus a payment has not yet been sent.
2624 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2625 /// a payment and ensure idempotency in LDK.
2626 payment_id: PaymentId,
2628 /// When a payment is still being sent and awaiting successful delivery.
2630 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2631 /// a payment and ensure idempotency in LDK.
2632 payment_id: PaymentId,
2633 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2635 payment_hash: PaymentHash,
2636 /// Total amount (in msat, excluding fees) across all paths for this payment,
2637 /// not just the amount currently inflight.
2640 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2641 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2642 /// payment is removed from tracking.
2644 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2645 /// a payment and ensure idempotency in LDK.
2646 payment_id: PaymentId,
2647 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2648 /// made before LDK version 0.0.104.
2649 payment_hash: Option<PaymentHash>,
2651 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2652 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2653 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2655 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2656 /// a payment and ensure idempotency in LDK.
2657 payment_id: PaymentId,
2658 /// Hash of the payment that we have given up trying to send.
2659 payment_hash: PaymentHash,
2663 /// Route hints used in constructing invoices for [phantom node payents].
2665 /// [phantom node payments]: crate::sign::PhantomKeysManager
2667 pub struct PhantomRouteHints {
2668 /// The list of channels to be included in the invoice route hints.
2669 pub channels: Vec<ChannelDetails>,
2670 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2672 pub phantom_scid: u64,
2673 /// The pubkey of the real backing node that would ultimately receive the payment.
2674 pub real_node_pubkey: PublicKey,
2677 macro_rules! handle_error {
2678 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2679 // In testing, ensure there are no deadlocks where the lock is already held upon
2680 // entering the macro.
2681 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2682 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2686 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2687 let mut msg_event = None;
2689 if let Some((shutdown_res, update_option)) = shutdown_finish {
2690 let counterparty_node_id = shutdown_res.counterparty_node_id;
2691 let channel_id = shutdown_res.channel_id;
2692 let logger = WithContext::from(
2693 &$self.logger, Some(counterparty_node_id), Some(channel_id), None
2695 log_error!(logger, "Force-closing channel: {}", err.err);
2697 $self.finish_close_channel(shutdown_res);
2698 if let Some(update) = update_option {
2699 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2700 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2705 log_error!($self.logger, "Got non-closing error: {}", err.err);
2708 if let msgs::ErrorAction::IgnoreError = err.action {
2710 msg_event = Some(events::MessageSendEvent::HandleError {
2711 node_id: $counterparty_node_id,
2712 action: err.action.clone()
2716 if let Some(msg_event) = msg_event {
2717 let per_peer_state = $self.per_peer_state.read().unwrap();
2718 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2719 let mut peer_state = peer_state_mutex.lock().unwrap();
2720 peer_state.pending_msg_events.push(msg_event);
2724 // Return error in case higher-API need one
2731 macro_rules! update_maps_on_chan_removal {
2732 ($self: expr, $channel_context: expr) => {{
2733 if let Some(outpoint) = $channel_context.get_funding_txo() {
2734 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2736 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2737 if let Some(short_id) = $channel_context.get_short_channel_id() {
2738 short_to_chan_info.remove(&short_id);
2740 // If the channel was never confirmed on-chain prior to its closure, remove the
2741 // outbound SCID alias we used for it from the collision-prevention set. While we
2742 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2743 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2744 // opening a million channels with us which are closed before we ever reach the funding
2746 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2747 debug_assert!(alias_removed);
2749 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2753 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2754 macro_rules! convert_chan_phase_err {
2755 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2757 ChannelError::Warn(msg) => {
2758 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2760 ChannelError::Ignore(msg) => {
2761 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2763 ChannelError::Close(msg) => {
2764 let logger = WithChannelContext::from(&$self.logger, &$channel.context, None);
2765 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2766 update_maps_on_chan_removal!($self, $channel.context);
2767 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2768 let shutdown_res = $channel.context.force_shutdown(true, reason);
2770 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2775 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2776 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2778 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2779 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2781 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2782 match $channel_phase {
2783 ChannelPhase::Funded(channel) => {
2784 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2786 ChannelPhase::UnfundedOutboundV1(channel) => {
2787 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2789 ChannelPhase::UnfundedInboundV1(channel) => {
2790 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2792 #[cfg(any(dual_funding, splicing))]
2793 ChannelPhase::UnfundedOutboundV2(channel) => {
2794 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2796 #[cfg(any(dual_funding, splicing))]
2797 ChannelPhase::UnfundedInboundV2(channel) => {
2798 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2804 macro_rules! break_chan_phase_entry {
2805 ($self: ident, $res: expr, $entry: expr) => {
2809 let key = *$entry.key();
2810 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2812 $entry.remove_entry();
2820 macro_rules! try_chan_phase_entry {
2821 ($self: ident, $res: expr, $entry: expr) => {
2825 let key = *$entry.key();
2826 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2828 $entry.remove_entry();
2836 macro_rules! remove_channel_phase {
2837 ($self: expr, $entry: expr) => {
2839 let channel = $entry.remove_entry().1;
2840 update_maps_on_chan_removal!($self, &channel.context());
2846 macro_rules! send_channel_ready {
2847 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2848 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2849 node_id: $channel.context.get_counterparty_node_id(),
2850 msg: $channel_ready_msg,
2852 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2853 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2854 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2855 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2856 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2857 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2858 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2859 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2860 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2861 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2866 macro_rules! emit_channel_pending_event {
2867 ($locked_events: expr, $channel: expr) => {
2868 if $channel.context.should_emit_channel_pending_event() {
2869 $locked_events.push_back((events::Event::ChannelPending {
2870 channel_id: $channel.context.channel_id(),
2871 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2872 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2873 user_channel_id: $channel.context.get_user_id(),
2874 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2875 channel_type: Some($channel.context.get_channel_type().clone()),
2877 $channel.context.set_channel_pending_event_emitted();
2882 macro_rules! emit_channel_ready_event {
2883 ($locked_events: expr, $channel: expr) => {
2884 if $channel.context.should_emit_channel_ready_event() {
2885 debug_assert!($channel.context.channel_pending_event_emitted());
2886 $locked_events.push_back((events::Event::ChannelReady {
2887 channel_id: $channel.context.channel_id(),
2888 user_channel_id: $channel.context.get_user_id(),
2889 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2890 channel_type: $channel.context.get_channel_type().clone(),
2892 $channel.context.set_channel_ready_event_emitted();
2897 macro_rules! handle_monitor_update_completion {
2898 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2899 let logger = WithChannelContext::from(&$self.logger, &$chan.context, None);
2900 let mut updates = $chan.monitor_updating_restored(&&logger,
2901 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2902 $self.best_block.read().unwrap().height);
2903 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2904 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2905 // We only send a channel_update in the case where we are just now sending a
2906 // channel_ready and the channel is in a usable state. We may re-send a
2907 // channel_update later through the announcement_signatures process for public
2908 // channels, but there's no reason not to just inform our counterparty of our fees
2910 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2911 Some(events::MessageSendEvent::SendChannelUpdate {
2912 node_id: counterparty_node_id,
2918 let update_actions = $peer_state.monitor_update_blocked_actions
2919 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2921 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2922 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2923 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2924 updates.funding_broadcastable, updates.channel_ready,
2925 updates.announcement_sigs);
2926 if let Some(upd) = channel_update {
2927 $peer_state.pending_msg_events.push(upd);
2930 let channel_id = $chan.context.channel_id();
2931 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2932 core::mem::drop($peer_state_lock);
2933 core::mem::drop($per_peer_state_lock);
2935 // If the channel belongs to a batch funding transaction, the progress of the batch
2936 // should be updated as we have received funding_signed and persisted the monitor.
2937 if let Some(txid) = unbroadcasted_batch_funding_txid {
2938 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2939 let mut batch_completed = false;
2940 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2941 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2942 *chan_id == channel_id &&
2943 *pubkey == counterparty_node_id
2945 if let Some(channel_state) = channel_state {
2946 channel_state.2 = true;
2948 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2950 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2952 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2955 // When all channels in a batched funding transaction have become ready, it is not necessary
2956 // to track the progress of the batch anymore and the state of the channels can be updated.
2957 if batch_completed {
2958 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2959 let per_peer_state = $self.per_peer_state.read().unwrap();
2960 let mut batch_funding_tx = None;
2961 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2962 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2963 let mut peer_state = peer_state_mutex.lock().unwrap();
2964 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2965 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2966 chan.set_batch_ready();
2967 let mut pending_events = $self.pending_events.lock().unwrap();
2968 emit_channel_pending_event!(pending_events, chan);
2972 if let Some(tx) = batch_funding_tx {
2973 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2974 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2979 $self.handle_monitor_update_completion_actions(update_actions);
2981 if let Some(forwards) = htlc_forwards {
2982 $self.forward_htlcs(&mut [forwards][..]);
2984 if let Some(decode) = decode_update_add_htlcs {
2985 $self.push_decode_update_add_htlcs(decode);
2987 $self.finalize_claims(updates.finalized_claimed_htlcs);
2988 for failure in updates.failed_htlcs.drain(..) {
2989 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2990 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2995 macro_rules! handle_new_monitor_update {
2996 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
2997 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
2998 let logger = WithChannelContext::from(&$self.logger, &$chan.context, None);
3000 ChannelMonitorUpdateStatus::UnrecoverableError => {
3001 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
3002 log_error!(logger, "{}", err_str);
3003 panic!("{}", err_str);
3005 ChannelMonitorUpdateStatus::InProgress => {
3006 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
3007 &$chan.context.channel_id());
3010 ChannelMonitorUpdateStatus::Completed => {
3016 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3017 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3018 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3020 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3021 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3022 .or_insert_with(Vec::new);
3023 // During startup, we push monitor updates as background events through to here in
3024 // order to replay updates that were in-flight when we shut down. Thus, we have to
3025 // filter for uniqueness here.
3026 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3027 .unwrap_or_else(|| {
3028 in_flight_updates.push($update);
3029 in_flight_updates.len() - 1
3031 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3032 handle_new_monitor_update!($self, update_res, $chan, _internal,
3034 let _ = in_flight_updates.remove(idx);
3035 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3036 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3042 macro_rules! process_events_body {
3043 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3044 let mut processed_all_events = false;
3045 while !processed_all_events {
3046 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3053 // We'll acquire our total consistency lock so that we can be sure no other
3054 // persists happen while processing monitor events.
3055 let _read_guard = $self.total_consistency_lock.read().unwrap();
3057 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3058 // ensure any startup-generated background events are handled first.
3059 result = $self.process_background_events();
3061 // TODO: This behavior should be documented. It's unintuitive that we query
3062 // ChannelMonitors when clearing other events.
3063 if $self.process_pending_monitor_events() {
3064 result = NotifyOption::DoPersist;
3068 let pending_events = $self.pending_events.lock().unwrap().clone();
3069 let num_events = pending_events.len();
3070 if !pending_events.is_empty() {
3071 result = NotifyOption::DoPersist;
3074 let mut post_event_actions = Vec::new();
3076 for (event, action_opt) in pending_events {
3077 $event_to_handle = event;
3079 if let Some(action) = action_opt {
3080 post_event_actions.push(action);
3085 let mut pending_events = $self.pending_events.lock().unwrap();
3086 pending_events.drain(..num_events);
3087 processed_all_events = pending_events.is_empty();
3088 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3089 // updated here with the `pending_events` lock acquired.
3090 $self.pending_events_processor.store(false, Ordering::Release);
3093 if !post_event_actions.is_empty() {
3094 $self.handle_post_event_actions(post_event_actions);
3095 // If we had some actions, go around again as we may have more events now
3096 processed_all_events = false;
3100 NotifyOption::DoPersist => {
3101 $self.needs_persist_flag.store(true, Ordering::Release);
3102 $self.event_persist_notifier.notify();
3104 NotifyOption::SkipPersistHandleEvents =>
3105 $self.event_persist_notifier.notify(),
3106 NotifyOption::SkipPersistNoEvents => {},
3112 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3114 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3115 T::Target: BroadcasterInterface,
3116 ES::Target: EntropySource,
3117 NS::Target: NodeSigner,
3118 SP::Target: SignerProvider,
3119 F::Target: FeeEstimator,
3123 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3125 /// The current time or latest block header time can be provided as the `current_timestamp`.
3127 /// This is the main "logic hub" for all channel-related actions, and implements
3128 /// [`ChannelMessageHandler`].
3130 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3132 /// Users need to notify the new `ChannelManager` when a new block is connected or
3133 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3134 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3137 /// [`block_connected`]: chain::Listen::block_connected
3138 /// [`block_disconnected`]: chain::Listen::block_disconnected
3139 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3141 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3142 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3143 current_timestamp: u32,
3145 let mut secp_ctx = Secp256k1::new();
3146 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3147 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3148 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3150 default_configuration: config.clone(),
3151 chain_hash: ChainHash::using_genesis_block(params.network),
3152 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3157 best_block: RwLock::new(params.best_block),
3159 outbound_scid_aliases: Mutex::new(new_hash_set()),
3160 pending_inbound_payments: Mutex::new(new_hash_map()),
3161 pending_outbound_payments: OutboundPayments::new(),
3162 forward_htlcs: Mutex::new(new_hash_map()),
3163 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3164 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3165 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3166 outpoint_to_peer: Mutex::new(new_hash_map()),
3167 short_to_chan_info: FairRwLock::new(new_hash_map()),
3169 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3172 inbound_payment_key: expanded_inbound_key,
3173 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3175 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3177 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3179 per_peer_state: FairRwLock::new(new_hash_map()),
3181 pending_events: Mutex::new(VecDeque::new()),
3182 pending_events_processor: AtomicBool::new(false),
3183 pending_background_events: Mutex::new(Vec::new()),
3184 total_consistency_lock: RwLock::new(()),
3185 background_events_processed_since_startup: AtomicBool::new(false),
3186 event_persist_notifier: Notifier::new(),
3187 needs_persist_flag: AtomicBool::new(false),
3188 funding_batch_states: Mutex::new(BTreeMap::new()),
3190 pending_offers_messages: Mutex::new(Vec::new()),
3191 pending_broadcast_messages: Mutex::new(Vec::new()),
3201 /// Gets the current configuration applied to all new channels.
3202 pub fn get_current_default_configuration(&self) -> &UserConfig {
3203 &self.default_configuration
3206 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3207 let height = self.best_block.read().unwrap().height;
3208 let mut outbound_scid_alias = 0;
3211 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3212 outbound_scid_alias += 1;
3214 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3216 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3220 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3225 /// Creates a new outbound channel to the given remote node and with the given value.
3227 /// `user_channel_id` will be provided back as in
3228 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3229 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3230 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3231 /// is simply copied to events and otherwise ignored.
3233 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3234 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3236 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3237 /// generate a shutdown scriptpubkey or destination script set by
3238 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3240 /// Note that we do not check if you are currently connected to the given peer. If no
3241 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3242 /// the channel eventually being silently forgotten (dropped on reload).
3244 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3245 /// channel. Otherwise, a random one will be generated for you.
3247 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3248 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3249 /// [`ChannelDetails::channel_id`] until after
3250 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3251 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3252 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3254 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3255 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3256 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3257 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3258 if channel_value_satoshis < 1000 {
3259 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3262 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3263 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3264 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3266 let per_peer_state = self.per_peer_state.read().unwrap();
3268 let peer_state_mutex = per_peer_state.get(&their_network_key)
3269 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3271 let mut peer_state = peer_state_mutex.lock().unwrap();
3273 if let Some(temporary_channel_id) = temporary_channel_id {
3274 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3275 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3280 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3281 let their_features = &peer_state.latest_features;
3282 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3283 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3284 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3285 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3289 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3294 let res = channel.get_open_channel(self.chain_hash);
3296 let temporary_channel_id = channel.context.channel_id();
3297 match peer_state.channel_by_id.entry(temporary_channel_id) {
3298 hash_map::Entry::Occupied(_) => {
3300 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3302 panic!("RNG is bad???");
3305 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3308 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3309 node_id: their_network_key,
3312 Ok(temporary_channel_id)
3315 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3316 // Allocate our best estimate of the number of channels we have in the `res`
3317 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3318 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3319 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3320 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3321 // the same channel.
3322 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3324 let best_block_height = self.best_block.read().unwrap().height;
3325 let per_peer_state = self.per_peer_state.read().unwrap();
3326 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3327 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3328 let peer_state = &mut *peer_state_lock;
3329 res.extend(peer_state.channel_by_id.iter()
3330 .filter_map(|(chan_id, phase)| match phase {
3331 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3332 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3336 .map(|(_channel_id, channel)| {
3337 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3338 peer_state.latest_features.clone(), &self.fee_estimator)
3346 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3347 /// more information.
3348 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3349 // Allocate our best estimate of the number of channels we have in the `res`
3350 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3351 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3352 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3353 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3354 // the same channel.
3355 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3357 let best_block_height = self.best_block.read().unwrap().height;
3358 let per_peer_state = self.per_peer_state.read().unwrap();
3359 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3360 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3361 let peer_state = &mut *peer_state_lock;
3362 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3363 let details = ChannelDetails::from_channel_context(context, best_block_height,
3364 peer_state.latest_features.clone(), &self.fee_estimator);
3372 /// Gets the list of usable channels, in random order. Useful as an argument to
3373 /// [`Router::find_route`] to ensure non-announced channels are used.
3375 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3376 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3378 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3379 // Note we use is_live here instead of usable which leads to somewhat confused
3380 // internal/external nomenclature, but that's ok cause that's probably what the user
3381 // really wanted anyway.
3382 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3385 /// Gets the list of channels we have with a given counterparty, in random order.
3386 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3387 let best_block_height = self.best_block.read().unwrap().height;
3388 let per_peer_state = self.per_peer_state.read().unwrap();
3390 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3391 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3392 let peer_state = &mut *peer_state_lock;
3393 let features = &peer_state.latest_features;
3394 let context_to_details = |context| {
3395 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3397 return peer_state.channel_by_id
3399 .map(|(_, phase)| phase.context())
3400 .map(context_to_details)
3406 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3407 /// successful path, or have unresolved HTLCs.
3409 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3410 /// result of a crash. If such a payment exists, is not listed here, and an
3411 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3413 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3414 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3415 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3416 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3417 PendingOutboundPayment::AwaitingInvoice { .. } => {
3418 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3420 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3421 PendingOutboundPayment::InvoiceReceived { .. } => {
3422 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3424 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3425 Some(RecentPaymentDetails::Pending {
3426 payment_id: *payment_id,
3427 payment_hash: *payment_hash,
3428 total_msat: *total_msat,
3431 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3432 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3434 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3435 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3437 PendingOutboundPayment::Legacy { .. } => None
3442 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3443 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3445 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3446 let mut shutdown_result = None;
3449 let per_peer_state = self.per_peer_state.read().unwrap();
3451 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3452 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3454 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3455 let peer_state = &mut *peer_state_lock;
3457 match peer_state.channel_by_id.entry(channel_id.clone()) {
3458 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3459 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3460 let funding_txo_opt = chan.context.get_funding_txo();
3461 let their_features = &peer_state.latest_features;
3462 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3463 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3464 failed_htlcs = htlcs;
3466 // We can send the `shutdown` message before updating the `ChannelMonitor`
3467 // here as we don't need the monitor update to complete until we send a
3468 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3469 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3470 node_id: *counterparty_node_id,
3474 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3475 "We can't both complete shutdown and generate a monitor update");
3477 // Update the monitor with the shutdown script if necessary.
3478 if let Some(monitor_update) = monitor_update_opt.take() {
3479 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3480 peer_state_lock, peer_state, per_peer_state, chan);
3483 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3484 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3487 hash_map::Entry::Vacant(_) => {
3488 return Err(APIError::ChannelUnavailable {
3490 "Channel with id {} not found for the passed counterparty node_id {}",
3491 channel_id, counterparty_node_id,
3498 for htlc_source in failed_htlcs.drain(..) {
3499 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3500 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3501 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3504 if let Some(shutdown_result) = shutdown_result {
3505 self.finish_close_channel(shutdown_result);
3511 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3512 /// will be accepted on the given channel, and after additional timeout/the closing of all
3513 /// pending HTLCs, the channel will be closed on chain.
3515 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3516 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3518 /// * If our counterparty is the channel initiator, we will require a channel closing
3519 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3520 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3521 /// counterparty to pay as much fee as they'd like, however.
3523 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3525 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3526 /// generate a shutdown scriptpubkey or destination script set by
3527 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3530 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3531 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3532 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3533 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3534 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3535 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3538 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3539 /// will be accepted on the given channel, and after additional timeout/the closing of all
3540 /// pending HTLCs, the channel will be closed on chain.
3542 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3543 /// the channel being closed or not:
3544 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3545 /// transaction. The upper-bound is set by
3546 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3547 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3548 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3549 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3550 /// will appear on a force-closure transaction, whichever is lower).
3552 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3553 /// Will fail if a shutdown script has already been set for this channel by
3554 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3555 /// also be compatible with our and the counterparty's features.
3557 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3559 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3560 /// generate a shutdown scriptpubkey or destination script set by
3561 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3564 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3565 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3566 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3567 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3568 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3571 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3572 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3573 #[cfg(debug_assertions)]
3574 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3575 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3578 let logger = WithContext::from(
3579 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id), None
3582 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3583 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3584 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3585 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3586 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3587 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3588 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3590 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3591 // There isn't anything we can do if we get an update failure - we're already
3592 // force-closing. The monitor update on the required in-memory copy should broadcast
3593 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3594 // ignore the result here.
3595 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3597 let mut shutdown_results = Vec::new();
3598 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3599 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3600 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3601 let per_peer_state = self.per_peer_state.read().unwrap();
3602 let mut has_uncompleted_channel = None;
3603 for (channel_id, counterparty_node_id, state) in affected_channels {
3604 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3605 let mut peer_state = peer_state_mutex.lock().unwrap();
3606 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3607 update_maps_on_chan_removal!(self, &chan.context());
3608 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3611 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3614 has_uncompleted_channel.unwrap_or(true),
3615 "Closing a batch where all channels have completed initial monitor update",
3620 let mut pending_events = self.pending_events.lock().unwrap();
3621 pending_events.push_back((events::Event::ChannelClosed {
3622 channel_id: shutdown_res.channel_id,
3623 user_channel_id: shutdown_res.user_channel_id,
3624 reason: shutdown_res.closure_reason,
3625 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3626 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3627 channel_funding_txo: shutdown_res.channel_funding_txo,
3630 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3631 pending_events.push_back((events::Event::DiscardFunding {
3632 channel_id: shutdown_res.channel_id, transaction
3636 for shutdown_result in shutdown_results.drain(..) {
3637 self.finish_close_channel(shutdown_result);
3641 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3642 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3643 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3644 -> Result<PublicKey, APIError> {
3645 let per_peer_state = self.per_peer_state.read().unwrap();
3646 let peer_state_mutex = per_peer_state.get(peer_node_id)
3647 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3648 let (update_opt, counterparty_node_id) = {
3649 let mut peer_state = peer_state_mutex.lock().unwrap();
3650 let closure_reason = if let Some(peer_msg) = peer_msg {
3651 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3653 ClosureReason::HolderForceClosed
3655 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id), None);
3656 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3657 log_error!(logger, "Force-closing channel {}", channel_id);
3658 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3659 mem::drop(peer_state);
3660 mem::drop(per_peer_state);
3662 ChannelPhase::Funded(mut chan) => {
3663 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3664 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3666 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3667 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3668 // Unfunded channel has no update
3669 (None, chan_phase.context().get_counterparty_node_id())
3671 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
3672 #[cfg(any(dual_funding, splicing))]
3673 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3674 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3675 // Unfunded channel has no update
3676 (None, chan_phase.context().get_counterparty_node_id())
3679 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3680 log_error!(logger, "Force-closing channel {}", &channel_id);
3681 // N.B. that we don't send any channel close event here: we
3682 // don't have a user_channel_id, and we never sent any opening
3684 (None, *peer_node_id)
3686 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3689 if let Some(update) = update_opt {
3690 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3691 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3692 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3697 Ok(counterparty_node_id)
3700 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3701 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3702 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3703 Ok(counterparty_node_id) => {
3704 let per_peer_state = self.per_peer_state.read().unwrap();
3705 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3706 let mut peer_state = peer_state_mutex.lock().unwrap();
3707 peer_state.pending_msg_events.push(
3708 events::MessageSendEvent::HandleError {
3709 node_id: counterparty_node_id,
3710 action: msgs::ErrorAction::DisconnectPeer {
3711 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3722 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3723 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3724 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3726 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3727 -> Result<(), APIError> {
3728 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3731 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3732 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3733 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3735 /// You can always broadcast the latest local transaction(s) via
3736 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3737 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3738 -> Result<(), APIError> {
3739 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3742 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3743 /// for each to the chain and rejecting new HTLCs on each.
3744 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3745 for chan in self.list_channels() {
3746 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3750 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3751 /// local transaction(s).
3752 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3753 for chan in self.list_channels() {
3754 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3758 fn can_forward_htlc_to_outgoing_channel(
3759 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3760 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3761 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3762 // Note that the behavior here should be identical to the above block - we
3763 // should NOT reveal the existence or non-existence of a private channel if
3764 // we don't allow forwards outbound over them.
3765 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3767 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3768 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3769 // "refuse to forward unless the SCID alias was used", so we pretend
3770 // we don't have the channel here.
3771 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3774 // Note that we could technically not return an error yet here and just hope
3775 // that the connection is reestablished or monitor updated by the time we get
3776 // around to doing the actual forward, but better to fail early if we can and
3777 // hopefully an attacker trying to path-trace payments cannot make this occur
3778 // on a small/per-node/per-channel scale.
3779 if !chan.context.is_live() { // channel_disabled
3780 // If the channel_update we're going to return is disabled (i.e. the
3781 // peer has been disabled for some time), return `channel_disabled`,
3782 // otherwise return `temporary_channel_failure`.
3783 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3784 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3785 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3787 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3790 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3791 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3792 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3794 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3795 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3796 return Err((err, code, chan_update_opt));
3802 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3803 /// `scid`. `None` is returned when the channel is not found.
3804 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3805 &self, scid: u64, callback: C,
3807 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3808 None => return None,
3809 Some((cp_id, id)) => (cp_id, id),
3811 let per_peer_state = self.per_peer_state.read().unwrap();
3812 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3813 if peer_state_mutex_opt.is_none() {
3816 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3817 let peer_state = &mut *peer_state_lock;
3818 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3819 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3822 Some(chan) => Some(callback(chan)),
3826 fn can_forward_htlc(
3827 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3828 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3829 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3830 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3833 Some(Err(e)) => return Err(e),
3835 // If we couldn't find the channel info for the scid, it may be a phantom or
3836 // intercept forward.
3837 if (self.default_configuration.accept_intercept_htlcs &&
3838 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3839 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3841 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3846 let cur_height = self.best_block.read().unwrap().height + 1;
3847 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3848 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3850 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3851 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3853 return Err((err_msg, err_code, chan_update_opt));
3859 fn htlc_failure_from_update_add_err(
3860 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3861 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3862 shared_secret: &[u8; 32]
3863 ) -> HTLCFailureMsg {
3864 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3865 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3866 let chan_update = chan_update.unwrap();
3867 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3868 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3870 else if err_code == 0x1000 | 13 {
3871 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3873 else if err_code == 0x1000 | 20 {
3874 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3875 0u16.write(&mut res).expect("Writes cannot fail");
3877 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3878 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3879 chan_update.write(&mut res).expect("Writes cannot fail");
3880 } else if err_code & 0x1000 == 0x1000 {
3881 // If we're trying to return an error that requires a `channel_update` but
3882 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3883 // generate an update), just use the generic "temporary_node_failure"
3885 err_code = 0x2000 | 2;
3889 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id), Some(msg.payment_hash)),
3890 "Failed to accept/forward incoming HTLC: {}", err_msg
3892 // If `msg.blinding_point` is set, we must always fail with malformed.
3893 if msg.blinding_point.is_some() {
3894 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3895 channel_id: msg.channel_id,
3896 htlc_id: msg.htlc_id,
3897 sha256_of_onion: [0; 32],
3898 failure_code: INVALID_ONION_BLINDING,
3902 let (err_code, err_data) = if is_intro_node_blinded_forward {
3903 (INVALID_ONION_BLINDING, &[0; 32][..])
3905 (err_code, &res.0[..])
3907 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3908 channel_id: msg.channel_id,
3909 htlc_id: msg.htlc_id,
3910 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3911 .get_encrypted_failure_packet(shared_secret, &None),
3915 fn decode_update_add_htlc_onion(
3916 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3918 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3920 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3921 msg, &self.node_signer, &self.logger, &self.secp_ctx
3924 let next_packet_details = match next_packet_details_opt {
3925 Some(next_packet_details) => next_packet_details,
3926 // it is a receive, so no need for outbound checks
3927 None => return Ok((next_hop, shared_secret, None)),
3930 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3931 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3932 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3933 let (err_msg, err_code, chan_update_opt) = e;
3934 self.htlc_failure_from_update_add_err(
3935 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3936 next_hop.is_intro_node_blinded_forward(), &shared_secret
3940 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3943 fn construct_pending_htlc_status<'a>(
3944 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3945 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3946 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3947 ) -> PendingHTLCStatus {
3948 macro_rules! return_err {
3949 ($msg: expr, $err_code: expr, $data: expr) => {
3951 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id), Some(msg.payment_hash));
3952 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3953 if msg.blinding_point.is_some() {
3954 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3955 msgs::UpdateFailMalformedHTLC {
3956 channel_id: msg.channel_id,
3957 htlc_id: msg.htlc_id,
3958 sha256_of_onion: [0; 32],
3959 failure_code: INVALID_ONION_BLINDING,
3963 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3964 channel_id: msg.channel_id,
3965 htlc_id: msg.htlc_id,
3966 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3967 .get_encrypted_failure_packet(&shared_secret, &None),
3973 onion_utils::Hop::Receive(next_hop_data) => {
3975 let current_height: u32 = self.best_block.read().unwrap().height;
3976 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3977 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3978 current_height, self.default_configuration.accept_mpp_keysend)
3981 // Note that we could obviously respond immediately with an update_fulfill_htlc
3982 // message, however that would leak that we are the recipient of this payment, so
3983 // instead we stay symmetric with the forwarding case, only responding (after a
3984 // delay) once they've send us a commitment_signed!
3985 PendingHTLCStatus::Forward(info)
3987 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3990 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3991 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3992 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3993 Ok(info) => PendingHTLCStatus::Forward(info),
3994 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
4000 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
4001 /// public, and thus should be called whenever the result is going to be passed out in a
4002 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
4004 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
4005 /// corresponding to the channel's counterparty locked, as the channel been removed from the
4006 /// storage and the `peer_state` lock has been dropped.
4008 /// [`channel_update`]: msgs::ChannelUpdate
4009 /// [`internal_closing_signed`]: Self::internal_closing_signed
4010 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4011 if !chan.context.should_announce() {
4012 return Err(LightningError {
4013 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4014 action: msgs::ErrorAction::IgnoreError
4017 if chan.context.get_short_channel_id().is_none() {
4018 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4020 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
4021 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4022 self.get_channel_update_for_unicast(chan)
4025 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4026 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4027 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4028 /// provided evidence that they know about the existence of the channel.
4030 /// Note that through [`internal_closing_signed`], this function is called without the
4031 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4032 /// removed from the storage and the `peer_state` lock has been dropped.
4034 /// [`channel_update`]: msgs::ChannelUpdate
4035 /// [`internal_closing_signed`]: Self::internal_closing_signed
4036 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4037 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
4038 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4039 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4040 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4044 self.get_channel_update_for_onion(short_channel_id, chan)
4047 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4048 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
4049 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4050 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4052 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4053 ChannelUpdateStatus::Enabled => true,
4054 ChannelUpdateStatus::DisabledStaged(_) => true,
4055 ChannelUpdateStatus::Disabled => false,
4056 ChannelUpdateStatus::EnabledStaged(_) => false,
4059 let unsigned = msgs::UnsignedChannelUpdate {
4060 chain_hash: self.chain_hash,
4062 timestamp: chan.context.get_update_time_counter(),
4063 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4064 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4065 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4066 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4067 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4068 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4069 excess_data: Vec::new(),
4071 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4072 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4073 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4075 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4077 Ok(msgs::ChannelUpdate {
4084 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4085 let _lck = self.total_consistency_lock.read().unwrap();
4086 self.send_payment_along_path(SendAlongPathArgs {
4087 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4092 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4093 let SendAlongPathArgs {
4094 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4097 // The top-level caller should hold the total_consistency_lock read lock.
4098 debug_assert!(self.total_consistency_lock.try_write().is_err());
4099 let prng_seed = self.entropy_source.get_secure_random_bytes();
4100 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4102 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4103 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4104 payment_hash, keysend_preimage, prng_seed
4106 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None, Some(*payment_hash));
4107 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4111 let err: Result<(), _> = loop {
4112 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4114 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None, Some(*payment_hash));
4115 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4116 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4118 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4121 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id), Some(*payment_hash));
4123 "Attempting to send payment with payment hash {} along path with next hop {}",
4124 payment_hash, path.hops.first().unwrap().short_channel_id);
4126 let per_peer_state = self.per_peer_state.read().unwrap();
4127 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4128 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4129 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4130 let peer_state = &mut *peer_state_lock;
4131 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4132 match chan_phase_entry.get_mut() {
4133 ChannelPhase::Funded(chan) => {
4134 if !chan.context.is_live() {
4135 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4137 let funding_txo = chan.context.get_funding_txo().unwrap();
4138 let logger = WithChannelContext::from(&self.logger, &chan.context, Some(*payment_hash));
4139 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4140 htlc_cltv, HTLCSource::OutboundRoute {
4142 session_priv: session_priv.clone(),
4143 first_hop_htlc_msat: htlc_msat,
4145 }, onion_packet, None, &self.fee_estimator, &&logger);
4146 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4147 Some(monitor_update) => {
4148 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4150 // Note that MonitorUpdateInProgress here indicates (per function
4151 // docs) that we will resend the commitment update once monitor
4152 // updating completes. Therefore, we must return an error
4153 // indicating that it is unsafe to retry the payment wholesale,
4154 // which we do in the send_payment check for
4155 // MonitorUpdateInProgress, below.
4156 return Err(APIError::MonitorUpdateInProgress);
4164 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4167 // The channel was likely removed after we fetched the id from the
4168 // `short_to_chan_info` map, but before we successfully locked the
4169 // `channel_by_id` map.
4170 // This can occur as no consistency guarantees exists between the two maps.
4171 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4175 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4176 Ok(_) => unreachable!(),
4178 Err(APIError::ChannelUnavailable { err: e.err })
4183 /// Sends a payment along a given route.
4185 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4186 /// fields for more info.
4188 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4189 /// [`PeerManager::process_events`]).
4191 /// # Avoiding Duplicate Payments
4193 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4194 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4195 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4196 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4197 /// second payment with the same [`PaymentId`].
4199 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4200 /// tracking of payments, including state to indicate once a payment has completed. Because you
4201 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4202 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4203 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4205 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4206 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4207 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4208 /// [`ChannelManager::list_recent_payments`] for more information.
4210 /// # Possible Error States on [`PaymentSendFailure`]
4212 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4213 /// each entry matching the corresponding-index entry in the route paths, see
4214 /// [`PaymentSendFailure`] for more info.
4216 /// In general, a path may raise:
4217 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4218 /// node public key) is specified.
4219 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4220 /// closed, doesn't exist, or the peer is currently disconnected.
4221 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4222 /// relevant updates.
4224 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4225 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4226 /// different route unless you intend to pay twice!
4228 /// [`RouteHop`]: crate::routing::router::RouteHop
4229 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4230 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4231 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4232 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4233 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4234 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4235 let best_block_height = self.best_block.read().unwrap().height;
4236 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4237 self.pending_outbound_payments
4238 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4239 &self.entropy_source, &self.node_signer, best_block_height,
4240 |args| self.send_payment_along_path(args))
4243 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4244 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4245 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4246 let best_block_height = self.best_block.read().unwrap().height;
4247 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4248 self.pending_outbound_payments
4249 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4250 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4251 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4252 &self.pending_events, |args| self.send_payment_along_path(args))
4256 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4257 let best_block_height = self.best_block.read().unwrap().height;
4258 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4259 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4260 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4261 best_block_height, |args| self.send_payment_along_path(args))
4265 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4266 let best_block_height = self.best_block.read().unwrap().height;
4267 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4271 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4272 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4275 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4276 let best_block_height = self.best_block.read().unwrap().height;
4277 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4278 self.pending_outbound_payments
4279 .send_payment_for_bolt12_invoice(
4280 invoice, payment_id, &self.router, self.list_usable_channels(),
4281 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4282 best_block_height, &self.logger, &self.pending_events,
4283 |args| self.send_payment_along_path(args)
4287 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4288 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4289 /// retries are exhausted.
4291 /// # Event Generation
4293 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4294 /// as there are no remaining pending HTLCs for this payment.
4296 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4297 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4298 /// determine the ultimate status of a payment.
4300 /// # Requested Invoices
4302 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4303 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4304 /// and prevent any attempts at paying it once received. The other events may only be generated
4305 /// once the invoice has been received.
4307 /// # Restart Behavior
4309 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4310 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4311 /// [`Event::InvoiceRequestFailed`].
4313 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4314 pub fn abandon_payment(&self, payment_id: PaymentId) {
4315 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4316 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4319 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4320 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4321 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4322 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4323 /// never reach the recipient.
4325 /// See [`send_payment`] documentation for more details on the return value of this function
4326 /// and idempotency guarantees provided by the [`PaymentId`] key.
4328 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4329 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4331 /// [`send_payment`]: Self::send_payment
4332 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4333 let best_block_height = self.best_block.read().unwrap().height;
4334 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4335 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4336 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4337 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4340 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4341 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4343 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4346 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4347 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4348 let best_block_height = self.best_block.read().unwrap().height;
4349 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4350 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4351 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4352 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4353 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4356 /// Send a payment that is probing the given route for liquidity. We calculate the
4357 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4358 /// us to easily discern them from real payments.
4359 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4360 let best_block_height = self.best_block.read().unwrap().height;
4361 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4362 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4363 &self.entropy_source, &self.node_signer, best_block_height,
4364 |args| self.send_payment_along_path(args))
4367 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4370 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4371 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4374 /// Sends payment probes over all paths of a route that would be used to pay the given
4375 /// amount to the given `node_id`.
4377 /// See [`ChannelManager::send_preflight_probes`] for more information.
4378 pub fn send_spontaneous_preflight_probes(
4379 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4380 liquidity_limit_multiplier: Option<u64>,
4381 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4382 let payment_params =
4383 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4385 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4387 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4390 /// Sends payment probes over all paths of a route that would be used to pay a route found
4391 /// according to the given [`RouteParameters`].
4393 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4394 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4395 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4396 /// confirmation in a wallet UI.
4398 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4399 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4400 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4401 /// payment. To mitigate this issue, channels with available liquidity less than the required
4402 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4403 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4404 pub fn send_preflight_probes(
4405 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4406 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4407 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4409 let payer = self.get_our_node_id();
4410 let usable_channels = self.list_usable_channels();
4411 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4412 let inflight_htlcs = self.compute_inflight_htlcs();
4416 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4418 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4419 ProbeSendFailure::RouteNotFound
4422 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4424 let mut res = Vec::new();
4426 for mut path in route.paths {
4427 // If the last hop is probably an unannounced channel we refrain from probing all the
4428 // way through to the end and instead probe up to the second-to-last channel.
4429 while let Some(last_path_hop) = path.hops.last() {
4430 if last_path_hop.maybe_announced_channel {
4431 // We found a potentially announced last hop.
4434 // Drop the last hop, as it's likely unannounced.
4437 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4438 last_path_hop.short_channel_id
4440 let final_value_msat = path.final_value_msat();
4442 if let Some(new_last) = path.hops.last_mut() {
4443 new_last.fee_msat += final_value_msat;
4448 if path.hops.len() < 2 {
4451 "Skipped sending payment probe over path with less than two hops."
4456 if let Some(first_path_hop) = path.hops.first() {
4457 if let Some(first_hop) = first_hops.iter().find(|h| {
4458 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4460 let path_value = path.final_value_msat() + path.fee_msat();
4461 let used_liquidity =
4462 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4464 if first_hop.next_outbound_htlc_limit_msat
4465 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4467 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4470 *used_liquidity += path_value;
4475 res.push(self.send_probe(path).map_err(|e| {
4476 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4477 ProbeSendFailure::SendingFailed(e)
4484 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4485 /// which checks the correctness of the funding transaction given the associated channel.
4486 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, &'static str>>(
4487 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4488 mut find_funding_output: FundingOutput,
4489 ) -> Result<(), APIError> {
4490 let per_peer_state = self.per_peer_state.read().unwrap();
4491 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4492 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4494 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4495 let peer_state = &mut *peer_state_lock;
4497 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4498 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4499 macro_rules! close_chan { ($err: expr, $api_err: expr, $chan: expr) => { {
4501 let err = if let ChannelError::Close(msg) = $err {
4502 let channel_id = $chan.context.channel_id();
4503 counterparty = chan.context.get_counterparty_node_id();
4504 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4505 let shutdown_res = $chan.context.force_shutdown(false, reason);
4506 MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None)
4507 } else { unreachable!(); };
4509 mem::drop(peer_state_lock);
4510 mem::drop(per_peer_state);
4511 let _: Result<(), _> = handle_error!(self, Err(err), counterparty);
4514 match find_funding_output(&chan, &funding_transaction) {
4515 Ok(found_funding_txo) => funding_txo = found_funding_txo,
4517 let chan_err = ChannelError::Close(err.to_owned());
4518 let api_err = APIError::APIMisuseError { err: err.to_owned() };
4519 return close_chan!(chan_err, api_err, chan);
4523 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
4524 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger);
4526 Ok(funding_msg) => (chan, funding_msg),
4527 Err((mut chan, chan_err)) => {
4528 let api_err = APIError::ChannelUnavailable { err: "Signer refused to sign the initial commitment transaction".to_owned() };
4529 return close_chan!(chan_err, api_err, chan);
4534 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4535 return Err(APIError::APIMisuseError {
4537 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4538 temporary_channel_id, counterparty_node_id),
4541 None => return Err(APIError::ChannelUnavailable {err: format!(
4542 "Channel with id {} not found for the passed counterparty node_id {}",
4543 temporary_channel_id, counterparty_node_id),
4547 if let Some(msg) = msg_opt {
4548 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4549 node_id: chan.context.get_counterparty_node_id(),
4553 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4554 hash_map::Entry::Occupied(_) => {
4555 panic!("Generated duplicate funding txid?");
4557 hash_map::Entry::Vacant(e) => {
4558 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4559 match outpoint_to_peer.entry(funding_txo) {
4560 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4561 hash_map::Entry::Occupied(o) => {
4563 "An existing channel using outpoint {} is open with peer {}",
4564 funding_txo, o.get()
4566 mem::drop(outpoint_to_peer);
4567 mem::drop(peer_state_lock);
4568 mem::drop(per_peer_state);
4569 let reason = ClosureReason::ProcessingError { err: err.clone() };
4570 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4571 return Err(APIError::ChannelUnavailable { err });
4574 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4581 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4582 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4583 Ok(OutPoint { txid: tx.txid(), index: output_index })
4587 /// Call this upon creation of a funding transaction for the given channel.
4589 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4590 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4592 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4593 /// across the p2p network.
4595 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4596 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4598 /// May panic if the output found in the funding transaction is duplicative with some other
4599 /// channel (note that this should be trivially prevented by using unique funding transaction
4600 /// keys per-channel).
4602 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4603 /// counterparty's signature the funding transaction will automatically be broadcast via the
4604 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4606 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4607 /// not currently support replacing a funding transaction on an existing channel. Instead,
4608 /// create a new channel with a conflicting funding transaction.
4610 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4611 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4612 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4613 /// for more details.
4615 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4616 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4617 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4618 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4621 /// Call this upon creation of a batch funding transaction for the given channels.
4623 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4624 /// each individual channel and transaction output.
4626 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4627 /// will only be broadcast when we have safely received and persisted the counterparty's
4628 /// signature for each channel.
4630 /// If there is an error, all channels in the batch are to be considered closed.
4631 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4632 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4633 let mut result = Ok(());
4635 if !funding_transaction.is_coin_base() {
4636 for inp in funding_transaction.input.iter() {
4637 if inp.witness.is_empty() {
4638 result = result.and(Err(APIError::APIMisuseError {
4639 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4644 if funding_transaction.output.len() > u16::max_value() as usize {
4645 result = result.and(Err(APIError::APIMisuseError {
4646 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4650 let height = self.best_block.read().unwrap().height;
4651 // Transactions are evaluated as final by network mempools if their locktime is strictly
4652 // lower than the next block height. However, the modules constituting our Lightning
4653 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4654 // module is ahead of LDK, only allow one more block of headroom.
4655 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4656 funding_transaction.lock_time.is_block_height() &&
4657 funding_transaction.lock_time.to_consensus_u32() > height + 1
4659 result = result.and(Err(APIError::APIMisuseError {
4660 err: "Funding transaction absolute timelock is non-final".to_owned()
4665 let txid = funding_transaction.txid();
4666 let is_batch_funding = temporary_channels.len() > 1;
4667 let mut funding_batch_states = if is_batch_funding {
4668 Some(self.funding_batch_states.lock().unwrap())
4672 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4673 match states.entry(txid) {
4674 btree_map::Entry::Occupied(_) => {
4675 result = result.clone().and(Err(APIError::APIMisuseError {
4676 err: "Batch funding transaction with the same txid already exists".to_owned()
4680 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4683 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4684 result = result.and_then(|_| self.funding_transaction_generated_intern(
4685 temporary_channel_id,
4686 counterparty_node_id,
4687 funding_transaction.clone(),
4690 let mut output_index = None;
4691 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4692 for (idx, outp) in tx.output.iter().enumerate() {
4693 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4694 if output_index.is_some() {
4695 return Err("Multiple outputs matched the expected script and value");
4697 output_index = Some(idx as u16);
4700 if output_index.is_none() {
4701 return Err("No output matched the script_pubkey and value in the FundingGenerationReady event");
4703 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4704 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4705 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4706 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4707 // want to support V2 batching here as well.
4708 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4714 if let Err(ref e) = result {
4715 // Remaining channels need to be removed on any error.
4716 let e = format!("Error in transaction funding: {:?}", e);
4717 let mut channels_to_remove = Vec::new();
4718 channels_to_remove.extend(funding_batch_states.as_mut()
4719 .and_then(|states| states.remove(&txid))
4720 .into_iter().flatten()
4721 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4723 channels_to_remove.extend(temporary_channels.iter()
4724 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4726 let mut shutdown_results = Vec::new();
4728 let per_peer_state = self.per_peer_state.read().unwrap();
4729 for (channel_id, counterparty_node_id) in channels_to_remove {
4730 per_peer_state.get(&counterparty_node_id)
4731 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4732 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id).map(|chan| (chan, peer_state)))
4733 .map(|(mut chan, mut peer_state)| {
4734 update_maps_on_chan_removal!(self, &chan.context());
4735 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4736 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4737 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
4738 node_id: counterparty_node_id,
4739 action: msgs::ErrorAction::SendErrorMessage {
4740 msg: msgs::ErrorMessage {
4742 data: "Failed to fund channel".to_owned(),
4749 mem::drop(funding_batch_states);
4750 for shutdown_result in shutdown_results.drain(..) {
4751 self.finish_close_channel(shutdown_result);
4757 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4759 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4760 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4761 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4762 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4764 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4765 /// `counterparty_node_id` is provided.
4767 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4768 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4770 /// If an error is returned, none of the updates should be considered applied.
4772 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4773 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4774 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4775 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4776 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4777 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4778 /// [`APIMisuseError`]: APIError::APIMisuseError
4779 pub fn update_partial_channel_config(
4780 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4781 ) -> Result<(), APIError> {
4782 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4783 return Err(APIError::APIMisuseError {
4784 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4788 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4789 let per_peer_state = self.per_peer_state.read().unwrap();
4790 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4791 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4792 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4793 let peer_state = &mut *peer_state_lock;
4795 for channel_id in channel_ids {
4796 if !peer_state.has_channel(channel_id) {
4797 return Err(APIError::ChannelUnavailable {
4798 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4802 for channel_id in channel_ids {
4803 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4804 let mut config = channel_phase.context().config();
4805 config.apply(config_update);
4806 if !channel_phase.context_mut().update_config(&config) {
4809 if let ChannelPhase::Funded(channel) = channel_phase {
4810 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4811 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4812 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4813 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4814 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4815 node_id: channel.context.get_counterparty_node_id(),
4822 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4823 debug_assert!(false);
4824 return Err(APIError::ChannelUnavailable {
4826 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4827 channel_id, counterparty_node_id),
4834 /// Atomically updates the [`ChannelConfig`] for the given channels.
4836 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4837 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4838 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4839 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4841 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4842 /// `counterparty_node_id` is provided.
4844 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4845 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4847 /// If an error is returned, none of the updates should be considered applied.
4849 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4850 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4851 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4852 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4853 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4854 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4855 /// [`APIMisuseError`]: APIError::APIMisuseError
4856 pub fn update_channel_config(
4857 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4858 ) -> Result<(), APIError> {
4859 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4862 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4863 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4865 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4866 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4868 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4869 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4870 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4871 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4872 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4874 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4875 /// you from forwarding more than you received. See
4876 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4879 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4882 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4883 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4884 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4885 // TODO: when we move to deciding the best outbound channel at forward time, only take
4886 // `next_node_id` and not `next_hop_channel_id`
4887 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4888 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4890 let next_hop_scid = {
4891 let peer_state_lock = self.per_peer_state.read().unwrap();
4892 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4893 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4894 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4895 let peer_state = &mut *peer_state_lock;
4896 match peer_state.channel_by_id.get(next_hop_channel_id) {
4897 Some(ChannelPhase::Funded(chan)) => {
4898 if !chan.context.is_usable() {
4899 return Err(APIError::ChannelUnavailable {
4900 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4903 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4905 Some(_) => return Err(APIError::ChannelUnavailable {
4906 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4907 next_hop_channel_id, next_node_id)
4910 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4911 next_hop_channel_id, next_node_id);
4912 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id), None);
4913 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4914 return Err(APIError::ChannelUnavailable {
4921 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4922 .ok_or_else(|| APIError::APIMisuseError {
4923 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4926 let routing = match payment.forward_info.routing {
4927 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4928 PendingHTLCRouting::Forward {
4929 onion_packet, blinded, short_channel_id: next_hop_scid
4932 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4934 let skimmed_fee_msat =
4935 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4936 let pending_htlc_info = PendingHTLCInfo {
4937 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4938 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4941 let mut per_source_pending_forward = [(
4942 payment.prev_short_channel_id,
4943 payment.prev_funding_outpoint,
4944 payment.prev_channel_id,
4945 payment.prev_user_channel_id,
4946 vec![(pending_htlc_info, payment.prev_htlc_id)]
4948 self.forward_htlcs(&mut per_source_pending_forward);
4952 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4953 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4955 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4958 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4959 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4960 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4962 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4963 .ok_or_else(|| APIError::APIMisuseError {
4964 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4967 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4968 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4969 short_channel_id: payment.prev_short_channel_id,
4970 user_channel_id: Some(payment.prev_user_channel_id),
4971 outpoint: payment.prev_funding_outpoint,
4972 channel_id: payment.prev_channel_id,
4973 htlc_id: payment.prev_htlc_id,
4974 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4975 phantom_shared_secret: None,
4976 blinded_failure: payment.forward_info.routing.blinded_failure(),
4979 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4980 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4981 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4982 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4987 fn process_pending_update_add_htlcs(&self) {
4988 let mut decode_update_add_htlcs = new_hash_map();
4989 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4991 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4992 if let Some(outgoing_scid) = outgoing_scid_opt {
4993 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4994 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4995 HTLCDestination::NextHopChannel {
4996 node_id: Some(*outgoing_counterparty_node_id),
4997 channel_id: *outgoing_channel_id,
4999 None => HTLCDestination::UnknownNextHop {
5000 requested_forward_scid: outgoing_scid,
5004 HTLCDestination::FailedPayment { payment_hash }
5008 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
5009 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5010 let counterparty_node_id = chan.context.get_counterparty_node_id();
5011 let channel_id = chan.context.channel_id();
5012 let funding_txo = chan.context.get_funding_txo().unwrap();
5013 let user_channel_id = chan.context.get_user_id();
5014 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
5015 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
5018 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
5019 incoming_user_channel_id, incoming_accept_underpaying_htlcs
5020 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
5021 incoming_channel_details
5023 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5027 let mut htlc_forwards = Vec::new();
5028 let mut htlc_fails = Vec::new();
5029 for update_add_htlc in &update_add_htlcs {
5030 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5031 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5033 Ok(decoded_onion) => decoded_onion,
5035 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5040 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5041 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5043 // Process the HTLC on the incoming channel.
5044 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5045 let logger = WithChannelContext::from(&self.logger, &chan.context, Some(update_add_htlc.payment_hash));
5046 chan.can_accept_incoming_htlc(
5047 update_add_htlc, &self.fee_estimator, &logger,
5051 Some(Err((err, code))) => {
5052 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5053 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5054 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5059 let htlc_fail = self.htlc_failure_from_update_add_err(
5060 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5061 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5063 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5064 htlc_fails.push((htlc_fail, htlc_destination));
5067 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5068 None => continue 'outer_loop,
5071 // Now process the HTLC on the outgoing channel if it's a forward.
5072 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5073 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5074 &update_add_htlc, next_packet_details
5076 let htlc_fail = self.htlc_failure_from_update_add_err(
5077 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5078 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5080 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5081 htlc_fails.push((htlc_fail, htlc_destination));
5086 match self.construct_pending_htlc_status(
5087 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5088 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5090 PendingHTLCStatus::Forward(htlc_forward) => {
5091 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5093 PendingHTLCStatus::Fail(htlc_fail) => {
5094 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5095 htlc_fails.push((htlc_fail, htlc_destination));
5100 // Process all of the forwards and failures for the channel in which the HTLCs were
5101 // proposed to as a batch.
5102 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5103 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5104 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5105 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5106 let failure = match htlc_fail {
5107 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5108 htlc_id: fail_htlc.htlc_id,
5109 err_packet: fail_htlc.reason,
5111 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5112 htlc_id: fail_malformed_htlc.htlc_id,
5113 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5114 failure_code: fail_malformed_htlc.failure_code,
5117 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5118 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5119 prev_channel_id: incoming_channel_id,
5120 failed_next_destination: htlc_destination,
5126 /// Processes HTLCs which are pending waiting on random forward delay.
5128 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5129 /// Will likely generate further events.
5130 pub fn process_pending_htlc_forwards(&self) {
5131 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5133 self.process_pending_update_add_htlcs();
5135 let mut new_events = VecDeque::new();
5136 let mut failed_forwards = Vec::new();
5137 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5139 let mut forward_htlcs = new_hash_map();
5140 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5142 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5143 if short_chan_id != 0 {
5144 let mut forwarding_counterparty = None;
5145 macro_rules! forwarding_channel_not_found {
5147 for forward_info in pending_forwards.drain(..) {
5148 match forward_info {
5149 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5150 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5151 prev_user_channel_id, forward_info: PendingHTLCInfo {
5152 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5153 outgoing_cltv_value, ..
5156 macro_rules! failure_handler {
5157 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5158 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id), Some(payment_hash));
5159 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5161 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5162 short_channel_id: prev_short_channel_id,
5163 user_channel_id: Some(prev_user_channel_id),
5164 channel_id: prev_channel_id,
5165 outpoint: prev_funding_outpoint,
5166 htlc_id: prev_htlc_id,
5167 incoming_packet_shared_secret: incoming_shared_secret,
5168 phantom_shared_secret: $phantom_ss,
5169 blinded_failure: routing.blinded_failure(),
5172 let reason = if $next_hop_unknown {
5173 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5175 HTLCDestination::FailedPayment{ payment_hash }
5178 failed_forwards.push((htlc_source, payment_hash,
5179 HTLCFailReason::reason($err_code, $err_data),
5185 macro_rules! fail_forward {
5186 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5188 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5192 macro_rules! failed_payment {
5193 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5195 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5199 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5200 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5201 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5202 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5203 let next_hop = match onion_utils::decode_next_payment_hop(
5204 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5205 payment_hash, None, &self.node_signer
5208 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5209 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5210 // In this scenario, the phantom would have sent us an
5211 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5212 // if it came from us (the second-to-last hop) but contains the sha256
5214 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5216 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5217 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5221 onion_utils::Hop::Receive(hop_data) => {
5222 let current_height: u32 = self.best_block.read().unwrap().height;
5223 match create_recv_pending_htlc_info(hop_data,
5224 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5225 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5226 current_height, self.default_configuration.accept_mpp_keysend)
5228 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5229 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5235 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5238 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5241 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5242 // Channel went away before we could fail it. This implies
5243 // the channel is now on chain and our counterparty is
5244 // trying to broadcast the HTLC-Timeout, but that's their
5245 // problem, not ours.
5251 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5252 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5253 Some((cp_id, chan_id)) => (cp_id, chan_id),
5255 forwarding_channel_not_found!();
5259 forwarding_counterparty = Some(counterparty_node_id);
5260 let per_peer_state = self.per_peer_state.read().unwrap();
5261 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5262 if peer_state_mutex_opt.is_none() {
5263 forwarding_channel_not_found!();
5266 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5267 let peer_state = &mut *peer_state_lock;
5268 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5269 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
5270 for forward_info in pending_forwards.drain(..) {
5271 let queue_fail_htlc_res = match forward_info {
5272 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5273 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5274 prev_user_channel_id, forward_info: PendingHTLCInfo {
5275 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5276 routing: PendingHTLCRouting::Forward {
5277 onion_packet, blinded, ..
5278 }, skimmed_fee_msat, ..
5281 let logger = WithChannelContext::from(&self.logger, &chan.context, Some(payment_hash));
5282 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5283 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5284 short_channel_id: prev_short_channel_id,
5285 user_channel_id: Some(prev_user_channel_id),
5286 channel_id: prev_channel_id,
5287 outpoint: prev_funding_outpoint,
5288 htlc_id: prev_htlc_id,
5289 incoming_packet_shared_secret: incoming_shared_secret,
5290 // Phantom payments are only PendingHTLCRouting::Receive.
5291 phantom_shared_secret: None,
5292 blinded_failure: blinded.map(|b| b.failure),
5294 let next_blinding_point = blinded.and_then(|b| {
5295 let encrypted_tlvs_ss = self.node_signer.ecdh(
5296 Recipient::Node, &b.inbound_blinding_point, None
5297 ).unwrap().secret_bytes();
5298 onion_utils::next_hop_pubkey(
5299 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5302 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5303 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5304 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5307 if let ChannelError::Ignore(msg) = e {
5308 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5310 panic!("Stated return value requirements in send_htlc() were not met");
5312 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5313 failed_forwards.push((htlc_source, payment_hash,
5314 HTLCFailReason::reason(failure_code, data),
5315 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5321 HTLCForwardInfo::AddHTLC { .. } => {
5322 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5324 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5325 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5326 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5328 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5329 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5330 let res = chan.queue_fail_malformed_htlc(
5331 htlc_id, failure_code, sha256_of_onion, &&logger
5333 Some((res, htlc_id))
5336 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5337 if let Err(e) = queue_fail_htlc_res {
5338 if let ChannelError::Ignore(msg) = e {
5339 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5341 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5343 // fail-backs are best-effort, we probably already have one
5344 // pending, and if not that's OK, if not, the channel is on
5345 // the chain and sending the HTLC-Timeout is their problem.
5351 forwarding_channel_not_found!();
5355 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5356 match forward_info {
5357 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5358 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5359 prev_user_channel_id, forward_info: PendingHTLCInfo {
5360 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5361 skimmed_fee_msat, ..
5364 let blinded_failure = routing.blinded_failure();
5365 let (cltv_expiry, onion_payload, payment_data, payment_context, phantom_shared_secret, mut onion_fields) = match routing {
5366 PendingHTLCRouting::Receive {
5367 payment_data, payment_metadata, payment_context,
5368 incoming_cltv_expiry, phantom_shared_secret, custom_tlvs,
5369 requires_blinded_error: _
5371 let _legacy_hop_data = Some(payment_data.clone());
5372 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5373 payment_metadata, custom_tlvs };
5374 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data },
5375 Some(payment_data), payment_context, phantom_shared_secret, onion_fields)
5377 PendingHTLCRouting::ReceiveKeysend {
5378 payment_data, payment_preimage, payment_metadata,
5379 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5381 let onion_fields = RecipientOnionFields {
5382 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5386 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5387 payment_data, None, None, onion_fields)
5390 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5393 let claimable_htlc = ClaimableHTLC {
5394 prev_hop: HTLCPreviousHopData {
5395 short_channel_id: prev_short_channel_id,
5396 user_channel_id: Some(prev_user_channel_id),
5397 channel_id: prev_channel_id,
5398 outpoint: prev_funding_outpoint,
5399 htlc_id: prev_htlc_id,
5400 incoming_packet_shared_secret: incoming_shared_secret,
5401 phantom_shared_secret,
5404 // We differentiate the received value from the sender intended value
5405 // if possible so that we don't prematurely mark MPP payments complete
5406 // if routing nodes overpay
5407 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5408 sender_intended_value: outgoing_amt_msat,
5410 total_value_received: None,
5411 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5414 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5417 let mut committed_to_claimable = false;
5419 macro_rules! fail_htlc {
5420 ($htlc: expr, $payment_hash: expr) => {
5421 debug_assert!(!committed_to_claimable);
5422 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5423 htlc_msat_height_data.extend_from_slice(
5424 &self.best_block.read().unwrap().height.to_be_bytes(),
5426 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5427 short_channel_id: $htlc.prev_hop.short_channel_id,
5428 user_channel_id: $htlc.prev_hop.user_channel_id,
5429 channel_id: prev_channel_id,
5430 outpoint: prev_funding_outpoint,
5431 htlc_id: $htlc.prev_hop.htlc_id,
5432 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5433 phantom_shared_secret,
5436 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5437 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5439 continue 'next_forwardable_htlc;
5442 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5443 let mut receiver_node_id = self.our_network_pubkey;
5444 if phantom_shared_secret.is_some() {
5445 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5446 .expect("Failed to get node_id for phantom node recipient");
5449 macro_rules! check_total_value {
5450 ($purpose: expr) => {{
5451 let mut payment_claimable_generated = false;
5452 let is_keysend = $purpose.is_keysend();
5453 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5454 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5455 fail_htlc!(claimable_htlc, payment_hash);
5457 let ref mut claimable_payment = claimable_payments.claimable_payments
5458 .entry(payment_hash)
5459 // Note that if we insert here we MUST NOT fail_htlc!()
5460 .or_insert_with(|| {
5461 committed_to_claimable = true;
5463 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5466 if $purpose != claimable_payment.purpose {
5467 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5468 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5469 fail_htlc!(claimable_htlc, payment_hash);
5471 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5472 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5473 fail_htlc!(claimable_htlc, payment_hash);
5475 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5476 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5477 fail_htlc!(claimable_htlc, payment_hash);
5480 claimable_payment.onion_fields = Some(onion_fields);
5482 let ref mut htlcs = &mut claimable_payment.htlcs;
5483 let mut total_value = claimable_htlc.sender_intended_value;
5484 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5485 for htlc in htlcs.iter() {
5486 total_value += htlc.sender_intended_value;
5487 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5488 if htlc.total_msat != claimable_htlc.total_msat {
5489 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5490 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5491 total_value = msgs::MAX_VALUE_MSAT;
5493 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5495 // The condition determining whether an MPP is complete must
5496 // match exactly the condition used in `timer_tick_occurred`
5497 if total_value >= msgs::MAX_VALUE_MSAT {
5498 fail_htlc!(claimable_htlc, payment_hash);
5499 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5500 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5502 fail_htlc!(claimable_htlc, payment_hash);
5503 } else if total_value >= claimable_htlc.total_msat {
5504 #[allow(unused_assignments)] {
5505 committed_to_claimable = true;
5507 htlcs.push(claimable_htlc);
5508 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5509 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5510 let counterparty_skimmed_fee_msat = htlcs.iter()
5511 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5512 debug_assert!(total_value.saturating_sub(amount_msat) <=
5513 counterparty_skimmed_fee_msat);
5514 new_events.push_back((events::Event::PaymentClaimable {
5515 receiver_node_id: Some(receiver_node_id),
5519 counterparty_skimmed_fee_msat,
5520 via_channel_id: Some(prev_channel_id),
5521 via_user_channel_id: Some(prev_user_channel_id),
5522 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5523 onion_fields: claimable_payment.onion_fields.clone(),
5525 payment_claimable_generated = true;
5527 // Nothing to do - we haven't reached the total
5528 // payment value yet, wait until we receive more
5530 htlcs.push(claimable_htlc);
5531 #[allow(unused_assignments)] {
5532 committed_to_claimable = true;
5535 payment_claimable_generated
5539 // Check that the payment hash and secret are known. Note that we
5540 // MUST take care to handle the "unknown payment hash" and
5541 // "incorrect payment secret" cases here identically or we'd expose
5542 // that we are the ultimate recipient of the given payment hash.
5543 // Further, we must not expose whether we have any other HTLCs
5544 // associated with the same payment_hash pending or not.
5545 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5546 match payment_secrets.entry(payment_hash) {
5547 hash_map::Entry::Vacant(_) => {
5548 match claimable_htlc.onion_payload {
5549 OnionPayload::Invoice { .. } => {
5550 let payment_data = payment_data.unwrap();
5551 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5552 Ok(result) => result,
5554 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5555 fail_htlc!(claimable_htlc, payment_hash);
5558 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5559 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5560 if (cltv_expiry as u64) < expected_min_expiry_height {
5561 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5562 &payment_hash, cltv_expiry, expected_min_expiry_height);
5563 fail_htlc!(claimable_htlc, payment_hash);
5566 let purpose = events::PaymentPurpose::from_parts(
5568 payment_data.payment_secret,
5571 check_total_value!(purpose);
5573 OnionPayload::Spontaneous(preimage) => {
5574 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5575 check_total_value!(purpose);
5579 hash_map::Entry::Occupied(inbound_payment) => {
5580 if let OnionPayload::Spontaneous(_) = claimable_htlc.onion_payload {
5581 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5582 fail_htlc!(claimable_htlc, payment_hash);
5584 let payment_data = payment_data.unwrap();
5585 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5586 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5587 fail_htlc!(claimable_htlc, payment_hash);
5588 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5589 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5590 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5591 fail_htlc!(claimable_htlc, payment_hash);
5593 let purpose = events::PaymentPurpose::from_parts(
5594 inbound_payment.get().payment_preimage,
5595 payment_data.payment_secret,
5598 let payment_claimable_generated = check_total_value!(purpose);
5599 if payment_claimable_generated {
5600 inbound_payment.remove_entry();
5606 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5607 panic!("Got pending fail of our own HTLC");
5615 let best_block_height = self.best_block.read().unwrap().height;
5616 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5617 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5618 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5620 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5621 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5623 self.forward_htlcs(&mut phantom_receives);
5625 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5626 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5627 // nice to do the work now if we can rather than while we're trying to get messages in the
5629 self.check_free_holding_cells();
5631 if new_events.is_empty() { return }
5632 let mut events = self.pending_events.lock().unwrap();
5633 events.append(&mut new_events);
5636 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5638 /// Expects the caller to have a total_consistency_lock read lock.
5639 fn process_background_events(&self) -> NotifyOption {
5640 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5642 self.background_events_processed_since_startup.store(true, Ordering::Release);
5644 let mut background_events = Vec::new();
5645 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5646 if background_events.is_empty() {
5647 return NotifyOption::SkipPersistNoEvents;
5650 for event in background_events.drain(..) {
5652 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5653 // The channel has already been closed, so no use bothering to care about the
5654 // monitor updating completing.
5655 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5657 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5658 let mut updated_chan = false;
5660 let per_peer_state = self.per_peer_state.read().unwrap();
5661 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5662 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5663 let peer_state = &mut *peer_state_lock;
5664 match peer_state.channel_by_id.entry(channel_id) {
5665 hash_map::Entry::Occupied(mut chan_phase) => {
5666 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5667 updated_chan = true;
5668 handle_new_monitor_update!(self, funding_txo, update.clone(),
5669 peer_state_lock, peer_state, per_peer_state, chan);
5671 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5674 hash_map::Entry::Vacant(_) => {},
5679 // TODO: Track this as in-flight even though the channel is closed.
5680 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5683 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5684 let per_peer_state = self.per_peer_state.read().unwrap();
5685 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5686 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5687 let peer_state = &mut *peer_state_lock;
5688 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5689 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5691 let update_actions = peer_state.monitor_update_blocked_actions
5692 .remove(&channel_id).unwrap_or(Vec::new());
5693 mem::drop(peer_state_lock);
5694 mem::drop(per_peer_state);
5695 self.handle_monitor_update_completion_actions(update_actions);
5701 NotifyOption::DoPersist
5704 #[cfg(any(test, feature = "_test_utils"))]
5705 /// Process background events, for functional testing
5706 pub fn test_process_background_events(&self) {
5707 let _lck = self.total_consistency_lock.read().unwrap();
5708 let _ = self.process_background_events();
5711 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5712 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5714 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
5716 // If the feerate has decreased by less than half, don't bother
5717 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5718 return NotifyOption::SkipPersistNoEvents;
5720 if !chan.context.is_live() {
5721 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5722 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5723 return NotifyOption::SkipPersistNoEvents;
5725 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5726 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5728 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5729 NotifyOption::DoPersist
5733 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5734 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5735 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5736 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5737 pub fn maybe_update_chan_fees(&self) {
5738 PersistenceNotifierGuard::optionally_notify(self, || {
5739 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5741 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5742 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5744 let per_peer_state = self.per_peer_state.read().unwrap();
5745 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5746 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5747 let peer_state = &mut *peer_state_lock;
5748 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5749 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5751 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5756 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5757 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5765 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5767 /// This currently includes:
5768 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5769 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5770 /// than a minute, informing the network that they should no longer attempt to route over
5772 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5773 /// with the current [`ChannelConfig`].
5774 /// * Removing peers which have disconnected but and no longer have any channels.
5775 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5776 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5777 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5778 /// The latter is determined using the system clock in `std` and the highest seen block time
5779 /// minus two hours in `no-std`.
5781 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5782 /// estimate fetches.
5784 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5785 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5786 pub fn timer_tick_occurred(&self) {
5787 PersistenceNotifierGuard::optionally_notify(self, || {
5788 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5790 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5791 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5793 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5794 let mut timed_out_mpp_htlcs = Vec::new();
5795 let mut pending_peers_awaiting_removal = Vec::new();
5796 let mut shutdown_channels = Vec::new();
5798 let mut process_unfunded_channel_tick = |
5799 chan_id: &ChannelId,
5800 context: &mut ChannelContext<SP>,
5801 unfunded_context: &mut UnfundedChannelContext,
5802 pending_msg_events: &mut Vec<MessageSendEvent>,
5803 counterparty_node_id: PublicKey,
5805 context.maybe_expire_prev_config();
5806 if unfunded_context.should_expire_unfunded_channel() {
5807 let logger = WithChannelContext::from(&self.logger, context, None);
5809 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5810 update_maps_on_chan_removal!(self, &context);
5811 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5812 pending_msg_events.push(MessageSendEvent::HandleError {
5813 node_id: counterparty_node_id,
5814 action: msgs::ErrorAction::SendErrorMessage {
5815 msg: msgs::ErrorMessage {
5816 channel_id: *chan_id,
5817 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5828 let per_peer_state = self.per_peer_state.read().unwrap();
5829 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5830 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5831 let peer_state = &mut *peer_state_lock;
5832 let pending_msg_events = &mut peer_state.pending_msg_events;
5833 let counterparty_node_id = *counterparty_node_id;
5834 peer_state.channel_by_id.retain(|chan_id, phase| {
5836 ChannelPhase::Funded(chan) => {
5837 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5842 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5843 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5845 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5846 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5847 handle_errors.push((Err(err), counterparty_node_id));
5848 if needs_close { return false; }
5851 match chan.channel_update_status() {
5852 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5853 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5854 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5855 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5856 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5857 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5858 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5860 if n >= DISABLE_GOSSIP_TICKS {
5861 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5862 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5863 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5864 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5868 should_persist = NotifyOption::DoPersist;
5870 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5873 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5875 if n >= ENABLE_GOSSIP_TICKS {
5876 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5877 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5878 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5879 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5883 should_persist = NotifyOption::DoPersist;
5885 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5891 chan.context.maybe_expire_prev_config();
5893 if chan.should_disconnect_peer_awaiting_response() {
5894 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
5895 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5896 counterparty_node_id, chan_id);
5897 pending_msg_events.push(MessageSendEvent::HandleError {
5898 node_id: counterparty_node_id,
5899 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5900 msg: msgs::WarningMessage {
5901 channel_id: *chan_id,
5902 data: "Disconnecting due to timeout awaiting response".to_owned(),
5910 ChannelPhase::UnfundedInboundV1(chan) => {
5911 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5912 pending_msg_events, counterparty_node_id)
5914 ChannelPhase::UnfundedOutboundV1(chan) => {
5915 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5916 pending_msg_events, counterparty_node_id)
5918 #[cfg(any(dual_funding, splicing))]
5919 ChannelPhase::UnfundedInboundV2(chan) => {
5920 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5921 pending_msg_events, counterparty_node_id)
5923 #[cfg(any(dual_funding, splicing))]
5924 ChannelPhase::UnfundedOutboundV2(chan) => {
5925 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5926 pending_msg_events, counterparty_node_id)
5931 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5932 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5933 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id), None);
5934 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5935 peer_state.pending_msg_events.push(
5936 events::MessageSendEvent::HandleError {
5937 node_id: counterparty_node_id,
5938 action: msgs::ErrorAction::SendErrorMessage {
5939 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5945 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5947 if peer_state.ok_to_remove(true) {
5948 pending_peers_awaiting_removal.push(counterparty_node_id);
5953 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5954 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5955 // of to that peer is later closed while still being disconnected (i.e. force closed),
5956 // we therefore need to remove the peer from `peer_state` separately.
5957 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5958 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5959 // negative effects on parallelism as much as possible.
5960 if pending_peers_awaiting_removal.len() > 0 {
5961 let mut per_peer_state = self.per_peer_state.write().unwrap();
5962 for counterparty_node_id in pending_peers_awaiting_removal {
5963 match per_peer_state.entry(counterparty_node_id) {
5964 hash_map::Entry::Occupied(entry) => {
5965 // Remove the entry if the peer is still disconnected and we still
5966 // have no channels to the peer.
5967 let remove_entry = {
5968 let peer_state = entry.get().lock().unwrap();
5969 peer_state.ok_to_remove(true)
5972 entry.remove_entry();
5975 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5980 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5981 if payment.htlcs.is_empty() {
5982 // This should be unreachable
5983 debug_assert!(false);
5986 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5987 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5988 // In this case we're not going to handle any timeouts of the parts here.
5989 // This condition determining whether the MPP is complete here must match
5990 // exactly the condition used in `process_pending_htlc_forwards`.
5991 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5992 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5995 } else if payment.htlcs.iter_mut().any(|htlc| {
5996 htlc.timer_ticks += 1;
5997 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5999 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
6000 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
6007 for htlc_source in timed_out_mpp_htlcs.drain(..) {
6008 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
6009 let reason = HTLCFailReason::from_failure_code(23);
6010 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
6011 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
6014 for (err, counterparty_node_id) in handle_errors.drain(..) {
6015 let _ = handle_error!(self, err, counterparty_node_id);
6018 for shutdown_res in shutdown_channels {
6019 self.finish_close_channel(shutdown_res);
6022 #[cfg(feature = "std")]
6023 let duration_since_epoch = std::time::SystemTime::now()
6024 .duration_since(std::time::SystemTime::UNIX_EPOCH)
6025 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
6026 #[cfg(not(feature = "std"))]
6027 let duration_since_epoch = Duration::from_secs(
6028 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6031 self.pending_outbound_payments.remove_stale_payments(
6032 duration_since_epoch, &self.pending_events
6035 // Technically we don't need to do this here, but if we have holding cell entries in a
6036 // channel that need freeing, it's better to do that here and block a background task
6037 // than block the message queueing pipeline.
6038 if self.check_free_holding_cells() {
6039 should_persist = NotifyOption::DoPersist;
6046 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6047 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6048 /// along the path (including in our own channel on which we received it).
6050 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6051 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6052 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6053 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6055 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6056 /// [`ChannelManager::claim_funds`]), you should still monitor for
6057 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6058 /// startup during which time claims that were in-progress at shutdown may be replayed.
6059 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6060 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6063 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6064 /// reason for the failure.
6066 /// See [`FailureCode`] for valid failure codes.
6067 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6068 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6070 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6071 if let Some(payment) = removed_source {
6072 for htlc in payment.htlcs {
6073 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6074 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6075 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6076 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6081 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6082 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6083 match failure_code {
6084 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6085 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6086 FailureCode::IncorrectOrUnknownPaymentDetails => {
6087 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6088 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6089 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6091 FailureCode::InvalidOnionPayload(data) => {
6092 let fail_data = match data {
6093 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6096 HTLCFailReason::reason(failure_code.into(), fail_data)
6101 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6102 /// that we want to return and a channel.
6104 /// This is for failures on the channel on which the HTLC was *received*, not failures
6106 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6107 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6108 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6109 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6110 // an inbound SCID alias before the real SCID.
6111 let scid_pref = if chan.context.should_announce() {
6112 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6114 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6116 if let Some(scid) = scid_pref {
6117 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6119 (0x4000|10, Vec::new())
6124 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6125 /// that we want to return and a channel.
6126 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6127 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6128 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6129 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6130 if desired_err_code == 0x1000 | 20 {
6131 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6132 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6133 0u16.write(&mut enc).expect("Writes cannot fail");
6135 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6136 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6137 upd.write(&mut enc).expect("Writes cannot fail");
6138 (desired_err_code, enc.0)
6140 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6141 // which means we really shouldn't have gotten a payment to be forwarded over this
6142 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6143 // PERM|no_such_channel should be fine.
6144 (0x4000|10, Vec::new())
6148 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6149 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6150 // be surfaced to the user.
6151 fn fail_holding_cell_htlcs(
6152 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6153 counterparty_node_id: &PublicKey
6155 let (failure_code, onion_failure_data) = {
6156 let per_peer_state = self.per_peer_state.read().unwrap();
6157 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6158 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6159 let peer_state = &mut *peer_state_lock;
6160 match peer_state.channel_by_id.entry(channel_id) {
6161 hash_map::Entry::Occupied(chan_phase_entry) => {
6162 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6163 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6165 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6166 debug_assert!(false);
6167 (0x4000|10, Vec::new())
6170 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6172 } else { (0x4000|10, Vec::new()) }
6175 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6176 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6177 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6178 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6182 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6183 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6184 if push_forward_event { self.push_pending_forwards_ev(); }
6187 /// Fails an HTLC backwards to the sender of it to us.
6188 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6189 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6190 // Ensure that no peer state channel storage lock is held when calling this function.
6191 // This ensures that future code doesn't introduce a lock-order requirement for
6192 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6193 // this function with any `per_peer_state` peer lock acquired would.
6194 #[cfg(debug_assertions)]
6195 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6196 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6199 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6200 //identify whether we sent it or not based on the (I presume) very different runtime
6201 //between the branches here. We should make this async and move it into the forward HTLCs
6204 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6205 // from block_connected which may run during initialization prior to the chain_monitor
6206 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6207 let mut push_forward_event;
6209 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6210 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6211 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6212 &self.pending_events, &self.logger);
6214 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6215 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6216 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6219 WithContext::from(&self.logger, None, Some(*channel_id), Some(*payment_hash)),
6220 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6221 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6223 let failure = match blinded_failure {
6224 Some(BlindedFailure::FromIntroductionNode) => {
6225 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6226 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6227 incoming_packet_shared_secret, phantom_shared_secret
6229 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6231 Some(BlindedFailure::FromBlindedNode) => {
6232 HTLCForwardInfo::FailMalformedHTLC {
6234 failure_code: INVALID_ONION_BLINDING,
6235 sha256_of_onion: [0; 32]
6239 let err_packet = onion_error.get_encrypted_failure_packet(
6240 incoming_packet_shared_secret, phantom_shared_secret
6242 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6246 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6247 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6248 push_forward_event &= forward_htlcs.is_empty();
6249 match forward_htlcs.entry(*short_channel_id) {
6250 hash_map::Entry::Occupied(mut entry) => {
6251 entry.get_mut().push(failure);
6253 hash_map::Entry::Vacant(entry) => {
6254 entry.insert(vec!(failure));
6257 mem::drop(forward_htlcs);
6258 let mut pending_events = self.pending_events.lock().unwrap();
6259 pending_events.push_back((events::Event::HTLCHandlingFailed {
6260 prev_channel_id: *channel_id,
6261 failed_next_destination: destination,
6268 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6269 /// [`MessageSendEvent`]s needed to claim the payment.
6271 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6272 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6273 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6274 /// successful. It will generally be available in the next [`process_pending_events`] call.
6276 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6277 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6278 /// event matches your expectation. If you fail to do so and call this method, you may provide
6279 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6281 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6282 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6283 /// [`claim_funds_with_known_custom_tlvs`].
6285 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6286 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6287 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6288 /// [`process_pending_events`]: EventsProvider::process_pending_events
6289 /// [`create_inbound_payment`]: Self::create_inbound_payment
6290 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6291 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6292 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6293 self.claim_payment_internal(payment_preimage, false);
6296 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6297 /// even type numbers.
6301 /// You MUST check you've understood all even TLVs before using this to
6302 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6304 /// [`claim_funds`]: Self::claim_funds
6305 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6306 self.claim_payment_internal(payment_preimage, true);
6309 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6310 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6312 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6315 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6316 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6317 let mut receiver_node_id = self.our_network_pubkey;
6318 for htlc in payment.htlcs.iter() {
6319 if htlc.prev_hop.phantom_shared_secret.is_some() {
6320 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6321 .expect("Failed to get node_id for phantom node recipient");
6322 receiver_node_id = phantom_pubkey;
6327 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6328 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6329 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6330 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6331 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6333 if dup_purpose.is_some() {
6334 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6335 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6339 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6340 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6341 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6342 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6343 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6344 mem::drop(claimable_payments);
6345 for htlc in payment.htlcs {
6346 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6347 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6348 let receiver = HTLCDestination::FailedPayment { payment_hash };
6349 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6358 debug_assert!(!sources.is_empty());
6360 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6361 // and when we got here we need to check that the amount we're about to claim matches the
6362 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6363 // the MPP parts all have the same `total_msat`.
6364 let mut claimable_amt_msat = 0;
6365 let mut prev_total_msat = None;
6366 let mut expected_amt_msat = None;
6367 let mut valid_mpp = true;
6368 let mut errs = Vec::new();
6369 let per_peer_state = self.per_peer_state.read().unwrap();
6370 for htlc in sources.iter() {
6371 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6372 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6373 debug_assert!(false);
6377 prev_total_msat = Some(htlc.total_msat);
6379 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6380 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6381 debug_assert!(false);
6385 expected_amt_msat = htlc.total_value_received;
6386 claimable_amt_msat += htlc.value;
6388 mem::drop(per_peer_state);
6389 if sources.is_empty() || expected_amt_msat.is_none() {
6390 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6391 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6394 if claimable_amt_msat != expected_amt_msat.unwrap() {
6395 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6396 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6397 expected_amt_msat.unwrap(), claimable_amt_msat);
6401 for htlc in sources.drain(..) {
6402 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6403 if let Err((pk, err)) = self.claim_funds_from_hop(
6404 htlc.prev_hop, payment_preimage,
6405 |_, definitely_duplicate| {
6406 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6407 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6410 if let msgs::ErrorAction::IgnoreError = err.err.action {
6411 // We got a temporary failure updating monitor, but will claim the
6412 // HTLC when the monitor updating is restored (or on chain).
6413 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id), Some(payment_hash));
6414 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6415 } else { errs.push((pk, err)); }
6420 for htlc in sources.drain(..) {
6421 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6422 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6423 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6424 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6425 let receiver = HTLCDestination::FailedPayment { payment_hash };
6426 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6428 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6431 // Now we can handle any errors which were generated.
6432 for (counterparty_node_id, err) in errs.drain(..) {
6433 let res: Result<(), _> = Err(err);
6434 let _ = handle_error!(self, res, counterparty_node_id);
6438 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6439 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6440 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6441 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6443 // If we haven't yet run background events assume we're still deserializing and shouldn't
6444 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6445 // `BackgroundEvent`s.
6446 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6448 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6449 // the required mutexes are not held before we start.
6450 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6451 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6454 let per_peer_state = self.per_peer_state.read().unwrap();
6455 let chan_id = prev_hop.channel_id;
6456 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6457 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6461 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6462 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6463 .map(|peer_mutex| peer_mutex.lock().unwrap())
6466 if peer_state_opt.is_some() {
6467 let mut peer_state_lock = peer_state_opt.unwrap();
6468 let peer_state = &mut *peer_state_lock;
6469 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6470 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6471 let counterparty_node_id = chan.context.get_counterparty_node_id();
6472 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
6473 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6476 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6477 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6478 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6480 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6483 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6484 peer_state, per_peer_state, chan);
6486 // If we're running during init we cannot update a monitor directly -
6487 // they probably haven't actually been loaded yet. Instead, push the
6488 // monitor update as a background event.
6489 self.pending_background_events.lock().unwrap().push(
6490 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6491 counterparty_node_id,
6492 funding_txo: prev_hop.outpoint,
6493 channel_id: prev_hop.channel_id,
6494 update: monitor_update.clone(),
6498 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6499 let action = if let Some(action) = completion_action(None, true) {
6504 mem::drop(peer_state_lock);
6506 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6508 let (node_id, _funding_outpoint, channel_id, blocker) =
6509 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6510 downstream_counterparty_node_id: node_id,
6511 downstream_funding_outpoint: funding_outpoint,
6512 blocking_action: blocker, downstream_channel_id: channel_id,
6514 (node_id, funding_outpoint, channel_id, blocker)
6516 debug_assert!(false,
6517 "Duplicate claims should always free another channel immediately");
6520 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6521 let mut peer_state = peer_state_mtx.lock().unwrap();
6522 if let Some(blockers) = peer_state
6523 .actions_blocking_raa_monitor_updates
6524 .get_mut(&channel_id)
6526 let mut found_blocker = false;
6527 blockers.retain(|iter| {
6528 // Note that we could actually be blocked, in
6529 // which case we need to only remove the one
6530 // blocker which was added duplicatively.
6531 let first_blocker = !found_blocker;
6532 if *iter == blocker { found_blocker = true; }
6533 *iter != blocker || !first_blocker
6535 debug_assert!(found_blocker);
6538 debug_assert!(false);
6547 let preimage_update = ChannelMonitorUpdate {
6548 update_id: CLOSED_CHANNEL_UPDATE_ID,
6549 counterparty_node_id: None,
6550 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6553 channel_id: Some(prev_hop.channel_id),
6557 // We update the ChannelMonitor on the backward link, after
6558 // receiving an `update_fulfill_htlc` from the forward link.
6559 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6560 if update_res != ChannelMonitorUpdateStatus::Completed {
6561 // TODO: This needs to be handled somehow - if we receive a monitor update
6562 // with a preimage we *must* somehow manage to propagate it to the upstream
6563 // channel, or we must have an ability to receive the same event and try
6564 // again on restart.
6565 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id), None),
6566 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6567 payment_preimage, update_res);
6570 // If we're running during init we cannot update a monitor directly - they probably
6571 // haven't actually been loaded yet. Instead, push the monitor update as a background
6573 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6574 // channel is already closed) we need to ultimately handle the monitor update
6575 // completion action only after we've completed the monitor update. This is the only
6576 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6577 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6578 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6579 // complete the monitor update completion action from `completion_action`.
6580 self.pending_background_events.lock().unwrap().push(
6581 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6582 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6585 // Note that we do process the completion action here. This totally could be a
6586 // duplicate claim, but we have no way of knowing without interrogating the
6587 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6588 // generally always allowed to be duplicative (and it's specifically noted in
6589 // `PaymentForwarded`).
6590 self.handle_monitor_update_completion_actions(completion_action(None, false));
6594 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6595 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6598 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6599 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6600 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6601 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6604 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6605 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6606 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6607 if let Some(pubkey) = next_channel_counterparty_node_id {
6608 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6610 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6611 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6612 counterparty_node_id: path.hops[0].pubkey,
6614 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6615 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6618 HTLCSource::PreviousHopData(hop_data) => {
6619 let prev_channel_id = hop_data.channel_id;
6620 let prev_user_channel_id = hop_data.user_channel_id;
6621 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6622 #[cfg(debug_assertions)]
6623 let claiming_chan_funding_outpoint = hop_data.outpoint;
6624 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6625 |htlc_claim_value_msat, definitely_duplicate| {
6626 let chan_to_release =
6627 if let Some(node_id) = next_channel_counterparty_node_id {
6628 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6630 // We can only get `None` here if we are processing a
6631 // `ChannelMonitor`-originated event, in which case we
6632 // don't care about ensuring we wake the downstream
6633 // channel's monitor updating - the channel is already
6638 if definitely_duplicate && startup_replay {
6639 // On startup we may get redundant claims which are related to
6640 // monitor updates still in flight. In that case, we shouldn't
6641 // immediately free, but instead let that monitor update complete
6642 // in the background.
6643 #[cfg(debug_assertions)] {
6644 let background_events = self.pending_background_events.lock().unwrap();
6645 // There should be a `BackgroundEvent` pending...
6646 assert!(background_events.iter().any(|ev| {
6648 // to apply a monitor update that blocked the claiming channel,
6649 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6650 funding_txo, update, ..
6652 if *funding_txo == claiming_chan_funding_outpoint {
6653 assert!(update.updates.iter().any(|upd|
6654 if let ChannelMonitorUpdateStep::PaymentPreimage {
6655 payment_preimage: update_preimage
6657 payment_preimage == *update_preimage
6663 // or the channel we'd unblock is already closed,
6664 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6665 (funding_txo, _channel_id, monitor_update)
6667 if *funding_txo == next_channel_outpoint {
6668 assert_eq!(monitor_update.updates.len(), 1);
6670 monitor_update.updates[0],
6671 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6676 // or the monitor update has completed and will unblock
6677 // immediately once we get going.
6678 BackgroundEvent::MonitorUpdatesComplete {
6681 *channel_id == prev_channel_id,
6683 }), "{:?}", *background_events);
6686 } else if definitely_duplicate {
6687 if let Some(other_chan) = chan_to_release {
6688 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6689 downstream_counterparty_node_id: other_chan.0,
6690 downstream_funding_outpoint: other_chan.1,
6691 downstream_channel_id: other_chan.2,
6692 blocking_action: other_chan.3,
6696 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6697 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6698 Some(claimed_htlc_value - forwarded_htlc_value)
6701 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6702 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6703 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6704 event: events::Event::PaymentForwarded {
6705 prev_channel_id: Some(prev_channel_id),
6706 next_channel_id: Some(next_channel_id),
6707 prev_user_channel_id,
6708 next_user_channel_id,
6709 total_fee_earned_msat,
6711 claim_from_onchain_tx: from_onchain,
6712 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6714 downstream_counterparty_and_funding_outpoint: chan_to_release,
6718 if let Err((pk, err)) = res {
6719 let result: Result<(), _> = Err(err);
6720 let _ = handle_error!(self, result, pk);
6726 /// Gets the node_id held by this ChannelManager
6727 pub fn get_our_node_id(&self) -> PublicKey {
6728 self.our_network_pubkey.clone()
6731 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6732 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6733 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6734 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6736 for action in actions.into_iter() {
6738 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6739 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6740 if let Some(ClaimingPayment {
6742 payment_purpose: purpose,
6745 sender_intended_value: sender_intended_total_msat,
6747 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6751 receiver_node_id: Some(receiver_node_id),
6753 sender_intended_total_msat,
6757 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6758 event, downstream_counterparty_and_funding_outpoint
6760 self.pending_events.lock().unwrap().push_back((event, None));
6761 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6762 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6765 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6766 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6768 self.handle_monitor_update_release(
6769 downstream_counterparty_node_id,
6770 downstream_funding_outpoint,
6771 downstream_channel_id,
6772 Some(blocking_action),
6779 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6780 /// update completion.
6781 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6782 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6783 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6784 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6785 funding_broadcastable: Option<Transaction>,
6786 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6787 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6788 let logger = WithChannelContext::from(&self.logger, &channel.context, None);
6789 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6790 &channel.context.channel_id(),
6791 if raa.is_some() { "an" } else { "no" },
6792 if commitment_update.is_some() { "a" } else { "no" },
6793 pending_forwards.len(), pending_update_adds.len(),
6794 if funding_broadcastable.is_some() { "" } else { "not " },
6795 if channel_ready.is_some() { "sending" } else { "without" },
6796 if announcement_sigs.is_some() { "sending" } else { "without" });
6798 let counterparty_node_id = channel.context.get_counterparty_node_id();
6799 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6801 let mut htlc_forwards = None;
6802 if !pending_forwards.is_empty() {
6803 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6804 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6806 let mut decode_update_add_htlcs = None;
6807 if !pending_update_adds.is_empty() {
6808 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6811 if let Some(msg) = channel_ready {
6812 send_channel_ready!(self, pending_msg_events, channel, msg);
6814 if let Some(msg) = announcement_sigs {
6815 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6816 node_id: counterparty_node_id,
6821 macro_rules! handle_cs { () => {
6822 if let Some(update) = commitment_update {
6823 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6824 node_id: counterparty_node_id,
6829 macro_rules! handle_raa { () => {
6830 if let Some(revoke_and_ack) = raa {
6831 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6832 node_id: counterparty_node_id,
6833 msg: revoke_and_ack,
6838 RAACommitmentOrder::CommitmentFirst => {
6842 RAACommitmentOrder::RevokeAndACKFirst => {
6848 if let Some(tx) = funding_broadcastable {
6849 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6850 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6854 let mut pending_events = self.pending_events.lock().unwrap();
6855 emit_channel_pending_event!(pending_events, channel);
6856 emit_channel_ready_event!(pending_events, channel);
6859 (htlc_forwards, decode_update_add_htlcs)
6862 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6863 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6865 let counterparty_node_id = match counterparty_node_id {
6866 Some(cp_id) => cp_id.clone(),
6868 // TODO: Once we can rely on the counterparty_node_id from the
6869 // monitor event, this and the outpoint_to_peer map should be removed.
6870 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6871 match outpoint_to_peer.get(funding_txo) {
6872 Some(cp_id) => cp_id.clone(),
6877 let per_peer_state = self.per_peer_state.read().unwrap();
6878 let mut peer_state_lock;
6879 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6880 if peer_state_mutex_opt.is_none() { return }
6881 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6882 let peer_state = &mut *peer_state_lock;
6884 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6887 let update_actions = peer_state.monitor_update_blocked_actions
6888 .remove(&channel_id).unwrap_or(Vec::new());
6889 mem::drop(peer_state_lock);
6890 mem::drop(per_peer_state);
6891 self.handle_monitor_update_completion_actions(update_actions);
6894 let remaining_in_flight =
6895 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6896 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6899 let logger = WithChannelContext::from(&self.logger, &channel.context, None);
6900 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6901 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6902 remaining_in_flight);
6903 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6906 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6909 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6911 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6912 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6915 /// The `user_channel_id` parameter will be provided back in
6916 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6917 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6919 /// Note that this method will return an error and reject the channel, if it requires support
6920 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6921 /// used to accept such channels.
6923 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6924 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6925 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6926 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6929 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6930 /// it as confirmed immediately.
6932 /// The `user_channel_id` parameter will be provided back in
6933 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6934 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6936 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6937 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6939 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6940 /// transaction and blindly assumes that it will eventually confirm.
6942 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6943 /// does not pay to the correct script the correct amount, *you will lose funds*.
6945 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6946 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6947 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6948 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6951 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6953 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id), None);
6954 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6956 let peers_without_funded_channels =
6957 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6958 let per_peer_state = self.per_peer_state.read().unwrap();
6959 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6961 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6962 log_error!(logger, "{}", err_str);
6964 APIError::ChannelUnavailable { err: err_str }
6966 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6967 let peer_state = &mut *peer_state_lock;
6968 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6970 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6971 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6972 // that we can delay allocating the SCID until after we're sure that the checks below will
6974 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6975 Some(unaccepted_channel) => {
6976 let best_block_height = self.best_block.read().unwrap().height;
6977 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6978 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6979 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6980 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6983 let err_str = "No such channel awaiting to be accepted.".to_owned();
6984 log_error!(logger, "{}", err_str);
6986 return Err(APIError::APIMisuseError { err: err_str });
6992 mem::drop(peer_state_lock);
6993 mem::drop(per_peer_state);
6994 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6995 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6997 return Err(APIError::ChannelUnavailable { err: e.err });
7001 Ok(mut channel) => {
7003 // This should have been correctly configured by the call to InboundV1Channel::new.
7004 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
7005 } else if channel.context.get_channel_type().requires_zero_conf() {
7006 let send_msg_err_event = events::MessageSendEvent::HandleError {
7007 node_id: channel.context.get_counterparty_node_id(),
7008 action: msgs::ErrorAction::SendErrorMessage{
7009 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
7012 peer_state.pending_msg_events.push(send_msg_err_event);
7013 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
7014 log_error!(logger, "{}", err_str);
7016 return Err(APIError::APIMisuseError { err: err_str });
7018 // If this peer already has some channels, a new channel won't increase our number of peers
7019 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7020 // channels per-peer we can accept channels from a peer with existing ones.
7021 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
7022 let send_msg_err_event = events::MessageSendEvent::HandleError {
7023 node_id: channel.context.get_counterparty_node_id(),
7024 action: msgs::ErrorAction::SendErrorMessage{
7025 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7028 peer_state.pending_msg_events.push(send_msg_err_event);
7029 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7030 log_error!(logger, "{}", err_str);
7032 return Err(APIError::APIMisuseError { err: err_str });
7036 // Now that we know we have a channel, assign an outbound SCID alias.
7037 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7038 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7040 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7041 node_id: channel.context.get_counterparty_node_id(),
7042 msg: channel.accept_inbound_channel(),
7045 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7052 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7053 /// or 0-conf channels.
7055 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7056 /// non-0-conf channels we have with the peer.
7057 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7058 where Filter: Fn(&PeerState<SP>) -> bool {
7059 let mut peers_without_funded_channels = 0;
7060 let best_block_height = self.best_block.read().unwrap().height;
7062 let peer_state_lock = self.per_peer_state.read().unwrap();
7063 for (_, peer_mtx) in peer_state_lock.iter() {
7064 let peer = peer_mtx.lock().unwrap();
7065 if !maybe_count_peer(&*peer) { continue; }
7066 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7067 if num_unfunded_channels == peer.total_channel_count() {
7068 peers_without_funded_channels += 1;
7072 return peers_without_funded_channels;
7075 fn unfunded_channel_count(
7076 peer: &PeerState<SP>, best_block_height: u32
7078 let mut num_unfunded_channels = 0;
7079 for (_, phase) in peer.channel_by_id.iter() {
7081 ChannelPhase::Funded(chan) => {
7082 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7083 // which have not yet had any confirmations on-chain.
7084 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7085 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7087 num_unfunded_channels += 1;
7090 ChannelPhase::UnfundedInboundV1(chan) => {
7091 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7092 num_unfunded_channels += 1;
7095 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7096 #[cfg(any(dual_funding, splicing))]
7097 ChannelPhase::UnfundedInboundV2(chan) => {
7098 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7099 // included in the unfunded count.
7100 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7101 chan.dual_funding_context.our_funding_satoshis == 0 {
7102 num_unfunded_channels += 1;
7105 ChannelPhase::UnfundedOutboundV1(_) => {
7106 // Outbound channels don't contribute to the unfunded count in the DoS context.
7109 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7110 #[cfg(any(dual_funding, splicing))]
7111 ChannelPhase::UnfundedOutboundV2(_) => {
7112 // Outbound channels don't contribute to the unfunded count in the DoS context.
7117 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7120 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7121 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7122 // likely to be lost on restart!
7123 if msg.common_fields.chain_hash != self.chain_hash {
7124 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7125 msg.common_fields.temporary_channel_id.clone()));
7128 if !self.default_configuration.accept_inbound_channels {
7129 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7130 msg.common_fields.temporary_channel_id.clone()));
7133 // Get the number of peers with channels, but without funded ones. We don't care too much
7134 // about peers that never open a channel, so we filter by peers that have at least one
7135 // channel, and then limit the number of those with unfunded channels.
7136 let channeled_peers_without_funding =
7137 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7139 let per_peer_state = self.per_peer_state.read().unwrap();
7140 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7142 debug_assert!(false);
7143 MsgHandleErrInternal::send_err_msg_no_close(
7144 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7145 msg.common_fields.temporary_channel_id.clone())
7147 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7148 let peer_state = &mut *peer_state_lock;
7150 // If this peer already has some channels, a new channel won't increase our number of peers
7151 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7152 // channels per-peer we can accept channels from a peer with existing ones.
7153 if peer_state.total_channel_count() == 0 &&
7154 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7155 !self.default_configuration.manually_accept_inbound_channels
7157 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7158 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7159 msg.common_fields.temporary_channel_id.clone()));
7162 let best_block_height = self.best_block.read().unwrap().height;
7163 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7164 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7165 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7166 msg.common_fields.temporary_channel_id.clone()));
7169 let channel_id = msg.common_fields.temporary_channel_id;
7170 let channel_exists = peer_state.has_channel(&channel_id);
7172 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7173 "temporary_channel_id collision for the same peer!".to_owned(),
7174 msg.common_fields.temporary_channel_id.clone()));
7177 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7178 if self.default_configuration.manually_accept_inbound_channels {
7179 let channel_type = channel::channel_type_from_open_channel(
7180 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7182 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7184 let mut pending_events = self.pending_events.lock().unwrap();
7185 pending_events.push_back((events::Event::OpenChannelRequest {
7186 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7187 counterparty_node_id: counterparty_node_id.clone(),
7188 funding_satoshis: msg.common_fields.funding_satoshis,
7189 push_msat: msg.push_msat,
7192 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7193 open_channel_msg: msg.clone(),
7194 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7199 // Otherwise create the channel right now.
7200 let mut random_bytes = [0u8; 16];
7201 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7202 let user_channel_id = u128::from_be_bytes(random_bytes);
7203 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7204 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7205 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7208 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7213 let channel_type = channel.context.get_channel_type();
7214 if channel_type.requires_zero_conf() {
7215 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7216 "No zero confirmation channels accepted".to_owned(),
7217 msg.common_fields.temporary_channel_id.clone()));
7219 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7220 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7221 "No channels with anchor outputs accepted".to_owned(),
7222 msg.common_fields.temporary_channel_id.clone()));
7225 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7226 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7228 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7229 node_id: counterparty_node_id.clone(),
7230 msg: channel.accept_inbound_channel(),
7232 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7236 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7237 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7238 // likely to be lost on restart!
7239 let (value, output_script, user_id) = {
7240 let per_peer_state = self.per_peer_state.read().unwrap();
7241 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7243 debug_assert!(false);
7244 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7246 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7247 let peer_state = &mut *peer_state_lock;
7248 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7249 hash_map::Entry::Occupied(mut phase) => {
7250 match phase.get_mut() {
7251 ChannelPhase::UnfundedOutboundV1(chan) => {
7252 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7253 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7256 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7260 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7263 let mut pending_events = self.pending_events.lock().unwrap();
7264 pending_events.push_back((events::Event::FundingGenerationReady {
7265 temporary_channel_id: msg.common_fields.temporary_channel_id,
7266 counterparty_node_id: *counterparty_node_id,
7267 channel_value_satoshis: value,
7269 user_channel_id: user_id,
7274 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7275 let best_block = *self.best_block.read().unwrap();
7277 let per_peer_state = self.per_peer_state.read().unwrap();
7278 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7280 debug_assert!(false);
7281 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7284 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7285 let peer_state = &mut *peer_state_lock;
7286 let (mut chan, funding_msg_opt, monitor) =
7287 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7288 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7289 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context, None);
7290 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7292 Err((inbound_chan, err)) => {
7293 // We've already removed this inbound channel from the map in `PeerState`
7294 // above so at this point we just need to clean up any lingering entries
7295 // concerning this channel as it is safe to do so.
7296 debug_assert!(matches!(err, ChannelError::Close(_)));
7297 // Really we should be returning the channel_id the peer expects based
7298 // on their funding info here, but they're horribly confused anyway, so
7299 // there's not a lot we can do to save them.
7300 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7304 Some(mut phase) => {
7305 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7306 let err = ChannelError::Close(err_msg);
7307 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7309 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7312 let funded_channel_id = chan.context.channel_id();
7314 macro_rules! fail_chan { ($err: expr) => { {
7315 // Note that at this point we've filled in the funding outpoint on our
7316 // channel, but its actually in conflict with another channel. Thus, if
7317 // we call `convert_chan_phase_err` immediately (thus calling
7318 // `update_maps_on_chan_removal`), we'll remove the existing channel
7319 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7321 let err = ChannelError::Close($err.to_owned());
7322 chan.unset_funding_info(msg.temporary_channel_id);
7323 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7326 match peer_state.channel_by_id.entry(funded_channel_id) {
7327 hash_map::Entry::Occupied(_) => {
7328 fail_chan!("Already had channel with the new channel_id");
7330 hash_map::Entry::Vacant(e) => {
7331 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7332 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7333 hash_map::Entry::Occupied(_) => {
7334 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7336 hash_map::Entry::Vacant(i_e) => {
7337 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7338 if let Ok(persist_state) = monitor_res {
7339 i_e.insert(chan.context.get_counterparty_node_id());
7340 mem::drop(outpoint_to_peer_lock);
7342 // There's no problem signing a counterparty's funding transaction if our monitor
7343 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7344 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7345 // until we have persisted our monitor.
7346 if let Some(msg) = funding_msg_opt {
7347 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7348 node_id: counterparty_node_id.clone(),
7353 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7354 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7355 per_peer_state, chan, INITIAL_MONITOR);
7357 unreachable!("This must be a funded channel as we just inserted it.");
7361 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
7362 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7363 fail_chan!("Duplicate funding outpoint");
7371 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7372 let best_block = *self.best_block.read().unwrap();
7373 let per_peer_state = self.per_peer_state.read().unwrap();
7374 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7376 debug_assert!(false);
7377 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7380 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7381 let peer_state = &mut *peer_state_lock;
7382 match peer_state.channel_by_id.entry(msg.channel_id) {
7383 hash_map::Entry::Occupied(chan_phase_entry) => {
7384 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7385 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7386 let logger = WithContext::from(
7388 Some(chan.context.get_counterparty_node_id()),
7389 Some(chan.context.channel_id()),
7393 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7395 Ok((mut chan, monitor)) => {
7396 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7397 // We really should be able to insert here without doing a second
7398 // lookup, but sadly rust stdlib doesn't currently allow keeping
7399 // the original Entry around with the value removed.
7400 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7401 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7402 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7403 } else { unreachable!(); }
7406 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7407 // We weren't able to watch the channel to begin with, so no
7408 // updates should be made on it. Previously, full_stack_target
7409 // found an (unreachable) panic when the monitor update contained
7410 // within `shutdown_finish` was applied.
7411 chan.unset_funding_info(msg.channel_id);
7412 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7416 debug_assert!(matches!(e, ChannelError::Close(_)),
7417 "We don't have a channel anymore, so the error better have expected close");
7418 // We've already removed this outbound channel from the map in
7419 // `PeerState` above so at this point we just need to clean up any
7420 // lingering entries concerning this channel as it is safe to do so.
7421 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7425 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7428 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7432 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7433 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7434 // closing a channel), so any changes are likely to be lost on restart!
7435 let per_peer_state = self.per_peer_state.read().unwrap();
7436 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7438 debug_assert!(false);
7439 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7441 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7442 let peer_state = &mut *peer_state_lock;
7443 match peer_state.channel_by_id.entry(msg.channel_id) {
7444 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7445 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7446 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
7447 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7448 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7449 if let Some(announcement_sigs) = announcement_sigs_opt {
7450 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7451 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7452 node_id: counterparty_node_id.clone(),
7453 msg: announcement_sigs,
7455 } else if chan.context.is_usable() {
7456 // If we're sending an announcement_signatures, we'll send the (public)
7457 // channel_update after sending a channel_announcement when we receive our
7458 // counterparty's announcement_signatures. Thus, we only bother to send a
7459 // channel_update here if the channel is not public, i.e. we're not sending an
7460 // announcement_signatures.
7461 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7462 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7463 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7464 node_id: counterparty_node_id.clone(),
7471 let mut pending_events = self.pending_events.lock().unwrap();
7472 emit_channel_ready_event!(pending_events, chan);
7477 try_chan_phase_entry!(self, Err(ChannelError::Close(
7478 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7481 hash_map::Entry::Vacant(_) => {
7482 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7487 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7488 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7489 let mut finish_shutdown = None;
7491 let per_peer_state = self.per_peer_state.read().unwrap();
7492 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7494 debug_assert!(false);
7495 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7497 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7498 let peer_state = &mut *peer_state_lock;
7499 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7500 let phase = chan_phase_entry.get_mut();
7502 ChannelPhase::Funded(chan) => {
7503 if !chan.received_shutdown() {
7504 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
7505 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7507 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7510 let funding_txo_opt = chan.context.get_funding_txo();
7511 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7512 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7513 dropped_htlcs = htlcs;
7515 if let Some(msg) = shutdown {
7516 // We can send the `shutdown` message before updating the `ChannelMonitor`
7517 // here as we don't need the monitor update to complete until we send a
7518 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7519 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7520 node_id: *counterparty_node_id,
7524 // Update the monitor with the shutdown script if necessary.
7525 if let Some(monitor_update) = monitor_update_opt {
7526 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7527 peer_state_lock, peer_state, per_peer_state, chan);
7530 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7531 let context = phase.context_mut();
7532 let logger = WithChannelContext::from(&self.logger, context, None);
7533 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7534 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7535 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7537 // TODO(dual_funding): Combine this match arm with above.
7538 #[cfg(any(dual_funding, splicing))]
7539 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7540 let context = phase.context_mut();
7541 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7542 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7543 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7547 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7550 for htlc_source in dropped_htlcs.drain(..) {
7551 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7552 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7553 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7555 if let Some(shutdown_res) = finish_shutdown {
7556 self.finish_close_channel(shutdown_res);
7562 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7563 let per_peer_state = self.per_peer_state.read().unwrap();
7564 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7566 debug_assert!(false);
7567 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7569 let (tx, chan_option, shutdown_result) = {
7570 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7571 let peer_state = &mut *peer_state_lock;
7572 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7573 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7574 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7575 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7576 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7577 if let Some(msg) = closing_signed {
7578 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7579 node_id: counterparty_node_id.clone(),
7584 // We're done with this channel, we've got a signed closing transaction and
7585 // will send the closing_signed back to the remote peer upon return. This
7586 // also implies there are no pending HTLCs left on the channel, so we can
7587 // fully delete it from tracking (the channel monitor is still around to
7588 // watch for old state broadcasts)!
7589 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7590 } else { (tx, None, shutdown_result) }
7592 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7593 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7596 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7599 if let Some(broadcast_tx) = tx {
7600 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7601 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id, None), "Broadcasting {}", log_tx!(broadcast_tx));
7602 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7604 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7605 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7606 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7607 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7612 mem::drop(per_peer_state);
7613 if let Some(shutdown_result) = shutdown_result {
7614 self.finish_close_channel(shutdown_result);
7619 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7620 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7621 //determine the state of the payment based on our response/if we forward anything/the time
7622 //we take to respond. We should take care to avoid allowing such an attack.
7624 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7625 //us repeatedly garbled in different ways, and compare our error messages, which are
7626 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7627 //but we should prevent it anyway.
7629 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7630 // closing a channel), so any changes are likely to be lost on restart!
7632 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7633 let per_peer_state = self.per_peer_state.read().unwrap();
7634 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7636 debug_assert!(false);
7637 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7639 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7640 let peer_state = &mut *peer_state_lock;
7641 match peer_state.channel_by_id.entry(msg.channel_id) {
7642 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7643 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7644 let mut pending_forward_info = match decoded_hop_res {
7645 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7646 self.construct_pending_htlc_status(
7647 msg, counterparty_node_id, shared_secret, next_hop,
7648 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7650 Err(e) => PendingHTLCStatus::Fail(e)
7652 let logger = WithChannelContext::from(&self.logger, &chan.context, Some(msg.payment_hash));
7653 // If the update_add is completely bogus, the call will Err and we will close,
7654 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7655 // want to reject the new HTLC and fail it backwards instead of forwarding.
7656 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7657 if msg.blinding_point.is_some() {
7658 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7659 msgs::UpdateFailMalformedHTLC {
7660 channel_id: msg.channel_id,
7661 htlc_id: msg.htlc_id,
7662 sha256_of_onion: [0; 32],
7663 failure_code: INVALID_ONION_BLINDING,
7667 match pending_forward_info {
7668 PendingHTLCStatus::Forward(PendingHTLCInfo {
7669 ref incoming_shared_secret, ref routing, ..
7671 let reason = if routing.blinded_failure().is_some() {
7672 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7673 } else if (error_code & 0x1000) != 0 {
7674 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7675 HTLCFailReason::reason(real_code, error_data)
7677 HTLCFailReason::from_failure_code(error_code)
7678 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7679 let msg = msgs::UpdateFailHTLC {
7680 channel_id: msg.channel_id,
7681 htlc_id: msg.htlc_id,
7684 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7690 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info, &self.fee_estimator), chan_phase_entry);
7692 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7693 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7696 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7701 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7703 let next_user_channel_id;
7704 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7705 let per_peer_state = self.per_peer_state.read().unwrap();
7706 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7708 debug_assert!(false);
7709 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7711 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7712 let peer_state = &mut *peer_state_lock;
7713 match peer_state.channel_by_id.entry(msg.channel_id) {
7714 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7715 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7716 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7717 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7718 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
7720 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7722 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7723 .or_insert_with(Vec::new)
7724 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7726 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7727 // entry here, even though we *do* need to block the next RAA monitor update.
7728 // We do this instead in the `claim_funds_internal` by attaching a
7729 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7730 // outbound HTLC is claimed. This is guaranteed to all complete before we
7731 // process the RAA as messages are processed from single peers serially.
7732 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7733 next_user_channel_id = chan.context.get_user_id();
7736 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7737 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7740 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7743 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7744 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7745 funding_txo, msg.channel_id, Some(next_user_channel_id),
7751 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7752 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7753 // closing a channel), so any changes are likely to be lost on restart!
7754 let per_peer_state = self.per_peer_state.read().unwrap();
7755 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7757 debug_assert!(false);
7758 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7760 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7761 let peer_state = &mut *peer_state_lock;
7762 match peer_state.channel_by_id.entry(msg.channel_id) {
7763 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7764 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7765 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7767 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7768 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7771 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7776 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7777 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7778 // closing a channel), so any changes are likely to be lost on restart!
7779 let per_peer_state = self.per_peer_state.read().unwrap();
7780 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7782 debug_assert!(false);
7783 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7785 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7786 let peer_state = &mut *peer_state_lock;
7787 match peer_state.channel_by_id.entry(msg.channel_id) {
7788 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7789 if (msg.failure_code & 0x8000) == 0 {
7790 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7791 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7793 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7794 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7796 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7797 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7801 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7805 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7806 let per_peer_state = self.per_peer_state.read().unwrap();
7807 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7809 debug_assert!(false);
7810 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7812 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7813 let peer_state = &mut *peer_state_lock;
7814 match peer_state.channel_by_id.entry(msg.channel_id) {
7815 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7816 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7817 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
7818 let funding_txo = chan.context.get_funding_txo();
7819 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7820 if let Some(monitor_update) = monitor_update_opt {
7821 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7822 peer_state, per_peer_state, chan);
7826 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7827 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7830 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7834 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7835 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7836 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7837 push_forward_event &= decode_update_add_htlcs.is_empty();
7838 let scid = update_add_htlcs.0;
7839 match decode_update_add_htlcs.entry(scid) {
7840 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7841 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7843 if push_forward_event { self.push_pending_forwards_ev(); }
7847 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7848 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7849 if push_forward_event { self.push_pending_forwards_ev() }
7853 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7854 let mut push_forward_event = false;
7855 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7856 let mut new_intercept_events = VecDeque::new();
7857 let mut failed_intercept_forwards = Vec::new();
7858 if !pending_forwards.is_empty() {
7859 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7860 let scid = match forward_info.routing {
7861 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7862 PendingHTLCRouting::Receive { .. } => 0,
7863 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7865 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7866 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7868 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7869 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7870 let forward_htlcs_empty = forward_htlcs.is_empty();
7871 match forward_htlcs.entry(scid) {
7872 hash_map::Entry::Occupied(mut entry) => {
7873 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7874 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7876 hash_map::Entry::Vacant(entry) => {
7877 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7878 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7880 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7881 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7882 match pending_intercepts.entry(intercept_id) {
7883 hash_map::Entry::Vacant(entry) => {
7884 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7885 requested_next_hop_scid: scid,
7886 payment_hash: forward_info.payment_hash,
7887 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7888 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7891 entry.insert(PendingAddHTLCInfo {
7892 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7894 hash_map::Entry::Occupied(_) => {
7895 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id), Some(forward_info.payment_hash));
7896 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7897 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7898 short_channel_id: prev_short_channel_id,
7899 user_channel_id: Some(prev_user_channel_id),
7900 outpoint: prev_funding_outpoint,
7901 channel_id: prev_channel_id,
7902 htlc_id: prev_htlc_id,
7903 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7904 phantom_shared_secret: None,
7905 blinded_failure: forward_info.routing.blinded_failure(),
7908 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7909 HTLCFailReason::from_failure_code(0x4000 | 10),
7910 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7915 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7916 // payments are being processed.
7917 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7918 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7919 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7926 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7927 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7930 if !new_intercept_events.is_empty() {
7931 let mut events = self.pending_events.lock().unwrap();
7932 events.append(&mut new_intercept_events);
7938 fn push_pending_forwards_ev(&self) {
7939 let mut pending_events = self.pending_events.lock().unwrap();
7940 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7941 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7942 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7944 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7945 // events is done in batches and they are not removed until we're done processing each
7946 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7947 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7948 // payments will need an additional forwarding event before being claimed to make them look
7949 // real by taking more time.
7950 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7951 pending_events.push_back((Event::PendingHTLCsForwardable {
7952 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7957 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7958 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7959 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7960 /// the [`ChannelMonitorUpdate`] in question.
7961 fn raa_monitor_updates_held(&self,
7962 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7963 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7965 actions_blocking_raa_monitor_updates
7966 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7967 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7968 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7969 channel_funding_outpoint,
7971 counterparty_node_id,
7976 #[cfg(any(test, feature = "_test_utils"))]
7977 pub(crate) fn test_raa_monitor_updates_held(&self,
7978 counterparty_node_id: PublicKey, channel_id: ChannelId
7980 let per_peer_state = self.per_peer_state.read().unwrap();
7981 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7982 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7983 let peer_state = &mut *peer_state_lck;
7985 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7986 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7987 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7993 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7994 let htlcs_to_fail = {
7995 let per_peer_state = self.per_peer_state.read().unwrap();
7996 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7998 debug_assert!(false);
7999 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8000 }).map(|mtx| mtx.lock().unwrap())?;
8001 let peer_state = &mut *peer_state_lock;
8002 match peer_state.channel_by_id.entry(msg.channel_id) {
8003 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8004 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8005 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
8006 let funding_txo_opt = chan.context.get_funding_txo();
8007 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
8008 self.raa_monitor_updates_held(
8009 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
8010 *counterparty_node_id)
8012 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
8013 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
8014 if let Some(monitor_update) = monitor_update_opt {
8015 let funding_txo = funding_txo_opt
8016 .expect("Funding outpoint must have been set for RAA handling to succeed");
8017 handle_new_monitor_update!(self, funding_txo, monitor_update,
8018 peer_state_lock, peer_state, per_peer_state, chan);
8022 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8023 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
8026 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8029 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8033 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8034 let per_peer_state = self.per_peer_state.read().unwrap();
8035 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8037 debug_assert!(false);
8038 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8040 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8041 let peer_state = &mut *peer_state_lock;
8042 match peer_state.channel_by_id.entry(msg.channel_id) {
8043 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8044 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8045 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
8046 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8048 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8049 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8052 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8057 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8058 let per_peer_state = self.per_peer_state.read().unwrap();
8059 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8061 debug_assert!(false);
8062 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8064 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8065 let peer_state = &mut *peer_state_lock;
8066 match peer_state.channel_by_id.entry(msg.channel_id) {
8067 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8068 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8069 if !chan.context.is_usable() {
8070 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8073 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8074 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8075 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8076 msg, &self.default_configuration
8077 ), chan_phase_entry),
8078 // Note that announcement_signatures fails if the channel cannot be announced,
8079 // so get_channel_update_for_broadcast will never fail by the time we get here.
8080 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8083 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8084 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8087 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8092 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8093 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8094 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8095 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8097 // It's not a local channel
8098 return Ok(NotifyOption::SkipPersistNoEvents)
8101 let per_peer_state = self.per_peer_state.read().unwrap();
8102 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8103 if peer_state_mutex_opt.is_none() {
8104 return Ok(NotifyOption::SkipPersistNoEvents)
8106 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8107 let peer_state = &mut *peer_state_lock;
8108 match peer_state.channel_by_id.entry(chan_id) {
8109 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8110 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8111 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8112 if chan.context.should_announce() {
8113 // If the announcement is about a channel of ours which is public, some
8114 // other peer may simply be forwarding all its gossip to us. Don't provide
8115 // a scary-looking error message and return Ok instead.
8116 return Ok(NotifyOption::SkipPersistNoEvents);
8118 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8120 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8121 let msg_from_node_one = msg.contents.flags & 1 == 0;
8122 if were_node_one == msg_from_node_one {
8123 return Ok(NotifyOption::SkipPersistNoEvents);
8125 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
8126 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8127 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8128 // If nothing changed after applying their update, we don't need to bother
8131 return Ok(NotifyOption::SkipPersistNoEvents);
8135 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8136 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8139 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8141 Ok(NotifyOption::DoPersist)
8144 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8145 let need_lnd_workaround = {
8146 let per_peer_state = self.per_peer_state.read().unwrap();
8148 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8150 debug_assert!(false);
8151 MsgHandleErrInternal::send_err_msg_no_close(
8152 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8156 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id), None);
8157 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8158 let peer_state = &mut *peer_state_lock;
8159 match peer_state.channel_by_id.entry(msg.channel_id) {
8160 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8161 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8162 // Currently, we expect all holding cell update_adds to be dropped on peer
8163 // disconnect, so Channel's reestablish will never hand us any holding cell
8164 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8165 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8166 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8167 msg, &&logger, &self.node_signer, self.chain_hash,
8168 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8169 let mut channel_update = None;
8170 if let Some(msg) = responses.shutdown_msg {
8171 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8172 node_id: counterparty_node_id.clone(),
8175 } else if chan.context.is_usable() {
8176 // If the channel is in a usable state (ie the channel is not being shut
8177 // down), send a unicast channel_update to our counterparty to make sure
8178 // they have the latest channel parameters.
8179 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8180 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8181 node_id: chan.context.get_counterparty_node_id(),
8186 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8187 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8188 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8189 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8190 debug_assert!(htlc_forwards.is_none());
8191 debug_assert!(decode_update_add_htlcs.is_none());
8192 if let Some(upd) = channel_update {
8193 peer_state.pending_msg_events.push(upd);
8197 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8198 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8201 hash_map::Entry::Vacant(_) => {
8202 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8204 // Unfortunately, lnd doesn't force close on errors
8205 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8206 // One of the few ways to get an lnd counterparty to force close is by
8207 // replicating what they do when restoring static channel backups (SCBs). They
8208 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8209 // invalid `your_last_per_commitment_secret`.
8211 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8212 // can assume it's likely the channel closed from our point of view, but it
8213 // remains open on the counterparty's side. By sending this bogus
8214 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8215 // force close broadcasting their latest state. If the closing transaction from
8216 // our point of view remains unconfirmed, it'll enter a race with the
8217 // counterparty's to-be-broadcast latest commitment transaction.
8218 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8219 node_id: *counterparty_node_id,
8220 msg: msgs::ChannelReestablish {
8221 channel_id: msg.channel_id,
8222 next_local_commitment_number: 0,
8223 next_remote_commitment_number: 0,
8224 your_last_per_commitment_secret: [1u8; 32],
8225 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8226 next_funding_txid: None,
8229 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8230 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8231 counterparty_node_id), msg.channel_id)
8237 if let Some(channel_ready_msg) = need_lnd_workaround {
8238 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8240 Ok(NotifyOption::SkipPersistHandleEvents)
8243 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8244 fn process_pending_monitor_events(&self) -> bool {
8245 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8247 let mut failed_channels = Vec::new();
8248 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8249 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8250 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8251 for monitor_event in monitor_events.drain(..) {
8252 match monitor_event {
8253 MonitorEvent::HTLCEvent(htlc_update) => {
8254 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id), Some(htlc_update.payment_hash));
8255 if let Some(preimage) = htlc_update.payment_preimage {
8256 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8257 self.claim_funds_internal(htlc_update.source, preimage,
8258 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8259 false, counterparty_node_id, funding_outpoint, channel_id, None);
8261 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8262 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8263 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8264 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8267 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8268 let counterparty_node_id_opt = match counterparty_node_id {
8269 Some(cp_id) => Some(cp_id),
8271 // TODO: Once we can rely on the counterparty_node_id from the
8272 // monitor event, this and the outpoint_to_peer map should be removed.
8273 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8274 outpoint_to_peer.get(&funding_outpoint).cloned()
8277 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8278 let per_peer_state = self.per_peer_state.read().unwrap();
8279 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8280 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8281 let peer_state = &mut *peer_state_lock;
8282 let pending_msg_events = &mut peer_state.pending_msg_events;
8283 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8284 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8285 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8288 ClosureReason::HolderForceClosed
8290 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8291 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8292 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8293 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8297 pending_msg_events.push(events::MessageSendEvent::HandleError {
8298 node_id: chan.context.get_counterparty_node_id(),
8299 action: msgs::ErrorAction::DisconnectPeer {
8300 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8308 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8309 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8315 for failure in failed_channels.drain(..) {
8316 self.finish_close_channel(failure);
8319 has_pending_monitor_events
8322 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8323 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8324 /// update events as a separate process method here.
8326 pub fn process_monitor_events(&self) {
8327 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8328 self.process_pending_monitor_events();
8331 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8332 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8333 /// update was applied.
8334 fn check_free_holding_cells(&self) -> bool {
8335 let mut has_monitor_update = false;
8336 let mut failed_htlcs = Vec::new();
8338 // Walk our list of channels and find any that need to update. Note that when we do find an
8339 // update, if it includes actions that must be taken afterwards, we have to drop the
8340 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8341 // manage to go through all our peers without finding a single channel to update.
8343 let per_peer_state = self.per_peer_state.read().unwrap();
8344 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8346 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8347 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8348 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8349 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8351 let counterparty_node_id = chan.context.get_counterparty_node_id();
8352 let funding_txo = chan.context.get_funding_txo();
8353 let (monitor_opt, holding_cell_failed_htlcs) =
8354 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context, None));
8355 if !holding_cell_failed_htlcs.is_empty() {
8356 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8358 if let Some(monitor_update) = monitor_opt {
8359 has_monitor_update = true;
8361 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8362 peer_state_lock, peer_state, per_peer_state, chan);
8363 continue 'peer_loop;
8372 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8373 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8374 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8380 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8381 /// is (temporarily) unavailable, and the operation should be retried later.
8383 /// This method allows for that retry - either checking for any signer-pending messages to be
8384 /// attempted in every channel, or in the specifically provided channel.
8386 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8387 #[cfg(async_signing)]
8388 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8389 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8391 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8392 let node_id = phase.context().get_counterparty_node_id();
8394 ChannelPhase::Funded(chan) => {
8395 let msgs = chan.signer_maybe_unblocked(&self.logger);
8396 if let Some(updates) = msgs.commitment_update {
8397 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8402 if let Some(msg) = msgs.funding_signed {
8403 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8408 if let Some(msg) = msgs.channel_ready {
8409 send_channel_ready!(self, pending_msg_events, chan, msg);
8412 ChannelPhase::UnfundedOutboundV1(chan) => {
8413 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8414 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8420 ChannelPhase::UnfundedInboundV1(_) => {},
8424 let per_peer_state = self.per_peer_state.read().unwrap();
8425 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8426 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8427 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8428 let peer_state = &mut *peer_state_lock;
8429 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8430 unblock_chan(chan, &mut peer_state.pending_msg_events);
8434 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8435 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8436 let peer_state = &mut *peer_state_lock;
8437 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8438 unblock_chan(chan, &mut peer_state.pending_msg_events);
8444 /// Check whether any channels have finished removing all pending updates after a shutdown
8445 /// exchange and can now send a closing_signed.
8446 /// Returns whether any closing_signed messages were generated.
8447 fn maybe_generate_initial_closing_signed(&self) -> bool {
8448 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8449 let mut has_update = false;
8450 let mut shutdown_results = Vec::new();
8452 let per_peer_state = self.per_peer_state.read().unwrap();
8454 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8455 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8456 let peer_state = &mut *peer_state_lock;
8457 let pending_msg_events = &mut peer_state.pending_msg_events;
8458 peer_state.channel_by_id.retain(|channel_id, phase| {
8460 ChannelPhase::Funded(chan) => {
8461 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
8462 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8463 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8464 if let Some(msg) = msg_opt {
8466 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8467 node_id: chan.context.get_counterparty_node_id(), msg,
8470 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8471 if let Some(shutdown_result) = shutdown_result_opt {
8472 shutdown_results.push(shutdown_result);
8474 if let Some(tx) = tx_opt {
8475 // We're done with this channel. We got a closing_signed and sent back
8476 // a closing_signed with a closing transaction to broadcast.
8477 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8478 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8479 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8484 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8485 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8486 update_maps_on_chan_removal!(self, &chan.context);
8492 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8493 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8498 _ => true, // Retain unfunded channels if present.
8504 for (counterparty_node_id, err) in handle_errors.drain(..) {
8505 let _ = handle_error!(self, err, counterparty_node_id);
8508 for shutdown_result in shutdown_results.drain(..) {
8509 self.finish_close_channel(shutdown_result);
8515 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8516 /// pushing the channel monitor update (if any) to the background events queue and removing the
8518 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8519 for mut failure in failed_channels.drain(..) {
8520 // Either a commitment transactions has been confirmed on-chain or
8521 // Channel::block_disconnected detected that the funding transaction has been
8522 // reorganized out of the main chain.
8523 // We cannot broadcast our latest local state via monitor update (as
8524 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8525 // so we track the update internally and handle it when the user next calls
8526 // timer_tick_occurred, guaranteeing we're running normally.
8527 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8528 assert_eq!(update.updates.len(), 1);
8529 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8530 assert!(should_broadcast);
8531 } else { unreachable!(); }
8532 self.pending_background_events.lock().unwrap().push(
8533 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8534 counterparty_node_id, funding_txo, update, channel_id,
8537 self.finish_close_channel(failure);
8542 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8543 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8544 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8545 /// not have an expiration unless otherwise set on the builder.
8549 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8550 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8551 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8552 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8553 /// order to send the [`InvoiceRequest`].
8555 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8559 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8564 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8566 /// [`Offer`]: crate::offers::offer::Offer
8567 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8568 pub fn create_offer_builder(&$self) -> Result<$builder, Bolt12SemanticError> {
8569 let node_id = $self.get_our_node_id();
8570 let expanded_key = &$self.inbound_payment_key;
8571 let entropy = &*$self.entropy_source;
8572 let secp_ctx = &$self.secp_ctx;
8574 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8575 let builder = OfferBuilder::deriving_signing_pubkey(
8576 node_id, expanded_key, entropy, secp_ctx
8578 .chain_hash($self.chain_hash)
8585 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8586 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8587 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8591 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8592 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8594 /// The builder will have the provided expiration set. Any changes to the expiration on the
8595 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8596 /// block time minus two hours is used for the current time when determining if the refund has
8599 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8600 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8601 /// with an [`Event::InvoiceRequestFailed`].
8603 /// If `max_total_routing_fee_msat` is not specified, The default from
8604 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8608 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8609 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8610 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8611 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8612 /// order to send the [`Bolt12Invoice`].
8614 /// Also, uses a derived payer id in the refund for payer privacy.
8618 /// Requires a direct connection to an introduction node in the responding
8619 /// [`Bolt12Invoice::payment_paths`].
8624 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8625 /// - `amount_msats` is invalid, or
8626 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8628 /// [`Refund`]: crate::offers::refund::Refund
8629 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8630 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8631 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8632 pub fn create_refund_builder(
8633 &$self, amount_msats: u64, absolute_expiry: Duration, payment_id: PaymentId,
8634 retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8635 ) -> Result<$builder, Bolt12SemanticError> {
8636 let node_id = $self.get_our_node_id();
8637 let expanded_key = &$self.inbound_payment_key;
8638 let entropy = &*$self.entropy_source;
8639 let secp_ctx = &$self.secp_ctx;
8641 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8642 let builder = RefundBuilder::deriving_payer_id(
8643 node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8645 .chain_hash($self.chain_hash)
8646 .absolute_expiry(absolute_expiry)
8649 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8651 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8652 $self.pending_outbound_payments
8653 .add_new_awaiting_invoice(
8654 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8656 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8662 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8664 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8665 T::Target: BroadcasterInterface,
8666 ES::Target: EntropySource,
8667 NS::Target: NodeSigner,
8668 SP::Target: SignerProvider,
8669 F::Target: FeeEstimator,
8673 #[cfg(not(c_bindings))]
8674 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8675 #[cfg(not(c_bindings))]
8676 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8679 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8681 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8683 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8684 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8685 /// [`Bolt12Invoice`] once it is received.
8687 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8688 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8689 /// The optional parameters are used in the builder, if `Some`:
8690 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8691 /// [`Offer::expects_quantity`] is `true`.
8692 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8693 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8695 /// If `max_total_routing_fee_msat` is not specified, The default from
8696 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8700 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8701 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8704 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8705 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8706 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8710 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8711 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8712 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8713 /// in order to send the [`Bolt12Invoice`].
8717 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8718 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8719 /// [`Bolt12Invoice::payment_paths`].
8724 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8725 /// - the provided parameters are invalid for the offer,
8726 /// - the offer is for an unsupported chain, or
8727 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8730 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8731 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8732 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8733 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8734 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8735 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8736 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8737 pub fn pay_for_offer(
8738 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8739 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8740 max_total_routing_fee_msat: Option<u64>
8741 ) -> Result<(), Bolt12SemanticError> {
8742 let expanded_key = &self.inbound_payment_key;
8743 let entropy = &*self.entropy_source;
8744 let secp_ctx = &self.secp_ctx;
8746 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8747 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8749 let builder = builder.chain_hash(self.chain_hash)?;
8751 let builder = match quantity {
8753 Some(quantity) => builder.quantity(quantity)?,
8755 let builder = match amount_msats {
8757 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8759 let builder = match payer_note {
8761 Some(payer_note) => builder.payer_note(payer_note),
8763 let invoice_request = builder.build_and_sign()?;
8764 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8766 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8768 let expiration = StaleExpiration::TimerTicks(1);
8769 self.pending_outbound_payments
8770 .add_new_awaiting_invoice(
8771 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8773 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8775 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8776 if !offer.paths().is_empty() {
8777 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8778 // Using only one path could result in a failure if the path no longer exists. But only
8779 // one invoice for a given payment id will be paid, even if more than one is received.
8780 const REQUEST_LIMIT: usize = 10;
8781 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8782 let message = new_pending_onion_message(
8783 OffersMessage::InvoiceRequest(invoice_request.clone()),
8784 Destination::BlindedPath(path.clone()),
8785 Some(reply_path.clone()),
8787 pending_offers_messages.push(message);
8789 } else if let Some(signing_pubkey) = offer.signing_pubkey() {
8790 let message = new_pending_onion_message(
8791 OffersMessage::InvoiceRequest(invoice_request),
8792 Destination::Node(signing_pubkey),
8795 pending_offers_messages.push(message);
8797 debug_assert!(false);
8798 return Err(Bolt12SemanticError::MissingSigningPubkey);
8804 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8807 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8808 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8809 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8813 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8814 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8815 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8816 /// received and no retries will be made.
8821 /// - the refund is for an unsupported chain, or
8822 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8825 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8826 pub fn request_refund_payment(
8827 &self, refund: &Refund
8828 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8829 let expanded_key = &self.inbound_payment_key;
8830 let entropy = &*self.entropy_source;
8831 let secp_ctx = &self.secp_ctx;
8833 let amount_msats = refund.amount_msats();
8834 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8836 if refund.chain() != self.chain_hash {
8837 return Err(Bolt12SemanticError::UnsupportedChain);
8840 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8842 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8843 Ok((payment_hash, payment_secret)) => {
8844 let payment_context = PaymentContext::Bolt12Refund(Bolt12RefundContext {});
8845 let payment_paths = self.create_blinded_payment_paths(
8846 amount_msats, payment_secret, payment_context
8848 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8850 #[cfg(feature = "std")]
8851 let builder = refund.respond_using_derived_keys(
8852 payment_paths, payment_hash, expanded_key, entropy
8854 #[cfg(not(feature = "std"))]
8855 let created_at = Duration::from_secs(
8856 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8858 #[cfg(not(feature = "std"))]
8859 let builder = refund.respond_using_derived_keys_no_std(
8860 payment_paths, payment_hash, created_at, expanded_key, entropy
8862 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8863 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8864 let reply_path = self.create_blinded_path()
8865 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8867 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8868 if refund.paths().is_empty() {
8869 let message = new_pending_onion_message(
8870 OffersMessage::Invoice(invoice.clone()),
8871 Destination::Node(refund.payer_id()),
8874 pending_offers_messages.push(message);
8876 for path in refund.paths() {
8877 let message = new_pending_onion_message(
8878 OffersMessage::Invoice(invoice.clone()),
8879 Destination::BlindedPath(path.clone()),
8880 Some(reply_path.clone()),
8882 pending_offers_messages.push(message);
8888 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8892 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8895 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8896 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8898 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`] event, which
8899 /// will have the [`PaymentClaimable::purpose`] return `Some` for [`PaymentPurpose::preimage`]. That
8900 /// should then be passed directly to [`claim_funds`].
8902 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8904 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8905 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8909 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8910 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8912 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8914 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8915 /// on versions of LDK prior to 0.0.114.
8917 /// [`claim_funds`]: Self::claim_funds
8918 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8919 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8920 /// [`PaymentPurpose::preimage`]: events::PaymentPurpose::preimage
8921 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8922 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8923 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8924 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8925 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8926 min_final_cltv_expiry_delta)
8929 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8930 /// stored external to LDK.
8932 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8933 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8934 /// the `min_value_msat` provided here, if one is provided.
8936 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8937 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8940 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8941 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8942 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8943 /// sender "proof-of-payment" unless they have paid the required amount.
8945 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8946 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8947 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8948 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8949 /// invoices when no timeout is set.
8951 /// Note that we use block header time to time-out pending inbound payments (with some margin
8952 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8953 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8954 /// If you need exact expiry semantics, you should enforce them upon receipt of
8955 /// [`PaymentClaimable`].
8957 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8958 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8960 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8961 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8965 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8966 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8968 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8970 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8971 /// on versions of LDK prior to 0.0.114.
8973 /// [`create_inbound_payment`]: Self::create_inbound_payment
8974 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8975 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8976 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8977 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8978 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8979 min_final_cltv_expiry)
8982 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8983 /// previously returned from [`create_inbound_payment`].
8985 /// [`create_inbound_payment`]: Self::create_inbound_payment
8986 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8987 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8990 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8992 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8993 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8994 let recipient = self.get_our_node_id();
8995 let secp_ctx = &self.secp_ctx;
8997 let peers = self.per_peer_state.read().unwrap()
8999 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
9000 .map(|(node_id, _)| *node_id)
9001 .collect::<Vec<_>>();
9004 .create_blinded_paths(recipient, peers, secp_ctx)
9005 .and_then(|paths| paths.into_iter().next().ok_or(()))
9008 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
9009 /// [`Router::create_blinded_payment_paths`].
9010 fn create_blinded_payment_paths(
9011 &self, amount_msats: u64, payment_secret: PaymentSecret, payment_context: PaymentContext
9012 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
9013 let secp_ctx = &self.secp_ctx;
9015 let first_hops = self.list_usable_channels();
9016 let payee_node_id = self.get_our_node_id();
9017 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
9018 + LATENCY_GRACE_PERIOD_BLOCKS;
9019 let payee_tlvs = ReceiveTlvs {
9021 payment_constraints: PaymentConstraints {
9023 htlc_minimum_msat: 1,
9027 self.router.create_blinded_payment_paths(
9028 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9032 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9033 /// are used when constructing the phantom invoice's route hints.
9035 /// [phantom node payments]: crate::sign::PhantomKeysManager
9036 pub fn get_phantom_scid(&self) -> u64 {
9037 let best_block_height = self.best_block.read().unwrap().height;
9038 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9040 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9041 // Ensure the generated scid doesn't conflict with a real channel.
9042 match short_to_chan_info.get(&scid_candidate) {
9043 Some(_) => continue,
9044 None => return scid_candidate
9049 /// Gets route hints for use in receiving [phantom node payments].
9051 /// [phantom node payments]: crate::sign::PhantomKeysManager
9052 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9054 channels: self.list_usable_channels(),
9055 phantom_scid: self.get_phantom_scid(),
9056 real_node_pubkey: self.get_our_node_id(),
9060 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9061 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9062 /// [`ChannelManager::forward_intercepted_htlc`].
9064 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9065 /// times to get a unique scid.
9066 pub fn get_intercept_scid(&self) -> u64 {
9067 let best_block_height = self.best_block.read().unwrap().height;
9068 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9070 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9071 // Ensure the generated scid doesn't conflict with a real channel.
9072 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9073 return scid_candidate
9077 /// Gets inflight HTLC information by processing pending outbound payments that are in
9078 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9079 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9080 let mut inflight_htlcs = InFlightHtlcs::new();
9082 let per_peer_state = self.per_peer_state.read().unwrap();
9083 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9084 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9085 let peer_state = &mut *peer_state_lock;
9086 for chan in peer_state.channel_by_id.values().filter_map(
9087 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9089 for (htlc_source, _) in chan.inflight_htlc_sources() {
9090 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9091 inflight_htlcs.process_path(path, self.get_our_node_id());
9100 #[cfg(any(test, feature = "_test_utils"))]
9101 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9102 let events = core::cell::RefCell::new(Vec::new());
9103 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9104 self.process_pending_events(&event_handler);
9108 #[cfg(feature = "_test_utils")]
9109 pub fn push_pending_event(&self, event: events::Event) {
9110 let mut events = self.pending_events.lock().unwrap();
9111 events.push_back((event, None));
9115 pub fn pop_pending_event(&self) -> Option<events::Event> {
9116 let mut events = self.pending_events.lock().unwrap();
9117 events.pop_front().map(|(e, _)| e)
9121 pub fn has_pending_payments(&self) -> bool {
9122 self.pending_outbound_payments.has_pending_payments()
9126 pub fn clear_pending_payments(&self) {
9127 self.pending_outbound_payments.clear_pending_payments()
9130 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9131 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9132 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9133 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9134 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9135 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9136 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9138 let logger = WithContext::from(
9139 &self.logger, Some(counterparty_node_id), Some(channel_id), None
9142 let per_peer_state = self.per_peer_state.read().unwrap();
9143 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9144 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9145 let peer_state = &mut *peer_state_lck;
9146 if let Some(blocker) = completed_blocker.take() {
9147 // Only do this on the first iteration of the loop.
9148 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9149 .get_mut(&channel_id)
9151 blockers.retain(|iter| iter != &blocker);
9155 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9156 channel_funding_outpoint, channel_id, counterparty_node_id) {
9157 // Check that, while holding the peer lock, we don't have anything else
9158 // blocking monitor updates for this channel. If we do, release the monitor
9159 // update(s) when those blockers complete.
9160 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9165 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9167 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9168 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9169 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9170 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9172 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9173 peer_state_lck, peer_state, per_peer_state, chan);
9174 if further_update_exists {
9175 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9180 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9187 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9188 log_pubkey!(counterparty_node_id));
9194 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9195 for action in actions {
9197 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9198 channel_funding_outpoint, channel_id, counterparty_node_id
9200 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9206 /// Processes any events asynchronously in the order they were generated since the last call
9207 /// using the given event handler.
9209 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9210 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9214 process_events_body!(self, ev, { handler(ev).await });
9218 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9220 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9221 T::Target: BroadcasterInterface,
9222 ES::Target: EntropySource,
9223 NS::Target: NodeSigner,
9224 SP::Target: SignerProvider,
9225 F::Target: FeeEstimator,
9229 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9230 /// The returned array will contain `MessageSendEvent`s for different peers if
9231 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9232 /// is always placed next to each other.
9234 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9235 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9236 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9237 /// will randomly be placed first or last in the returned array.
9239 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9240 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9241 /// the `MessageSendEvent`s to the specific peer they were generated under.
9242 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9243 let events = RefCell::new(Vec::new());
9244 PersistenceNotifierGuard::optionally_notify(self, || {
9245 let mut result = NotifyOption::SkipPersistNoEvents;
9247 // TODO: This behavior should be documented. It's unintuitive that we query
9248 // ChannelMonitors when clearing other events.
9249 if self.process_pending_monitor_events() {
9250 result = NotifyOption::DoPersist;
9253 if self.check_free_holding_cells() {
9254 result = NotifyOption::DoPersist;
9256 if self.maybe_generate_initial_closing_signed() {
9257 result = NotifyOption::DoPersist;
9260 let mut is_any_peer_connected = false;
9261 let mut pending_events = Vec::new();
9262 let per_peer_state = self.per_peer_state.read().unwrap();
9263 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9264 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9265 let peer_state = &mut *peer_state_lock;
9266 if peer_state.pending_msg_events.len() > 0 {
9267 pending_events.append(&mut peer_state.pending_msg_events);
9269 if peer_state.is_connected {
9270 is_any_peer_connected = true
9274 // Ensure that we are connected to some peers before getting broadcast messages.
9275 if is_any_peer_connected {
9276 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9277 pending_events.append(&mut broadcast_msgs);
9280 if !pending_events.is_empty() {
9281 events.replace(pending_events);
9290 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9292 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9293 T::Target: BroadcasterInterface,
9294 ES::Target: EntropySource,
9295 NS::Target: NodeSigner,
9296 SP::Target: SignerProvider,
9297 F::Target: FeeEstimator,
9301 /// Processes events that must be periodically handled.
9303 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9304 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9305 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9307 process_events_body!(self, ev, handler.handle_event(ev));
9311 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9313 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9314 T::Target: BroadcasterInterface,
9315 ES::Target: EntropySource,
9316 NS::Target: NodeSigner,
9317 SP::Target: SignerProvider,
9318 F::Target: FeeEstimator,
9322 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9324 let best_block = self.best_block.read().unwrap();
9325 assert_eq!(best_block.block_hash, header.prev_blockhash,
9326 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9327 assert_eq!(best_block.height, height - 1,
9328 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9331 self.transactions_confirmed(header, txdata, height);
9332 self.best_block_updated(header, height);
9335 fn block_disconnected(&self, header: &Header, height: u32) {
9336 let _persistence_guard =
9337 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9338 self, || -> NotifyOption { NotifyOption::DoPersist });
9339 let new_height = height - 1;
9341 let mut best_block = self.best_block.write().unwrap();
9342 assert_eq!(best_block.block_hash, header.block_hash(),
9343 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9344 assert_eq!(best_block.height, height,
9345 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9346 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9349 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context, None)));
9353 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9355 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9356 T::Target: BroadcasterInterface,
9357 ES::Target: EntropySource,
9358 NS::Target: NodeSigner,
9359 SP::Target: SignerProvider,
9360 F::Target: FeeEstimator,
9364 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9365 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9366 // during initialization prior to the chain_monitor being fully configured in some cases.
9367 // See the docs for `ChannelManagerReadArgs` for more.
9369 let block_hash = header.block_hash();
9370 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9372 let _persistence_guard =
9373 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9374 self, || -> NotifyOption { NotifyOption::DoPersist });
9375 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context, None))
9376 .map(|(a, b)| (a, Vec::new(), b)));
9378 let last_best_block_height = self.best_block.read().unwrap().height;
9379 if height < last_best_block_height {
9380 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9381 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context, None)));
9385 fn best_block_updated(&self, header: &Header, height: u32) {
9386 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9387 // during initialization prior to the chain_monitor being fully configured in some cases.
9388 // See the docs for `ChannelManagerReadArgs` for more.
9390 let block_hash = header.block_hash();
9391 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9393 let _persistence_guard =
9394 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9395 self, || -> NotifyOption { NotifyOption::DoPersist });
9396 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9398 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context, None)));
9400 macro_rules! max_time {
9401 ($timestamp: expr) => {
9403 // Update $timestamp to be the max of its current value and the block
9404 // timestamp. This should keep us close to the current time without relying on
9405 // having an explicit local time source.
9406 // Just in case we end up in a race, we loop until we either successfully
9407 // update $timestamp or decide we don't need to.
9408 let old_serial = $timestamp.load(Ordering::Acquire);
9409 if old_serial >= header.time as usize { break; }
9410 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9416 max_time!(self.highest_seen_timestamp);
9417 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9418 payment_secrets.retain(|_, inbound_payment| {
9419 inbound_payment.expiry_time > header.time as u64
9423 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9424 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9425 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9426 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9427 let peer_state = &mut *peer_state_lock;
9428 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9429 let txid_opt = chan.context.get_funding_txo();
9430 let height_opt = chan.context.get_funding_tx_confirmation_height();
9431 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9432 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9433 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9440 fn transaction_unconfirmed(&self, txid: &Txid) {
9441 let _persistence_guard =
9442 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9443 self, || -> NotifyOption { NotifyOption::DoPersist });
9444 self.do_chain_event(None, |channel| {
9445 if let Some(funding_txo) = channel.context.get_funding_txo() {
9446 if funding_txo.txid == *txid {
9447 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context, None)).map(|()| (None, Vec::new(), None))
9448 } else { Ok((None, Vec::new(), None)) }
9449 } else { Ok((None, Vec::new(), None)) }
9454 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9456 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9457 T::Target: BroadcasterInterface,
9458 ES::Target: EntropySource,
9459 NS::Target: NodeSigner,
9460 SP::Target: SignerProvider,
9461 F::Target: FeeEstimator,
9465 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9466 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9468 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9469 (&self, height_opt: Option<u32>, f: FN) {
9470 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9471 // during initialization prior to the chain_monitor being fully configured in some cases.
9472 // See the docs for `ChannelManagerReadArgs` for more.
9474 let mut failed_channels = Vec::new();
9475 let mut timed_out_htlcs = Vec::new();
9477 let per_peer_state = self.per_peer_state.read().unwrap();
9478 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9479 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9480 let peer_state = &mut *peer_state_lock;
9481 let pending_msg_events = &mut peer_state.pending_msg_events;
9483 peer_state.channel_by_id.retain(|_, phase| {
9485 // Retain unfunded channels.
9486 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9487 // TODO(dual_funding): Combine this match arm with above.
9488 #[cfg(any(dual_funding, splicing))]
9489 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9490 ChannelPhase::Funded(channel) => {
9491 let res = f(channel);
9492 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9493 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9494 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9495 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9496 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9498 let logger = WithChannelContext::from(&self.logger, &channel.context, None);
9499 if let Some(channel_ready) = channel_ready_opt {
9500 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9501 if channel.context.is_usable() {
9502 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9503 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9504 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9505 node_id: channel.context.get_counterparty_node_id(),
9510 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9515 let mut pending_events = self.pending_events.lock().unwrap();
9516 emit_channel_ready_event!(pending_events, channel);
9519 if let Some(announcement_sigs) = announcement_sigs {
9520 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9521 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9522 node_id: channel.context.get_counterparty_node_id(),
9523 msg: announcement_sigs,
9525 if let Some(height) = height_opt {
9526 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9527 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9529 // Note that announcement_signatures fails if the channel cannot be announced,
9530 // so get_channel_update_for_broadcast will never fail by the time we get here.
9531 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9536 if channel.is_our_channel_ready() {
9537 if let Some(real_scid) = channel.context.get_short_channel_id() {
9538 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9539 // to the short_to_chan_info map here. Note that we check whether we
9540 // can relay using the real SCID at relay-time (i.e.
9541 // enforce option_scid_alias then), and if the funding tx is ever
9542 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9543 // is always consistent.
9544 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9545 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9546 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9547 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9548 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9551 } else if let Err(reason) = res {
9552 update_maps_on_chan_removal!(self, &channel.context);
9553 // It looks like our counterparty went on-chain or funding transaction was
9554 // reorged out of the main chain. Close the channel.
9555 let reason_message = format!("{}", reason);
9556 failed_channels.push(channel.context.force_shutdown(true, reason));
9557 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9558 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9559 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9563 pending_msg_events.push(events::MessageSendEvent::HandleError {
9564 node_id: channel.context.get_counterparty_node_id(),
9565 action: msgs::ErrorAction::DisconnectPeer {
9566 msg: Some(msgs::ErrorMessage {
9567 channel_id: channel.context.channel_id(),
9568 data: reason_message,
9581 if let Some(height) = height_opt {
9582 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9583 payment.htlcs.retain(|htlc| {
9584 // If height is approaching the number of blocks we think it takes us to get
9585 // our commitment transaction confirmed before the HTLC expires, plus the
9586 // number of blocks we generally consider it to take to do a commitment update,
9587 // just give up on it and fail the HTLC.
9588 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9589 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9590 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9592 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9593 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9594 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9598 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9601 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9602 intercepted_htlcs.retain(|_, htlc| {
9603 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9604 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9605 short_channel_id: htlc.prev_short_channel_id,
9606 user_channel_id: Some(htlc.prev_user_channel_id),
9607 htlc_id: htlc.prev_htlc_id,
9608 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9609 phantom_shared_secret: None,
9610 outpoint: htlc.prev_funding_outpoint,
9611 channel_id: htlc.prev_channel_id,
9612 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9615 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9616 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9617 _ => unreachable!(),
9619 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9620 HTLCFailReason::from_failure_code(0x2000 | 2),
9621 HTLCDestination::InvalidForward { requested_forward_scid }));
9622 let logger = WithContext::from(
9623 &self.logger, None, Some(htlc.prev_channel_id), Some(htlc.forward_info.payment_hash)
9625 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9631 self.handle_init_event_channel_failures(failed_channels);
9633 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9634 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9638 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9639 /// may have events that need processing.
9641 /// In order to check if this [`ChannelManager`] needs persisting, call
9642 /// [`Self::get_and_clear_needs_persistence`].
9644 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9645 /// [`ChannelManager`] and should instead register actions to be taken later.
9646 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9647 self.event_persist_notifier.get_future()
9650 /// Returns true if this [`ChannelManager`] needs to be persisted.
9652 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9653 /// indicates this should be checked.
9654 pub fn get_and_clear_needs_persistence(&self) -> bool {
9655 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9658 #[cfg(any(test, feature = "_test_utils"))]
9659 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9660 self.event_persist_notifier.notify_pending()
9663 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9664 /// [`chain::Confirm`] interfaces.
9665 pub fn current_best_block(&self) -> BestBlock {
9666 self.best_block.read().unwrap().clone()
9669 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9670 /// [`ChannelManager`].
9671 pub fn node_features(&self) -> NodeFeatures {
9672 provided_node_features(&self.default_configuration)
9675 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9676 /// [`ChannelManager`].
9678 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9679 /// or not. Thus, this method is not public.
9680 #[cfg(any(feature = "_test_utils", test))]
9681 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9682 provided_bolt11_invoice_features(&self.default_configuration)
9685 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9686 /// [`ChannelManager`].
9687 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9688 provided_bolt12_invoice_features(&self.default_configuration)
9691 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9692 /// [`ChannelManager`].
9693 pub fn channel_features(&self) -> ChannelFeatures {
9694 provided_channel_features(&self.default_configuration)
9697 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9698 /// [`ChannelManager`].
9699 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9700 provided_channel_type_features(&self.default_configuration)
9703 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9704 /// [`ChannelManager`].
9705 pub fn init_features(&self) -> InitFeatures {
9706 provided_init_features(&self.default_configuration)
9710 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9711 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9713 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9714 T::Target: BroadcasterInterface,
9715 ES::Target: EntropySource,
9716 NS::Target: NodeSigner,
9717 SP::Target: SignerProvider,
9718 F::Target: FeeEstimator,
9722 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9723 // Note that we never need to persist the updated ChannelManager for an inbound
9724 // open_channel message - pre-funded channels are never written so there should be no
9725 // change to the contents.
9726 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9727 let res = self.internal_open_channel(counterparty_node_id, msg);
9728 let persist = match &res {
9729 Err(e) if e.closes_channel() => {
9730 debug_assert!(false, "We shouldn't close a new channel");
9731 NotifyOption::DoPersist
9733 _ => NotifyOption::SkipPersistHandleEvents,
9735 let _ = handle_error!(self, res, *counterparty_node_id);
9740 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9741 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9742 "Dual-funded channels not supported".to_owned(),
9743 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9746 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9747 // Note that we never need to persist the updated ChannelManager for an inbound
9748 // accept_channel message - pre-funded channels are never written so there should be no
9749 // change to the contents.
9750 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9751 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9752 NotifyOption::SkipPersistHandleEvents
9756 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9757 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9758 "Dual-funded channels not supported".to_owned(),
9759 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9762 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9763 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9764 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9767 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9768 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9769 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9772 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9773 // Note that we never need to persist the updated ChannelManager for an inbound
9774 // channel_ready message - while the channel's state will change, any channel_ready message
9775 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9776 // will not force-close the channel on startup.
9777 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9778 let res = self.internal_channel_ready(counterparty_node_id, msg);
9779 let persist = match &res {
9780 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9781 _ => NotifyOption::SkipPersistHandleEvents,
9783 let _ = handle_error!(self, res, *counterparty_node_id);
9788 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9789 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9790 "Quiescence not supported".to_owned(),
9791 msg.channel_id.clone())), *counterparty_node_id);
9795 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9796 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9797 "Splicing not supported".to_owned(),
9798 msg.channel_id.clone())), *counterparty_node_id);
9802 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9803 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9804 "Splicing not supported (splice_ack)".to_owned(),
9805 msg.channel_id.clone())), *counterparty_node_id);
9809 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9810 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9811 "Splicing not supported (splice_locked)".to_owned(),
9812 msg.channel_id.clone())), *counterparty_node_id);
9815 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9816 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9817 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9820 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9821 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9822 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9825 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9826 // Note that we never need to persist the updated ChannelManager for an inbound
9827 // update_add_htlc message - the message itself doesn't change our channel state only the
9828 // `commitment_signed` message afterwards will.
9829 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9830 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9831 let persist = match &res {
9832 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9833 Err(_) => NotifyOption::SkipPersistHandleEvents,
9834 Ok(()) => NotifyOption::SkipPersistNoEvents,
9836 let _ = handle_error!(self, res, *counterparty_node_id);
9841 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9842 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9843 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9846 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9847 // Note that we never need to persist the updated ChannelManager for an inbound
9848 // update_fail_htlc message - the message itself doesn't change our channel state only the
9849 // `commitment_signed` message afterwards will.
9850 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9851 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9852 let persist = match &res {
9853 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9854 Err(_) => NotifyOption::SkipPersistHandleEvents,
9855 Ok(()) => NotifyOption::SkipPersistNoEvents,
9857 let _ = handle_error!(self, res, *counterparty_node_id);
9862 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9863 // Note that we never need to persist the updated ChannelManager for an inbound
9864 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9865 // only the `commitment_signed` message afterwards will.
9866 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9867 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9868 let persist = match &res {
9869 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9870 Err(_) => NotifyOption::SkipPersistHandleEvents,
9871 Ok(()) => NotifyOption::SkipPersistNoEvents,
9873 let _ = handle_error!(self, res, *counterparty_node_id);
9878 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9879 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9880 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9883 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9884 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9885 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9888 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9889 // Note that we never need to persist the updated ChannelManager for an inbound
9890 // update_fee message - the message itself doesn't change our channel state only the
9891 // `commitment_signed` message afterwards will.
9892 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9893 let res = self.internal_update_fee(counterparty_node_id, msg);
9894 let persist = match &res {
9895 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9896 Err(_) => NotifyOption::SkipPersistHandleEvents,
9897 Ok(()) => NotifyOption::SkipPersistNoEvents,
9899 let _ = handle_error!(self, res, *counterparty_node_id);
9904 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9905 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9906 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9909 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9910 PersistenceNotifierGuard::optionally_notify(self, || {
9911 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9914 NotifyOption::DoPersist
9919 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9920 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9921 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9922 let persist = match &res {
9923 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9924 Err(_) => NotifyOption::SkipPersistHandleEvents,
9925 Ok(persist) => *persist,
9927 let _ = handle_error!(self, res, *counterparty_node_id);
9932 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9933 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9934 self, || NotifyOption::SkipPersistHandleEvents);
9935 let mut failed_channels = Vec::new();
9936 let mut per_peer_state = self.per_peer_state.write().unwrap();
9939 WithContext::from(&self.logger, Some(*counterparty_node_id), None, None),
9940 "Marking channels with {} disconnected and generating channel_updates.",
9941 log_pubkey!(counterparty_node_id)
9943 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9944 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9945 let peer_state = &mut *peer_state_lock;
9946 let pending_msg_events = &mut peer_state.pending_msg_events;
9947 peer_state.channel_by_id.retain(|_, phase| {
9948 let context = match phase {
9949 ChannelPhase::Funded(chan) => {
9950 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
9951 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9952 // We only retain funded channels that are not shutdown.
9957 // We retain UnfundedOutboundV1 channel for some time in case
9958 // peer unexpectedly disconnects, and intends to reconnect again.
9959 ChannelPhase::UnfundedOutboundV1(_) => {
9962 // Unfunded inbound channels will always be removed.
9963 ChannelPhase::UnfundedInboundV1(chan) => {
9966 #[cfg(any(dual_funding, splicing))]
9967 ChannelPhase::UnfundedOutboundV2(chan) => {
9970 #[cfg(any(dual_funding, splicing))]
9971 ChannelPhase::UnfundedInboundV2(chan) => {
9975 // Clean up for removal.
9976 update_maps_on_chan_removal!(self, &context);
9977 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9980 // Note that we don't bother generating any events for pre-accept channels -
9981 // they're not considered "channels" yet from the PoV of our events interface.
9982 peer_state.inbound_channel_request_by_id.clear();
9983 pending_msg_events.retain(|msg| {
9985 // V1 Channel Establishment
9986 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9987 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9988 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9989 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9990 // V2 Channel Establishment
9991 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9992 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9993 // Common Channel Establishment
9994 &events::MessageSendEvent::SendChannelReady { .. } => false,
9995 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9997 &events::MessageSendEvent::SendStfu { .. } => false,
9999 &events::MessageSendEvent::SendSplice { .. } => false,
10000 &events::MessageSendEvent::SendSpliceAck { .. } => false,
10001 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
10002 // Interactive Transaction Construction
10003 &events::MessageSendEvent::SendTxAddInput { .. } => false,
10004 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
10005 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
10006 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
10007 &events::MessageSendEvent::SendTxComplete { .. } => false,
10008 &events::MessageSendEvent::SendTxSignatures { .. } => false,
10009 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
10010 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
10011 &events::MessageSendEvent::SendTxAbort { .. } => false,
10012 // Channel Operations
10013 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
10014 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
10015 &events::MessageSendEvent::SendClosingSigned { .. } => false,
10016 &events::MessageSendEvent::SendShutdown { .. } => false,
10017 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
10018 &events::MessageSendEvent::HandleError { .. } => false,
10020 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
10021 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
10022 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
10023 // This check here is to ensure exhaustivity.
10024 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
10025 debug_assert!(false, "This event shouldn't have been here");
10028 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
10029 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
10030 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10031 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10032 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10033 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10036 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10037 peer_state.is_connected = false;
10038 peer_state.ok_to_remove(true)
10039 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10042 per_peer_state.remove(counterparty_node_id);
10044 mem::drop(per_peer_state);
10046 for failure in failed_channels.drain(..) {
10047 self.finish_close_channel(failure);
10051 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10052 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None, None);
10053 if !init_msg.features.supports_static_remote_key() {
10054 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10058 let mut res = Ok(());
10060 PersistenceNotifierGuard::optionally_notify(self, || {
10061 // If we have too many peers connected which don't have funded channels, disconnect the
10062 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10063 // unfunded channels taking up space in memory for disconnected peers, we still let new
10064 // peers connect, but we'll reject new channels from them.
10065 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10066 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10069 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10070 match peer_state_lock.entry(counterparty_node_id.clone()) {
10071 hash_map::Entry::Vacant(e) => {
10072 if inbound_peer_limited {
10074 return NotifyOption::SkipPersistNoEvents;
10076 e.insert(Mutex::new(PeerState {
10077 channel_by_id: new_hash_map(),
10078 inbound_channel_request_by_id: new_hash_map(),
10079 latest_features: init_msg.features.clone(),
10080 pending_msg_events: Vec::new(),
10081 in_flight_monitor_updates: BTreeMap::new(),
10082 monitor_update_blocked_actions: BTreeMap::new(),
10083 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10084 is_connected: true,
10087 hash_map::Entry::Occupied(e) => {
10088 let mut peer_state = e.get().lock().unwrap();
10089 peer_state.latest_features = init_msg.features.clone();
10091 let best_block_height = self.best_block.read().unwrap().height;
10092 if inbound_peer_limited &&
10093 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10094 peer_state.channel_by_id.len()
10097 return NotifyOption::SkipPersistNoEvents;
10100 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10101 peer_state.is_connected = true;
10106 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10108 let per_peer_state = self.per_peer_state.read().unwrap();
10109 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10110 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10111 let peer_state = &mut *peer_state_lock;
10112 let pending_msg_events = &mut peer_state.pending_msg_events;
10114 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10116 ChannelPhase::Funded(chan) => {
10117 let logger = WithChannelContext::from(&self.logger, &chan.context, None);
10118 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10119 node_id: chan.context.get_counterparty_node_id(),
10120 msg: chan.get_channel_reestablish(&&logger),
10124 ChannelPhase::UnfundedOutboundV1(chan) => {
10125 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10126 node_id: chan.context.get_counterparty_node_id(),
10127 msg: chan.get_open_channel(self.chain_hash),
10131 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10132 #[cfg(any(dual_funding, splicing))]
10133 ChannelPhase::UnfundedOutboundV2(chan) => {
10134 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10135 node_id: chan.context.get_counterparty_node_id(),
10136 msg: chan.get_open_channel_v2(self.chain_hash),
10140 ChannelPhase::UnfundedInboundV1(_) => {
10141 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10142 // they are not persisted and won't be recovered after a crash.
10143 // Therefore, they shouldn't exist at this point.
10144 debug_assert!(false);
10147 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10148 #[cfg(any(dual_funding, splicing))]
10149 ChannelPhase::UnfundedInboundV2(channel) => {
10150 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10151 // they are not persisted and won't be recovered after a crash.
10152 // Therefore, they shouldn't exist at this point.
10153 debug_assert!(false);
10159 return NotifyOption::SkipPersistHandleEvents;
10160 //TODO: Also re-broadcast announcement_signatures
10165 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10166 match &msg.data as &str {
10167 "cannot co-op close channel w/ active htlcs"|
10168 "link failed to shutdown" =>
10170 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10171 // send one while HTLCs are still present. The issue is tracked at
10172 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10173 // to fix it but none so far have managed to land upstream. The issue appears to be
10174 // very low priority for the LND team despite being marked "P1".
10175 // We're not going to bother handling this in a sensible way, instead simply
10176 // repeating the Shutdown message on repeat until morale improves.
10177 if !msg.channel_id.is_zero() {
10178 PersistenceNotifierGuard::optionally_notify(
10180 || -> NotifyOption {
10181 let per_peer_state = self.per_peer_state.read().unwrap();
10182 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10183 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10184 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10185 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10186 if let Some(msg) = chan.get_outbound_shutdown() {
10187 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10188 node_id: *counterparty_node_id,
10192 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10193 node_id: *counterparty_node_id,
10194 action: msgs::ErrorAction::SendWarningMessage {
10195 msg: msgs::WarningMessage {
10196 channel_id: msg.channel_id,
10197 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10199 log_level: Level::Trace,
10202 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10203 // a `ChannelManager` write here.
10204 return NotifyOption::SkipPersistHandleEvents;
10206 NotifyOption::SkipPersistNoEvents
10215 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10217 if msg.channel_id.is_zero() {
10218 let channel_ids: Vec<ChannelId> = {
10219 let per_peer_state = self.per_peer_state.read().unwrap();
10220 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10221 if peer_state_mutex_opt.is_none() { return; }
10222 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10223 let peer_state = &mut *peer_state_lock;
10224 // Note that we don't bother generating any events for pre-accept channels -
10225 // they're not considered "channels" yet from the PoV of our events interface.
10226 peer_state.inbound_channel_request_by_id.clear();
10227 peer_state.channel_by_id.keys().cloned().collect()
10229 for channel_id in channel_ids {
10230 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10231 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10235 // First check if we can advance the channel type and try again.
10236 let per_peer_state = self.per_peer_state.read().unwrap();
10237 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10238 if peer_state_mutex_opt.is_none() { return; }
10239 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10240 let peer_state = &mut *peer_state_lock;
10241 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10242 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10243 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10244 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10245 node_id: *counterparty_node_id,
10251 #[cfg(any(dual_funding, splicing))]
10252 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10253 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10254 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10255 node_id: *counterparty_node_id,
10261 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10262 #[cfg(any(dual_funding, splicing))]
10263 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10267 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10268 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10272 fn provided_node_features(&self) -> NodeFeatures {
10273 provided_node_features(&self.default_configuration)
10276 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10277 provided_init_features(&self.default_configuration)
10280 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10281 Some(vec![self.chain_hash])
10284 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10285 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10286 "Dual-funded channels not supported".to_owned(),
10287 msg.channel_id.clone())), *counterparty_node_id);
10290 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10291 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10292 "Dual-funded channels not supported".to_owned(),
10293 msg.channel_id.clone())), *counterparty_node_id);
10296 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10297 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10298 "Dual-funded channels not supported".to_owned(),
10299 msg.channel_id.clone())), *counterparty_node_id);
10302 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10303 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10304 "Dual-funded channels not supported".to_owned(),
10305 msg.channel_id.clone())), *counterparty_node_id);
10308 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10309 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10310 "Dual-funded channels not supported".to_owned(),
10311 msg.channel_id.clone())), *counterparty_node_id);
10314 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10315 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10316 "Dual-funded channels not supported".to_owned(),
10317 msg.channel_id.clone())), *counterparty_node_id);
10320 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10321 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10322 "Dual-funded channels not supported".to_owned(),
10323 msg.channel_id.clone())), *counterparty_node_id);
10326 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10327 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10328 "Dual-funded channels not supported".to_owned(),
10329 msg.channel_id.clone())), *counterparty_node_id);
10332 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10333 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10334 "Dual-funded channels not supported".to_owned(),
10335 msg.channel_id.clone())), *counterparty_node_id);
10339 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10340 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10342 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10343 T::Target: BroadcasterInterface,
10344 ES::Target: EntropySource,
10345 NS::Target: NodeSigner,
10346 SP::Target: SignerProvider,
10347 F::Target: FeeEstimator,
10351 fn handle_message(&self, message: OffersMessage, responder: Option<Responder>) -> ResponseInstruction<OffersMessage> {
10352 let secp_ctx = &self.secp_ctx;
10353 let expanded_key = &self.inbound_payment_key;
10356 OffersMessage::InvoiceRequest(invoice_request) => {
10357 let responder = match responder {
10358 Some(responder) => responder,
10359 None => return ResponseInstruction::NoResponse,
10361 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10364 Ok(amount_msats) => amount_msats,
10365 Err(error) => return responder.respond(OffersMessage::InvoiceError(error.into())),
10367 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10368 Ok(invoice_request) => invoice_request,
10370 let error = Bolt12SemanticError::InvalidMetadata;
10371 return responder.respond(OffersMessage::InvoiceError(error.into()));
10375 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10376 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10377 Some(amount_msats), relative_expiry, None
10379 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10381 let error = Bolt12SemanticError::InvalidAmount;
10382 return responder.respond(OffersMessage::InvoiceError(error.into()));
10386 let payment_context = PaymentContext::Bolt12Offer(Bolt12OfferContext {
10387 offer_id: invoice_request.offer_id,
10388 invoice_request: invoice_request.fields(),
10390 let payment_paths = match self.create_blinded_payment_paths(
10391 amount_msats, payment_secret, payment_context
10393 Ok(payment_paths) => payment_paths,
10395 let error = Bolt12SemanticError::MissingPaths;
10396 return responder.respond(OffersMessage::InvoiceError(error.into()));
10400 #[cfg(not(feature = "std"))]
10401 let created_at = Duration::from_secs(
10402 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10405 let response = if invoice_request.keys.is_some() {
10406 #[cfg(feature = "std")]
10407 let builder = invoice_request.respond_using_derived_keys(
10408 payment_paths, payment_hash
10410 #[cfg(not(feature = "std"))]
10411 let builder = invoice_request.respond_using_derived_keys_no_std(
10412 payment_paths, payment_hash, created_at
10415 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10416 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10417 .map_err(InvoiceError::from)
10419 #[cfg(feature = "std")]
10420 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10421 #[cfg(not(feature = "std"))]
10422 let builder = invoice_request.respond_with_no_std(
10423 payment_paths, payment_hash, created_at
10426 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10427 .and_then(|builder| builder.allow_mpp().build())
10428 .map_err(InvoiceError::from)
10429 .and_then(|invoice| {
10431 let mut invoice = invoice;
10433 .sign(|invoice: &UnsignedBolt12Invoice|
10434 self.node_signer.sign_bolt12_invoice(invoice)
10436 .map_err(InvoiceError::from)
10441 Ok(invoice) => return responder.respond(OffersMessage::Invoice(invoice)),
10442 Err(error) => return responder.respond(OffersMessage::InvoiceError(error.into())),
10445 OffersMessage::Invoice(invoice) => {
10446 let response = invoice
10447 .verify(expanded_key, secp_ctx)
10448 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10449 .and_then(|payment_id| {
10450 let features = self.bolt12_invoice_features();
10451 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10452 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10454 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10456 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10457 InvoiceError::from_string(format!("{:?}", e))
10462 match (responder, response) {
10463 (Some(responder), Err(e)) => responder.respond(OffersMessage::InvoiceError(e)),
10464 (None, Err(_)) => {
10467 "A response was generated, but there is no reply_path specified for sending the response."
10469 return ResponseInstruction::NoResponse;
10471 _ => return ResponseInstruction::NoResponse,
10474 OffersMessage::InvoiceError(invoice_error) => {
10475 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10476 return ResponseInstruction::NoResponse;
10481 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10482 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10486 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10487 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10489 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10490 T::Target: BroadcasterInterface,
10491 ES::Target: EntropySource,
10492 NS::Target: NodeSigner,
10493 SP::Target: SignerProvider,
10494 F::Target: FeeEstimator,
10498 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10499 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10503 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10504 /// [`ChannelManager`].
10505 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10506 let mut node_features = provided_init_features(config).to_context();
10507 node_features.set_keysend_optional();
10511 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10512 /// [`ChannelManager`].
10514 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10515 /// or not. Thus, this method is not public.
10516 #[cfg(any(feature = "_test_utils", test))]
10517 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10518 provided_init_features(config).to_context()
10521 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10522 /// [`ChannelManager`].
10523 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10524 provided_init_features(config).to_context()
10527 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10528 /// [`ChannelManager`].
10529 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10530 provided_init_features(config).to_context()
10533 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10534 /// [`ChannelManager`].
10535 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10536 ChannelTypeFeatures::from_init(&provided_init_features(config))
10539 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10540 /// [`ChannelManager`].
10541 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10542 // Note that if new features are added here which other peers may (eventually) require, we
10543 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10544 // [`ErroringMessageHandler`].
10545 let mut features = InitFeatures::empty();
10546 features.set_data_loss_protect_required();
10547 features.set_upfront_shutdown_script_optional();
10548 features.set_variable_length_onion_required();
10549 features.set_static_remote_key_required();
10550 features.set_payment_secret_required();
10551 features.set_basic_mpp_optional();
10552 features.set_wumbo_optional();
10553 features.set_shutdown_any_segwit_optional();
10554 features.set_channel_type_optional();
10555 features.set_scid_privacy_optional();
10556 features.set_zero_conf_optional();
10557 features.set_route_blinding_optional();
10558 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10559 features.set_anchors_zero_fee_htlc_tx_optional();
10564 const SERIALIZATION_VERSION: u8 = 1;
10565 const MIN_SERIALIZATION_VERSION: u8 = 1;
10567 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10568 (2, fee_base_msat, required),
10569 (4, fee_proportional_millionths, required),
10570 (6, cltv_expiry_delta, required),
10573 impl_writeable_tlv_based!(ChannelCounterparty, {
10574 (2, node_id, required),
10575 (4, features, required),
10576 (6, unspendable_punishment_reserve, required),
10577 (8, forwarding_info, option),
10578 (9, outbound_htlc_minimum_msat, option),
10579 (11, outbound_htlc_maximum_msat, option),
10582 impl Writeable for ChannelDetails {
10583 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10584 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10585 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10586 let user_channel_id_low = self.user_channel_id as u64;
10587 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10588 write_tlv_fields!(writer, {
10589 (1, self.inbound_scid_alias, option),
10590 (2, self.channel_id, required),
10591 (3, self.channel_type, option),
10592 (4, self.counterparty, required),
10593 (5, self.outbound_scid_alias, option),
10594 (6, self.funding_txo, option),
10595 (7, self.config, option),
10596 (8, self.short_channel_id, option),
10597 (9, self.confirmations, option),
10598 (10, self.channel_value_satoshis, required),
10599 (12, self.unspendable_punishment_reserve, option),
10600 (14, user_channel_id_low, required),
10601 (16, self.balance_msat, required),
10602 (18, self.outbound_capacity_msat, required),
10603 (19, self.next_outbound_htlc_limit_msat, required),
10604 (20, self.inbound_capacity_msat, required),
10605 (21, self.next_outbound_htlc_minimum_msat, required),
10606 (22, self.confirmations_required, option),
10607 (24, self.force_close_spend_delay, option),
10608 (26, self.is_outbound, required),
10609 (28, self.is_channel_ready, required),
10610 (30, self.is_usable, required),
10611 (32, self.is_public, required),
10612 (33, self.inbound_htlc_minimum_msat, option),
10613 (35, self.inbound_htlc_maximum_msat, option),
10614 (37, user_channel_id_high_opt, option),
10615 (39, self.feerate_sat_per_1000_weight, option),
10616 (41, self.channel_shutdown_state, option),
10617 (43, self.pending_inbound_htlcs, optional_vec),
10618 (45, self.pending_outbound_htlcs, optional_vec),
10624 impl Readable for ChannelDetails {
10625 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10626 _init_and_read_len_prefixed_tlv_fields!(reader, {
10627 (1, inbound_scid_alias, option),
10628 (2, channel_id, required),
10629 (3, channel_type, option),
10630 (4, counterparty, required),
10631 (5, outbound_scid_alias, option),
10632 (6, funding_txo, option),
10633 (7, config, option),
10634 (8, short_channel_id, option),
10635 (9, confirmations, option),
10636 (10, channel_value_satoshis, required),
10637 (12, unspendable_punishment_reserve, option),
10638 (14, user_channel_id_low, required),
10639 (16, balance_msat, required),
10640 (18, outbound_capacity_msat, required),
10641 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10642 // filled in, so we can safely unwrap it here.
10643 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10644 (20, inbound_capacity_msat, required),
10645 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10646 (22, confirmations_required, option),
10647 (24, force_close_spend_delay, option),
10648 (26, is_outbound, required),
10649 (28, is_channel_ready, required),
10650 (30, is_usable, required),
10651 (32, is_public, required),
10652 (33, inbound_htlc_minimum_msat, option),
10653 (35, inbound_htlc_maximum_msat, option),
10654 (37, user_channel_id_high_opt, option),
10655 (39, feerate_sat_per_1000_weight, option),
10656 (41, channel_shutdown_state, option),
10657 (43, pending_inbound_htlcs, optional_vec),
10658 (45, pending_outbound_htlcs, optional_vec),
10661 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10662 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10663 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10664 let user_channel_id = user_channel_id_low as u128 +
10665 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10668 inbound_scid_alias,
10669 channel_id: channel_id.0.unwrap(),
10671 counterparty: counterparty.0.unwrap(),
10672 outbound_scid_alias,
10676 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10677 unspendable_punishment_reserve,
10679 balance_msat: balance_msat.0.unwrap(),
10680 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10681 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10682 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10683 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10684 confirmations_required,
10686 force_close_spend_delay,
10687 is_outbound: is_outbound.0.unwrap(),
10688 is_channel_ready: is_channel_ready.0.unwrap(),
10689 is_usable: is_usable.0.unwrap(),
10690 is_public: is_public.0.unwrap(),
10691 inbound_htlc_minimum_msat,
10692 inbound_htlc_maximum_msat,
10693 feerate_sat_per_1000_weight,
10694 channel_shutdown_state,
10695 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10696 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10701 impl_writeable_tlv_based!(PhantomRouteHints, {
10702 (2, channels, required_vec),
10703 (4, phantom_scid, required),
10704 (6, real_node_pubkey, required),
10707 impl_writeable_tlv_based!(BlindedForward, {
10708 (0, inbound_blinding_point, required),
10709 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10712 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10714 (0, onion_packet, required),
10715 (1, blinded, option),
10716 (2, short_channel_id, required),
10719 (0, payment_data, required),
10720 (1, phantom_shared_secret, option),
10721 (2, incoming_cltv_expiry, required),
10722 (3, payment_metadata, option),
10723 (5, custom_tlvs, optional_vec),
10724 (7, requires_blinded_error, (default_value, false)),
10725 (9, payment_context, option),
10727 (2, ReceiveKeysend) => {
10728 (0, payment_preimage, required),
10729 (1, requires_blinded_error, (default_value, false)),
10730 (2, incoming_cltv_expiry, required),
10731 (3, payment_metadata, option),
10732 (4, payment_data, option), // Added in 0.0.116
10733 (5, custom_tlvs, optional_vec),
10737 impl_writeable_tlv_based!(PendingHTLCInfo, {
10738 (0, routing, required),
10739 (2, incoming_shared_secret, required),
10740 (4, payment_hash, required),
10741 (6, outgoing_amt_msat, required),
10742 (8, outgoing_cltv_value, required),
10743 (9, incoming_amt_msat, option),
10744 (10, skimmed_fee_msat, option),
10748 impl Writeable for HTLCFailureMsg {
10749 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10751 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10752 0u8.write(writer)?;
10753 channel_id.write(writer)?;
10754 htlc_id.write(writer)?;
10755 reason.write(writer)?;
10757 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10758 channel_id, htlc_id, sha256_of_onion, failure_code
10760 1u8.write(writer)?;
10761 channel_id.write(writer)?;
10762 htlc_id.write(writer)?;
10763 sha256_of_onion.write(writer)?;
10764 failure_code.write(writer)?;
10771 impl Readable for HTLCFailureMsg {
10772 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10773 let id: u8 = Readable::read(reader)?;
10776 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10777 channel_id: Readable::read(reader)?,
10778 htlc_id: Readable::read(reader)?,
10779 reason: Readable::read(reader)?,
10783 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10784 channel_id: Readable::read(reader)?,
10785 htlc_id: Readable::read(reader)?,
10786 sha256_of_onion: Readable::read(reader)?,
10787 failure_code: Readable::read(reader)?,
10790 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10791 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10792 // messages contained in the variants.
10793 // In version 0.0.101, support for reading the variants with these types was added, and
10794 // we should migrate to writing these variants when UpdateFailHTLC or
10795 // UpdateFailMalformedHTLC get TLV fields.
10797 let length: BigSize = Readable::read(reader)?;
10798 let mut s = FixedLengthReader::new(reader, length.0);
10799 let res = Readable::read(&mut s)?;
10800 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10801 Ok(HTLCFailureMsg::Relay(res))
10804 let length: BigSize = Readable::read(reader)?;
10805 let mut s = FixedLengthReader::new(reader, length.0);
10806 let res = Readable::read(&mut s)?;
10807 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10808 Ok(HTLCFailureMsg::Malformed(res))
10810 _ => Err(DecodeError::UnknownRequiredFeature),
10815 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10820 impl_writeable_tlv_based_enum!(BlindedFailure,
10821 (0, FromIntroductionNode) => {},
10822 (2, FromBlindedNode) => {}, ;
10825 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10826 (0, short_channel_id, required),
10827 (1, phantom_shared_secret, option),
10828 (2, outpoint, required),
10829 (3, blinded_failure, option),
10830 (4, htlc_id, required),
10831 (6, incoming_packet_shared_secret, required),
10832 (7, user_channel_id, option),
10833 // Note that by the time we get past the required read for type 2 above, outpoint will be
10834 // filled in, so we can safely unwrap it here.
10835 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10838 impl Writeable for ClaimableHTLC {
10839 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10840 let (payment_data, keysend_preimage) = match &self.onion_payload {
10841 OnionPayload::Invoice { _legacy_hop_data } => {
10842 (_legacy_hop_data.as_ref(), None)
10844 OnionPayload::Spontaneous(preimage) => (None, Some(preimage)),
10846 write_tlv_fields!(writer, {
10847 (0, self.prev_hop, required),
10848 (1, self.total_msat, required),
10849 (2, self.value, required),
10850 (3, self.sender_intended_value, required),
10851 (4, payment_data, option),
10852 (5, self.total_value_received, option),
10853 (6, self.cltv_expiry, required),
10854 (8, keysend_preimage, option),
10855 (10, self.counterparty_skimmed_fee_msat, option),
10861 impl Readable for ClaimableHTLC {
10862 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10863 _init_and_read_len_prefixed_tlv_fields!(reader, {
10864 (0, prev_hop, required),
10865 (1, total_msat, option),
10866 (2, value_ser, required),
10867 (3, sender_intended_value, option),
10868 (4, payment_data_opt, option),
10869 (5, total_value_received, option),
10870 (6, cltv_expiry, required),
10871 (8, keysend_preimage, option),
10872 (10, counterparty_skimmed_fee_msat, option),
10874 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10875 let value = value_ser.0.unwrap();
10876 let onion_payload = match keysend_preimage {
10878 if payment_data.is_some() {
10879 return Err(DecodeError::InvalidValue)
10881 if total_msat.is_none() {
10882 total_msat = Some(value);
10884 OnionPayload::Spontaneous(p)
10887 if total_msat.is_none() {
10888 if payment_data.is_none() {
10889 return Err(DecodeError::InvalidValue)
10891 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10893 OnionPayload::Invoice { _legacy_hop_data: payment_data }
10897 prev_hop: prev_hop.0.unwrap(),
10900 sender_intended_value: sender_intended_value.unwrap_or(value),
10901 total_value_received,
10902 total_msat: total_msat.unwrap(),
10904 cltv_expiry: cltv_expiry.0.unwrap(),
10905 counterparty_skimmed_fee_msat,
10910 impl Readable for HTLCSource {
10911 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10912 let id: u8 = Readable::read(reader)?;
10915 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10916 let mut first_hop_htlc_msat: u64 = 0;
10917 let mut path_hops = Vec::new();
10918 let mut payment_id = None;
10919 let mut payment_params: Option<PaymentParameters> = None;
10920 let mut blinded_tail: Option<BlindedTail> = None;
10921 read_tlv_fields!(reader, {
10922 (0, session_priv, required),
10923 (1, payment_id, option),
10924 (2, first_hop_htlc_msat, required),
10925 (4, path_hops, required_vec),
10926 (5, payment_params, (option: ReadableArgs, 0)),
10927 (6, blinded_tail, option),
10929 if payment_id.is_none() {
10930 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10932 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10934 let path = Path { hops: path_hops, blinded_tail };
10935 if path.hops.len() == 0 {
10936 return Err(DecodeError::InvalidValue);
10938 if let Some(params) = payment_params.as_mut() {
10939 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10940 if final_cltv_expiry_delta == &0 {
10941 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10945 Ok(HTLCSource::OutboundRoute {
10946 session_priv: session_priv.0.unwrap(),
10947 first_hop_htlc_msat,
10949 payment_id: payment_id.unwrap(),
10952 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10953 _ => Err(DecodeError::UnknownRequiredFeature),
10958 impl Writeable for HTLCSource {
10959 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10961 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10962 0u8.write(writer)?;
10963 let payment_id_opt = Some(payment_id);
10964 write_tlv_fields!(writer, {
10965 (0, session_priv, required),
10966 (1, payment_id_opt, option),
10967 (2, first_hop_htlc_msat, required),
10968 // 3 was previously used to write a PaymentSecret for the payment.
10969 (4, path.hops, required_vec),
10970 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10971 (6, path.blinded_tail, option),
10974 HTLCSource::PreviousHopData(ref field) => {
10975 1u8.write(writer)?;
10976 field.write(writer)?;
10983 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10984 (0, forward_info, required),
10985 (1, prev_user_channel_id, (default_value, 0)),
10986 (2, prev_short_channel_id, required),
10987 (4, prev_htlc_id, required),
10988 (6, prev_funding_outpoint, required),
10989 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10990 // filled in, so we can safely unwrap it here.
10991 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10994 impl Writeable for HTLCForwardInfo {
10995 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10996 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10998 Self::AddHTLC(info) => {
11002 Self::FailHTLC { htlc_id, err_packet } => {
11003 FAIL_HTLC_VARIANT_ID.write(w)?;
11004 write_tlv_fields!(w, {
11005 (0, htlc_id, required),
11006 (2, err_packet, required),
11009 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
11010 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
11011 // packet so older versions have something to fail back with, but serialize the real data as
11012 // optional TLVs for the benefit of newer versions.
11013 FAIL_HTLC_VARIANT_ID.write(w)?;
11014 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
11015 write_tlv_fields!(w, {
11016 (0, htlc_id, required),
11017 (1, failure_code, required),
11018 (2, dummy_err_packet, required),
11019 (3, sha256_of_onion, required),
11027 impl Readable for HTLCForwardInfo {
11028 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
11029 let id: u8 = Readable::read(r)?;
11031 0 => Self::AddHTLC(Readable::read(r)?),
11033 _init_and_read_len_prefixed_tlv_fields!(r, {
11034 (0, htlc_id, required),
11035 (1, malformed_htlc_failure_code, option),
11036 (2, err_packet, required),
11037 (3, sha256_of_onion, option),
11039 if let Some(failure_code) = malformed_htlc_failure_code {
11040 Self::FailMalformedHTLC {
11041 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11043 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
11047 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11048 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11052 _ => return Err(DecodeError::InvalidValue),
11057 impl_writeable_tlv_based!(PendingInboundPayment, {
11058 (0, payment_secret, required),
11059 (2, expiry_time, required),
11060 (4, user_payment_id, required),
11061 (6, payment_preimage, required),
11062 (8, min_value_msat, required),
11065 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11067 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11068 T::Target: BroadcasterInterface,
11069 ES::Target: EntropySource,
11070 NS::Target: NodeSigner,
11071 SP::Target: SignerProvider,
11072 F::Target: FeeEstimator,
11076 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11077 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11079 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11081 self.chain_hash.write(writer)?;
11083 let best_block = self.best_block.read().unwrap();
11084 best_block.height.write(writer)?;
11085 best_block.block_hash.write(writer)?;
11088 let per_peer_state = self.per_peer_state.write().unwrap();
11090 let mut serializable_peer_count: u64 = 0;
11092 let mut number_of_funded_channels = 0;
11093 for (_, peer_state_mutex) in per_peer_state.iter() {
11094 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11095 let peer_state = &mut *peer_state_lock;
11096 if !peer_state.ok_to_remove(false) {
11097 serializable_peer_count += 1;
11100 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11101 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11105 (number_of_funded_channels as u64).write(writer)?;
11107 for (_, peer_state_mutex) in per_peer_state.iter() {
11108 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11109 let peer_state = &mut *peer_state_lock;
11110 for channel in peer_state.channel_by_id.iter().filter_map(
11111 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11112 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11115 channel.write(writer)?;
11121 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11122 (forward_htlcs.len() as u64).write(writer)?;
11123 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11124 short_channel_id.write(writer)?;
11125 (pending_forwards.len() as u64).write(writer)?;
11126 for forward in pending_forwards {
11127 forward.write(writer)?;
11132 let mut decode_update_add_htlcs_opt = None;
11133 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11134 if !decode_update_add_htlcs.is_empty() {
11135 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11138 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11139 let claimable_payments = self.claimable_payments.lock().unwrap();
11140 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11142 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11143 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11144 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11145 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11146 payment_hash.write(writer)?;
11147 (payment.htlcs.len() as u64).write(writer)?;
11148 for htlc in payment.htlcs.iter() {
11149 htlc.write(writer)?;
11151 htlc_purposes.push(&payment.purpose);
11152 htlc_onion_fields.push(&payment.onion_fields);
11155 let mut monitor_update_blocked_actions_per_peer = None;
11156 let mut peer_states = Vec::new();
11157 for (_, peer_state_mutex) in per_peer_state.iter() {
11158 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11159 // of a lockorder violation deadlock - no other thread can be holding any
11160 // per_peer_state lock at all.
11161 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11164 (serializable_peer_count).write(writer)?;
11165 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11166 // Peers which we have no channels to should be dropped once disconnected. As we
11167 // disconnect all peers when shutting down and serializing the ChannelManager, we
11168 // consider all peers as disconnected here. There's therefore no need write peers with
11170 if !peer_state.ok_to_remove(false) {
11171 peer_pubkey.write(writer)?;
11172 peer_state.latest_features.write(writer)?;
11173 if !peer_state.monitor_update_blocked_actions.is_empty() {
11174 monitor_update_blocked_actions_per_peer
11175 .get_or_insert_with(Vec::new)
11176 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11181 let events = self.pending_events.lock().unwrap();
11182 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11183 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11184 // refuse to read the new ChannelManager.
11185 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11186 if events_not_backwards_compatible {
11187 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11188 // well save the space and not write any events here.
11189 0u64.write(writer)?;
11191 (events.len() as u64).write(writer)?;
11192 for (event, _) in events.iter() {
11193 event.write(writer)?;
11197 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11198 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11199 // the closing monitor updates were always effectively replayed on startup (either directly
11200 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11201 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11202 0u64.write(writer)?;
11204 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11205 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11206 // likely to be identical.
11207 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11208 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11210 (pending_inbound_payments.len() as u64).write(writer)?;
11211 for (hash, pending_payment) in pending_inbound_payments.iter() {
11212 hash.write(writer)?;
11213 pending_payment.write(writer)?;
11216 // For backwards compat, write the session privs and their total length.
11217 let mut num_pending_outbounds_compat: u64 = 0;
11218 for (_, outbound) in pending_outbound_payments.iter() {
11219 if !outbound.is_fulfilled() && !outbound.abandoned() {
11220 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11223 num_pending_outbounds_compat.write(writer)?;
11224 for (_, outbound) in pending_outbound_payments.iter() {
11226 PendingOutboundPayment::Legacy { session_privs } |
11227 PendingOutboundPayment::Retryable { session_privs, .. } => {
11228 for session_priv in session_privs.iter() {
11229 session_priv.write(writer)?;
11232 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11233 PendingOutboundPayment::InvoiceReceived { .. } => {},
11234 PendingOutboundPayment::Fulfilled { .. } => {},
11235 PendingOutboundPayment::Abandoned { .. } => {},
11239 // Encode without retry info for 0.0.101 compatibility.
11240 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11241 for (id, outbound) in pending_outbound_payments.iter() {
11243 PendingOutboundPayment::Legacy { session_privs } |
11244 PendingOutboundPayment::Retryable { session_privs, .. } => {
11245 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11251 let mut pending_intercepted_htlcs = None;
11252 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11253 if our_pending_intercepts.len() != 0 {
11254 pending_intercepted_htlcs = Some(our_pending_intercepts);
11257 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11258 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11259 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11260 // map. Thus, if there are no entries we skip writing a TLV for it.
11261 pending_claiming_payments = None;
11264 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11265 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11266 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11267 if !updates.is_empty() {
11268 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11269 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11274 write_tlv_fields!(writer, {
11275 (1, pending_outbound_payments_no_retry, required),
11276 (2, pending_intercepted_htlcs, option),
11277 (3, pending_outbound_payments, required),
11278 (4, pending_claiming_payments, option),
11279 (5, self.our_network_pubkey, required),
11280 (6, monitor_update_blocked_actions_per_peer, option),
11281 (7, self.fake_scid_rand_bytes, required),
11282 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11283 (9, htlc_purposes, required_vec),
11284 (10, in_flight_monitor_updates, option),
11285 (11, self.probing_cookie_secret, required),
11286 (13, htlc_onion_fields, optional_vec),
11287 (14, decode_update_add_htlcs_opt, option),
11294 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11295 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11296 (self.len() as u64).write(w)?;
11297 for (event, action) in self.iter() {
11300 #[cfg(debug_assertions)] {
11301 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11302 // be persisted and are regenerated on restart. However, if such an event has a
11303 // post-event-handling action we'll write nothing for the event and would have to
11304 // either forget the action or fail on deserialization (which we do below). Thus,
11305 // check that the event is sane here.
11306 let event_encoded = event.encode();
11307 let event_read: Option<Event> =
11308 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11309 if action.is_some() { assert!(event_read.is_some()); }
11315 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11316 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11317 let len: u64 = Readable::read(reader)?;
11318 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11319 let mut events: Self = VecDeque::with_capacity(cmp::min(
11320 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11323 let ev_opt = MaybeReadable::read(reader)?;
11324 let action = Readable::read(reader)?;
11325 if let Some(ev) = ev_opt {
11326 events.push_back((ev, action));
11327 } else if action.is_some() {
11328 return Err(DecodeError::InvalidValue);
11335 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11336 (0, NotShuttingDown) => {},
11337 (2, ShutdownInitiated) => {},
11338 (4, ResolvingHTLCs) => {},
11339 (6, NegotiatingClosingFee) => {},
11340 (8, ShutdownComplete) => {}, ;
11343 /// Arguments for the creation of a ChannelManager that are not deserialized.
11345 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11347 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11348 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11349 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11350 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11351 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11352 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11353 /// same way you would handle a [`chain::Filter`] call using
11354 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11355 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11356 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11357 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11358 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11359 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11361 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11362 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11364 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11365 /// call any other methods on the newly-deserialized [`ChannelManager`].
11367 /// Note that because some channels may be closed during deserialization, it is critical that you
11368 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11369 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11370 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11371 /// not force-close the same channels but consider them live), you may end up revoking a state for
11372 /// which you've already broadcasted the transaction.
11374 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11375 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11377 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11378 T::Target: BroadcasterInterface,
11379 ES::Target: EntropySource,
11380 NS::Target: NodeSigner,
11381 SP::Target: SignerProvider,
11382 F::Target: FeeEstimator,
11386 /// A cryptographically secure source of entropy.
11387 pub entropy_source: ES,
11389 /// A signer that is able to perform node-scoped cryptographic operations.
11390 pub node_signer: NS,
11392 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11393 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11395 pub signer_provider: SP,
11397 /// The fee_estimator for use in the ChannelManager in the future.
11399 /// No calls to the FeeEstimator will be made during deserialization.
11400 pub fee_estimator: F,
11401 /// The chain::Watch for use in the ChannelManager in the future.
11403 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11404 /// you have deserialized ChannelMonitors separately and will add them to your
11405 /// chain::Watch after deserializing this ChannelManager.
11406 pub chain_monitor: M,
11408 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11409 /// used to broadcast the latest local commitment transactions of channels which must be
11410 /// force-closed during deserialization.
11411 pub tx_broadcaster: T,
11412 /// The router which will be used in the ChannelManager in the future for finding routes
11413 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11415 /// No calls to the router will be made during deserialization.
11417 /// The Logger for use in the ChannelManager and which may be used to log information during
11418 /// deserialization.
11420 /// Default settings used for new channels. Any existing channels will continue to use the
11421 /// runtime settings which were stored when the ChannelManager was serialized.
11422 pub default_config: UserConfig,
11424 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11425 /// value.context.get_funding_txo() should be the key).
11427 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11428 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11429 /// is true for missing channels as well. If there is a monitor missing for which we find
11430 /// channel data Err(DecodeError::InvalidValue) will be returned.
11432 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11435 /// This is not exported to bindings users because we have no HashMap bindings
11436 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11439 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11440 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11442 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11443 T::Target: BroadcasterInterface,
11444 ES::Target: EntropySource,
11445 NS::Target: NodeSigner,
11446 SP::Target: SignerProvider,
11447 F::Target: FeeEstimator,
11451 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11452 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11453 /// populate a HashMap directly from C.
11454 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11455 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11457 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11458 channel_monitors: hash_map_from_iter(
11459 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11465 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11466 // SipmleArcChannelManager type:
11467 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11468 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11470 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11471 T::Target: BroadcasterInterface,
11472 ES::Target: EntropySource,
11473 NS::Target: NodeSigner,
11474 SP::Target: SignerProvider,
11475 F::Target: FeeEstimator,
11479 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11480 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11481 Ok((blockhash, Arc::new(chan_manager)))
11485 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11486 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11488 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11489 T::Target: BroadcasterInterface,
11490 ES::Target: EntropySource,
11491 NS::Target: NodeSigner,
11492 SP::Target: SignerProvider,
11493 F::Target: FeeEstimator,
11497 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11498 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11500 let chain_hash: ChainHash = Readable::read(reader)?;
11501 let best_block_height: u32 = Readable::read(reader)?;
11502 let best_block_hash: BlockHash = Readable::read(reader)?;
11504 let mut failed_htlcs = Vec::new();
11506 let channel_count: u64 = Readable::read(reader)?;
11507 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11508 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11509 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11510 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11511 let mut channel_closures = VecDeque::new();
11512 let mut close_background_events = Vec::new();
11513 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11514 for _ in 0..channel_count {
11515 let mut channel: Channel<SP> = Channel::read(reader, (
11516 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11518 let logger = WithChannelContext::from(&args.logger, &channel.context, None);
11519 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11520 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11521 funding_txo_set.insert(funding_txo.clone());
11522 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11523 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11524 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11525 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11526 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11527 // But if the channel is behind of the monitor, close the channel:
11528 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11529 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11530 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11531 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11532 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11534 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11535 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11536 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11538 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11539 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11540 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11542 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11543 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11544 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11546 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11547 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11548 return Err(DecodeError::InvalidValue);
11550 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11551 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11552 counterparty_node_id, funding_txo, channel_id, update
11555 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11556 channel_closures.push_back((events::Event::ChannelClosed {
11557 channel_id: channel.context.channel_id(),
11558 user_channel_id: channel.context.get_user_id(),
11559 reason: ClosureReason::OutdatedChannelManager,
11560 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11561 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11562 channel_funding_txo: channel.context.get_funding_txo(),
11564 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11565 let mut found_htlc = false;
11566 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11567 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11570 // If we have some HTLCs in the channel which are not present in the newer
11571 // ChannelMonitor, they have been removed and should be failed back to
11572 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11573 // were actually claimed we'd have generated and ensured the previous-hop
11574 // claim update ChannelMonitor updates were persisted prior to persising
11575 // the ChannelMonitor update for the forward leg, so attempting to fail the
11576 // backwards leg of the HTLC will simply be rejected.
11577 let logger = WithChannelContext::from(&args.logger, &channel.context, Some(*payment_hash));
11579 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11580 &channel.context.channel_id(), &payment_hash);
11581 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11585 channel.on_startup_drop_completed_blocked_mon_updates_through(&logger, monitor.get_latest_update_id());
11586 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {} with {} blocked updates",
11587 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11588 monitor.get_latest_update_id(), channel.blocked_monitor_updates_pending());
11589 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11590 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11592 if let Some(funding_txo) = channel.context.get_funding_txo() {
11593 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11595 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11596 hash_map::Entry::Occupied(mut entry) => {
11597 let by_id_map = entry.get_mut();
11598 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11600 hash_map::Entry::Vacant(entry) => {
11601 let mut by_id_map = new_hash_map();
11602 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11603 entry.insert(by_id_map);
11607 } else if channel.is_awaiting_initial_mon_persist() {
11608 // If we were persisted and shut down while the initial ChannelMonitor persistence
11609 // was in-progress, we never broadcasted the funding transaction and can still
11610 // safely discard the channel.
11611 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11612 channel_closures.push_back((events::Event::ChannelClosed {
11613 channel_id: channel.context.channel_id(),
11614 user_channel_id: channel.context.get_user_id(),
11615 reason: ClosureReason::DisconnectedPeer,
11616 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11617 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11618 channel_funding_txo: channel.context.get_funding_txo(),
11621 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11622 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11623 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11624 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11625 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11626 return Err(DecodeError::InvalidValue);
11630 for (funding_txo, monitor) in args.channel_monitors.iter() {
11631 if !funding_txo_set.contains(funding_txo) {
11632 let logger = WithChannelMonitor::from(&args.logger, monitor, None);
11633 let channel_id = monitor.channel_id();
11634 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11636 let monitor_update = ChannelMonitorUpdate {
11637 update_id: CLOSED_CHANNEL_UPDATE_ID,
11638 counterparty_node_id: None,
11639 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11640 channel_id: Some(monitor.channel_id()),
11642 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11646 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11647 let forward_htlcs_count: u64 = Readable::read(reader)?;
11648 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11649 for _ in 0..forward_htlcs_count {
11650 let short_channel_id = Readable::read(reader)?;
11651 let pending_forwards_count: u64 = Readable::read(reader)?;
11652 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11653 for _ in 0..pending_forwards_count {
11654 pending_forwards.push(Readable::read(reader)?);
11656 forward_htlcs.insert(short_channel_id, pending_forwards);
11659 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11660 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11661 for _ in 0..claimable_htlcs_count {
11662 let payment_hash = Readable::read(reader)?;
11663 let previous_hops_len: u64 = Readable::read(reader)?;
11664 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11665 for _ in 0..previous_hops_len {
11666 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11668 claimable_htlcs_list.push((payment_hash, previous_hops));
11671 let peer_state_from_chans = |channel_by_id| {
11674 inbound_channel_request_by_id: new_hash_map(),
11675 latest_features: InitFeatures::empty(),
11676 pending_msg_events: Vec::new(),
11677 in_flight_monitor_updates: BTreeMap::new(),
11678 monitor_update_blocked_actions: BTreeMap::new(),
11679 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11680 is_connected: false,
11684 let peer_count: u64 = Readable::read(reader)?;
11685 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11686 for _ in 0..peer_count {
11687 let peer_pubkey = Readable::read(reader)?;
11688 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11689 let mut peer_state = peer_state_from_chans(peer_chans);
11690 peer_state.latest_features = Readable::read(reader)?;
11691 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11694 let event_count: u64 = Readable::read(reader)?;
11695 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11696 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11697 for _ in 0..event_count {
11698 match MaybeReadable::read(reader)? {
11699 Some(event) => pending_events_read.push_back((event, None)),
11704 let background_event_count: u64 = Readable::read(reader)?;
11705 for _ in 0..background_event_count {
11706 match <u8 as Readable>::read(reader)? {
11708 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11709 // however we really don't (and never did) need them - we regenerate all
11710 // on-startup monitor updates.
11711 let _: OutPoint = Readable::read(reader)?;
11712 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11714 _ => return Err(DecodeError::InvalidValue),
11718 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11719 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11721 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11722 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11723 for _ in 0..pending_inbound_payment_count {
11724 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11725 return Err(DecodeError::InvalidValue);
11729 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11730 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11731 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11732 for _ in 0..pending_outbound_payments_count_compat {
11733 let session_priv = Readable::read(reader)?;
11734 let payment = PendingOutboundPayment::Legacy {
11735 session_privs: hash_set_from_iter([session_priv]),
11737 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11738 return Err(DecodeError::InvalidValue)
11742 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11743 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11744 let mut pending_outbound_payments = None;
11745 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11746 let mut received_network_pubkey: Option<PublicKey> = None;
11747 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11748 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11749 let mut claimable_htlc_purposes = None;
11750 let mut claimable_htlc_onion_fields = None;
11751 let mut pending_claiming_payments = Some(new_hash_map());
11752 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11753 let mut events_override = None;
11754 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11755 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11756 read_tlv_fields!(reader, {
11757 (1, pending_outbound_payments_no_retry, option),
11758 (2, pending_intercepted_htlcs, option),
11759 (3, pending_outbound_payments, option),
11760 (4, pending_claiming_payments, option),
11761 (5, received_network_pubkey, option),
11762 (6, monitor_update_blocked_actions_per_peer, option),
11763 (7, fake_scid_rand_bytes, option),
11764 (8, events_override, option),
11765 (9, claimable_htlc_purposes, optional_vec),
11766 (10, in_flight_monitor_updates, option),
11767 (11, probing_cookie_secret, option),
11768 (13, claimable_htlc_onion_fields, optional_vec),
11769 (14, decode_update_add_htlcs, option),
11771 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11772 if fake_scid_rand_bytes.is_none() {
11773 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11776 if probing_cookie_secret.is_none() {
11777 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11780 if let Some(events) = events_override {
11781 pending_events_read = events;
11784 if !channel_closures.is_empty() {
11785 pending_events_read.append(&mut channel_closures);
11788 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11789 pending_outbound_payments = Some(pending_outbound_payments_compat);
11790 } else if pending_outbound_payments.is_none() {
11791 let mut outbounds = new_hash_map();
11792 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11793 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11795 pending_outbound_payments = Some(outbounds);
11797 let pending_outbounds = OutboundPayments {
11798 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11799 retry_lock: Mutex::new(())
11802 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11803 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11804 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11805 // replayed, and for each monitor update we have to replay we have to ensure there's a
11806 // `ChannelMonitor` for it.
11808 // In order to do so we first walk all of our live channels (so that we can check their
11809 // state immediately after doing the update replays, when we have the `update_id`s
11810 // available) and then walk any remaining in-flight updates.
11812 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11813 let mut pending_background_events = Vec::new();
11814 macro_rules! handle_in_flight_updates {
11815 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11816 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11818 let mut max_in_flight_update_id = 0;
11819 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11820 for update in $chan_in_flight_upds.iter() {
11821 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11822 update.update_id, $channel_info_log, &$monitor.channel_id());
11823 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11824 pending_background_events.push(
11825 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11826 counterparty_node_id: $counterparty_node_id,
11827 funding_txo: $funding_txo,
11828 channel_id: $monitor.channel_id(),
11829 update: update.clone(),
11832 if $chan_in_flight_upds.is_empty() {
11833 // We had some updates to apply, but it turns out they had completed before we
11834 // were serialized, we just weren't notified of that. Thus, we may have to run
11835 // the completion actions for any monitor updates, but otherwise are done.
11836 pending_background_events.push(
11837 BackgroundEvent::MonitorUpdatesComplete {
11838 counterparty_node_id: $counterparty_node_id,
11839 channel_id: $monitor.channel_id(),
11842 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11843 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11844 return Err(DecodeError::InvalidValue);
11846 max_in_flight_update_id
11850 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11851 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11852 let peer_state = &mut *peer_state_lock;
11853 for phase in peer_state.channel_by_id.values() {
11854 if let ChannelPhase::Funded(chan) = phase {
11855 let logger = WithChannelContext::from(&args.logger, &chan.context, None);
11857 // Channels that were persisted have to be funded, otherwise they should have been
11859 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11860 let monitor = args.channel_monitors.get(&funding_txo)
11861 .expect("We already checked for monitor presence when loading channels");
11862 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11863 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11864 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11865 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11866 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11867 funding_txo, monitor, peer_state, logger, ""));
11870 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11871 // If the channel is ahead of the monitor, return DangerousValue:
11872 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11873 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11874 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11875 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11876 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11877 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11878 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11879 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11880 return Err(DecodeError::DangerousValue);
11883 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11884 // created in this `channel_by_id` map.
11885 debug_assert!(false);
11886 return Err(DecodeError::InvalidValue);
11891 if let Some(in_flight_upds) = in_flight_monitor_updates {
11892 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11893 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11894 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id, None);
11895 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11896 // Now that we've removed all the in-flight monitor updates for channels that are
11897 // still open, we need to replay any monitor updates that are for closed channels,
11898 // creating the neccessary peer_state entries as we go.
11899 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11900 Mutex::new(peer_state_from_chans(new_hash_map()))
11902 let mut peer_state = peer_state_mutex.lock().unwrap();
11903 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11904 funding_txo, monitor, peer_state, logger, "closed ");
11906 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11907 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11908 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11909 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11910 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11911 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11912 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11913 log_error!(logger, " Pending in-flight updates are: {:?}", chan_in_flight_updates);
11914 return Err(DecodeError::InvalidValue);
11919 // Note that we have to do the above replays before we push new monitor updates.
11920 pending_background_events.append(&mut close_background_events);
11922 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11923 // should ensure we try them again on the inbound edge. We put them here and do so after we
11924 // have a fully-constructed `ChannelManager` at the end.
11925 let mut pending_claims_to_replay = Vec::new();
11928 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11929 // ChannelMonitor data for any channels for which we do not have authorative state
11930 // (i.e. those for which we just force-closed above or we otherwise don't have a
11931 // corresponding `Channel` at all).
11932 // This avoids several edge-cases where we would otherwise "forget" about pending
11933 // payments which are still in-flight via their on-chain state.
11934 // We only rebuild the pending payments map if we were most recently serialized by
11936 for (_, monitor) in args.channel_monitors.iter() {
11937 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11938 if counterparty_opt.is_none() {
11939 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11940 let logger = WithChannelMonitor::from(&args.logger, monitor, Some(htlc.payment_hash));
11941 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11942 if path.hops.is_empty() {
11943 log_error!(logger, "Got an empty path for a pending payment");
11944 return Err(DecodeError::InvalidValue);
11947 let path_amt = path.final_value_msat();
11948 let mut session_priv_bytes = [0; 32];
11949 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11950 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11951 hash_map::Entry::Occupied(mut entry) => {
11952 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11953 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11954 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11956 hash_map::Entry::Vacant(entry) => {
11957 let path_fee = path.fee_msat();
11958 entry.insert(PendingOutboundPayment::Retryable {
11959 retry_strategy: None,
11960 attempts: PaymentAttempts::new(),
11961 payment_params: None,
11962 session_privs: hash_set_from_iter([session_priv_bytes]),
11963 payment_hash: htlc.payment_hash,
11964 payment_secret: None, // only used for retries, and we'll never retry on startup
11965 payment_metadata: None, // only used for retries, and we'll never retry on startup
11966 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11967 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11968 pending_amt_msat: path_amt,
11969 pending_fee_msat: Some(path_fee),
11970 total_msat: path_amt,
11971 starting_block_height: best_block_height,
11972 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11974 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11975 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11980 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11981 let logger = WithChannelMonitor::from(&args.logger, monitor, Some(htlc.payment_hash));
11982 match htlc_source {
11983 HTLCSource::PreviousHopData(prev_hop_data) => {
11984 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11985 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11986 info.prev_htlc_id == prev_hop_data.htlc_id
11988 // The ChannelMonitor is now responsible for this HTLC's
11989 // failure/success and will let us know what its outcome is. If we
11990 // still have an entry for this HTLC in `forward_htlcs` or
11991 // `pending_intercepted_htlcs`, we were apparently not persisted after
11992 // the monitor was when forwarding the payment.
11993 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11994 update_add_htlcs.retain(|update_add_htlc| {
11995 let matches = *scid == prev_hop_data.short_channel_id &&
11996 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11998 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11999 &htlc.payment_hash, &monitor.channel_id());
12003 !update_add_htlcs.is_empty()
12005 forward_htlcs.retain(|_, forwards| {
12006 forwards.retain(|forward| {
12007 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
12008 if pending_forward_matches_htlc(&htlc_info) {
12009 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
12010 &htlc.payment_hash, &monitor.channel_id());
12015 !forwards.is_empty()
12017 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
12018 if pending_forward_matches_htlc(&htlc_info) {
12019 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
12020 &htlc.payment_hash, &monitor.channel_id());
12021 pending_events_read.retain(|(event, _)| {
12022 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
12023 intercepted_id != ev_id
12030 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
12031 if let Some(preimage) = preimage_opt {
12032 let pending_events = Mutex::new(pending_events_read);
12033 // Note that we set `from_onchain` to "false" here,
12034 // deliberately keeping the pending payment around forever.
12035 // Given it should only occur when we have a channel we're
12036 // force-closing for being stale that's okay.
12037 // The alternative would be to wipe the state when claiming,
12038 // generating a `PaymentPathSuccessful` event but regenerating
12039 // it and the `PaymentSent` on every restart until the
12040 // `ChannelMonitor` is removed.
12042 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
12043 channel_funding_outpoint: monitor.get_funding_txo().0,
12044 channel_id: monitor.channel_id(),
12045 counterparty_node_id: path.hops[0].pubkey,
12047 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
12048 path, false, compl_action, &pending_events, &&logger);
12049 pending_events_read = pending_events.into_inner().unwrap();
12056 // Whether the downstream channel was closed or not, try to re-apply any payment
12057 // preimages from it which may be needed in upstream channels for forwarded
12059 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12061 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12062 if let HTLCSource::PreviousHopData(_) = htlc_source {
12063 if let Some(payment_preimage) = preimage_opt {
12064 Some((htlc_source, payment_preimage, htlc.amount_msat,
12065 // Check if `counterparty_opt.is_none()` to see if the
12066 // downstream chan is closed (because we don't have a
12067 // channel_id -> peer map entry).
12068 counterparty_opt.is_none(),
12069 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12070 monitor.get_funding_txo().0, monitor.channel_id()))
12073 // If it was an outbound payment, we've handled it above - if a preimage
12074 // came in and we persisted the `ChannelManager` we either handled it and
12075 // are good to go or the channel force-closed - we don't have to handle the
12076 // channel still live case here.
12080 for tuple in outbound_claimed_htlcs_iter {
12081 pending_claims_to_replay.push(tuple);
12086 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12087 // If we have pending HTLCs to forward, assume we either dropped a
12088 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12089 // shut down before the timer hit. Either way, set the time_forwardable to a small
12090 // constant as enough time has likely passed that we should simply handle the forwards
12091 // now, or at least after the user gets a chance to reconnect to our peers.
12092 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12093 time_forwardable: Duration::from_secs(2),
12097 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12098 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12100 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12101 if let Some(purposes) = claimable_htlc_purposes {
12102 if purposes.len() != claimable_htlcs_list.len() {
12103 return Err(DecodeError::InvalidValue);
12105 if let Some(onion_fields) = claimable_htlc_onion_fields {
12106 if onion_fields.len() != claimable_htlcs_list.len() {
12107 return Err(DecodeError::InvalidValue);
12109 for (purpose, (onion, (payment_hash, htlcs))) in
12110 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12112 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12113 purpose, htlcs, onion_fields: onion,
12115 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12118 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12119 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12120 purpose, htlcs, onion_fields: None,
12122 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12126 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12127 // include a `_legacy_hop_data` in the `OnionPayload`.
12128 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12129 if htlcs.is_empty() {
12130 return Err(DecodeError::InvalidValue);
12132 let purpose = match &htlcs[0].onion_payload {
12133 OnionPayload::Invoice { _legacy_hop_data } => {
12134 if let Some(hop_data) = _legacy_hop_data {
12135 events::PaymentPurpose::Bolt11InvoicePayment {
12136 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12137 Some(inbound_payment) => inbound_payment.payment_preimage,
12138 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12139 Ok((payment_preimage, _)) => payment_preimage,
12141 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12142 return Err(DecodeError::InvalidValue);
12146 payment_secret: hop_data.payment_secret,
12148 } else { return Err(DecodeError::InvalidValue); }
12150 OnionPayload::Spontaneous(payment_preimage) =>
12151 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12153 claimable_payments.insert(payment_hash, ClaimablePayment {
12154 purpose, htlcs, onion_fields: None,
12159 let mut secp_ctx = Secp256k1::new();
12160 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12162 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12164 Err(()) => return Err(DecodeError::InvalidValue)
12166 if let Some(network_pubkey) = received_network_pubkey {
12167 if network_pubkey != our_network_pubkey {
12168 log_error!(args.logger, "Key that was generated does not match the existing key.");
12169 return Err(DecodeError::InvalidValue);
12173 let mut outbound_scid_aliases = new_hash_set();
12174 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12175 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12176 let peer_state = &mut *peer_state_lock;
12177 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12178 if let ChannelPhase::Funded(chan) = phase {
12179 let logger = WithChannelContext::from(&args.logger, &chan.context, None);
12180 if chan.context.outbound_scid_alias() == 0 {
12181 let mut outbound_scid_alias;
12183 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12184 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12185 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12187 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12188 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12189 // Note that in rare cases its possible to hit this while reading an older
12190 // channel if we just happened to pick a colliding outbound alias above.
12191 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12192 return Err(DecodeError::InvalidValue);
12194 if chan.context.is_usable() {
12195 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12196 // Note that in rare cases its possible to hit this while reading an older
12197 // channel if we just happened to pick a colliding outbound alias above.
12198 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12199 return Err(DecodeError::InvalidValue);
12203 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12204 // created in this `channel_by_id` map.
12205 debug_assert!(false);
12206 return Err(DecodeError::InvalidValue);
12211 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12213 for (_, monitor) in args.channel_monitors.iter() {
12214 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12215 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12216 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12217 let mut claimable_amt_msat = 0;
12218 let mut receiver_node_id = Some(our_network_pubkey);
12219 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12220 if phantom_shared_secret.is_some() {
12221 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12222 .expect("Failed to get node_id for phantom node recipient");
12223 receiver_node_id = Some(phantom_pubkey)
12225 for claimable_htlc in &payment.htlcs {
12226 claimable_amt_msat += claimable_htlc.value;
12228 // Add a holding-cell claim of the payment to the Channel, which should be
12229 // applied ~immediately on peer reconnection. Because it won't generate a
12230 // new commitment transaction we can just provide the payment preimage to
12231 // the corresponding ChannelMonitor and nothing else.
12233 // We do so directly instead of via the normal ChannelMonitor update
12234 // procedure as the ChainMonitor hasn't yet been initialized, implying
12235 // we're not allowed to call it directly yet. Further, we do the update
12236 // without incrementing the ChannelMonitor update ID as there isn't any
12238 // If we were to generate a new ChannelMonitor update ID here and then
12239 // crash before the user finishes block connect we'd end up force-closing
12240 // this channel as well. On the flip side, there's no harm in restarting
12241 // without the new monitor persisted - we'll end up right back here on
12243 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12244 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12245 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12246 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12247 let peer_state = &mut *peer_state_lock;
12248 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12249 let logger = WithChannelContext::from(&args.logger, &channel.context, Some(payment_hash));
12250 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12253 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12254 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12257 pending_events_read.push_back((events::Event::PaymentClaimed {
12260 purpose: payment.purpose,
12261 amount_msat: claimable_amt_msat,
12262 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12263 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12269 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12270 if let Some(peer_state) = per_peer_state.get(&node_id) {
12271 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12272 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id), None);
12273 for action in actions.iter() {
12274 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12275 downstream_counterparty_and_funding_outpoint:
12276 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12278 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12280 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12281 blocked_channel_id);
12282 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12283 .entry(*blocked_channel_id)
12284 .or_insert_with(Vec::new).push(blocking_action.clone());
12286 // If the channel we were blocking has closed, we don't need to
12287 // worry about it - the blocked monitor update should never have
12288 // been released from the `Channel` object so it can't have
12289 // completed, and if the channel closed there's no reason to bother
12293 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12294 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12298 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12300 log_error!(WithContext::from(&args.logger, Some(node_id), None, None), "Got blocked actions without a per-peer-state for {}", node_id);
12301 return Err(DecodeError::InvalidValue);
12305 let channel_manager = ChannelManager {
12307 fee_estimator: bounded_fee_estimator,
12308 chain_monitor: args.chain_monitor,
12309 tx_broadcaster: args.tx_broadcaster,
12310 router: args.router,
12312 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12314 inbound_payment_key: expanded_inbound_key,
12315 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12316 pending_outbound_payments: pending_outbounds,
12317 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12319 forward_htlcs: Mutex::new(forward_htlcs),
12320 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12321 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12322 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12323 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12324 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12325 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12327 probing_cookie_secret: probing_cookie_secret.unwrap(),
12329 our_network_pubkey,
12332 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12334 per_peer_state: FairRwLock::new(per_peer_state),
12336 pending_events: Mutex::new(pending_events_read),
12337 pending_events_processor: AtomicBool::new(false),
12338 pending_background_events: Mutex::new(pending_background_events),
12339 total_consistency_lock: RwLock::new(()),
12340 background_events_processed_since_startup: AtomicBool::new(false),
12342 event_persist_notifier: Notifier::new(),
12343 needs_persist_flag: AtomicBool::new(false),
12345 funding_batch_states: Mutex::new(BTreeMap::new()),
12347 pending_offers_messages: Mutex::new(Vec::new()),
12349 pending_broadcast_messages: Mutex::new(Vec::new()),
12351 entropy_source: args.entropy_source,
12352 node_signer: args.node_signer,
12353 signer_provider: args.signer_provider,
12355 logger: args.logger,
12356 default_configuration: args.default_config,
12359 for htlc_source in failed_htlcs.drain(..) {
12360 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12361 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12362 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12363 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12366 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12367 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12368 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12369 // channel is closed we just assume that it probably came from an on-chain claim.
12370 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12371 downstream_closed, true, downstream_node_id, downstream_funding,
12372 downstream_channel_id, None
12376 //TODO: Broadcast channel update for closed channels, but only after we've made a
12377 //connection or two.
12379 Ok((best_block_hash.clone(), channel_manager))
12385 use bitcoin::hashes::Hash;
12386 use bitcoin::hashes::sha256::Hash as Sha256;
12387 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12388 use core::sync::atomic::Ordering;
12389 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12390 use crate::ln::types::{ChannelId, PaymentPreimage, PaymentHash, PaymentSecret};
12391 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12392 use crate::ln::functional_test_utils::*;
12393 use crate::ln::msgs::{self, ErrorAction};
12394 use crate::ln::msgs::ChannelMessageHandler;
12395 use crate::prelude::*;
12396 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12397 use crate::util::errors::APIError;
12398 use crate::util::ser::Writeable;
12399 use crate::util::test_utils;
12400 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12401 use crate::sign::EntropySource;
12404 fn test_notify_limits() {
12405 // Check that a few cases which don't require the persistence of a new ChannelManager,
12406 // indeed, do not cause the persistence of a new ChannelManager.
12407 let chanmon_cfgs = create_chanmon_cfgs(3);
12408 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12409 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12410 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12412 // All nodes start with a persistable update pending as `create_network` connects each node
12413 // with all other nodes to make most tests simpler.
12414 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12415 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12416 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12418 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12420 // We check that the channel info nodes have doesn't change too early, even though we try
12421 // to connect messages with new values
12422 chan.0.contents.fee_base_msat *= 2;
12423 chan.1.contents.fee_base_msat *= 2;
12424 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12425 &nodes[1].node.get_our_node_id()).pop().unwrap();
12426 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12427 &nodes[0].node.get_our_node_id()).pop().unwrap();
12429 // The first two nodes (which opened a channel) should now require fresh persistence
12430 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12431 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12432 // ... but the last node should not.
12433 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12434 // After persisting the first two nodes they should no longer need fresh persistence.
12435 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12436 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12438 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12439 // about the channel.
12440 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12441 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12442 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12444 // The nodes which are a party to the channel should also ignore messages from unrelated
12446 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12447 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12448 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12449 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12450 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12451 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12453 // At this point the channel info given by peers should still be the same.
12454 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12455 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12457 // An earlier version of handle_channel_update didn't check the directionality of the
12458 // update message and would always update the local fee info, even if our peer was
12459 // (spuriously) forwarding us our own channel_update.
12460 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12461 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12462 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12464 // First deliver each peers' own message, checking that the node doesn't need to be
12465 // persisted and that its channel info remains the same.
12466 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12467 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12468 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12469 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12470 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12471 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12473 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12474 // the channel info has updated.
12475 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12476 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12477 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12478 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12479 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12480 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12484 fn test_keysend_dup_hash_partial_mpp() {
12485 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12487 let chanmon_cfgs = create_chanmon_cfgs(2);
12488 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12489 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12490 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12491 create_announced_chan_between_nodes(&nodes, 0, 1);
12493 // First, send a partial MPP payment.
12494 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12495 let mut mpp_route = route.clone();
12496 mpp_route.paths.push(mpp_route.paths[0].clone());
12498 let payment_id = PaymentId([42; 32]);
12499 // Use the utility function send_payment_along_path to send the payment with MPP data which
12500 // indicates there are more HTLCs coming.
12501 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12502 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12503 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12504 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12505 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12506 check_added_monitors!(nodes[0], 1);
12507 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12508 assert_eq!(events.len(), 1);
12509 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12511 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12512 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12513 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12514 check_added_monitors!(nodes[0], 1);
12515 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12516 assert_eq!(events.len(), 1);
12517 let ev = events.drain(..).next().unwrap();
12518 let payment_event = SendEvent::from_event(ev);
12519 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12520 check_added_monitors!(nodes[1], 0);
12521 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12522 expect_pending_htlcs_forwardable!(nodes[1]);
12523 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12524 check_added_monitors!(nodes[1], 1);
12525 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12526 assert!(updates.update_add_htlcs.is_empty());
12527 assert!(updates.update_fulfill_htlcs.is_empty());
12528 assert_eq!(updates.update_fail_htlcs.len(), 1);
12529 assert!(updates.update_fail_malformed_htlcs.is_empty());
12530 assert!(updates.update_fee.is_none());
12531 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12532 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12533 expect_payment_failed!(nodes[0], our_payment_hash, true);
12535 // Send the second half of the original MPP payment.
12536 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12537 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12538 check_added_monitors!(nodes[0], 1);
12539 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12540 assert_eq!(events.len(), 1);
12541 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12543 // Claim the full MPP payment. Note that we can't use a test utility like
12544 // claim_funds_along_route because the ordering of the messages causes the second half of the
12545 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12546 // lightning messages manually.
12547 nodes[1].node.claim_funds(payment_preimage);
12548 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12549 check_added_monitors!(nodes[1], 2);
12551 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12552 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12553 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12554 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12555 check_added_monitors!(nodes[0], 1);
12556 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12557 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12558 check_added_monitors!(nodes[1], 1);
12559 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12560 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12561 check_added_monitors!(nodes[1], 1);
12562 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12563 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12564 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12565 check_added_monitors!(nodes[0], 1);
12566 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12567 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12568 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12569 check_added_monitors!(nodes[0], 1);
12570 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12571 check_added_monitors!(nodes[1], 1);
12572 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12573 check_added_monitors!(nodes[1], 1);
12574 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12575 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12576 check_added_monitors!(nodes[0], 1);
12578 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12579 // path's success and a PaymentPathSuccessful event for each path's success.
12580 let events = nodes[0].node.get_and_clear_pending_events();
12581 assert_eq!(events.len(), 2);
12583 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12584 assert_eq!(payment_id, *actual_payment_id);
12585 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12586 assert_eq!(route.paths[0], *path);
12588 _ => panic!("Unexpected event"),
12591 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12592 assert_eq!(payment_id, *actual_payment_id);
12593 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12594 assert_eq!(route.paths[0], *path);
12596 _ => panic!("Unexpected event"),
12601 fn test_keysend_dup_payment_hash() {
12602 do_test_keysend_dup_payment_hash(false);
12603 do_test_keysend_dup_payment_hash(true);
12606 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12607 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12608 // outbound regular payment fails as expected.
12609 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12610 // fails as expected.
12611 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12612 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12613 // reject MPP keysend payments, since in this case where the payment has no payment
12614 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12615 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12616 // payment secrets and reject otherwise.
12617 let chanmon_cfgs = create_chanmon_cfgs(2);
12618 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12619 let mut mpp_keysend_cfg = test_default_channel_config();
12620 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12621 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12622 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12623 create_announced_chan_between_nodes(&nodes, 0, 1);
12624 let scorer = test_utils::TestScorer::new();
12625 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12627 // To start (1), send a regular payment but don't claim it.
12628 let expected_route = [&nodes[1]];
12629 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12631 // Next, attempt a keysend payment and make sure it fails.
12632 let route_params = RouteParameters::from_payment_params_and_value(
12633 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12634 TEST_FINAL_CLTV, false), 100_000);
12635 let route = find_route(
12636 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12637 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12639 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12640 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12641 check_added_monitors!(nodes[0], 1);
12642 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12643 assert_eq!(events.len(), 1);
12644 let ev = events.drain(..).next().unwrap();
12645 let payment_event = SendEvent::from_event(ev);
12646 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12647 check_added_monitors!(nodes[1], 0);
12648 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12649 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12650 // fails), the second will process the resulting failure and fail the HTLC backward
12651 expect_pending_htlcs_forwardable!(nodes[1]);
12652 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12653 check_added_monitors!(nodes[1], 1);
12654 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12655 assert!(updates.update_add_htlcs.is_empty());
12656 assert!(updates.update_fulfill_htlcs.is_empty());
12657 assert_eq!(updates.update_fail_htlcs.len(), 1);
12658 assert!(updates.update_fail_malformed_htlcs.is_empty());
12659 assert!(updates.update_fee.is_none());
12660 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12661 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12662 expect_payment_failed!(nodes[0], payment_hash, true);
12664 // Finally, claim the original payment.
12665 claim_payment(&nodes[0], &expected_route, payment_preimage);
12667 // To start (2), send a keysend payment but don't claim it.
12668 let payment_preimage = PaymentPreimage([42; 32]);
12669 let route = find_route(
12670 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12671 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12673 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12674 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12675 check_added_monitors!(nodes[0], 1);
12676 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12677 assert_eq!(events.len(), 1);
12678 let event = events.pop().unwrap();
12679 let path = vec![&nodes[1]];
12680 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12682 // Next, attempt a regular payment and make sure it fails.
12683 let payment_secret = PaymentSecret([43; 32]);
12684 nodes[0].node.send_payment_with_route(&route, payment_hash,
12685 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12686 check_added_monitors!(nodes[0], 1);
12687 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12688 assert_eq!(events.len(), 1);
12689 let ev = events.drain(..).next().unwrap();
12690 let payment_event = SendEvent::from_event(ev);
12691 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12692 check_added_monitors!(nodes[1], 0);
12693 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12694 expect_pending_htlcs_forwardable!(nodes[1]);
12695 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12696 check_added_monitors!(nodes[1], 1);
12697 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12698 assert!(updates.update_add_htlcs.is_empty());
12699 assert!(updates.update_fulfill_htlcs.is_empty());
12700 assert_eq!(updates.update_fail_htlcs.len(), 1);
12701 assert!(updates.update_fail_malformed_htlcs.is_empty());
12702 assert!(updates.update_fee.is_none());
12703 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12704 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12705 expect_payment_failed!(nodes[0], payment_hash, true);
12707 // Finally, succeed the keysend payment.
12708 claim_payment(&nodes[0], &expected_route, payment_preimage);
12710 // To start (3), send a keysend payment but don't claim it.
12711 let payment_id_1 = PaymentId([44; 32]);
12712 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12713 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12714 check_added_monitors!(nodes[0], 1);
12715 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12716 assert_eq!(events.len(), 1);
12717 let event = events.pop().unwrap();
12718 let path = vec![&nodes[1]];
12719 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12721 // Next, attempt a keysend payment and make sure it fails.
12722 let route_params = RouteParameters::from_payment_params_and_value(
12723 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12726 let route = find_route(
12727 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12728 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12730 let payment_id_2 = PaymentId([45; 32]);
12731 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12732 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12733 check_added_monitors!(nodes[0], 1);
12734 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12735 assert_eq!(events.len(), 1);
12736 let ev = events.drain(..).next().unwrap();
12737 let payment_event = SendEvent::from_event(ev);
12738 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12739 check_added_monitors!(nodes[1], 0);
12740 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12741 expect_pending_htlcs_forwardable!(nodes[1]);
12742 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12743 check_added_monitors!(nodes[1], 1);
12744 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12745 assert!(updates.update_add_htlcs.is_empty());
12746 assert!(updates.update_fulfill_htlcs.is_empty());
12747 assert_eq!(updates.update_fail_htlcs.len(), 1);
12748 assert!(updates.update_fail_malformed_htlcs.is_empty());
12749 assert!(updates.update_fee.is_none());
12750 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12751 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12752 expect_payment_failed!(nodes[0], payment_hash, true);
12754 // Finally, claim the original payment.
12755 claim_payment(&nodes[0], &expected_route, payment_preimage);
12759 fn test_keysend_hash_mismatch() {
12760 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12761 // preimage doesn't match the msg's payment hash.
12762 let chanmon_cfgs = create_chanmon_cfgs(2);
12763 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12764 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12765 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12767 let payer_pubkey = nodes[0].node.get_our_node_id();
12768 let payee_pubkey = nodes[1].node.get_our_node_id();
12770 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12771 let route_params = RouteParameters::from_payment_params_and_value(
12772 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12773 let network_graph = nodes[0].network_graph;
12774 let first_hops = nodes[0].node.list_usable_channels();
12775 let scorer = test_utils::TestScorer::new();
12776 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12777 let route = find_route(
12778 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12779 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12782 let test_preimage = PaymentPreimage([42; 32]);
12783 let mismatch_payment_hash = PaymentHash([43; 32]);
12784 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12785 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12786 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12787 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12788 check_added_monitors!(nodes[0], 1);
12790 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12791 assert_eq!(updates.update_add_htlcs.len(), 1);
12792 assert!(updates.update_fulfill_htlcs.is_empty());
12793 assert!(updates.update_fail_htlcs.is_empty());
12794 assert!(updates.update_fail_malformed_htlcs.is_empty());
12795 assert!(updates.update_fee.is_none());
12796 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12798 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12802 fn test_keysend_msg_with_secret_err() {
12803 // Test that we error as expected if we receive a keysend payment that includes a payment
12804 // secret when we don't support MPP keysend.
12805 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12806 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12807 let chanmon_cfgs = create_chanmon_cfgs(2);
12808 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12809 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12810 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12812 let payer_pubkey = nodes[0].node.get_our_node_id();
12813 let payee_pubkey = nodes[1].node.get_our_node_id();
12815 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12816 let route_params = RouteParameters::from_payment_params_and_value(
12817 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12818 let network_graph = nodes[0].network_graph;
12819 let first_hops = nodes[0].node.list_usable_channels();
12820 let scorer = test_utils::TestScorer::new();
12821 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12822 let route = find_route(
12823 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12824 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12827 let test_preimage = PaymentPreimage([42; 32]);
12828 let test_secret = PaymentSecret([43; 32]);
12829 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12830 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12831 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12832 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12833 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12834 PaymentId(payment_hash.0), None, session_privs).unwrap();
12835 check_added_monitors!(nodes[0], 1);
12837 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12838 assert_eq!(updates.update_add_htlcs.len(), 1);
12839 assert!(updates.update_fulfill_htlcs.is_empty());
12840 assert!(updates.update_fail_htlcs.is_empty());
12841 assert!(updates.update_fail_malformed_htlcs.is_empty());
12842 assert!(updates.update_fee.is_none());
12843 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12845 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12849 fn test_multi_hop_missing_secret() {
12850 let chanmon_cfgs = create_chanmon_cfgs(4);
12851 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12852 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12853 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12855 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12856 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12857 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12858 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12860 // Marshall an MPP route.
12861 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12862 let path = route.paths[0].clone();
12863 route.paths.push(path);
12864 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12865 route.paths[0].hops[0].short_channel_id = chan_1_id;
12866 route.paths[0].hops[1].short_channel_id = chan_3_id;
12867 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12868 route.paths[1].hops[0].short_channel_id = chan_2_id;
12869 route.paths[1].hops[1].short_channel_id = chan_4_id;
12871 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12872 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12874 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12875 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12877 _ => panic!("unexpected error")
12882 fn test_channel_update_cached() {
12883 let chanmon_cfgs = create_chanmon_cfgs(3);
12884 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12885 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12886 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12888 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12890 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12891 check_added_monitors!(nodes[0], 1);
12892 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12894 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12895 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12896 assert_eq!(node_1_events.len(), 0);
12899 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12900 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12901 assert_eq!(pending_broadcast_messages.len(), 1);
12904 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12905 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12906 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12908 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12909 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12911 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12912 assert_eq!(node_0_events.len(), 0);
12914 // Now we reconnect to a peer
12915 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12916 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12918 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12919 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12920 }, false).unwrap();
12922 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12923 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12924 assert_eq!(node_0_events.len(), 1);
12925 match &node_0_events[0] {
12926 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12927 _ => panic!("Unexpected event"),
12930 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12931 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12932 assert_eq!(pending_broadcast_messages.len(), 0);
12937 fn test_drop_disconnected_peers_when_removing_channels() {
12938 let chanmon_cfgs = create_chanmon_cfgs(2);
12939 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12940 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12941 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12943 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12945 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12946 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12948 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12949 check_closed_broadcast!(nodes[0], true);
12950 check_added_monitors!(nodes[0], 1);
12951 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12954 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12955 // disconnected and the channel between has been force closed.
12956 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12957 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12958 assert_eq!(nodes_0_per_peer_state.len(), 1);
12959 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12962 nodes[0].node.timer_tick_occurred();
12965 // Assert that nodes[1] has now been removed.
12966 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12971 fn bad_inbound_payment_hash() {
12972 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12973 let chanmon_cfgs = create_chanmon_cfgs(2);
12974 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12975 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12976 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12978 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12979 let payment_data = msgs::FinalOnionHopData {
12981 total_msat: 100_000,
12984 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12985 // payment verification fails as expected.
12986 let mut bad_payment_hash = payment_hash.clone();
12987 bad_payment_hash.0[0] += 1;
12988 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12989 Ok(_) => panic!("Unexpected ok"),
12991 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12995 // Check that using the original payment hash succeeds.
12996 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
13000 fn test_outpoint_to_peer_coverage() {
13001 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
13002 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
13003 // the channel is successfully closed.
13004 let chanmon_cfgs = create_chanmon_cfgs(2);
13005 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13006 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13007 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13009 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
13010 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13011 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
13012 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13013 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13015 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
13016 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
13018 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
13019 // funding transaction, and have the real `channel_id`.
13020 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13021 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13024 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
13026 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
13027 // as it has the funding transaction.
13028 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13029 assert_eq!(nodes_0_lock.len(), 1);
13030 assert!(nodes_0_lock.contains_key(&funding_output));
13033 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13035 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13037 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13039 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13040 assert_eq!(nodes_0_lock.len(), 1);
13041 assert!(nodes_0_lock.contains_key(&funding_output));
13043 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13046 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
13047 // soon as it has the funding transaction.
13048 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13049 assert_eq!(nodes_1_lock.len(), 1);
13050 assert!(nodes_1_lock.contains_key(&funding_output));
13052 check_added_monitors!(nodes[1], 1);
13053 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13054 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13055 check_added_monitors!(nodes[0], 1);
13056 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13057 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13058 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13059 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13061 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13062 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13063 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13064 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13066 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13067 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13069 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13070 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13071 // fee for the closing transaction has been negotiated and the parties has the other
13072 // party's signature for the fee negotiated closing transaction.)
13073 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13074 assert_eq!(nodes_0_lock.len(), 1);
13075 assert!(nodes_0_lock.contains_key(&funding_output));
13079 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13080 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13081 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13082 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13083 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13084 assert_eq!(nodes_1_lock.len(), 1);
13085 assert!(nodes_1_lock.contains_key(&funding_output));
13088 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13090 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13091 // therefore has all it needs to fully close the channel (both signatures for the
13092 // closing transaction).
13093 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13094 // fully closed by `nodes[0]`.
13095 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13097 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13098 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13099 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13100 assert_eq!(nodes_1_lock.len(), 1);
13101 assert!(nodes_1_lock.contains_key(&funding_output));
13104 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13106 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13108 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13109 // they both have everything required to fully close the channel.
13110 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13112 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13114 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13115 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13118 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13119 let expected_message = format!("Not connected to node: {}", expected_public_key);
13120 check_api_error_message(expected_message, res_err)
13123 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13124 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13125 check_api_error_message(expected_message, res_err)
13128 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13129 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13130 check_api_error_message(expected_message, res_err)
13133 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13134 let expected_message = "No such channel awaiting to be accepted.".to_string();
13135 check_api_error_message(expected_message, res_err)
13138 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13140 Err(APIError::APIMisuseError { err }) => {
13141 assert_eq!(err, expected_err_message);
13143 Err(APIError::ChannelUnavailable { err }) => {
13144 assert_eq!(err, expected_err_message);
13146 Ok(_) => panic!("Unexpected Ok"),
13147 Err(_) => panic!("Unexpected Error"),
13152 fn test_api_calls_with_unkown_counterparty_node() {
13153 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13154 // expected if the `counterparty_node_id` is an unkown peer in the
13155 // `ChannelManager::per_peer_state` map.
13156 let chanmon_cfg = create_chanmon_cfgs(2);
13157 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13158 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13159 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13162 let channel_id = ChannelId::from_bytes([4; 32]);
13163 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13164 let intercept_id = InterceptId([0; 32]);
13166 // Test the API functions.
13167 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13169 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13171 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13173 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13175 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13177 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13179 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13183 fn test_api_calls_with_unavailable_channel() {
13184 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13185 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13186 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13187 // the given `channel_id`.
13188 let chanmon_cfg = create_chanmon_cfgs(2);
13189 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13190 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13191 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13193 let counterparty_node_id = nodes[1].node.get_our_node_id();
13196 let channel_id = ChannelId::from_bytes([4; 32]);
13198 // Test the API functions.
13199 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13201 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13203 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13205 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13207 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13209 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13213 fn test_connection_limiting() {
13214 // Test that we limit un-channel'd peers and un-funded channels properly.
13215 let chanmon_cfgs = create_chanmon_cfgs(2);
13216 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13217 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13218 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13220 // Note that create_network connects the nodes together for us
13222 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13223 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13225 let mut funding_tx = None;
13226 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13227 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13228 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13231 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13232 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13233 funding_tx = Some(tx.clone());
13234 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13235 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13237 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13238 check_added_monitors!(nodes[1], 1);
13239 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13241 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13243 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13244 check_added_monitors!(nodes[0], 1);
13245 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13247 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13250 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13251 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13252 &nodes[0].keys_manager);
13253 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13254 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13255 open_channel_msg.common_fields.temporary_channel_id);
13257 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13258 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13260 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13261 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13262 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13263 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13264 peer_pks.push(random_pk);
13265 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13266 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13269 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13270 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13271 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13272 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13273 }, true).unwrap_err();
13275 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13276 // them if we have too many un-channel'd peers.
13277 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13278 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13279 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13280 for ev in chan_closed_events {
13281 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13283 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13284 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13286 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13287 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13288 }, true).unwrap_err();
13290 // but of course if the connection is outbound its allowed...
13291 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13292 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13293 }, false).unwrap();
13294 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13296 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13297 // Even though we accept one more connection from new peers, we won't actually let them
13299 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13300 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13301 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13302 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13303 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13305 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13306 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13307 open_channel_msg.common_fields.temporary_channel_id);
13309 // Of course, however, outbound channels are always allowed
13310 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13311 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13313 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13314 // "protected" and can connect again.
13315 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13316 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13317 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13319 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13321 // Further, because the first channel was funded, we can open another channel with
13323 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13324 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13328 fn test_outbound_chans_unlimited() {
13329 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13330 let chanmon_cfgs = create_chanmon_cfgs(2);
13331 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13332 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13333 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13335 // Note that create_network connects the nodes together for us
13337 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13338 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13340 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13341 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13342 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13343 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13346 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13348 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13349 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13350 open_channel_msg.common_fields.temporary_channel_id);
13352 // but we can still open an outbound channel.
13353 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13354 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13356 // but even with such an outbound channel, additional inbound channels will still fail.
13357 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13358 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13359 open_channel_msg.common_fields.temporary_channel_id);
13363 fn test_0conf_limiting() {
13364 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13365 // flag set and (sometimes) accept channels as 0conf.
13366 let chanmon_cfgs = create_chanmon_cfgs(2);
13367 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13368 let mut settings = test_default_channel_config();
13369 settings.manually_accept_inbound_channels = true;
13370 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13371 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13373 // Note that create_network connects the nodes together for us
13375 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13376 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13378 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13379 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13380 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13381 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13382 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13383 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13386 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13387 let events = nodes[1].node.get_and_clear_pending_events();
13389 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13390 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13392 _ => panic!("Unexpected event"),
13394 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13395 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13398 // If we try to accept a channel from another peer non-0conf it will fail.
13399 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13400 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13401 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13402 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13404 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13405 let events = nodes[1].node.get_and_clear_pending_events();
13407 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13408 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13409 Err(APIError::APIMisuseError { err }) =>
13410 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13414 _ => panic!("Unexpected event"),
13416 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13417 open_channel_msg.common_fields.temporary_channel_id);
13419 // ...however if we accept the same channel 0conf it should work just fine.
13420 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13421 let events = nodes[1].node.get_and_clear_pending_events();
13423 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13424 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13426 _ => panic!("Unexpected event"),
13428 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13432 fn reject_excessively_underpaying_htlcs() {
13433 let chanmon_cfg = create_chanmon_cfgs(1);
13434 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13435 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13436 let node = create_network(1, &node_cfg, &node_chanmgr);
13437 let sender_intended_amt_msat = 100;
13438 let extra_fee_msat = 10;
13439 let hop_data = msgs::InboundOnionPayload::Receive {
13440 sender_intended_htlc_amt_msat: 100,
13441 cltv_expiry_height: 42,
13442 payment_metadata: None,
13443 keysend_preimage: None,
13444 payment_data: Some(msgs::FinalOnionHopData {
13445 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13447 custom_tlvs: Vec::new(),
13449 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13450 // intended amount, we fail the payment.
13451 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13452 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13453 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13454 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13455 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13457 assert_eq!(err_code, 19);
13458 } else { panic!(); }
13460 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13461 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13462 sender_intended_htlc_amt_msat: 100,
13463 cltv_expiry_height: 42,
13464 payment_metadata: None,
13465 keysend_preimage: None,
13466 payment_data: Some(msgs::FinalOnionHopData {
13467 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13469 custom_tlvs: Vec::new(),
13471 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13472 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13473 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13474 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13478 fn test_final_incorrect_cltv(){
13479 let chanmon_cfg = create_chanmon_cfgs(1);
13480 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13481 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13482 let node = create_network(1, &node_cfg, &node_chanmgr);
13484 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13485 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13486 sender_intended_htlc_amt_msat: 100,
13487 cltv_expiry_height: 22,
13488 payment_metadata: None,
13489 keysend_preimage: None,
13490 payment_data: Some(msgs::FinalOnionHopData {
13491 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13493 custom_tlvs: Vec::new(),
13494 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13495 node[0].node.default_configuration.accept_mpp_keysend);
13497 // Should not return an error as this condition:
13498 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13499 // is not satisfied.
13500 assert!(result.is_ok());
13504 fn test_inbound_anchors_manual_acceptance() {
13505 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13506 // flag set and (sometimes) accept channels as 0conf.
13507 let mut anchors_cfg = test_default_channel_config();
13508 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13510 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13511 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13513 let chanmon_cfgs = create_chanmon_cfgs(3);
13514 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13515 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13516 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13517 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13519 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13520 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13522 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13523 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13524 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13525 match &msg_events[0] {
13526 MessageSendEvent::HandleError { node_id, action } => {
13527 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13529 ErrorAction::SendErrorMessage { msg } =>
13530 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13531 _ => panic!("Unexpected error action"),
13534 _ => panic!("Unexpected event"),
13537 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13538 let events = nodes[2].node.get_and_clear_pending_events();
13540 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13541 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13542 _ => panic!("Unexpected event"),
13544 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13548 fn test_anchors_zero_fee_htlc_tx_fallback() {
13549 // Tests that if both nodes support anchors, but the remote node does not want to accept
13550 // anchor channels at the moment, an error it sent to the local node such that it can retry
13551 // the channel without the anchors feature.
13552 let chanmon_cfgs = create_chanmon_cfgs(2);
13553 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13554 let mut anchors_config = test_default_channel_config();
13555 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13556 anchors_config.manually_accept_inbound_channels = true;
13557 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13558 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13560 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13561 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13562 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13564 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13565 let events = nodes[1].node.get_and_clear_pending_events();
13567 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13568 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13570 _ => panic!("Unexpected event"),
13573 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13574 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13576 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13577 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13579 // Since nodes[1] should not have accepted the channel, it should
13580 // not have generated any events.
13581 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13585 fn test_update_channel_config() {
13586 let chanmon_cfg = create_chanmon_cfgs(2);
13587 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13588 let mut user_config = test_default_channel_config();
13589 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13590 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13591 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13592 let channel = &nodes[0].node.list_channels()[0];
13594 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13595 let events = nodes[0].node.get_and_clear_pending_msg_events();
13596 assert_eq!(events.len(), 0);
13598 user_config.channel_config.forwarding_fee_base_msat += 10;
13599 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13600 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13601 let events = nodes[0].node.get_and_clear_pending_msg_events();
13602 assert_eq!(events.len(), 1);
13604 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13605 _ => panic!("expected BroadcastChannelUpdate event"),
13608 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13609 let events = nodes[0].node.get_and_clear_pending_msg_events();
13610 assert_eq!(events.len(), 0);
13612 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13613 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13614 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13615 ..Default::default()
13617 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13618 let events = nodes[0].node.get_and_clear_pending_msg_events();
13619 assert_eq!(events.len(), 1);
13621 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13622 _ => panic!("expected BroadcastChannelUpdate event"),
13625 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13626 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13627 forwarding_fee_proportional_millionths: Some(new_fee),
13628 ..Default::default()
13630 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13631 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13632 let events = nodes[0].node.get_and_clear_pending_msg_events();
13633 assert_eq!(events.len(), 1);
13635 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13636 _ => panic!("expected BroadcastChannelUpdate event"),
13639 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13640 // should be applied to ensure update atomicity as specified in the API docs.
13641 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13642 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13643 let new_fee = current_fee + 100;
13646 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13647 forwarding_fee_proportional_millionths: Some(new_fee),
13648 ..Default::default()
13650 Err(APIError::ChannelUnavailable { err: _ }),
13653 // Check that the fee hasn't changed for the channel that exists.
13654 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13655 let events = nodes[0].node.get_and_clear_pending_msg_events();
13656 assert_eq!(events.len(), 0);
13660 fn test_payment_display() {
13661 let payment_id = PaymentId([42; 32]);
13662 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13663 let payment_hash = PaymentHash([42; 32]);
13664 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13665 let payment_preimage = PaymentPreimage([42; 32]);
13666 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13670 fn test_trigger_lnd_force_close() {
13671 let chanmon_cfg = create_chanmon_cfgs(2);
13672 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13673 let user_config = test_default_channel_config();
13674 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13675 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13677 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13678 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13679 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13680 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13681 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13682 check_closed_broadcast(&nodes[0], 1, true);
13683 check_added_monitors(&nodes[0], 1);
13684 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13686 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13687 assert_eq!(txn.len(), 1);
13688 check_spends!(txn[0], funding_tx);
13691 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13692 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13694 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13695 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13697 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13698 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13699 }, false).unwrap();
13700 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13701 let channel_reestablish = get_event_msg!(
13702 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13704 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13706 // Alice should respond with an error since the channel isn't known, but a bogus
13707 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13708 // close even if it was an lnd node.
13709 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13710 assert_eq!(msg_events.len(), 2);
13711 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13712 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13713 assert_eq!(msg.next_local_commitment_number, 0);
13714 assert_eq!(msg.next_remote_commitment_number, 0);
13715 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13716 } else { panic!() };
13717 check_closed_broadcast(&nodes[1], 1, true);
13718 check_added_monitors(&nodes[1], 1);
13719 let expected_close_reason = ClosureReason::ProcessingError {
13720 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13722 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13724 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13725 assert_eq!(txn.len(), 1);
13726 check_spends!(txn[0], funding_tx);
13731 fn test_malformed_forward_htlcs_ser() {
13732 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13733 let chanmon_cfg = create_chanmon_cfgs(1);
13734 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13737 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13738 let deserialized_chanmgr;
13739 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13741 let dummy_failed_htlc = |htlc_id| {
13742 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13744 let dummy_malformed_htlc = |htlc_id| {
13745 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13748 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13749 if htlc_id % 2 == 0 {
13750 dummy_failed_htlc(htlc_id)
13752 dummy_malformed_htlc(htlc_id)
13756 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13757 if htlc_id % 2 == 1 {
13758 dummy_failed_htlc(htlc_id)
13760 dummy_malformed_htlc(htlc_id)
13765 let (scid_1, scid_2) = (42, 43);
13766 let mut forward_htlcs = new_hash_map();
13767 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13768 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13770 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13771 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13772 core::mem::drop(chanmgr_fwd_htlcs);
13774 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13776 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13777 for scid in [scid_1, scid_2].iter() {
13778 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13779 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13781 assert!(deserialized_fwd_htlcs.is_empty());
13782 core::mem::drop(deserialized_fwd_htlcs);
13784 expect_pending_htlcs_forwardable!(nodes[0]);
13790 use crate::chain::Listen;
13791 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13792 use crate::sign::{KeysManager, InMemorySigner};
13793 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13794 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13795 use crate::ln::functional_test_utils::*;
13796 use crate::ln::msgs::{ChannelMessageHandler, Init};
13797 use crate::routing::gossip::NetworkGraph;
13798 use crate::routing::router::{PaymentParameters, RouteParameters};
13799 use crate::util::test_utils;
13800 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13802 use bitcoin::blockdata::locktime::absolute::LockTime;
13803 use bitcoin::hashes::Hash;
13804 use bitcoin::hashes::sha256::Hash as Sha256;
13805 use bitcoin::{Transaction, TxOut};
13807 use crate::sync::{Arc, Mutex, RwLock};
13809 use criterion::Criterion;
13811 type Manager<'a, P> = ChannelManager<
13812 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13813 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13814 &'a test_utils::TestLogger, &'a P>,
13815 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13816 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13817 &'a test_utils::TestLogger>;
13819 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13820 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13822 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13823 type CM = Manager<'chan_mon_cfg, P>;
13825 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13827 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13830 pub fn bench_sends(bench: &mut Criterion) {
13831 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13834 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13835 // Do a simple benchmark of sending a payment back and forth between two nodes.
13836 // Note that this is unrealistic as each payment send will require at least two fsync
13838 let network = bitcoin::Network::Testnet;
13839 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13841 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13842 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13843 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13844 let scorer = RwLock::new(test_utils::TestScorer::new());
13845 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13847 let mut config: UserConfig = Default::default();
13848 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13849 config.channel_handshake_config.minimum_depth = 1;
13851 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13852 let seed_a = [1u8; 32];
13853 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13854 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13856 best_block: BestBlock::from_network(network),
13857 }, genesis_block.header.time);
13858 let node_a_holder = ANodeHolder { node: &node_a };
13860 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13861 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13862 let seed_b = [2u8; 32];
13863 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13864 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13866 best_block: BestBlock::from_network(network),
13867 }, genesis_block.header.time);
13868 let node_b_holder = ANodeHolder { node: &node_b };
13870 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13871 features: node_b.init_features(), networks: None, remote_network_address: None
13873 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13874 features: node_a.init_features(), networks: None, remote_network_address: None
13875 }, false).unwrap();
13876 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13877 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13878 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13881 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13882 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13883 value: 8_000_000, script_pubkey: output_script,
13885 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13886 } else { panic!(); }
13888 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13889 let events_b = node_b.get_and_clear_pending_events();
13890 assert_eq!(events_b.len(), 1);
13891 match events_b[0] {
13892 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13893 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13895 _ => panic!("Unexpected event"),
13898 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13899 let events_a = node_a.get_and_clear_pending_events();
13900 assert_eq!(events_a.len(), 1);
13901 match events_a[0] {
13902 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13903 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13905 _ => panic!("Unexpected event"),
13908 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13910 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13911 Listen::block_connected(&node_a, &block, 1);
13912 Listen::block_connected(&node_b, &block, 1);
13914 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13915 let msg_events = node_a.get_and_clear_pending_msg_events();
13916 assert_eq!(msg_events.len(), 2);
13917 match msg_events[0] {
13918 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13919 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13920 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13924 match msg_events[1] {
13925 MessageSendEvent::SendChannelUpdate { .. } => {},
13929 let events_a = node_a.get_and_clear_pending_events();
13930 assert_eq!(events_a.len(), 1);
13931 match events_a[0] {
13932 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13933 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13935 _ => panic!("Unexpected event"),
13938 let events_b = node_b.get_and_clear_pending_events();
13939 assert_eq!(events_b.len(), 1);
13940 match events_b[0] {
13941 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13942 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13944 _ => panic!("Unexpected event"),
13947 let mut payment_count: u64 = 0;
13948 macro_rules! send_payment {
13949 ($node_a: expr, $node_b: expr) => {
13950 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13951 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13952 let mut payment_preimage = PaymentPreimage([0; 32]);
13953 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13954 payment_count += 1;
13955 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13956 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13958 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13959 PaymentId(payment_hash.0),
13960 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13961 Retry::Attempts(0)).unwrap();
13962 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13963 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13964 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13965 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13966 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13967 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13968 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13970 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13971 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13972 $node_b.claim_funds(payment_preimage);
13973 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13975 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13976 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13977 assert_eq!(node_id, $node_a.get_our_node_id());
13978 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13979 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13981 _ => panic!("Failed to generate claim event"),
13984 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13985 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13986 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13987 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13989 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13993 bench.bench_function(bench_name, |b| b.iter(|| {
13994 send_payment!(node_a, node_b);
13995 send_payment!(node_b, node_a);