1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 //! The top-level channel management and payment tracking stuff lives here.
12 //! The [`ChannelManager`] is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
16 //! It does not manage routing logic (see [`Router`] for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
20 use bitcoin::blockdata::block::Header;
21 use bitcoin::blockdata::transaction::Transaction;
22 use bitcoin::blockdata::constants::ChainHash;
23 use bitcoin::key::constants::SECRET_KEY_SIZE;
24 use bitcoin::network::constants::Network;
26 use bitcoin::hashes::Hash;
27 use bitcoin::hashes::sha256::Hash as Sha256;
28 use bitcoin::hash_types::{BlockHash, Txid};
30 use bitcoin::secp256k1::{SecretKey,PublicKey};
31 use bitcoin::secp256k1::Secp256k1;
32 use bitcoin::{secp256k1, Sequence};
34 use crate::blinded_path::{BlindedPath, NodeIdLookUp};
35 use crate::blinded_path::payment::{Bolt12OfferContext, Bolt12RefundContext, PaymentConstraints, PaymentContext, ReceiveTlvs};
37 use crate::chain::{Confirm, ChannelMonitorUpdateStatus, Watch, BestBlock};
38 use crate::chain::chaininterface::{BroadcasterInterface, ConfirmationTarget, FeeEstimator, LowerBoundedFeeEstimator};
39 use crate::chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, WithChannelMonitor, ChannelMonitorUpdateStep, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
40 use crate::chain::transaction::{OutPoint, TransactionData};
42 use crate::events::{Event, EventHandler, EventsProvider, MessageSendEvent, MessageSendEventsProvider, ClosureReason, HTLCDestination, PaymentFailureReason};
43 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
44 // construct one themselves.
45 use crate::ln::{inbound_payment, ChannelId, PaymentHash, PaymentPreimage, PaymentSecret};
46 use crate::ln::channel::{self, Channel, ChannelPhase, ChannelContext, ChannelError, ChannelUpdateStatus, ShutdownResult, UnfundedChannelContext, UpdateFulfillCommitFetch, OutboundV1Channel, InboundV1Channel, WithChannelContext};
47 pub use crate::ln::channel::{InboundHTLCDetails, InboundHTLCStateDetails, OutboundHTLCDetails, OutboundHTLCStateDetails};
48 use crate::ln::features::{Bolt12InvoiceFeatures, ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
49 #[cfg(any(feature = "_test_utils", test))]
50 use crate::ln::features::Bolt11InvoiceFeatures;
51 use crate::routing::router::{BlindedTail, InFlightHtlcs, Path, Payee, PaymentParameters, Route, RouteParameters, Router};
52 use crate::ln::onion_payment::{check_incoming_htlc_cltv, create_recv_pending_htlc_info, create_fwd_pending_htlc_info, decode_incoming_update_add_htlc_onion, InboundHTLCErr, NextPacketDetails};
54 use crate::ln::onion_utils;
55 use crate::ln::onion_utils::{HTLCFailReason, INVALID_ONION_BLINDING};
56 use crate::ln::msgs::{ChannelMessageHandler, DecodeError, LightningError};
58 use crate::ln::outbound_payment;
59 use crate::ln::outbound_payment::{Bolt12PaymentError, OutboundPayments, PaymentAttempts, PendingOutboundPayment, SendAlongPathArgs, StaleExpiration};
60 use crate::ln::wire::Encode;
61 use crate::offers::invoice::{BlindedPayInfo, Bolt12Invoice, DEFAULT_RELATIVE_EXPIRY, DerivedSigningPubkey, ExplicitSigningPubkey, InvoiceBuilder, UnsignedBolt12Invoice};
62 use crate::offers::invoice_error::InvoiceError;
63 use crate::offers::invoice_request::{DerivedPayerId, InvoiceRequestBuilder};
64 use crate::offers::offer::{Offer, OfferBuilder};
65 use crate::offers::parse::Bolt12SemanticError;
66 use crate::offers::refund::{Refund, RefundBuilder};
67 use crate::onion_message::messenger::{Destination, MessageRouter, PendingOnionMessage, new_pending_onion_message};
68 use crate::onion_message::offers::{OffersMessage, OffersMessageHandler};
69 use crate::sign::{EntropySource, NodeSigner, Recipient, SignerProvider};
70 use crate::sign::ecdsa::WriteableEcdsaChannelSigner;
71 use crate::util::config::{UserConfig, ChannelConfig, ChannelConfigUpdate};
72 use crate::util::wakers::{Future, Notifier};
73 use crate::util::scid_utils::fake_scid;
74 use crate::util::string::UntrustedString;
75 use crate::util::ser::{BigSize, FixedLengthReader, Readable, ReadableArgs, MaybeReadable, Writeable, Writer, VecWriter};
76 use crate::util::logger::{Level, Logger, WithContext};
77 use crate::util::errors::APIError;
78 #[cfg(not(c_bindings))]
80 crate::offers::offer::DerivedMetadata,
81 crate::routing::router::DefaultRouter,
82 crate::routing::gossip::NetworkGraph,
83 crate::routing::scoring::{ProbabilisticScorer, ProbabilisticScoringFeeParameters},
84 crate::sign::KeysManager,
88 crate::offers::offer::OfferWithDerivedMetadataBuilder,
89 crate::offers::refund::RefundMaybeWithDerivedMetadataBuilder,
92 use alloc::collections::{btree_map, BTreeMap};
95 use crate::prelude::*;
97 use core::cell::RefCell;
99 use crate::sync::{Arc, Mutex, RwLock, RwLockReadGuard, FairRwLock, LockTestExt, LockHeldState};
100 use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
101 use core::time::Duration;
102 use core::ops::Deref;
104 // Re-export this for use in the public API.
105 pub use crate::ln::outbound_payment::{PaymentSendFailure, ProbeSendFailure, Retry, RetryableSendFailure, RecipientOnionFields};
106 use crate::ln::script::ShutdownScript;
108 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
110 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
111 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
112 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
114 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
115 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
116 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
117 // before we forward it.
119 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
120 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
121 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
122 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
123 // our payment, which we can use to decode errors or inform the user that the payment was sent.
125 /// Information about where a received HTLC('s onion) has indicated the HTLC should go.
126 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
127 #[cfg_attr(test, derive(Debug, PartialEq))]
128 pub enum PendingHTLCRouting {
129 /// An HTLC which should be forwarded on to another node.
131 /// The onion which should be included in the forwarded HTLC, telling the next hop what to
132 /// do with the HTLC.
133 onion_packet: msgs::OnionPacket,
134 /// The short channel ID of the channel which we were instructed to forward this HTLC to.
136 /// This could be a real on-chain SCID, an SCID alias, or some other SCID which has meaning
137 /// to the receiving node, such as one returned from
138 /// [`ChannelManager::get_intercept_scid`] or [`ChannelManager::get_phantom_scid`].
139 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
140 /// Set if this HTLC is being forwarded within a blinded path.
141 blinded: Option<BlindedForward>,
143 /// The onion indicates that this is a payment for an invoice (supposedly) generated by us.
145 /// Note that at this point, we have not checked that the invoice being paid was actually
146 /// generated by us, but rather it's claiming to pay an invoice of ours.
148 /// Information about the amount the sender intended to pay and (potential) proof that this
149 /// is a payment for an invoice we generated. This proof of payment is is also used for
150 /// linking MPP parts of a larger payment.
151 payment_data: msgs::FinalOnionHopData,
152 /// Additional data which we (allegedly) instructed the sender to include in the onion.
154 /// For HTLCs received by LDK, this will ultimately be exposed in
155 /// [`Event::PaymentClaimable::onion_fields`] as
156 /// [`RecipientOnionFields::payment_metadata`].
157 payment_metadata: Option<Vec<u8>>,
158 /// The context of the payment included by the recipient in a blinded path, or `None` if a
159 /// blinded path was not used.
161 /// Used in part to determine the [`events::PaymentPurpose`].
162 payment_context: Option<PaymentContext>,
163 /// CLTV expiry of the received HTLC.
165 /// Used to track when we should expire pending HTLCs that go unclaimed.
166 incoming_cltv_expiry: u32,
167 /// If the onion had forwarding instructions to one of our phantom node SCIDs, this will
168 /// provide the onion shared secret used to decrypt the next level of forwarding
170 phantom_shared_secret: Option<[u8; 32]>,
171 /// Custom TLVs which were set by the sender.
173 /// For HTLCs received by LDK, this will ultimately be exposed in
174 /// [`Event::PaymentClaimable::onion_fields`] as
175 /// [`RecipientOnionFields::custom_tlvs`].
176 custom_tlvs: Vec<(u64, Vec<u8>)>,
177 /// Set if this HTLC is the final hop in a multi-hop blinded path.
178 requires_blinded_error: bool,
180 /// The onion indicates that this is for payment to us but which contains the preimage for
181 /// claiming included, and is unrelated to any invoice we'd previously generated (aka a
182 /// "keysend" or "spontaneous" payment).
184 /// Information about the amount the sender intended to pay and possibly a token to
185 /// associate MPP parts of a larger payment.
187 /// This will only be filled in if receiving MPP keysend payments is enabled, and it being
188 /// present will cause deserialization to fail on versions of LDK prior to 0.0.116.
189 payment_data: Option<msgs::FinalOnionHopData>,
190 /// Preimage for this onion payment. This preimage is provided by the sender and will be
191 /// used to settle the spontaneous payment.
192 payment_preimage: PaymentPreimage,
193 /// Additional data which we (allegedly) instructed the sender to include in the onion.
195 /// For HTLCs received by LDK, this will ultimately bubble back up as
196 /// [`RecipientOnionFields::payment_metadata`].
197 payment_metadata: Option<Vec<u8>>,
198 /// CLTV expiry of the received HTLC.
200 /// Used to track when we should expire pending HTLCs that go unclaimed.
201 incoming_cltv_expiry: u32,
202 /// Custom TLVs which were set by the sender.
204 /// For HTLCs received by LDK, these will ultimately bubble back up as
205 /// [`RecipientOnionFields::custom_tlvs`].
206 custom_tlvs: Vec<(u64, Vec<u8>)>,
207 /// Set if this HTLC is the final hop in a multi-hop blinded path.
208 requires_blinded_error: bool,
212 /// Information used to forward or fail this HTLC that is being forwarded within a blinded path.
213 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
214 pub struct BlindedForward {
215 /// The `blinding_point` that was set in the inbound [`msgs::UpdateAddHTLC`], or in the inbound
216 /// onion payload if we're the introduction node. Useful for calculating the next hop's
217 /// [`msgs::UpdateAddHTLC::blinding_point`].
218 pub inbound_blinding_point: PublicKey,
219 /// If needed, this determines how this HTLC should be failed backwards, based on whether we are
220 /// the introduction node.
221 pub failure: BlindedFailure,
224 impl PendingHTLCRouting {
225 // Used to override the onion failure code and data if the HTLC is blinded.
226 fn blinded_failure(&self) -> Option<BlindedFailure> {
228 Self::Forward { blinded: Some(BlindedForward { failure, .. }), .. } => Some(*failure),
229 Self::Receive { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
230 Self::ReceiveKeysend { requires_blinded_error: true, .. } => Some(BlindedFailure::FromBlindedNode),
236 /// Information about an incoming HTLC, including the [`PendingHTLCRouting`] describing where it
238 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
239 #[cfg_attr(test, derive(Debug, PartialEq))]
240 pub struct PendingHTLCInfo {
241 /// Further routing details based on whether the HTLC is being forwarded or received.
242 pub routing: PendingHTLCRouting,
243 /// The onion shared secret we build with the sender used to decrypt the onion.
245 /// This is later used to encrypt failure packets in the event that the HTLC is failed.
246 pub incoming_shared_secret: [u8; 32],
247 /// Hash of the payment preimage, to lock the payment until the receiver releases the preimage.
248 pub payment_hash: PaymentHash,
249 /// Amount received in the incoming HTLC.
251 /// This field was added in LDK 0.0.113 and will be `None` for objects written by prior
253 pub incoming_amt_msat: Option<u64>,
254 /// The amount the sender indicated should be forwarded on to the next hop or amount the sender
255 /// intended for us to receive for received payments.
257 /// If the received amount is less than this for received payments, an intermediary hop has
258 /// attempted to steal some of our funds and we should fail the HTLC (the sender should retry
259 /// it along another path).
261 /// Because nodes can take less than their required fees, and because senders may wish to
262 /// improve their own privacy, this amount may be less than [`Self::incoming_amt_msat`] for
263 /// received payments. In such cases, recipients must handle this HTLC as if it had received
264 /// [`Self::outgoing_amt_msat`].
265 pub outgoing_amt_msat: u64,
266 /// The CLTV the sender has indicated we should set on the forwarded HTLC (or has indicated
267 /// should have been set on the received HTLC for received payments).
268 pub outgoing_cltv_value: u32,
269 /// The fee taken for this HTLC in addition to the standard protocol HTLC fees.
271 /// If this is a payment for forwarding, this is the fee we are taking before forwarding the
274 /// If this is a received payment, this is the fee that our counterparty took.
276 /// This is used to allow LSPs to take fees as a part of payments, without the sender having to
278 pub skimmed_fee_msat: Option<u64>,
281 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
282 pub(super) enum HTLCFailureMsg {
283 Relay(msgs::UpdateFailHTLC),
284 Malformed(msgs::UpdateFailMalformedHTLC),
287 /// Stores whether we can't forward an HTLC or relevant forwarding info
288 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
289 pub(super) enum PendingHTLCStatus {
290 Forward(PendingHTLCInfo),
291 Fail(HTLCFailureMsg),
294 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
295 pub(super) struct PendingAddHTLCInfo {
296 pub(super) forward_info: PendingHTLCInfo,
298 // These fields are produced in `forward_htlcs()` and consumed in
299 // `process_pending_htlc_forwards()` for constructing the
300 // `HTLCSource::PreviousHopData` for failed and forwarded
303 // Note that this may be an outbound SCID alias for the associated channel.
304 prev_short_channel_id: u64,
306 prev_channel_id: ChannelId,
307 prev_funding_outpoint: OutPoint,
308 prev_user_channel_id: u128,
311 #[cfg_attr(test, derive(Clone, Debug, PartialEq))]
312 pub(super) enum HTLCForwardInfo {
313 AddHTLC(PendingAddHTLCInfo),
316 err_packet: msgs::OnionErrorPacket,
321 sha256_of_onion: [u8; 32],
325 /// Whether this blinded HTLC is being failed backwards by the introduction node or a blinded node,
326 /// which determines the failure message that should be used.
327 #[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
328 pub enum BlindedFailure {
329 /// This HTLC is being failed backwards by the introduction node, and thus should be failed with
330 /// [`msgs::UpdateFailHTLC`] and error code `0x8000|0x4000|24`.
331 FromIntroductionNode,
332 /// This HTLC is being failed backwards by a blinded node within the path, and thus should be
333 /// failed with [`msgs::UpdateFailMalformedHTLC`] and error code `0x8000|0x4000|24`.
337 /// Tracks the inbound corresponding to an outbound HTLC
338 #[derive(Clone, Debug, Hash, PartialEq, Eq)]
339 pub(crate) struct HTLCPreviousHopData {
340 // Note that this may be an outbound SCID alias for the associated channel.
341 short_channel_id: u64,
342 user_channel_id: Option<u128>,
344 incoming_packet_shared_secret: [u8; 32],
345 phantom_shared_secret: Option<[u8; 32]>,
346 blinded_failure: Option<BlindedFailure>,
347 channel_id: ChannelId,
349 // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
350 // channel with a preimage provided by the forward channel.
355 /// Indicates this incoming onion payload is for the purpose of paying an invoice.
357 /// This is only here for backwards-compatibility in serialization, in the future it can be
358 /// removed, breaking clients running 0.0.106 and earlier.
359 _legacy_hop_data: Option<msgs::FinalOnionHopData>,
360 /// The context of the payment included by the recipient in a blinded path, or `None` if a
361 /// blinded path was not used.
363 /// Used in part to determine the [`events::PaymentPurpose`].
364 payment_context: Option<PaymentContext>,
366 /// Contains the payer-provided preimage.
367 Spontaneous(PaymentPreimage),
370 /// HTLCs that are to us and can be failed/claimed by the user
371 struct ClaimableHTLC {
372 prev_hop: HTLCPreviousHopData,
374 /// The amount (in msats) of this MPP part
376 /// The amount (in msats) that the sender intended to be sent in this MPP
377 /// part (used for validating total MPP amount)
378 sender_intended_value: u64,
379 onion_payload: OnionPayload,
381 /// The total value received for a payment (sum of all MPP parts if the payment is a MPP).
382 /// Gets set to the amount reported when pushing [`Event::PaymentClaimable`].
383 total_value_received: Option<u64>,
384 /// The sender intended sum total of all MPP parts specified in the onion
386 /// The extra fee our counterparty skimmed off the top of this HTLC.
387 counterparty_skimmed_fee_msat: Option<u64>,
390 impl From<&ClaimableHTLC> for events::ClaimedHTLC {
391 fn from(val: &ClaimableHTLC) -> Self {
392 events::ClaimedHTLC {
393 channel_id: val.prev_hop.channel_id,
394 user_channel_id: val.prev_hop.user_channel_id.unwrap_or(0),
395 cltv_expiry: val.cltv_expiry,
396 value_msat: val.value,
397 counterparty_skimmed_fee_msat: val.counterparty_skimmed_fee_msat.unwrap_or(0),
402 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
403 /// a payment and ensure idempotency in LDK.
405 /// This is not exported to bindings users as we just use [u8; 32] directly
406 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
407 pub struct PaymentId(pub [u8; Self::LENGTH]);
410 /// Number of bytes in the id.
411 pub const LENGTH: usize = 32;
414 impl Writeable for PaymentId {
415 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
420 impl Readable for PaymentId {
421 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
422 let buf: [u8; 32] = Readable::read(r)?;
427 impl core::fmt::Display for PaymentId {
428 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
429 crate::util::logger::DebugBytes(&self.0).fmt(f)
433 /// An identifier used to uniquely identify an intercepted HTLC to LDK.
435 /// This is not exported to bindings users as we just use [u8; 32] directly
436 #[derive(Hash, Copy, Clone, PartialEq, Eq, Debug)]
437 pub struct InterceptId(pub [u8; 32]);
439 impl Writeable for InterceptId {
440 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
445 impl Readable for InterceptId {
446 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
447 let buf: [u8; 32] = Readable::read(r)?;
452 #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
453 /// Uniquely describes an HTLC by its source. Just the guaranteed-unique subset of [`HTLCSource`].
454 pub(crate) enum SentHTLCId {
455 PreviousHopData { short_channel_id: u64, htlc_id: u64 },
456 OutboundRoute { session_priv: [u8; SECRET_KEY_SIZE] },
459 pub(crate) fn from_source(source: &HTLCSource) -> Self {
461 HTLCSource::PreviousHopData(hop_data) => Self::PreviousHopData {
462 short_channel_id: hop_data.short_channel_id,
463 htlc_id: hop_data.htlc_id,
465 HTLCSource::OutboundRoute { session_priv, .. } =>
466 Self::OutboundRoute { session_priv: session_priv.secret_bytes() },
470 impl_writeable_tlv_based_enum!(SentHTLCId,
471 (0, PreviousHopData) => {
472 (0, short_channel_id, required),
473 (2, htlc_id, required),
475 (2, OutboundRoute) => {
476 (0, session_priv, required),
481 /// Tracks the inbound corresponding to an outbound HTLC
482 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
483 #[derive(Clone, Debug, PartialEq, Eq)]
484 pub(crate) enum HTLCSource {
485 PreviousHopData(HTLCPreviousHopData),
488 session_priv: SecretKey,
489 /// Technically we can recalculate this from the route, but we cache it here to avoid
490 /// doing a double-pass on route when we get a failure back
491 first_hop_htlc_msat: u64,
492 payment_id: PaymentId,
495 #[allow(clippy::derive_hash_xor_eq)] // Our Hash is faithful to the data, we just don't have SecretKey::hash
496 impl core::hash::Hash for HTLCSource {
497 fn hash<H: core::hash::Hasher>(&self, hasher: &mut H) {
499 HTLCSource::PreviousHopData(prev_hop_data) => {
501 prev_hop_data.hash(hasher);
503 HTLCSource::OutboundRoute { path, session_priv, payment_id, first_hop_htlc_msat } => {
506 session_priv[..].hash(hasher);
507 payment_id.hash(hasher);
508 first_hop_htlc_msat.hash(hasher);
514 #[cfg(all(feature = "_test_vectors", not(feature = "grind_signatures")))]
516 pub fn dummy() -> Self {
517 HTLCSource::OutboundRoute {
518 path: Path { hops: Vec::new(), blinded_tail: None },
519 session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
520 first_hop_htlc_msat: 0,
521 payment_id: PaymentId([2; 32]),
525 #[cfg(debug_assertions)]
526 /// Checks whether this HTLCSource could possibly match the given HTLC output in a commitment
527 /// transaction. Useful to ensure different datastructures match up.
528 pub(crate) fn possibly_matches_output(&self, htlc: &super::chan_utils::HTLCOutputInCommitment) -> bool {
529 if let HTLCSource::OutboundRoute { first_hop_htlc_msat, .. } = self {
530 *first_hop_htlc_msat == htlc.amount_msat
532 // There's nothing we can check for forwarded HTLCs
538 /// This enum is used to specify which error data to send to peers when failing back an HTLC
539 /// using [`ChannelManager::fail_htlc_backwards_with_reason`].
541 /// For more info on failure codes, see <https://github.com/lightning/bolts/blob/master/04-onion-routing.md#failure-messages>.
542 #[derive(Clone, Copy)]
543 pub enum FailureCode {
544 /// We had a temporary error processing the payment. Useful if no other error codes fit
545 /// and you want to indicate that the payer may want to retry.
546 TemporaryNodeFailure,
547 /// We have a required feature which was not in this onion. For example, you may require
548 /// some additional metadata that was not provided with this payment.
549 RequiredNodeFeatureMissing,
550 /// You may wish to use this when a `payment_preimage` is unknown, or the CLTV expiry of
551 /// the HTLC is too close to the current block height for safe handling.
552 /// Using this failure code in [`ChannelManager::fail_htlc_backwards_with_reason`] is
553 /// equivalent to calling [`ChannelManager::fail_htlc_backwards`].
554 IncorrectOrUnknownPaymentDetails,
555 /// We failed to process the payload after the onion was decrypted. You may wish to
556 /// use this when receiving custom HTLC TLVs with even type numbers that you don't recognize.
558 /// If available, the tuple data may include the type number and byte offset in the
559 /// decrypted byte stream where the failure occurred.
560 InvalidOnionPayload(Option<(u64, u16)>),
563 impl Into<u16> for FailureCode {
564 fn into(self) -> u16 {
566 FailureCode::TemporaryNodeFailure => 0x2000 | 2,
567 FailureCode::RequiredNodeFeatureMissing => 0x4000 | 0x2000 | 3,
568 FailureCode::IncorrectOrUnknownPaymentDetails => 0x4000 | 15,
569 FailureCode::InvalidOnionPayload(_) => 0x4000 | 22,
574 /// Error type returned across the peer_state mutex boundary. When an Err is generated for a
575 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
576 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
577 /// peer_state lock. We then return the set of things that need to be done outside the lock in
578 /// this struct and call handle_error!() on it.
580 struct MsgHandleErrInternal {
581 err: msgs::LightningError,
582 closes_channel: bool,
583 shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
585 impl MsgHandleErrInternal {
587 fn send_err_msg_no_close(err: String, channel_id: ChannelId) -> Self {
589 err: LightningError {
591 action: msgs::ErrorAction::SendErrorMessage {
592 msg: msgs::ErrorMessage {
598 closes_channel: false,
599 shutdown_finish: None,
603 fn from_no_close(err: msgs::LightningError) -> Self {
604 Self { err, closes_channel: false, shutdown_finish: None }
607 fn from_finish_shutdown(err: String, channel_id: ChannelId, shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
608 let err_msg = msgs::ErrorMessage { channel_id, data: err.clone() };
609 let action = if shutdown_res.monitor_update.is_some() {
610 // We have a closing `ChannelMonitorUpdate`, which means the channel was funded and we
611 // should disconnect our peer such that we force them to broadcast their latest
612 // commitment upon reconnecting.
613 msgs::ErrorAction::DisconnectPeer { msg: Some(err_msg) }
615 msgs::ErrorAction::SendErrorMessage { msg: err_msg }
618 err: LightningError { err, action },
619 closes_channel: true,
620 shutdown_finish: Some((shutdown_res, channel_update)),
624 fn from_chan_no_close(err: ChannelError, channel_id: ChannelId) -> Self {
627 ChannelError::Warn(msg) => LightningError {
629 action: msgs::ErrorAction::SendWarningMessage {
630 msg: msgs::WarningMessage {
634 log_level: Level::Warn,
637 ChannelError::Ignore(msg) => LightningError {
639 action: msgs::ErrorAction::IgnoreError,
641 ChannelError::Close(msg) => LightningError {
643 action: msgs::ErrorAction::SendErrorMessage {
644 msg: msgs::ErrorMessage {
651 closes_channel: false,
652 shutdown_finish: None,
656 fn closes_channel(&self) -> bool {
661 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
662 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
663 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
664 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
665 pub(super) const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
667 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
668 /// be sent in the order they appear in the return value, however sometimes the order needs to be
669 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
670 /// they were originally sent). In those cases, this enum is also returned.
671 #[derive(Clone, PartialEq)]
672 pub(super) enum RAACommitmentOrder {
673 /// Send the CommitmentUpdate messages first
675 /// Send the RevokeAndACK message first
679 /// Information about a payment which is currently being claimed.
680 struct ClaimingPayment {
682 payment_purpose: events::PaymentPurpose,
683 receiver_node_id: PublicKey,
684 htlcs: Vec<events::ClaimedHTLC>,
685 sender_intended_value: Option<u64>,
687 impl_writeable_tlv_based!(ClaimingPayment, {
688 (0, amount_msat, required),
689 (2, payment_purpose, required),
690 (4, receiver_node_id, required),
691 (5, htlcs, optional_vec),
692 (7, sender_intended_value, option),
695 struct ClaimablePayment {
696 purpose: events::PaymentPurpose,
697 onion_fields: Option<RecipientOnionFields>,
698 htlcs: Vec<ClaimableHTLC>,
701 /// Information about claimable or being-claimed payments
702 struct ClaimablePayments {
703 /// Map from payment hash to the payment data and any HTLCs which are to us and can be
704 /// failed/claimed by the user.
706 /// Note that, no consistency guarantees are made about the channels given here actually
707 /// existing anymore by the time you go to read them!
709 /// When adding to the map, [`Self::pending_claiming_payments`] must also be checked to ensure
710 /// we don't get a duplicate payment.
711 claimable_payments: HashMap<PaymentHash, ClaimablePayment>,
713 /// Map from payment hash to the payment data for HTLCs which we have begun claiming, but which
714 /// are waiting on a [`ChannelMonitorUpdate`] to complete in order to be surfaced to the user
715 /// as an [`events::Event::PaymentClaimed`].
716 pending_claiming_payments: HashMap<PaymentHash, ClaimingPayment>,
719 /// Events which we process internally but cannot be processed immediately at the generation site
720 /// usually because we're running pre-full-init. They are handled immediately once we detect we are
721 /// running normally, and specifically must be processed before any other non-background
722 /// [`ChannelMonitorUpdate`]s are applied.
724 enum BackgroundEvent {
725 /// Handle a ChannelMonitorUpdate which closes the channel or for an already-closed channel.
726 /// This is only separated from [`Self::MonitorUpdateRegeneratedOnStartup`] as the
727 /// maybe-non-closing variant needs a public key to handle channel resumption, whereas if the
728 /// channel has been force-closed we do not need the counterparty node_id.
730 /// Note that any such events are lost on shutdown, so in general they must be updates which
731 /// are regenerated on startup.
732 ClosedMonitorUpdateRegeneratedOnStartup((OutPoint, ChannelId, ChannelMonitorUpdate)),
733 /// Handle a ChannelMonitorUpdate which may or may not close the channel and may unblock the
734 /// channel to continue normal operation.
736 /// In general this should be used rather than
737 /// [`Self::ClosedMonitorUpdateRegeneratedOnStartup`], however in cases where the
738 /// `counterparty_node_id` is not available as the channel has closed from a [`ChannelMonitor`]
739 /// error the other variant is acceptable.
741 /// Note that any such events are lost on shutdown, so in general they must be updates which
742 /// are regenerated on startup.
743 MonitorUpdateRegeneratedOnStartup {
744 counterparty_node_id: PublicKey,
745 funding_txo: OutPoint,
746 channel_id: ChannelId,
747 update: ChannelMonitorUpdate
749 /// Some [`ChannelMonitorUpdate`] (s) completed before we were serialized but we still have
750 /// them marked pending, thus we need to run any [`MonitorUpdateCompletionAction`] (s) pending
752 MonitorUpdatesComplete {
753 counterparty_node_id: PublicKey,
754 channel_id: ChannelId,
759 pub(crate) enum MonitorUpdateCompletionAction {
760 /// Indicates that a payment ultimately destined for us was claimed and we should emit an
761 /// [`events::Event::PaymentClaimed`] to the user if we haven't yet generated such an event for
762 /// this payment. Note that this is only best-effort. On restart it's possible such a duplicate
763 /// event can be generated.
764 PaymentClaimed { payment_hash: PaymentHash },
765 /// Indicates an [`events::Event`] should be surfaced to the user and possibly resume the
766 /// operation of another channel.
768 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
769 /// from completing a monitor update which removes the payment preimage until the inbound edge
770 /// completes a monitor update containing the payment preimage. In that case, after the inbound
771 /// edge completes, we will surface an [`Event::PaymentForwarded`] as well as unblock the
773 EmitEventAndFreeOtherChannel {
774 event: events::Event,
775 downstream_counterparty_and_funding_outpoint: Option<(PublicKey, OutPoint, ChannelId, RAAMonitorUpdateBlockingAction)>,
777 /// Indicates we should immediately resume the operation of another channel, unless there is
778 /// some other reason why the channel is blocked. In practice this simply means immediately
779 /// removing the [`RAAMonitorUpdateBlockingAction`] provided from the blocking set.
781 /// This is usually generated when we've forwarded an HTLC and want to block the outbound edge
782 /// from completing a monitor update which removes the payment preimage until the inbound edge
783 /// completes a monitor update containing the payment preimage. However, we use this variant
784 /// instead of [`Self::EmitEventAndFreeOtherChannel`] when we discover that the claim was in
785 /// fact duplicative and we simply want to resume the outbound edge channel immediately.
787 /// This variant should thus never be written to disk, as it is processed inline rather than
788 /// stored for later processing.
789 FreeOtherChannelImmediately {
790 downstream_counterparty_node_id: PublicKey,
791 downstream_funding_outpoint: OutPoint,
792 blocking_action: RAAMonitorUpdateBlockingAction,
793 downstream_channel_id: ChannelId,
797 impl_writeable_tlv_based_enum_upgradable!(MonitorUpdateCompletionAction,
798 (0, PaymentClaimed) => { (0, payment_hash, required) },
799 // Note that FreeOtherChannelImmediately should never be written - we were supposed to free
800 // *immediately*. However, for simplicity we implement read/write here.
801 (1, FreeOtherChannelImmediately) => {
802 (0, downstream_counterparty_node_id, required),
803 (2, downstream_funding_outpoint, required),
804 (4, blocking_action, required),
805 // Note that by the time we get past the required read above, downstream_funding_outpoint will be
806 // filled in, so we can safely unwrap it here.
807 (5, downstream_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(downstream_funding_outpoint.0.unwrap()))),
809 (2, EmitEventAndFreeOtherChannel) => {
810 (0, event, upgradable_required),
811 // LDK prior to 0.0.116 did not have this field as the monitor update application order was
812 // required by clients. If we downgrade to something prior to 0.0.116 this may result in
813 // monitor updates which aren't properly blocked or resumed, however that's fine - we don't
814 // support async monitor updates even in LDK 0.0.116 and once we do we'll require no
815 // downgrades to prior versions.
816 (1, downstream_counterparty_and_funding_outpoint, option),
820 #[derive(Clone, Debug, PartialEq, Eq)]
821 pub(crate) enum EventCompletionAction {
822 ReleaseRAAChannelMonitorUpdate {
823 counterparty_node_id: PublicKey,
824 channel_funding_outpoint: OutPoint,
825 channel_id: ChannelId,
828 impl_writeable_tlv_based_enum!(EventCompletionAction,
829 (0, ReleaseRAAChannelMonitorUpdate) => {
830 (0, channel_funding_outpoint, required),
831 (2, counterparty_node_id, required),
832 // Note that by the time we get past the required read above, channel_funding_outpoint will be
833 // filled in, so we can safely unwrap it here.
834 (3, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(channel_funding_outpoint.0.unwrap()))),
838 #[derive(Clone, PartialEq, Eq, Debug)]
839 /// If something is blocked on the completion of an RAA-generated [`ChannelMonitorUpdate`] we track
840 /// the blocked action here. See enum variants for more info.
841 pub(crate) enum RAAMonitorUpdateBlockingAction {
842 /// A forwarded payment was claimed. We block the downstream channel completing its monitor
843 /// update which removes the HTLC preimage until the upstream channel has gotten the preimage
845 ForwardedPaymentInboundClaim {
846 /// The upstream channel ID (i.e. the inbound edge).
847 channel_id: ChannelId,
848 /// The HTLC ID on the inbound edge.
853 impl RAAMonitorUpdateBlockingAction {
854 fn from_prev_hop_data(prev_hop: &HTLCPreviousHopData) -> Self {
855 Self::ForwardedPaymentInboundClaim {
856 channel_id: prev_hop.channel_id,
857 htlc_id: prev_hop.htlc_id,
862 impl_writeable_tlv_based_enum!(RAAMonitorUpdateBlockingAction,
863 (0, ForwardedPaymentInboundClaim) => { (0, channel_id, required), (2, htlc_id, required) }
867 /// State we hold per-peer.
868 pub(super) struct PeerState<SP: Deref> where SP::Target: SignerProvider {
869 /// `channel_id` -> `ChannelPhase`
871 /// Holds all channels within corresponding `ChannelPhase`s where the peer is the counterparty.
872 pub(super) channel_by_id: HashMap<ChannelId, ChannelPhase<SP>>,
873 /// `temporary_channel_id` -> `InboundChannelRequest`.
875 /// When manual channel acceptance is enabled, this holds all unaccepted inbound channels where
876 /// the peer is the counterparty. If the channel is accepted, then the entry in this table is
877 /// removed, and an InboundV1Channel is created and placed in the `inbound_v1_channel_by_id` table. If
878 /// the channel is rejected, then the entry is simply removed.
879 pub(super) inbound_channel_request_by_id: HashMap<ChannelId, InboundChannelRequest>,
880 /// The latest `InitFeatures` we heard from the peer.
881 latest_features: InitFeatures,
882 /// Messages to send to the peer - pushed to in the same lock that they are generated in (except
883 /// for broadcast messages, where ordering isn't as strict).
884 pub(super) pending_msg_events: Vec<MessageSendEvent>,
885 /// Map from Channel IDs to pending [`ChannelMonitorUpdate`]s which have been passed to the
886 /// user but which have not yet completed.
888 /// Note that the channel may no longer exist. For example if the channel was closed but we
889 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
890 /// for a missing channel.
891 in_flight_monitor_updates: BTreeMap<OutPoint, Vec<ChannelMonitorUpdate>>,
892 /// Map from a specific channel to some action(s) that should be taken when all pending
893 /// [`ChannelMonitorUpdate`]s for the channel complete updating.
895 /// Note that because we generally only have one entry here a HashMap is pretty overkill. A
896 /// BTreeMap currently stores more than ten elements per leaf node, so even up to a few
897 /// channels with a peer this will just be one allocation and will amount to a linear list of
898 /// channels to walk, avoiding the whole hashing rigmarole.
900 /// Note that the channel may no longer exist. For example, if a channel was closed but we
901 /// later needed to claim an HTLC which is pending on-chain, we may generate a monitor update
902 /// for a missing channel. While a malicious peer could construct a second channel with the
903 /// same `temporary_channel_id` (or final `channel_id` in the case of 0conf channels or prior
904 /// to funding appearing on-chain), the downstream `ChannelMonitor` set is required to ensure
905 /// duplicates do not occur, so such channels should fail without a monitor update completing.
906 monitor_update_blocked_actions: BTreeMap<ChannelId, Vec<MonitorUpdateCompletionAction>>,
907 /// If another channel's [`ChannelMonitorUpdate`] needs to complete before a channel we have
908 /// with this peer can complete an RAA [`ChannelMonitorUpdate`] (e.g. because the RAA update
909 /// will remove a preimage that needs to be durably in an upstream channel first), we put an
910 /// entry here to note that the channel with the key's ID is blocked on a set of actions.
911 actions_blocking_raa_monitor_updates: BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
912 /// The peer is currently connected (i.e. we've seen a
913 /// [`ChannelMessageHandler::peer_connected`] and no corresponding
914 /// [`ChannelMessageHandler::peer_disconnected`].
915 pub is_connected: bool,
918 impl <SP: Deref> PeerState<SP> where SP::Target: SignerProvider {
919 /// Indicates that a peer meets the criteria where we're ok to remove it from our storage.
920 /// If true is passed for `require_disconnected`, the function will return false if we haven't
921 /// disconnected from the node already, ie. `PeerState::is_connected` is set to `true`.
922 fn ok_to_remove(&self, require_disconnected: bool) -> bool {
923 if require_disconnected && self.is_connected {
926 !self.channel_by_id.iter().any(|(_, phase)|
928 ChannelPhase::Funded(_) | ChannelPhase::UnfundedOutboundV1(_) => true,
929 ChannelPhase::UnfundedInboundV1(_) => false,
930 #[cfg(any(dual_funding, splicing))]
931 ChannelPhase::UnfundedOutboundV2(_) => true,
932 #[cfg(any(dual_funding, splicing))]
933 ChannelPhase::UnfundedInboundV2(_) => false,
936 && self.monitor_update_blocked_actions.is_empty()
937 && self.in_flight_monitor_updates.is_empty()
940 // Returns a count of all channels we have with this peer, including unfunded channels.
941 fn total_channel_count(&self) -> usize {
942 self.channel_by_id.len() + self.inbound_channel_request_by_id.len()
945 // Returns a bool indicating if the given `channel_id` matches a channel we have with this peer.
946 fn has_channel(&self, channel_id: &ChannelId) -> bool {
947 self.channel_by_id.contains_key(channel_id) ||
948 self.inbound_channel_request_by_id.contains_key(channel_id)
952 /// A not-yet-accepted inbound (from counterparty) channel. Once
953 /// accepted, the parameters will be used to construct a channel.
954 pub(super) struct InboundChannelRequest {
955 /// The original OpenChannel message.
956 pub open_channel_msg: msgs::OpenChannel,
957 /// The number of ticks remaining before the request expires.
958 pub ticks_remaining: i32,
961 /// The number of ticks that may elapse while we're waiting for an unaccepted inbound channel to be
962 /// accepted. An unaccepted channel that exceeds this limit will be abandoned.
963 const UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS: i32 = 2;
965 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
966 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
968 /// For users who don't want to bother doing their own payment preimage storage, we also store that
971 /// Note that this struct will be removed entirely soon, in favor of storing no inbound payment data
972 /// and instead encoding it in the payment secret.
973 struct PendingInboundPayment {
974 /// The payment secret that the sender must use for us to accept this payment
975 payment_secret: PaymentSecret,
976 /// Time at which this HTLC expires - blocks with a header time above this value will result in
977 /// this payment being removed.
979 /// Arbitrary identifier the user specifies (or not)
980 user_payment_id: u64,
981 // Other required attributes of the payment, optionally enforced:
982 payment_preimage: Option<PaymentPreimage>,
983 min_value_msat: Option<u64>,
986 /// [`SimpleArcChannelManager`] is useful when you need a [`ChannelManager`] with a static lifetime, e.g.
987 /// when you're using `lightning-net-tokio` (since `tokio::spawn` requires parameters with static
988 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
989 /// [`SimpleRefChannelManager`] is the more appropriate type. Defining these type aliases prevents
990 /// issues such as overly long function definitions. Note that the `ChannelManager` can take any type
991 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
992 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
993 /// of [`KeysManager`] and [`DefaultRouter`].
995 /// This is not exported to bindings users as type aliases aren't supported in most languages.
996 #[cfg(not(c_bindings))]
997 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<
1005 Arc<NetworkGraph<Arc<L>>>,
1008 Arc<RwLock<ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>>>,
1009 ProbabilisticScoringFeeParameters,
1010 ProbabilisticScorer<Arc<NetworkGraph<Arc<L>>>, Arc<L>>,
1015 /// [`SimpleRefChannelManager`] is a type alias for a ChannelManager reference, and is the reference
1016 /// counterpart to the [`SimpleArcChannelManager`] type alias. Use this type by default when you don't
1017 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
1018 /// usage of lightning-net-tokio (since `tokio::spawn` requires parameters with static lifetimes).
1019 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
1020 /// issues such as overly long function definitions. Note that the ChannelManager can take any type
1021 /// that implements [`NodeSigner`], [`EntropySource`], and [`SignerProvider`] for its keys manager,
1022 /// or, respectively, [`Router`] for its router, but this type alias chooses the concrete types
1023 /// of [`KeysManager`] and [`DefaultRouter`].
1025 /// This is not exported to bindings users as type aliases aren't supported in most languages.
1026 #[cfg(not(c_bindings))]
1027 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, 'f, 'g, 'h, M, T, F, L> =
1036 &'f NetworkGraph<&'g L>,
1039 &'h RwLock<ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>>,
1040 ProbabilisticScoringFeeParameters,
1041 ProbabilisticScorer<&'f NetworkGraph<&'g L>, &'g L>
1046 /// A trivial trait which describes any [`ChannelManager`].
1048 /// This is not exported to bindings users as general cover traits aren't useful in other
1050 pub trait AChannelManager {
1051 /// A type implementing [`chain::Watch`].
1052 type Watch: chain::Watch<Self::Signer> + ?Sized;
1053 /// A type that may be dereferenced to [`Self::Watch`].
1054 type M: Deref<Target = Self::Watch>;
1055 /// A type implementing [`BroadcasterInterface`].
1056 type Broadcaster: BroadcasterInterface + ?Sized;
1057 /// A type that may be dereferenced to [`Self::Broadcaster`].
1058 type T: Deref<Target = Self::Broadcaster>;
1059 /// A type implementing [`EntropySource`].
1060 type EntropySource: EntropySource + ?Sized;
1061 /// A type that may be dereferenced to [`Self::EntropySource`].
1062 type ES: Deref<Target = Self::EntropySource>;
1063 /// A type implementing [`NodeSigner`].
1064 type NodeSigner: NodeSigner + ?Sized;
1065 /// A type that may be dereferenced to [`Self::NodeSigner`].
1066 type NS: Deref<Target = Self::NodeSigner>;
1067 /// A type implementing [`WriteableEcdsaChannelSigner`].
1068 type Signer: WriteableEcdsaChannelSigner + Sized;
1069 /// A type implementing [`SignerProvider`] for [`Self::Signer`].
1070 type SignerProvider: SignerProvider<EcdsaSigner= Self::Signer> + ?Sized;
1071 /// A type that may be dereferenced to [`Self::SignerProvider`].
1072 type SP: Deref<Target = Self::SignerProvider>;
1073 /// A type implementing [`FeeEstimator`].
1074 type FeeEstimator: FeeEstimator + ?Sized;
1075 /// A type that may be dereferenced to [`Self::FeeEstimator`].
1076 type F: Deref<Target = Self::FeeEstimator>;
1077 /// A type implementing [`Router`].
1078 type Router: Router + ?Sized;
1079 /// A type that may be dereferenced to [`Self::Router`].
1080 type R: Deref<Target = Self::Router>;
1081 /// A type implementing [`Logger`].
1082 type Logger: Logger + ?Sized;
1083 /// A type that may be dereferenced to [`Self::Logger`].
1084 type L: Deref<Target = Self::Logger>;
1085 /// Returns a reference to the actual [`ChannelManager`] object.
1086 fn get_cm(&self) -> &ChannelManager<Self::M, Self::T, Self::ES, Self::NS, Self::SP, Self::F, Self::R, Self::L>;
1089 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> AChannelManager
1090 for ChannelManager<M, T, ES, NS, SP, F, R, L>
1092 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1093 T::Target: BroadcasterInterface,
1094 ES::Target: EntropySource,
1095 NS::Target: NodeSigner,
1096 SP::Target: SignerProvider,
1097 F::Target: FeeEstimator,
1101 type Watch = M::Target;
1103 type Broadcaster = T::Target;
1105 type EntropySource = ES::Target;
1107 type NodeSigner = NS::Target;
1109 type Signer = <SP::Target as SignerProvider>::EcdsaSigner;
1110 type SignerProvider = SP::Target;
1112 type FeeEstimator = F::Target;
1114 type Router = R::Target;
1116 type Logger = L::Target;
1118 fn get_cm(&self) -> &ChannelManager<M, T, ES, NS, SP, F, R, L> { self }
1121 /// A lightning node's channel state machine and payment management logic, which facilitates
1122 /// sending, forwarding, and receiving payments through lightning channels.
1124 /// [`ChannelManager`] is parameterized by a number of components to achieve this.
1125 /// - [`chain::Watch`] (typically [`ChainMonitor`]) for on-chain monitoring and enforcement of each
1127 /// - [`BroadcasterInterface`] for broadcasting transactions related to opening, funding, and
1128 /// closing channels
1129 /// - [`EntropySource`] for providing random data needed for cryptographic operations
1130 /// - [`NodeSigner`] for cryptographic operations scoped to the node
1131 /// - [`SignerProvider`] for providing signers whose operations are scoped to individual channels
1132 /// - [`FeeEstimator`] to determine transaction fee rates needed to have a transaction mined in a
1134 /// - [`Router`] for finding payment paths when initiating and retrying payments
1135 /// - [`Logger`] for logging operational information of varying degrees
1137 /// Additionally, it implements the following traits:
1138 /// - [`ChannelMessageHandler`] to handle off-chain channel activity from peers
1139 /// - [`MessageSendEventsProvider`] to similarly send such messages to peers
1140 /// - [`OffersMessageHandler`] for BOLT 12 message handling and sending
1141 /// - [`EventsProvider`] to generate user-actionable [`Event`]s
1142 /// - [`chain::Listen`] and [`chain::Confirm`] for notification of on-chain activity
1144 /// Thus, [`ChannelManager`] is typically used to parameterize a [`MessageHandler`] and an
1145 /// [`OnionMessenger`]. The latter is required to support BOLT 12 functionality.
1147 /// # `ChannelManager` vs `ChannelMonitor`
1149 /// It's important to distinguish between the *off-chain* management and *on-chain* enforcement of
1150 /// lightning channels. [`ChannelManager`] exchanges messages with peers to manage the off-chain
1151 /// state of each channel. During this process, it generates a [`ChannelMonitor`] for each channel
1152 /// and a [`ChannelMonitorUpdate`] for each relevant change, notifying its parameterized
1153 /// [`chain::Watch`] of them.
1155 /// An implementation of [`chain::Watch`], such as [`ChainMonitor`], is responsible for aggregating
1156 /// these [`ChannelMonitor`]s and applying any [`ChannelMonitorUpdate`]s to them. It then monitors
1157 /// for any pertinent on-chain activity, enforcing claims as needed.
1159 /// This division of off-chain management and on-chain enforcement allows for interesting node
1160 /// setups. For instance, on-chain enforcement could be moved to a separate host or have added
1161 /// redundancy, possibly as a watchtower. See [`chain::Watch`] for the relevant interface.
1163 /// # Initialization
1165 /// Use [`ChannelManager::new`] with the most recent [`BlockHash`] when creating a fresh instance.
1166 /// Otherwise, if restarting, construct [`ChannelManagerReadArgs`] with the necessary parameters and
1167 /// references to any deserialized [`ChannelMonitor`]s that were previously persisted. Use this to
1168 /// deserialize the [`ChannelManager`] and feed it any new chain data since it was last online, as
1169 /// detailed in the [`ChannelManagerReadArgs`] documentation.
1172 /// use bitcoin::BlockHash;
1173 /// use bitcoin::network::constants::Network;
1174 /// use lightning::chain::BestBlock;
1175 /// # use lightning::chain::channelmonitor::ChannelMonitor;
1176 /// use lightning::ln::channelmanager::{ChainParameters, ChannelManager, ChannelManagerReadArgs};
1177 /// # use lightning::routing::gossip::NetworkGraph;
1178 /// use lightning::util::config::UserConfig;
1179 /// use lightning::util::ser::ReadableArgs;
1181 /// # fn read_channel_monitors() -> Vec<ChannelMonitor<lightning::sign::InMemorySigner>> { vec![] }
1184 /// # L: lightning::util::logger::Logger,
1185 /// # ES: lightning::sign::EntropySource,
1186 /// # S: for <'b> lightning::routing::scoring::LockableScore<'b, ScoreLookUp = SL>,
1187 /// # SL: lightning::routing::scoring::ScoreLookUp<ScoreParams = SP>,
1189 /// # R: lightning::io::Read,
1191 /// # fee_estimator: &dyn lightning::chain::chaininterface::FeeEstimator,
1192 /// # chain_monitor: &dyn lightning::chain::Watch<lightning::sign::InMemorySigner>,
1193 /// # tx_broadcaster: &dyn lightning::chain::chaininterface::BroadcasterInterface,
1194 /// # router: &lightning::routing::router::DefaultRouter<&NetworkGraph<&'a L>, &'a L, &ES, &S, SP, SL>,
1196 /// # entropy_source: &ES,
1197 /// # node_signer: &dyn lightning::sign::NodeSigner,
1198 /// # signer_provider: &lightning::sign::DynSignerProvider,
1199 /// # best_block: lightning::chain::BestBlock,
1200 /// # current_timestamp: u32,
1201 /// # mut reader: R,
1202 /// # ) -> Result<(), lightning::ln::msgs::DecodeError> {
1203 /// // Fresh start with no channels
1204 /// let params = ChainParameters {
1205 /// network: Network::Bitcoin,
1208 /// let default_config = UserConfig::default();
1209 /// let channel_manager = ChannelManager::new(
1210 /// fee_estimator, chain_monitor, tx_broadcaster, router, logger, entropy_source, node_signer,
1211 /// signer_provider, default_config, params, current_timestamp
1214 /// // Restart from deserialized data
1215 /// let mut channel_monitors = read_channel_monitors();
1216 /// let args = ChannelManagerReadArgs::new(
1217 /// entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster,
1218 /// router, logger, default_config, channel_monitors.iter_mut().collect()
1220 /// let (block_hash, channel_manager) =
1221 /// <(BlockHash, ChannelManager<_, _, _, _, _, _, _, _>)>::read(&mut reader, args)?;
1223 /// // Update the ChannelManager and ChannelMonitors with the latest chain data
1226 /// // Move the monitors to the ChannelManager's chain::Watch parameter
1227 /// for monitor in channel_monitors {
1228 /// chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
1236 /// The following is required for [`ChannelManager`] to function properly:
1237 /// - Handle messages from peers using its [`ChannelMessageHandler`] implementation (typically
1238 /// called by [`PeerManager::read_event`] when processing network I/O)
1239 /// - Send messages to peers obtained via its [`MessageSendEventsProvider`] implementation
1240 /// (typically initiated when [`PeerManager::process_events`] is called)
1241 /// - Feed on-chain activity using either its [`chain::Listen`] or [`chain::Confirm`] implementation
1242 /// as documented by those traits
1243 /// - Perform any periodic channel and payment checks by calling [`timer_tick_occurred`] roughly
1245 /// - Persist to disk whenever [`get_and_clear_needs_persistence`] returns `true` using a
1246 /// [`Persister`] such as a [`KVStore`] implementation
1247 /// - Handle [`Event`]s obtained via its [`EventsProvider`] implementation
1249 /// The [`Future`] returned by [`get_event_or_persistence_needed_future`] is useful in determining
1250 /// when the last two requirements need to be checked.
1252 /// The [`lightning-block-sync`] and [`lightning-transaction-sync`] crates provide utilities that
1253 /// simplify feeding in on-chain activity using the [`chain::Listen`] and [`chain::Confirm`] traits,
1254 /// respectively. The remaining requirements can be met using the [`lightning-background-processor`]
1255 /// crate. For languages other than Rust, the availability of similar utilities may vary.
1259 /// [`ChannelManager`]'s primary function involves managing a channel state. Without channels,
1260 /// payments can't be sent. Use [`list_channels`] or [`list_usable_channels`] for a snapshot of the
1261 /// currently open channels.
1264 /// # use lightning::ln::channelmanager::AChannelManager;
1266 /// # fn example<T: AChannelManager>(channel_manager: T) {
1267 /// # let channel_manager = channel_manager.get_cm();
1268 /// let channels = channel_manager.list_usable_channels();
1269 /// for details in channels {
1270 /// println!("{:?}", details);
1275 /// Each channel is identified using a [`ChannelId`], which will change throughout the channel's
1276 /// life cycle. Additionally, channels are assigned a `user_channel_id`, which is given in
1277 /// [`Event`]s associated with the channel and serves as a fixed identifier but is otherwise unused
1278 /// by [`ChannelManager`].
1280 /// ## Opening Channels
1282 /// To an open a channel with a peer, call [`create_channel`]. This will initiate the process of
1283 /// opening an outbound channel, which requires self-funding when handling
1284 /// [`Event::FundingGenerationReady`].
1287 /// # use bitcoin::{ScriptBuf, Transaction};
1288 /// # use bitcoin::secp256k1::PublicKey;
1289 /// # use lightning::ln::channelmanager::AChannelManager;
1290 /// # use lightning::events::{Event, EventsProvider};
1292 /// # trait Wallet {
1293 /// # fn create_funding_transaction(
1294 /// # &self, _amount_sats: u64, _output_script: ScriptBuf
1295 /// # ) -> Transaction;
1298 /// # fn example<T: AChannelManager, W: Wallet>(channel_manager: T, wallet: W, peer_id: PublicKey) {
1299 /// # let channel_manager = channel_manager.get_cm();
1300 /// let value_sats = 1_000_000;
1301 /// let push_msats = 10_000_000;
1302 /// match channel_manager.create_channel(peer_id, value_sats, push_msats, 42, None, None) {
1303 /// Ok(channel_id) => println!("Opening channel {}", channel_id),
1304 /// Err(e) => println!("Error opening channel: {:?}", e),
1307 /// // On the event processing thread once the peer has responded
1308 /// channel_manager.process_pending_events(&|event| match event {
1309 /// Event::FundingGenerationReady {
1310 /// temporary_channel_id, counterparty_node_id, channel_value_satoshis, output_script,
1311 /// user_channel_id, ..
1313 /// assert_eq!(user_channel_id, 42);
1314 /// let funding_transaction = wallet.create_funding_transaction(
1315 /// channel_value_satoshis, output_script
1317 /// match channel_manager.funding_transaction_generated(
1318 /// &temporary_channel_id, &counterparty_node_id, funding_transaction
1320 /// Ok(()) => println!("Funding channel {}", temporary_channel_id),
1321 /// Err(e) => println!("Error funding channel {}: {:?}", temporary_channel_id, e),
1324 /// Event::ChannelPending { channel_id, user_channel_id, former_temporary_channel_id, .. } => {
1325 /// assert_eq!(user_channel_id, 42);
1327 /// "Channel {} now {} pending (funding transaction has been broadcasted)", channel_id,
1328 /// former_temporary_channel_id.unwrap()
1331 /// Event::ChannelReady { channel_id, user_channel_id, .. } => {
1332 /// assert_eq!(user_channel_id, 42);
1333 /// println!("Channel {} ready", channel_id);
1341 /// ## Accepting Channels
1343 /// Inbound channels are initiated by peers and are automatically accepted unless [`ChannelManager`]
1344 /// has [`UserConfig::manually_accept_inbound_channels`] set. In that case, the channel may be
1345 /// either accepted or rejected when handling [`Event::OpenChannelRequest`].
1348 /// # use bitcoin::secp256k1::PublicKey;
1349 /// # use lightning::ln::channelmanager::AChannelManager;
1350 /// # use lightning::events::{Event, EventsProvider};
1352 /// # fn is_trusted(counterparty_node_id: PublicKey) -> bool {
1354 /// # unimplemented!()
1357 /// # fn example<T: AChannelManager>(channel_manager: T) {
1358 /// # let channel_manager = channel_manager.get_cm();
1359 /// channel_manager.process_pending_events(&|event| match event {
1360 /// Event::OpenChannelRequest { temporary_channel_id, counterparty_node_id, .. } => {
1361 /// if !is_trusted(counterparty_node_id) {
1362 /// match channel_manager.force_close_without_broadcasting_txn(
1363 /// &temporary_channel_id, &counterparty_node_id
1365 /// Ok(()) => println!("Rejecting channel {}", temporary_channel_id),
1366 /// Err(e) => println!("Error rejecting channel {}: {:?}", temporary_channel_id, e),
1371 /// let user_channel_id = 43;
1372 /// match channel_manager.accept_inbound_channel(
1373 /// &temporary_channel_id, &counterparty_node_id, user_channel_id
1375 /// Ok(()) => println!("Accepting channel {}", temporary_channel_id),
1376 /// Err(e) => println!("Error accepting channel {}: {:?}", temporary_channel_id, e),
1385 /// ## Closing Channels
1387 /// There are two ways to close a channel: either cooperatively using [`close_channel`] or
1388 /// unilaterally using [`force_close_broadcasting_latest_txn`]. The former is ideal as it makes for
1389 /// lower fees and immediate access to funds. However, the latter may be necessary if the
1390 /// counterparty isn't behaving properly or has gone offline. [`Event::ChannelClosed`] is generated
1391 /// once the channel has been closed successfully.
1394 /// # use bitcoin::secp256k1::PublicKey;
1395 /// # use lightning::ln::ChannelId;
1396 /// # use lightning::ln::channelmanager::AChannelManager;
1397 /// # use lightning::events::{Event, EventsProvider};
1399 /// # fn example<T: AChannelManager>(
1400 /// # channel_manager: T, channel_id: ChannelId, counterparty_node_id: PublicKey
1402 /// # let channel_manager = channel_manager.get_cm();
1403 /// match channel_manager.close_channel(&channel_id, &counterparty_node_id) {
1404 /// Ok(()) => println!("Closing channel {}", channel_id),
1405 /// Err(e) => println!("Error closing channel {}: {:?}", channel_id, e),
1408 /// // On the event processing thread
1409 /// channel_manager.process_pending_events(&|event| match event {
1410 /// Event::ChannelClosed { channel_id, user_channel_id, .. } => {
1411 /// assert_eq!(user_channel_id, 42);
1412 /// println!("Channel {} closed", channel_id);
1422 /// [`ChannelManager`] is responsible for sending, forwarding, and receiving payments through its
1423 /// channels. A payment is typically initiated from a [BOLT 11] invoice or a [BOLT 12] offer, though
1424 /// spontaneous (i.e., keysend) payments are also possible. Incoming payments don't require
1425 /// maintaining any additional state as [`ChannelManager`] can reconstruct the [`PaymentPreimage`]
1426 /// from the [`PaymentSecret`]. Sending payments, however, require tracking in order to retry failed
1429 /// After a payment is initiated, it will appear in [`list_recent_payments`] until a short time
1430 /// after either an [`Event::PaymentSent`] or [`Event::PaymentFailed`] is handled. Failed HTLCs
1431 /// for a payment will be retried according to the payment's [`Retry`] strategy or until
1432 /// [`abandon_payment`] is called.
1434 /// ## BOLT 11 Invoices
1436 /// The [`lightning-invoice`] crate is useful for creating BOLT 11 invoices. Specifically, use the
1437 /// functions in its `utils` module for constructing invoices that are compatible with
1438 /// [`ChannelManager`]. These functions serve as a convenience for building invoices with the
1439 /// [`PaymentHash`] and [`PaymentSecret`] returned from [`create_inbound_payment`]. To provide your
1440 /// own [`PaymentHash`], use [`create_inbound_payment_for_hash`] or the corresponding functions in
1441 /// the [`lightning-invoice`] `utils` module.
1443 /// [`ChannelManager`] generates an [`Event::PaymentClaimable`] once the full payment has been
1444 /// received. Call [`claim_funds`] to release the [`PaymentPreimage`], which in turn will result in
1445 /// an [`Event::PaymentClaimed`].
1448 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1449 /// # use lightning::ln::channelmanager::AChannelManager;
1451 /// # fn example<T: AChannelManager>(channel_manager: T) {
1452 /// # let channel_manager = channel_manager.get_cm();
1453 /// // Or use utils::create_invoice_from_channelmanager
1454 /// let known_payment_hash = match channel_manager.create_inbound_payment(
1455 /// Some(10_000_000), 3600, None
1457 /// Ok((payment_hash, _payment_secret)) => {
1458 /// println!("Creating inbound payment {}", payment_hash);
1461 /// Err(()) => panic!("Error creating inbound payment"),
1464 /// // On the event processing thread
1465 /// channel_manager.process_pending_events(&|event| match event {
1466 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1467 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: Some(payment_preimage), .. } => {
1468 /// assert_eq!(payment_hash, known_payment_hash);
1469 /// println!("Claiming payment {}", payment_hash);
1470 /// channel_manager.claim_funds(payment_preimage);
1472 /// PaymentPurpose::Bolt11InvoicePayment { payment_preimage: None, .. } => {
1473 /// println!("Unknown payment hash: {}", payment_hash);
1475 /// PaymentPurpose::SpontaneousPayment(payment_preimage) => {
1476 /// assert_ne!(payment_hash, known_payment_hash);
1477 /// println!("Claiming spontaneous payment {}", payment_hash);
1478 /// channel_manager.claim_funds(payment_preimage);
1483 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1484 /// assert_eq!(payment_hash, known_payment_hash);
1485 /// println!("Claimed {} msats", amount_msat);
1493 /// For paying an invoice, [`lightning-invoice`] provides a `payment` module with convenience
1494 /// functions for use with [`send_payment`].
1497 /// # use lightning::events::{Event, EventsProvider};
1498 /// # use lightning::ln::PaymentHash;
1499 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, RecipientOnionFields, Retry};
1500 /// # use lightning::routing::router::RouteParameters;
1502 /// # fn example<T: AChannelManager>(
1503 /// # channel_manager: T, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields,
1504 /// # route_params: RouteParameters, retry: Retry
1506 /// # let channel_manager = channel_manager.get_cm();
1507 /// // let (payment_hash, recipient_onion, route_params) =
1508 /// // payment::payment_parameters_from_invoice(&invoice);
1509 /// let payment_id = PaymentId([42; 32]);
1510 /// match channel_manager.send_payment(
1511 /// payment_hash, recipient_onion, payment_id, route_params, retry
1513 /// Ok(()) => println!("Sending payment with hash {}", payment_hash),
1514 /// Err(e) => println!("Failed sending payment with hash {}: {:?}", payment_hash, e),
1517 /// let expected_payment_id = payment_id;
1518 /// let expected_payment_hash = payment_hash;
1520 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1522 /// RecentPaymentDetails::Pending {
1523 /// payment_id: expected_payment_id,
1524 /// payment_hash: expected_payment_hash,
1530 /// // On the event processing thread
1531 /// channel_manager.process_pending_events(&|event| match event {
1532 /// Event::PaymentSent { payment_hash, .. } => println!("Paid {}", payment_hash),
1533 /// Event::PaymentFailed { payment_hash, .. } => println!("Failed paying {}", payment_hash),
1540 /// ## BOLT 12 Offers
1542 /// The [`offers`] module is useful for creating BOLT 12 offers. An [`Offer`] is a precursor to a
1543 /// [`Bolt12Invoice`], which must first be requested by the payer. The interchange of these messages
1544 /// as defined in the specification is handled by [`ChannelManager`] and its implementation of
1545 /// [`OffersMessageHandler`]. However, this only works with an [`Offer`] created using a builder
1546 /// returned by [`create_offer_builder`]. With this approach, BOLT 12 offers and invoices are
1547 /// stateless just as BOLT 11 invoices are.
1550 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1551 /// # use lightning::ln::channelmanager::AChannelManager;
1552 /// # use lightning::offers::parse::Bolt12SemanticError;
1554 /// # fn example<T: AChannelManager>(channel_manager: T) -> Result<(), Bolt12SemanticError> {
1555 /// # let channel_manager = channel_manager.get_cm();
1556 /// let offer = channel_manager
1557 /// .create_offer_builder()?
1559 /// # // Needed for compiling for c_bindings
1560 /// # let builder: lightning::offers::offer::OfferBuilder<_, _> = offer.into();
1561 /// # let offer = builder
1562 /// .description("coffee".to_string())
1563 /// .amount_msats(10_000_000)
1565 /// let bech32_offer = offer.to_string();
1567 /// // On the event processing thread
1568 /// channel_manager.process_pending_events(&|event| match event {
1569 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1570 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: Some(payment_preimage), .. } => {
1571 /// println!("Claiming payment {}", payment_hash);
1572 /// channel_manager.claim_funds(payment_preimage);
1574 /// PaymentPurpose::Bolt12OfferPayment { payment_preimage: None, .. } => {
1575 /// println!("Unknown payment hash: {}", payment_hash);
1580 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1581 /// println!("Claimed {} msats", amount_msat);
1590 /// Use [`pay_for_offer`] to initiated payment, which sends an [`InvoiceRequest`] for an [`Offer`]
1591 /// and pays the [`Bolt12Invoice`] response. In addition to success and failure events,
1592 /// [`ChannelManager`] may also generate an [`Event::InvoiceRequestFailed`].
1595 /// # use lightning::events::{Event, EventsProvider};
1596 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1597 /// # use lightning::offers::offer::Offer;
1599 /// # fn example<T: AChannelManager>(
1600 /// # channel_manager: T, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
1601 /// # payer_note: Option<String>, retry: Retry, max_total_routing_fee_msat: Option<u64>
1603 /// # let channel_manager = channel_manager.get_cm();
1604 /// let payment_id = PaymentId([42; 32]);
1605 /// match channel_manager.pay_for_offer(
1606 /// offer, quantity, amount_msats, payer_note, payment_id, retry, max_total_routing_fee_msat
1608 /// Ok(()) => println!("Requesting invoice for offer"),
1609 /// Err(e) => println!("Unable to request invoice for offer: {:?}", e),
1612 /// // First the payment will be waiting on an invoice
1613 /// let expected_payment_id = payment_id;
1615 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1617 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1621 /// // Once the invoice is received, a payment will be sent
1623 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1625 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1629 /// // On the event processing thread
1630 /// channel_manager.process_pending_events(&|event| match event {
1631 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1632 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1633 /// Event::InvoiceRequestFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1640 /// ## BOLT 12 Refunds
1642 /// A [`Refund`] is a request for an invoice to be paid. Like *paying* for an [`Offer`], *creating*
1643 /// a [`Refund`] involves maintaining state since it represents a future outbound payment.
1644 /// Therefore, use [`create_refund_builder`] when creating one, otherwise [`ChannelManager`] will
1645 /// refuse to pay any corresponding [`Bolt12Invoice`] that it receives.
1648 /// # use core::time::Duration;
1649 /// # use lightning::events::{Event, EventsProvider};
1650 /// # use lightning::ln::channelmanager::{AChannelManager, PaymentId, RecentPaymentDetails, Retry};
1651 /// # use lightning::offers::parse::Bolt12SemanticError;
1653 /// # fn example<T: AChannelManager>(
1654 /// # channel_manager: T, amount_msats: u64, absolute_expiry: Duration, retry: Retry,
1655 /// # max_total_routing_fee_msat: Option<u64>
1656 /// # ) -> Result<(), Bolt12SemanticError> {
1657 /// # let channel_manager = channel_manager.get_cm();
1658 /// let payment_id = PaymentId([42; 32]);
1659 /// let refund = channel_manager
1660 /// .create_refund_builder(
1661 /// amount_msats, absolute_expiry, payment_id, retry, max_total_routing_fee_msat
1664 /// # // Needed for compiling for c_bindings
1665 /// # let builder: lightning::offers::refund::RefundBuilder<_> = refund.into();
1666 /// # let refund = builder
1667 /// .description("coffee".to_string())
1668 /// .payer_note("refund for order 1234".to_string())
1670 /// let bech32_refund = refund.to_string();
1672 /// // First the payment will be waiting on an invoice
1673 /// let expected_payment_id = payment_id;
1675 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1677 /// RecentPaymentDetails::AwaitingInvoice { payment_id: expected_payment_id }
1681 /// // Once the invoice is received, a payment will be sent
1683 /// channel_manager.list_recent_payments().iter().find(|details| matches!(
1685 /// RecentPaymentDetails::Pending { payment_id: expected_payment_id, .. }
1689 /// // On the event processing thread
1690 /// channel_manager.process_pending_events(&|event| match event {
1691 /// Event::PaymentSent { payment_id: Some(payment_id), .. } => println!("Paid {}", payment_id),
1692 /// Event::PaymentFailed { payment_id, .. } => println!("Failed paying {}", payment_id),
1700 /// Use [`request_refund_payment`] to send a [`Bolt12Invoice`] for receiving the refund. Similar to
1701 /// *creating* an [`Offer`], this is stateless as it represents an inbound payment.
1704 /// # use lightning::events::{Event, EventsProvider, PaymentPurpose};
1705 /// # use lightning::ln::channelmanager::AChannelManager;
1706 /// # use lightning::offers::refund::Refund;
1708 /// # fn example<T: AChannelManager>(channel_manager: T, refund: &Refund) {
1709 /// # let channel_manager = channel_manager.get_cm();
1710 /// let known_payment_hash = match channel_manager.request_refund_payment(refund) {
1711 /// Ok(invoice) => {
1712 /// let payment_hash = invoice.payment_hash();
1713 /// println!("Requesting refund payment {}", payment_hash);
1716 /// Err(e) => panic!("Unable to request payment for refund: {:?}", e),
1719 /// // On the event processing thread
1720 /// channel_manager.process_pending_events(&|event| match event {
1721 /// Event::PaymentClaimable { payment_hash, purpose, .. } => match purpose {
1722 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: Some(payment_preimage), .. } => {
1723 /// assert_eq!(payment_hash, known_payment_hash);
1724 /// println!("Claiming payment {}", payment_hash);
1725 /// channel_manager.claim_funds(payment_preimage);
1727 /// PaymentPurpose::Bolt12RefundPayment { payment_preimage: None, .. } => {
1728 /// println!("Unknown payment hash: {}", payment_hash);
1733 /// Event::PaymentClaimed { payment_hash, amount_msat, .. } => {
1734 /// assert_eq!(payment_hash, known_payment_hash);
1735 /// println!("Claimed {} msats", amount_msat);
1745 /// Implements [`Writeable`] to write out all channel state to disk. Implies [`peer_disconnected`] for
1746 /// all peers during write/read (though does not modify this instance, only the instance being
1747 /// serialized). This will result in any channels which have not yet exchanged [`funding_created`] (i.e.,
1748 /// called [`funding_transaction_generated`] for outbound channels) being closed.
1750 /// Note that you can be a bit lazier about writing out `ChannelManager` than you can be with
1751 /// [`ChannelMonitor`]. With [`ChannelMonitor`] you MUST durably write each
1752 /// [`ChannelMonitorUpdate`] before returning from
1753 /// [`chain::Watch::watch_channel`]/[`update_channel`] or before completing async writes. With
1754 /// `ChannelManager`s, writing updates happens out-of-band (and will prevent any other
1755 /// `ChannelManager` operations from occurring during the serialization process). If the
1756 /// deserialized version is out-of-date compared to the [`ChannelMonitor`] passed by reference to
1757 /// [`read`], those channels will be force-closed based on the `ChannelMonitor` state and no funds
1758 /// will be lost (modulo on-chain transaction fees).
1760 /// Note that the deserializer is only implemented for `(`[`BlockHash`]`, `[`ChannelManager`]`)`, which
1761 /// tells you the last block hash which was connected. You should get the best block tip before using the manager.
1762 /// See [`chain::Listen`] and [`chain::Confirm`] for more details.
1764 /// # `ChannelUpdate` Messages
1766 /// Note that `ChannelManager` is responsible for tracking liveness of its channels and generating
1767 /// [`ChannelUpdate`] messages informing peers that the channel is temporarily disabled. To avoid
1768 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
1769 /// offline for a full minute. In order to track this, you must call
1770 /// [`timer_tick_occurred`] roughly once per minute, though it doesn't have to be perfect.
1772 /// # DoS Mitigation
1774 /// To avoid trivial DoS issues, `ChannelManager` limits the number of inbound connections and
1775 /// inbound channels without confirmed funding transactions. This may result in nodes which we do
1776 /// not have a channel with being unable to connect to us or open new channels with us if we have
1777 /// many peers with unfunded channels.
1779 /// Because it is an indication of trust, inbound channels which we've accepted as 0conf are
1780 /// exempted from the count of unfunded channels. Similarly, outbound channels and connections are
1781 /// never limited. Please ensure you limit the count of such channels yourself.
1785 /// Rather than using a plain `ChannelManager`, it is preferable to use either a [`SimpleArcChannelManager`]
1786 /// a [`SimpleRefChannelManager`], for conciseness. See their documentation for more details, but
1787 /// essentially you should default to using a [`SimpleRefChannelManager`], and use a
1788 /// [`SimpleArcChannelManager`] when you require a `ChannelManager` with a static lifetime, such as when
1789 /// you're using lightning-net-tokio.
1791 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
1792 /// [`MessageHandler`]: crate::ln::peer_handler::MessageHandler
1793 /// [`OnionMessenger`]: crate::onion_message::messenger::OnionMessenger
1794 /// [`PeerManager::read_event`]: crate::ln::peer_handler::PeerManager::read_event
1795 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
1796 /// [`timer_tick_occurred`]: Self::timer_tick_occurred
1797 /// [`get_and_clear_needs_persistence`]: Self::get_and_clear_needs_persistence
1798 /// [`Persister`]: crate::util::persist::Persister
1799 /// [`KVStore`]: crate::util::persist::KVStore
1800 /// [`get_event_or_persistence_needed_future`]: Self::get_event_or_persistence_needed_future
1801 /// [`lightning-block-sync`]: https://docs.rs/lightning_block_sync/latest/lightning_block_sync
1802 /// [`lightning-transaction-sync`]: https://docs.rs/lightning_transaction_sync/latest/lightning_transaction_sync
1803 /// [`lightning-background-processor`]: https://docs.rs/lightning_background_processor/lightning_background_processor
1804 /// [`list_channels`]: Self::list_channels
1805 /// [`list_usable_channels`]: Self::list_usable_channels
1806 /// [`create_channel`]: Self::create_channel
1807 /// [`close_channel`]: Self::force_close_broadcasting_latest_txn
1808 /// [`force_close_broadcasting_latest_txn`]: Self::force_close_broadcasting_latest_txn
1809 /// [BOLT 11]: https://github.com/lightning/bolts/blob/master/11-payment-encoding.md
1810 /// [BOLT 12]: https://github.com/rustyrussell/lightning-rfc/blob/guilt/offers/12-offer-encoding.md
1811 /// [`list_recent_payments`]: Self::list_recent_payments
1812 /// [`abandon_payment`]: Self::abandon_payment
1813 /// [`lightning-invoice`]: https://docs.rs/lightning_invoice/latest/lightning_invoice
1814 /// [`create_inbound_payment`]: Self::create_inbound_payment
1815 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
1816 /// [`claim_funds`]: Self::claim_funds
1817 /// [`send_payment`]: Self::send_payment
1818 /// [`offers`]: crate::offers
1819 /// [`create_offer_builder`]: Self::create_offer_builder
1820 /// [`pay_for_offer`]: Self::pay_for_offer
1821 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
1822 /// [`create_refund_builder`]: Self::create_refund_builder
1823 /// [`request_refund_payment`]: Self::request_refund_payment
1824 /// [`peer_disconnected`]: msgs::ChannelMessageHandler::peer_disconnected
1825 /// [`funding_created`]: msgs::FundingCreated
1826 /// [`funding_transaction_generated`]: Self::funding_transaction_generated
1827 /// [`BlockHash`]: bitcoin::hash_types::BlockHash
1828 /// [`update_channel`]: chain::Watch::update_channel
1829 /// [`ChannelUpdate`]: msgs::ChannelUpdate
1830 /// [`read`]: ReadableArgs::read
1833 // The tree structure below illustrates the lock order requirements for the different locks of the
1834 // `ChannelManager`. Locks can be held at the same time if they are on the same branch in the tree,
1835 // and should then be taken in the order of the lowest to the highest level in the tree.
1836 // Note that locks on different branches shall not be taken at the same time, as doing so will
1837 // create a new lock order for those specific locks in the order they were taken.
1841 // `pending_offers_messages`
1843 // `total_consistency_lock`
1845 // |__`forward_htlcs`
1847 // | |__`pending_intercepted_htlcs`
1849 // |__`decode_update_add_htlcs`
1851 // |__`per_peer_state`
1853 // |__`pending_inbound_payments`
1855 // |__`claimable_payments`
1857 // |__`pending_outbound_payments` // This field's struct contains a map of pending outbounds
1861 // |__`outpoint_to_peer`
1863 // |__`short_to_chan_info`
1865 // |__`outbound_scid_aliases`
1869 // |__`pending_events`
1871 // |__`pending_background_events`
1873 pub struct ChannelManager<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
1875 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
1876 T::Target: BroadcasterInterface,
1877 ES::Target: EntropySource,
1878 NS::Target: NodeSigner,
1879 SP::Target: SignerProvider,
1880 F::Target: FeeEstimator,
1884 default_configuration: UserConfig,
1885 chain_hash: ChainHash,
1886 fee_estimator: LowerBoundedFeeEstimator<F>,
1892 /// See `ChannelManager` struct-level documentation for lock order requirements.
1894 pub(super) best_block: RwLock<BestBlock>,
1896 best_block: RwLock<BestBlock>,
1897 secp_ctx: Secp256k1<secp256k1::All>,
1899 /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
1900 /// expose them to users via a PaymentClaimable event. HTLCs which do not meet the requirements
1901 /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
1902 /// after we generate a PaymentClaimable upon receipt of all MPP parts or when they time out.
1904 /// See `ChannelManager` struct-level documentation for lock order requirements.
1905 pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
1907 /// The session_priv bytes and retry metadata of outbound payments which are pending resolution.
1908 /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
1909 /// (if the channel has been force-closed), however we track them here to prevent duplicative
1910 /// PaymentSent/PaymentPathFailed events. Specifically, in the case of a duplicative
1911 /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
1912 /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
1913 /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
1914 /// after reloading from disk while replaying blocks against ChannelMonitors.
1916 /// See `PendingOutboundPayment` documentation for more info.
1918 /// See `ChannelManager` struct-level documentation for lock order requirements.
1919 pending_outbound_payments: OutboundPayments,
1921 /// SCID/SCID Alias -> forward infos. Key of 0 means payments received.
1923 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1924 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1925 /// and via the classic SCID.
1927 /// Note that no consistency guarantees are made about the existence of a channel with the
1928 /// `short_channel_id` here, nor the `short_channel_id` in the `PendingHTLCInfo`!
1930 /// See `ChannelManager` struct-level documentation for lock order requirements.
1932 pub(super) forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1934 forward_htlcs: Mutex<HashMap<u64, Vec<HTLCForwardInfo>>>,
1935 /// Storage for HTLCs that have been intercepted and bubbled up to the user. We hold them here
1936 /// until the user tells us what we should do with them.
1938 /// See `ChannelManager` struct-level documentation for lock order requirements.
1939 pending_intercepted_htlcs: Mutex<HashMap<InterceptId, PendingAddHTLCInfo>>,
1941 /// SCID/SCID Alias -> pending `update_add_htlc`s to decode.
1943 /// Note that because we may have an SCID Alias as the key we can have two entries per channel,
1944 /// though in practice we probably won't be receiving HTLCs for a channel both via the alias
1945 /// and via the classic SCID.
1947 /// Note that no consistency guarantees are made about the existence of a channel with the
1948 /// `short_channel_id` here, nor the `channel_id` in `UpdateAddHTLC`!
1950 /// See `ChannelManager` struct-level documentation for lock order requirements.
1951 decode_update_add_htlcs: Mutex<HashMap<u64, Vec<msgs::UpdateAddHTLC>>>,
1953 /// The sets of payments which are claimable or currently being claimed. See
1954 /// [`ClaimablePayments`]' individual field docs for more info.
1956 /// See `ChannelManager` struct-level documentation for lock order requirements.
1957 claimable_payments: Mutex<ClaimablePayments>,
1959 /// The set of outbound SCID aliases across all our channels, including unconfirmed channels
1960 /// and some closed channels which reached a usable state prior to being closed. This is used
1961 /// only to avoid duplicates, and is not persisted explicitly to disk, but rebuilt from the
1962 /// active channel list on load.
1964 /// See `ChannelManager` struct-level documentation for lock order requirements.
1965 outbound_scid_aliases: Mutex<HashSet<u64>>,
1967 /// Channel funding outpoint -> `counterparty_node_id`.
1969 /// Note that this map should only be used for `MonitorEvent` handling, to be able to access
1970 /// the corresponding channel for the event, as we only have access to the `channel_id` during
1971 /// the handling of the events.
1973 /// Note that no consistency guarantees are made about the existence of a peer with the
1974 /// `counterparty_node_id` in our other maps.
1977 /// The `counterparty_node_id` isn't passed with `MonitorEvent`s currently. To pass it, we need
1978 /// to make `counterparty_node_id`'s a required field in `ChannelMonitor`s, which unfortunately
1979 /// would break backwards compatability.
1980 /// We should add `counterparty_node_id`s to `MonitorEvent`s, and eventually rely on it in the
1981 /// future. That would make this map redundant, as only the `ChannelManager::per_peer_state` is
1982 /// required to access the channel with the `counterparty_node_id`.
1984 /// See `ChannelManager` struct-level documentation for lock order requirements.
1986 outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1988 pub(crate) outpoint_to_peer: Mutex<HashMap<OutPoint, PublicKey>>,
1990 /// SCIDs (and outbound SCID aliases) -> `counterparty_node_id`s and `channel_id`s.
1992 /// Outbound SCID aliases are added here once the channel is available for normal use, with
1993 /// SCIDs being added once the funding transaction is confirmed at the channel's required
1994 /// confirmation depth.
1996 /// Note that while this holds `counterparty_node_id`s and `channel_id`s, no consistency
1997 /// guarantees are made about the existence of a peer with the `counterparty_node_id` nor a
1998 /// channel with the `channel_id` in our other maps.
2000 /// See `ChannelManager` struct-level documentation for lock order requirements.
2002 pub(super) short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2004 short_to_chan_info: FairRwLock<HashMap<u64, (PublicKey, ChannelId)>>,
2006 our_network_pubkey: PublicKey,
2008 inbound_payment_key: inbound_payment::ExpandedKey,
2010 /// LDK puts the [fake scids] that it generates into namespaces, to identify the type of an
2011 /// incoming payment. To make it harder for a third-party to identify the type of a payment,
2012 /// we encrypt the namespace identifier using these bytes.
2014 /// [fake scids]: crate::util::scid_utils::fake_scid
2015 fake_scid_rand_bytes: [u8; 32],
2017 /// When we send payment probes, we generate the [`PaymentHash`] based on this cookie secret
2018 /// and a random [`PaymentId`]. This allows us to discern probes from real payments, without
2019 /// keeping additional state.
2020 probing_cookie_secret: [u8; 32],
2022 /// The highest block timestamp we've seen, which is usually a good guess at the current time.
2023 /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
2024 /// very far in the past, and can only ever be up to two hours in the future.
2025 highest_seen_timestamp: AtomicUsize,
2027 /// The bulk of our storage. Currently the `per_peer_state` stores our channels on a per-peer
2028 /// basis, as well as the peer's latest features.
2030 /// If we are connected to a peer we always at least have an entry here, even if no channels
2031 /// are currently open with that peer.
2033 /// Because adding or removing an entry is rare, we usually take an outer read lock and then
2034 /// operate on the inner value freely. This opens up for parallel per-peer operation for
2037 /// Note that the same thread must never acquire two inner `PeerState` locks at the same time.
2039 /// See `ChannelManager` struct-level documentation for lock order requirements.
2040 #[cfg(not(any(test, feature = "_test_utils")))]
2041 per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2042 #[cfg(any(test, feature = "_test_utils"))]
2043 pub(super) per_peer_state: FairRwLock<HashMap<PublicKey, Mutex<PeerState<SP>>>>,
2045 /// The set of events which we need to give to the user to handle. In some cases an event may
2046 /// require some further action after the user handles it (currently only blocking a monitor
2047 /// update from being handed to the user to ensure the included changes to the channel state
2048 /// are handled by the user before they're persisted durably to disk). In that case, the second
2049 /// element in the tuple is set to `Some` with further details of the action.
2051 /// Note that events MUST NOT be removed from pending_events after deserialization, as they
2052 /// could be in the middle of being processed without the direct mutex held.
2054 /// See `ChannelManager` struct-level documentation for lock order requirements.
2055 #[cfg(not(any(test, feature = "_test_utils")))]
2056 pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2057 #[cfg(any(test, feature = "_test_utils"))]
2058 pub(crate) pending_events: Mutex<VecDeque<(events::Event, Option<EventCompletionAction>)>>,
2060 /// A simple atomic flag to ensure only one task at a time can be processing events asynchronously.
2061 pending_events_processor: AtomicBool,
2063 /// If we are running during init (either directly during the deserialization method or in
2064 /// block connection methods which run after deserialization but before normal operation) we
2065 /// cannot provide the user with [`ChannelMonitorUpdate`]s through the normal update flow -
2066 /// prior to normal operation the user may not have loaded the [`ChannelMonitor`]s into their
2067 /// [`ChainMonitor`] and thus attempting to update it will fail or panic.
2069 /// Thus, we place them here to be handled as soon as possible once we are running normally.
2071 /// See `ChannelManager` struct-level documentation for lock order requirements.
2073 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
2074 pending_background_events: Mutex<Vec<BackgroundEvent>>,
2075 /// Used when we have to take a BIG lock to make sure everything is self-consistent.
2076 /// Essentially just when we're serializing ourselves out.
2077 /// Taken first everywhere where we are making changes before any other locks.
2078 /// When acquiring this lock in read mode, rather than acquiring it directly, call
2079 /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
2080 /// Notifier the lock contains sends out a notification when the lock is released.
2081 total_consistency_lock: RwLock<()>,
2082 /// Tracks the progress of channels going through batch funding by whether funding_signed was
2083 /// received and the monitor has been persisted.
2085 /// This information does not need to be persisted as funding nodes can forget
2086 /// unfunded channels upon disconnection.
2087 funding_batch_states: Mutex<BTreeMap<Txid, Vec<(ChannelId, PublicKey, bool)>>>,
2089 background_events_processed_since_startup: AtomicBool,
2091 event_persist_notifier: Notifier,
2092 needs_persist_flag: AtomicBool,
2094 pending_offers_messages: Mutex<Vec<PendingOnionMessage<OffersMessage>>>,
2096 /// Tracks the message events that are to be broadcasted when we are connected to some peer.
2097 pending_broadcast_messages: Mutex<Vec<MessageSendEvent>>,
2101 signer_provider: SP,
2106 /// Chain-related parameters used to construct a new `ChannelManager`.
2108 /// Typically, the block-specific parameters are derived from the best block hash for the network,
2109 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
2110 /// are not needed when deserializing a previously constructed `ChannelManager`.
2111 #[derive(Clone, Copy, PartialEq)]
2112 pub struct ChainParameters {
2113 /// The network for determining the `chain_hash` in Lightning messages.
2114 pub network: Network,
2116 /// The hash and height of the latest block successfully connected.
2118 /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
2119 pub best_block: BestBlock,
2122 #[derive(Copy, Clone, PartialEq)]
2126 SkipPersistHandleEvents,
2127 SkipPersistNoEvents,
2130 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
2131 /// desirable to notify any listeners on `await_persistable_update_timeout`/
2132 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
2133 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
2134 /// sending the aforementioned notification (since the lock being released indicates that the
2135 /// updates are ready for persistence).
2137 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
2138 /// notify or not based on whether relevant changes have been made, providing a closure to
2139 /// `optionally_notify` which returns a `NotifyOption`.
2140 struct PersistenceNotifierGuard<'a, F: FnMut() -> NotifyOption> {
2141 event_persist_notifier: &'a Notifier,
2142 needs_persist_flag: &'a AtomicBool,
2144 // We hold onto this result so the lock doesn't get released immediately.
2145 _read_guard: RwLockReadGuard<'a, ()>,
2148 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
2149 /// Notifies any waiters and indicates that we need to persist, in addition to possibly having
2150 /// events to handle.
2152 /// This must always be called if the changes included a `ChannelMonitorUpdate`, as well as in
2153 /// other cases where losing the changes on restart may result in a force-close or otherwise
2155 fn notify_on_drop<C: AChannelManager>(cm: &'a C) -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2156 Self::optionally_notify(cm, || -> NotifyOption { NotifyOption::DoPersist })
2159 fn optionally_notify<F: FnMut() -> NotifyOption, C: AChannelManager>(cm: &'a C, mut persist_check: F)
2160 -> PersistenceNotifierGuard<'a, impl FnMut() -> NotifyOption> {
2161 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2162 let force_notify = cm.get_cm().process_background_events();
2164 PersistenceNotifierGuard {
2165 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2166 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2167 should_persist: move || {
2168 // Pick the "most" action between `persist_check` and the background events
2169 // processing and return that.
2170 let notify = persist_check();
2171 match (notify, force_notify) {
2172 (NotifyOption::DoPersist, _) => NotifyOption::DoPersist,
2173 (_, NotifyOption::DoPersist) => NotifyOption::DoPersist,
2174 (NotifyOption::SkipPersistHandleEvents, _) => NotifyOption::SkipPersistHandleEvents,
2175 (_, NotifyOption::SkipPersistHandleEvents) => NotifyOption::SkipPersistHandleEvents,
2176 _ => NotifyOption::SkipPersistNoEvents,
2179 _read_guard: read_guard,
2183 /// Note that if any [`ChannelMonitorUpdate`]s are possibly generated,
2184 /// [`ChannelManager::process_background_events`] MUST be called first (or
2185 /// [`Self::optionally_notify`] used).
2186 fn optionally_notify_skipping_background_events<F: Fn() -> NotifyOption, C: AChannelManager>
2187 (cm: &'a C, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
2188 let read_guard = cm.get_cm().total_consistency_lock.read().unwrap();
2190 PersistenceNotifierGuard {
2191 event_persist_notifier: &cm.get_cm().event_persist_notifier,
2192 needs_persist_flag: &cm.get_cm().needs_persist_flag,
2193 should_persist: persist_check,
2194 _read_guard: read_guard,
2199 impl<'a, F: FnMut() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
2200 fn drop(&mut self) {
2201 match (self.should_persist)() {
2202 NotifyOption::DoPersist => {
2203 self.needs_persist_flag.store(true, Ordering::Release);
2204 self.event_persist_notifier.notify()
2206 NotifyOption::SkipPersistHandleEvents =>
2207 self.event_persist_notifier.notify(),
2208 NotifyOption::SkipPersistNoEvents => {},
2213 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
2214 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
2216 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
2218 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
2219 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
2220 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
2221 /// the maximum required amount in lnd as of March 2021.
2222 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
2224 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
2225 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
2227 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
2229 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
2230 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
2231 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
2232 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
2233 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
2234 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
2235 // This should be long enough to allow a payment path drawn across multiple routing hops with substantial
2236 // `cltv_expiry_delta`. Indeed, the length of those values is the reaction delay offered to a routing node
2237 // in case of HTLC on-chain settlement. While appearing less competitive, a node operator could decide to
2238 // scale them up to suit its security policy. At the network-level, we shouldn't constrain them too much,
2239 // while avoiding to introduce a DoS vector. Further, a low CTLV_FAR_FAR_AWAY could be a source of
2240 // routing failure for any HTLC sender picking up an LDK node among the first hops.
2241 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 14 * 24 * 6;
2243 /// Minimum CLTV difference between the current block height and received inbound payments.
2244 /// Invoices generated for payment to us must set their `min_final_cltv_expiry_delta` field to at least
2246 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
2247 // any payments to succeed. Further, we don't want payments to fail if a block was found while
2248 // a payment was being routed, so we add an extra block to be safe.
2249 pub const MIN_FINAL_CLTV_EXPIRY_DELTA: u16 = HTLC_FAIL_BACK_BUFFER as u16 + 3;
2251 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
2252 // ie that if the next-hop peer fails the HTLC within
2253 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
2254 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
2255 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
2256 // LATENCY_GRACE_PERIOD_BLOCKS.
2258 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
2260 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
2261 // ChannelMonitor::should_broadcast_holder_commitment_txn for a description of why this is needed.
2263 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
2265 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] until expiry of incomplete MPPs
2266 pub(crate) const MPP_TIMEOUT_TICKS: u8 = 3;
2268 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is disconnected
2269 /// until we mark the channel disabled and gossip the update.
2270 pub(crate) const DISABLE_GOSSIP_TICKS: u8 = 10;
2272 /// The number of ticks of [`ChannelManager::timer_tick_occurred`] where a peer is connected until
2273 /// we mark the channel enabled and gossip the update.
2274 pub(crate) const ENABLE_GOSSIP_TICKS: u8 = 5;
2276 /// The maximum number of unfunded channels we can have per-peer before we start rejecting new
2277 /// (inbound) ones. The number of peers with unfunded channels is limited separately in
2278 /// [`MAX_UNFUNDED_CHANNEL_PEERS`].
2279 const MAX_UNFUNDED_CHANS_PER_PEER: usize = 4;
2281 /// The maximum number of peers from which we will allow pending unfunded channels. Once we reach
2282 /// this many peers we reject new (inbound) channels from peers with which we don't have a channel.
2283 const MAX_UNFUNDED_CHANNEL_PEERS: usize = 50;
2285 /// The maximum number of peers which we do not have a (funded) channel with. Once we reach this
2286 /// many peers we reject new (inbound) connections.
2287 const MAX_NO_CHANNEL_PEERS: usize = 250;
2289 /// Information needed for constructing an invoice route hint for this channel.
2290 #[derive(Clone, Debug, PartialEq)]
2291 pub struct CounterpartyForwardingInfo {
2292 /// Base routing fee in millisatoshis.
2293 pub fee_base_msat: u32,
2294 /// Amount in millionths of a satoshi the channel will charge per transferred satoshi.
2295 pub fee_proportional_millionths: u32,
2296 /// The minimum difference in cltv_expiry between an ingoing HTLC and its outgoing counterpart,
2297 /// such that the outgoing HTLC is forwardable to this counterparty. See `msgs::ChannelUpdate`'s
2298 /// `cltv_expiry_delta` for more details.
2299 pub cltv_expiry_delta: u16,
2302 /// Channel parameters which apply to our counterparty. These are split out from [`ChannelDetails`]
2303 /// to better separate parameters.
2304 #[derive(Clone, Debug, PartialEq)]
2305 pub struct ChannelCounterparty {
2306 /// The node_id of our counterparty
2307 pub node_id: PublicKey,
2308 /// The Features the channel counterparty provided upon last connection.
2309 /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
2310 /// many routing-relevant features are present in the init context.
2311 pub features: InitFeatures,
2312 /// The value, in satoshis, that must always be held in the channel for our counterparty. This
2313 /// value ensures that if our counterparty broadcasts a revoked state, we can punish them by
2314 /// claiming at least this value on chain.
2316 /// This value is not included in [`inbound_capacity_msat`] as it can never be spent.
2318 /// [`inbound_capacity_msat`]: ChannelDetails::inbound_capacity_msat
2319 pub unspendable_punishment_reserve: u64,
2320 /// Information on the fees and requirements that the counterparty requires when forwarding
2321 /// payments to us through this channel.
2322 pub forwarding_info: Option<CounterpartyForwardingInfo>,
2323 /// The smallest value HTLC (in msat) the remote peer will accept, for this channel. This field
2324 /// is only `None` before we have received either the `OpenChannel` or `AcceptChannel` message
2325 /// from the remote peer, or for `ChannelCounterparty` objects serialized prior to LDK 0.0.107.
2326 pub outbound_htlc_minimum_msat: Option<u64>,
2327 /// The largest value HTLC (in msat) the remote peer currently will accept, for this channel.
2328 pub outbound_htlc_maximum_msat: Option<u64>,
2331 /// Details of a channel, as returned by [`ChannelManager::list_channels`] and [`ChannelManager::list_usable_channels`]
2332 #[derive(Clone, Debug, PartialEq)]
2333 pub struct ChannelDetails {
2334 /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
2335 /// thereafter this is the txid of the funding transaction xor the funding transaction output).
2336 /// Note that this means this value is *not* persistent - it can change once during the
2337 /// lifetime of the channel.
2338 pub channel_id: ChannelId,
2339 /// Parameters which apply to our counterparty. See individual fields for more information.
2340 pub counterparty: ChannelCounterparty,
2341 /// The Channel's funding transaction output, if we've negotiated the funding transaction with
2342 /// our counterparty already.
2343 pub funding_txo: Option<OutPoint>,
2344 /// The features which this channel operates with. See individual features for more info.
2346 /// `None` until negotiation completes and the channel type is finalized.
2347 pub channel_type: Option<ChannelTypeFeatures>,
2348 /// The position of the funding transaction in the chain. None if the funding transaction has
2349 /// not yet been confirmed and the channel fully opened.
2351 /// Note that if [`inbound_scid_alias`] is set, it must be used for invoices and inbound
2352 /// payments instead of this. See [`get_inbound_payment_scid`].
2354 /// For channels with [`confirmations_required`] set to `Some(0)`, [`outbound_scid_alias`] may
2355 /// be used in place of this in outbound routes. See [`get_outbound_payment_scid`].
2357 /// [`inbound_scid_alias`]: Self::inbound_scid_alias
2358 /// [`outbound_scid_alias`]: Self::outbound_scid_alias
2359 /// [`get_inbound_payment_scid`]: Self::get_inbound_payment_scid
2360 /// [`get_outbound_payment_scid`]: Self::get_outbound_payment_scid
2361 /// [`confirmations_required`]: Self::confirmations_required
2362 pub short_channel_id: Option<u64>,
2363 /// An optional [`short_channel_id`] alias for this channel, randomly generated by us and
2364 /// usable in place of [`short_channel_id`] to reference the channel in outbound routes when
2365 /// the channel has not yet been confirmed (as long as [`confirmations_required`] is
2368 /// This will be `None` as long as the channel is not available for routing outbound payments.
2370 /// [`short_channel_id`]: Self::short_channel_id
2371 /// [`confirmations_required`]: Self::confirmations_required
2372 pub outbound_scid_alias: Option<u64>,
2373 /// An optional [`short_channel_id`] alias for this channel, randomly generated by our
2374 /// counterparty and usable in place of [`short_channel_id`] in invoice route hints. Our
2375 /// counterparty will recognize the alias provided here in place of the [`short_channel_id`]
2376 /// when they see a payment to be routed to us.
2378 /// Our counterparty may choose to rotate this value at any time, though will always recognize
2379 /// previous values for inbound payment forwarding.
2381 /// [`short_channel_id`]: Self::short_channel_id
2382 pub inbound_scid_alias: Option<u64>,
2383 /// The value, in satoshis, of this channel as appears in the funding output
2384 pub channel_value_satoshis: u64,
2385 /// The value, in satoshis, that must always be held in the channel for us. This value ensures
2386 /// that if we broadcast a revoked state, our counterparty can punish us by claiming at least
2387 /// this value on chain.
2389 /// This value is not included in [`outbound_capacity_msat`] as it can never be spent.
2391 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2393 /// [`outbound_capacity_msat`]: ChannelDetails::outbound_capacity_msat
2394 pub unspendable_punishment_reserve: Option<u64>,
2395 /// The `user_channel_id` value passed in to [`ChannelManager::create_channel`] for outbound
2396 /// channels, or to [`ChannelManager::accept_inbound_channel`] for inbound channels if
2397 /// [`UserConfig::manually_accept_inbound_channels`] config flag is set to true. Otherwise
2398 /// `user_channel_id` will be randomized for an inbound channel. This may be zero for objects
2399 /// serialized with LDK versions prior to 0.0.113.
2401 /// [`ChannelManager::create_channel`]: crate::ln::channelmanager::ChannelManager::create_channel
2402 /// [`ChannelManager::accept_inbound_channel`]: crate::ln::channelmanager::ChannelManager::accept_inbound_channel
2403 /// [`UserConfig::manually_accept_inbound_channels`]: crate::util::config::UserConfig::manually_accept_inbound_channels
2404 pub user_channel_id: u128,
2405 /// The currently negotiated fee rate denominated in satoshi per 1000 weight units,
2406 /// which is applied to commitment and HTLC transactions.
2408 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.115.
2409 pub feerate_sat_per_1000_weight: Option<u32>,
2410 /// Our total balance. This is the amount we would get if we close the channel.
2411 /// This value is not exact. Due to various in-flight changes and feerate changes, exactly this
2412 /// amount is not likely to be recoverable on close.
2414 /// This does not include any pending HTLCs which are not yet fully resolved (and, thus, whose
2415 /// balance is not available for inclusion in new outbound HTLCs). This further does not include
2416 /// any pending outgoing HTLCs which are awaiting some other resolution to be sent.
2417 /// This does not consider any on-chain fees.
2419 /// See also [`ChannelDetails::outbound_capacity_msat`]
2420 pub balance_msat: u64,
2421 /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
2422 /// any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2423 /// available for inclusion in new outbound HTLCs). This further does not include any pending
2424 /// outgoing HTLCs which are awaiting some other resolution to be sent.
2426 /// See also [`ChannelDetails::balance_msat`]
2428 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2429 /// conflict-avoidance policy, exactly this amount is not likely to be spendable. However, we
2430 /// should be able to spend nearly this amount.
2431 pub outbound_capacity_msat: u64,
2432 /// The available outbound capacity for sending a single HTLC to the remote peer. This is
2433 /// similar to [`ChannelDetails::outbound_capacity_msat`] but it may be further restricted by
2434 /// the current state and per-HTLC limit(s). This is intended for use when routing, allowing us
2435 /// to use a limit as close as possible to the HTLC limit we can currently send.
2437 /// See also [`ChannelDetails::next_outbound_htlc_minimum_msat`],
2438 /// [`ChannelDetails::balance_msat`], and [`ChannelDetails::outbound_capacity_msat`].
2439 pub next_outbound_htlc_limit_msat: u64,
2440 /// The minimum value for sending a single HTLC to the remote peer. This is the equivalent of
2441 /// [`ChannelDetails::next_outbound_htlc_limit_msat`] but represents a lower-bound, rather than
2442 /// an upper-bound. This is intended for use when routing, allowing us to ensure we pick a
2443 /// route which is valid.
2444 pub next_outbound_htlc_minimum_msat: u64,
2445 /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
2446 /// include any pending HTLCs which are not yet fully resolved (and, thus, whose balance is not
2447 /// available for inclusion in new inbound HTLCs).
2448 /// Note that there are some corner cases not fully handled here, so the actual available
2449 /// inbound capacity may be slightly higher than this.
2451 /// This value is not exact. Due to various in-flight changes, feerate changes, and our
2452 /// counterparty's conflict-avoidance policy, exactly this amount is not likely to be spendable.
2453 /// However, our counterparty should be able to spend nearly this amount.
2454 pub inbound_capacity_msat: u64,
2455 /// The number of required confirmations on the funding transaction before the funding will be
2456 /// considered "locked". This number is selected by the channel fundee (i.e. us if
2457 /// [`is_outbound`] is *not* set), and can be selected for inbound channels with
2458 /// [`ChannelHandshakeConfig::minimum_depth`] or limited for outbound channels with
2459 /// [`ChannelHandshakeLimits::max_minimum_depth`].
2461 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2463 /// [`is_outbound`]: ChannelDetails::is_outbound
2464 /// [`ChannelHandshakeConfig::minimum_depth`]: crate::util::config::ChannelHandshakeConfig::minimum_depth
2465 /// [`ChannelHandshakeLimits::max_minimum_depth`]: crate::util::config::ChannelHandshakeLimits::max_minimum_depth
2466 pub confirmations_required: Option<u32>,
2467 /// The current number of confirmations on the funding transaction.
2469 /// This value will be `None` for objects serialized with LDK versions prior to 0.0.113.
2470 pub confirmations: Option<u32>,
2471 /// The number of blocks (after our commitment transaction confirms) that we will need to wait
2472 /// until we can claim our funds after we force-close the channel. During this time our
2473 /// counterparty is allowed to punish us if we broadcasted a stale state. If our counterparty
2474 /// force-closes the channel and broadcasts a commitment transaction we do not have to wait any
2475 /// time to claim our non-HTLC-encumbered funds.
2477 /// This value will be `None` for outbound channels until the counterparty accepts the channel.
2478 pub force_close_spend_delay: Option<u16>,
2479 /// True if the channel was initiated (and thus funded) by us.
2480 pub is_outbound: bool,
2481 /// True if the channel is confirmed, channel_ready messages have been exchanged, and the
2482 /// channel is not currently being shut down. `channel_ready` message exchange implies the
2483 /// required confirmation count has been reached (and we were connected to the peer at some
2484 /// point after the funding transaction received enough confirmations). The required
2485 /// confirmation count is provided in [`confirmations_required`].
2487 /// [`confirmations_required`]: ChannelDetails::confirmations_required
2488 pub is_channel_ready: bool,
2489 /// The stage of the channel's shutdown.
2490 /// `None` for `ChannelDetails` serialized on LDK versions prior to 0.0.116.
2491 pub channel_shutdown_state: Option<ChannelShutdownState>,
2492 /// True if the channel is (a) confirmed and channel_ready messages have been exchanged, (b)
2493 /// the peer is connected, and (c) the channel is not currently negotiating a shutdown.
2495 /// This is a strict superset of `is_channel_ready`.
2496 pub is_usable: bool,
2497 /// True if this channel is (or will be) publicly-announced.
2498 pub is_public: bool,
2499 /// The smallest value HTLC (in msat) we will accept, for this channel. This field
2500 /// is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.107
2501 pub inbound_htlc_minimum_msat: Option<u64>,
2502 /// The largest value HTLC (in msat) we currently will accept, for this channel.
2503 pub inbound_htlc_maximum_msat: Option<u64>,
2504 /// Set of configurable parameters that affect channel operation.
2506 /// This field is only `None` for `ChannelDetails` objects serialized prior to LDK 0.0.109.
2507 pub config: Option<ChannelConfig>,
2508 /// Pending inbound HTLCs.
2510 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2511 pub pending_inbound_htlcs: Vec<InboundHTLCDetails>,
2512 /// Pending outbound HTLCs.
2514 /// This field is empty for objects serialized with LDK versions prior to 0.0.122.
2515 pub pending_outbound_htlcs: Vec<OutboundHTLCDetails>,
2518 impl ChannelDetails {
2519 /// Gets the current SCID which should be used to identify this channel for inbound payments.
2520 /// This should be used for providing invoice hints or in any other context where our
2521 /// counterparty will forward a payment to us.
2523 /// This is either the [`ChannelDetails::inbound_scid_alias`], if set, or the
2524 /// [`ChannelDetails::short_channel_id`]. See those for more information.
2525 pub fn get_inbound_payment_scid(&self) -> Option<u64> {
2526 self.inbound_scid_alias.or(self.short_channel_id)
2529 /// Gets the current SCID which should be used to identify this channel for outbound payments.
2530 /// This should be used in [`Route`]s to describe the first hop or in other contexts where
2531 /// we're sending or forwarding a payment outbound over this channel.
2533 /// This is either the [`ChannelDetails::short_channel_id`], if set, or the
2534 /// [`ChannelDetails::outbound_scid_alias`]. See those for more information.
2535 pub fn get_outbound_payment_scid(&self) -> Option<u64> {
2536 self.short_channel_id.or(self.outbound_scid_alias)
2539 fn from_channel_context<SP: Deref, F: Deref>(
2540 context: &ChannelContext<SP>, best_block_height: u32, latest_features: InitFeatures,
2541 fee_estimator: &LowerBoundedFeeEstimator<F>
2544 SP::Target: SignerProvider,
2545 F::Target: FeeEstimator
2547 let balance = context.get_available_balances(fee_estimator);
2548 let (to_remote_reserve_satoshis, to_self_reserve_satoshis) =
2549 context.get_holder_counterparty_selected_channel_reserve_satoshis();
2551 channel_id: context.channel_id(),
2552 counterparty: ChannelCounterparty {
2553 node_id: context.get_counterparty_node_id(),
2554 features: latest_features,
2555 unspendable_punishment_reserve: to_remote_reserve_satoshis,
2556 forwarding_info: context.counterparty_forwarding_info(),
2557 // Ensures that we have actually received the `htlc_minimum_msat` value
2558 // from the counterparty through the `OpenChannel` or `AcceptChannel`
2559 // message (as they are always the first message from the counterparty).
2560 // Else `Channel::get_counterparty_htlc_minimum_msat` could return the
2561 // default `0` value set by `Channel::new_outbound`.
2562 outbound_htlc_minimum_msat: if context.have_received_message() {
2563 Some(context.get_counterparty_htlc_minimum_msat()) } else { None },
2564 outbound_htlc_maximum_msat: context.get_counterparty_htlc_maximum_msat(),
2566 funding_txo: context.get_funding_txo(),
2567 // Note that accept_channel (or open_channel) is always the first message, so
2568 // `have_received_message` indicates that type negotiation has completed.
2569 channel_type: if context.have_received_message() { Some(context.get_channel_type().clone()) } else { None },
2570 short_channel_id: context.get_short_channel_id(),
2571 outbound_scid_alias: if context.is_usable() { Some(context.outbound_scid_alias()) } else { None },
2572 inbound_scid_alias: context.latest_inbound_scid_alias(),
2573 channel_value_satoshis: context.get_value_satoshis(),
2574 feerate_sat_per_1000_weight: Some(context.get_feerate_sat_per_1000_weight()),
2575 unspendable_punishment_reserve: to_self_reserve_satoshis,
2576 balance_msat: balance.balance_msat,
2577 inbound_capacity_msat: balance.inbound_capacity_msat,
2578 outbound_capacity_msat: balance.outbound_capacity_msat,
2579 next_outbound_htlc_limit_msat: balance.next_outbound_htlc_limit_msat,
2580 next_outbound_htlc_minimum_msat: balance.next_outbound_htlc_minimum_msat,
2581 user_channel_id: context.get_user_id(),
2582 confirmations_required: context.minimum_depth(),
2583 confirmations: Some(context.get_funding_tx_confirmations(best_block_height)),
2584 force_close_spend_delay: context.get_counterparty_selected_contest_delay(),
2585 is_outbound: context.is_outbound(),
2586 is_channel_ready: context.is_usable(),
2587 is_usable: context.is_live(),
2588 is_public: context.should_announce(),
2589 inbound_htlc_minimum_msat: Some(context.get_holder_htlc_minimum_msat()),
2590 inbound_htlc_maximum_msat: context.get_holder_htlc_maximum_msat(),
2591 config: Some(context.config()),
2592 channel_shutdown_state: Some(context.shutdown_state()),
2593 pending_inbound_htlcs: context.get_pending_inbound_htlc_details(),
2594 pending_outbound_htlcs: context.get_pending_outbound_htlc_details(),
2599 #[derive(Clone, Copy, Debug, PartialEq, Eq)]
2600 /// Further information on the details of the channel shutdown.
2601 /// Upon channels being forced closed (i.e. commitment transaction confirmation detected
2602 /// by `ChainMonitor`), ChannelShutdownState will be set to `ShutdownComplete` or
2603 /// the channel will be removed shortly.
2604 /// Also note, that in normal operation, peers could disconnect at any of these states
2605 /// and require peer re-connection before making progress onto other states
2606 pub enum ChannelShutdownState {
2607 /// Channel has not sent or received a shutdown message.
2609 /// Local node has sent a shutdown message for this channel.
2611 /// Shutdown message exchanges have concluded and the channels are in the midst of
2612 /// resolving all existing open HTLCs before closing can continue.
2614 /// All HTLCs have been resolved, nodes are currently negotiating channel close onchain fee rates.
2615 NegotiatingClosingFee,
2616 /// We've successfully negotiated a closing_signed dance. At this point `ChannelManager` is about
2617 /// to drop the channel.
2621 /// Used by [`ChannelManager::list_recent_payments`] to express the status of recent payments.
2622 /// These include payments that have yet to find a successful path, or have unresolved HTLCs.
2623 #[derive(Debug, PartialEq)]
2624 pub enum RecentPaymentDetails {
2625 /// When an invoice was requested and thus a payment has not yet been sent.
2627 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2628 /// a payment and ensure idempotency in LDK.
2629 payment_id: PaymentId,
2631 /// When a payment is still being sent and awaiting successful delivery.
2633 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2634 /// a payment and ensure idempotency in LDK.
2635 payment_id: PaymentId,
2636 /// Hash of the payment that is currently being sent but has yet to be fulfilled or
2638 payment_hash: PaymentHash,
2639 /// Total amount (in msat, excluding fees) across all paths for this payment,
2640 /// not just the amount currently inflight.
2643 /// When a pending payment is fulfilled, we continue tracking it until all pending HTLCs have
2644 /// been resolved. Upon receiving [`Event::PaymentSent`], we delay for a few minutes before the
2645 /// payment is removed from tracking.
2647 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2648 /// a payment and ensure idempotency in LDK.
2649 payment_id: PaymentId,
2650 /// Hash of the payment that was claimed. `None` for serializations of [`ChannelManager`]
2651 /// made before LDK version 0.0.104.
2652 payment_hash: Option<PaymentHash>,
2654 /// After a payment's retries are exhausted per the provided [`Retry`], or it is explicitly
2655 /// abandoned via [`ChannelManager::abandon_payment`], it is marked as abandoned until all
2656 /// pending HTLCs for this payment resolve and an [`Event::PaymentFailed`] is generated.
2658 /// A user-provided identifier in [`ChannelManager::send_payment`] used to uniquely identify
2659 /// a payment and ensure idempotency in LDK.
2660 payment_id: PaymentId,
2661 /// Hash of the payment that we have given up trying to send.
2662 payment_hash: PaymentHash,
2666 /// Route hints used in constructing invoices for [phantom node payents].
2668 /// [phantom node payments]: crate::sign::PhantomKeysManager
2670 pub struct PhantomRouteHints {
2671 /// The list of channels to be included in the invoice route hints.
2672 pub channels: Vec<ChannelDetails>,
2673 /// A fake scid used for representing the phantom node's fake channel in generating the invoice
2675 pub phantom_scid: u64,
2676 /// The pubkey of the real backing node that would ultimately receive the payment.
2677 pub real_node_pubkey: PublicKey,
2680 macro_rules! handle_error {
2681 ($self: ident, $internal: expr, $counterparty_node_id: expr) => { {
2682 // In testing, ensure there are no deadlocks where the lock is already held upon
2683 // entering the macro.
2684 debug_assert_ne!($self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
2685 debug_assert_ne!($self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
2689 Err(MsgHandleErrInternal { err, shutdown_finish, .. }) => {
2690 let mut msg_event = None;
2692 if let Some((shutdown_res, update_option)) = shutdown_finish {
2693 let counterparty_node_id = shutdown_res.counterparty_node_id;
2694 let channel_id = shutdown_res.channel_id;
2695 let logger = WithContext::from(
2696 &$self.logger, Some(counterparty_node_id), Some(channel_id),
2698 log_error!(logger, "Force-closing channel: {}", err.err);
2700 $self.finish_close_channel(shutdown_res);
2701 if let Some(update) = update_option {
2702 let mut pending_broadcast_messages = $self.pending_broadcast_messages.lock().unwrap();
2703 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
2708 log_error!($self.logger, "Got non-closing error: {}", err.err);
2711 if let msgs::ErrorAction::IgnoreError = err.action {
2713 msg_event = Some(events::MessageSendEvent::HandleError {
2714 node_id: $counterparty_node_id,
2715 action: err.action.clone()
2719 if let Some(msg_event) = msg_event {
2720 let per_peer_state = $self.per_peer_state.read().unwrap();
2721 if let Some(peer_state_mutex) = per_peer_state.get(&$counterparty_node_id) {
2722 let mut peer_state = peer_state_mutex.lock().unwrap();
2723 peer_state.pending_msg_events.push(msg_event);
2727 // Return error in case higher-API need one
2734 macro_rules! update_maps_on_chan_removal {
2735 ($self: expr, $channel_context: expr) => {{
2736 if let Some(outpoint) = $channel_context.get_funding_txo() {
2737 $self.outpoint_to_peer.lock().unwrap().remove(&outpoint);
2739 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2740 if let Some(short_id) = $channel_context.get_short_channel_id() {
2741 short_to_chan_info.remove(&short_id);
2743 // If the channel was never confirmed on-chain prior to its closure, remove the
2744 // outbound SCID alias we used for it from the collision-prevention set. While we
2745 // generally want to avoid ever re-using an outbound SCID alias across all channels, we
2746 // also don't want a counterparty to be able to trivially cause a memory leak by simply
2747 // opening a million channels with us which are closed before we ever reach the funding
2749 let alias_removed = $self.outbound_scid_aliases.lock().unwrap().remove(&$channel_context.outbound_scid_alias());
2750 debug_assert!(alias_removed);
2752 short_to_chan_info.remove(&$channel_context.outbound_scid_alias());
2756 /// Returns (boolean indicating if we should remove the Channel object from memory, a mapped error)
2757 macro_rules! convert_chan_phase_err {
2758 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, MANUAL_CHANNEL_UPDATE, $channel_update: expr) => {
2760 ChannelError::Warn(msg) => {
2761 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Warn(msg), *$channel_id))
2763 ChannelError::Ignore(msg) => {
2764 (false, MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), *$channel_id))
2766 ChannelError::Close(msg) => {
2767 let logger = WithChannelContext::from(&$self.logger, &$channel.context);
2768 log_error!(logger, "Closing channel {} due to close-required error: {}", $channel_id, msg);
2769 update_maps_on_chan_removal!($self, $channel.context);
2770 let reason = ClosureReason::ProcessingError { err: msg.clone() };
2771 let shutdown_res = $channel.context.force_shutdown(true, reason);
2773 MsgHandleErrInternal::from_finish_shutdown(msg, *$channel_id, shutdown_res, $channel_update);
2778 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, FUNDED_CHANNEL) => {
2779 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, { $self.get_channel_update_for_broadcast($channel).ok() })
2781 ($self: ident, $err: expr, $channel: expr, $channel_id: expr, UNFUNDED_CHANNEL) => {
2782 convert_chan_phase_err!($self, $err, $channel, $channel_id, MANUAL_CHANNEL_UPDATE, None)
2784 ($self: ident, $err: expr, $channel_phase: expr, $channel_id: expr) => {
2785 match $channel_phase {
2786 ChannelPhase::Funded(channel) => {
2787 convert_chan_phase_err!($self, $err, channel, $channel_id, FUNDED_CHANNEL)
2789 ChannelPhase::UnfundedOutboundV1(channel) => {
2790 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2792 ChannelPhase::UnfundedInboundV1(channel) => {
2793 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2795 #[cfg(any(dual_funding, splicing))]
2796 ChannelPhase::UnfundedOutboundV2(channel) => {
2797 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2799 #[cfg(any(dual_funding, splicing))]
2800 ChannelPhase::UnfundedInboundV2(channel) => {
2801 convert_chan_phase_err!($self, $err, channel, $channel_id, UNFUNDED_CHANNEL)
2807 macro_rules! break_chan_phase_entry {
2808 ($self: ident, $res: expr, $entry: expr) => {
2812 let key = *$entry.key();
2813 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2815 $entry.remove_entry();
2823 macro_rules! try_chan_phase_entry {
2824 ($self: ident, $res: expr, $entry: expr) => {
2828 let key = *$entry.key();
2829 let (drop, res) = convert_chan_phase_err!($self, e, $entry.get_mut(), &key);
2831 $entry.remove_entry();
2839 macro_rules! remove_channel_phase {
2840 ($self: expr, $entry: expr) => {
2842 let channel = $entry.remove_entry().1;
2843 update_maps_on_chan_removal!($self, &channel.context());
2849 macro_rules! send_channel_ready {
2850 ($self: ident, $pending_msg_events: expr, $channel: expr, $channel_ready_msg: expr) => {{
2851 $pending_msg_events.push(events::MessageSendEvent::SendChannelReady {
2852 node_id: $channel.context.get_counterparty_node_id(),
2853 msg: $channel_ready_msg,
2855 // Note that we may send a `channel_ready` multiple times for a channel if we reconnect, so
2856 // we allow collisions, but we shouldn't ever be updating the channel ID pointed to.
2857 let mut short_to_chan_info = $self.short_to_chan_info.write().unwrap();
2858 let outbound_alias_insert = short_to_chan_info.insert($channel.context.outbound_scid_alias(), ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2859 assert!(outbound_alias_insert.is_none() || outbound_alias_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2860 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2861 if let Some(real_scid) = $channel.context.get_short_channel_id() {
2862 let scid_insert = short_to_chan_info.insert(real_scid, ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()));
2863 assert!(scid_insert.is_none() || scid_insert.unwrap() == ($channel.context.get_counterparty_node_id(), $channel.context.channel_id()),
2864 "SCIDs should never collide - ensure you weren't behind the chain tip by a full month when creating channels");
2869 macro_rules! emit_channel_pending_event {
2870 ($locked_events: expr, $channel: expr) => {
2871 if $channel.context.should_emit_channel_pending_event() {
2872 $locked_events.push_back((events::Event::ChannelPending {
2873 channel_id: $channel.context.channel_id(),
2874 former_temporary_channel_id: $channel.context.temporary_channel_id(),
2875 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2876 user_channel_id: $channel.context.get_user_id(),
2877 funding_txo: $channel.context.get_funding_txo().unwrap().into_bitcoin_outpoint(),
2878 channel_type: Some($channel.context.get_channel_type().clone()),
2880 $channel.context.set_channel_pending_event_emitted();
2885 macro_rules! emit_channel_ready_event {
2886 ($locked_events: expr, $channel: expr) => {
2887 if $channel.context.should_emit_channel_ready_event() {
2888 debug_assert!($channel.context.channel_pending_event_emitted());
2889 $locked_events.push_back((events::Event::ChannelReady {
2890 channel_id: $channel.context.channel_id(),
2891 user_channel_id: $channel.context.get_user_id(),
2892 counterparty_node_id: $channel.context.get_counterparty_node_id(),
2893 channel_type: $channel.context.get_channel_type().clone(),
2895 $channel.context.set_channel_ready_event_emitted();
2900 macro_rules! handle_monitor_update_completion {
2901 ($self: ident, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
2902 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
2903 let mut updates = $chan.monitor_updating_restored(&&logger,
2904 &$self.node_signer, $self.chain_hash, &$self.default_configuration,
2905 $self.best_block.read().unwrap().height);
2906 let counterparty_node_id = $chan.context.get_counterparty_node_id();
2907 let channel_update = if updates.channel_ready.is_some() && $chan.context.is_usable() {
2908 // We only send a channel_update in the case where we are just now sending a
2909 // channel_ready and the channel is in a usable state. We may re-send a
2910 // channel_update later through the announcement_signatures process for public
2911 // channels, but there's no reason not to just inform our counterparty of our fees
2913 if let Ok(msg) = $self.get_channel_update_for_unicast($chan) {
2914 Some(events::MessageSendEvent::SendChannelUpdate {
2915 node_id: counterparty_node_id,
2921 let update_actions = $peer_state.monitor_update_blocked_actions
2922 .remove(&$chan.context.channel_id()).unwrap_or(Vec::new());
2924 let (htlc_forwards, decode_update_add_htlcs) = $self.handle_channel_resumption(
2925 &mut $peer_state.pending_msg_events, $chan, updates.raa,
2926 updates.commitment_update, updates.order, updates.accepted_htlcs, updates.pending_update_adds,
2927 updates.funding_broadcastable, updates.channel_ready,
2928 updates.announcement_sigs);
2929 if let Some(upd) = channel_update {
2930 $peer_state.pending_msg_events.push(upd);
2933 let channel_id = $chan.context.channel_id();
2934 let unbroadcasted_batch_funding_txid = $chan.context.unbroadcasted_batch_funding_txid();
2935 core::mem::drop($peer_state_lock);
2936 core::mem::drop($per_peer_state_lock);
2938 // If the channel belongs to a batch funding transaction, the progress of the batch
2939 // should be updated as we have received funding_signed and persisted the monitor.
2940 if let Some(txid) = unbroadcasted_batch_funding_txid {
2941 let mut funding_batch_states = $self.funding_batch_states.lock().unwrap();
2942 let mut batch_completed = false;
2943 if let Some(batch_state) = funding_batch_states.get_mut(&txid) {
2944 let channel_state = batch_state.iter_mut().find(|(chan_id, pubkey, _)| (
2945 *chan_id == channel_id &&
2946 *pubkey == counterparty_node_id
2948 if let Some(channel_state) = channel_state {
2949 channel_state.2 = true;
2951 debug_assert!(false, "Missing channel batch state for channel which completed initial monitor update");
2953 batch_completed = batch_state.iter().all(|(_, _, completed)| *completed);
2955 debug_assert!(false, "Missing batch state for channel which completed initial monitor update");
2958 // When all channels in a batched funding transaction have become ready, it is not necessary
2959 // to track the progress of the batch anymore and the state of the channels can be updated.
2960 if batch_completed {
2961 let removed_batch_state = funding_batch_states.remove(&txid).into_iter().flatten();
2962 let per_peer_state = $self.per_peer_state.read().unwrap();
2963 let mut batch_funding_tx = None;
2964 for (channel_id, counterparty_node_id, _) in removed_batch_state {
2965 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
2966 let mut peer_state = peer_state_mutex.lock().unwrap();
2967 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
2968 batch_funding_tx = batch_funding_tx.or_else(|| chan.context.unbroadcasted_funding());
2969 chan.set_batch_ready();
2970 let mut pending_events = $self.pending_events.lock().unwrap();
2971 emit_channel_pending_event!(pending_events, chan);
2975 if let Some(tx) = batch_funding_tx {
2976 log_info!($self.logger, "Broadcasting batch funding transaction with txid {}", tx.txid());
2977 $self.tx_broadcaster.broadcast_transactions(&[&tx]);
2982 $self.handle_monitor_update_completion_actions(update_actions);
2984 if let Some(forwards) = htlc_forwards {
2985 $self.forward_htlcs(&mut [forwards][..]);
2987 if let Some(decode) = decode_update_add_htlcs {
2988 $self.push_decode_update_add_htlcs(decode);
2990 $self.finalize_claims(updates.finalized_claimed_htlcs);
2991 for failure in updates.failed_htlcs.drain(..) {
2992 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
2993 $self.fail_htlc_backwards_internal(&failure.0, &failure.1, &failure.2, receiver);
2998 macro_rules! handle_new_monitor_update {
2999 ($self: ident, $update_res: expr, $chan: expr, _internal, $completed: expr) => { {
3000 debug_assert!($self.background_events_processed_since_startup.load(Ordering::Acquire));
3001 let logger = WithChannelContext::from(&$self.logger, &$chan.context);
3003 ChannelMonitorUpdateStatus::UnrecoverableError => {
3004 let err_str = "ChannelMonitor[Update] persistence failed unrecoverably. This indicates we cannot continue normal operation and must shut down.";
3005 log_error!(logger, "{}", err_str);
3006 panic!("{}", err_str);
3008 ChannelMonitorUpdateStatus::InProgress => {
3009 log_debug!(logger, "ChannelMonitor update for {} in flight, holding messages until the update completes.",
3010 &$chan.context.channel_id());
3013 ChannelMonitorUpdateStatus::Completed => {
3019 ($self: ident, $update_res: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr, INITIAL_MONITOR) => {
3020 handle_new_monitor_update!($self, $update_res, $chan, _internal,
3021 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan))
3023 ($self: ident, $funding_txo: expr, $update: expr, $peer_state_lock: expr, $peer_state: expr, $per_peer_state_lock: expr, $chan: expr) => { {
3024 let in_flight_updates = $peer_state.in_flight_monitor_updates.entry($funding_txo)
3025 .or_insert_with(Vec::new);
3026 // During startup, we push monitor updates as background events through to here in
3027 // order to replay updates that were in-flight when we shut down. Thus, we have to
3028 // filter for uniqueness here.
3029 let idx = in_flight_updates.iter().position(|upd| upd == &$update)
3030 .unwrap_or_else(|| {
3031 in_flight_updates.push($update);
3032 in_flight_updates.len() - 1
3034 let update_res = $self.chain_monitor.update_channel($funding_txo, &in_flight_updates[idx]);
3035 handle_new_monitor_update!($self, update_res, $chan, _internal,
3037 let _ = in_flight_updates.remove(idx);
3038 if in_flight_updates.is_empty() && $chan.blocked_monitor_updates_pending() == 0 {
3039 handle_monitor_update_completion!($self, $peer_state_lock, $peer_state, $per_peer_state_lock, $chan);
3045 macro_rules! process_events_body {
3046 ($self: expr, $event_to_handle: expr, $handle_event: expr) => {
3047 let mut processed_all_events = false;
3048 while !processed_all_events {
3049 if $self.pending_events_processor.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed).is_err() {
3056 // We'll acquire our total consistency lock so that we can be sure no other
3057 // persists happen while processing monitor events.
3058 let _read_guard = $self.total_consistency_lock.read().unwrap();
3060 // Because `handle_post_event_actions` may send `ChannelMonitorUpdate`s to the user we must
3061 // ensure any startup-generated background events are handled first.
3062 result = $self.process_background_events();
3064 // TODO: This behavior should be documented. It's unintuitive that we query
3065 // ChannelMonitors when clearing other events.
3066 if $self.process_pending_monitor_events() {
3067 result = NotifyOption::DoPersist;
3071 let pending_events = $self.pending_events.lock().unwrap().clone();
3072 let num_events = pending_events.len();
3073 if !pending_events.is_empty() {
3074 result = NotifyOption::DoPersist;
3077 let mut post_event_actions = Vec::new();
3079 for (event, action_opt) in pending_events {
3080 $event_to_handle = event;
3082 if let Some(action) = action_opt {
3083 post_event_actions.push(action);
3088 let mut pending_events = $self.pending_events.lock().unwrap();
3089 pending_events.drain(..num_events);
3090 processed_all_events = pending_events.is_empty();
3091 // Note that `push_pending_forwards_ev` relies on `pending_events_processor` being
3092 // updated here with the `pending_events` lock acquired.
3093 $self.pending_events_processor.store(false, Ordering::Release);
3096 if !post_event_actions.is_empty() {
3097 $self.handle_post_event_actions(post_event_actions);
3098 // If we had some actions, go around again as we may have more events now
3099 processed_all_events = false;
3103 NotifyOption::DoPersist => {
3104 $self.needs_persist_flag.store(true, Ordering::Release);
3105 $self.event_persist_notifier.notify();
3107 NotifyOption::SkipPersistHandleEvents =>
3108 $self.event_persist_notifier.notify(),
3109 NotifyOption::SkipPersistNoEvents => {},
3115 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
3117 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
3118 T::Target: BroadcasterInterface,
3119 ES::Target: EntropySource,
3120 NS::Target: NodeSigner,
3121 SP::Target: SignerProvider,
3122 F::Target: FeeEstimator,
3126 /// Constructs a new `ChannelManager` to hold several channels and route between them.
3128 /// The current time or latest block header time can be provided as the `current_timestamp`.
3130 /// This is the main "logic hub" for all channel-related actions, and implements
3131 /// [`ChannelMessageHandler`].
3133 /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
3135 /// Users need to notify the new `ChannelManager` when a new block is connected or
3136 /// disconnected using its [`block_connected`] and [`block_disconnected`] methods, starting
3137 /// from after [`params.best_block.block_hash`]. See [`chain::Listen`] and [`chain::Confirm`] for
3140 /// [`block_connected`]: chain::Listen::block_connected
3141 /// [`block_disconnected`]: chain::Listen::block_disconnected
3142 /// [`params.best_block.block_hash`]: chain::BestBlock::block_hash
3144 fee_est: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, entropy_source: ES,
3145 node_signer: NS, signer_provider: SP, config: UserConfig, params: ChainParameters,
3146 current_timestamp: u32,
3148 let mut secp_ctx = Secp256k1::new();
3149 secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
3150 let inbound_pmt_key_material = node_signer.get_inbound_payment_key_material();
3151 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
3153 default_configuration: config.clone(),
3154 chain_hash: ChainHash::using_genesis_block(params.network),
3155 fee_estimator: LowerBoundedFeeEstimator::new(fee_est),
3160 best_block: RwLock::new(params.best_block),
3162 outbound_scid_aliases: Mutex::new(new_hash_set()),
3163 pending_inbound_payments: Mutex::new(new_hash_map()),
3164 pending_outbound_payments: OutboundPayments::new(),
3165 forward_htlcs: Mutex::new(new_hash_map()),
3166 decode_update_add_htlcs: Mutex::new(new_hash_map()),
3167 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments: new_hash_map(), pending_claiming_payments: new_hash_map() }),
3168 pending_intercepted_htlcs: Mutex::new(new_hash_map()),
3169 outpoint_to_peer: Mutex::new(new_hash_map()),
3170 short_to_chan_info: FairRwLock::new(new_hash_map()),
3172 our_network_pubkey: node_signer.get_node_id(Recipient::Node).unwrap(),
3175 inbound_payment_key: expanded_inbound_key,
3176 fake_scid_rand_bytes: entropy_source.get_secure_random_bytes(),
3178 probing_cookie_secret: entropy_source.get_secure_random_bytes(),
3180 highest_seen_timestamp: AtomicUsize::new(current_timestamp as usize),
3182 per_peer_state: FairRwLock::new(new_hash_map()),
3184 pending_events: Mutex::new(VecDeque::new()),
3185 pending_events_processor: AtomicBool::new(false),
3186 pending_background_events: Mutex::new(Vec::new()),
3187 total_consistency_lock: RwLock::new(()),
3188 background_events_processed_since_startup: AtomicBool::new(false),
3189 event_persist_notifier: Notifier::new(),
3190 needs_persist_flag: AtomicBool::new(false),
3191 funding_batch_states: Mutex::new(BTreeMap::new()),
3193 pending_offers_messages: Mutex::new(Vec::new()),
3194 pending_broadcast_messages: Mutex::new(Vec::new()),
3204 /// Gets the current configuration applied to all new channels.
3205 pub fn get_current_default_configuration(&self) -> &UserConfig {
3206 &self.default_configuration
3209 fn create_and_insert_outbound_scid_alias(&self) -> u64 {
3210 let height = self.best_block.read().unwrap().height;
3211 let mut outbound_scid_alias = 0;
3214 if cfg!(fuzzing) { // fuzzing chacha20 doesn't use the key at all so we always get the same alias
3215 outbound_scid_alias += 1;
3217 outbound_scid_alias = fake_scid::Namespace::OutboundAlias.get_fake_scid(height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
3219 if outbound_scid_alias != 0 && self.outbound_scid_aliases.lock().unwrap().insert(outbound_scid_alias) {
3223 if i > 1_000_000 { panic!("Your RNG is busted or we ran out of possible outbound SCID aliases (which should never happen before we run out of memory to store channels"); }
3228 /// Creates a new outbound channel to the given remote node and with the given value.
3230 /// `user_channel_id` will be provided back as in
3231 /// [`Event::FundingGenerationReady::user_channel_id`] to allow tracking of which events
3232 /// correspond with which `create_channel` call. Note that the `user_channel_id` defaults to a
3233 /// randomized value for inbound channels. `user_channel_id` has no meaning inside of LDK, it
3234 /// is simply copied to events and otherwise ignored.
3236 /// Raises [`APIError::APIMisuseError`] when `channel_value_satoshis` > 2**24 or `push_msat` is
3237 /// greater than `channel_value_satoshis * 1k` or `channel_value_satoshis < 1000`.
3239 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be opened due to failing to
3240 /// generate a shutdown scriptpubkey or destination script set by
3241 /// [`SignerProvider::get_shutdown_scriptpubkey`] or [`SignerProvider::get_destination_script`].
3243 /// Note that we do not check if you are currently connected to the given peer. If no
3244 /// connection is available, the outbound `open_channel` message may fail to send, resulting in
3245 /// the channel eventually being silently forgotten (dropped on reload).
3247 /// If `temporary_channel_id` is specified, it will be used as the temporary channel ID of the
3248 /// channel. Otherwise, a random one will be generated for you.
3250 /// Returns the new Channel's temporary `channel_id`. This ID will appear as
3251 /// [`Event::FundingGenerationReady::temporary_channel_id`] and in
3252 /// [`ChannelDetails::channel_id`] until after
3253 /// [`ChannelManager::funding_transaction_generated`] is called, swapping the Channel's ID for
3254 /// one derived from the funding transaction's TXID. If the counterparty rejects the channel
3255 /// immediately, this temporary ID will appear in [`Event::ChannelClosed::channel_id`].
3257 /// [`Event::FundingGenerationReady::user_channel_id`]: events::Event::FundingGenerationReady::user_channel_id
3258 /// [`Event::FundingGenerationReady::temporary_channel_id`]: events::Event::FundingGenerationReady::temporary_channel_id
3259 /// [`Event::ChannelClosed::channel_id`]: events::Event::ChannelClosed::channel_id
3260 pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_channel_id: u128, temporary_channel_id: Option<ChannelId>, override_config: Option<UserConfig>) -> Result<ChannelId, APIError> {
3261 if channel_value_satoshis < 1000 {
3262 return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
3265 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3266 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
3267 debug_assert!(&self.total_consistency_lock.try_write().is_err());
3269 let per_peer_state = self.per_peer_state.read().unwrap();
3271 let peer_state_mutex = per_peer_state.get(&their_network_key)
3272 .ok_or_else(|| APIError::APIMisuseError{ err: format!("Not connected to node: {}", their_network_key) })?;
3274 let mut peer_state = peer_state_mutex.lock().unwrap();
3276 if let Some(temporary_channel_id) = temporary_channel_id {
3277 if peer_state.channel_by_id.contains_key(&temporary_channel_id) {
3278 return Err(APIError::APIMisuseError{ err: format!("Channel with temporary channel ID {} already exists!", temporary_channel_id)});
3283 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
3284 let their_features = &peer_state.latest_features;
3285 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
3286 match OutboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider, their_network_key,
3287 their_features, channel_value_satoshis, push_msat, user_channel_id, config,
3288 self.best_block.read().unwrap().height, outbound_scid_alias, temporary_channel_id)
3292 self.outbound_scid_aliases.lock().unwrap().remove(&outbound_scid_alias);
3297 let res = channel.get_open_channel(self.chain_hash);
3299 let temporary_channel_id = channel.context.channel_id();
3300 match peer_state.channel_by_id.entry(temporary_channel_id) {
3301 hash_map::Entry::Occupied(_) => {
3303 return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
3305 panic!("RNG is bad???");
3308 hash_map::Entry::Vacant(entry) => { entry.insert(ChannelPhase::UnfundedOutboundV1(channel)); }
3311 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
3312 node_id: their_network_key,
3315 Ok(temporary_channel_id)
3318 fn list_funded_channels_with_filter<Fn: FnMut(&(&ChannelId, &Channel<SP>)) -> bool + Copy>(&self, f: Fn) -> Vec<ChannelDetails> {
3319 // Allocate our best estimate of the number of channels we have in the `res`
3320 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3321 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3322 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3323 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3324 // the same channel.
3325 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3327 let best_block_height = self.best_block.read().unwrap().height;
3328 let per_peer_state = self.per_peer_state.read().unwrap();
3329 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3330 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3331 let peer_state = &mut *peer_state_lock;
3332 res.extend(peer_state.channel_by_id.iter()
3333 .filter_map(|(chan_id, phase)| match phase {
3334 // Only `Channels` in the `ChannelPhase::Funded` phase can be considered funded.
3335 ChannelPhase::Funded(chan) => Some((chan_id, chan)),
3339 .map(|(_channel_id, channel)| {
3340 ChannelDetails::from_channel_context(&channel.context, best_block_height,
3341 peer_state.latest_features.clone(), &self.fee_estimator)
3349 /// Gets the list of open channels, in random order. See [`ChannelDetails`] field documentation for
3350 /// more information.
3351 pub fn list_channels(&self) -> Vec<ChannelDetails> {
3352 // Allocate our best estimate of the number of channels we have in the `res`
3353 // Vec. Sadly the `short_to_chan_info` map doesn't cover channels without
3354 // a scid or a scid alias, and the `outpoint_to_peer` shouldn't be used outside
3355 // of the ChannelMonitor handling. Therefore reallocations may still occur, but is
3356 // unlikely as the `short_to_chan_info` map often contains 2 entries for
3357 // the same channel.
3358 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
3360 let best_block_height = self.best_block.read().unwrap().height;
3361 let per_peer_state = self.per_peer_state.read().unwrap();
3362 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
3363 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3364 let peer_state = &mut *peer_state_lock;
3365 for context in peer_state.channel_by_id.iter().map(|(_, phase)| phase.context()) {
3366 let details = ChannelDetails::from_channel_context(context, best_block_height,
3367 peer_state.latest_features.clone(), &self.fee_estimator);
3375 /// Gets the list of usable channels, in random order. Useful as an argument to
3376 /// [`Router::find_route`] to ensure non-announced channels are used.
3378 /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
3379 /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
3381 pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
3382 // Note we use is_live here instead of usable which leads to somewhat confused
3383 // internal/external nomenclature, but that's ok cause that's probably what the user
3384 // really wanted anyway.
3385 self.list_funded_channels_with_filter(|&(_, ref channel)| channel.context.is_live())
3388 /// Gets the list of channels we have with a given counterparty, in random order.
3389 pub fn list_channels_with_counterparty(&self, counterparty_node_id: &PublicKey) -> Vec<ChannelDetails> {
3390 let best_block_height = self.best_block.read().unwrap().height;
3391 let per_peer_state = self.per_peer_state.read().unwrap();
3393 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
3394 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3395 let peer_state = &mut *peer_state_lock;
3396 let features = &peer_state.latest_features;
3397 let context_to_details = |context| {
3398 ChannelDetails::from_channel_context(context, best_block_height, features.clone(), &self.fee_estimator)
3400 return peer_state.channel_by_id
3402 .map(|(_, phase)| phase.context())
3403 .map(context_to_details)
3409 /// Returns in an undefined order recent payments that -- if not fulfilled -- have yet to find a
3410 /// successful path, or have unresolved HTLCs.
3412 /// This can be useful for payments that may have been prepared, but ultimately not sent, as a
3413 /// result of a crash. If such a payment exists, is not listed here, and an
3414 /// [`Event::PaymentSent`] has not been received, you may consider resending the payment.
3416 /// [`Event::PaymentSent`]: events::Event::PaymentSent
3417 pub fn list_recent_payments(&self) -> Vec<RecentPaymentDetails> {
3418 self.pending_outbound_payments.pending_outbound_payments.lock().unwrap().iter()
3419 .filter_map(|(payment_id, pending_outbound_payment)| match pending_outbound_payment {
3420 PendingOutboundPayment::AwaitingInvoice { .. } => {
3421 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3423 // InvoiceReceived is an intermediate state and doesn't need to be exposed
3424 PendingOutboundPayment::InvoiceReceived { .. } => {
3425 Some(RecentPaymentDetails::AwaitingInvoice { payment_id: *payment_id })
3427 PendingOutboundPayment::Retryable { payment_hash, total_msat, .. } => {
3428 Some(RecentPaymentDetails::Pending {
3429 payment_id: *payment_id,
3430 payment_hash: *payment_hash,
3431 total_msat: *total_msat,
3434 PendingOutboundPayment::Abandoned { payment_hash, .. } => {
3435 Some(RecentPaymentDetails::Abandoned { payment_id: *payment_id, payment_hash: *payment_hash })
3437 PendingOutboundPayment::Fulfilled { payment_hash, .. } => {
3438 Some(RecentPaymentDetails::Fulfilled { payment_id: *payment_id, payment_hash: *payment_hash })
3440 PendingOutboundPayment::Legacy { .. } => None
3445 fn close_channel_internal(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, override_shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3446 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3448 let mut failed_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
3449 let mut shutdown_result = None;
3452 let per_peer_state = self.per_peer_state.read().unwrap();
3454 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
3455 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
3457 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
3458 let peer_state = &mut *peer_state_lock;
3460 match peer_state.channel_by_id.entry(channel_id.clone()) {
3461 hash_map::Entry::Occupied(mut chan_phase_entry) => {
3462 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
3463 let funding_txo_opt = chan.context.get_funding_txo();
3464 let their_features = &peer_state.latest_features;
3465 let (shutdown_msg, mut monitor_update_opt, htlcs) =
3466 chan.get_shutdown(&self.signer_provider, their_features, target_feerate_sats_per_1000_weight, override_shutdown_script)?;
3467 failed_htlcs = htlcs;
3469 // We can send the `shutdown` message before updating the `ChannelMonitor`
3470 // here as we don't need the monitor update to complete until we send a
3471 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
3472 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3473 node_id: *counterparty_node_id,
3477 debug_assert!(monitor_update_opt.is_none() || !chan.is_shutdown(),
3478 "We can't both complete shutdown and generate a monitor update");
3480 // Update the monitor with the shutdown script if necessary.
3481 if let Some(monitor_update) = monitor_update_opt.take() {
3482 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
3483 peer_state_lock, peer_state, per_peer_state, chan);
3486 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3487 shutdown_result = Some(chan_phase.context_mut().force_shutdown(false, ClosureReason::HolderForceClosed));
3490 hash_map::Entry::Vacant(_) => {
3491 return Err(APIError::ChannelUnavailable {
3493 "Channel with id {} not found for the passed counterparty node_id {}",
3494 channel_id, counterparty_node_id,
3501 for htlc_source in failed_htlcs.drain(..) {
3502 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3503 let receiver = HTLCDestination::NextHopChannel { node_id: Some(*counterparty_node_id), channel_id: *channel_id };
3504 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
3507 if let Some(shutdown_result) = shutdown_result {
3508 self.finish_close_channel(shutdown_result);
3514 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3515 /// will be accepted on the given channel, and after additional timeout/the closing of all
3516 /// pending HTLCs, the channel will be closed on chain.
3518 /// * If we are the channel initiator, we will pay between our [`ChannelCloseMinimum`] and
3519 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3521 /// * If our counterparty is the channel initiator, we will require a channel closing
3522 /// transaction feerate of at least our [`ChannelCloseMinimum`] feerate or the feerate which
3523 /// would appear on a force-closure transaction, whichever is lower. We will allow our
3524 /// counterparty to pay as much fee as they'd like, however.
3526 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3528 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3529 /// generate a shutdown scriptpubkey or destination script set by
3530 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3533 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3534 /// [`ChannelCloseMinimum`]: crate::chain::chaininterface::ConfirmationTarget::ChannelCloseMinimum
3535 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3536 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3537 pub fn close_channel(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey) -> Result<(), APIError> {
3538 self.close_channel_internal(channel_id, counterparty_node_id, None, None)
3541 /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
3542 /// will be accepted on the given channel, and after additional timeout/the closing of all
3543 /// pending HTLCs, the channel will be closed on chain.
3545 /// `target_feerate_sat_per_1000_weight` has different meanings depending on if we initiated
3546 /// the channel being closed or not:
3547 /// * If we are the channel initiator, we will pay at least this feerate on the closing
3548 /// transaction. The upper-bound is set by
3549 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`] plus our [`NonAnchorChannelFee`]
3550 /// fee estimate (or `target_feerate_sat_per_1000_weight`, if it is greater).
3551 /// * If our counterparty is the channel initiator, we will refuse to accept a channel closure
3552 /// transaction feerate below `target_feerate_sat_per_1000_weight` (or the feerate which
3553 /// will appear on a force-closure transaction, whichever is lower).
3555 /// The `shutdown_script` provided will be used as the `scriptPubKey` for the closing transaction.
3556 /// Will fail if a shutdown script has already been set for this channel by
3557 /// ['ChannelHandshakeConfig::commit_upfront_shutdown_pubkey`]. The given shutdown script must
3558 /// also be compatible with our and the counterparty's features.
3560 /// May generate a [`SendShutdown`] message event on success, which should be relayed.
3562 /// Raises [`APIError::ChannelUnavailable`] if the channel cannot be closed due to failing to
3563 /// generate a shutdown scriptpubkey or destination script set by
3564 /// [`SignerProvider::get_shutdown_scriptpubkey`]. A force-closure may be needed to close the
3567 /// [`ChannelConfig::force_close_avoidance_max_fee_satoshis`]: crate::util::config::ChannelConfig::force_close_avoidance_max_fee_satoshis
3568 /// [`NonAnchorChannelFee`]: crate::chain::chaininterface::ConfirmationTarget::NonAnchorChannelFee
3569 /// [`SendShutdown`]: crate::events::MessageSendEvent::SendShutdown
3570 pub fn close_channel_with_feerate_and_script(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, target_feerate_sats_per_1000_weight: Option<u32>, shutdown_script: Option<ShutdownScript>) -> Result<(), APIError> {
3571 self.close_channel_internal(channel_id, counterparty_node_id, target_feerate_sats_per_1000_weight, shutdown_script)
3574 fn finish_close_channel(&self, mut shutdown_res: ShutdownResult) {
3575 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
3576 #[cfg(debug_assertions)]
3577 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
3578 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
3581 let logger = WithContext::from(
3582 &self.logger, Some(shutdown_res.counterparty_node_id), Some(shutdown_res.channel_id),
3585 log_debug!(logger, "Finishing closure of channel due to {} with {} HTLCs to fail",
3586 shutdown_res.closure_reason, shutdown_res.dropped_outbound_htlcs.len());
3587 for htlc_source in shutdown_res.dropped_outbound_htlcs.drain(..) {
3588 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
3589 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
3590 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
3591 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
3593 if let Some((_, funding_txo, _channel_id, monitor_update)) = shutdown_res.monitor_update {
3594 // There isn't anything we can do if we get an update failure - we're already
3595 // force-closing. The monitor update on the required in-memory copy should broadcast
3596 // the latest local state, which is the best we can do anyway. Thus, it is safe to
3597 // ignore the result here.
3598 let _ = self.chain_monitor.update_channel(funding_txo, &monitor_update);
3600 let mut shutdown_results = Vec::new();
3601 if let Some(txid) = shutdown_res.unbroadcasted_batch_funding_txid {
3602 let mut funding_batch_states = self.funding_batch_states.lock().unwrap();
3603 let affected_channels = funding_batch_states.remove(&txid).into_iter().flatten();
3604 let per_peer_state = self.per_peer_state.read().unwrap();
3605 let mut has_uncompleted_channel = None;
3606 for (channel_id, counterparty_node_id, state) in affected_channels {
3607 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3608 let mut peer_state = peer_state_mutex.lock().unwrap();
3609 if let Some(mut chan) = peer_state.channel_by_id.remove(&channel_id) {
3610 update_maps_on_chan_removal!(self, &chan.context());
3611 shutdown_results.push(chan.context_mut().force_shutdown(false, ClosureReason::FundingBatchClosure));
3614 has_uncompleted_channel = Some(has_uncompleted_channel.map_or(!state, |v| v || !state));
3617 has_uncompleted_channel.unwrap_or(true),
3618 "Closing a batch where all channels have completed initial monitor update",
3623 let mut pending_events = self.pending_events.lock().unwrap();
3624 pending_events.push_back((events::Event::ChannelClosed {
3625 channel_id: shutdown_res.channel_id,
3626 user_channel_id: shutdown_res.user_channel_id,
3627 reason: shutdown_res.closure_reason,
3628 counterparty_node_id: Some(shutdown_res.counterparty_node_id),
3629 channel_capacity_sats: Some(shutdown_res.channel_capacity_satoshis),
3630 channel_funding_txo: shutdown_res.channel_funding_txo,
3633 if let Some(transaction) = shutdown_res.unbroadcasted_funding_tx {
3634 pending_events.push_back((events::Event::DiscardFunding {
3635 channel_id: shutdown_res.channel_id, transaction
3639 for shutdown_result in shutdown_results.drain(..) {
3640 self.finish_close_channel(shutdown_result);
3644 /// `peer_msg` should be set when we receive a message from a peer, but not set when the
3645 /// user closes, which will be re-exposed as the `ChannelClosed` reason.
3646 fn force_close_channel_with_peer(&self, channel_id: &ChannelId, peer_node_id: &PublicKey, peer_msg: Option<&String>, broadcast: bool)
3647 -> Result<PublicKey, APIError> {
3648 let per_peer_state = self.per_peer_state.read().unwrap();
3649 let peer_state_mutex = per_peer_state.get(peer_node_id)
3650 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", peer_node_id) })?;
3651 let (update_opt, counterparty_node_id) = {
3652 let mut peer_state = peer_state_mutex.lock().unwrap();
3653 let closure_reason = if let Some(peer_msg) = peer_msg {
3654 ClosureReason::CounterpartyForceClosed { peer_msg: UntrustedString(peer_msg.to_string()) }
3656 ClosureReason::HolderForceClosed
3658 let logger = WithContext::from(&self.logger, Some(*peer_node_id), Some(*channel_id));
3659 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id.clone()) {
3660 log_error!(logger, "Force-closing channel {}", channel_id);
3661 let mut chan_phase = remove_channel_phase!(self, chan_phase_entry);
3662 mem::drop(peer_state);
3663 mem::drop(per_peer_state);
3665 ChannelPhase::Funded(mut chan) => {
3666 self.finish_close_channel(chan.context.force_shutdown(broadcast, closure_reason));
3667 (self.get_channel_update_for_broadcast(&chan).ok(), chan.context.get_counterparty_node_id())
3669 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => {
3670 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3671 // Unfunded channel has no update
3672 (None, chan_phase.context().get_counterparty_node_id())
3674 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
3675 #[cfg(any(dual_funding, splicing))]
3676 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => {
3677 self.finish_close_channel(chan_phase.context_mut().force_shutdown(false, closure_reason));
3678 // Unfunded channel has no update
3679 (None, chan_phase.context().get_counterparty_node_id())
3682 } else if peer_state.inbound_channel_request_by_id.remove(channel_id).is_some() {
3683 log_error!(logger, "Force-closing channel {}", &channel_id);
3684 // N.B. that we don't send any channel close event here: we
3685 // don't have a user_channel_id, and we never sent any opening
3687 (None, *peer_node_id)
3689 return Err(APIError::ChannelUnavailable{ err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, peer_node_id) });
3692 if let Some(update) = update_opt {
3693 // If we have some Channel Update to broadcast, we cache it and broadcast it later.
3694 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
3695 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
3700 Ok(counterparty_node_id)
3703 fn force_close_sending_error(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey, broadcast: bool) -> Result<(), APIError> {
3704 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
3705 match self.force_close_channel_with_peer(channel_id, counterparty_node_id, None, broadcast) {
3706 Ok(counterparty_node_id) => {
3707 let per_peer_state = self.per_peer_state.read().unwrap();
3708 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
3709 let mut peer_state = peer_state_mutex.lock().unwrap();
3710 peer_state.pending_msg_events.push(
3711 events::MessageSendEvent::HandleError {
3712 node_id: counterparty_node_id,
3713 action: msgs::ErrorAction::DisconnectPeer {
3714 msg: Some(msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() })
3725 /// Force closes a channel, immediately broadcasting the latest local transaction(s) and
3726 /// rejecting new HTLCs on the given channel. Fails if `channel_id` is unknown to
3727 /// the manager, or if the `counterparty_node_id` isn't the counterparty of the corresponding
3729 pub fn force_close_broadcasting_latest_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3730 -> Result<(), APIError> {
3731 self.force_close_sending_error(channel_id, counterparty_node_id, true)
3734 /// Force closes a channel, rejecting new HTLCs on the given channel but skips broadcasting
3735 /// the latest local transaction(s). Fails if `channel_id` is unknown to the manager, or if the
3736 /// `counterparty_node_id` isn't the counterparty of the corresponding channel.
3738 /// You can always broadcast the latest local transaction(s) via
3739 /// [`ChannelMonitor::broadcast_latest_holder_commitment_txn`].
3740 pub fn force_close_without_broadcasting_txn(&self, channel_id: &ChannelId, counterparty_node_id: &PublicKey)
3741 -> Result<(), APIError> {
3742 self.force_close_sending_error(channel_id, counterparty_node_id, false)
3745 /// Force close all channels, immediately broadcasting the latest local commitment transaction
3746 /// for each to the chain and rejecting new HTLCs on each.
3747 pub fn force_close_all_channels_broadcasting_latest_txn(&self) {
3748 for chan in self.list_channels() {
3749 let _ = self.force_close_broadcasting_latest_txn(&chan.channel_id, &chan.counterparty.node_id);
3753 /// Force close all channels rejecting new HTLCs on each but without broadcasting the latest
3754 /// local transaction(s).
3755 pub fn force_close_all_channels_without_broadcasting_txn(&self) {
3756 for chan in self.list_channels() {
3757 let _ = self.force_close_without_broadcasting_txn(&chan.channel_id, &chan.counterparty.node_id);
3761 fn can_forward_htlc_to_outgoing_channel(
3762 &self, chan: &mut Channel<SP>, msg: &msgs::UpdateAddHTLC, next_packet: &NextPacketDetails
3763 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3764 if !chan.context.should_announce() && !self.default_configuration.accept_forwards_to_priv_channels {
3765 // Note that the behavior here should be identical to the above block - we
3766 // should NOT reveal the existence or non-existence of a private channel if
3767 // we don't allow forwards outbound over them.
3768 return Err(("Refusing to forward to a private channel based on our config.", 0x4000 | 10, None));
3770 if chan.context.get_channel_type().supports_scid_privacy() && next_packet.outgoing_scid != chan.context.outbound_scid_alias() {
3771 // `option_scid_alias` (referred to in LDK as `scid_privacy`) means
3772 // "refuse to forward unless the SCID alias was used", so we pretend
3773 // we don't have the channel here.
3774 return Err(("Refusing to forward over real channel SCID as our counterparty requested.", 0x4000 | 10, None));
3777 // Note that we could technically not return an error yet here and just hope
3778 // that the connection is reestablished or monitor updated by the time we get
3779 // around to doing the actual forward, but better to fail early if we can and
3780 // hopefully an attacker trying to path-trace payments cannot make this occur
3781 // on a small/per-node/per-channel scale.
3782 if !chan.context.is_live() { // channel_disabled
3783 // If the channel_update we're going to return is disabled (i.e. the
3784 // peer has been disabled for some time), return `channel_disabled`,
3785 // otherwise return `temporary_channel_failure`.
3786 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3787 if chan_update_opt.as_ref().map(|u| u.contents.flags & 2 == 2).unwrap_or(false) {
3788 return Err(("Forwarding channel has been disconnected for some time.", 0x1000 | 20, chan_update_opt));
3790 return Err(("Forwarding channel is not in a ready state.", 0x1000 | 7, chan_update_opt));
3793 if next_packet.outgoing_amt_msat < chan.context.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
3794 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3795 return Err(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, chan_update_opt));
3797 if let Err((err, code)) = chan.htlc_satisfies_config(msg, next_packet.outgoing_amt_msat, next_packet.outgoing_cltv_value) {
3798 let chan_update_opt = self.get_channel_update_for_onion(next_packet.outgoing_scid, chan).ok();
3799 return Err((err, code, chan_update_opt));
3805 /// Executes a callback `C` that returns some value `X` on the channel found with the given
3806 /// `scid`. `None` is returned when the channel is not found.
3807 fn do_funded_channel_callback<X, C: Fn(&mut Channel<SP>) -> X>(
3808 &self, scid: u64, callback: C,
3810 let (counterparty_node_id, channel_id) = match self.short_to_chan_info.read().unwrap().get(&scid).cloned() {
3811 None => return None,
3812 Some((cp_id, id)) => (cp_id, id),
3814 let per_peer_state = self.per_peer_state.read().unwrap();
3815 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
3816 if peer_state_mutex_opt.is_none() {
3819 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
3820 let peer_state = &mut *peer_state_lock;
3821 match peer_state.channel_by_id.get_mut(&channel_id).and_then(
3822 |chan_phase| if let ChannelPhase::Funded(chan) = chan_phase { Some(chan) } else { None }
3825 Some(chan) => Some(callback(chan)),
3829 fn can_forward_htlc(
3830 &self, msg: &msgs::UpdateAddHTLC, next_packet_details: &NextPacketDetails
3831 ) -> Result<(), (&'static str, u16, Option<msgs::ChannelUpdate>)> {
3832 match self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3833 self.can_forward_htlc_to_outgoing_channel(chan, msg, next_packet_details)
3836 Some(Err(e)) => return Err(e),
3838 // If we couldn't find the channel info for the scid, it may be a phantom or
3839 // intercept forward.
3840 if (self.default_configuration.accept_intercept_htlcs &&
3841 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)) ||
3842 fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, next_packet_details.outgoing_scid, &self.chain_hash)
3844 return Err(("Don't have available channel for forwarding as requested.", 0x4000 | 10, None));
3849 let cur_height = self.best_block.read().unwrap().height + 1;
3850 if let Err((err_msg, err_code)) = check_incoming_htlc_cltv(
3851 cur_height, next_packet_details.outgoing_cltv_value, msg.cltv_expiry
3853 let chan_update_opt = self.do_funded_channel_callback(next_packet_details.outgoing_scid, |chan: &mut Channel<SP>| {
3854 self.get_channel_update_for_onion(next_packet_details.outgoing_scid, chan).ok()
3856 return Err((err_msg, err_code, chan_update_opt));
3862 fn htlc_failure_from_update_add_err(
3863 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, err_msg: &'static str,
3864 mut err_code: u16, chan_update: Option<msgs::ChannelUpdate>, is_intro_node_blinded_forward: bool,
3865 shared_secret: &[u8; 32]
3866 ) -> HTLCFailureMsg {
3867 let mut res = VecWriter(Vec::with_capacity(chan_update.serialized_length() + 2 + 8 + 2));
3868 if chan_update.is_some() && err_code & 0x1000 == 0x1000 {
3869 let chan_update = chan_update.unwrap();
3870 if err_code == 0x1000 | 11 || err_code == 0x1000 | 12 {
3871 msg.amount_msat.write(&mut res).expect("Writes cannot fail");
3873 else if err_code == 0x1000 | 13 {
3874 msg.cltv_expiry.write(&mut res).expect("Writes cannot fail");
3876 else if err_code == 0x1000 | 20 {
3877 // TODO: underspecified, follow https://github.com/lightning/bolts/issues/791
3878 0u16.write(&mut res).expect("Writes cannot fail");
3880 (chan_update.serialized_length() as u16 + 2).write(&mut res).expect("Writes cannot fail");
3881 msgs::ChannelUpdate::TYPE.write(&mut res).expect("Writes cannot fail");
3882 chan_update.write(&mut res).expect("Writes cannot fail");
3883 } else if err_code & 0x1000 == 0x1000 {
3884 // If we're trying to return an error that requires a `channel_update` but
3885 // we're forwarding to a phantom or intercept "channel" (i.e. cannot
3886 // generate an update), just use the generic "temporary_node_failure"
3888 err_code = 0x2000 | 2;
3892 WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id)),
3893 "Failed to accept/forward incoming HTLC: {}", err_msg
3895 // If `msg.blinding_point` is set, we must always fail with malformed.
3896 if msg.blinding_point.is_some() {
3897 return HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
3898 channel_id: msg.channel_id,
3899 htlc_id: msg.htlc_id,
3900 sha256_of_onion: [0; 32],
3901 failure_code: INVALID_ONION_BLINDING,
3905 let (err_code, err_data) = if is_intro_node_blinded_forward {
3906 (INVALID_ONION_BLINDING, &[0; 32][..])
3908 (err_code, &res.0[..])
3910 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3911 channel_id: msg.channel_id,
3912 htlc_id: msg.htlc_id,
3913 reason: HTLCFailReason::reason(err_code, err_data.to_vec())
3914 .get_encrypted_failure_packet(shared_secret, &None),
3918 fn decode_update_add_htlc_onion(
3919 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey,
3921 (onion_utils::Hop, [u8; 32], Option<Result<PublicKey, secp256k1::Error>>), HTLCFailureMsg
3923 let (next_hop, shared_secret, next_packet_details_opt) = decode_incoming_update_add_htlc_onion(
3924 msg, &self.node_signer, &self.logger, &self.secp_ctx
3927 let next_packet_details = match next_packet_details_opt {
3928 Some(next_packet_details) => next_packet_details,
3929 // it is a receive, so no need for outbound checks
3930 None => return Ok((next_hop, shared_secret, None)),
3933 // Perform outbound checks here instead of in [`Self::construct_pending_htlc_info`] because we
3934 // can't hold the outbound peer state lock at the same time as the inbound peer state lock.
3935 self.can_forward_htlc(&msg, &next_packet_details).map_err(|e| {
3936 let (err_msg, err_code, chan_update_opt) = e;
3937 self.htlc_failure_from_update_add_err(
3938 msg, counterparty_node_id, err_msg, err_code, chan_update_opt,
3939 next_hop.is_intro_node_blinded_forward(), &shared_secret
3943 Ok((next_hop, shared_secret, Some(next_packet_details.next_packet_pubkey)))
3946 fn construct_pending_htlc_status<'a>(
3947 &self, msg: &msgs::UpdateAddHTLC, counterparty_node_id: &PublicKey, shared_secret: [u8; 32],
3948 decoded_hop: onion_utils::Hop, allow_underpay: bool,
3949 next_packet_pubkey_opt: Option<Result<PublicKey, secp256k1::Error>>,
3950 ) -> PendingHTLCStatus {
3951 macro_rules! return_err {
3952 ($msg: expr, $err_code: expr, $data: expr) => {
3954 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
3955 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
3956 if msg.blinding_point.is_some() {
3957 return PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
3958 msgs::UpdateFailMalformedHTLC {
3959 channel_id: msg.channel_id,
3960 htlc_id: msg.htlc_id,
3961 sha256_of_onion: [0; 32],
3962 failure_code: INVALID_ONION_BLINDING,
3966 return PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
3967 channel_id: msg.channel_id,
3968 htlc_id: msg.htlc_id,
3969 reason: HTLCFailReason::reason($err_code, $data.to_vec())
3970 .get_encrypted_failure_packet(&shared_secret, &None),
3976 onion_utils::Hop::Receive(next_hop_data) => {
3978 let current_height: u32 = self.best_block.read().unwrap().height;
3979 match create_recv_pending_htlc_info(next_hop_data, shared_secret, msg.payment_hash,
3980 msg.amount_msat, msg.cltv_expiry, None, allow_underpay, msg.skimmed_fee_msat,
3981 current_height, self.default_configuration.accept_mpp_keysend)
3984 // Note that we could obviously respond immediately with an update_fulfill_htlc
3985 // message, however that would leak that we are the recipient of this payment, so
3986 // instead we stay symmetric with the forwarding case, only responding (after a
3987 // delay) once they've send us a commitment_signed!
3988 PendingHTLCStatus::Forward(info)
3990 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
3993 onion_utils::Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes } => {
3994 match create_fwd_pending_htlc_info(msg, next_hop_data, next_hop_hmac,
3995 new_packet_bytes, shared_secret, next_packet_pubkey_opt) {
3996 Ok(info) => PendingHTLCStatus::Forward(info),
3997 Err(InboundHTLCErr { err_code, err_data, msg }) => return_err!(msg, err_code, &err_data)
4003 /// Gets the current [`channel_update`] for the given channel. This first checks if the channel is
4004 /// public, and thus should be called whenever the result is going to be passed out in a
4005 /// [`MessageSendEvent::BroadcastChannelUpdate`] event.
4007 /// Note that in [`internal_closing_signed`], this function is called without the `peer_state`
4008 /// corresponding to the channel's counterparty locked, as the channel been removed from the
4009 /// storage and the `peer_state` lock has been dropped.
4011 /// [`channel_update`]: msgs::ChannelUpdate
4012 /// [`internal_closing_signed`]: Self::internal_closing_signed
4013 fn get_channel_update_for_broadcast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4014 if !chan.context.should_announce() {
4015 return Err(LightningError {
4016 err: "Cannot broadcast a channel_update for a private channel".to_owned(),
4017 action: msgs::ErrorAction::IgnoreError
4020 if chan.context.get_short_channel_id().is_none() {
4021 return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError});
4023 let logger = WithChannelContext::from(&self.logger, &chan.context);
4024 log_trace!(logger, "Attempting to generate broadcast channel update for channel {}", &chan.context.channel_id());
4025 self.get_channel_update_for_unicast(chan)
4028 /// Gets the current [`channel_update`] for the given channel. This does not check if the channel
4029 /// is public (only returning an `Err` if the channel does not yet have an assigned SCID),
4030 /// and thus MUST NOT be called unless the recipient of the resulting message has already
4031 /// provided evidence that they know about the existence of the channel.
4033 /// Note that through [`internal_closing_signed`], this function is called without the
4034 /// `peer_state` corresponding to the channel's counterparty locked, as the channel been
4035 /// removed from the storage and the `peer_state` lock has been dropped.
4037 /// [`channel_update`]: msgs::ChannelUpdate
4038 /// [`internal_closing_signed`]: Self::internal_closing_signed
4039 fn get_channel_update_for_unicast(&self, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4040 let logger = WithChannelContext::from(&self.logger, &chan.context);
4041 log_trace!(logger, "Attempting to generate channel update for channel {}", chan.context.channel_id());
4042 let short_channel_id = match chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias()) {
4043 None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
4047 self.get_channel_update_for_onion(short_channel_id, chan)
4050 fn get_channel_update_for_onion(&self, short_channel_id: u64, chan: &Channel<SP>) -> Result<msgs::ChannelUpdate, LightningError> {
4051 let logger = WithChannelContext::from(&self.logger, &chan.context);
4052 log_trace!(logger, "Generating channel update for channel {}", chan.context.channel_id());
4053 let were_node_one = self.our_network_pubkey.serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
4055 let enabled = chan.context.is_usable() && match chan.channel_update_status() {
4056 ChannelUpdateStatus::Enabled => true,
4057 ChannelUpdateStatus::DisabledStaged(_) => true,
4058 ChannelUpdateStatus::Disabled => false,
4059 ChannelUpdateStatus::EnabledStaged(_) => false,
4062 let unsigned = msgs::UnsignedChannelUpdate {
4063 chain_hash: self.chain_hash,
4065 timestamp: chan.context.get_update_time_counter(),
4066 flags: (!were_node_one) as u8 | ((!enabled as u8) << 1),
4067 cltv_expiry_delta: chan.context.get_cltv_expiry_delta(),
4068 htlc_minimum_msat: chan.context.get_counterparty_htlc_minimum_msat(),
4069 htlc_maximum_msat: chan.context.get_announced_htlc_max_msat(),
4070 fee_base_msat: chan.context.get_outbound_forwarding_fee_base_msat(),
4071 fee_proportional_millionths: chan.context.get_fee_proportional_millionths(),
4072 excess_data: Vec::new(),
4074 // Panic on failure to signal LDK should be restarted to retry signing the `ChannelUpdate`.
4075 // If we returned an error and the `node_signer` cannot provide a signature for whatever
4076 // reason`, we wouldn't be able to receive inbound payments through the corresponding
4078 let sig = self.node_signer.sign_gossip_message(msgs::UnsignedGossipMessage::ChannelUpdate(&unsigned)).unwrap();
4080 Ok(msgs::ChannelUpdate {
4087 pub(crate) fn test_send_payment_along_path(&self, path: &Path, payment_hash: &PaymentHash, recipient_onion: RecipientOnionFields, total_value: u64, cur_height: u32, payment_id: PaymentId, keysend_preimage: &Option<PaymentPreimage>, session_priv_bytes: [u8; 32]) -> Result<(), APIError> {
4088 let _lck = self.total_consistency_lock.read().unwrap();
4089 self.send_payment_along_path(SendAlongPathArgs {
4090 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4095 fn send_payment_along_path(&self, args: SendAlongPathArgs) -> Result<(), APIError> {
4096 let SendAlongPathArgs {
4097 path, payment_hash, recipient_onion, total_value, cur_height, payment_id, keysend_preimage,
4100 // The top-level caller should hold the total_consistency_lock read lock.
4101 debug_assert!(self.total_consistency_lock.try_write().is_err());
4102 let prng_seed = self.entropy_source.get_secure_random_bytes();
4103 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
4105 let (onion_packet, htlc_msat, htlc_cltv) = onion_utils::create_payment_onion(
4106 &self.secp_ctx, &path, &session_priv, total_value, recipient_onion, cur_height,
4107 payment_hash, keysend_preimage, prng_seed
4109 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4110 log_error!(logger, "Failed to build an onion for path for payment hash {}", payment_hash);
4114 let err: Result<(), _> = loop {
4115 let (counterparty_node_id, id) = match self.short_to_chan_info.read().unwrap().get(&path.hops.first().unwrap().short_channel_id) {
4117 let logger = WithContext::from(&self.logger, Some(path.hops.first().unwrap().pubkey), None);
4118 log_error!(logger, "Failed to find first-hop for payment hash {}", payment_hash);
4119 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()})
4121 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
4124 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(id));
4126 "Attempting to send payment with payment hash {} along path with next hop {}",
4127 payment_hash, path.hops.first().unwrap().short_channel_id);
4129 let per_peer_state = self.per_peer_state.read().unwrap();
4130 let peer_state_mutex = per_peer_state.get(&counterparty_node_id)
4131 .ok_or_else(|| APIError::ChannelUnavailable{err: "No peer matching the path's first hop found!".to_owned() })?;
4132 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4133 let peer_state = &mut *peer_state_lock;
4134 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(id) {
4135 match chan_phase_entry.get_mut() {
4136 ChannelPhase::Funded(chan) => {
4137 if !chan.context.is_live() {
4138 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected".to_owned()});
4140 let funding_txo = chan.context.get_funding_txo().unwrap();
4141 let logger = WithChannelContext::from(&self.logger, &chan.context);
4142 let send_res = chan.send_htlc_and_commit(htlc_msat, payment_hash.clone(),
4143 htlc_cltv, HTLCSource::OutboundRoute {
4145 session_priv: session_priv.clone(),
4146 first_hop_htlc_msat: htlc_msat,
4148 }, onion_packet, None, &self.fee_estimator, &&logger);
4149 match break_chan_phase_entry!(self, send_res, chan_phase_entry) {
4150 Some(monitor_update) => {
4151 match handle_new_monitor_update!(self, funding_txo, monitor_update, peer_state_lock, peer_state, per_peer_state, chan) {
4153 // Note that MonitorUpdateInProgress here indicates (per function
4154 // docs) that we will resend the commitment update once monitor
4155 // updating completes. Therefore, we must return an error
4156 // indicating that it is unsafe to retry the payment wholesale,
4157 // which we do in the send_payment check for
4158 // MonitorUpdateInProgress, below.
4159 return Err(APIError::MonitorUpdateInProgress);
4167 _ => return Err(APIError::ChannelUnavailable{err: "Channel to first hop is unfunded".to_owned()}),
4170 // The channel was likely removed after we fetched the id from the
4171 // `short_to_chan_info` map, but before we successfully locked the
4172 // `channel_by_id` map.
4173 // This can occur as no consistency guarantees exists between the two maps.
4174 return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()});
4178 match handle_error!(self, err, path.hops.first().unwrap().pubkey) {
4179 Ok(_) => unreachable!(),
4181 Err(APIError::ChannelUnavailable { err: e.err })
4186 /// Sends a payment along a given route.
4188 /// Value parameters are provided via the last hop in route, see documentation for [`RouteHop`]
4189 /// fields for more info.
4191 /// May generate [`UpdateHTLCs`] message(s) event on success, which should be relayed (e.g. via
4192 /// [`PeerManager::process_events`]).
4194 /// # Avoiding Duplicate Payments
4196 /// If a pending payment is currently in-flight with the same [`PaymentId`] provided, this
4197 /// method will error with an [`APIError::InvalidRoute`]. Note, however, that once a payment
4198 /// is no longer pending (either via [`ChannelManager::abandon_payment`], or handling of an
4199 /// [`Event::PaymentSent`] or [`Event::PaymentFailed`]) LDK will not stop you from sending a
4200 /// second payment with the same [`PaymentId`].
4202 /// Thus, in order to ensure duplicate payments are not sent, you should implement your own
4203 /// tracking of payments, including state to indicate once a payment has completed. Because you
4204 /// should also ensure that [`PaymentHash`]es are not re-used, for simplicity, you should
4205 /// consider using the [`PaymentHash`] as the key for tracking payments. In that case, the
4206 /// [`PaymentId`] should be a copy of the [`PaymentHash`] bytes.
4208 /// Additionally, in the scenario where we begin the process of sending a payment, but crash
4209 /// before `send_payment` returns (or prior to [`ChannelMonitorUpdate`] persistence if you're
4210 /// using [`ChannelMonitorUpdateStatus::InProgress`]), the payment may be lost on restart. See
4211 /// [`ChannelManager::list_recent_payments`] for more information.
4213 /// # Possible Error States on [`PaymentSendFailure`]
4215 /// Each path may have a different return value, and [`PaymentSendFailure`] may return a `Vec` with
4216 /// each entry matching the corresponding-index entry in the route paths, see
4217 /// [`PaymentSendFailure`] for more info.
4219 /// In general, a path may raise:
4220 /// * [`APIError::InvalidRoute`] when an invalid route or forwarding parameter (cltv_delta, fee,
4221 /// node public key) is specified.
4222 /// * [`APIError::ChannelUnavailable`] if the next-hop channel is not available as it has been
4223 /// closed, doesn't exist, or the peer is currently disconnected.
4224 /// * [`APIError::MonitorUpdateInProgress`] if a new monitor update failure prevented sending the
4225 /// relevant updates.
4227 /// Note that depending on the type of the [`PaymentSendFailure`] the HTLC may have been
4228 /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
4229 /// different route unless you intend to pay twice!
4231 /// [`RouteHop`]: crate::routing::router::RouteHop
4232 /// [`Event::PaymentSent`]: events::Event::PaymentSent
4233 /// [`Event::PaymentFailed`]: events::Event::PaymentFailed
4234 /// [`UpdateHTLCs`]: events::MessageSendEvent::UpdateHTLCs
4235 /// [`PeerManager::process_events`]: crate::ln::peer_handler::PeerManager::process_events
4236 /// [`ChannelMonitorUpdateStatus::InProgress`]: crate::chain::ChannelMonitorUpdateStatus::InProgress
4237 pub fn send_payment_with_route(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<(), PaymentSendFailure> {
4238 let best_block_height = self.best_block.read().unwrap().height;
4239 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4240 self.pending_outbound_payments
4241 .send_payment_with_route(route, payment_hash, recipient_onion, payment_id,
4242 &self.entropy_source, &self.node_signer, best_block_height,
4243 |args| self.send_payment_along_path(args))
4246 /// Similar to [`ChannelManager::send_payment_with_route`], but will automatically find a route based on
4247 /// `route_params` and retry failed payment paths based on `retry_strategy`.
4248 pub fn send_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<(), RetryableSendFailure> {
4249 let best_block_height = self.best_block.read().unwrap().height;
4250 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4251 self.pending_outbound_payments
4252 .send_payment(payment_hash, recipient_onion, payment_id, retry_strategy, route_params,
4253 &self.router, self.list_usable_channels(), || self.compute_inflight_htlcs(),
4254 &self.entropy_source, &self.node_signer, best_block_height, &self.logger,
4255 &self.pending_events, |args| self.send_payment_along_path(args))
4259 pub(super) fn test_send_payment_internal(&self, route: &Route, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, keysend_preimage: Option<PaymentPreimage>, payment_id: PaymentId, recv_value_msat: Option<u64>, onion_session_privs: Vec<[u8; 32]>) -> Result<(), PaymentSendFailure> {
4260 let best_block_height = self.best_block.read().unwrap().height;
4261 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4262 self.pending_outbound_payments.test_send_payment_internal(route, payment_hash, recipient_onion,
4263 keysend_preimage, payment_id, recv_value_msat, onion_session_privs, &self.node_signer,
4264 best_block_height, |args| self.send_payment_along_path(args))
4268 pub(crate) fn test_add_new_pending_payment(&self, payment_hash: PaymentHash, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route: &Route) -> Result<Vec<[u8; 32]>, PaymentSendFailure> {
4269 let best_block_height = self.best_block.read().unwrap().height;
4270 self.pending_outbound_payments.test_add_new_pending_payment(payment_hash, recipient_onion, payment_id, route, None, &self.entropy_source, best_block_height)
4274 pub(crate) fn test_set_payment_metadata(&self, payment_id: PaymentId, new_payment_metadata: Option<Vec<u8>>) {
4275 self.pending_outbound_payments.test_set_payment_metadata(payment_id, new_payment_metadata);
4278 pub(super) fn send_payment_for_bolt12_invoice(&self, invoice: &Bolt12Invoice, payment_id: PaymentId) -> Result<(), Bolt12PaymentError> {
4279 let best_block_height = self.best_block.read().unwrap().height;
4280 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4281 self.pending_outbound_payments
4282 .send_payment_for_bolt12_invoice(
4283 invoice, payment_id, &self.router, self.list_usable_channels(),
4284 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer,
4285 best_block_height, &self.logger, &self.pending_events,
4286 |args| self.send_payment_along_path(args)
4290 /// Signals that no further attempts for the given payment should occur. Useful if you have a
4291 /// pending outbound payment with retries remaining, but wish to stop retrying the payment before
4292 /// retries are exhausted.
4294 /// # Event Generation
4296 /// If no [`Event::PaymentFailed`] event had been generated before, one will be generated as soon
4297 /// as there are no remaining pending HTLCs for this payment.
4299 /// Note that calling this method does *not* prevent a payment from succeeding. You must still
4300 /// wait until you receive either a [`Event::PaymentFailed`] or [`Event::PaymentSent`] event to
4301 /// determine the ultimate status of a payment.
4303 /// # Requested Invoices
4305 /// In the case of paying a [`Bolt12Invoice`] via [`ChannelManager::pay_for_offer`], abandoning
4306 /// the payment prior to receiving the invoice will result in an [`Event::InvoiceRequestFailed`]
4307 /// and prevent any attempts at paying it once received. The other events may only be generated
4308 /// once the invoice has been received.
4310 /// # Restart Behavior
4312 /// If an [`Event::PaymentFailed`] is generated and we restart without first persisting the
4313 /// [`ChannelManager`], another [`Event::PaymentFailed`] may be generated; likewise for
4314 /// [`Event::InvoiceRequestFailed`].
4316 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
4317 pub fn abandon_payment(&self, payment_id: PaymentId) {
4318 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4319 self.pending_outbound_payments.abandon_payment(payment_id, PaymentFailureReason::UserAbandoned, &self.pending_events);
4322 /// Send a spontaneous payment, which is a payment that does not require the recipient to have
4323 /// generated an invoice. Optionally, you may specify the preimage. If you do choose to specify
4324 /// the preimage, it must be a cryptographically secure random value that no intermediate node
4325 /// would be able to guess -- otherwise, an intermediate node may claim the payment and it will
4326 /// never reach the recipient.
4328 /// See [`send_payment`] documentation for more details on the return value of this function
4329 /// and idempotency guarantees provided by the [`PaymentId`] key.
4331 /// Similar to regular payments, you MUST NOT reuse a `payment_preimage` value. See
4332 /// [`send_payment`] for more information about the risks of duplicate preimage usage.
4334 /// [`send_payment`]: Self::send_payment
4335 pub fn send_spontaneous_payment(&self, route: &Route, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId) -> Result<PaymentHash, PaymentSendFailure> {
4336 let best_block_height = self.best_block.read().unwrap().height;
4337 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4338 self.pending_outbound_payments.send_spontaneous_payment_with_route(
4339 route, payment_preimage, recipient_onion, payment_id, &self.entropy_source,
4340 &self.node_signer, best_block_height, |args| self.send_payment_along_path(args))
4343 /// Similar to [`ChannelManager::send_spontaneous_payment`], but will automatically find a route
4344 /// based on `route_params` and retry failed payment paths based on `retry_strategy`.
4346 /// See [`PaymentParameters::for_keysend`] for help in constructing `route_params` for spontaneous
4349 /// [`PaymentParameters::for_keysend`]: crate::routing::router::PaymentParameters::for_keysend
4350 pub fn send_spontaneous_payment_with_retry(&self, payment_preimage: Option<PaymentPreimage>, recipient_onion: RecipientOnionFields, payment_id: PaymentId, route_params: RouteParameters, retry_strategy: Retry) -> Result<PaymentHash, RetryableSendFailure> {
4351 let best_block_height = self.best_block.read().unwrap().height;
4352 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4353 self.pending_outbound_payments.send_spontaneous_payment(payment_preimage, recipient_onion,
4354 payment_id, retry_strategy, route_params, &self.router, self.list_usable_channels(),
4355 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
4356 &self.logger, &self.pending_events, |args| self.send_payment_along_path(args))
4359 /// Send a payment that is probing the given route for liquidity. We calculate the
4360 /// [`PaymentHash`] of probes based on a static secret and a random [`PaymentId`], which allows
4361 /// us to easily discern them from real payments.
4362 pub fn send_probe(&self, path: Path) -> Result<(PaymentHash, PaymentId), PaymentSendFailure> {
4363 let best_block_height = self.best_block.read().unwrap().height;
4364 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4365 self.pending_outbound_payments.send_probe(path, self.probing_cookie_secret,
4366 &self.entropy_source, &self.node_signer, best_block_height,
4367 |args| self.send_payment_along_path(args))
4370 /// Returns whether a payment with the given [`PaymentHash`] and [`PaymentId`] is, in fact, a
4373 pub(crate) fn payment_is_probe(&self, payment_hash: &PaymentHash, payment_id: &PaymentId) -> bool {
4374 outbound_payment::payment_is_probe(payment_hash, payment_id, self.probing_cookie_secret)
4377 /// Sends payment probes over all paths of a route that would be used to pay the given
4378 /// amount to the given `node_id`.
4380 /// See [`ChannelManager::send_preflight_probes`] for more information.
4381 pub fn send_spontaneous_preflight_probes(
4382 &self, node_id: PublicKey, amount_msat: u64, final_cltv_expiry_delta: u32,
4383 liquidity_limit_multiplier: Option<u64>,
4384 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4385 let payment_params =
4386 PaymentParameters::from_node_id(node_id, final_cltv_expiry_delta);
4388 let route_params = RouteParameters::from_payment_params_and_value(payment_params, amount_msat);
4390 self.send_preflight_probes(route_params, liquidity_limit_multiplier)
4393 /// Sends payment probes over all paths of a route that would be used to pay a route found
4394 /// according to the given [`RouteParameters`].
4396 /// This may be used to send "pre-flight" probes, i.e., to train our scorer before conducting
4397 /// the actual payment. Note this is only useful if there likely is sufficient time for the
4398 /// probe to settle before sending out the actual payment, e.g., when waiting for user
4399 /// confirmation in a wallet UI.
4401 /// Otherwise, there is a chance the probe could take up some liquidity needed to complete the
4402 /// actual payment. Users should therefore be cautious and might avoid sending probes if
4403 /// liquidity is scarce and/or they don't expect the probe to return before they send the
4404 /// payment. To mitigate this issue, channels with available liquidity less than the required
4405 /// amount times the given `liquidity_limit_multiplier` won't be used to send pre-flight
4406 /// probes. If `None` is given as `liquidity_limit_multiplier`, it defaults to `3`.
4407 pub fn send_preflight_probes(
4408 &self, route_params: RouteParameters, liquidity_limit_multiplier: Option<u64>,
4409 ) -> Result<Vec<(PaymentHash, PaymentId)>, ProbeSendFailure> {
4410 let liquidity_limit_multiplier = liquidity_limit_multiplier.unwrap_or(3);
4412 let payer = self.get_our_node_id();
4413 let usable_channels = self.list_usable_channels();
4414 let first_hops = usable_channels.iter().collect::<Vec<_>>();
4415 let inflight_htlcs = self.compute_inflight_htlcs();
4419 .find_route(&payer, &route_params, Some(&first_hops), inflight_htlcs)
4421 log_error!(self.logger, "Failed to find path for payment probe: {:?}", e);
4422 ProbeSendFailure::RouteNotFound
4425 let mut used_liquidity_map = hash_map_with_capacity(first_hops.len());
4427 let mut res = Vec::new();
4429 for mut path in route.paths {
4430 // If the last hop is probably an unannounced channel we refrain from probing all the
4431 // way through to the end and instead probe up to the second-to-last channel.
4432 while let Some(last_path_hop) = path.hops.last() {
4433 if last_path_hop.maybe_announced_channel {
4434 // We found a potentially announced last hop.
4437 // Drop the last hop, as it's likely unannounced.
4440 "Avoided sending payment probe all the way to last hop {} as it is likely unannounced.",
4441 last_path_hop.short_channel_id
4443 let final_value_msat = path.final_value_msat();
4445 if let Some(new_last) = path.hops.last_mut() {
4446 new_last.fee_msat += final_value_msat;
4451 if path.hops.len() < 2 {
4454 "Skipped sending payment probe over path with less than two hops."
4459 if let Some(first_path_hop) = path.hops.first() {
4460 if let Some(first_hop) = first_hops.iter().find(|h| {
4461 h.get_outbound_payment_scid() == Some(first_path_hop.short_channel_id)
4463 let path_value = path.final_value_msat() + path.fee_msat();
4464 let used_liquidity =
4465 used_liquidity_map.entry(first_path_hop.short_channel_id).or_insert(0);
4467 if first_hop.next_outbound_htlc_limit_msat
4468 < (*used_liquidity + path_value) * liquidity_limit_multiplier
4470 log_debug!(self.logger, "Skipped sending payment probe to avoid putting channel {} under the liquidity limit.", first_path_hop.short_channel_id);
4473 *used_liquidity += path_value;
4478 res.push(self.send_probe(path).map_err(|e| {
4479 log_error!(self.logger, "Failed to send pre-flight probe: {:?}", e);
4480 ProbeSendFailure::SendingFailed(e)
4487 /// Handles the generation of a funding transaction, optionally (for tests) with a function
4488 /// which checks the correctness of the funding transaction given the associated channel.
4489 fn funding_transaction_generated_intern<FundingOutput: FnMut(&OutboundV1Channel<SP>, &Transaction) -> Result<OutPoint, APIError>>(
4490 &self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, is_batch_funding: bool,
4491 mut find_funding_output: FundingOutput,
4492 ) -> Result<(), APIError> {
4493 let per_peer_state = self.per_peer_state.read().unwrap();
4494 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4495 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4497 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4498 let peer_state = &mut *peer_state_lock;
4500 let (mut chan, msg_opt) = match peer_state.channel_by_id.remove(temporary_channel_id) {
4501 Some(ChannelPhase::UnfundedOutboundV1(mut chan)) => {
4502 funding_txo = find_funding_output(&chan, &funding_transaction)?;
4504 let logger = WithChannelContext::from(&self.logger, &chan.context);
4505 let funding_res = chan.get_funding_created(funding_transaction, funding_txo, is_batch_funding, &&logger)
4506 .map_err(|(mut chan, e)| if let ChannelError::Close(msg) = e {
4507 let channel_id = chan.context.channel_id();
4508 let reason = ClosureReason::ProcessingError { err: msg.clone() };
4509 let shutdown_res = chan.context.force_shutdown(false, reason);
4510 (chan, MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, None))
4511 } else { unreachable!(); });
4513 Ok(funding_msg) => (chan, funding_msg),
4514 Err((chan, err)) => {
4515 mem::drop(peer_state_lock);
4516 mem::drop(per_peer_state);
4517 let _: Result<(), _> = handle_error!(self, Err(err), chan.context.get_counterparty_node_id());
4518 return Err(APIError::ChannelUnavailable {
4519 err: "Signer refused to sign the initial commitment transaction".to_owned()
4525 peer_state.channel_by_id.insert(*temporary_channel_id, phase);
4526 return Err(APIError::APIMisuseError {
4528 "Channel with id {} for the passed counterparty node_id {} is not an unfunded, outbound V1 channel",
4529 temporary_channel_id, counterparty_node_id),
4532 None => return Err(APIError::ChannelUnavailable {err: format!(
4533 "Channel with id {} not found for the passed counterparty node_id {}",
4534 temporary_channel_id, counterparty_node_id),
4538 if let Some(msg) = msg_opt {
4539 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
4540 node_id: chan.context.get_counterparty_node_id(),
4544 match peer_state.channel_by_id.entry(chan.context.channel_id()) {
4545 hash_map::Entry::Occupied(_) => {
4546 panic!("Generated duplicate funding txid?");
4548 hash_map::Entry::Vacant(e) => {
4549 let mut outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
4550 match outpoint_to_peer.entry(funding_txo) {
4551 hash_map::Entry::Vacant(e) => { e.insert(chan.context.get_counterparty_node_id()); },
4552 hash_map::Entry::Occupied(o) => {
4554 "An existing channel using outpoint {} is open with peer {}",
4555 funding_txo, o.get()
4557 mem::drop(outpoint_to_peer);
4558 mem::drop(peer_state_lock);
4559 mem::drop(per_peer_state);
4560 let reason = ClosureReason::ProcessingError { err: err.clone() };
4561 self.finish_close_channel(chan.context.force_shutdown(true, reason));
4562 return Err(APIError::ChannelUnavailable { err });
4565 e.insert(ChannelPhase::UnfundedOutboundV1(chan));
4572 pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
4573 self.funding_transaction_generated_intern(temporary_channel_id, counterparty_node_id, funding_transaction, false, |_, tx| {
4574 Ok(OutPoint { txid: tx.txid(), index: output_index })
4578 /// Call this upon creation of a funding transaction for the given channel.
4580 /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
4581 /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
4583 /// Returns [`APIError::APIMisuseError`] if the funding transaction is not final for propagation
4584 /// across the p2p network.
4586 /// Returns [`APIError::ChannelUnavailable`] if a funding transaction has already been provided
4587 /// for the channel or if the channel has been closed as indicated by [`Event::ChannelClosed`].
4589 /// May panic if the output found in the funding transaction is duplicative with some other
4590 /// channel (note that this should be trivially prevented by using unique funding transaction
4591 /// keys per-channel).
4593 /// Do NOT broadcast the funding transaction yourself. When we have safely received our
4594 /// counterparty's signature the funding transaction will automatically be broadcast via the
4595 /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
4597 /// Note that this includes RBF or similar transaction replacement strategies - lightning does
4598 /// not currently support replacing a funding transaction on an existing channel. Instead,
4599 /// create a new channel with a conflicting funding transaction.
4601 /// Note to keep the miner incentives aligned in moving the blockchain forward, we recommend
4602 /// the wallet software generating the funding transaction to apply anti-fee sniping as
4603 /// implemented by Bitcoin Core wallet. See <https://bitcoinops.org/en/topics/fee-sniping/>
4604 /// for more details.
4606 /// [`Event::FundingGenerationReady`]: crate::events::Event::FundingGenerationReady
4607 /// [`Event::ChannelClosed`]: crate::events::Event::ChannelClosed
4608 pub fn funding_transaction_generated(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, funding_transaction: Transaction) -> Result<(), APIError> {
4609 self.batch_funding_transaction_generated(&[(temporary_channel_id, counterparty_node_id)], funding_transaction)
4612 /// Call this upon creation of a batch funding transaction for the given channels.
4614 /// Return values are identical to [`Self::funding_transaction_generated`], respective to
4615 /// each individual channel and transaction output.
4617 /// Do NOT broadcast the funding transaction yourself. This batch funding transaction
4618 /// will only be broadcast when we have safely received and persisted the counterparty's
4619 /// signature for each channel.
4621 /// If there is an error, all channels in the batch are to be considered closed.
4622 pub fn batch_funding_transaction_generated(&self, temporary_channels: &[(&ChannelId, &PublicKey)], funding_transaction: Transaction) -> Result<(), APIError> {
4623 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4624 let mut result = Ok(());
4626 if !funding_transaction.is_coin_base() {
4627 for inp in funding_transaction.input.iter() {
4628 if inp.witness.is_empty() {
4629 result = result.and(Err(APIError::APIMisuseError {
4630 err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
4635 if funding_transaction.output.len() > u16::max_value() as usize {
4636 result = result.and(Err(APIError::APIMisuseError {
4637 err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
4641 let height = self.best_block.read().unwrap().height;
4642 // Transactions are evaluated as final by network mempools if their locktime is strictly
4643 // lower than the next block height. However, the modules constituting our Lightning
4644 // node might not have perfect sync about their blockchain views. Thus, if the wallet
4645 // module is ahead of LDK, only allow one more block of headroom.
4646 if !funding_transaction.input.iter().all(|input| input.sequence == Sequence::MAX) &&
4647 funding_transaction.lock_time.is_block_height() &&
4648 funding_transaction.lock_time.to_consensus_u32() > height + 1
4650 result = result.and(Err(APIError::APIMisuseError {
4651 err: "Funding transaction absolute timelock is non-final".to_owned()
4656 let txid = funding_transaction.txid();
4657 let is_batch_funding = temporary_channels.len() > 1;
4658 let mut funding_batch_states = if is_batch_funding {
4659 Some(self.funding_batch_states.lock().unwrap())
4663 let mut funding_batch_state = funding_batch_states.as_mut().and_then(|states| {
4664 match states.entry(txid) {
4665 btree_map::Entry::Occupied(_) => {
4666 result = result.clone().and(Err(APIError::APIMisuseError {
4667 err: "Batch funding transaction with the same txid already exists".to_owned()
4671 btree_map::Entry::Vacant(vacant) => Some(vacant.insert(Vec::new())),
4674 for &(temporary_channel_id, counterparty_node_id) in temporary_channels {
4675 result = result.and_then(|_| self.funding_transaction_generated_intern(
4676 temporary_channel_id,
4677 counterparty_node_id,
4678 funding_transaction.clone(),
4681 let mut output_index = None;
4682 let expected_spk = chan.context.get_funding_redeemscript().to_v0_p2wsh();
4683 for (idx, outp) in tx.output.iter().enumerate() {
4684 if outp.script_pubkey == expected_spk && outp.value == chan.context.get_value_satoshis() {
4685 if output_index.is_some() {
4686 return Err(APIError::APIMisuseError {
4687 err: "Multiple outputs matched the expected script and value".to_owned()
4690 output_index = Some(idx as u16);
4693 if output_index.is_none() {
4694 return Err(APIError::APIMisuseError {
4695 err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
4698 let outpoint = OutPoint { txid: tx.txid(), index: output_index.unwrap() };
4699 if let Some(funding_batch_state) = funding_batch_state.as_mut() {
4700 // TODO(dual_funding): We only do batch funding for V1 channels at the moment, but we'll probably
4701 // need to fix this somehow to not rely on using the outpoint for the channel ID if we
4702 // want to support V2 batching here as well.
4703 funding_batch_state.push((ChannelId::v1_from_funding_outpoint(outpoint), *counterparty_node_id, false));
4709 if let Err(ref e) = result {
4710 // Remaining channels need to be removed on any error.
4711 let e = format!("Error in transaction funding: {:?}", e);
4712 let mut channels_to_remove = Vec::new();
4713 channels_to_remove.extend(funding_batch_states.as_mut()
4714 .and_then(|states| states.remove(&txid))
4715 .into_iter().flatten()
4716 .map(|(chan_id, node_id, _state)| (chan_id, node_id))
4718 channels_to_remove.extend(temporary_channels.iter()
4719 .map(|(&chan_id, &node_id)| (chan_id, node_id))
4721 let mut shutdown_results = Vec::new();
4723 let per_peer_state = self.per_peer_state.read().unwrap();
4724 for (channel_id, counterparty_node_id) in channels_to_remove {
4725 per_peer_state.get(&counterparty_node_id)
4726 .map(|peer_state_mutex| peer_state_mutex.lock().unwrap())
4727 .and_then(|mut peer_state| peer_state.channel_by_id.remove(&channel_id))
4729 update_maps_on_chan_removal!(self, &chan.context());
4730 let closure_reason = ClosureReason::ProcessingError { err: e.clone() };
4731 shutdown_results.push(chan.context_mut().force_shutdown(false, closure_reason));
4735 mem::drop(funding_batch_states);
4736 for shutdown_result in shutdown_results.drain(..) {
4737 self.finish_close_channel(shutdown_result);
4743 /// Atomically applies partial updates to the [`ChannelConfig`] of the given channels.
4745 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4746 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4747 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4748 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4750 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4751 /// `counterparty_node_id` is provided.
4753 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4754 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4756 /// If an error is returned, none of the updates should be considered applied.
4758 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4759 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4760 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4761 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4762 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4763 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4764 /// [`APIMisuseError`]: APIError::APIMisuseError
4765 pub fn update_partial_channel_config(
4766 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config_update: &ChannelConfigUpdate,
4767 ) -> Result<(), APIError> {
4768 if config_update.cltv_expiry_delta.map(|delta| delta < MIN_CLTV_EXPIRY_DELTA).unwrap_or(false) {
4769 return Err(APIError::APIMisuseError {
4770 err: format!("The chosen CLTV expiry delta is below the minimum of {}", MIN_CLTV_EXPIRY_DELTA),
4774 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4775 let per_peer_state = self.per_peer_state.read().unwrap();
4776 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
4777 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id) })?;
4778 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4779 let peer_state = &mut *peer_state_lock;
4781 for channel_id in channel_ids {
4782 if !peer_state.has_channel(channel_id) {
4783 return Err(APIError::ChannelUnavailable {
4784 err: format!("Channel with id {} not found for the passed counterparty node_id {}", channel_id, counterparty_node_id),
4788 for channel_id in channel_ids {
4789 if let Some(channel_phase) = peer_state.channel_by_id.get_mut(channel_id) {
4790 let mut config = channel_phase.context().config();
4791 config.apply(config_update);
4792 if !channel_phase.context_mut().update_config(&config) {
4795 if let ChannelPhase::Funded(channel) = channel_phase {
4796 if let Ok(msg) = self.get_channel_update_for_broadcast(channel) {
4797 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
4798 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate { msg });
4799 } else if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
4800 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
4801 node_id: channel.context.get_counterparty_node_id(),
4808 // This should not be reachable as we've already checked for non-existence in the previous channel_id loop.
4809 debug_assert!(false);
4810 return Err(APIError::ChannelUnavailable {
4812 "Channel with ID {} for passed counterparty_node_id {} disappeared after we confirmed its existence - this should not be reachable!",
4813 channel_id, counterparty_node_id),
4820 /// Atomically updates the [`ChannelConfig`] for the given channels.
4822 /// Once the updates are applied, each eligible channel (advertised with a known short channel
4823 /// ID and a change in [`forwarding_fee_proportional_millionths`], [`forwarding_fee_base_msat`],
4824 /// or [`cltv_expiry_delta`]) has a [`BroadcastChannelUpdate`] event message generated
4825 /// containing the new [`ChannelUpdate`] message which should be broadcast to the network.
4827 /// Returns [`ChannelUnavailable`] when a channel is not found or an incorrect
4828 /// `counterparty_node_id` is provided.
4830 /// Returns [`APIMisuseError`] when a [`cltv_expiry_delta`] update is to be applied with a value
4831 /// below [`MIN_CLTV_EXPIRY_DELTA`].
4833 /// If an error is returned, none of the updates should be considered applied.
4835 /// [`forwarding_fee_proportional_millionths`]: ChannelConfig::forwarding_fee_proportional_millionths
4836 /// [`forwarding_fee_base_msat`]: ChannelConfig::forwarding_fee_base_msat
4837 /// [`cltv_expiry_delta`]: ChannelConfig::cltv_expiry_delta
4838 /// [`BroadcastChannelUpdate`]: events::MessageSendEvent::BroadcastChannelUpdate
4839 /// [`ChannelUpdate`]: msgs::ChannelUpdate
4840 /// [`ChannelUnavailable`]: APIError::ChannelUnavailable
4841 /// [`APIMisuseError`]: APIError::APIMisuseError
4842 pub fn update_channel_config(
4843 &self, counterparty_node_id: &PublicKey, channel_ids: &[ChannelId], config: &ChannelConfig,
4844 ) -> Result<(), APIError> {
4845 return self.update_partial_channel_config(counterparty_node_id, channel_ids, &(*config).into());
4848 /// Attempts to forward an intercepted HTLC over the provided channel id and with the provided
4849 /// amount to forward. Should only be called in response to an [`HTLCIntercepted`] event.
4851 /// Intercepted HTLCs can be useful for Lightning Service Providers (LSPs) to open a just-in-time
4852 /// channel to a receiving node if the node lacks sufficient inbound liquidity.
4854 /// To make use of intercepted HTLCs, set [`UserConfig::accept_intercept_htlcs`] and use
4855 /// [`ChannelManager::get_intercept_scid`] to generate short channel id(s) to put in the
4856 /// receiver's invoice route hints. These route hints will signal to LDK to generate an
4857 /// [`HTLCIntercepted`] event when it receives the forwarded HTLC, and this method or
4858 /// [`ChannelManager::fail_intercepted_htlc`] MUST be called in response to the event.
4860 /// Note that LDK does not enforce fee requirements in `amt_to_forward_msat`, and will not stop
4861 /// you from forwarding more than you received. See
4862 /// [`HTLCIntercepted::expected_outbound_amount_msat`] for more on forwarding a different amount
4865 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4868 /// [`UserConfig::accept_intercept_htlcs`]: crate::util::config::UserConfig::accept_intercept_htlcs
4869 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4870 /// [`HTLCIntercepted::expected_outbound_amount_msat`]: events::Event::HTLCIntercepted::expected_outbound_amount_msat
4871 // TODO: when we move to deciding the best outbound channel at forward time, only take
4872 // `next_node_id` and not `next_hop_channel_id`
4873 pub fn forward_intercepted_htlc(&self, intercept_id: InterceptId, next_hop_channel_id: &ChannelId, next_node_id: PublicKey, amt_to_forward_msat: u64) -> Result<(), APIError> {
4874 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4876 let next_hop_scid = {
4877 let peer_state_lock = self.per_peer_state.read().unwrap();
4878 let peer_state_mutex = peer_state_lock.get(&next_node_id)
4879 .ok_or_else(|| APIError::ChannelUnavailable { err: format!("Can't find a peer matching the passed counterparty node_id {}", next_node_id) })?;
4880 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
4881 let peer_state = &mut *peer_state_lock;
4882 match peer_state.channel_by_id.get(next_hop_channel_id) {
4883 Some(ChannelPhase::Funded(chan)) => {
4884 if !chan.context.is_usable() {
4885 return Err(APIError::ChannelUnavailable {
4886 err: format!("Channel with id {} not fully established", next_hop_channel_id)
4889 chan.context.get_short_channel_id().unwrap_or(chan.context.outbound_scid_alias())
4891 Some(_) => return Err(APIError::ChannelUnavailable {
4892 err: format!("Channel with id {} for the passed counterparty node_id {} is still opening.",
4893 next_hop_channel_id, next_node_id)
4896 let error = format!("Channel with id {} not found for the passed counterparty node_id {}",
4897 next_hop_channel_id, next_node_id);
4898 let logger = WithContext::from(&self.logger, Some(next_node_id), Some(*next_hop_channel_id));
4899 log_error!(logger, "{} when attempting to forward intercepted HTLC", error);
4900 return Err(APIError::ChannelUnavailable {
4907 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4908 .ok_or_else(|| APIError::APIMisuseError {
4909 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4912 let routing = match payment.forward_info.routing {
4913 PendingHTLCRouting::Forward { onion_packet, blinded, .. } => {
4914 PendingHTLCRouting::Forward {
4915 onion_packet, blinded, short_channel_id: next_hop_scid
4918 _ => unreachable!() // Only `PendingHTLCRouting::Forward`s are intercepted
4920 let skimmed_fee_msat =
4921 payment.forward_info.outgoing_amt_msat.saturating_sub(amt_to_forward_msat);
4922 let pending_htlc_info = PendingHTLCInfo {
4923 skimmed_fee_msat: if skimmed_fee_msat == 0 { None } else { Some(skimmed_fee_msat) },
4924 outgoing_amt_msat: amt_to_forward_msat, routing, ..payment.forward_info
4927 let mut per_source_pending_forward = [(
4928 payment.prev_short_channel_id,
4929 payment.prev_funding_outpoint,
4930 payment.prev_channel_id,
4931 payment.prev_user_channel_id,
4932 vec![(pending_htlc_info, payment.prev_htlc_id)]
4934 self.forward_htlcs(&mut per_source_pending_forward);
4938 /// Fails the intercepted HTLC indicated by intercept_id. Should only be called in response to
4939 /// an [`HTLCIntercepted`] event. See [`ChannelManager::forward_intercepted_htlc`].
4941 /// Errors if the event was not handled in time, in which case the HTLC was automatically failed
4944 /// [`HTLCIntercepted`]: events::Event::HTLCIntercepted
4945 pub fn fail_intercepted_htlc(&self, intercept_id: InterceptId) -> Result<(), APIError> {
4946 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
4948 let payment = self.pending_intercepted_htlcs.lock().unwrap().remove(&intercept_id)
4949 .ok_or_else(|| APIError::APIMisuseError {
4950 err: format!("Payment with intercept id {} not found", log_bytes!(intercept_id.0))
4953 if let PendingHTLCRouting::Forward { short_channel_id, .. } = payment.forward_info.routing {
4954 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
4955 short_channel_id: payment.prev_short_channel_id,
4956 user_channel_id: Some(payment.prev_user_channel_id),
4957 outpoint: payment.prev_funding_outpoint,
4958 channel_id: payment.prev_channel_id,
4959 htlc_id: payment.prev_htlc_id,
4960 incoming_packet_shared_secret: payment.forward_info.incoming_shared_secret,
4961 phantom_shared_secret: None,
4962 blinded_failure: payment.forward_info.routing.blinded_failure(),
4965 let failure_reason = HTLCFailReason::from_failure_code(0x4000 | 10);
4966 let destination = HTLCDestination::UnknownNextHop { requested_forward_scid: short_channel_id };
4967 self.fail_htlc_backwards_internal(&htlc_source, &payment.forward_info.payment_hash, &failure_reason, destination);
4968 } else { unreachable!() } // Only `PendingHTLCRouting::Forward`s are intercepted
4973 fn process_pending_update_add_htlcs(&self) {
4974 let mut decode_update_add_htlcs = new_hash_map();
4975 mem::swap(&mut decode_update_add_htlcs, &mut self.decode_update_add_htlcs.lock().unwrap());
4977 let get_failed_htlc_destination = |outgoing_scid_opt: Option<u64>, payment_hash: PaymentHash| {
4978 if let Some(outgoing_scid) = outgoing_scid_opt {
4979 match self.short_to_chan_info.read().unwrap().get(&outgoing_scid) {
4980 Some((outgoing_counterparty_node_id, outgoing_channel_id)) =>
4981 HTLCDestination::NextHopChannel {
4982 node_id: Some(*outgoing_counterparty_node_id),
4983 channel_id: *outgoing_channel_id,
4985 None => HTLCDestination::UnknownNextHop {
4986 requested_forward_scid: outgoing_scid,
4990 HTLCDestination::FailedPayment { payment_hash }
4994 'outer_loop: for (incoming_scid, update_add_htlcs) in decode_update_add_htlcs {
4995 let incoming_channel_details_opt = self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
4996 let counterparty_node_id = chan.context.get_counterparty_node_id();
4997 let channel_id = chan.context.channel_id();
4998 let funding_txo = chan.context.get_funding_txo().unwrap();
4999 let user_channel_id = chan.context.get_user_id();
5000 let accept_underpaying_htlcs = chan.context.config().accept_underpaying_htlcs;
5001 (counterparty_node_id, channel_id, funding_txo, user_channel_id, accept_underpaying_htlcs)
5004 incoming_counterparty_node_id, incoming_channel_id, incoming_funding_txo,
5005 incoming_user_channel_id, incoming_accept_underpaying_htlcs
5006 ) = if let Some(incoming_channel_details) = incoming_channel_details_opt {
5007 incoming_channel_details
5009 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5013 let mut htlc_forwards = Vec::new();
5014 let mut htlc_fails = Vec::new();
5015 for update_add_htlc in &update_add_htlcs {
5016 let (next_hop, shared_secret, next_packet_details_opt) = match decode_incoming_update_add_htlc_onion(
5017 &update_add_htlc, &self.node_signer, &self.logger, &self.secp_ctx
5019 Ok(decoded_onion) => decoded_onion,
5021 htlc_fails.push((htlc_fail, HTLCDestination::InvalidOnion));
5026 let is_intro_node_blinded_forward = next_hop.is_intro_node_blinded_forward();
5027 let outgoing_scid_opt = next_packet_details_opt.as_ref().map(|d| d.outgoing_scid);
5029 // Process the HTLC on the incoming channel.
5030 match self.do_funded_channel_callback(incoming_scid, |chan: &mut Channel<SP>| {
5031 let logger = WithChannelContext::from(&self.logger, &chan.context);
5032 chan.can_accept_incoming_htlc(
5033 update_add_htlc, &self.fee_estimator, &logger,
5037 Some(Err((err, code))) => {
5038 let outgoing_chan_update_opt = if let Some(outgoing_scid) = outgoing_scid_opt.as_ref() {
5039 self.do_funded_channel_callback(*outgoing_scid, |chan: &mut Channel<SP>| {
5040 self.get_channel_update_for_onion(*outgoing_scid, chan).ok()
5045 let htlc_fail = self.htlc_failure_from_update_add_err(
5046 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5047 outgoing_chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5049 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5050 htlc_fails.push((htlc_fail, htlc_destination));
5053 // The incoming channel no longer exists, HTLCs should be resolved onchain instead.
5054 None => continue 'outer_loop,
5057 // Now process the HTLC on the outgoing channel if it's a forward.
5058 if let Some(next_packet_details) = next_packet_details_opt.as_ref() {
5059 if let Err((err, code, chan_update_opt)) = self.can_forward_htlc(
5060 &update_add_htlc, next_packet_details
5062 let htlc_fail = self.htlc_failure_from_update_add_err(
5063 &update_add_htlc, &incoming_counterparty_node_id, err, code,
5064 chan_update_opt, is_intro_node_blinded_forward, &shared_secret,
5066 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5067 htlc_fails.push((htlc_fail, htlc_destination));
5072 match self.construct_pending_htlc_status(
5073 &update_add_htlc, &incoming_counterparty_node_id, shared_secret, next_hop,
5074 incoming_accept_underpaying_htlcs, next_packet_details_opt.map(|d| d.next_packet_pubkey),
5076 PendingHTLCStatus::Forward(htlc_forward) => {
5077 htlc_forwards.push((htlc_forward, update_add_htlc.htlc_id));
5079 PendingHTLCStatus::Fail(htlc_fail) => {
5080 let htlc_destination = get_failed_htlc_destination(outgoing_scid_opt, update_add_htlc.payment_hash);
5081 htlc_fails.push((htlc_fail, htlc_destination));
5086 // Process all of the forwards and failures for the channel in which the HTLCs were
5087 // proposed to as a batch.
5088 let pending_forwards = (incoming_scid, incoming_funding_txo, incoming_channel_id,
5089 incoming_user_channel_id, htlc_forwards.drain(..).collect());
5090 self.forward_htlcs_without_forward_event(&mut [pending_forwards]);
5091 for (htlc_fail, htlc_destination) in htlc_fails.drain(..) {
5092 let failure = match htlc_fail {
5093 HTLCFailureMsg::Relay(fail_htlc) => HTLCForwardInfo::FailHTLC {
5094 htlc_id: fail_htlc.htlc_id,
5095 err_packet: fail_htlc.reason,
5097 HTLCFailureMsg::Malformed(fail_malformed_htlc) => HTLCForwardInfo::FailMalformedHTLC {
5098 htlc_id: fail_malformed_htlc.htlc_id,
5099 sha256_of_onion: fail_malformed_htlc.sha256_of_onion,
5100 failure_code: fail_malformed_htlc.failure_code,
5103 self.forward_htlcs.lock().unwrap().entry(incoming_scid).or_insert(vec![]).push(failure);
5104 self.pending_events.lock().unwrap().push_back((events::Event::HTLCHandlingFailed {
5105 prev_channel_id: incoming_channel_id,
5106 failed_next_destination: htlc_destination,
5112 /// Processes HTLCs which are pending waiting on random forward delay.
5114 /// Should only really ever be called in response to a PendingHTLCsForwardable event.
5115 /// Will likely generate further events.
5116 pub fn process_pending_htlc_forwards(&self) {
5117 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
5119 self.process_pending_update_add_htlcs();
5121 let mut new_events = VecDeque::new();
5122 let mut failed_forwards = Vec::new();
5123 let mut phantom_receives: Vec<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)> = Vec::new();
5125 let mut forward_htlcs = new_hash_map();
5126 mem::swap(&mut forward_htlcs, &mut self.forward_htlcs.lock().unwrap());
5128 for (short_chan_id, mut pending_forwards) in forward_htlcs {
5129 if short_chan_id != 0 {
5130 let mut forwarding_counterparty = None;
5131 macro_rules! forwarding_channel_not_found {
5133 for forward_info in pending_forwards.drain(..) {
5134 match forward_info {
5135 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5136 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5137 prev_user_channel_id, forward_info: PendingHTLCInfo {
5138 routing, incoming_shared_secret, payment_hash, outgoing_amt_msat,
5139 outgoing_cltv_value, ..
5142 macro_rules! failure_handler {
5143 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr, $next_hop_unknown: expr) => {
5144 let logger = WithContext::from(&self.logger, forwarding_counterparty, Some(prev_channel_id));
5145 log_info!(logger, "Failed to accept/forward incoming HTLC: {}", $msg);
5147 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5148 short_channel_id: prev_short_channel_id,
5149 user_channel_id: Some(prev_user_channel_id),
5150 channel_id: prev_channel_id,
5151 outpoint: prev_funding_outpoint,
5152 htlc_id: prev_htlc_id,
5153 incoming_packet_shared_secret: incoming_shared_secret,
5154 phantom_shared_secret: $phantom_ss,
5155 blinded_failure: routing.blinded_failure(),
5158 let reason = if $next_hop_unknown {
5159 HTLCDestination::UnknownNextHop { requested_forward_scid: short_chan_id }
5161 HTLCDestination::FailedPayment{ payment_hash }
5164 failed_forwards.push((htlc_source, payment_hash,
5165 HTLCFailReason::reason($err_code, $err_data),
5171 macro_rules! fail_forward {
5172 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5174 failure_handler!($msg, $err_code, $err_data, $phantom_ss, true);
5178 macro_rules! failed_payment {
5179 ($msg: expr, $err_code: expr, $err_data: expr, $phantom_ss: expr) => {
5181 failure_handler!($msg, $err_code, $err_data, $phantom_ss, false);
5185 if let PendingHTLCRouting::Forward { ref onion_packet, .. } = routing {
5186 let phantom_pubkey_res = self.node_signer.get_node_id(Recipient::PhantomNode);
5187 if phantom_pubkey_res.is_ok() && fake_scid::is_valid_phantom(&self.fake_scid_rand_bytes, short_chan_id, &self.chain_hash) {
5188 let phantom_shared_secret = self.node_signer.ecdh(Recipient::PhantomNode, &onion_packet.public_key.unwrap(), None).unwrap().secret_bytes();
5189 let next_hop = match onion_utils::decode_next_payment_hop(
5190 phantom_shared_secret, &onion_packet.hop_data, onion_packet.hmac,
5191 payment_hash, None, &self.node_signer
5194 Err(onion_utils::OnionDecodeErr::Malformed { err_msg, err_code }) => {
5195 let sha256_of_onion = Sha256::hash(&onion_packet.hop_data).to_byte_array();
5196 // In this scenario, the phantom would have sent us an
5197 // `update_fail_malformed_htlc`, meaning here we encrypt the error as
5198 // if it came from us (the second-to-last hop) but contains the sha256
5200 failed_payment!(err_msg, err_code, sha256_of_onion.to_vec(), None);
5202 Err(onion_utils::OnionDecodeErr::Relay { err_msg, err_code }) => {
5203 failed_payment!(err_msg, err_code, Vec::new(), Some(phantom_shared_secret));
5207 onion_utils::Hop::Receive(hop_data) => {
5208 let current_height: u32 = self.best_block.read().unwrap().height;
5209 match create_recv_pending_htlc_info(hop_data,
5210 incoming_shared_secret, payment_hash, outgoing_amt_msat,
5211 outgoing_cltv_value, Some(phantom_shared_secret), false, None,
5212 current_height, self.default_configuration.accept_mpp_keysend)
5214 Ok(info) => phantom_receives.push((prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, vec![(info, prev_htlc_id)])),
5215 Err(InboundHTLCErr { err_code, err_data, msg }) => failed_payment!(msg, err_code, err_data, Some(phantom_shared_secret))
5221 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5224 fail_forward!(format!("Unknown short channel id {} for forward HTLC", short_chan_id), 0x4000 | 10, Vec::new(), None);
5227 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5228 // Channel went away before we could fail it. This implies
5229 // the channel is now on chain and our counterparty is
5230 // trying to broadcast the HTLC-Timeout, but that's their
5231 // problem, not ours.
5237 let chan_info_opt = self.short_to_chan_info.read().unwrap().get(&short_chan_id).cloned();
5238 let (counterparty_node_id, forward_chan_id) = match chan_info_opt {
5239 Some((cp_id, chan_id)) => (cp_id, chan_id),
5241 forwarding_channel_not_found!();
5245 forwarding_counterparty = Some(counterparty_node_id);
5246 let per_peer_state = self.per_peer_state.read().unwrap();
5247 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
5248 if peer_state_mutex_opt.is_none() {
5249 forwarding_channel_not_found!();
5252 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
5253 let peer_state = &mut *peer_state_lock;
5254 if let Some(ChannelPhase::Funded(ref mut chan)) = peer_state.channel_by_id.get_mut(&forward_chan_id) {
5255 let logger = WithChannelContext::from(&self.logger, &chan.context);
5256 for forward_info in pending_forwards.drain(..) {
5257 let queue_fail_htlc_res = match forward_info {
5258 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5259 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5260 prev_user_channel_id, forward_info: PendingHTLCInfo {
5261 incoming_shared_secret, payment_hash, outgoing_amt_msat, outgoing_cltv_value,
5262 routing: PendingHTLCRouting::Forward {
5263 onion_packet, blinded, ..
5264 }, skimmed_fee_msat, ..
5267 log_trace!(logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", prev_short_channel_id, &payment_hash, short_chan_id);
5268 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
5269 short_channel_id: prev_short_channel_id,
5270 user_channel_id: Some(prev_user_channel_id),
5271 channel_id: prev_channel_id,
5272 outpoint: prev_funding_outpoint,
5273 htlc_id: prev_htlc_id,
5274 incoming_packet_shared_secret: incoming_shared_secret,
5275 // Phantom payments are only PendingHTLCRouting::Receive.
5276 phantom_shared_secret: None,
5277 blinded_failure: blinded.map(|b| b.failure),
5279 let next_blinding_point = blinded.and_then(|b| {
5280 let encrypted_tlvs_ss = self.node_signer.ecdh(
5281 Recipient::Node, &b.inbound_blinding_point, None
5282 ).unwrap().secret_bytes();
5283 onion_utils::next_hop_pubkey(
5284 &self.secp_ctx, b.inbound_blinding_point, &encrypted_tlvs_ss
5287 if let Err(e) = chan.queue_add_htlc(outgoing_amt_msat,
5288 payment_hash, outgoing_cltv_value, htlc_source.clone(),
5289 onion_packet, skimmed_fee_msat, next_blinding_point, &self.fee_estimator,
5292 if let ChannelError::Ignore(msg) = e {
5293 log_trace!(logger, "Failed to forward HTLC with payment_hash {}: {}", &payment_hash, msg);
5295 panic!("Stated return value requirements in send_htlc() were not met");
5297 let (failure_code, data) = self.get_htlc_temp_fail_err_and_data(0x1000|7, short_chan_id, chan);
5298 failed_forwards.push((htlc_source, payment_hash,
5299 HTLCFailReason::reason(failure_code, data),
5300 HTLCDestination::NextHopChannel { node_id: Some(chan.context.get_counterparty_node_id()), channel_id: forward_chan_id }
5306 HTLCForwardInfo::AddHTLC { .. } => {
5307 panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
5309 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
5310 log_trace!(logger, "Failing HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5311 Some((chan.queue_fail_htlc(htlc_id, err_packet, &&logger), htlc_id))
5313 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
5314 log_trace!(logger, "Failing malformed HTLC back to channel with short id {} (backward HTLC ID {}) after delay", short_chan_id, htlc_id);
5315 let res = chan.queue_fail_malformed_htlc(
5316 htlc_id, failure_code, sha256_of_onion, &&logger
5318 Some((res, htlc_id))
5321 if let Some((queue_fail_htlc_res, htlc_id)) = queue_fail_htlc_res {
5322 if let Err(e) = queue_fail_htlc_res {
5323 if let ChannelError::Ignore(msg) = e {
5324 log_trace!(logger, "Failed to fail HTLC with ID {} backwards to short_id {}: {}", htlc_id, short_chan_id, msg);
5326 panic!("Stated return value requirements in queue_fail_{{malformed_}}htlc() were not met");
5328 // fail-backs are best-effort, we probably already have one
5329 // pending, and if not that's OK, if not, the channel is on
5330 // the chain and sending the HTLC-Timeout is their problem.
5336 forwarding_channel_not_found!();
5340 'next_forwardable_htlc: for forward_info in pending_forwards.drain(..) {
5341 match forward_info {
5342 HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
5343 prev_short_channel_id, prev_htlc_id, prev_channel_id, prev_funding_outpoint,
5344 prev_user_channel_id, forward_info: PendingHTLCInfo {
5345 routing, incoming_shared_secret, payment_hash, incoming_amt_msat, outgoing_amt_msat,
5346 skimmed_fee_msat, ..
5349 let blinded_failure = routing.blinded_failure();
5350 let (cltv_expiry, onion_payload, payment_data, phantom_shared_secret, mut onion_fields) = match routing {
5351 PendingHTLCRouting::Receive {
5352 payment_data, payment_metadata, payment_context,
5353 incoming_cltv_expiry, phantom_shared_secret, custom_tlvs,
5354 requires_blinded_error: _
5356 let _legacy_hop_data = Some(payment_data.clone());
5357 let onion_fields = RecipientOnionFields { payment_secret: Some(payment_data.payment_secret),
5358 payment_metadata, custom_tlvs };
5359 (incoming_cltv_expiry, OnionPayload::Invoice { _legacy_hop_data, payment_context },
5360 Some(payment_data), phantom_shared_secret, onion_fields)
5362 PendingHTLCRouting::ReceiveKeysend {
5363 payment_data, payment_preimage, payment_metadata,
5364 incoming_cltv_expiry, custom_tlvs, requires_blinded_error: _
5366 let onion_fields = RecipientOnionFields {
5367 payment_secret: payment_data.as_ref().map(|data| data.payment_secret),
5371 (incoming_cltv_expiry, OnionPayload::Spontaneous(payment_preimage),
5372 payment_data, None, onion_fields)
5375 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
5378 let claimable_htlc = ClaimableHTLC {
5379 prev_hop: HTLCPreviousHopData {
5380 short_channel_id: prev_short_channel_id,
5381 user_channel_id: Some(prev_user_channel_id),
5382 channel_id: prev_channel_id,
5383 outpoint: prev_funding_outpoint,
5384 htlc_id: prev_htlc_id,
5385 incoming_packet_shared_secret: incoming_shared_secret,
5386 phantom_shared_secret,
5389 // We differentiate the received value from the sender intended value
5390 // if possible so that we don't prematurely mark MPP payments complete
5391 // if routing nodes overpay
5392 value: incoming_amt_msat.unwrap_or(outgoing_amt_msat),
5393 sender_intended_value: outgoing_amt_msat,
5395 total_value_received: None,
5396 total_msat: if let Some(data) = &payment_data { data.total_msat } else { outgoing_amt_msat },
5399 counterparty_skimmed_fee_msat: skimmed_fee_msat,
5402 let mut committed_to_claimable = false;
5404 macro_rules! fail_htlc {
5405 ($htlc: expr, $payment_hash: expr) => {
5406 debug_assert!(!committed_to_claimable);
5407 let mut htlc_msat_height_data = $htlc.value.to_be_bytes().to_vec();
5408 htlc_msat_height_data.extend_from_slice(
5409 &self.best_block.read().unwrap().height.to_be_bytes(),
5411 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
5412 short_channel_id: $htlc.prev_hop.short_channel_id,
5413 user_channel_id: $htlc.prev_hop.user_channel_id,
5414 channel_id: prev_channel_id,
5415 outpoint: prev_funding_outpoint,
5416 htlc_id: $htlc.prev_hop.htlc_id,
5417 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
5418 phantom_shared_secret,
5421 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
5422 HTLCDestination::FailedPayment { payment_hash: $payment_hash },
5424 continue 'next_forwardable_htlc;
5427 let phantom_shared_secret = claimable_htlc.prev_hop.phantom_shared_secret;
5428 let mut receiver_node_id = self.our_network_pubkey;
5429 if phantom_shared_secret.is_some() {
5430 receiver_node_id = self.node_signer.get_node_id(Recipient::PhantomNode)
5431 .expect("Failed to get node_id for phantom node recipient");
5434 macro_rules! check_total_value {
5435 ($purpose: expr) => {{
5436 let mut payment_claimable_generated = false;
5437 let is_keysend = $purpose.is_keysend();
5438 let mut claimable_payments = self.claimable_payments.lock().unwrap();
5439 if claimable_payments.pending_claiming_payments.contains_key(&payment_hash) {
5440 fail_htlc!(claimable_htlc, payment_hash);
5442 let ref mut claimable_payment = claimable_payments.claimable_payments
5443 .entry(payment_hash)
5444 // Note that if we insert here we MUST NOT fail_htlc!()
5445 .or_insert_with(|| {
5446 committed_to_claimable = true;
5448 purpose: $purpose.clone(), htlcs: Vec::new(), onion_fields: None,
5451 if $purpose != claimable_payment.purpose {
5452 let log_keysend = |keysend| if keysend { "keysend" } else { "non-keysend" };
5453 log_trace!(self.logger, "Failing new {} HTLC with payment_hash {} as we already had an existing {} HTLC with the same payment hash", log_keysend(is_keysend), &payment_hash, log_keysend(!is_keysend));
5454 fail_htlc!(claimable_htlc, payment_hash);
5456 if !self.default_configuration.accept_mpp_keysend && is_keysend && !claimable_payment.htlcs.is_empty() {
5457 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} as we already had an existing keysend HTLC with the same payment hash and our config states we don't accept MPP keysend", &payment_hash);
5458 fail_htlc!(claimable_htlc, payment_hash);
5460 if let Some(earlier_fields) = &mut claimable_payment.onion_fields {
5461 if earlier_fields.check_merge(&mut onion_fields).is_err() {
5462 fail_htlc!(claimable_htlc, payment_hash);
5465 claimable_payment.onion_fields = Some(onion_fields);
5467 let ref mut htlcs = &mut claimable_payment.htlcs;
5468 let mut total_value = claimable_htlc.sender_intended_value;
5469 let mut earliest_expiry = claimable_htlc.cltv_expiry;
5470 for htlc in htlcs.iter() {
5471 total_value += htlc.sender_intended_value;
5472 earliest_expiry = cmp::min(earliest_expiry, htlc.cltv_expiry);
5473 if htlc.total_msat != claimable_htlc.total_msat {
5474 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
5475 &payment_hash, claimable_htlc.total_msat, htlc.total_msat);
5476 total_value = msgs::MAX_VALUE_MSAT;
5478 if total_value >= msgs::MAX_VALUE_MSAT { break; }
5480 // The condition determining whether an MPP is complete must
5481 // match exactly the condition used in `timer_tick_occurred`
5482 if total_value >= msgs::MAX_VALUE_MSAT {
5483 fail_htlc!(claimable_htlc, payment_hash);
5484 } else if total_value - claimable_htlc.sender_intended_value >= claimable_htlc.total_msat {
5485 log_trace!(self.logger, "Failing HTLC with payment_hash {} as payment is already claimable",
5487 fail_htlc!(claimable_htlc, payment_hash);
5488 } else if total_value >= claimable_htlc.total_msat {
5489 #[allow(unused_assignments)] {
5490 committed_to_claimable = true;
5492 htlcs.push(claimable_htlc);
5493 let amount_msat = htlcs.iter().map(|htlc| htlc.value).sum();
5494 htlcs.iter_mut().for_each(|htlc| htlc.total_value_received = Some(amount_msat));
5495 let counterparty_skimmed_fee_msat = htlcs.iter()
5496 .map(|htlc| htlc.counterparty_skimmed_fee_msat.unwrap_or(0)).sum();
5497 debug_assert!(total_value.saturating_sub(amount_msat) <=
5498 counterparty_skimmed_fee_msat);
5499 new_events.push_back((events::Event::PaymentClaimable {
5500 receiver_node_id: Some(receiver_node_id),
5504 counterparty_skimmed_fee_msat,
5505 via_channel_id: Some(prev_channel_id),
5506 via_user_channel_id: Some(prev_user_channel_id),
5507 claim_deadline: Some(earliest_expiry - HTLC_FAIL_BACK_BUFFER),
5508 onion_fields: claimable_payment.onion_fields.clone(),
5510 payment_claimable_generated = true;
5512 // Nothing to do - we haven't reached the total
5513 // payment value yet, wait until we receive more
5515 htlcs.push(claimable_htlc);
5516 #[allow(unused_assignments)] {
5517 committed_to_claimable = true;
5520 payment_claimable_generated
5524 // Check that the payment hash and secret are known. Note that we
5525 // MUST take care to handle the "unknown payment hash" and
5526 // "incorrect payment secret" cases here identically or we'd expose
5527 // that we are the ultimate recipient of the given payment hash.
5528 // Further, we must not expose whether we have any other HTLCs
5529 // associated with the same payment_hash pending or not.
5530 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
5531 match payment_secrets.entry(payment_hash) {
5532 hash_map::Entry::Vacant(_) => {
5533 match claimable_htlc.onion_payload {
5534 OnionPayload::Invoice { ref payment_context, .. } => {
5535 let payment_data = payment_data.unwrap();
5536 let (payment_preimage, min_final_cltv_expiry_delta) = match inbound_payment::verify(payment_hash, &payment_data, self.highest_seen_timestamp.load(Ordering::Acquire) as u64, &self.inbound_payment_key, &self.logger) {
5537 Ok(result) => result,
5539 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as payment verification failed", &payment_hash);
5540 fail_htlc!(claimable_htlc, payment_hash);
5543 if let Some(min_final_cltv_expiry_delta) = min_final_cltv_expiry_delta {
5544 let expected_min_expiry_height = (self.current_best_block().height + min_final_cltv_expiry_delta as u32) as u64;
5545 if (cltv_expiry as u64) < expected_min_expiry_height {
5546 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as its CLTV expiry was too soon (had {}, earliest expected {})",
5547 &payment_hash, cltv_expiry, expected_min_expiry_height);
5548 fail_htlc!(claimable_htlc, payment_hash);
5551 let purpose = events::PaymentPurpose::from_parts(
5552 payment_preimage.clone(),
5553 payment_data.payment_secret,
5554 payment_context.clone(),
5556 check_total_value!(purpose);
5558 OnionPayload::Spontaneous(preimage) => {
5559 let purpose = events::PaymentPurpose::SpontaneousPayment(preimage);
5560 check_total_value!(purpose);
5564 hash_map::Entry::Occupied(inbound_payment) => {
5565 let payment_context = match claimable_htlc.onion_payload {
5566 OnionPayload::Spontaneous(_) => {
5567 log_trace!(self.logger, "Failing new keysend HTLC with payment_hash {} because we already have an inbound payment with the same payment hash", &payment_hash);
5568 fail_htlc!(claimable_htlc, payment_hash);
5570 OnionPayload::Invoice { ref payment_context, .. } => payment_context,
5572 let payment_data = payment_data.unwrap();
5573 if inbound_payment.get().payment_secret != payment_data.payment_secret {
5574 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", &payment_hash);
5575 fail_htlc!(claimable_htlc, payment_hash);
5576 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
5577 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
5578 &payment_hash, payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
5579 fail_htlc!(claimable_htlc, payment_hash);
5581 let purpose = events::PaymentPurpose::from_parts(
5582 inbound_payment.get().payment_preimage,
5583 payment_data.payment_secret,
5584 payment_context.clone(),
5586 let payment_claimable_generated = check_total_value!(purpose);
5587 if payment_claimable_generated {
5588 inbound_payment.remove_entry();
5594 HTLCForwardInfo::FailHTLC { .. } | HTLCForwardInfo::FailMalformedHTLC { .. } => {
5595 panic!("Got pending fail of our own HTLC");
5603 let best_block_height = self.best_block.read().unwrap().height;
5604 self.pending_outbound_payments.check_retry_payments(&self.router, || self.list_usable_channels(),
5605 || self.compute_inflight_htlcs(), &self.entropy_source, &self.node_signer, best_block_height,
5606 &self.pending_events, &self.logger, |args| self.send_payment_along_path(args));
5608 for (htlc_source, payment_hash, failure_reason, destination) in failed_forwards.drain(..) {
5609 self.fail_htlc_backwards_internal(&htlc_source, &payment_hash, &failure_reason, destination);
5611 self.forward_htlcs(&mut phantom_receives);
5613 // Freeing the holding cell here is relatively redundant - in practice we'll do it when we
5614 // next get a `get_and_clear_pending_msg_events` call, but some tests rely on it, and it's
5615 // nice to do the work now if we can rather than while we're trying to get messages in the
5617 self.check_free_holding_cells();
5619 if new_events.is_empty() { return }
5620 let mut events = self.pending_events.lock().unwrap();
5621 events.append(&mut new_events);
5624 /// Free the background events, generally called from [`PersistenceNotifierGuard`] constructors.
5626 /// Expects the caller to have a total_consistency_lock read lock.
5627 fn process_background_events(&self) -> NotifyOption {
5628 debug_assert_ne!(self.total_consistency_lock.held_by_thread(), LockHeldState::NotHeldByThread);
5630 self.background_events_processed_since_startup.store(true, Ordering::Release);
5632 let mut background_events = Vec::new();
5633 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
5634 if background_events.is_empty() {
5635 return NotifyOption::SkipPersistNoEvents;
5638 for event in background_events.drain(..) {
5640 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((funding_txo, _channel_id, update)) => {
5641 // The channel has already been closed, so no use bothering to care about the
5642 // monitor updating completing.
5643 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5645 BackgroundEvent::MonitorUpdateRegeneratedOnStartup { counterparty_node_id, funding_txo, channel_id, update } => {
5646 let mut updated_chan = false;
5648 let per_peer_state = self.per_peer_state.read().unwrap();
5649 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5650 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5651 let peer_state = &mut *peer_state_lock;
5652 match peer_state.channel_by_id.entry(channel_id) {
5653 hash_map::Entry::Occupied(mut chan_phase) => {
5654 if let ChannelPhase::Funded(chan) = chan_phase.get_mut() {
5655 updated_chan = true;
5656 handle_new_monitor_update!(self, funding_txo, update.clone(),
5657 peer_state_lock, peer_state, per_peer_state, chan);
5659 debug_assert!(false, "We shouldn't have an update for a non-funded channel");
5662 hash_map::Entry::Vacant(_) => {},
5667 // TODO: Track this as in-flight even though the channel is closed.
5668 let _ = self.chain_monitor.update_channel(funding_txo, &update);
5671 BackgroundEvent::MonitorUpdatesComplete { counterparty_node_id, channel_id } => {
5672 let per_peer_state = self.per_peer_state.read().unwrap();
5673 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
5674 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5675 let peer_state = &mut *peer_state_lock;
5676 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(&channel_id) {
5677 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, chan);
5679 let update_actions = peer_state.monitor_update_blocked_actions
5680 .remove(&channel_id).unwrap_or(Vec::new());
5681 mem::drop(peer_state_lock);
5682 mem::drop(per_peer_state);
5683 self.handle_monitor_update_completion_actions(update_actions);
5689 NotifyOption::DoPersist
5692 #[cfg(any(test, feature = "_test_utils"))]
5693 /// Process background events, for functional testing
5694 pub fn test_process_background_events(&self) {
5695 let _lck = self.total_consistency_lock.read().unwrap();
5696 let _ = self.process_background_events();
5699 fn update_channel_fee(&self, chan_id: &ChannelId, chan: &mut Channel<SP>, new_feerate: u32) -> NotifyOption {
5700 if !chan.context.is_outbound() { return NotifyOption::SkipPersistNoEvents; }
5702 let logger = WithChannelContext::from(&self.logger, &chan.context);
5704 // If the feerate has decreased by less than half, don't bother
5705 if new_feerate <= chan.context.get_feerate_sat_per_1000_weight() && new_feerate * 2 > chan.context.get_feerate_sat_per_1000_weight() {
5706 return NotifyOption::SkipPersistNoEvents;
5708 if !chan.context.is_live() {
5709 log_trace!(logger, "Channel {} does not qualify for a feerate change from {} to {} as it cannot currently be updated (probably the peer is disconnected).",
5710 chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5711 return NotifyOption::SkipPersistNoEvents;
5713 log_trace!(logger, "Channel {} qualifies for a feerate change from {} to {}.",
5714 &chan_id, chan.context.get_feerate_sat_per_1000_weight(), new_feerate);
5716 chan.queue_update_fee(new_feerate, &self.fee_estimator, &&logger);
5717 NotifyOption::DoPersist
5721 /// In chanmon_consistency we want to sometimes do the channel fee updates done in
5722 /// timer_tick_occurred, but we can't generate the disabled channel updates as it considers
5723 /// these a fuzz failure (as they usually indicate a channel force-close, which is exactly what
5724 /// it wants to detect). Thus, we have a variant exposed here for its benefit.
5725 pub fn maybe_update_chan_fees(&self) {
5726 PersistenceNotifierGuard::optionally_notify(self, || {
5727 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5729 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5730 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5732 let per_peer_state = self.per_peer_state.read().unwrap();
5733 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
5734 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5735 let peer_state = &mut *peer_state_lock;
5736 for (chan_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
5737 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
5739 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5744 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5745 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5753 /// Performs actions which should happen on startup and roughly once per minute thereafter.
5755 /// This currently includes:
5756 /// * Increasing or decreasing the on-chain feerate estimates for our outbound channels,
5757 /// * Broadcasting [`ChannelUpdate`] messages if we've been disconnected from our peer for more
5758 /// than a minute, informing the network that they should no longer attempt to route over
5760 /// * Expiring a channel's previous [`ChannelConfig`] if necessary to only allow forwarding HTLCs
5761 /// with the current [`ChannelConfig`].
5762 /// * Removing peers which have disconnected but and no longer have any channels.
5763 /// * Force-closing and removing channels which have not completed establishment in a timely manner.
5764 /// * Forgetting about stale outbound payments, either those that have already been fulfilled
5765 /// or those awaiting an invoice that hasn't been delivered in the necessary amount of time.
5766 /// The latter is determined using the system clock in `std` and the highest seen block time
5767 /// minus two hours in `no-std`.
5769 /// Note that this may cause reentrancy through [`chain::Watch::update_channel`] calls or feerate
5770 /// estimate fetches.
5772 /// [`ChannelUpdate`]: msgs::ChannelUpdate
5773 /// [`ChannelConfig`]: crate::util::config::ChannelConfig
5774 pub fn timer_tick_occurred(&self) {
5775 PersistenceNotifierGuard::optionally_notify(self, || {
5776 let mut should_persist = NotifyOption::SkipPersistNoEvents;
5778 let non_anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::NonAnchorChannelFee);
5779 let anchor_feerate = self.fee_estimator.bounded_sat_per_1000_weight(ConfirmationTarget::AnchorChannelFee);
5781 let mut handle_errors: Vec<(Result<(), _>, _)> = Vec::new();
5782 let mut timed_out_mpp_htlcs = Vec::new();
5783 let mut pending_peers_awaiting_removal = Vec::new();
5784 let mut shutdown_channels = Vec::new();
5786 let mut process_unfunded_channel_tick = |
5787 chan_id: &ChannelId,
5788 context: &mut ChannelContext<SP>,
5789 unfunded_context: &mut UnfundedChannelContext,
5790 pending_msg_events: &mut Vec<MessageSendEvent>,
5791 counterparty_node_id: PublicKey,
5793 context.maybe_expire_prev_config();
5794 if unfunded_context.should_expire_unfunded_channel() {
5795 let logger = WithChannelContext::from(&self.logger, context);
5797 "Force-closing pending channel with ID {} for not establishing in a timely manner", chan_id);
5798 update_maps_on_chan_removal!(self, &context);
5799 shutdown_channels.push(context.force_shutdown(false, ClosureReason::HolderForceClosed));
5800 pending_msg_events.push(MessageSendEvent::HandleError {
5801 node_id: counterparty_node_id,
5802 action: msgs::ErrorAction::SendErrorMessage {
5803 msg: msgs::ErrorMessage {
5804 channel_id: *chan_id,
5805 data: "Force-closing pending channel due to timeout awaiting establishment handshake".to_owned(),
5816 let per_peer_state = self.per_peer_state.read().unwrap();
5817 for (counterparty_node_id, peer_state_mutex) in per_peer_state.iter() {
5818 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
5819 let peer_state = &mut *peer_state_lock;
5820 let pending_msg_events = &mut peer_state.pending_msg_events;
5821 let counterparty_node_id = *counterparty_node_id;
5822 peer_state.channel_by_id.retain(|chan_id, phase| {
5824 ChannelPhase::Funded(chan) => {
5825 let new_feerate = if chan.context.get_channel_type().supports_anchors_zero_fee_htlc_tx() {
5830 let chan_needs_persist = self.update_channel_fee(chan_id, chan, new_feerate);
5831 if chan_needs_persist == NotifyOption::DoPersist { should_persist = NotifyOption::DoPersist; }
5833 if let Err(e) = chan.timer_check_closing_negotiation_progress() {
5834 let (needs_close, err) = convert_chan_phase_err!(self, e, chan, chan_id, FUNDED_CHANNEL);
5835 handle_errors.push((Err(err), counterparty_node_id));
5836 if needs_close { return false; }
5839 match chan.channel_update_status() {
5840 ChannelUpdateStatus::Enabled if !chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(0)),
5841 ChannelUpdateStatus::Disabled if chan.context.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(0)),
5842 ChannelUpdateStatus::DisabledStaged(_) if chan.context.is_live()
5843 => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
5844 ChannelUpdateStatus::EnabledStaged(_) if !chan.context.is_live()
5845 => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
5846 ChannelUpdateStatus::DisabledStaged(mut n) if !chan.context.is_live() => {
5848 if n >= DISABLE_GOSSIP_TICKS {
5849 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
5850 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5851 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5852 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5856 should_persist = NotifyOption::DoPersist;
5858 chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged(n));
5861 ChannelUpdateStatus::EnabledStaged(mut n) if chan.context.is_live() => {
5863 if n >= ENABLE_GOSSIP_TICKS {
5864 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
5865 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
5866 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
5867 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
5871 should_persist = NotifyOption::DoPersist;
5873 chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged(n));
5879 chan.context.maybe_expire_prev_config();
5881 if chan.should_disconnect_peer_awaiting_response() {
5882 let logger = WithChannelContext::from(&self.logger, &chan.context);
5883 log_debug!(logger, "Disconnecting peer {} due to not making any progress on channel {}",
5884 counterparty_node_id, chan_id);
5885 pending_msg_events.push(MessageSendEvent::HandleError {
5886 node_id: counterparty_node_id,
5887 action: msgs::ErrorAction::DisconnectPeerWithWarning {
5888 msg: msgs::WarningMessage {
5889 channel_id: *chan_id,
5890 data: "Disconnecting due to timeout awaiting response".to_owned(),
5898 ChannelPhase::UnfundedInboundV1(chan) => {
5899 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5900 pending_msg_events, counterparty_node_id)
5902 ChannelPhase::UnfundedOutboundV1(chan) => {
5903 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5904 pending_msg_events, counterparty_node_id)
5906 #[cfg(any(dual_funding, splicing))]
5907 ChannelPhase::UnfundedInboundV2(chan) => {
5908 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5909 pending_msg_events, counterparty_node_id)
5911 #[cfg(any(dual_funding, splicing))]
5912 ChannelPhase::UnfundedOutboundV2(chan) => {
5913 process_unfunded_channel_tick(chan_id, &mut chan.context, &mut chan.unfunded_context,
5914 pending_msg_events, counterparty_node_id)
5919 for (chan_id, req) in peer_state.inbound_channel_request_by_id.iter_mut() {
5920 if { req.ticks_remaining -= 1 ; req.ticks_remaining } <= 0 {
5921 let logger = WithContext::from(&self.logger, Some(counterparty_node_id), Some(*chan_id));
5922 log_error!(logger, "Force-closing unaccepted inbound channel {} for not accepting in a timely manner", &chan_id);
5923 peer_state.pending_msg_events.push(
5924 events::MessageSendEvent::HandleError {
5925 node_id: counterparty_node_id,
5926 action: msgs::ErrorAction::SendErrorMessage {
5927 msg: msgs::ErrorMessage { channel_id: chan_id.clone(), data: "Channel force-closed".to_owned() }
5933 peer_state.inbound_channel_request_by_id.retain(|_, req| req.ticks_remaining > 0);
5935 if peer_state.ok_to_remove(true) {
5936 pending_peers_awaiting_removal.push(counterparty_node_id);
5941 // When a peer disconnects but still has channels, the peer's `peer_state` entry in the
5942 // `per_peer_state` is not removed by the `peer_disconnected` function. If the channels
5943 // of to that peer is later closed while still being disconnected (i.e. force closed),
5944 // we therefore need to remove the peer from `peer_state` separately.
5945 // To avoid having to take the `per_peer_state` `write` lock once the channels are
5946 // closed, we instead remove such peers awaiting removal here on a timer, to limit the
5947 // negative effects on parallelism as much as possible.
5948 if pending_peers_awaiting_removal.len() > 0 {
5949 let mut per_peer_state = self.per_peer_state.write().unwrap();
5950 for counterparty_node_id in pending_peers_awaiting_removal {
5951 match per_peer_state.entry(counterparty_node_id) {
5952 hash_map::Entry::Occupied(entry) => {
5953 // Remove the entry if the peer is still disconnected and we still
5954 // have no channels to the peer.
5955 let remove_entry = {
5956 let peer_state = entry.get().lock().unwrap();
5957 peer_state.ok_to_remove(true)
5960 entry.remove_entry();
5963 hash_map::Entry::Vacant(_) => { /* The PeerState has already been removed */ }
5968 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
5969 if payment.htlcs.is_empty() {
5970 // This should be unreachable
5971 debug_assert!(false);
5974 if let OnionPayload::Invoice { .. } = payment.htlcs[0].onion_payload {
5975 // Check if we've received all the parts we need for an MPP (the value of the parts adds to total_msat).
5976 // In this case we're not going to handle any timeouts of the parts here.
5977 // This condition determining whether the MPP is complete here must match
5978 // exactly the condition used in `process_pending_htlc_forwards`.
5979 if payment.htlcs[0].total_msat <= payment.htlcs.iter()
5980 .fold(0, |total, htlc| total + htlc.sender_intended_value)
5983 } else if payment.htlcs.iter_mut().any(|htlc| {
5984 htlc.timer_ticks += 1;
5985 return htlc.timer_ticks >= MPP_TIMEOUT_TICKS
5987 timed_out_mpp_htlcs.extend(payment.htlcs.drain(..)
5988 .map(|htlc: ClaimableHTLC| (htlc.prev_hop, *payment_hash)));
5995 for htlc_source in timed_out_mpp_htlcs.drain(..) {
5996 let source = HTLCSource::PreviousHopData(htlc_source.0.clone());
5997 let reason = HTLCFailReason::from_failure_code(23);
5998 let receiver = HTLCDestination::FailedPayment { payment_hash: htlc_source.1 };
5999 self.fail_htlc_backwards_internal(&source, &htlc_source.1, &reason, receiver);
6002 for (err, counterparty_node_id) in handle_errors.drain(..) {
6003 let _ = handle_error!(self, err, counterparty_node_id);
6006 for shutdown_res in shutdown_channels {
6007 self.finish_close_channel(shutdown_res);
6010 #[cfg(feature = "std")]
6011 let duration_since_epoch = std::time::SystemTime::now()
6012 .duration_since(std::time::SystemTime::UNIX_EPOCH)
6013 .expect("SystemTime::now() should come after SystemTime::UNIX_EPOCH");
6014 #[cfg(not(feature = "std"))]
6015 let duration_since_epoch = Duration::from_secs(
6016 self.highest_seen_timestamp.load(Ordering::Acquire).saturating_sub(7200) as u64
6019 self.pending_outbound_payments.remove_stale_payments(
6020 duration_since_epoch, &self.pending_events
6023 // Technically we don't need to do this here, but if we have holding cell entries in a
6024 // channel that need freeing, it's better to do that here and block a background task
6025 // than block the message queueing pipeline.
6026 if self.check_free_holding_cells() {
6027 should_persist = NotifyOption::DoPersist;
6034 /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
6035 /// after a PaymentClaimable event, failing the HTLC back to its origin and freeing resources
6036 /// along the path (including in our own channel on which we received it).
6038 /// Note that in some cases around unclean shutdown, it is possible the payment may have
6039 /// already been claimed by you via [`ChannelManager::claim_funds`] prior to you seeing (a
6040 /// second copy of) the [`events::Event::PaymentClaimable`] event. Alternatively, the payment
6041 /// may have already been failed automatically by LDK if it was nearing its expiration time.
6043 /// While LDK will never claim a payment automatically on your behalf (i.e. without you calling
6044 /// [`ChannelManager::claim_funds`]), you should still monitor for
6045 /// [`events::Event::PaymentClaimed`] events even for payments you intend to fail, especially on
6046 /// startup during which time claims that were in-progress at shutdown may be replayed.
6047 pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) {
6048 self.fail_htlc_backwards_with_reason(payment_hash, FailureCode::IncorrectOrUnknownPaymentDetails);
6051 /// This is a variant of [`ChannelManager::fail_htlc_backwards`] that allows you to specify the
6052 /// reason for the failure.
6054 /// See [`FailureCode`] for valid failure codes.
6055 pub fn fail_htlc_backwards_with_reason(&self, payment_hash: &PaymentHash, failure_code: FailureCode) {
6056 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6058 let removed_source = self.claimable_payments.lock().unwrap().claimable_payments.remove(payment_hash);
6059 if let Some(payment) = removed_source {
6060 for htlc in payment.htlcs {
6061 let reason = self.get_htlc_fail_reason_from_failure_code(failure_code, &htlc);
6062 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6063 let receiver = HTLCDestination::FailedPayment { payment_hash: *payment_hash };
6064 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6069 /// Gets error data to form an [`HTLCFailReason`] given a [`FailureCode`] and [`ClaimableHTLC`].
6070 fn get_htlc_fail_reason_from_failure_code(&self, failure_code: FailureCode, htlc: &ClaimableHTLC) -> HTLCFailReason {
6071 match failure_code {
6072 FailureCode::TemporaryNodeFailure => HTLCFailReason::from_failure_code(failure_code.into()),
6073 FailureCode::RequiredNodeFeatureMissing => HTLCFailReason::from_failure_code(failure_code.into()),
6074 FailureCode::IncorrectOrUnknownPaymentDetails => {
6075 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6076 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6077 HTLCFailReason::reason(failure_code.into(), htlc_msat_height_data)
6079 FailureCode::InvalidOnionPayload(data) => {
6080 let fail_data = match data {
6081 Some((typ, offset)) => [BigSize(typ).encode(), offset.encode()].concat(),
6084 HTLCFailReason::reason(failure_code.into(), fail_data)
6089 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6090 /// that we want to return and a channel.
6092 /// This is for failures on the channel on which the HTLC was *received*, not failures
6094 fn get_htlc_inbound_temp_fail_err_and_data(&self, desired_err_code: u16, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6095 // We can't be sure what SCID was used when relaying inbound towards us, so we have to
6096 // guess somewhat. If its a public channel, we figure best to just use the real SCID (as
6097 // we're not leaking that we have a channel with the counterparty), otherwise we try to use
6098 // an inbound SCID alias before the real SCID.
6099 let scid_pref = if chan.context.should_announce() {
6100 chan.context.get_short_channel_id().or(chan.context.latest_inbound_scid_alias())
6102 chan.context.latest_inbound_scid_alias().or(chan.context.get_short_channel_id())
6104 if let Some(scid) = scid_pref {
6105 self.get_htlc_temp_fail_err_and_data(desired_err_code, scid, chan)
6107 (0x4000|10, Vec::new())
6112 /// Gets an HTLC onion failure code and error data for an `UPDATE` error, given the error code
6113 /// that we want to return and a channel.
6114 fn get_htlc_temp_fail_err_and_data(&self, desired_err_code: u16, scid: u64, chan: &Channel<SP>) -> (u16, Vec<u8>) {
6115 debug_assert_eq!(desired_err_code & 0x1000, 0x1000);
6116 if let Ok(upd) = self.get_channel_update_for_onion(scid, chan) {
6117 let mut enc = VecWriter(Vec::with_capacity(upd.serialized_length() + 6));
6118 if desired_err_code == 0x1000 | 20 {
6119 // No flags for `disabled_flags` are currently defined so they're always two zero bytes.
6120 // See https://github.com/lightning/bolts/blob/341ec84/04-onion-routing.md?plain=1#L1008
6121 0u16.write(&mut enc).expect("Writes cannot fail");
6123 (upd.serialized_length() as u16 + 2).write(&mut enc).expect("Writes cannot fail");
6124 msgs::ChannelUpdate::TYPE.write(&mut enc).expect("Writes cannot fail");
6125 upd.write(&mut enc).expect("Writes cannot fail");
6126 (desired_err_code, enc.0)
6128 // If we fail to get a unicast channel_update, it implies we don't yet have an SCID,
6129 // which means we really shouldn't have gotten a payment to be forwarded over this
6130 // channel yet, or if we did it's from a route hint. Either way, returning an error of
6131 // PERM|no_such_channel should be fine.
6132 (0x4000|10, Vec::new())
6136 // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
6137 // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
6138 // be surfaced to the user.
6139 fn fail_holding_cell_htlcs(
6140 &self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: ChannelId,
6141 counterparty_node_id: &PublicKey
6143 let (failure_code, onion_failure_data) = {
6144 let per_peer_state = self.per_peer_state.read().unwrap();
6145 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
6146 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6147 let peer_state = &mut *peer_state_lock;
6148 match peer_state.channel_by_id.entry(channel_id) {
6149 hash_map::Entry::Occupied(chan_phase_entry) => {
6150 if let ChannelPhase::Funded(chan) = chan_phase_entry.get() {
6151 self.get_htlc_inbound_temp_fail_err_and_data(0x1000|7, &chan)
6153 // We shouldn't be trying to fail holding cell HTLCs on an unfunded channel.
6154 debug_assert!(false);
6155 (0x4000|10, Vec::new())
6158 hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
6160 } else { (0x4000|10, Vec::new()) }
6163 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
6164 let reason = HTLCFailReason::reason(failure_code, onion_failure_data.clone());
6165 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id };
6166 self.fail_htlc_backwards_internal(&htlc_src, &payment_hash, &reason, receiver);
6170 fn fail_htlc_backwards_internal(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) {
6171 let push_forward_event = self.fail_htlc_backwards_internal_without_forward_event(source, payment_hash, onion_error, destination);
6172 if push_forward_event { self.push_pending_forwards_ev(); }
6175 /// Fails an HTLC backwards to the sender of it to us.
6176 /// Note that we do not assume that channels corresponding to failed HTLCs are still available.
6177 fn fail_htlc_backwards_internal_without_forward_event(&self, source: &HTLCSource, payment_hash: &PaymentHash, onion_error: &HTLCFailReason, destination: HTLCDestination) -> bool {
6178 // Ensure that no peer state channel storage lock is held when calling this function.
6179 // This ensures that future code doesn't introduce a lock-order requirement for
6180 // `forward_htlcs` to be locked after the `per_peer_state` peer locks, which calling
6181 // this function with any `per_peer_state` peer lock acquired would.
6182 #[cfg(debug_assertions)]
6183 for (_, peer) in self.per_peer_state.read().unwrap().iter() {
6184 debug_assert_ne!(peer.held_by_thread(), LockHeldState::HeldByThread);
6187 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
6188 //identify whether we sent it or not based on the (I presume) very different runtime
6189 //between the branches here. We should make this async and move it into the forward HTLCs
6192 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
6193 // from block_connected which may run during initialization prior to the chain_monitor
6194 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
6195 let mut push_forward_event;
6197 HTLCSource::OutboundRoute { ref path, ref session_priv, ref payment_id, .. } => {
6198 push_forward_event = self.pending_outbound_payments.fail_htlc(source, payment_hash, onion_error, path,
6199 session_priv, payment_id, self.probing_cookie_secret, &self.secp_ctx,
6200 &self.pending_events, &self.logger);
6202 HTLCSource::PreviousHopData(HTLCPreviousHopData {
6203 ref short_channel_id, ref htlc_id, ref incoming_packet_shared_secret,
6204 ref phantom_shared_secret, outpoint: _, ref blinded_failure, ref channel_id, ..
6207 WithContext::from(&self.logger, None, Some(*channel_id)),
6208 "Failing {}HTLC with payment_hash {} backwards from us: {:?}",
6209 if blinded_failure.is_some() { "blinded " } else { "" }, &payment_hash, onion_error
6211 let failure = match blinded_failure {
6212 Some(BlindedFailure::FromIntroductionNode) => {
6213 let blinded_onion_error = HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32]);
6214 let err_packet = blinded_onion_error.get_encrypted_failure_packet(
6215 incoming_packet_shared_secret, phantom_shared_secret
6217 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6219 Some(BlindedFailure::FromBlindedNode) => {
6220 HTLCForwardInfo::FailMalformedHTLC {
6222 failure_code: INVALID_ONION_BLINDING,
6223 sha256_of_onion: [0; 32]
6227 let err_packet = onion_error.get_encrypted_failure_packet(
6228 incoming_packet_shared_secret, phantom_shared_secret
6230 HTLCForwardInfo::FailHTLC { htlc_id: *htlc_id, err_packet }
6234 push_forward_event = self.decode_update_add_htlcs.lock().unwrap().is_empty();
6235 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
6236 push_forward_event &= forward_htlcs.is_empty();
6237 match forward_htlcs.entry(*short_channel_id) {
6238 hash_map::Entry::Occupied(mut entry) => {
6239 entry.get_mut().push(failure);
6241 hash_map::Entry::Vacant(entry) => {
6242 entry.insert(vec!(failure));
6245 mem::drop(forward_htlcs);
6246 let mut pending_events = self.pending_events.lock().unwrap();
6247 pending_events.push_back((events::Event::HTLCHandlingFailed {
6248 prev_channel_id: *channel_id,
6249 failed_next_destination: destination,
6256 /// Provides a payment preimage in response to [`Event::PaymentClaimable`], generating any
6257 /// [`MessageSendEvent`]s needed to claim the payment.
6259 /// This method is guaranteed to ensure the payment has been claimed but only if the current
6260 /// height is strictly below [`Event::PaymentClaimable::claim_deadline`]. To avoid race
6261 /// conditions, you should wait for an [`Event::PaymentClaimed`] before considering the payment
6262 /// successful. It will generally be available in the next [`process_pending_events`] call.
6264 /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
6265 /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentClaimable`
6266 /// event matches your expectation. If you fail to do so and call this method, you may provide
6267 /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
6269 /// This function will fail the payment if it has custom TLVs with even type numbers, as we
6270 /// will assume they are unknown. If you intend to accept even custom TLVs, you should use
6271 /// [`claim_funds_with_known_custom_tlvs`].
6273 /// [`Event::PaymentClaimable`]: crate::events::Event::PaymentClaimable
6274 /// [`Event::PaymentClaimable::claim_deadline`]: crate::events::Event::PaymentClaimable::claim_deadline
6275 /// [`Event::PaymentClaimed`]: crate::events::Event::PaymentClaimed
6276 /// [`process_pending_events`]: EventsProvider::process_pending_events
6277 /// [`create_inbound_payment`]: Self::create_inbound_payment
6278 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
6279 /// [`claim_funds_with_known_custom_tlvs`]: Self::claim_funds_with_known_custom_tlvs
6280 pub fn claim_funds(&self, payment_preimage: PaymentPreimage) {
6281 self.claim_payment_internal(payment_preimage, false);
6284 /// This is a variant of [`claim_funds`] that allows accepting a payment with custom TLVs with
6285 /// even type numbers.
6289 /// You MUST check you've understood all even TLVs before using this to
6290 /// claim, otherwise you may unintentionally agree to some protocol you do not understand.
6292 /// [`claim_funds`]: Self::claim_funds
6293 pub fn claim_funds_with_known_custom_tlvs(&self, payment_preimage: PaymentPreimage) {
6294 self.claim_payment_internal(payment_preimage, true);
6297 fn claim_payment_internal(&self, payment_preimage: PaymentPreimage, custom_tlvs_known: bool) {
6298 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).to_byte_array());
6300 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6303 let mut claimable_payments = self.claimable_payments.lock().unwrap();
6304 if let Some(payment) = claimable_payments.claimable_payments.remove(&payment_hash) {
6305 let mut receiver_node_id = self.our_network_pubkey;
6306 for htlc in payment.htlcs.iter() {
6307 if htlc.prev_hop.phantom_shared_secret.is_some() {
6308 let phantom_pubkey = self.node_signer.get_node_id(Recipient::PhantomNode)
6309 .expect("Failed to get node_id for phantom node recipient");
6310 receiver_node_id = phantom_pubkey;
6315 let htlcs = payment.htlcs.iter().map(events::ClaimedHTLC::from).collect();
6316 let sender_intended_value = payment.htlcs.first().map(|htlc| htlc.total_msat);
6317 let dup_purpose = claimable_payments.pending_claiming_payments.insert(payment_hash,
6318 ClaimingPayment { amount_msat: payment.htlcs.iter().map(|source| source.value).sum(),
6319 payment_purpose: payment.purpose, receiver_node_id, htlcs, sender_intended_value
6321 if dup_purpose.is_some() {
6322 debug_assert!(false, "Shouldn't get a duplicate pending claim event ever");
6323 log_error!(self.logger, "Got a duplicate pending claimable event on payment hash {}! Please report this bug",
6327 if let Some(RecipientOnionFields { ref custom_tlvs, .. }) = payment.onion_fields {
6328 if !custom_tlvs_known && custom_tlvs.iter().any(|(typ, _)| typ % 2 == 0) {
6329 log_info!(self.logger, "Rejecting payment with payment hash {} as we cannot accept payment with unknown even TLVs: {}",
6330 &payment_hash, log_iter!(custom_tlvs.iter().map(|(typ, _)| typ).filter(|typ| *typ % 2 == 0)));
6331 claimable_payments.pending_claiming_payments.remove(&payment_hash);
6332 mem::drop(claimable_payments);
6333 for htlc in payment.htlcs {
6334 let reason = self.get_htlc_fail_reason_from_failure_code(FailureCode::InvalidOnionPayload(None), &htlc);
6335 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6336 let receiver = HTLCDestination::FailedPayment { payment_hash };
6337 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6346 debug_assert!(!sources.is_empty());
6348 // Just in case one HTLC has been failed between when we generated the `PaymentClaimable`
6349 // and when we got here we need to check that the amount we're about to claim matches the
6350 // amount we told the user in the last `PaymentClaimable`. We also do a sanity-check that
6351 // the MPP parts all have the same `total_msat`.
6352 let mut claimable_amt_msat = 0;
6353 let mut prev_total_msat = None;
6354 let mut expected_amt_msat = None;
6355 let mut valid_mpp = true;
6356 let mut errs = Vec::new();
6357 let per_peer_state = self.per_peer_state.read().unwrap();
6358 for htlc in sources.iter() {
6359 if prev_total_msat.is_some() && prev_total_msat != Some(htlc.total_msat) {
6360 log_error!(self.logger, "Somehow ended up with an MPP payment with different expected total amounts - this should not be reachable!");
6361 debug_assert!(false);
6365 prev_total_msat = Some(htlc.total_msat);
6367 if expected_amt_msat.is_some() && expected_amt_msat != htlc.total_value_received {
6368 log_error!(self.logger, "Somehow ended up with an MPP payment with different received total amounts - this should not be reachable!");
6369 debug_assert!(false);
6373 expected_amt_msat = htlc.total_value_received;
6374 claimable_amt_msat += htlc.value;
6376 mem::drop(per_peer_state);
6377 if sources.is_empty() || expected_amt_msat.is_none() {
6378 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6379 log_info!(self.logger, "Attempted to claim an incomplete payment which no longer had any available HTLCs!");
6382 if claimable_amt_msat != expected_amt_msat.unwrap() {
6383 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6384 log_info!(self.logger, "Attempted to claim an incomplete payment, expected {} msat, had {} available to claim.",
6385 expected_amt_msat.unwrap(), claimable_amt_msat);
6389 for htlc in sources.drain(..) {
6390 let prev_hop_chan_id = htlc.prev_hop.channel_id;
6391 if let Err((pk, err)) = self.claim_funds_from_hop(
6392 htlc.prev_hop, payment_preimage,
6393 |_, definitely_duplicate| {
6394 debug_assert!(!definitely_duplicate, "We shouldn't claim duplicatively from a payment");
6395 Some(MonitorUpdateCompletionAction::PaymentClaimed { payment_hash })
6398 if let msgs::ErrorAction::IgnoreError = err.err.action {
6399 // We got a temporary failure updating monitor, but will claim the
6400 // HTLC when the monitor updating is restored (or on chain).
6401 let logger = WithContext::from(&self.logger, None, Some(prev_hop_chan_id));
6402 log_error!(logger, "Temporary failure claiming HTLC, treating as success: {}", err.err.err);
6403 } else { errs.push((pk, err)); }
6408 for htlc in sources.drain(..) {
6409 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
6410 htlc_msat_height_data.extend_from_slice(&self.best_block.read().unwrap().height.to_be_bytes());
6411 let source = HTLCSource::PreviousHopData(htlc.prev_hop);
6412 let reason = HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data);
6413 let receiver = HTLCDestination::FailedPayment { payment_hash };
6414 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
6416 self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6419 // Now we can handle any errors which were generated.
6420 for (counterparty_node_id, err) in errs.drain(..) {
6421 let res: Result<(), _> = Err(err);
6422 let _ = handle_error!(self, res, counterparty_node_id);
6426 fn claim_funds_from_hop<ComplFunc: FnOnce(Option<u64>, bool) -> Option<MonitorUpdateCompletionAction>>(&self,
6427 prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage, completion_action: ComplFunc)
6428 -> Result<(), (PublicKey, MsgHandleErrInternal)> {
6429 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
6431 // If we haven't yet run background events assume we're still deserializing and shouldn't
6432 // actually pass `ChannelMonitorUpdate`s to users yet. Instead, queue them up as
6433 // `BackgroundEvent`s.
6434 let during_init = !self.background_events_processed_since_startup.load(Ordering::Acquire);
6436 // As we may call handle_monitor_update_completion_actions in rather rare cases, check that
6437 // the required mutexes are not held before we start.
6438 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6439 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6442 let per_peer_state = self.per_peer_state.read().unwrap();
6443 let chan_id = prev_hop.channel_id;
6444 let counterparty_node_id_opt = match self.short_to_chan_info.read().unwrap().get(&prev_hop.short_channel_id) {
6445 Some((cp_id, _dup_chan_id)) => Some(cp_id.clone()),
6449 let peer_state_opt = counterparty_node_id_opt.as_ref().map(
6450 |counterparty_node_id| per_peer_state.get(counterparty_node_id)
6451 .map(|peer_mutex| peer_mutex.lock().unwrap())
6454 if peer_state_opt.is_some() {
6455 let mut peer_state_lock = peer_state_opt.unwrap();
6456 let peer_state = &mut *peer_state_lock;
6457 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(chan_id) {
6458 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
6459 let counterparty_node_id = chan.context.get_counterparty_node_id();
6460 let logger = WithChannelContext::from(&self.logger, &chan.context);
6461 let fulfill_res = chan.get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &&logger);
6464 UpdateFulfillCommitFetch::NewClaim { htlc_value_msat, monitor_update } => {
6465 if let Some(action) = completion_action(Some(htlc_value_msat), false) {
6466 log_trace!(logger, "Tracking monitor update completion action for channel {}: {:?}",
6468 peer_state.monitor_update_blocked_actions.entry(chan_id).or_insert(Vec::new()).push(action);
6471 handle_new_monitor_update!(self, prev_hop.outpoint, monitor_update, peer_state_lock,
6472 peer_state, per_peer_state, chan);
6474 // If we're running during init we cannot update a monitor directly -
6475 // they probably haven't actually been loaded yet. Instead, push the
6476 // monitor update as a background event.
6477 self.pending_background_events.lock().unwrap().push(
6478 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6479 counterparty_node_id,
6480 funding_txo: prev_hop.outpoint,
6481 channel_id: prev_hop.channel_id,
6482 update: monitor_update.clone(),
6486 UpdateFulfillCommitFetch::DuplicateClaim {} => {
6487 let action = if let Some(action) = completion_action(None, true) {
6492 mem::drop(peer_state_lock);
6494 log_trace!(logger, "Completing monitor update completion action for channel {} as claim was redundant: {:?}",
6496 let (node_id, _funding_outpoint, channel_id, blocker) =
6497 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6498 downstream_counterparty_node_id: node_id,
6499 downstream_funding_outpoint: funding_outpoint,
6500 blocking_action: blocker, downstream_channel_id: channel_id,
6502 (node_id, funding_outpoint, channel_id, blocker)
6504 debug_assert!(false,
6505 "Duplicate claims should always free another channel immediately");
6508 if let Some(peer_state_mtx) = per_peer_state.get(&node_id) {
6509 let mut peer_state = peer_state_mtx.lock().unwrap();
6510 if let Some(blockers) = peer_state
6511 .actions_blocking_raa_monitor_updates
6512 .get_mut(&channel_id)
6514 let mut found_blocker = false;
6515 blockers.retain(|iter| {
6516 // Note that we could actually be blocked, in
6517 // which case we need to only remove the one
6518 // blocker which was added duplicatively.
6519 let first_blocker = !found_blocker;
6520 if *iter == blocker { found_blocker = true; }
6521 *iter != blocker || !first_blocker
6523 debug_assert!(found_blocker);
6526 debug_assert!(false);
6535 let preimage_update = ChannelMonitorUpdate {
6536 update_id: CLOSED_CHANNEL_UPDATE_ID,
6537 counterparty_node_id: None,
6538 updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
6541 channel_id: Some(prev_hop.channel_id),
6545 // We update the ChannelMonitor on the backward link, after
6546 // receiving an `update_fulfill_htlc` from the forward link.
6547 let update_res = self.chain_monitor.update_channel(prev_hop.outpoint, &preimage_update);
6548 if update_res != ChannelMonitorUpdateStatus::Completed {
6549 // TODO: This needs to be handled somehow - if we receive a monitor update
6550 // with a preimage we *must* somehow manage to propagate it to the upstream
6551 // channel, or we must have an ability to receive the same event and try
6552 // again on restart.
6553 log_error!(WithContext::from(&self.logger, None, Some(prev_hop.channel_id)),
6554 "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
6555 payment_preimage, update_res);
6558 // If we're running during init we cannot update a monitor directly - they probably
6559 // haven't actually been loaded yet. Instead, push the monitor update as a background
6561 // Note that while it's safe to use `ClosedMonitorUpdateRegeneratedOnStartup` here (the
6562 // channel is already closed) we need to ultimately handle the monitor update
6563 // completion action only after we've completed the monitor update. This is the only
6564 // way to guarantee this update *will* be regenerated on startup (otherwise if this was
6565 // from a forwarded HTLC the downstream preimage may be deleted before we claim
6566 // upstream). Thus, we need to transition to some new `BackgroundEvent` type which will
6567 // complete the monitor update completion action from `completion_action`.
6568 self.pending_background_events.lock().unwrap().push(
6569 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((
6570 prev_hop.outpoint, prev_hop.channel_id, preimage_update,
6573 // Note that we do process the completion action here. This totally could be a
6574 // duplicate claim, but we have no way of knowing without interrogating the
6575 // `ChannelMonitor` we've provided the above update to. Instead, note that `Event`s are
6576 // generally always allowed to be duplicative (and it's specifically noted in
6577 // `PaymentForwarded`).
6578 self.handle_monitor_update_completion_actions(completion_action(None, false));
6582 fn finalize_claims(&self, sources: Vec<HTLCSource>) {
6583 self.pending_outbound_payments.finalize_claims(sources, &self.pending_events);
6586 fn claim_funds_internal(&self, source: HTLCSource, payment_preimage: PaymentPreimage,
6587 forwarded_htlc_value_msat: Option<u64>, skimmed_fee_msat: Option<u64>, from_onchain: bool,
6588 startup_replay: bool, next_channel_counterparty_node_id: Option<PublicKey>,
6589 next_channel_outpoint: OutPoint, next_channel_id: ChannelId, next_user_channel_id: Option<u128>,
6592 HTLCSource::OutboundRoute { session_priv, payment_id, path, .. } => {
6593 debug_assert!(self.background_events_processed_since_startup.load(Ordering::Acquire),
6594 "We don't support claim_htlc claims during startup - monitors may not be available yet");
6595 if let Some(pubkey) = next_channel_counterparty_node_id {
6596 debug_assert_eq!(pubkey, path.hops[0].pubkey);
6598 let ev_completion_action = EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
6599 channel_funding_outpoint: next_channel_outpoint, channel_id: next_channel_id,
6600 counterparty_node_id: path.hops[0].pubkey,
6602 self.pending_outbound_payments.claim_htlc(payment_id, payment_preimage,
6603 session_priv, path, from_onchain, ev_completion_action, &self.pending_events,
6606 HTLCSource::PreviousHopData(hop_data) => {
6607 let prev_channel_id = hop_data.channel_id;
6608 let prev_user_channel_id = hop_data.user_channel_id;
6609 let completed_blocker = RAAMonitorUpdateBlockingAction::from_prev_hop_data(&hop_data);
6610 #[cfg(debug_assertions)]
6611 let claiming_chan_funding_outpoint = hop_data.outpoint;
6612 let res = self.claim_funds_from_hop(hop_data, payment_preimage,
6613 |htlc_claim_value_msat, definitely_duplicate| {
6614 let chan_to_release =
6615 if let Some(node_id) = next_channel_counterparty_node_id {
6616 Some((node_id, next_channel_outpoint, next_channel_id, completed_blocker))
6618 // We can only get `None` here if we are processing a
6619 // `ChannelMonitor`-originated event, in which case we
6620 // don't care about ensuring we wake the downstream
6621 // channel's monitor updating - the channel is already
6626 if definitely_duplicate && startup_replay {
6627 // On startup we may get redundant claims which are related to
6628 // monitor updates still in flight. In that case, we shouldn't
6629 // immediately free, but instead let that monitor update complete
6630 // in the background.
6631 #[cfg(debug_assertions)] {
6632 let background_events = self.pending_background_events.lock().unwrap();
6633 // There should be a `BackgroundEvent` pending...
6634 assert!(background_events.iter().any(|ev| {
6636 // to apply a monitor update that blocked the claiming channel,
6637 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
6638 funding_txo, update, ..
6640 if *funding_txo == claiming_chan_funding_outpoint {
6641 assert!(update.updates.iter().any(|upd|
6642 if let ChannelMonitorUpdateStep::PaymentPreimage {
6643 payment_preimage: update_preimage
6645 payment_preimage == *update_preimage
6651 // or the channel we'd unblock is already closed,
6652 BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup(
6653 (funding_txo, _channel_id, monitor_update)
6655 if *funding_txo == next_channel_outpoint {
6656 assert_eq!(monitor_update.updates.len(), 1);
6658 monitor_update.updates[0],
6659 ChannelMonitorUpdateStep::ChannelForceClosed { .. }
6664 // or the monitor update has completed and will unblock
6665 // immediately once we get going.
6666 BackgroundEvent::MonitorUpdatesComplete {
6669 *channel_id == prev_channel_id,
6671 }), "{:?}", *background_events);
6674 } else if definitely_duplicate {
6675 if let Some(other_chan) = chan_to_release {
6676 Some(MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6677 downstream_counterparty_node_id: other_chan.0,
6678 downstream_funding_outpoint: other_chan.1,
6679 downstream_channel_id: other_chan.2,
6680 blocking_action: other_chan.3,
6684 let total_fee_earned_msat = if let Some(forwarded_htlc_value) = forwarded_htlc_value_msat {
6685 if let Some(claimed_htlc_value) = htlc_claim_value_msat {
6686 Some(claimed_htlc_value - forwarded_htlc_value)
6689 debug_assert!(skimmed_fee_msat <= total_fee_earned_msat,
6690 "skimmed_fee_msat must always be included in total_fee_earned_msat");
6691 Some(MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6692 event: events::Event::PaymentForwarded {
6693 prev_channel_id: Some(prev_channel_id),
6694 next_channel_id: Some(next_channel_id),
6695 prev_user_channel_id,
6696 next_user_channel_id,
6697 total_fee_earned_msat,
6699 claim_from_onchain_tx: from_onchain,
6700 outbound_amount_forwarded_msat: forwarded_htlc_value_msat,
6702 downstream_counterparty_and_funding_outpoint: chan_to_release,
6706 if let Err((pk, err)) = res {
6707 let result: Result<(), _> = Err(err);
6708 let _ = handle_error!(self, result, pk);
6714 /// Gets the node_id held by this ChannelManager
6715 pub fn get_our_node_id(&self) -> PublicKey {
6716 self.our_network_pubkey.clone()
6719 fn handle_monitor_update_completion_actions<I: IntoIterator<Item=MonitorUpdateCompletionAction>>(&self, actions: I) {
6720 debug_assert_ne!(self.pending_events.held_by_thread(), LockHeldState::HeldByThread);
6721 debug_assert_ne!(self.claimable_payments.held_by_thread(), LockHeldState::HeldByThread);
6722 debug_assert_ne!(self.per_peer_state.held_by_thread(), LockHeldState::HeldByThread);
6724 for action in actions.into_iter() {
6726 MonitorUpdateCompletionAction::PaymentClaimed { payment_hash } => {
6727 let payment = self.claimable_payments.lock().unwrap().pending_claiming_payments.remove(&payment_hash);
6728 if let Some(ClaimingPayment {
6730 payment_purpose: purpose,
6733 sender_intended_value: sender_intended_total_msat,
6735 self.pending_events.lock().unwrap().push_back((events::Event::PaymentClaimed {
6739 receiver_node_id: Some(receiver_node_id),
6741 sender_intended_total_msat,
6745 MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
6746 event, downstream_counterparty_and_funding_outpoint
6748 self.pending_events.lock().unwrap().push_back((event, None));
6749 if let Some((node_id, funding_outpoint, channel_id, blocker)) = downstream_counterparty_and_funding_outpoint {
6750 self.handle_monitor_update_release(node_id, funding_outpoint, channel_id, Some(blocker));
6753 MonitorUpdateCompletionAction::FreeOtherChannelImmediately {
6754 downstream_counterparty_node_id, downstream_funding_outpoint, downstream_channel_id, blocking_action,
6756 self.handle_monitor_update_release(
6757 downstream_counterparty_node_id,
6758 downstream_funding_outpoint,
6759 downstream_channel_id,
6760 Some(blocking_action),
6767 /// Handles a channel reentering a functional state, either due to reconnect or a monitor
6768 /// update completion.
6769 fn handle_channel_resumption(&self, pending_msg_events: &mut Vec<MessageSendEvent>,
6770 channel: &mut Channel<SP>, raa: Option<msgs::RevokeAndACK>,
6771 commitment_update: Option<msgs::CommitmentUpdate>, order: RAACommitmentOrder,
6772 pending_forwards: Vec<(PendingHTLCInfo, u64)>, pending_update_adds: Vec<msgs::UpdateAddHTLC>,
6773 funding_broadcastable: Option<Transaction>,
6774 channel_ready: Option<msgs::ChannelReady>, announcement_sigs: Option<msgs::AnnouncementSignatures>)
6775 -> (Option<(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)>, Option<(u64, Vec<msgs::UpdateAddHTLC>)>) {
6776 let logger = WithChannelContext::from(&self.logger, &channel.context);
6777 log_trace!(logger, "Handling channel resumption for channel {} with {} RAA, {} commitment update, {} pending forwards, {} pending update_add_htlcs, {}broadcasting funding, {} channel ready, {} announcement",
6778 &channel.context.channel_id(),
6779 if raa.is_some() { "an" } else { "no" },
6780 if commitment_update.is_some() { "a" } else { "no" },
6781 pending_forwards.len(), pending_update_adds.len(),
6782 if funding_broadcastable.is_some() { "" } else { "not " },
6783 if channel_ready.is_some() { "sending" } else { "without" },
6784 if announcement_sigs.is_some() { "sending" } else { "without" });
6786 let counterparty_node_id = channel.context.get_counterparty_node_id();
6787 let short_channel_id = channel.context.get_short_channel_id().unwrap_or(channel.context.outbound_scid_alias());
6789 let mut htlc_forwards = None;
6790 if !pending_forwards.is_empty() {
6791 htlc_forwards = Some((short_channel_id, channel.context.get_funding_txo().unwrap(),
6792 channel.context.channel_id(), channel.context.get_user_id(), pending_forwards));
6794 let mut decode_update_add_htlcs = None;
6795 if !pending_update_adds.is_empty() {
6796 decode_update_add_htlcs = Some((short_channel_id, pending_update_adds));
6799 if let Some(msg) = channel_ready {
6800 send_channel_ready!(self, pending_msg_events, channel, msg);
6802 if let Some(msg) = announcement_sigs {
6803 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
6804 node_id: counterparty_node_id,
6809 macro_rules! handle_cs { () => {
6810 if let Some(update) = commitment_update {
6811 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
6812 node_id: counterparty_node_id,
6817 macro_rules! handle_raa { () => {
6818 if let Some(revoke_and_ack) = raa {
6819 pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
6820 node_id: counterparty_node_id,
6821 msg: revoke_and_ack,
6826 RAACommitmentOrder::CommitmentFirst => {
6830 RAACommitmentOrder::RevokeAndACKFirst => {
6836 if let Some(tx) = funding_broadcastable {
6837 log_info!(logger, "Broadcasting funding transaction with txid {}", tx.txid());
6838 self.tx_broadcaster.broadcast_transactions(&[&tx]);
6842 let mut pending_events = self.pending_events.lock().unwrap();
6843 emit_channel_pending_event!(pending_events, channel);
6844 emit_channel_ready_event!(pending_events, channel);
6847 (htlc_forwards, decode_update_add_htlcs)
6850 fn channel_monitor_updated(&self, funding_txo: &OutPoint, channel_id: &ChannelId, highest_applied_update_id: u64, counterparty_node_id: Option<&PublicKey>) {
6851 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
6853 let counterparty_node_id = match counterparty_node_id {
6854 Some(cp_id) => cp_id.clone(),
6856 // TODO: Once we can rely on the counterparty_node_id from the
6857 // monitor event, this and the outpoint_to_peer map should be removed.
6858 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
6859 match outpoint_to_peer.get(funding_txo) {
6860 Some(cp_id) => cp_id.clone(),
6865 let per_peer_state = self.per_peer_state.read().unwrap();
6866 let mut peer_state_lock;
6867 let peer_state_mutex_opt = per_peer_state.get(&counterparty_node_id);
6868 if peer_state_mutex_opt.is_none() { return }
6869 peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
6870 let peer_state = &mut *peer_state_lock;
6872 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get_mut(channel_id) {
6875 let update_actions = peer_state.monitor_update_blocked_actions
6876 .remove(&channel_id).unwrap_or(Vec::new());
6877 mem::drop(peer_state_lock);
6878 mem::drop(per_peer_state);
6879 self.handle_monitor_update_completion_actions(update_actions);
6882 let remaining_in_flight =
6883 if let Some(pending) = peer_state.in_flight_monitor_updates.get_mut(funding_txo) {
6884 pending.retain(|upd| upd.update_id > highest_applied_update_id);
6887 let logger = WithChannelContext::from(&self.logger, &channel.context);
6888 log_trace!(logger, "ChannelMonitor updated to {}. Current highest is {}. {} pending in-flight updates.",
6889 highest_applied_update_id, channel.context.get_latest_monitor_update_id(),
6890 remaining_in_flight);
6891 if !channel.is_awaiting_monitor_update() || channel.context.get_latest_monitor_update_id() != highest_applied_update_id {
6894 handle_monitor_update_completion!(self, peer_state_lock, peer_state, per_peer_state, channel);
6897 /// Accepts a request to open a channel after a [`Event::OpenChannelRequest`].
6899 /// The `temporary_channel_id` parameter indicates which inbound channel should be accepted,
6900 /// and the `counterparty_node_id` parameter is the id of the peer which has requested to open
6903 /// The `user_channel_id` parameter will be provided back in
6904 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6905 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6907 /// Note that this method will return an error and reject the channel, if it requires support
6908 /// for zero confirmations. Instead, `accept_inbound_channel_from_trusted_peer_0conf` must be
6909 /// used to accept such channels.
6911 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6912 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6913 pub fn accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6914 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, false, user_channel_id)
6917 /// Accepts a request to open a channel after a [`events::Event::OpenChannelRequest`], treating
6918 /// it as confirmed immediately.
6920 /// The `user_channel_id` parameter will be provided back in
6921 /// [`Event::ChannelClosed::user_channel_id`] to allow tracking of which events correspond
6922 /// with which `accept_inbound_channel`/`accept_inbound_channel_from_trusted_peer_0conf` call.
6924 /// Unlike [`ChannelManager::accept_inbound_channel`], this method accepts the incoming channel
6925 /// and (if the counterparty agrees), enables forwarding of payments immediately.
6927 /// This fully trusts that the counterparty has honestly and correctly constructed the funding
6928 /// transaction and blindly assumes that it will eventually confirm.
6930 /// If it does not confirm before we decide to close the channel, or if the funding transaction
6931 /// does not pay to the correct script the correct amount, *you will lose funds*.
6933 /// [`Event::OpenChannelRequest`]: events::Event::OpenChannelRequest
6934 /// [`Event::ChannelClosed::user_channel_id`]: events::Event::ChannelClosed::user_channel_id
6935 pub fn accept_inbound_channel_from_trusted_peer_0conf(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, user_channel_id: u128) -> Result<(), APIError> {
6936 self.do_accept_inbound_channel(temporary_channel_id, counterparty_node_id, true, user_channel_id)
6939 fn do_accept_inbound_channel(&self, temporary_channel_id: &ChannelId, counterparty_node_id: &PublicKey, accept_0conf: bool, user_channel_id: u128) -> Result<(), APIError> {
6941 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(*temporary_channel_id));
6942 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
6944 let peers_without_funded_channels =
6945 self.peers_without_funded_channels(|peer| { peer.total_channel_count() > 0 });
6946 let per_peer_state = self.per_peer_state.read().unwrap();
6947 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
6949 let err_str = format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id);
6950 log_error!(logger, "{}", err_str);
6952 APIError::ChannelUnavailable { err: err_str }
6954 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
6955 let peer_state = &mut *peer_state_lock;
6956 let is_only_peer_channel = peer_state.total_channel_count() == 1;
6958 // Find (and remove) the channel in the unaccepted table. If it's not there, something weird is
6959 // happening and return an error. N.B. that we create channel with an outbound SCID of zero so
6960 // that we can delay allocating the SCID until after we're sure that the checks below will
6962 let res = match peer_state.inbound_channel_request_by_id.remove(temporary_channel_id) {
6963 Some(unaccepted_channel) => {
6964 let best_block_height = self.best_block.read().unwrap().height;
6965 InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
6966 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features,
6967 &unaccepted_channel.open_channel_msg, user_channel_id, &self.default_configuration, best_block_height,
6968 &self.logger, accept_0conf).map_err(|err| MsgHandleErrInternal::from_chan_no_close(err, *temporary_channel_id))
6971 let err_str = "No such channel awaiting to be accepted.".to_owned();
6972 log_error!(logger, "{}", err_str);
6974 return Err(APIError::APIMisuseError { err: err_str });
6980 mem::drop(peer_state_lock);
6981 mem::drop(per_peer_state);
6982 match handle_error!(self, Result::<(), MsgHandleErrInternal>::Err(err), *counterparty_node_id) {
6983 Ok(_) => unreachable!("`handle_error` only returns Err as we've passed in an Err"),
6985 return Err(APIError::ChannelUnavailable { err: e.err });
6989 Ok(mut channel) => {
6991 // This should have been correctly configured by the call to InboundV1Channel::new.
6992 debug_assert!(channel.context.minimum_depth().unwrap() == 0);
6993 } else if channel.context.get_channel_type().requires_zero_conf() {
6994 let send_msg_err_event = events::MessageSendEvent::HandleError {
6995 node_id: channel.context.get_counterparty_node_id(),
6996 action: msgs::ErrorAction::SendErrorMessage{
6997 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "No zero confirmation channels accepted".to_owned(), }
7000 peer_state.pending_msg_events.push(send_msg_err_event);
7001 let err_str = "Please use accept_inbound_channel_from_trusted_peer_0conf to accept channels with zero confirmations.".to_owned();
7002 log_error!(logger, "{}", err_str);
7004 return Err(APIError::APIMisuseError { err: err_str });
7006 // If this peer already has some channels, a new channel won't increase our number of peers
7007 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7008 // channels per-peer we can accept channels from a peer with existing ones.
7009 if is_only_peer_channel && peers_without_funded_channels >= MAX_UNFUNDED_CHANNEL_PEERS {
7010 let send_msg_err_event = events::MessageSendEvent::HandleError {
7011 node_id: channel.context.get_counterparty_node_id(),
7012 action: msgs::ErrorAction::SendErrorMessage{
7013 msg: msgs::ErrorMessage { channel_id: temporary_channel_id.clone(), data: "Have too many peers with unfunded channels, not accepting new ones".to_owned(), }
7016 peer_state.pending_msg_events.push(send_msg_err_event);
7017 let err_str = "Too many peers with unfunded channels, refusing to accept new ones".to_owned();
7018 log_error!(logger, "{}", err_str);
7020 return Err(APIError::APIMisuseError { err: err_str });
7024 // Now that we know we have a channel, assign an outbound SCID alias.
7025 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7026 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7028 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7029 node_id: channel.context.get_counterparty_node_id(),
7030 msg: channel.accept_inbound_channel(),
7033 peer_state.channel_by_id.insert(temporary_channel_id.clone(), ChannelPhase::UnfundedInboundV1(channel));
7040 /// Gets the number of peers which match the given filter and do not have any funded, outbound,
7041 /// or 0-conf channels.
7043 /// The filter is called for each peer and provided with the number of unfunded, inbound, and
7044 /// non-0-conf channels we have with the peer.
7045 fn peers_without_funded_channels<Filter>(&self, maybe_count_peer: Filter) -> usize
7046 where Filter: Fn(&PeerState<SP>) -> bool {
7047 let mut peers_without_funded_channels = 0;
7048 let best_block_height = self.best_block.read().unwrap().height;
7050 let peer_state_lock = self.per_peer_state.read().unwrap();
7051 for (_, peer_mtx) in peer_state_lock.iter() {
7052 let peer = peer_mtx.lock().unwrap();
7053 if !maybe_count_peer(&*peer) { continue; }
7054 let num_unfunded_channels = Self::unfunded_channel_count(&peer, best_block_height);
7055 if num_unfunded_channels == peer.total_channel_count() {
7056 peers_without_funded_channels += 1;
7060 return peers_without_funded_channels;
7063 fn unfunded_channel_count(
7064 peer: &PeerState<SP>, best_block_height: u32
7066 let mut num_unfunded_channels = 0;
7067 for (_, phase) in peer.channel_by_id.iter() {
7069 ChannelPhase::Funded(chan) => {
7070 // This covers non-zero-conf inbound `Channel`s that we are currently monitoring, but those
7071 // which have not yet had any confirmations on-chain.
7072 if !chan.context.is_outbound() && chan.context.minimum_depth().unwrap_or(1) != 0 &&
7073 chan.context.get_funding_tx_confirmations(best_block_height) == 0
7075 num_unfunded_channels += 1;
7078 ChannelPhase::UnfundedInboundV1(chan) => {
7079 if chan.context.minimum_depth().unwrap_or(1) != 0 {
7080 num_unfunded_channels += 1;
7083 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7084 #[cfg(any(dual_funding, splicing))]
7085 ChannelPhase::UnfundedInboundV2(chan) => {
7086 // Only inbound V2 channels that are not 0conf and that we do not contribute to will be
7087 // included in the unfunded count.
7088 if chan.context.minimum_depth().unwrap_or(1) != 0 &&
7089 chan.dual_funding_context.our_funding_satoshis == 0 {
7090 num_unfunded_channels += 1;
7093 ChannelPhase::UnfundedOutboundV1(_) => {
7094 // Outbound channels don't contribute to the unfunded count in the DoS context.
7097 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
7098 #[cfg(any(dual_funding, splicing))]
7099 ChannelPhase::UnfundedOutboundV2(_) => {
7100 // Outbound channels don't contribute to the unfunded count in the DoS context.
7105 num_unfunded_channels + peer.inbound_channel_request_by_id.len()
7108 fn internal_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
7109 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7110 // likely to be lost on restart!
7111 if msg.common_fields.chain_hash != self.chain_hash {
7112 return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(),
7113 msg.common_fields.temporary_channel_id.clone()));
7116 if !self.default_configuration.accept_inbound_channels {
7117 return Err(MsgHandleErrInternal::send_err_msg_no_close("No inbound channels accepted".to_owned(),
7118 msg.common_fields.temporary_channel_id.clone()));
7121 // Get the number of peers with channels, but without funded ones. We don't care too much
7122 // about peers that never open a channel, so we filter by peers that have at least one
7123 // channel, and then limit the number of those with unfunded channels.
7124 let channeled_peers_without_funding =
7125 self.peers_without_funded_channels(|node| node.total_channel_count() > 0);
7127 let per_peer_state = self.per_peer_state.read().unwrap();
7128 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7130 debug_assert!(false);
7131 MsgHandleErrInternal::send_err_msg_no_close(
7132 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
7133 msg.common_fields.temporary_channel_id.clone())
7135 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7136 let peer_state = &mut *peer_state_lock;
7138 // If this peer already has some channels, a new channel won't increase our number of peers
7139 // with unfunded channels, so as long as we aren't over the maximum number of unfunded
7140 // channels per-peer we can accept channels from a peer with existing ones.
7141 if peer_state.total_channel_count() == 0 &&
7142 channeled_peers_without_funding >= MAX_UNFUNDED_CHANNEL_PEERS &&
7143 !self.default_configuration.manually_accept_inbound_channels
7145 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7146 "Have too many peers with unfunded channels, not accepting new ones".to_owned(),
7147 msg.common_fields.temporary_channel_id.clone()));
7150 let best_block_height = self.best_block.read().unwrap().height;
7151 if Self::unfunded_channel_count(peer_state, best_block_height) >= MAX_UNFUNDED_CHANS_PER_PEER {
7152 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7153 format!("Refusing more than {} unfunded channels.", MAX_UNFUNDED_CHANS_PER_PEER),
7154 msg.common_fields.temporary_channel_id.clone()));
7157 let channel_id = msg.common_fields.temporary_channel_id;
7158 let channel_exists = peer_state.has_channel(&channel_id);
7160 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7161 "temporary_channel_id collision for the same peer!".to_owned(),
7162 msg.common_fields.temporary_channel_id.clone()));
7165 // If we're doing manual acceptance checks on the channel, then defer creation until we're sure we want to accept.
7166 if self.default_configuration.manually_accept_inbound_channels {
7167 let channel_type = channel::channel_type_from_open_channel(
7168 &msg.common_fields, &peer_state.latest_features, &self.channel_type_features()
7170 MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id)
7172 let mut pending_events = self.pending_events.lock().unwrap();
7173 pending_events.push_back((events::Event::OpenChannelRequest {
7174 temporary_channel_id: msg.common_fields.temporary_channel_id.clone(),
7175 counterparty_node_id: counterparty_node_id.clone(),
7176 funding_satoshis: msg.common_fields.funding_satoshis,
7177 push_msat: msg.push_msat,
7180 peer_state.inbound_channel_request_by_id.insert(channel_id, InboundChannelRequest {
7181 open_channel_msg: msg.clone(),
7182 ticks_remaining: UNACCEPTED_INBOUND_CHANNEL_AGE_LIMIT_TICKS,
7187 // Otherwise create the channel right now.
7188 let mut random_bytes = [0u8; 16];
7189 random_bytes.copy_from_slice(&self.entropy_source.get_secure_random_bytes()[..16]);
7190 let user_channel_id = u128::from_be_bytes(random_bytes);
7191 let mut channel = match InboundV1Channel::new(&self.fee_estimator, &self.entropy_source, &self.signer_provider,
7192 counterparty_node_id.clone(), &self.channel_type_features(), &peer_state.latest_features, msg, user_channel_id,
7193 &self.default_configuration, best_block_height, &self.logger, /*is_0conf=*/false)
7196 return Err(MsgHandleErrInternal::from_chan_no_close(e, msg.common_fields.temporary_channel_id));
7201 let channel_type = channel.context.get_channel_type();
7202 if channel_type.requires_zero_conf() {
7203 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7204 "No zero confirmation channels accepted".to_owned(),
7205 msg.common_fields.temporary_channel_id.clone()));
7207 if channel_type.requires_anchors_zero_fee_htlc_tx() {
7208 return Err(MsgHandleErrInternal::send_err_msg_no_close(
7209 "No channels with anchor outputs accepted".to_owned(),
7210 msg.common_fields.temporary_channel_id.clone()));
7213 let outbound_scid_alias = self.create_and_insert_outbound_scid_alias();
7214 channel.context.set_outbound_scid_alias(outbound_scid_alias);
7216 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
7217 node_id: counterparty_node_id.clone(),
7218 msg: channel.accept_inbound_channel(),
7220 peer_state.channel_by_id.insert(channel_id, ChannelPhase::UnfundedInboundV1(channel));
7224 fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
7225 // Note that the ChannelManager is NOT re-persisted on disk after this, so any changes are
7226 // likely to be lost on restart!
7227 let (value, output_script, user_id) = {
7228 let per_peer_state = self.per_peer_state.read().unwrap();
7229 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7231 debug_assert!(false);
7232 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id)
7234 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7235 let peer_state = &mut *peer_state_lock;
7236 match peer_state.channel_by_id.entry(msg.common_fields.temporary_channel_id) {
7237 hash_map::Entry::Occupied(mut phase) => {
7238 match phase.get_mut() {
7239 ChannelPhase::UnfundedOutboundV1(chan) => {
7240 try_chan_phase_entry!(self, chan.accept_channel(&msg, &self.default_configuration.channel_handshake_limits, &peer_state.latest_features), phase);
7241 (chan.context.get_value_satoshis(), chan.context.get_funding_redeemscript().to_v0_p2wsh(), chan.context.get_user_id())
7244 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got an unexpected accept_channel message from peer with counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id));
7248 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.common_fields.temporary_channel_id))
7251 let mut pending_events = self.pending_events.lock().unwrap();
7252 pending_events.push_back((events::Event::FundingGenerationReady {
7253 temporary_channel_id: msg.common_fields.temporary_channel_id,
7254 counterparty_node_id: *counterparty_node_id,
7255 channel_value_satoshis: value,
7257 user_channel_id: user_id,
7262 fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
7263 let best_block = *self.best_block.read().unwrap();
7265 let per_peer_state = self.per_peer_state.read().unwrap();
7266 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7268 debug_assert!(false);
7269 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.temporary_channel_id)
7272 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7273 let peer_state = &mut *peer_state_lock;
7274 let (mut chan, funding_msg_opt, monitor) =
7275 match peer_state.channel_by_id.remove(&msg.temporary_channel_id) {
7276 Some(ChannelPhase::UnfundedInboundV1(inbound_chan)) => {
7277 let logger = WithChannelContext::from(&self.logger, &inbound_chan.context);
7278 match inbound_chan.funding_created(msg, best_block, &self.signer_provider, &&logger) {
7280 Err((inbound_chan, err)) => {
7281 // We've already removed this inbound channel from the map in `PeerState`
7282 // above so at this point we just need to clean up any lingering entries
7283 // concerning this channel as it is safe to do so.
7284 debug_assert!(matches!(err, ChannelError::Close(_)));
7285 // Really we should be returning the channel_id the peer expects based
7286 // on their funding info here, but they're horribly confused anyway, so
7287 // there's not a lot we can do to save them.
7288 return Err(convert_chan_phase_err!(self, err, &mut ChannelPhase::UnfundedInboundV1(inbound_chan), &msg.temporary_channel_id).1);
7292 Some(mut phase) => {
7293 let err_msg = format!("Got an unexpected funding_created message from peer with counterparty_node_id {}", counterparty_node_id);
7294 let err = ChannelError::Close(err_msg);
7295 return Err(convert_chan_phase_err!(self, err, &mut phase, &msg.temporary_channel_id).1);
7297 None => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.temporary_channel_id))
7300 let funded_channel_id = chan.context.channel_id();
7302 macro_rules! fail_chan { ($err: expr) => { {
7303 // Note that at this point we've filled in the funding outpoint on our
7304 // channel, but its actually in conflict with another channel. Thus, if
7305 // we call `convert_chan_phase_err` immediately (thus calling
7306 // `update_maps_on_chan_removal`), we'll remove the existing channel
7307 // from `outpoint_to_peer`. Thus, we must first unset the funding outpoint
7309 let err = ChannelError::Close($err.to_owned());
7310 chan.unset_funding_info(msg.temporary_channel_id);
7311 return Err(convert_chan_phase_err!(self, err, chan, &funded_channel_id, UNFUNDED_CHANNEL).1);
7314 match peer_state.channel_by_id.entry(funded_channel_id) {
7315 hash_map::Entry::Occupied(_) => {
7316 fail_chan!("Already had channel with the new channel_id");
7318 hash_map::Entry::Vacant(e) => {
7319 let mut outpoint_to_peer_lock = self.outpoint_to_peer.lock().unwrap();
7320 match outpoint_to_peer_lock.entry(monitor.get_funding_txo().0) {
7321 hash_map::Entry::Occupied(_) => {
7322 fail_chan!("The funding_created message had the same funding_txid as an existing channel - funding is not possible");
7324 hash_map::Entry::Vacant(i_e) => {
7325 let monitor_res = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor);
7326 if let Ok(persist_state) = monitor_res {
7327 i_e.insert(chan.context.get_counterparty_node_id());
7328 mem::drop(outpoint_to_peer_lock);
7330 // There's no problem signing a counterparty's funding transaction if our monitor
7331 // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
7332 // accepted payment from yet. We do, however, need to wait to send our channel_ready
7333 // until we have persisted our monitor.
7334 if let Some(msg) = funding_msg_opt {
7335 peer_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
7336 node_id: counterparty_node_id.clone(),
7341 if let ChannelPhase::Funded(chan) = e.insert(ChannelPhase::Funded(chan)) {
7342 handle_new_monitor_update!(self, persist_state, peer_state_lock, peer_state,
7343 per_peer_state, chan, INITIAL_MONITOR);
7345 unreachable!("This must be a funded channel as we just inserted it.");
7349 let logger = WithChannelContext::from(&self.logger, &chan.context);
7350 log_error!(logger, "Persisting initial ChannelMonitor failed, implying the funding outpoint was duplicated");
7351 fail_chan!("Duplicate funding outpoint");
7359 fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
7360 let best_block = *self.best_block.read().unwrap();
7361 let per_peer_state = self.per_peer_state.read().unwrap();
7362 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7364 debug_assert!(false);
7365 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7368 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7369 let peer_state = &mut *peer_state_lock;
7370 match peer_state.channel_by_id.entry(msg.channel_id) {
7371 hash_map::Entry::Occupied(chan_phase_entry) => {
7372 if matches!(chan_phase_entry.get(), ChannelPhase::UnfundedOutboundV1(_)) {
7373 let chan = if let ChannelPhase::UnfundedOutboundV1(chan) = chan_phase_entry.remove() { chan } else { unreachable!() };
7374 let logger = WithContext::from(
7376 Some(chan.context.get_counterparty_node_id()),
7377 Some(chan.context.channel_id())
7380 chan.funding_signed(&msg, best_block, &self.signer_provider, &&logger);
7382 Ok((mut chan, monitor)) => {
7383 if let Ok(persist_status) = self.chain_monitor.watch_channel(chan.context.get_funding_txo().unwrap(), monitor) {
7384 // We really should be able to insert here without doing a second
7385 // lookup, but sadly rust stdlib doesn't currently allow keeping
7386 // the original Entry around with the value removed.
7387 let mut chan = peer_state.channel_by_id.entry(msg.channel_id).or_insert(ChannelPhase::Funded(chan));
7388 if let ChannelPhase::Funded(ref mut chan) = &mut chan {
7389 handle_new_monitor_update!(self, persist_status, peer_state_lock, peer_state, per_peer_state, chan, INITIAL_MONITOR);
7390 } else { unreachable!(); }
7393 let e = ChannelError::Close("Channel funding outpoint was a duplicate".to_owned());
7394 // We weren't able to watch the channel to begin with, so no
7395 // updates should be made on it. Previously, full_stack_target
7396 // found an (unreachable) panic when the monitor update contained
7397 // within `shutdown_finish` was applied.
7398 chan.unset_funding_info(msg.channel_id);
7399 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::Funded(chan), &msg.channel_id).1);
7403 debug_assert!(matches!(e, ChannelError::Close(_)),
7404 "We don't have a channel anymore, so the error better have expected close");
7405 // We've already removed this outbound channel from the map in
7406 // `PeerState` above so at this point we just need to clean up any
7407 // lingering entries concerning this channel as it is safe to do so.
7408 return Err(convert_chan_phase_err!(self, e, &mut ChannelPhase::UnfundedOutboundV1(chan), &msg.channel_id).1);
7412 return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id));
7415 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
7419 fn internal_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) -> Result<(), MsgHandleErrInternal> {
7420 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7421 // closing a channel), so any changes are likely to be lost on restart!
7422 let per_peer_state = self.per_peer_state.read().unwrap();
7423 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7425 debug_assert!(false);
7426 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7428 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7429 let peer_state = &mut *peer_state_lock;
7430 match peer_state.channel_by_id.entry(msg.channel_id) {
7431 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7432 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7433 let logger = WithChannelContext::from(&self.logger, &chan.context);
7434 let announcement_sigs_opt = try_chan_phase_entry!(self, chan.channel_ready(&msg, &self.node_signer,
7435 self.chain_hash, &self.default_configuration, &self.best_block.read().unwrap(), &&logger), chan_phase_entry);
7436 if let Some(announcement_sigs) = announcement_sigs_opt {
7437 log_trace!(logger, "Sending announcement_signatures for channel {}", chan.context.channel_id());
7438 peer_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
7439 node_id: counterparty_node_id.clone(),
7440 msg: announcement_sigs,
7442 } else if chan.context.is_usable() {
7443 // If we're sending an announcement_signatures, we'll send the (public)
7444 // channel_update after sending a channel_announcement when we receive our
7445 // counterparty's announcement_signatures. Thus, we only bother to send a
7446 // channel_update here if the channel is not public, i.e. we're not sending an
7447 // announcement_signatures.
7448 log_trace!(logger, "Sending private initial channel_update for our counterparty on channel {}", chan.context.channel_id());
7449 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
7450 peer_state.pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
7451 node_id: counterparty_node_id.clone(),
7458 let mut pending_events = self.pending_events.lock().unwrap();
7459 emit_channel_ready_event!(pending_events, chan);
7464 try_chan_phase_entry!(self, Err(ChannelError::Close(
7465 "Got a channel_ready message for an unfunded channel!".into())), chan_phase_entry)
7468 hash_map::Entry::Vacant(_) => {
7469 Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7474 fn internal_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
7475 let mut dropped_htlcs: Vec<(HTLCSource, PaymentHash)> = Vec::new();
7476 let mut finish_shutdown = None;
7478 let per_peer_state = self.per_peer_state.read().unwrap();
7479 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7481 debug_assert!(false);
7482 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7484 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7485 let peer_state = &mut *peer_state_lock;
7486 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7487 let phase = chan_phase_entry.get_mut();
7489 ChannelPhase::Funded(chan) => {
7490 if !chan.received_shutdown() {
7491 let logger = WithChannelContext::from(&self.logger, &chan.context);
7492 log_info!(logger, "Received a shutdown message from our counterparty for channel {}{}.",
7494 if chan.sent_shutdown() { " after we initiated shutdown" } else { "" });
7497 let funding_txo_opt = chan.context.get_funding_txo();
7498 let (shutdown, monitor_update_opt, htlcs) = try_chan_phase_entry!(self,
7499 chan.shutdown(&self.signer_provider, &peer_state.latest_features, &msg), chan_phase_entry);
7500 dropped_htlcs = htlcs;
7502 if let Some(msg) = shutdown {
7503 // We can send the `shutdown` message before updating the `ChannelMonitor`
7504 // here as we don't need the monitor update to complete until we send a
7505 // `shutdown_signed`, which we'll delay if we're pending a monitor update.
7506 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
7507 node_id: *counterparty_node_id,
7511 // Update the monitor with the shutdown script if necessary.
7512 if let Some(monitor_update) = monitor_update_opt {
7513 handle_new_monitor_update!(self, funding_txo_opt.unwrap(), monitor_update,
7514 peer_state_lock, peer_state, per_peer_state, chan);
7517 ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::UnfundedOutboundV1(_) => {
7518 let context = phase.context_mut();
7519 let logger = WithChannelContext::from(&self.logger, context);
7520 log_error!(logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7521 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7522 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7524 // TODO(dual_funding): Combine this match arm with above.
7525 #[cfg(any(dual_funding, splicing))]
7526 ChannelPhase::UnfundedInboundV2(_) | ChannelPhase::UnfundedOutboundV2(_) => {
7527 let context = phase.context_mut();
7528 log_error!(self.logger, "Immediately closing unfunded channel {} as peer asked to cooperatively shut it down (which is unnecessary)", &msg.channel_id);
7529 let mut chan = remove_channel_phase!(self, chan_phase_entry);
7530 finish_shutdown = Some(chan.context_mut().force_shutdown(false, ClosureReason::CounterpartyCoopClosedUnfundedChannel));
7534 return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7537 for htlc_source in dropped_htlcs.drain(..) {
7538 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id.clone()), channel_id: msg.channel_id };
7539 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
7540 self.fail_htlc_backwards_internal(&htlc_source.0, &htlc_source.1, &reason, receiver);
7542 if let Some(shutdown_res) = finish_shutdown {
7543 self.finish_close_channel(shutdown_res);
7549 fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
7550 let per_peer_state = self.per_peer_state.read().unwrap();
7551 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7553 debug_assert!(false);
7554 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7556 let (tx, chan_option, shutdown_result) = {
7557 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7558 let peer_state = &mut *peer_state_lock;
7559 match peer_state.channel_by_id.entry(msg.channel_id.clone()) {
7560 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7561 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7562 let (closing_signed, tx, shutdown_result) = try_chan_phase_entry!(self, chan.closing_signed(&self.fee_estimator, &msg), chan_phase_entry);
7563 debug_assert_eq!(shutdown_result.is_some(), chan.is_shutdown());
7564 if let Some(msg) = closing_signed {
7565 peer_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
7566 node_id: counterparty_node_id.clone(),
7571 // We're done with this channel, we've got a signed closing transaction and
7572 // will send the closing_signed back to the remote peer upon return. This
7573 // also implies there are no pending HTLCs left on the channel, so we can
7574 // fully delete it from tracking (the channel monitor is still around to
7575 // watch for old state broadcasts)!
7576 (tx, Some(remove_channel_phase!(self, chan_phase_entry)), shutdown_result)
7577 } else { (tx, None, shutdown_result) }
7579 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7580 "Got a closing_signed message for an unfunded channel!".into())), chan_phase_entry);
7583 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7586 if let Some(broadcast_tx) = tx {
7587 let channel_id = chan_option.as_ref().map(|channel| channel.context().channel_id());
7588 log_info!(WithContext::from(&self.logger, Some(*counterparty_node_id), channel_id), "Broadcasting {}", log_tx!(broadcast_tx));
7589 self.tx_broadcaster.broadcast_transactions(&[&broadcast_tx]);
7591 if let Some(ChannelPhase::Funded(chan)) = chan_option {
7592 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
7593 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
7594 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
7599 mem::drop(per_peer_state);
7600 if let Some(shutdown_result) = shutdown_result {
7601 self.finish_close_channel(shutdown_result);
7606 fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
7607 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
7608 //determine the state of the payment based on our response/if we forward anything/the time
7609 //we take to respond. We should take care to avoid allowing such an attack.
7611 //TODO: There exists a further attack where a node may garble the onion data, forward it to
7612 //us repeatedly garbled in different ways, and compare our error messages, which are
7613 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
7614 //but we should prevent it anyway.
7616 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7617 // closing a channel), so any changes are likely to be lost on restart!
7619 let decoded_hop_res = self.decode_update_add_htlc_onion(msg, counterparty_node_id);
7620 let per_peer_state = self.per_peer_state.read().unwrap();
7621 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7623 debug_assert!(false);
7624 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7626 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7627 let peer_state = &mut *peer_state_lock;
7628 match peer_state.channel_by_id.entry(msg.channel_id) {
7629 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7630 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7631 let mut pending_forward_info = match decoded_hop_res {
7632 Ok((next_hop, shared_secret, next_packet_pk_opt)) =>
7633 self.construct_pending_htlc_status(
7634 msg, counterparty_node_id, shared_secret, next_hop,
7635 chan.context.config().accept_underpaying_htlcs, next_packet_pk_opt,
7637 Err(e) => PendingHTLCStatus::Fail(e)
7639 let logger = WithChannelContext::from(&self.logger, &chan.context);
7640 // If the update_add is completely bogus, the call will Err and we will close,
7641 // but if we've sent a shutdown and they haven't acknowledged it yet, we just
7642 // want to reject the new HTLC and fail it backwards instead of forwarding.
7643 if let Err((_, error_code)) = chan.can_accept_incoming_htlc(&msg, &self.fee_estimator, &logger) {
7644 if msg.blinding_point.is_some() {
7645 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(
7646 msgs::UpdateFailMalformedHTLC {
7647 channel_id: msg.channel_id,
7648 htlc_id: msg.htlc_id,
7649 sha256_of_onion: [0; 32],
7650 failure_code: INVALID_ONION_BLINDING,
7654 match pending_forward_info {
7655 PendingHTLCStatus::Forward(PendingHTLCInfo {
7656 ref incoming_shared_secret, ref routing, ..
7658 let reason = if routing.blinded_failure().is_some() {
7659 HTLCFailReason::reason(INVALID_ONION_BLINDING, vec![0; 32])
7660 } else if (error_code & 0x1000) != 0 {
7661 let (real_code, error_data) = self.get_htlc_inbound_temp_fail_err_and_data(error_code, chan);
7662 HTLCFailReason::reason(real_code, error_data)
7664 HTLCFailReason::from_failure_code(error_code)
7665 }.get_encrypted_failure_packet(incoming_shared_secret, &None);
7666 let msg = msgs::UpdateFailHTLC {
7667 channel_id: msg.channel_id,
7668 htlc_id: msg.htlc_id,
7671 pending_forward_info = PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg));
7677 try_chan_phase_entry!(self, chan.update_add_htlc(&msg, pending_forward_info), chan_phase_entry);
7679 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7680 "Got an update_add_htlc message for an unfunded channel!".into())), chan_phase_entry);
7683 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7688 fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
7690 let next_user_channel_id;
7691 let (htlc_source, forwarded_htlc_value, skimmed_fee_msat) = {
7692 let per_peer_state = self.per_peer_state.read().unwrap();
7693 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7695 debug_assert!(false);
7696 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7698 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7699 let peer_state = &mut *peer_state_lock;
7700 match peer_state.channel_by_id.entry(msg.channel_id) {
7701 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7702 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7703 let res = try_chan_phase_entry!(self, chan.update_fulfill_htlc(&msg), chan_phase_entry);
7704 if let HTLCSource::PreviousHopData(prev_hop) = &res.0 {
7705 let logger = WithChannelContext::from(&self.logger, &chan.context);
7707 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
7709 peer_state.actions_blocking_raa_monitor_updates.entry(msg.channel_id)
7710 .or_insert_with(Vec::new)
7711 .push(RAAMonitorUpdateBlockingAction::from_prev_hop_data(&prev_hop));
7713 // Note that we do not need to push an `actions_blocking_raa_monitor_updates`
7714 // entry here, even though we *do* need to block the next RAA monitor update.
7715 // We do this instead in the `claim_funds_internal` by attaching a
7716 // `ReleaseRAAChannelMonitorUpdate` action to the event generated when the
7717 // outbound HTLC is claimed. This is guaranteed to all complete before we
7718 // process the RAA as messages are processed from single peers serially.
7719 funding_txo = chan.context.get_funding_txo().expect("We won't accept a fulfill until funded");
7720 next_user_channel_id = chan.context.get_user_id();
7723 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7724 "Got an update_fulfill_htlc message for an unfunded channel!".into())), chan_phase_entry);
7727 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7730 self.claim_funds_internal(htlc_source, msg.payment_preimage.clone(),
7731 Some(forwarded_htlc_value), skimmed_fee_msat, false, false, Some(*counterparty_node_id),
7732 funding_txo, msg.channel_id, Some(next_user_channel_id),
7738 fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
7739 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7740 // closing a channel), so any changes are likely to be lost on restart!
7741 let per_peer_state = self.per_peer_state.read().unwrap();
7742 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7744 debug_assert!(false);
7745 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7747 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7748 let peer_state = &mut *peer_state_lock;
7749 match peer_state.channel_by_id.entry(msg.channel_id) {
7750 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7751 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7752 try_chan_phase_entry!(self, chan.update_fail_htlc(&msg, HTLCFailReason::from_msg(msg)), chan_phase_entry);
7754 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7755 "Got an update_fail_htlc message for an unfunded channel!".into())), chan_phase_entry);
7758 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7763 fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
7764 // Note that the ChannelManager is NOT re-persisted on disk after this (unless we error
7765 // closing a channel), so any changes are likely to be lost on restart!
7766 let per_peer_state = self.per_peer_state.read().unwrap();
7767 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7769 debug_assert!(false);
7770 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7772 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7773 let peer_state = &mut *peer_state_lock;
7774 match peer_state.channel_by_id.entry(msg.channel_id) {
7775 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7776 if (msg.failure_code & 0x8000) == 0 {
7777 let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
7778 try_chan_phase_entry!(self, Err(chan_err), chan_phase_entry);
7780 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7781 try_chan_phase_entry!(self, chan.update_fail_malformed_htlc(&msg, HTLCFailReason::reason(msg.failure_code, msg.sha256_of_onion.to_vec())), chan_phase_entry);
7783 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7784 "Got an update_fail_malformed_htlc message for an unfunded channel!".into())), chan_phase_entry);
7788 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7792 fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
7793 let per_peer_state = self.per_peer_state.read().unwrap();
7794 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
7796 debug_assert!(false);
7797 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7799 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
7800 let peer_state = &mut *peer_state_lock;
7801 match peer_state.channel_by_id.entry(msg.channel_id) {
7802 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7803 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7804 let logger = WithChannelContext::from(&self.logger, &chan.context);
7805 let funding_txo = chan.context.get_funding_txo();
7806 let monitor_update_opt = try_chan_phase_entry!(self, chan.commitment_signed(&msg, &&logger), chan_phase_entry);
7807 if let Some(monitor_update) = monitor_update_opt {
7808 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update, peer_state_lock,
7809 peer_state, per_peer_state, chan);
7813 return try_chan_phase_entry!(self, Err(ChannelError::Close(
7814 "Got a commitment_signed message for an unfunded channel!".into())), chan_phase_entry);
7817 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
7821 fn push_decode_update_add_htlcs(&self, mut update_add_htlcs: (u64, Vec<msgs::UpdateAddHTLC>)) {
7822 let mut push_forward_event = self.forward_htlcs.lock().unwrap().is_empty();
7823 let mut decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
7824 push_forward_event &= decode_update_add_htlcs.is_empty();
7825 let scid = update_add_htlcs.0;
7826 match decode_update_add_htlcs.entry(scid) {
7827 hash_map::Entry::Occupied(mut e) => { e.get_mut().append(&mut update_add_htlcs.1); },
7828 hash_map::Entry::Vacant(e) => { e.insert(update_add_htlcs.1); },
7830 if push_forward_event { self.push_pending_forwards_ev(); }
7834 fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) {
7835 let push_forward_event = self.forward_htlcs_without_forward_event(per_source_pending_forwards);
7836 if push_forward_event { self.push_pending_forwards_ev() }
7840 fn forward_htlcs_without_forward_event(&self, per_source_pending_forwards: &mut [(u64, OutPoint, ChannelId, u128, Vec<(PendingHTLCInfo, u64)>)]) -> bool {
7841 let mut push_forward_event = false;
7842 for &mut (prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_user_channel_id, ref mut pending_forwards) in per_source_pending_forwards {
7843 let mut new_intercept_events = VecDeque::new();
7844 let mut failed_intercept_forwards = Vec::new();
7845 if !pending_forwards.is_empty() {
7846 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
7847 let scid = match forward_info.routing {
7848 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
7849 PendingHTLCRouting::Receive { .. } => 0,
7850 PendingHTLCRouting::ReceiveKeysend { .. } => 0,
7852 // Pull this now to avoid introducing a lock order with `forward_htlcs`.
7853 let is_our_scid = self.short_to_chan_info.read().unwrap().contains_key(&scid);
7855 let decode_update_add_htlcs_empty = self.decode_update_add_htlcs.lock().unwrap().is_empty();
7856 let mut forward_htlcs = self.forward_htlcs.lock().unwrap();
7857 let forward_htlcs_empty = forward_htlcs.is_empty();
7858 match forward_htlcs.entry(scid) {
7859 hash_map::Entry::Occupied(mut entry) => {
7860 entry.get_mut().push(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7861 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info }));
7863 hash_map::Entry::Vacant(entry) => {
7864 if !is_our_scid && forward_info.incoming_amt_msat.is_some() &&
7865 fake_scid::is_valid_intercept(&self.fake_scid_rand_bytes, scid, &self.chain_hash)
7867 let intercept_id = InterceptId(Sha256::hash(&forward_info.incoming_shared_secret).to_byte_array());
7868 let mut pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
7869 match pending_intercepts.entry(intercept_id) {
7870 hash_map::Entry::Vacant(entry) => {
7871 new_intercept_events.push_back((events::Event::HTLCIntercepted {
7872 requested_next_hop_scid: scid,
7873 payment_hash: forward_info.payment_hash,
7874 inbound_amount_msat: forward_info.incoming_amt_msat.unwrap(),
7875 expected_outbound_amount_msat: forward_info.outgoing_amt_msat,
7878 entry.insert(PendingAddHTLCInfo {
7879 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info });
7881 hash_map::Entry::Occupied(_) => {
7882 let logger = WithContext::from(&self.logger, None, Some(prev_channel_id));
7883 log_info!(logger, "Failed to forward incoming HTLC: detected duplicate intercepted payment over short channel id {}", scid);
7884 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
7885 short_channel_id: prev_short_channel_id,
7886 user_channel_id: Some(prev_user_channel_id),
7887 outpoint: prev_funding_outpoint,
7888 channel_id: prev_channel_id,
7889 htlc_id: prev_htlc_id,
7890 incoming_packet_shared_secret: forward_info.incoming_shared_secret,
7891 phantom_shared_secret: None,
7892 blinded_failure: forward_info.routing.blinded_failure(),
7895 failed_intercept_forwards.push((htlc_source, forward_info.payment_hash,
7896 HTLCFailReason::from_failure_code(0x4000 | 10),
7897 HTLCDestination::InvalidForward { requested_forward_scid: scid },
7902 // We don't want to generate a PendingHTLCsForwardable event if only intercepted
7903 // payments are being processed.
7904 push_forward_event |= forward_htlcs_empty && decode_update_add_htlcs_empty;
7905 entry.insert(vec!(HTLCForwardInfo::AddHTLC(PendingAddHTLCInfo {
7906 prev_short_channel_id, prev_funding_outpoint, prev_channel_id, prev_htlc_id, prev_user_channel_id, forward_info })));
7913 for (htlc_source, payment_hash, failure_reason, destination) in failed_intercept_forwards.drain(..) {
7914 push_forward_event |= self.fail_htlc_backwards_internal_without_forward_event(&htlc_source, &payment_hash, &failure_reason, destination);
7917 if !new_intercept_events.is_empty() {
7918 let mut events = self.pending_events.lock().unwrap();
7919 events.append(&mut new_intercept_events);
7925 fn push_pending_forwards_ev(&self) {
7926 let mut pending_events = self.pending_events.lock().unwrap();
7927 let is_processing_events = self.pending_events_processor.load(Ordering::Acquire);
7928 let num_forward_events = pending_events.iter().filter(|(ev, _)|
7929 if let events::Event::PendingHTLCsForwardable { .. } = ev { true } else { false }
7931 // We only want to push a PendingHTLCsForwardable event if no others are queued. Processing
7932 // events is done in batches and they are not removed until we're done processing each
7933 // batch. Since handling a `PendingHTLCsForwardable` event will call back into the
7934 // `ChannelManager`, we'll still see the original forwarding event not removed. Phantom
7935 // payments will need an additional forwarding event before being claimed to make them look
7936 // real by taking more time.
7937 if (is_processing_events && num_forward_events <= 1) || num_forward_events < 1 {
7938 pending_events.push_back((Event::PendingHTLCsForwardable {
7939 time_forwardable: Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS),
7944 /// Checks whether [`ChannelMonitorUpdate`]s generated by the receipt of a remote
7945 /// [`msgs::RevokeAndACK`] should be held for the given channel until some other action
7946 /// completes. Note that this needs to happen in the same [`PeerState`] mutex as any release of
7947 /// the [`ChannelMonitorUpdate`] in question.
7948 fn raa_monitor_updates_held(&self,
7949 actions_blocking_raa_monitor_updates: &BTreeMap<ChannelId, Vec<RAAMonitorUpdateBlockingAction>>,
7950 channel_funding_outpoint: OutPoint, channel_id: ChannelId, counterparty_node_id: PublicKey
7952 actions_blocking_raa_monitor_updates
7953 .get(&channel_id).map(|v| !v.is_empty()).unwrap_or(false)
7954 || self.pending_events.lock().unwrap().iter().any(|(_, action)| {
7955 action == &Some(EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
7956 channel_funding_outpoint,
7958 counterparty_node_id,
7963 #[cfg(any(test, feature = "_test_utils"))]
7964 pub(crate) fn test_raa_monitor_updates_held(&self,
7965 counterparty_node_id: PublicKey, channel_id: ChannelId
7967 let per_peer_state = self.per_peer_state.read().unwrap();
7968 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
7969 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
7970 let peer_state = &mut *peer_state_lck;
7972 if let Some(chan) = peer_state.channel_by_id.get(&channel_id) {
7973 return self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
7974 chan.context().get_funding_txo().unwrap(), channel_id, counterparty_node_id);
7980 fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
7981 let htlcs_to_fail = {
7982 let per_peer_state = self.per_peer_state.read().unwrap();
7983 let mut peer_state_lock = per_peer_state.get(counterparty_node_id)
7985 debug_assert!(false);
7986 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
7987 }).map(|mtx| mtx.lock().unwrap())?;
7988 let peer_state = &mut *peer_state_lock;
7989 match peer_state.channel_by_id.entry(msg.channel_id) {
7990 hash_map::Entry::Occupied(mut chan_phase_entry) => {
7991 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
7992 let logger = WithChannelContext::from(&self.logger, &chan.context);
7993 let funding_txo_opt = chan.context.get_funding_txo();
7994 let mon_update_blocked = if let Some(funding_txo) = funding_txo_opt {
7995 self.raa_monitor_updates_held(
7996 &peer_state.actions_blocking_raa_monitor_updates, funding_txo, msg.channel_id,
7997 *counterparty_node_id)
7999 let (htlcs_to_fail, monitor_update_opt) = try_chan_phase_entry!(self,
8000 chan.revoke_and_ack(&msg, &self.fee_estimator, &&logger, mon_update_blocked), chan_phase_entry);
8001 if let Some(monitor_update) = monitor_update_opt {
8002 let funding_txo = funding_txo_opt
8003 .expect("Funding outpoint must have been set for RAA handling to succeed");
8004 handle_new_monitor_update!(self, funding_txo, monitor_update,
8005 peer_state_lock, peer_state, per_peer_state, chan);
8009 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8010 "Got a revoke_and_ack message for an unfunded channel!".into())), chan_phase_entry);
8013 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8016 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id, counterparty_node_id);
8020 fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
8021 let per_peer_state = self.per_peer_state.read().unwrap();
8022 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8024 debug_assert!(false);
8025 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8027 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8028 let peer_state = &mut *peer_state_lock;
8029 match peer_state.channel_by_id.entry(msg.channel_id) {
8030 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8031 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8032 let logger = WithChannelContext::from(&self.logger, &chan.context);
8033 try_chan_phase_entry!(self, chan.update_fee(&self.fee_estimator, &msg, &&logger), chan_phase_entry);
8035 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8036 "Got an update_fee message for an unfunded channel!".into())), chan_phase_entry);
8039 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8044 fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
8045 let per_peer_state = self.per_peer_state.read().unwrap();
8046 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8048 debug_assert!(false);
8049 MsgHandleErrInternal::send_err_msg_no_close(format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id), msg.channel_id)
8051 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8052 let peer_state = &mut *peer_state_lock;
8053 match peer_state.channel_by_id.entry(msg.channel_id) {
8054 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8055 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8056 if !chan.context.is_usable() {
8057 return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
8060 peer_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
8061 msg: try_chan_phase_entry!(self, chan.announcement_signatures(
8062 &self.node_signer, self.chain_hash, self.best_block.read().unwrap().height,
8063 msg, &self.default_configuration
8064 ), chan_phase_entry),
8065 // Note that announcement_signatures fails if the channel cannot be announced,
8066 // so get_channel_update_for_broadcast will never fail by the time we get here.
8067 update_msg: Some(self.get_channel_update_for_broadcast(chan).unwrap()),
8070 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8071 "Got an announcement_signatures message for an unfunded channel!".into())), chan_phase_entry);
8074 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close(format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}", counterparty_node_id), msg.channel_id))
8079 /// Returns DoPersist if anything changed, otherwise either SkipPersistNoEvents or an Err.
8080 fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<NotifyOption, MsgHandleErrInternal> {
8081 let (chan_counterparty_node_id, chan_id) = match self.short_to_chan_info.read().unwrap().get(&msg.contents.short_channel_id) {
8082 Some((cp_id, chan_id)) => (cp_id.clone(), chan_id.clone()),
8084 // It's not a local channel
8085 return Ok(NotifyOption::SkipPersistNoEvents)
8088 let per_peer_state = self.per_peer_state.read().unwrap();
8089 let peer_state_mutex_opt = per_peer_state.get(&chan_counterparty_node_id);
8090 if peer_state_mutex_opt.is_none() {
8091 return Ok(NotifyOption::SkipPersistNoEvents)
8093 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
8094 let peer_state = &mut *peer_state_lock;
8095 match peer_state.channel_by_id.entry(chan_id) {
8096 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8097 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8098 if chan.context.get_counterparty_node_id() != *counterparty_node_id {
8099 if chan.context.should_announce() {
8100 // If the announcement is about a channel of ours which is public, some
8101 // other peer may simply be forwarding all its gossip to us. Don't provide
8102 // a scary-looking error message and return Ok instead.
8103 return Ok(NotifyOption::SkipPersistNoEvents);
8105 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a channel_update for a channel from the wrong node - it shouldn't know about our private channels!".to_owned(), chan_id));
8107 let were_node_one = self.get_our_node_id().serialize()[..] < chan.context.get_counterparty_node_id().serialize()[..];
8108 let msg_from_node_one = msg.contents.flags & 1 == 0;
8109 if were_node_one == msg_from_node_one {
8110 return Ok(NotifyOption::SkipPersistNoEvents);
8112 let logger = WithChannelContext::from(&self.logger, &chan.context);
8113 log_debug!(logger, "Received channel_update {:?} for channel {}.", msg, chan_id);
8114 let did_change = try_chan_phase_entry!(self, chan.channel_update(&msg), chan_phase_entry);
8115 // If nothing changed after applying their update, we don't need to bother
8118 return Ok(NotifyOption::SkipPersistNoEvents);
8122 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8123 "Got a channel_update for an unfunded channel!".into())), chan_phase_entry);
8126 hash_map::Entry::Vacant(_) => return Ok(NotifyOption::SkipPersistNoEvents)
8128 Ok(NotifyOption::DoPersist)
8131 fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<NotifyOption, MsgHandleErrInternal> {
8132 let need_lnd_workaround = {
8133 let per_peer_state = self.per_peer_state.read().unwrap();
8135 let peer_state_mutex = per_peer_state.get(counterparty_node_id)
8137 debug_assert!(false);
8138 MsgHandleErrInternal::send_err_msg_no_close(
8139 format!("Can't find a peer matching the passed counterparty node_id {}", counterparty_node_id),
8143 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), Some(msg.channel_id));
8144 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8145 let peer_state = &mut *peer_state_lock;
8146 match peer_state.channel_by_id.entry(msg.channel_id) {
8147 hash_map::Entry::Occupied(mut chan_phase_entry) => {
8148 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
8149 // Currently, we expect all holding cell update_adds to be dropped on peer
8150 // disconnect, so Channel's reestablish will never hand us any holding cell
8151 // freed HTLCs to fail backwards. If in the future we no longer drop pending
8152 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
8153 let responses = try_chan_phase_entry!(self, chan.channel_reestablish(
8154 msg, &&logger, &self.node_signer, self.chain_hash,
8155 &self.default_configuration, &*self.best_block.read().unwrap()), chan_phase_entry);
8156 let mut channel_update = None;
8157 if let Some(msg) = responses.shutdown_msg {
8158 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
8159 node_id: counterparty_node_id.clone(),
8162 } else if chan.context.is_usable() {
8163 // If the channel is in a usable state (ie the channel is not being shut
8164 // down), send a unicast channel_update to our counterparty to make sure
8165 // they have the latest channel parameters.
8166 if let Ok(msg) = self.get_channel_update_for_unicast(chan) {
8167 channel_update = Some(events::MessageSendEvent::SendChannelUpdate {
8168 node_id: chan.context.get_counterparty_node_id(),
8173 let need_lnd_workaround = chan.context.workaround_lnd_bug_4006.take();
8174 let (htlc_forwards, decode_update_add_htlcs) = self.handle_channel_resumption(
8175 &mut peer_state.pending_msg_events, chan, responses.raa, responses.commitment_update, responses.order,
8176 Vec::new(), Vec::new(), None, responses.channel_ready, responses.announcement_sigs);
8177 debug_assert!(htlc_forwards.is_none());
8178 debug_assert!(decode_update_add_htlcs.is_none());
8179 if let Some(upd) = channel_update {
8180 peer_state.pending_msg_events.push(upd);
8184 return try_chan_phase_entry!(self, Err(ChannelError::Close(
8185 "Got a channel_reestablish message for an unfunded channel!".into())), chan_phase_entry);
8188 hash_map::Entry::Vacant(_) => {
8189 log_debug!(logger, "Sending bogus ChannelReestablish for unknown channel {} to force channel closure",
8191 // Unfortunately, lnd doesn't force close on errors
8192 // (https://github.com/lightningnetwork/lnd/blob/abb1e3463f3a83bbb843d5c399869dbe930ad94f/htlcswitch/link.go#L2119).
8193 // One of the few ways to get an lnd counterparty to force close is by
8194 // replicating what they do when restoring static channel backups (SCBs). They
8195 // send an invalid `ChannelReestablish` with `0` commitment numbers and an
8196 // invalid `your_last_per_commitment_secret`.
8198 // Since we received a `ChannelReestablish` for a channel that doesn't exist, we
8199 // can assume it's likely the channel closed from our point of view, but it
8200 // remains open on the counterparty's side. By sending this bogus
8201 // `ChannelReestablish` message now as a response to theirs, we trigger them to
8202 // force close broadcasting their latest state. If the closing transaction from
8203 // our point of view remains unconfirmed, it'll enter a race with the
8204 // counterparty's to-be-broadcast latest commitment transaction.
8205 peer_state.pending_msg_events.push(MessageSendEvent::SendChannelReestablish {
8206 node_id: *counterparty_node_id,
8207 msg: msgs::ChannelReestablish {
8208 channel_id: msg.channel_id,
8209 next_local_commitment_number: 0,
8210 next_remote_commitment_number: 0,
8211 your_last_per_commitment_secret: [1u8; 32],
8212 my_current_per_commitment_point: PublicKey::from_slice(&[2u8; 33]).unwrap(),
8213 next_funding_txid: None,
8216 return Err(MsgHandleErrInternal::send_err_msg_no_close(
8217 format!("Got a message for a channel from the wrong node! No such channel for the passed counterparty_node_id {}",
8218 counterparty_node_id), msg.channel_id)
8224 if let Some(channel_ready_msg) = need_lnd_workaround {
8225 self.internal_channel_ready(counterparty_node_id, &channel_ready_msg)?;
8227 Ok(NotifyOption::SkipPersistHandleEvents)
8230 /// Process pending events from the [`chain::Watch`], returning whether any events were processed.
8231 fn process_pending_monitor_events(&self) -> bool {
8232 debug_assert!(self.total_consistency_lock.try_write().is_err()); // Caller holds read lock
8234 let mut failed_channels = Vec::new();
8235 let mut pending_monitor_events = self.chain_monitor.release_pending_monitor_events();
8236 let has_pending_monitor_events = !pending_monitor_events.is_empty();
8237 for (funding_outpoint, channel_id, mut monitor_events, counterparty_node_id) in pending_monitor_events.drain(..) {
8238 for monitor_event in monitor_events.drain(..) {
8239 match monitor_event {
8240 MonitorEvent::HTLCEvent(htlc_update) => {
8241 let logger = WithContext::from(&self.logger, counterparty_node_id, Some(channel_id));
8242 if let Some(preimage) = htlc_update.payment_preimage {
8243 log_trace!(logger, "Claiming HTLC with preimage {} from our monitor", preimage);
8244 self.claim_funds_internal(htlc_update.source, preimage,
8245 htlc_update.htlc_value_satoshis.map(|v| v * 1000), None, true,
8246 false, counterparty_node_id, funding_outpoint, channel_id, None);
8248 log_trace!(logger, "Failing HTLC with hash {} from our monitor", &htlc_update.payment_hash);
8249 let receiver = HTLCDestination::NextHopChannel { node_id: counterparty_node_id, channel_id };
8250 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
8251 self.fail_htlc_backwards_internal(&htlc_update.source, &htlc_update.payment_hash, &reason, receiver);
8254 MonitorEvent::HolderForceClosed(_) | MonitorEvent::HolderForceClosedWithInfo { .. } => {
8255 let counterparty_node_id_opt = match counterparty_node_id {
8256 Some(cp_id) => Some(cp_id),
8258 // TODO: Once we can rely on the counterparty_node_id from the
8259 // monitor event, this and the outpoint_to_peer map should be removed.
8260 let outpoint_to_peer = self.outpoint_to_peer.lock().unwrap();
8261 outpoint_to_peer.get(&funding_outpoint).cloned()
8264 if let Some(counterparty_node_id) = counterparty_node_id_opt {
8265 let per_peer_state = self.per_peer_state.read().unwrap();
8266 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8267 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8268 let peer_state = &mut *peer_state_lock;
8269 let pending_msg_events = &mut peer_state.pending_msg_events;
8270 if let hash_map::Entry::Occupied(chan_phase_entry) = peer_state.channel_by_id.entry(channel_id) {
8271 if let ChannelPhase::Funded(mut chan) = remove_channel_phase!(self, chan_phase_entry) {
8272 let reason = if let MonitorEvent::HolderForceClosedWithInfo { reason, .. } = monitor_event {
8275 ClosureReason::HolderForceClosed
8277 failed_channels.push(chan.context.force_shutdown(false, reason.clone()));
8278 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8279 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8280 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8284 pending_msg_events.push(events::MessageSendEvent::HandleError {
8285 node_id: chan.context.get_counterparty_node_id(),
8286 action: msgs::ErrorAction::DisconnectPeer {
8287 msg: Some(msgs::ErrorMessage { channel_id: chan.context.channel_id(), data: reason.to_string() })
8295 MonitorEvent::Completed { funding_txo, channel_id, monitor_update_id } => {
8296 self.channel_monitor_updated(&funding_txo, &channel_id, monitor_update_id, counterparty_node_id.as_ref());
8302 for failure in failed_channels.drain(..) {
8303 self.finish_close_channel(failure);
8306 has_pending_monitor_events
8309 /// In chanmon_consistency_target, we'd like to be able to restore monitor updating without
8310 /// handling all pending events (i.e. not PendingHTLCsForwardable). Thus, we expose monitor
8311 /// update events as a separate process method here.
8313 pub fn process_monitor_events(&self) {
8314 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8315 self.process_pending_monitor_events();
8318 /// Check the holding cell in each channel and free any pending HTLCs in them if possible.
8319 /// Returns whether there were any updates such as if pending HTLCs were freed or a monitor
8320 /// update was applied.
8321 fn check_free_holding_cells(&self) -> bool {
8322 let mut has_monitor_update = false;
8323 let mut failed_htlcs = Vec::new();
8325 // Walk our list of channels and find any that need to update. Note that when we do find an
8326 // update, if it includes actions that must be taken afterwards, we have to drop the
8327 // per-peer state lock as well as the top level per_peer_state lock. Thus, we loop until we
8328 // manage to go through all our peers without finding a single channel to update.
8330 let per_peer_state = self.per_peer_state.read().unwrap();
8331 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8333 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8334 let peer_state: &mut PeerState<_> = &mut *peer_state_lock;
8335 for (channel_id, chan) in peer_state.channel_by_id.iter_mut().filter_map(
8336 |(chan_id, phase)| if let ChannelPhase::Funded(chan) = phase { Some((chan_id, chan)) } else { None }
8338 let counterparty_node_id = chan.context.get_counterparty_node_id();
8339 let funding_txo = chan.context.get_funding_txo();
8340 let (monitor_opt, holding_cell_failed_htlcs) =
8341 chan.maybe_free_holding_cell_htlcs(&self.fee_estimator, &&WithChannelContext::from(&self.logger, &chan.context));
8342 if !holding_cell_failed_htlcs.is_empty() {
8343 failed_htlcs.push((holding_cell_failed_htlcs, *channel_id, counterparty_node_id));
8345 if let Some(monitor_update) = monitor_opt {
8346 has_monitor_update = true;
8348 handle_new_monitor_update!(self, funding_txo.unwrap(), monitor_update,
8349 peer_state_lock, peer_state, per_peer_state, chan);
8350 continue 'peer_loop;
8359 let has_update = has_monitor_update || !failed_htlcs.is_empty();
8360 for (failures, channel_id, counterparty_node_id) in failed_htlcs.drain(..) {
8361 self.fail_holding_cell_htlcs(failures, channel_id, &counterparty_node_id);
8367 /// When a call to a [`ChannelSigner`] method returns an error, this indicates that the signer
8368 /// is (temporarily) unavailable, and the operation should be retried later.
8370 /// This method allows for that retry - either checking for any signer-pending messages to be
8371 /// attempted in every channel, or in the specifically provided channel.
8373 /// [`ChannelSigner`]: crate::sign::ChannelSigner
8374 #[cfg(async_signing)]
8375 pub fn signer_unblocked(&self, channel_opt: Option<(PublicKey, ChannelId)>) {
8376 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8378 let unblock_chan = |phase: &mut ChannelPhase<SP>, pending_msg_events: &mut Vec<MessageSendEvent>| {
8379 let node_id = phase.context().get_counterparty_node_id();
8381 ChannelPhase::Funded(chan) => {
8382 let msgs = chan.signer_maybe_unblocked(&self.logger);
8383 if let Some(updates) = msgs.commitment_update {
8384 pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
8389 if let Some(msg) = msgs.funding_signed {
8390 pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
8395 if let Some(msg) = msgs.channel_ready {
8396 send_channel_ready!(self, pending_msg_events, chan, msg);
8399 ChannelPhase::UnfundedOutboundV1(chan) => {
8400 if let Some(msg) = chan.signer_maybe_unblocked(&self.logger) {
8401 pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
8407 ChannelPhase::UnfundedInboundV1(_) => {},
8411 let per_peer_state = self.per_peer_state.read().unwrap();
8412 if let Some((counterparty_node_id, channel_id)) = channel_opt {
8413 if let Some(peer_state_mutex) = per_peer_state.get(&counterparty_node_id) {
8414 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8415 let peer_state = &mut *peer_state_lock;
8416 if let Some(chan) = peer_state.channel_by_id.get_mut(&channel_id) {
8417 unblock_chan(chan, &mut peer_state.pending_msg_events);
8421 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8422 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8423 let peer_state = &mut *peer_state_lock;
8424 for (_, chan) in peer_state.channel_by_id.iter_mut() {
8425 unblock_chan(chan, &mut peer_state.pending_msg_events);
8431 /// Check whether any channels have finished removing all pending updates after a shutdown
8432 /// exchange and can now send a closing_signed.
8433 /// Returns whether any closing_signed messages were generated.
8434 fn maybe_generate_initial_closing_signed(&self) -> bool {
8435 let mut handle_errors: Vec<(PublicKey, Result<(), _>)> = Vec::new();
8436 let mut has_update = false;
8437 let mut shutdown_results = Vec::new();
8439 let per_peer_state = self.per_peer_state.read().unwrap();
8441 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
8442 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
8443 let peer_state = &mut *peer_state_lock;
8444 let pending_msg_events = &mut peer_state.pending_msg_events;
8445 peer_state.channel_by_id.retain(|channel_id, phase| {
8447 ChannelPhase::Funded(chan) => {
8448 let logger = WithChannelContext::from(&self.logger, &chan.context);
8449 match chan.maybe_propose_closing_signed(&self.fee_estimator, &&logger) {
8450 Ok((msg_opt, tx_opt, shutdown_result_opt)) => {
8451 if let Some(msg) = msg_opt {
8453 pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
8454 node_id: chan.context.get_counterparty_node_id(), msg,
8457 debug_assert_eq!(shutdown_result_opt.is_some(), chan.is_shutdown());
8458 if let Some(shutdown_result) = shutdown_result_opt {
8459 shutdown_results.push(shutdown_result);
8461 if let Some(tx) = tx_opt {
8462 // We're done with this channel. We got a closing_signed and sent back
8463 // a closing_signed with a closing transaction to broadcast.
8464 if let Ok(update) = self.get_channel_update_for_broadcast(&chan) {
8465 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
8466 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
8471 log_info!(logger, "Broadcasting {}", log_tx!(tx));
8472 self.tx_broadcaster.broadcast_transactions(&[&tx]);
8473 update_maps_on_chan_removal!(self, &chan.context);
8479 let (close_channel, res) = convert_chan_phase_err!(self, e, chan, channel_id, FUNDED_CHANNEL);
8480 handle_errors.push((chan.context.get_counterparty_node_id(), Err(res)));
8485 _ => true, // Retain unfunded channels if present.
8491 for (counterparty_node_id, err) in handle_errors.drain(..) {
8492 let _ = handle_error!(self, err, counterparty_node_id);
8495 for shutdown_result in shutdown_results.drain(..) {
8496 self.finish_close_channel(shutdown_result);
8502 /// Handle a list of channel failures during a block_connected or block_disconnected call,
8503 /// pushing the channel monitor update (if any) to the background events queue and removing the
8505 fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
8506 for mut failure in failed_channels.drain(..) {
8507 // Either a commitment transactions has been confirmed on-chain or
8508 // Channel::block_disconnected detected that the funding transaction has been
8509 // reorganized out of the main chain.
8510 // We cannot broadcast our latest local state via monitor update (as
8511 // Channel::force_shutdown tries to make us do) as we may still be in initialization,
8512 // so we track the update internally and handle it when the user next calls
8513 // timer_tick_occurred, guaranteeing we're running normally.
8514 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = failure.monitor_update.take() {
8515 assert_eq!(update.updates.len(), 1);
8516 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
8517 assert!(should_broadcast);
8518 } else { unreachable!(); }
8519 self.pending_background_events.lock().unwrap().push(
8520 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
8521 counterparty_node_id, funding_txo, update, channel_id,
8524 self.finish_close_channel(failure);
8529 macro_rules! create_offer_builder { ($self: ident, $builder: ty) => {
8530 /// Creates an [`OfferBuilder`] such that the [`Offer`] it builds is recognized by the
8531 /// [`ChannelManager`] when handling [`InvoiceRequest`] messages for the offer. The offer will
8532 /// not have an expiration unless otherwise set on the builder.
8536 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the offer.
8537 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8538 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8539 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8540 /// order to send the [`InvoiceRequest`].
8542 /// Also, uses a derived signing pubkey in the offer for recipient privacy.
8546 /// Requires a direct connection to the introduction node in the responding [`InvoiceRequest`]'s
8551 /// Errors if the parameterized [`Router`] is unable to create a blinded path for the offer.
8553 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8555 /// [`Offer`]: crate::offers::offer::Offer
8556 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8557 pub fn create_offer_builder(&$self) -> Result<$builder, Bolt12SemanticError> {
8558 let node_id = $self.get_our_node_id();
8559 let expanded_key = &$self.inbound_payment_key;
8560 let entropy = &*$self.entropy_source;
8561 let secp_ctx = &$self.secp_ctx;
8563 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8564 let builder = OfferBuilder::deriving_signing_pubkey(
8565 node_id, expanded_key, entropy, secp_ctx
8567 .chain_hash($self.chain_hash)
8574 macro_rules! create_refund_builder { ($self: ident, $builder: ty) => {
8575 /// Creates a [`RefundBuilder`] such that the [`Refund`] it builds is recognized by the
8576 /// [`ChannelManager`] when handling [`Bolt12Invoice`] messages for the refund.
8580 /// The provided `payment_id` is used to ensure that only one invoice is paid for the refund.
8581 /// See [Avoiding Duplicate Payments] for other requirements once the payment has been sent.
8583 /// The builder will have the provided expiration set. Any changes to the expiration on the
8584 /// returned builder will not be honored by [`ChannelManager`]. For `no-std`, the highest seen
8585 /// block time minus two hours is used for the current time when determining if the refund has
8588 /// To revoke the refund, use [`ChannelManager::abandon_payment`] prior to receiving the
8589 /// invoice. If abandoned, or an invoice isn't received before expiration, the payment will fail
8590 /// with an [`Event::InvoiceRequestFailed`].
8592 /// If `max_total_routing_fee_msat` is not specified, The default from
8593 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8597 /// Uses [`MessageRouter::create_blinded_paths`] to construct a [`BlindedPath`] for the refund.
8598 /// However, if one is not found, uses a one-hop [`BlindedPath`] with
8599 /// [`ChannelManager::get_our_node_id`] as the introduction node instead. In the latter case,
8600 /// the node must be announced, otherwise, there is no way to find a path to the introduction in
8601 /// order to send the [`Bolt12Invoice`].
8603 /// Also, uses a derived payer id in the refund for payer privacy.
8607 /// Requires a direct connection to an introduction node in the responding
8608 /// [`Bolt12Invoice::payment_paths`].
8613 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8614 /// - `amount_msats` is invalid, or
8615 /// - the parameterized [`Router`] is unable to create a blinded path for the refund.
8617 /// This is not exported to bindings users as builder patterns don't map outside of move semantics.
8619 /// [`Refund`]: crate::offers::refund::Refund
8620 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8621 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8622 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8623 pub fn create_refund_builder(
8624 &$self, amount_msats: u64, absolute_expiry: Duration, payment_id: PaymentId,
8625 retry_strategy: Retry, max_total_routing_fee_msat: Option<u64>
8626 ) -> Result<$builder, Bolt12SemanticError> {
8627 let node_id = $self.get_our_node_id();
8628 let expanded_key = &$self.inbound_payment_key;
8629 let entropy = &*$self.entropy_source;
8630 let secp_ctx = &$self.secp_ctx;
8632 let path = $self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8633 let builder = RefundBuilder::deriving_payer_id(
8634 node_id, expanded_key, entropy, secp_ctx, amount_msats, payment_id
8636 .chain_hash($self.chain_hash)
8637 .absolute_expiry(absolute_expiry)
8640 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop($self);
8642 let expiration = StaleExpiration::AbsoluteTimeout(absolute_expiry);
8643 $self.pending_outbound_payments
8644 .add_new_awaiting_invoice(
8645 payment_id, expiration, retry_strategy, max_total_routing_fee_msat,
8647 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8653 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
8655 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
8656 T::Target: BroadcasterInterface,
8657 ES::Target: EntropySource,
8658 NS::Target: NodeSigner,
8659 SP::Target: SignerProvider,
8660 F::Target: FeeEstimator,
8664 #[cfg(not(c_bindings))]
8665 create_offer_builder!(self, OfferBuilder<DerivedMetadata, secp256k1::All>);
8666 #[cfg(not(c_bindings))]
8667 create_refund_builder!(self, RefundBuilder<secp256k1::All>);
8670 create_offer_builder!(self, OfferWithDerivedMetadataBuilder);
8672 create_refund_builder!(self, RefundMaybeWithDerivedMetadataBuilder);
8674 /// Pays for an [`Offer`] using the given parameters by creating an [`InvoiceRequest`] and
8675 /// enqueuing it to be sent via an onion message. [`ChannelManager`] will pay the actual
8676 /// [`Bolt12Invoice`] once it is received.
8678 /// Uses [`InvoiceRequestBuilder`] such that the [`InvoiceRequest`] it builds is recognized by
8679 /// the [`ChannelManager`] when handling a [`Bolt12Invoice`] message in response to the request.
8680 /// The optional parameters are used in the builder, if `Some`:
8681 /// - `quantity` for [`InvoiceRequest::quantity`] which must be set if
8682 /// [`Offer::expects_quantity`] is `true`.
8683 /// - `amount_msats` if overpaying what is required for the given `quantity` is desired, and
8684 /// - `payer_note` for [`InvoiceRequest::payer_note`].
8686 /// If `max_total_routing_fee_msat` is not specified, The default from
8687 /// [`RouteParameters::from_payment_params_and_value`] is applied.
8691 /// The provided `payment_id` is used to ensure that only one invoice is paid for the request
8692 /// when received. See [Avoiding Duplicate Payments] for other requirements once the payment has
8695 /// To revoke the request, use [`ChannelManager::abandon_payment`] prior to receiving the
8696 /// invoice. If abandoned, or an invoice isn't received in a reasonable amount of time, the
8697 /// payment will fail with an [`Event::InvoiceRequestFailed`].
8701 /// Uses a one-hop [`BlindedPath`] for the reply path with [`ChannelManager::get_our_node_id`]
8702 /// as the introduction node and a derived payer id for payer privacy. As such, currently, the
8703 /// node must be announced. Otherwise, there is no way to find a path to the introduction node
8704 /// in order to send the [`Bolt12Invoice`].
8708 /// Requires a direct connection to an introduction node in [`Offer::paths`] or to
8709 /// [`Offer::signing_pubkey`], if empty. A similar restriction applies to the responding
8710 /// [`Bolt12Invoice::payment_paths`].
8715 /// - a duplicate `payment_id` is provided given the caveats in the aforementioned link,
8716 /// - the provided parameters are invalid for the offer,
8717 /// - the offer is for an unsupported chain, or
8718 /// - the parameterized [`Router`] is unable to create a blinded reply path for the invoice
8721 /// [`InvoiceRequest`]: crate::offers::invoice_request::InvoiceRequest
8722 /// [`InvoiceRequest::quantity`]: crate::offers::invoice_request::InvoiceRequest::quantity
8723 /// [`InvoiceRequest::payer_note`]: crate::offers::invoice_request::InvoiceRequest::payer_note
8724 /// [`InvoiceRequestBuilder`]: crate::offers::invoice_request::InvoiceRequestBuilder
8725 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8726 /// [`Bolt12Invoice::payment_paths`]: crate::offers::invoice::Bolt12Invoice::payment_paths
8727 /// [Avoiding Duplicate Payments]: #avoiding-duplicate-payments
8728 pub fn pay_for_offer(
8729 &self, offer: &Offer, quantity: Option<u64>, amount_msats: Option<u64>,
8730 payer_note: Option<String>, payment_id: PaymentId, retry_strategy: Retry,
8731 max_total_routing_fee_msat: Option<u64>
8732 ) -> Result<(), Bolt12SemanticError> {
8733 let expanded_key = &self.inbound_payment_key;
8734 let entropy = &*self.entropy_source;
8735 let secp_ctx = &self.secp_ctx;
8737 let builder: InvoiceRequestBuilder<DerivedPayerId, secp256k1::All> = offer
8738 .request_invoice_deriving_payer_id(expanded_key, entropy, secp_ctx, payment_id)?
8740 let builder = builder.chain_hash(self.chain_hash)?;
8742 let builder = match quantity {
8744 Some(quantity) => builder.quantity(quantity)?,
8746 let builder = match amount_msats {
8748 Some(amount_msats) => builder.amount_msats(amount_msats)?,
8750 let builder = match payer_note {
8752 Some(payer_note) => builder.payer_note(payer_note),
8754 let invoice_request = builder.build_and_sign()?;
8755 let reply_path = self.create_blinded_path().map_err(|_| Bolt12SemanticError::MissingPaths)?;
8757 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8759 let expiration = StaleExpiration::TimerTicks(1);
8760 self.pending_outbound_payments
8761 .add_new_awaiting_invoice(
8762 payment_id, expiration, retry_strategy, max_total_routing_fee_msat
8764 .map_err(|_| Bolt12SemanticError::DuplicatePaymentId)?;
8766 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8767 if !offer.paths().is_empty() {
8768 // Send as many invoice requests as there are paths in the offer (with an upper bound).
8769 // Using only one path could result in a failure if the path no longer exists. But only
8770 // one invoice for a given payment id will be paid, even if more than one is received.
8771 const REQUEST_LIMIT: usize = 10;
8772 for path in offer.paths().into_iter().take(REQUEST_LIMIT) {
8773 let message = new_pending_onion_message(
8774 OffersMessage::InvoiceRequest(invoice_request.clone()),
8775 Destination::BlindedPath(path.clone()),
8776 Some(reply_path.clone()),
8778 pending_offers_messages.push(message);
8780 } else if let Some(signing_pubkey) = offer.signing_pubkey() {
8781 let message = new_pending_onion_message(
8782 OffersMessage::InvoiceRequest(invoice_request),
8783 Destination::Node(signing_pubkey),
8786 pending_offers_messages.push(message);
8788 debug_assert!(false);
8789 return Err(Bolt12SemanticError::MissingSigningPubkey);
8795 /// Creates a [`Bolt12Invoice`] for a [`Refund`] and enqueues it to be sent via an onion
8798 /// The resulting invoice uses a [`PaymentHash`] recognized by the [`ChannelManager`] and a
8799 /// [`BlindedPath`] containing the [`PaymentSecret`] needed to reconstruct the corresponding
8800 /// [`PaymentPreimage`]. It is returned purely for informational purposes.
8804 /// Requires a direct connection to an introduction node in [`Refund::paths`] or to
8805 /// [`Refund::payer_id`], if empty. This request is best effort; an invoice will be sent to each
8806 /// node meeting the aforementioned criteria, but there's no guarantee that they will be
8807 /// received and no retries will be made.
8812 /// - the refund is for an unsupported chain, or
8813 /// - the parameterized [`Router`] is unable to create a blinded payment path or reply path for
8816 /// [`Bolt12Invoice`]: crate::offers::invoice::Bolt12Invoice
8817 pub fn request_refund_payment(
8818 &self, refund: &Refund
8819 ) -> Result<Bolt12Invoice, Bolt12SemanticError> {
8820 let expanded_key = &self.inbound_payment_key;
8821 let entropy = &*self.entropy_source;
8822 let secp_ctx = &self.secp_ctx;
8824 let amount_msats = refund.amount_msats();
8825 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
8827 if refund.chain() != self.chain_hash {
8828 return Err(Bolt12SemanticError::UnsupportedChain);
8831 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
8833 match self.create_inbound_payment(Some(amount_msats), relative_expiry, None) {
8834 Ok((payment_hash, payment_secret)) => {
8835 let payment_context = PaymentContext::Bolt12Refund(Bolt12RefundContext {});
8836 let payment_paths = self.create_blinded_payment_paths(
8837 amount_msats, payment_secret, payment_context
8839 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8841 #[cfg(feature = "std")]
8842 let builder = refund.respond_using_derived_keys(
8843 payment_paths, payment_hash, expanded_key, entropy
8845 #[cfg(not(feature = "std"))]
8846 let created_at = Duration::from_secs(
8847 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
8849 #[cfg(not(feature = "std"))]
8850 let builder = refund.respond_using_derived_keys_no_std(
8851 payment_paths, payment_hash, created_at, expanded_key, entropy
8853 let builder: InvoiceBuilder<DerivedSigningPubkey> = builder.into();
8854 let invoice = builder.allow_mpp().build_and_sign(secp_ctx)?;
8855 let reply_path = self.create_blinded_path()
8856 .map_err(|_| Bolt12SemanticError::MissingPaths)?;
8858 let mut pending_offers_messages = self.pending_offers_messages.lock().unwrap();
8859 if refund.paths().is_empty() {
8860 let message = new_pending_onion_message(
8861 OffersMessage::Invoice(invoice.clone()),
8862 Destination::Node(refund.payer_id()),
8865 pending_offers_messages.push(message);
8867 for path in refund.paths() {
8868 let message = new_pending_onion_message(
8869 OffersMessage::Invoice(invoice.clone()),
8870 Destination::BlindedPath(path.clone()),
8871 Some(reply_path.clone()),
8873 pending_offers_messages.push(message);
8879 Err(()) => Err(Bolt12SemanticError::InvalidAmount),
8883 /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
8886 /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
8887 /// [`PaymentHash`] and [`PaymentPreimage`] for you.
8889 /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentClaimable`] event, which
8890 /// will have the [`PaymentClaimable::purpose`] return `Some` for [`PaymentPurpose::preimage`]. That
8891 /// should then be passed directly to [`claim_funds`].
8893 /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
8895 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8896 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8900 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8901 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8903 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8905 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8906 /// on versions of LDK prior to 0.0.114.
8908 /// [`claim_funds`]: Self::claim_funds
8909 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8910 /// [`PaymentClaimable::purpose`]: events::Event::PaymentClaimable::purpose
8911 /// [`PaymentPurpose::preimage`]: events::PaymentPurpose::preimage
8912 /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
8913 pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32,
8914 min_final_cltv_expiry_delta: Option<u16>) -> Result<(PaymentHash, PaymentSecret), ()> {
8915 inbound_payment::create(&self.inbound_payment_key, min_value_msat, invoice_expiry_delta_secs,
8916 &self.entropy_source, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8917 min_final_cltv_expiry_delta)
8920 /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
8921 /// stored external to LDK.
8923 /// A [`PaymentClaimable`] event will only be generated if the [`PaymentSecret`] matches a
8924 /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
8925 /// the `min_value_msat` provided here, if one is provided.
8927 /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) should be globally unique, though
8928 /// note that LDK will not stop you from registering duplicate payment hashes for inbound
8931 /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
8932 /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
8933 /// before a [`PaymentClaimable`] event will be generated, ensuring that we do not provide the
8934 /// sender "proof-of-payment" unless they have paid the required amount.
8936 /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
8937 /// in excess of the current time. This should roughly match the expiry time set in the invoice.
8938 /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
8939 /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
8940 /// invoices when no timeout is set.
8942 /// Note that we use block header time to time-out pending inbound payments (with some margin
8943 /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
8944 /// accept a payment and generate a [`PaymentClaimable`] event for some time after the expiry.
8945 /// If you need exact expiry semantics, you should enforce them upon receipt of
8946 /// [`PaymentClaimable`].
8948 /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry_delta`
8949 /// set to at least [`MIN_FINAL_CLTV_EXPIRY_DELTA`].
8951 /// Note that a malicious eavesdropper can intuit whether an inbound payment was created by
8952 /// `create_inbound_payment` or `create_inbound_payment_for_hash` based on runtime.
8956 /// If you register an inbound payment with this method, then serialize the `ChannelManager`, then
8957 /// deserialize it with a node running 0.0.103 and earlier, the payment will fail to be received.
8959 /// Errors if `min_value_msat` is greater than total bitcoin supply.
8961 /// If `min_final_cltv_expiry_delta` is set to some value, then the payment will not be receivable
8962 /// on versions of LDK prior to 0.0.114.
8964 /// [`create_inbound_payment`]: Self::create_inbound_payment
8965 /// [`PaymentClaimable`]: events::Event::PaymentClaimable
8966 pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>,
8967 invoice_expiry_delta_secs: u32, min_final_cltv_expiry: Option<u16>) -> Result<PaymentSecret, ()> {
8968 inbound_payment::create_from_hash(&self.inbound_payment_key, min_value_msat, payment_hash,
8969 invoice_expiry_delta_secs, self.highest_seen_timestamp.load(Ordering::Acquire) as u64,
8970 min_final_cltv_expiry)
8973 /// Gets an LDK-generated payment preimage from a payment hash and payment secret that were
8974 /// previously returned from [`create_inbound_payment`].
8976 /// [`create_inbound_payment`]: Self::create_inbound_payment
8977 pub fn get_payment_preimage(&self, payment_hash: PaymentHash, payment_secret: PaymentSecret) -> Result<PaymentPreimage, APIError> {
8978 inbound_payment::get_payment_preimage(payment_hash, payment_secret, &self.inbound_payment_key)
8981 /// Creates a blinded path by delegating to [`MessageRouter::create_blinded_paths`].
8983 /// Errors if the `MessageRouter` errors or returns an empty `Vec`.
8984 fn create_blinded_path(&self) -> Result<BlindedPath, ()> {
8985 let recipient = self.get_our_node_id();
8986 let secp_ctx = &self.secp_ctx;
8988 let peers = self.per_peer_state.read().unwrap()
8990 .filter(|(_, peer)| peer.lock().unwrap().latest_features.supports_onion_messages())
8991 .map(|(node_id, _)| *node_id)
8992 .collect::<Vec<_>>();
8995 .create_blinded_paths(recipient, peers, secp_ctx)
8996 .and_then(|paths| paths.into_iter().next().ok_or(()))
8999 /// Creates multi-hop blinded payment paths for the given `amount_msats` by delegating to
9000 /// [`Router::create_blinded_payment_paths`].
9001 fn create_blinded_payment_paths(
9002 &self, amount_msats: u64, payment_secret: PaymentSecret, payment_context: PaymentContext
9003 ) -> Result<Vec<(BlindedPayInfo, BlindedPath)>, ()> {
9004 let secp_ctx = &self.secp_ctx;
9006 let first_hops = self.list_usable_channels();
9007 let payee_node_id = self.get_our_node_id();
9008 let max_cltv_expiry = self.best_block.read().unwrap().height + CLTV_FAR_FAR_AWAY
9009 + LATENCY_GRACE_PERIOD_BLOCKS;
9010 let payee_tlvs = ReceiveTlvs {
9012 payment_constraints: PaymentConstraints {
9014 htlc_minimum_msat: 1,
9018 self.router.create_blinded_payment_paths(
9019 payee_node_id, first_hops, payee_tlvs, amount_msats, secp_ctx
9023 /// Gets a fake short channel id for use in receiving [phantom node payments]. These fake scids
9024 /// are used when constructing the phantom invoice's route hints.
9026 /// [phantom node payments]: crate::sign::PhantomKeysManager
9027 pub fn get_phantom_scid(&self) -> u64 {
9028 let best_block_height = self.best_block.read().unwrap().height;
9029 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9031 let scid_candidate = fake_scid::Namespace::Phantom.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9032 // Ensure the generated scid doesn't conflict with a real channel.
9033 match short_to_chan_info.get(&scid_candidate) {
9034 Some(_) => continue,
9035 None => return scid_candidate
9040 /// Gets route hints for use in receiving [phantom node payments].
9042 /// [phantom node payments]: crate::sign::PhantomKeysManager
9043 pub fn get_phantom_route_hints(&self) -> PhantomRouteHints {
9045 channels: self.list_usable_channels(),
9046 phantom_scid: self.get_phantom_scid(),
9047 real_node_pubkey: self.get_our_node_id(),
9051 /// Gets a fake short channel id for use in receiving intercepted payments. These fake scids are
9052 /// used when constructing the route hints for HTLCs intended to be intercepted. See
9053 /// [`ChannelManager::forward_intercepted_htlc`].
9055 /// Note that this method is not guaranteed to return unique values, you may need to call it a few
9056 /// times to get a unique scid.
9057 pub fn get_intercept_scid(&self) -> u64 {
9058 let best_block_height = self.best_block.read().unwrap().height;
9059 let short_to_chan_info = self.short_to_chan_info.read().unwrap();
9061 let scid_candidate = fake_scid::Namespace::Intercept.get_fake_scid(best_block_height, &self.chain_hash, &self.fake_scid_rand_bytes, &self.entropy_source);
9062 // Ensure the generated scid doesn't conflict with a real channel.
9063 if short_to_chan_info.contains_key(&scid_candidate) { continue }
9064 return scid_candidate
9068 /// Gets inflight HTLC information by processing pending outbound payments that are in
9069 /// our channels. May be used during pathfinding to account for in-use channel liquidity.
9070 pub fn compute_inflight_htlcs(&self) -> InFlightHtlcs {
9071 let mut inflight_htlcs = InFlightHtlcs::new();
9073 let per_peer_state = self.per_peer_state.read().unwrap();
9074 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9075 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9076 let peer_state = &mut *peer_state_lock;
9077 for chan in peer_state.channel_by_id.values().filter_map(
9078 |phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }
9080 for (htlc_source, _) in chan.inflight_htlc_sources() {
9081 if let HTLCSource::OutboundRoute { path, .. } = htlc_source {
9082 inflight_htlcs.process_path(path, self.get_our_node_id());
9091 #[cfg(any(test, feature = "_test_utils"))]
9092 pub fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
9093 let events = core::cell::RefCell::new(Vec::new());
9094 let event_handler = |event: events::Event| events.borrow_mut().push(event);
9095 self.process_pending_events(&event_handler);
9099 #[cfg(feature = "_test_utils")]
9100 pub fn push_pending_event(&self, event: events::Event) {
9101 let mut events = self.pending_events.lock().unwrap();
9102 events.push_back((event, None));
9106 pub fn pop_pending_event(&self) -> Option<events::Event> {
9107 let mut events = self.pending_events.lock().unwrap();
9108 events.pop_front().map(|(e, _)| e)
9112 pub fn has_pending_payments(&self) -> bool {
9113 self.pending_outbound_payments.has_pending_payments()
9117 pub fn clear_pending_payments(&self) {
9118 self.pending_outbound_payments.clear_pending_payments()
9121 /// When something which was blocking a channel from updating its [`ChannelMonitor`] (e.g. an
9122 /// [`Event`] being handled) completes, this should be called to restore the channel to normal
9123 /// operation. It will double-check that nothing *else* is also blocking the same channel from
9124 /// making progress and then let any blocked [`ChannelMonitorUpdate`]s fly.
9125 fn handle_monitor_update_release(&self, counterparty_node_id: PublicKey,
9126 channel_funding_outpoint: OutPoint, channel_id: ChannelId,
9127 mut completed_blocker: Option<RAAMonitorUpdateBlockingAction>) {
9129 let logger = WithContext::from(
9130 &self.logger, Some(counterparty_node_id), Some(channel_id),
9133 let per_peer_state = self.per_peer_state.read().unwrap();
9134 if let Some(peer_state_mtx) = per_peer_state.get(&counterparty_node_id) {
9135 let mut peer_state_lck = peer_state_mtx.lock().unwrap();
9136 let peer_state = &mut *peer_state_lck;
9137 if let Some(blocker) = completed_blocker.take() {
9138 // Only do this on the first iteration of the loop.
9139 if let Some(blockers) = peer_state.actions_blocking_raa_monitor_updates
9140 .get_mut(&channel_id)
9142 blockers.retain(|iter| iter != &blocker);
9146 if self.raa_monitor_updates_held(&peer_state.actions_blocking_raa_monitor_updates,
9147 channel_funding_outpoint, channel_id, counterparty_node_id) {
9148 // Check that, while holding the peer lock, we don't have anything else
9149 // blocking monitor updates for this channel. If we do, release the monitor
9150 // update(s) when those blockers complete.
9151 log_trace!(logger, "Delaying monitor unlock for channel {} as another channel's mon update needs to complete first",
9156 if let hash_map::Entry::Occupied(mut chan_phase_entry) = peer_state.channel_by_id.entry(
9158 if let ChannelPhase::Funded(chan) = chan_phase_entry.get_mut() {
9159 debug_assert_eq!(chan.context.get_funding_txo().unwrap(), channel_funding_outpoint);
9160 if let Some((monitor_update, further_update_exists)) = chan.unblock_next_blocked_monitor_update() {
9161 log_debug!(logger, "Unlocking monitor updating for channel {} and updating monitor",
9163 handle_new_monitor_update!(self, channel_funding_outpoint, monitor_update,
9164 peer_state_lck, peer_state, per_peer_state, chan);
9165 if further_update_exists {
9166 // If there are more `ChannelMonitorUpdate`s to process, restart at the
9171 log_trace!(logger, "Unlocked monitor updating for channel {} without monitors to update",
9178 "Got a release post-RAA monitor update for peer {} but the channel is gone",
9179 log_pubkey!(counterparty_node_id));
9185 fn handle_post_event_actions(&self, actions: Vec<EventCompletionAction>) {
9186 for action in actions {
9188 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
9189 channel_funding_outpoint, channel_id, counterparty_node_id
9191 self.handle_monitor_update_release(counterparty_node_id, channel_funding_outpoint, channel_id, None);
9197 /// Processes any events asynchronously in the order they were generated since the last call
9198 /// using the given event handler.
9200 /// See the trait-level documentation of [`EventsProvider`] for requirements.
9201 pub async fn process_pending_events_async<Future: core::future::Future, H: Fn(Event) -> Future>(
9205 process_events_body!(self, ev, { handler(ev).await });
9209 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9211 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9212 T::Target: BroadcasterInterface,
9213 ES::Target: EntropySource,
9214 NS::Target: NodeSigner,
9215 SP::Target: SignerProvider,
9216 F::Target: FeeEstimator,
9220 /// Returns `MessageSendEvent`s strictly ordered per-peer, in the order they were generated.
9221 /// The returned array will contain `MessageSendEvent`s for different peers if
9222 /// `MessageSendEvent`s to more than one peer exists, but `MessageSendEvent`s to the same peer
9223 /// is always placed next to each other.
9225 /// Note that that while `MessageSendEvent`s are strictly ordered per-peer, the peer order for
9226 /// the chunks of `MessageSendEvent`s for different peers is random. I.e. if the array contains
9227 /// `MessageSendEvent`s for both `node_a` and `node_b`, the `MessageSendEvent`s for `node_a`
9228 /// will randomly be placed first or last in the returned array.
9230 /// Note that even though `BroadcastChannelAnnouncement` and `BroadcastChannelUpdate`
9231 /// `MessageSendEvent`s are intended to be broadcasted to all peers, they will be placed among
9232 /// the `MessageSendEvent`s to the specific peer they were generated under.
9233 fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
9234 let events = RefCell::new(Vec::new());
9235 PersistenceNotifierGuard::optionally_notify(self, || {
9236 let mut result = NotifyOption::SkipPersistNoEvents;
9238 // TODO: This behavior should be documented. It's unintuitive that we query
9239 // ChannelMonitors when clearing other events.
9240 if self.process_pending_monitor_events() {
9241 result = NotifyOption::DoPersist;
9244 if self.check_free_holding_cells() {
9245 result = NotifyOption::DoPersist;
9247 if self.maybe_generate_initial_closing_signed() {
9248 result = NotifyOption::DoPersist;
9251 let mut is_any_peer_connected = false;
9252 let mut pending_events = Vec::new();
9253 let per_peer_state = self.per_peer_state.read().unwrap();
9254 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9255 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9256 let peer_state = &mut *peer_state_lock;
9257 if peer_state.pending_msg_events.len() > 0 {
9258 pending_events.append(&mut peer_state.pending_msg_events);
9260 if peer_state.is_connected {
9261 is_any_peer_connected = true
9265 // Ensure that we are connected to some peers before getting broadcast messages.
9266 if is_any_peer_connected {
9267 let mut broadcast_msgs = self.pending_broadcast_messages.lock().unwrap();
9268 pending_events.append(&mut broadcast_msgs);
9271 if !pending_events.is_empty() {
9272 events.replace(pending_events);
9281 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> EventsProvider for ChannelManager<M, T, ES, NS, SP, F, R, L>
9283 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9284 T::Target: BroadcasterInterface,
9285 ES::Target: EntropySource,
9286 NS::Target: NodeSigner,
9287 SP::Target: SignerProvider,
9288 F::Target: FeeEstimator,
9292 /// Processes events that must be periodically handled.
9294 /// An [`EventHandler`] may safely call back to the provider in order to handle an event.
9295 /// However, it must not call [`Writeable::write`] as doing so would result in a deadlock.
9296 fn process_pending_events<H: Deref>(&self, handler: H) where H::Target: EventHandler {
9298 process_events_body!(self, ev, handler.handle_event(ev));
9302 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Listen for ChannelManager<M, T, ES, NS, SP, F, R, L>
9304 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9305 T::Target: BroadcasterInterface,
9306 ES::Target: EntropySource,
9307 NS::Target: NodeSigner,
9308 SP::Target: SignerProvider,
9309 F::Target: FeeEstimator,
9313 fn filtered_block_connected(&self, header: &Header, txdata: &TransactionData, height: u32) {
9315 let best_block = self.best_block.read().unwrap();
9316 assert_eq!(best_block.block_hash, header.prev_blockhash,
9317 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
9318 assert_eq!(best_block.height, height - 1,
9319 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
9322 self.transactions_confirmed(header, txdata, height);
9323 self.best_block_updated(header, height);
9326 fn block_disconnected(&self, header: &Header, height: u32) {
9327 let _persistence_guard =
9328 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9329 self, || -> NotifyOption { NotifyOption::DoPersist });
9330 let new_height = height - 1;
9332 let mut best_block = self.best_block.write().unwrap();
9333 assert_eq!(best_block.block_hash, header.block_hash(),
9334 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
9335 assert_eq!(best_block.height, height,
9336 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
9337 *best_block = BestBlock::new(header.prev_blockhash, new_height)
9340 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9344 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> chain::Confirm for ChannelManager<M, T, ES, NS, SP, F, R, L>
9346 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9347 T::Target: BroadcasterInterface,
9348 ES::Target: EntropySource,
9349 NS::Target: NodeSigner,
9350 SP::Target: SignerProvider,
9351 F::Target: FeeEstimator,
9355 fn transactions_confirmed(&self, header: &Header, txdata: &TransactionData, height: u32) {
9356 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9357 // during initialization prior to the chain_monitor being fully configured in some cases.
9358 // See the docs for `ChannelManagerReadArgs` for more.
9360 let block_hash = header.block_hash();
9361 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
9363 let _persistence_guard =
9364 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9365 self, || -> NotifyOption { NotifyOption::DoPersist });
9366 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context))
9367 .map(|(a, b)| (a, Vec::new(), b)));
9369 let last_best_block_height = self.best_block.read().unwrap().height;
9370 if height < last_best_block_height {
9371 let timestamp = self.highest_seen_timestamp.load(Ordering::Acquire);
9372 self.do_chain_event(Some(last_best_block_height), |channel| channel.best_block_updated(last_best_block_height, timestamp as u32, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9376 fn best_block_updated(&self, header: &Header, height: u32) {
9377 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9378 // during initialization prior to the chain_monitor being fully configured in some cases.
9379 // See the docs for `ChannelManagerReadArgs` for more.
9381 let block_hash = header.block_hash();
9382 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
9384 let _persistence_guard =
9385 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9386 self, || -> NotifyOption { NotifyOption::DoPersist });
9387 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
9389 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time, self.chain_hash, &self.node_signer, &self.default_configuration, &&WithChannelContext::from(&self.logger, &channel.context)));
9391 macro_rules! max_time {
9392 ($timestamp: expr) => {
9394 // Update $timestamp to be the max of its current value and the block
9395 // timestamp. This should keep us close to the current time without relying on
9396 // having an explicit local time source.
9397 // Just in case we end up in a race, we loop until we either successfully
9398 // update $timestamp or decide we don't need to.
9399 let old_serial = $timestamp.load(Ordering::Acquire);
9400 if old_serial >= header.time as usize { break; }
9401 if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
9407 max_time!(self.highest_seen_timestamp);
9408 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
9409 payment_secrets.retain(|_, inbound_payment| {
9410 inbound_payment.expiry_time > header.time as u64
9414 fn get_relevant_txids(&self) -> Vec<(Txid, u32, Option<BlockHash>)> {
9415 let mut res = Vec::with_capacity(self.short_to_chan_info.read().unwrap().len());
9416 for (_cp_id, peer_state_mutex) in self.per_peer_state.read().unwrap().iter() {
9417 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9418 let peer_state = &mut *peer_state_lock;
9419 for chan in peer_state.channel_by_id.values().filter_map(|phase| if let ChannelPhase::Funded(chan) = phase { Some(chan) } else { None }) {
9420 let txid_opt = chan.context.get_funding_txo();
9421 let height_opt = chan.context.get_funding_tx_confirmation_height();
9422 let hash_opt = chan.context.get_funding_tx_confirmed_in();
9423 if let (Some(funding_txo), Some(conf_height), Some(block_hash)) = (txid_opt, height_opt, hash_opt) {
9424 res.push((funding_txo.txid, conf_height, Some(block_hash)));
9431 fn transaction_unconfirmed(&self, txid: &Txid) {
9432 let _persistence_guard =
9433 PersistenceNotifierGuard::optionally_notify_skipping_background_events(
9434 self, || -> NotifyOption { NotifyOption::DoPersist });
9435 self.do_chain_event(None, |channel| {
9436 if let Some(funding_txo) = channel.context.get_funding_txo() {
9437 if funding_txo.txid == *txid {
9438 channel.funding_transaction_unconfirmed(&&WithChannelContext::from(&self.logger, &channel.context)).map(|()| (None, Vec::new(), None))
9439 } else { Ok((None, Vec::new(), None)) }
9440 } else { Ok((None, Vec::new(), None)) }
9445 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> ChannelManager<M, T, ES, NS, SP, F, R, L>
9447 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9448 T::Target: BroadcasterInterface,
9449 ES::Target: EntropySource,
9450 NS::Target: NodeSigner,
9451 SP::Target: SignerProvider,
9452 F::Target: FeeEstimator,
9456 /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
9457 /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
9459 fn do_chain_event<FN: Fn(&mut Channel<SP>) -> Result<(Option<msgs::ChannelReady>, Vec<(HTLCSource, PaymentHash)>, Option<msgs::AnnouncementSignatures>), ClosureReason>>
9460 (&self, height_opt: Option<u32>, f: FN) {
9461 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
9462 // during initialization prior to the chain_monitor being fully configured in some cases.
9463 // See the docs for `ChannelManagerReadArgs` for more.
9465 let mut failed_channels = Vec::new();
9466 let mut timed_out_htlcs = Vec::new();
9468 let per_peer_state = self.per_peer_state.read().unwrap();
9469 for (_cp_id, peer_state_mutex) in per_peer_state.iter() {
9470 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9471 let peer_state = &mut *peer_state_lock;
9472 let pending_msg_events = &mut peer_state.pending_msg_events;
9474 peer_state.channel_by_id.retain(|_, phase| {
9476 // Retain unfunded channels.
9477 ChannelPhase::UnfundedOutboundV1(_) | ChannelPhase::UnfundedInboundV1(_) => true,
9478 // TODO(dual_funding): Combine this match arm with above.
9479 #[cfg(any(dual_funding, splicing))]
9480 ChannelPhase::UnfundedOutboundV2(_) | ChannelPhase::UnfundedInboundV2(_) => true,
9481 ChannelPhase::Funded(channel) => {
9482 let res = f(channel);
9483 if let Ok((channel_ready_opt, mut timed_out_pending_htlcs, announcement_sigs)) = res {
9484 for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
9485 let (failure_code, data) = self.get_htlc_inbound_temp_fail_err_and_data(0x1000|14 /* expiry_too_soon */, &channel);
9486 timed_out_htlcs.push((source, payment_hash, HTLCFailReason::reason(failure_code, data),
9487 HTLCDestination::NextHopChannel { node_id: Some(channel.context.get_counterparty_node_id()), channel_id: channel.context.channel_id() }));
9489 let logger = WithChannelContext::from(&self.logger, &channel.context);
9490 if let Some(channel_ready) = channel_ready_opt {
9491 send_channel_ready!(self, pending_msg_events, channel, channel_ready);
9492 if channel.context.is_usable() {
9493 log_trace!(logger, "Sending channel_ready with private initial channel_update for our counterparty on channel {}", channel.context.channel_id());
9494 if let Ok(msg) = self.get_channel_update_for_unicast(channel) {
9495 pending_msg_events.push(events::MessageSendEvent::SendChannelUpdate {
9496 node_id: channel.context.get_counterparty_node_id(),
9501 log_trace!(logger, "Sending channel_ready WITHOUT channel_update for {}", channel.context.channel_id());
9506 let mut pending_events = self.pending_events.lock().unwrap();
9507 emit_channel_ready_event!(pending_events, channel);
9510 if let Some(announcement_sigs) = announcement_sigs {
9511 log_trace!(logger, "Sending announcement_signatures for channel {}", channel.context.channel_id());
9512 pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
9513 node_id: channel.context.get_counterparty_node_id(),
9514 msg: announcement_sigs,
9516 if let Some(height) = height_opt {
9517 if let Some(announcement) = channel.get_signed_channel_announcement(&self.node_signer, self.chain_hash, height, &self.default_configuration) {
9518 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
9520 // Note that announcement_signatures fails if the channel cannot be announced,
9521 // so get_channel_update_for_broadcast will never fail by the time we get here.
9522 update_msg: Some(self.get_channel_update_for_broadcast(channel).unwrap()),
9527 if channel.is_our_channel_ready() {
9528 if let Some(real_scid) = channel.context.get_short_channel_id() {
9529 // If we sent a 0conf channel_ready, and now have an SCID, we add it
9530 // to the short_to_chan_info map here. Note that we check whether we
9531 // can relay using the real SCID at relay-time (i.e.
9532 // enforce option_scid_alias then), and if the funding tx is ever
9533 // un-confirmed we force-close the channel, ensuring short_to_chan_info
9534 // is always consistent.
9535 let mut short_to_chan_info = self.short_to_chan_info.write().unwrap();
9536 let scid_insert = short_to_chan_info.insert(real_scid, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
9537 assert!(scid_insert.is_none() || scid_insert.unwrap() == (channel.context.get_counterparty_node_id(), channel.context.channel_id()),
9538 "SCIDs should never collide - ensure you weren't behind by a full {} blocks when creating channels",
9539 fake_scid::MAX_SCID_BLOCKS_FROM_NOW);
9542 } else if let Err(reason) = res {
9543 update_maps_on_chan_removal!(self, &channel.context);
9544 // It looks like our counterparty went on-chain or funding transaction was
9545 // reorged out of the main chain. Close the channel.
9546 let reason_message = format!("{}", reason);
9547 failed_channels.push(channel.context.force_shutdown(true, reason));
9548 if let Ok(update) = self.get_channel_update_for_broadcast(&channel) {
9549 let mut pending_broadcast_messages = self.pending_broadcast_messages.lock().unwrap();
9550 pending_broadcast_messages.push(events::MessageSendEvent::BroadcastChannelUpdate {
9554 pending_msg_events.push(events::MessageSendEvent::HandleError {
9555 node_id: channel.context.get_counterparty_node_id(),
9556 action: msgs::ErrorAction::DisconnectPeer {
9557 msg: Some(msgs::ErrorMessage {
9558 channel_id: channel.context.channel_id(),
9559 data: reason_message,
9572 if let Some(height) = height_opt {
9573 self.claimable_payments.lock().unwrap().claimable_payments.retain(|payment_hash, payment| {
9574 payment.htlcs.retain(|htlc| {
9575 // If height is approaching the number of blocks we think it takes us to get
9576 // our commitment transaction confirmed before the HTLC expires, plus the
9577 // number of blocks we generally consider it to take to do a commitment update,
9578 // just give up on it and fail the HTLC.
9579 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
9580 let mut htlc_msat_height_data = htlc.value.to_be_bytes().to_vec();
9581 htlc_msat_height_data.extend_from_slice(&height.to_be_bytes());
9583 timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(),
9584 HTLCFailReason::reason(0x4000 | 15, htlc_msat_height_data),
9585 HTLCDestination::FailedPayment { payment_hash: payment_hash.clone() }));
9589 !payment.htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
9592 let mut intercepted_htlcs = self.pending_intercepted_htlcs.lock().unwrap();
9593 intercepted_htlcs.retain(|_, htlc| {
9594 if height >= htlc.forward_info.outgoing_cltv_value - HTLC_FAIL_BACK_BUFFER {
9595 let prev_hop_data = HTLCSource::PreviousHopData(HTLCPreviousHopData {
9596 short_channel_id: htlc.prev_short_channel_id,
9597 user_channel_id: Some(htlc.prev_user_channel_id),
9598 htlc_id: htlc.prev_htlc_id,
9599 incoming_packet_shared_secret: htlc.forward_info.incoming_shared_secret,
9600 phantom_shared_secret: None,
9601 outpoint: htlc.prev_funding_outpoint,
9602 channel_id: htlc.prev_channel_id,
9603 blinded_failure: htlc.forward_info.routing.blinded_failure(),
9606 let requested_forward_scid /* intercept scid */ = match htlc.forward_info.routing {
9607 PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
9608 _ => unreachable!(),
9610 timed_out_htlcs.push((prev_hop_data, htlc.forward_info.payment_hash,
9611 HTLCFailReason::from_failure_code(0x2000 | 2),
9612 HTLCDestination::InvalidForward { requested_forward_scid }));
9613 let logger = WithContext::from(
9614 &self.logger, None, Some(htlc.prev_channel_id)
9616 log_trace!(logger, "Timing out intercepted HTLC with requested forward scid {}", requested_forward_scid);
9622 self.handle_init_event_channel_failures(failed_channels);
9624 for (source, payment_hash, reason, destination) in timed_out_htlcs.drain(..) {
9625 self.fail_htlc_backwards_internal(&source, &payment_hash, &reason, destination);
9629 /// Gets a [`Future`] that completes when this [`ChannelManager`] may need to be persisted or
9630 /// may have events that need processing.
9632 /// In order to check if this [`ChannelManager`] needs persisting, call
9633 /// [`Self::get_and_clear_needs_persistence`].
9635 /// Note that callbacks registered on the [`Future`] MUST NOT call back into this
9636 /// [`ChannelManager`] and should instead register actions to be taken later.
9637 pub fn get_event_or_persistence_needed_future(&self) -> Future {
9638 self.event_persist_notifier.get_future()
9641 /// Returns true if this [`ChannelManager`] needs to be persisted.
9643 /// See [`Self::get_event_or_persistence_needed_future`] for retrieving a [`Future`] that
9644 /// indicates this should be checked.
9645 pub fn get_and_clear_needs_persistence(&self) -> bool {
9646 self.needs_persist_flag.swap(false, Ordering::AcqRel)
9649 #[cfg(any(test, feature = "_test_utils"))]
9650 pub fn get_event_or_persist_condvar_value(&self) -> bool {
9651 self.event_persist_notifier.notify_pending()
9654 /// Gets the latest best block which was connected either via the [`chain::Listen`] or
9655 /// [`chain::Confirm`] interfaces.
9656 pub fn current_best_block(&self) -> BestBlock {
9657 self.best_block.read().unwrap().clone()
9660 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
9661 /// [`ChannelManager`].
9662 pub fn node_features(&self) -> NodeFeatures {
9663 provided_node_features(&self.default_configuration)
9666 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
9667 /// [`ChannelManager`].
9669 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
9670 /// or not. Thus, this method is not public.
9671 #[cfg(any(feature = "_test_utils", test))]
9672 pub fn bolt11_invoice_features(&self) -> Bolt11InvoiceFeatures {
9673 provided_bolt11_invoice_features(&self.default_configuration)
9676 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
9677 /// [`ChannelManager`].
9678 fn bolt12_invoice_features(&self) -> Bolt12InvoiceFeatures {
9679 provided_bolt12_invoice_features(&self.default_configuration)
9682 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
9683 /// [`ChannelManager`].
9684 pub fn channel_features(&self) -> ChannelFeatures {
9685 provided_channel_features(&self.default_configuration)
9688 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
9689 /// [`ChannelManager`].
9690 pub fn channel_type_features(&self) -> ChannelTypeFeatures {
9691 provided_channel_type_features(&self.default_configuration)
9694 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
9695 /// [`ChannelManager`].
9696 pub fn init_features(&self) -> InitFeatures {
9697 provided_init_features(&self.default_configuration)
9701 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
9702 ChannelMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
9704 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
9705 T::Target: BroadcasterInterface,
9706 ES::Target: EntropySource,
9707 NS::Target: NodeSigner,
9708 SP::Target: SignerProvider,
9709 F::Target: FeeEstimator,
9713 fn handle_open_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannel) {
9714 // Note that we never need to persist the updated ChannelManager for an inbound
9715 // open_channel message - pre-funded channels are never written so there should be no
9716 // change to the contents.
9717 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9718 let res = self.internal_open_channel(counterparty_node_id, msg);
9719 let persist = match &res {
9720 Err(e) if e.closes_channel() => {
9721 debug_assert!(false, "We shouldn't close a new channel");
9722 NotifyOption::DoPersist
9724 _ => NotifyOption::SkipPersistHandleEvents,
9726 let _ = handle_error!(self, res, *counterparty_node_id);
9731 fn handle_open_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::OpenChannelV2) {
9732 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9733 "Dual-funded channels not supported".to_owned(),
9734 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9737 fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannel) {
9738 // Note that we never need to persist the updated ChannelManager for an inbound
9739 // accept_channel message - pre-funded channels are never written so there should be no
9740 // change to the contents.
9741 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9742 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, msg), *counterparty_node_id);
9743 NotifyOption::SkipPersistHandleEvents
9747 fn handle_accept_channel_v2(&self, counterparty_node_id: &PublicKey, msg: &msgs::AcceptChannelV2) {
9748 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9749 "Dual-funded channels not supported".to_owned(),
9750 msg.common_fields.temporary_channel_id.clone())), *counterparty_node_id);
9753 fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
9754 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9755 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
9758 fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
9759 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9760 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
9763 fn handle_channel_ready(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReady) {
9764 // Note that we never need to persist the updated ChannelManager for an inbound
9765 // channel_ready message - while the channel's state will change, any channel_ready message
9766 // will ultimately be re-sent on startup and the `ChannelMonitor` won't be updated so we
9767 // will not force-close the channel on startup.
9768 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9769 let res = self.internal_channel_ready(counterparty_node_id, msg);
9770 let persist = match &res {
9771 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9772 _ => NotifyOption::SkipPersistHandleEvents,
9774 let _ = handle_error!(self, res, *counterparty_node_id);
9779 fn handle_stfu(&self, counterparty_node_id: &PublicKey, msg: &msgs::Stfu) {
9780 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9781 "Quiescence not supported".to_owned(),
9782 msg.channel_id.clone())), *counterparty_node_id);
9786 fn handle_splice(&self, counterparty_node_id: &PublicKey, msg: &msgs::Splice) {
9787 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9788 "Splicing not supported".to_owned(),
9789 msg.channel_id.clone())), *counterparty_node_id);
9793 fn handle_splice_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceAck) {
9794 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9795 "Splicing not supported (splice_ack)".to_owned(),
9796 msg.channel_id.clone())), *counterparty_node_id);
9800 fn handle_splice_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::SpliceLocked) {
9801 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
9802 "Splicing not supported (splice_locked)".to_owned(),
9803 msg.channel_id.clone())), *counterparty_node_id);
9806 fn handle_shutdown(&self, counterparty_node_id: &PublicKey, msg: &msgs::Shutdown) {
9807 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9808 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, msg), *counterparty_node_id);
9811 fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
9812 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9813 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
9816 fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
9817 // Note that we never need to persist the updated ChannelManager for an inbound
9818 // update_add_htlc message - the message itself doesn't change our channel state only the
9819 // `commitment_signed` message afterwards will.
9820 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9821 let res = self.internal_update_add_htlc(counterparty_node_id, msg);
9822 let persist = match &res {
9823 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9824 Err(_) => NotifyOption::SkipPersistHandleEvents,
9825 Ok(()) => NotifyOption::SkipPersistNoEvents,
9827 let _ = handle_error!(self, res, *counterparty_node_id);
9832 fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
9833 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9834 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
9837 fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
9838 // Note that we never need to persist the updated ChannelManager for an inbound
9839 // update_fail_htlc message - the message itself doesn't change our channel state only the
9840 // `commitment_signed` message afterwards will.
9841 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9842 let res = self.internal_update_fail_htlc(counterparty_node_id, msg);
9843 let persist = match &res {
9844 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9845 Err(_) => NotifyOption::SkipPersistHandleEvents,
9846 Ok(()) => NotifyOption::SkipPersistNoEvents,
9848 let _ = handle_error!(self, res, *counterparty_node_id);
9853 fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
9854 // Note that we never need to persist the updated ChannelManager for an inbound
9855 // update_fail_malformed_htlc message - the message itself doesn't change our channel state
9856 // only the `commitment_signed` message afterwards will.
9857 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9858 let res = self.internal_update_fail_malformed_htlc(counterparty_node_id, msg);
9859 let persist = match &res {
9860 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9861 Err(_) => NotifyOption::SkipPersistHandleEvents,
9862 Ok(()) => NotifyOption::SkipPersistNoEvents,
9864 let _ = handle_error!(self, res, *counterparty_node_id);
9869 fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
9870 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9871 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
9874 fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
9875 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9876 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
9879 fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
9880 // Note that we never need to persist the updated ChannelManager for an inbound
9881 // update_fee message - the message itself doesn't change our channel state only the
9882 // `commitment_signed` message afterwards will.
9883 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9884 let res = self.internal_update_fee(counterparty_node_id, msg);
9885 let persist = match &res {
9886 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9887 Err(_) => NotifyOption::SkipPersistHandleEvents,
9888 Ok(()) => NotifyOption::SkipPersistNoEvents,
9890 let _ = handle_error!(self, res, *counterparty_node_id);
9895 fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
9896 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
9897 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
9900 fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
9901 PersistenceNotifierGuard::optionally_notify(self, || {
9902 if let Ok(persist) = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id) {
9905 NotifyOption::DoPersist
9910 fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
9911 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(self, || {
9912 let res = self.internal_channel_reestablish(counterparty_node_id, msg);
9913 let persist = match &res {
9914 Err(e) if e.closes_channel() => NotifyOption::DoPersist,
9915 Err(_) => NotifyOption::SkipPersistHandleEvents,
9916 Ok(persist) => *persist,
9918 let _ = handle_error!(self, res, *counterparty_node_id);
9923 fn peer_disconnected(&self, counterparty_node_id: &PublicKey) {
9924 let _persistence_guard = PersistenceNotifierGuard::optionally_notify(
9925 self, || NotifyOption::SkipPersistHandleEvents);
9926 let mut failed_channels = Vec::new();
9927 let mut per_peer_state = self.per_peer_state.write().unwrap();
9930 WithContext::from(&self.logger, Some(*counterparty_node_id), None),
9931 "Marking channels with {} disconnected and generating channel_updates.",
9932 log_pubkey!(counterparty_node_id)
9934 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
9935 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
9936 let peer_state = &mut *peer_state_lock;
9937 let pending_msg_events = &mut peer_state.pending_msg_events;
9938 peer_state.channel_by_id.retain(|_, phase| {
9939 let context = match phase {
9940 ChannelPhase::Funded(chan) => {
9941 let logger = WithChannelContext::from(&self.logger, &chan.context);
9942 if chan.remove_uncommitted_htlcs_and_mark_paused(&&logger).is_ok() {
9943 // We only retain funded channels that are not shutdown.
9948 // We retain UnfundedOutboundV1 channel for some time in case
9949 // peer unexpectedly disconnects, and intends to reconnect again.
9950 ChannelPhase::UnfundedOutboundV1(_) => {
9953 // Unfunded inbound channels will always be removed.
9954 ChannelPhase::UnfundedInboundV1(chan) => {
9957 #[cfg(any(dual_funding, splicing))]
9958 ChannelPhase::UnfundedOutboundV2(chan) => {
9961 #[cfg(any(dual_funding, splicing))]
9962 ChannelPhase::UnfundedInboundV2(chan) => {
9966 // Clean up for removal.
9967 update_maps_on_chan_removal!(self, &context);
9968 failed_channels.push(context.force_shutdown(false, ClosureReason::DisconnectedPeer));
9971 // Note that we don't bother generating any events for pre-accept channels -
9972 // they're not considered "channels" yet from the PoV of our events interface.
9973 peer_state.inbound_channel_request_by_id.clear();
9974 pending_msg_events.retain(|msg| {
9976 // V1 Channel Establishment
9977 &events::MessageSendEvent::SendAcceptChannel { .. } => false,
9978 &events::MessageSendEvent::SendOpenChannel { .. } => false,
9979 &events::MessageSendEvent::SendFundingCreated { .. } => false,
9980 &events::MessageSendEvent::SendFundingSigned { .. } => false,
9981 // V2 Channel Establishment
9982 &events::MessageSendEvent::SendAcceptChannelV2 { .. } => false,
9983 &events::MessageSendEvent::SendOpenChannelV2 { .. } => false,
9984 // Common Channel Establishment
9985 &events::MessageSendEvent::SendChannelReady { .. } => false,
9986 &events::MessageSendEvent::SendAnnouncementSignatures { .. } => false,
9988 &events::MessageSendEvent::SendStfu { .. } => false,
9990 &events::MessageSendEvent::SendSplice { .. } => false,
9991 &events::MessageSendEvent::SendSpliceAck { .. } => false,
9992 &events::MessageSendEvent::SendSpliceLocked { .. } => false,
9993 // Interactive Transaction Construction
9994 &events::MessageSendEvent::SendTxAddInput { .. } => false,
9995 &events::MessageSendEvent::SendTxAddOutput { .. } => false,
9996 &events::MessageSendEvent::SendTxRemoveInput { .. } => false,
9997 &events::MessageSendEvent::SendTxRemoveOutput { .. } => false,
9998 &events::MessageSendEvent::SendTxComplete { .. } => false,
9999 &events::MessageSendEvent::SendTxSignatures { .. } => false,
10000 &events::MessageSendEvent::SendTxInitRbf { .. } => false,
10001 &events::MessageSendEvent::SendTxAckRbf { .. } => false,
10002 &events::MessageSendEvent::SendTxAbort { .. } => false,
10003 // Channel Operations
10004 &events::MessageSendEvent::UpdateHTLCs { .. } => false,
10005 &events::MessageSendEvent::SendRevokeAndACK { .. } => false,
10006 &events::MessageSendEvent::SendClosingSigned { .. } => false,
10007 &events::MessageSendEvent::SendShutdown { .. } => false,
10008 &events::MessageSendEvent::SendChannelReestablish { .. } => false,
10009 &events::MessageSendEvent::HandleError { .. } => false,
10011 &events::MessageSendEvent::SendChannelAnnouncement { .. } => false,
10012 &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
10013 // [`ChannelManager::pending_broadcast_events`] holds the [`BroadcastChannelUpdate`]
10014 // This check here is to ensure exhaustivity.
10015 &events::MessageSendEvent::BroadcastChannelUpdate { .. } => {
10016 debug_assert!(false, "This event shouldn't have been here");
10019 &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
10020 &events::MessageSendEvent::SendChannelUpdate { .. } => false,
10021 &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
10022 &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
10023 &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
10024 &events::MessageSendEvent::SendGossipTimestampFilter { .. } => false,
10027 debug_assert!(peer_state.is_connected, "A disconnected peer cannot disconnect");
10028 peer_state.is_connected = false;
10029 peer_state.ok_to_remove(true)
10030 } else { debug_assert!(false, "Unconnected peer disconnected"); true }
10033 per_peer_state.remove(counterparty_node_id);
10035 mem::drop(per_peer_state);
10037 for failure in failed_channels.drain(..) {
10038 self.finish_close_channel(failure);
10042 fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init, inbound: bool) -> Result<(), ()> {
10043 let logger = WithContext::from(&self.logger, Some(*counterparty_node_id), None);
10044 if !init_msg.features.supports_static_remote_key() {
10045 log_debug!(logger, "Peer {} does not support static remote key, disconnecting", log_pubkey!(counterparty_node_id));
10049 let mut res = Ok(());
10051 PersistenceNotifierGuard::optionally_notify(self, || {
10052 // If we have too many peers connected which don't have funded channels, disconnect the
10053 // peer immediately (as long as it doesn't have funded channels). If we have a bunch of
10054 // unfunded channels taking up space in memory for disconnected peers, we still let new
10055 // peers connect, but we'll reject new channels from them.
10056 let connected_peers_without_funded_channels = self.peers_without_funded_channels(|node| node.is_connected);
10057 let inbound_peer_limited = inbound && connected_peers_without_funded_channels >= MAX_NO_CHANNEL_PEERS;
10060 let mut peer_state_lock = self.per_peer_state.write().unwrap();
10061 match peer_state_lock.entry(counterparty_node_id.clone()) {
10062 hash_map::Entry::Vacant(e) => {
10063 if inbound_peer_limited {
10065 return NotifyOption::SkipPersistNoEvents;
10067 e.insert(Mutex::new(PeerState {
10068 channel_by_id: new_hash_map(),
10069 inbound_channel_request_by_id: new_hash_map(),
10070 latest_features: init_msg.features.clone(),
10071 pending_msg_events: Vec::new(),
10072 in_flight_monitor_updates: BTreeMap::new(),
10073 monitor_update_blocked_actions: BTreeMap::new(),
10074 actions_blocking_raa_monitor_updates: BTreeMap::new(),
10075 is_connected: true,
10078 hash_map::Entry::Occupied(e) => {
10079 let mut peer_state = e.get().lock().unwrap();
10080 peer_state.latest_features = init_msg.features.clone();
10082 let best_block_height = self.best_block.read().unwrap().height;
10083 if inbound_peer_limited &&
10084 Self::unfunded_channel_count(&*peer_state, best_block_height) ==
10085 peer_state.channel_by_id.len()
10088 return NotifyOption::SkipPersistNoEvents;
10091 debug_assert!(!peer_state.is_connected, "A peer shouldn't be connected twice");
10092 peer_state.is_connected = true;
10097 log_debug!(logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
10099 let per_peer_state = self.per_peer_state.read().unwrap();
10100 if let Some(peer_state_mutex) = per_peer_state.get(counterparty_node_id) {
10101 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
10102 let peer_state = &mut *peer_state_lock;
10103 let pending_msg_events = &mut peer_state.pending_msg_events;
10105 for (_, phase) in peer_state.channel_by_id.iter_mut() {
10107 ChannelPhase::Funded(chan) => {
10108 let logger = WithChannelContext::from(&self.logger, &chan.context);
10109 pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
10110 node_id: chan.context.get_counterparty_node_id(),
10111 msg: chan.get_channel_reestablish(&&logger),
10115 ChannelPhase::UnfundedOutboundV1(chan) => {
10116 pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10117 node_id: chan.context.get_counterparty_node_id(),
10118 msg: chan.get_open_channel(self.chain_hash),
10122 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10123 #[cfg(any(dual_funding, splicing))]
10124 ChannelPhase::UnfundedOutboundV2(chan) => {
10125 pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10126 node_id: chan.context.get_counterparty_node_id(),
10127 msg: chan.get_open_channel_v2(self.chain_hash),
10131 ChannelPhase::UnfundedInboundV1(_) => {
10132 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10133 // they are not persisted and won't be recovered after a crash.
10134 // Therefore, they shouldn't exist at this point.
10135 debug_assert!(false);
10138 // TODO(dual_funding): Combine this match arm with above once #[cfg(any(dual_funding, splicing))] is removed.
10139 #[cfg(any(dual_funding, splicing))]
10140 ChannelPhase::UnfundedInboundV2(channel) => {
10141 // Since unfunded inbound channel maps are cleared upon disconnecting a peer,
10142 // they are not persisted and won't be recovered after a crash.
10143 // Therefore, they shouldn't exist at this point.
10144 debug_assert!(false);
10150 return NotifyOption::SkipPersistHandleEvents;
10151 //TODO: Also re-broadcast announcement_signatures
10156 fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
10157 match &msg.data as &str {
10158 "cannot co-op close channel w/ active htlcs"|
10159 "link failed to shutdown" =>
10161 // LND hasn't properly handled shutdown messages ever, and force-closes any time we
10162 // send one while HTLCs are still present. The issue is tracked at
10163 // https://github.com/lightningnetwork/lnd/issues/6039 and has had multiple patches
10164 // to fix it but none so far have managed to land upstream. The issue appears to be
10165 // very low priority for the LND team despite being marked "P1".
10166 // We're not going to bother handling this in a sensible way, instead simply
10167 // repeating the Shutdown message on repeat until morale improves.
10168 if !msg.channel_id.is_zero() {
10169 PersistenceNotifierGuard::optionally_notify(
10171 || -> NotifyOption {
10172 let per_peer_state = self.per_peer_state.read().unwrap();
10173 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10174 if peer_state_mutex_opt.is_none() { return NotifyOption::SkipPersistNoEvents; }
10175 let mut peer_state = peer_state_mutex_opt.unwrap().lock().unwrap();
10176 if let Some(ChannelPhase::Funded(chan)) = peer_state.channel_by_id.get(&msg.channel_id) {
10177 if let Some(msg) = chan.get_outbound_shutdown() {
10178 peer_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
10179 node_id: *counterparty_node_id,
10183 peer_state.pending_msg_events.push(events::MessageSendEvent::HandleError {
10184 node_id: *counterparty_node_id,
10185 action: msgs::ErrorAction::SendWarningMessage {
10186 msg: msgs::WarningMessage {
10187 channel_id: msg.channel_id,
10188 data: "You appear to be exhibiting LND bug 6039, we'll keep sending you shutdown messages until you handle them correctly".to_owned()
10190 log_level: Level::Trace,
10193 // This can happen in a fairly tight loop, so we absolutely cannot trigger
10194 // a `ChannelManager` write here.
10195 return NotifyOption::SkipPersistHandleEvents;
10197 NotifyOption::SkipPersistNoEvents
10206 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(self);
10208 if msg.channel_id.is_zero() {
10209 let channel_ids: Vec<ChannelId> = {
10210 let per_peer_state = self.per_peer_state.read().unwrap();
10211 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10212 if peer_state_mutex_opt.is_none() { return; }
10213 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10214 let peer_state = &mut *peer_state_lock;
10215 // Note that we don't bother generating any events for pre-accept channels -
10216 // they're not considered "channels" yet from the PoV of our events interface.
10217 peer_state.inbound_channel_request_by_id.clear();
10218 peer_state.channel_by_id.keys().cloned().collect()
10220 for channel_id in channel_ids {
10221 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10222 let _ = self.force_close_channel_with_peer(&channel_id, counterparty_node_id, Some(&msg.data), true);
10226 // First check if we can advance the channel type and try again.
10227 let per_peer_state = self.per_peer_state.read().unwrap();
10228 let peer_state_mutex_opt = per_peer_state.get(counterparty_node_id);
10229 if peer_state_mutex_opt.is_none() { return; }
10230 let mut peer_state_lock = peer_state_mutex_opt.unwrap().lock().unwrap();
10231 let peer_state = &mut *peer_state_lock;
10232 match peer_state.channel_by_id.get_mut(&msg.channel_id) {
10233 Some(ChannelPhase::UnfundedOutboundV1(ref mut chan)) => {
10234 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10235 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
10236 node_id: *counterparty_node_id,
10242 #[cfg(any(dual_funding, splicing))]
10243 Some(ChannelPhase::UnfundedOutboundV2(ref mut chan)) => {
10244 if let Ok(msg) = chan.maybe_handle_error_without_close(self.chain_hash, &self.fee_estimator) {
10245 peer_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannelV2 {
10246 node_id: *counterparty_node_id,
10252 None | Some(ChannelPhase::UnfundedInboundV1(_) | ChannelPhase::Funded(_)) => (),
10253 #[cfg(any(dual_funding, splicing))]
10254 Some(ChannelPhase::UnfundedInboundV2(_)) => (),
10258 // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
10259 let _ = self.force_close_channel_with_peer(&msg.channel_id, counterparty_node_id, Some(&msg.data), true);
10263 fn provided_node_features(&self) -> NodeFeatures {
10264 provided_node_features(&self.default_configuration)
10267 fn provided_init_features(&self, _their_init_features: &PublicKey) -> InitFeatures {
10268 provided_init_features(&self.default_configuration)
10271 fn get_chain_hashes(&self) -> Option<Vec<ChainHash>> {
10272 Some(vec![self.chain_hash])
10275 fn handle_tx_add_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddInput) {
10276 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10277 "Dual-funded channels not supported".to_owned(),
10278 msg.channel_id.clone())), *counterparty_node_id);
10281 fn handle_tx_add_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAddOutput) {
10282 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10283 "Dual-funded channels not supported".to_owned(),
10284 msg.channel_id.clone())), *counterparty_node_id);
10287 fn handle_tx_remove_input(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveInput) {
10288 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10289 "Dual-funded channels not supported".to_owned(),
10290 msg.channel_id.clone())), *counterparty_node_id);
10293 fn handle_tx_remove_output(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxRemoveOutput) {
10294 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10295 "Dual-funded channels not supported".to_owned(),
10296 msg.channel_id.clone())), *counterparty_node_id);
10299 fn handle_tx_complete(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxComplete) {
10300 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10301 "Dual-funded channels not supported".to_owned(),
10302 msg.channel_id.clone())), *counterparty_node_id);
10305 fn handle_tx_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxSignatures) {
10306 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10307 "Dual-funded channels not supported".to_owned(),
10308 msg.channel_id.clone())), *counterparty_node_id);
10311 fn handle_tx_init_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxInitRbf) {
10312 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10313 "Dual-funded channels not supported".to_owned(),
10314 msg.channel_id.clone())), *counterparty_node_id);
10317 fn handle_tx_ack_rbf(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAckRbf) {
10318 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10319 "Dual-funded channels not supported".to_owned(),
10320 msg.channel_id.clone())), *counterparty_node_id);
10323 fn handle_tx_abort(&self, counterparty_node_id: &PublicKey, msg: &msgs::TxAbort) {
10324 let _: Result<(), _> = handle_error!(self, Err(MsgHandleErrInternal::send_err_msg_no_close(
10325 "Dual-funded channels not supported".to_owned(),
10326 msg.channel_id.clone())), *counterparty_node_id);
10330 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10331 OffersMessageHandler for ChannelManager<M, T, ES, NS, SP, F, R, L>
10333 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10334 T::Target: BroadcasterInterface,
10335 ES::Target: EntropySource,
10336 NS::Target: NodeSigner,
10337 SP::Target: SignerProvider,
10338 F::Target: FeeEstimator,
10342 fn handle_message(&self, message: OffersMessage) -> Option<OffersMessage> {
10343 let secp_ctx = &self.secp_ctx;
10344 let expanded_key = &self.inbound_payment_key;
10347 OffersMessage::InvoiceRequest(invoice_request) => {
10348 let amount_msats = match InvoiceBuilder::<DerivedSigningPubkey>::amount_msats(
10351 Ok(amount_msats) => amount_msats,
10352 Err(error) => return Some(OffersMessage::InvoiceError(error.into())),
10354 let invoice_request = match invoice_request.verify(expanded_key, secp_ctx) {
10355 Ok(invoice_request) => invoice_request,
10357 let error = Bolt12SemanticError::InvalidMetadata;
10358 return Some(OffersMessage::InvoiceError(error.into()));
10362 let relative_expiry = DEFAULT_RELATIVE_EXPIRY.as_secs() as u32;
10363 let (payment_hash, payment_secret) = match self.create_inbound_payment(
10364 Some(amount_msats), relative_expiry, None
10366 Ok((payment_hash, payment_secret)) => (payment_hash, payment_secret),
10368 let error = Bolt12SemanticError::InvalidAmount;
10369 return Some(OffersMessage::InvoiceError(error.into()));
10373 let payment_context = PaymentContext::Bolt12Offer(Bolt12OfferContext {
10374 offer_id: invoice_request.offer_id,
10375 invoice_request: invoice_request.fields(),
10377 let payment_paths = match self.create_blinded_payment_paths(
10378 amount_msats, payment_secret, payment_context
10380 Ok(payment_paths) => payment_paths,
10382 let error = Bolt12SemanticError::MissingPaths;
10383 return Some(OffersMessage::InvoiceError(error.into()));
10387 #[cfg(not(feature = "std"))]
10388 let created_at = Duration::from_secs(
10389 self.highest_seen_timestamp.load(Ordering::Acquire) as u64
10392 let response = if invoice_request.keys.is_some() {
10393 #[cfg(feature = "std")]
10394 let builder = invoice_request.respond_using_derived_keys(
10395 payment_paths, payment_hash
10397 #[cfg(not(feature = "std"))]
10398 let builder = invoice_request.respond_using_derived_keys_no_std(
10399 payment_paths, payment_hash, created_at
10402 .map(InvoiceBuilder::<DerivedSigningPubkey>::from)
10403 .and_then(|builder| builder.allow_mpp().build_and_sign(secp_ctx))
10404 .map_err(InvoiceError::from)
10406 #[cfg(feature = "std")]
10407 let builder = invoice_request.respond_with(payment_paths, payment_hash);
10408 #[cfg(not(feature = "std"))]
10409 let builder = invoice_request.respond_with_no_std(
10410 payment_paths, payment_hash, created_at
10413 .map(InvoiceBuilder::<ExplicitSigningPubkey>::from)
10414 .and_then(|builder| builder.allow_mpp().build())
10415 .map_err(InvoiceError::from)
10416 .and_then(|invoice| {
10418 let mut invoice = invoice;
10420 .sign(|invoice: &UnsignedBolt12Invoice|
10421 self.node_signer.sign_bolt12_invoice(invoice)
10423 .map_err(InvoiceError::from)
10428 Ok(invoice) => Some(OffersMessage::Invoice(invoice)),
10429 Err(error) => Some(OffersMessage::InvoiceError(error.into())),
10432 OffersMessage::Invoice(invoice) => {
10433 let response = invoice
10434 .verify(expanded_key, secp_ctx)
10435 .map_err(|()| InvoiceError::from_string("Unrecognized invoice".to_owned()))
10436 .and_then(|payment_id| {
10437 let features = self.bolt12_invoice_features();
10438 if invoice.invoice_features().requires_unknown_bits_from(&features) {
10439 Err(InvoiceError::from(Bolt12SemanticError::UnknownRequiredFeatures))
10441 self.send_payment_for_bolt12_invoice(&invoice, payment_id)
10443 log_trace!(self.logger, "Failed paying invoice: {:?}", e);
10444 InvoiceError::from_string(format!("{:?}", e))
10451 Err(e) => Some(OffersMessage::InvoiceError(e)),
10454 OffersMessage::InvoiceError(invoice_error) => {
10455 log_trace!(self.logger, "Received invoice_error: {}", invoice_error);
10461 fn release_pending_messages(&self) -> Vec<PendingOnionMessage<OffersMessage>> {
10462 core::mem::take(&mut self.pending_offers_messages.lock().unwrap())
10466 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
10467 NodeIdLookUp for ChannelManager<M, T, ES, NS, SP, F, R, L>
10469 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
10470 T::Target: BroadcasterInterface,
10471 ES::Target: EntropySource,
10472 NS::Target: NodeSigner,
10473 SP::Target: SignerProvider,
10474 F::Target: FeeEstimator,
10478 fn next_node_id(&self, short_channel_id: u64) -> Option<PublicKey> {
10479 self.short_to_chan_info.read().unwrap().get(&short_channel_id).map(|(pubkey, _)| *pubkey)
10483 /// Fetches the set of [`NodeFeatures`] flags that are provided by or required by
10484 /// [`ChannelManager`].
10485 pub(crate) fn provided_node_features(config: &UserConfig) -> NodeFeatures {
10486 let mut node_features = provided_init_features(config).to_context();
10487 node_features.set_keysend_optional();
10491 /// Fetches the set of [`Bolt11InvoiceFeatures`] flags that are provided by or required by
10492 /// [`ChannelManager`].
10494 /// Note that the invoice feature flags can vary depending on if the invoice is a "phantom invoice"
10495 /// or not. Thus, this method is not public.
10496 #[cfg(any(feature = "_test_utils", test))]
10497 pub(crate) fn provided_bolt11_invoice_features(config: &UserConfig) -> Bolt11InvoiceFeatures {
10498 provided_init_features(config).to_context()
10501 /// Fetches the set of [`Bolt12InvoiceFeatures`] flags that are provided by or required by
10502 /// [`ChannelManager`].
10503 pub(crate) fn provided_bolt12_invoice_features(config: &UserConfig) -> Bolt12InvoiceFeatures {
10504 provided_init_features(config).to_context()
10507 /// Fetches the set of [`ChannelFeatures`] flags that are provided by or required by
10508 /// [`ChannelManager`].
10509 pub(crate) fn provided_channel_features(config: &UserConfig) -> ChannelFeatures {
10510 provided_init_features(config).to_context()
10513 /// Fetches the set of [`ChannelTypeFeatures`] flags that are provided by or required by
10514 /// [`ChannelManager`].
10515 pub(crate) fn provided_channel_type_features(config: &UserConfig) -> ChannelTypeFeatures {
10516 ChannelTypeFeatures::from_init(&provided_init_features(config))
10519 /// Fetches the set of [`InitFeatures`] flags that are provided by or required by
10520 /// [`ChannelManager`].
10521 pub fn provided_init_features(config: &UserConfig) -> InitFeatures {
10522 // Note that if new features are added here which other peers may (eventually) require, we
10523 // should also add the corresponding (optional) bit to the [`ChannelMessageHandler`] impl for
10524 // [`ErroringMessageHandler`].
10525 let mut features = InitFeatures::empty();
10526 features.set_data_loss_protect_required();
10527 features.set_upfront_shutdown_script_optional();
10528 features.set_variable_length_onion_required();
10529 features.set_static_remote_key_required();
10530 features.set_payment_secret_required();
10531 features.set_basic_mpp_optional();
10532 features.set_wumbo_optional();
10533 features.set_shutdown_any_segwit_optional();
10534 features.set_channel_type_optional();
10535 features.set_scid_privacy_optional();
10536 features.set_zero_conf_optional();
10537 features.set_route_blinding_optional();
10538 if config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx {
10539 features.set_anchors_zero_fee_htlc_tx_optional();
10544 const SERIALIZATION_VERSION: u8 = 1;
10545 const MIN_SERIALIZATION_VERSION: u8 = 1;
10547 impl_writeable_tlv_based!(CounterpartyForwardingInfo, {
10548 (2, fee_base_msat, required),
10549 (4, fee_proportional_millionths, required),
10550 (6, cltv_expiry_delta, required),
10553 impl_writeable_tlv_based!(ChannelCounterparty, {
10554 (2, node_id, required),
10555 (4, features, required),
10556 (6, unspendable_punishment_reserve, required),
10557 (8, forwarding_info, option),
10558 (9, outbound_htlc_minimum_msat, option),
10559 (11, outbound_htlc_maximum_msat, option),
10562 impl Writeable for ChannelDetails {
10563 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10564 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10565 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10566 let user_channel_id_low = self.user_channel_id as u64;
10567 let user_channel_id_high_opt = Some((self.user_channel_id >> 64) as u64);
10568 write_tlv_fields!(writer, {
10569 (1, self.inbound_scid_alias, option),
10570 (2, self.channel_id, required),
10571 (3, self.channel_type, option),
10572 (4, self.counterparty, required),
10573 (5, self.outbound_scid_alias, option),
10574 (6, self.funding_txo, option),
10575 (7, self.config, option),
10576 (8, self.short_channel_id, option),
10577 (9, self.confirmations, option),
10578 (10, self.channel_value_satoshis, required),
10579 (12, self.unspendable_punishment_reserve, option),
10580 (14, user_channel_id_low, required),
10581 (16, self.balance_msat, required),
10582 (18, self.outbound_capacity_msat, required),
10583 (19, self.next_outbound_htlc_limit_msat, required),
10584 (20, self.inbound_capacity_msat, required),
10585 (21, self.next_outbound_htlc_minimum_msat, required),
10586 (22, self.confirmations_required, option),
10587 (24, self.force_close_spend_delay, option),
10588 (26, self.is_outbound, required),
10589 (28, self.is_channel_ready, required),
10590 (30, self.is_usable, required),
10591 (32, self.is_public, required),
10592 (33, self.inbound_htlc_minimum_msat, option),
10593 (35, self.inbound_htlc_maximum_msat, option),
10594 (37, user_channel_id_high_opt, option),
10595 (39, self.feerate_sat_per_1000_weight, option),
10596 (41, self.channel_shutdown_state, option),
10597 (43, self.pending_inbound_htlcs, optional_vec),
10598 (45, self.pending_outbound_htlcs, optional_vec),
10604 impl Readable for ChannelDetails {
10605 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10606 _init_and_read_len_prefixed_tlv_fields!(reader, {
10607 (1, inbound_scid_alias, option),
10608 (2, channel_id, required),
10609 (3, channel_type, option),
10610 (4, counterparty, required),
10611 (5, outbound_scid_alias, option),
10612 (6, funding_txo, option),
10613 (7, config, option),
10614 (8, short_channel_id, option),
10615 (9, confirmations, option),
10616 (10, channel_value_satoshis, required),
10617 (12, unspendable_punishment_reserve, option),
10618 (14, user_channel_id_low, required),
10619 (16, balance_msat, required),
10620 (18, outbound_capacity_msat, required),
10621 // Note that by the time we get past the required read above, outbound_capacity_msat will be
10622 // filled in, so we can safely unwrap it here.
10623 (19, next_outbound_htlc_limit_msat, (default_value, outbound_capacity_msat.0.unwrap() as u64)),
10624 (20, inbound_capacity_msat, required),
10625 (21, next_outbound_htlc_minimum_msat, (default_value, 0)),
10626 (22, confirmations_required, option),
10627 (24, force_close_spend_delay, option),
10628 (26, is_outbound, required),
10629 (28, is_channel_ready, required),
10630 (30, is_usable, required),
10631 (32, is_public, required),
10632 (33, inbound_htlc_minimum_msat, option),
10633 (35, inbound_htlc_maximum_msat, option),
10634 (37, user_channel_id_high_opt, option),
10635 (39, feerate_sat_per_1000_weight, option),
10636 (41, channel_shutdown_state, option),
10637 (43, pending_inbound_htlcs, optional_vec),
10638 (45, pending_outbound_htlcs, optional_vec),
10641 // `user_channel_id` used to be a single u64 value. In order to remain backwards compatible with
10642 // versions prior to 0.0.113, the u128 is serialized as two separate u64 values.
10643 let user_channel_id_low: u64 = user_channel_id_low.0.unwrap();
10644 let user_channel_id = user_channel_id_low as u128 +
10645 ((user_channel_id_high_opt.unwrap_or(0 as u64) as u128) << 64);
10648 inbound_scid_alias,
10649 channel_id: channel_id.0.unwrap(),
10651 counterparty: counterparty.0.unwrap(),
10652 outbound_scid_alias,
10656 channel_value_satoshis: channel_value_satoshis.0.unwrap(),
10657 unspendable_punishment_reserve,
10659 balance_msat: balance_msat.0.unwrap(),
10660 outbound_capacity_msat: outbound_capacity_msat.0.unwrap(),
10661 next_outbound_htlc_limit_msat: next_outbound_htlc_limit_msat.0.unwrap(),
10662 next_outbound_htlc_minimum_msat: next_outbound_htlc_minimum_msat.0.unwrap(),
10663 inbound_capacity_msat: inbound_capacity_msat.0.unwrap(),
10664 confirmations_required,
10666 force_close_spend_delay,
10667 is_outbound: is_outbound.0.unwrap(),
10668 is_channel_ready: is_channel_ready.0.unwrap(),
10669 is_usable: is_usable.0.unwrap(),
10670 is_public: is_public.0.unwrap(),
10671 inbound_htlc_minimum_msat,
10672 inbound_htlc_maximum_msat,
10673 feerate_sat_per_1000_weight,
10674 channel_shutdown_state,
10675 pending_inbound_htlcs: pending_inbound_htlcs.unwrap_or(Vec::new()),
10676 pending_outbound_htlcs: pending_outbound_htlcs.unwrap_or(Vec::new()),
10681 impl_writeable_tlv_based!(PhantomRouteHints, {
10682 (2, channels, required_vec),
10683 (4, phantom_scid, required),
10684 (6, real_node_pubkey, required),
10687 impl_writeable_tlv_based!(BlindedForward, {
10688 (0, inbound_blinding_point, required),
10689 (1, failure, (default_value, BlindedFailure::FromIntroductionNode)),
10692 impl_writeable_tlv_based_enum!(PendingHTLCRouting,
10694 (0, onion_packet, required),
10695 (1, blinded, option),
10696 (2, short_channel_id, required),
10699 (0, payment_data, required),
10700 (1, phantom_shared_secret, option),
10701 (2, incoming_cltv_expiry, required),
10702 (3, payment_metadata, option),
10703 (5, custom_tlvs, optional_vec),
10704 (7, requires_blinded_error, (default_value, false)),
10705 (9, payment_context, option),
10707 (2, ReceiveKeysend) => {
10708 (0, payment_preimage, required),
10709 (1, requires_blinded_error, (default_value, false)),
10710 (2, incoming_cltv_expiry, required),
10711 (3, payment_metadata, option),
10712 (4, payment_data, option), // Added in 0.0.116
10713 (5, custom_tlvs, optional_vec),
10717 impl_writeable_tlv_based!(PendingHTLCInfo, {
10718 (0, routing, required),
10719 (2, incoming_shared_secret, required),
10720 (4, payment_hash, required),
10721 (6, outgoing_amt_msat, required),
10722 (8, outgoing_cltv_value, required),
10723 (9, incoming_amt_msat, option),
10724 (10, skimmed_fee_msat, option),
10728 impl Writeable for HTLCFailureMsg {
10729 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10731 HTLCFailureMsg::Relay(msgs::UpdateFailHTLC { channel_id, htlc_id, reason }) => {
10732 0u8.write(writer)?;
10733 channel_id.write(writer)?;
10734 htlc_id.write(writer)?;
10735 reason.write(writer)?;
10737 HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10738 channel_id, htlc_id, sha256_of_onion, failure_code
10740 1u8.write(writer)?;
10741 channel_id.write(writer)?;
10742 htlc_id.write(writer)?;
10743 sha256_of_onion.write(writer)?;
10744 failure_code.write(writer)?;
10751 impl Readable for HTLCFailureMsg {
10752 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10753 let id: u8 = Readable::read(reader)?;
10756 Ok(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
10757 channel_id: Readable::read(reader)?,
10758 htlc_id: Readable::read(reader)?,
10759 reason: Readable::read(reader)?,
10763 Ok(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
10764 channel_id: Readable::read(reader)?,
10765 htlc_id: Readable::read(reader)?,
10766 sha256_of_onion: Readable::read(reader)?,
10767 failure_code: Readable::read(reader)?,
10770 // In versions prior to 0.0.101, HTLCFailureMsg objects were written with type 0 or 1 but
10771 // weren't length-prefixed and thus didn't support reading the TLV stream suffix of the network
10772 // messages contained in the variants.
10773 // In version 0.0.101, support for reading the variants with these types was added, and
10774 // we should migrate to writing these variants when UpdateFailHTLC or
10775 // UpdateFailMalformedHTLC get TLV fields.
10777 let length: BigSize = Readable::read(reader)?;
10778 let mut s = FixedLengthReader::new(reader, length.0);
10779 let res = Readable::read(&mut s)?;
10780 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10781 Ok(HTLCFailureMsg::Relay(res))
10784 let length: BigSize = Readable::read(reader)?;
10785 let mut s = FixedLengthReader::new(reader, length.0);
10786 let res = Readable::read(&mut s)?;
10787 s.eat_remaining()?; // Return ShortRead if there's actually not enough bytes
10788 Ok(HTLCFailureMsg::Malformed(res))
10790 _ => Err(DecodeError::UnknownRequiredFeature),
10795 impl_writeable_tlv_based_enum!(PendingHTLCStatus, ;
10800 impl_writeable_tlv_based_enum!(BlindedFailure,
10801 (0, FromIntroductionNode) => {},
10802 (2, FromBlindedNode) => {}, ;
10805 impl_writeable_tlv_based!(HTLCPreviousHopData, {
10806 (0, short_channel_id, required),
10807 (1, phantom_shared_secret, option),
10808 (2, outpoint, required),
10809 (3, blinded_failure, option),
10810 (4, htlc_id, required),
10811 (6, incoming_packet_shared_secret, required),
10812 (7, user_channel_id, option),
10813 // Note that by the time we get past the required read for type 2 above, outpoint will be
10814 // filled in, so we can safely unwrap it here.
10815 (9, channel_id, (default_value, ChannelId::v1_from_funding_outpoint(outpoint.0.unwrap()))),
10818 impl Writeable for ClaimableHTLC {
10819 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
10820 let (payment_data, keysend_preimage, payment_context) = match &self.onion_payload {
10821 OnionPayload::Invoice { _legacy_hop_data, payment_context } => {
10822 (_legacy_hop_data.as_ref(), None, payment_context.as_ref())
10824 OnionPayload::Spontaneous(preimage) => (None, Some(preimage), None),
10826 write_tlv_fields!(writer, {
10827 (0, self.prev_hop, required),
10828 (1, self.total_msat, required),
10829 (2, self.value, required),
10830 (3, self.sender_intended_value, required),
10831 (4, payment_data, option),
10832 (5, self.total_value_received, option),
10833 (6, self.cltv_expiry, required),
10834 (8, keysend_preimage, option),
10835 (10, self.counterparty_skimmed_fee_msat, option),
10836 (11, payment_context, option),
10842 impl Readable for ClaimableHTLC {
10843 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10844 _init_and_read_len_prefixed_tlv_fields!(reader, {
10845 (0, prev_hop, required),
10846 (1, total_msat, option),
10847 (2, value_ser, required),
10848 (3, sender_intended_value, option),
10849 (4, payment_data_opt, option),
10850 (5, total_value_received, option),
10851 (6, cltv_expiry, required),
10852 (8, keysend_preimage, option),
10853 (10, counterparty_skimmed_fee_msat, option),
10854 (11, payment_context, option),
10856 let payment_data: Option<msgs::FinalOnionHopData> = payment_data_opt;
10857 let value = value_ser.0.unwrap();
10858 let onion_payload = match keysend_preimage {
10860 if payment_data.is_some() {
10861 return Err(DecodeError::InvalidValue)
10863 if total_msat.is_none() {
10864 total_msat = Some(value);
10866 OnionPayload::Spontaneous(p)
10869 if total_msat.is_none() {
10870 if payment_data.is_none() {
10871 return Err(DecodeError::InvalidValue)
10873 total_msat = Some(payment_data.as_ref().unwrap().total_msat);
10875 OnionPayload::Invoice { _legacy_hop_data: payment_data, payment_context }
10879 prev_hop: prev_hop.0.unwrap(),
10882 sender_intended_value: sender_intended_value.unwrap_or(value),
10883 total_value_received,
10884 total_msat: total_msat.unwrap(),
10886 cltv_expiry: cltv_expiry.0.unwrap(),
10887 counterparty_skimmed_fee_msat,
10892 impl Readable for HTLCSource {
10893 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
10894 let id: u8 = Readable::read(reader)?;
10897 let mut session_priv: crate::util::ser::RequiredWrapper<SecretKey> = crate::util::ser::RequiredWrapper(None);
10898 let mut first_hop_htlc_msat: u64 = 0;
10899 let mut path_hops = Vec::new();
10900 let mut payment_id = None;
10901 let mut payment_params: Option<PaymentParameters> = None;
10902 let mut blinded_tail: Option<BlindedTail> = None;
10903 read_tlv_fields!(reader, {
10904 (0, session_priv, required),
10905 (1, payment_id, option),
10906 (2, first_hop_htlc_msat, required),
10907 (4, path_hops, required_vec),
10908 (5, payment_params, (option: ReadableArgs, 0)),
10909 (6, blinded_tail, option),
10911 if payment_id.is_none() {
10912 // For backwards compat, if there was no payment_id written, use the session_priv bytes
10914 payment_id = Some(PaymentId(*session_priv.0.unwrap().as_ref()));
10916 let path = Path { hops: path_hops, blinded_tail };
10917 if path.hops.len() == 0 {
10918 return Err(DecodeError::InvalidValue);
10920 if let Some(params) = payment_params.as_mut() {
10921 if let Payee::Clear { ref mut final_cltv_expiry_delta, .. } = params.payee {
10922 if final_cltv_expiry_delta == &0 {
10923 *final_cltv_expiry_delta = path.final_cltv_expiry_delta().ok_or(DecodeError::InvalidValue)?;
10927 Ok(HTLCSource::OutboundRoute {
10928 session_priv: session_priv.0.unwrap(),
10929 first_hop_htlc_msat,
10931 payment_id: payment_id.unwrap(),
10934 1 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
10935 _ => Err(DecodeError::UnknownRequiredFeature),
10940 impl Writeable for HTLCSource {
10941 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
10943 HTLCSource::OutboundRoute { ref session_priv, ref first_hop_htlc_msat, ref path, payment_id } => {
10944 0u8.write(writer)?;
10945 let payment_id_opt = Some(payment_id);
10946 write_tlv_fields!(writer, {
10947 (0, session_priv, required),
10948 (1, payment_id_opt, option),
10949 (2, first_hop_htlc_msat, required),
10950 // 3 was previously used to write a PaymentSecret for the payment.
10951 (4, path.hops, required_vec),
10952 (5, None::<PaymentParameters>, option), // payment_params in LDK versions prior to 0.0.115
10953 (6, path.blinded_tail, option),
10956 HTLCSource::PreviousHopData(ref field) => {
10957 1u8.write(writer)?;
10958 field.write(writer)?;
10965 impl_writeable_tlv_based!(PendingAddHTLCInfo, {
10966 (0, forward_info, required),
10967 (1, prev_user_channel_id, (default_value, 0)),
10968 (2, prev_short_channel_id, required),
10969 (4, prev_htlc_id, required),
10970 (6, prev_funding_outpoint, required),
10971 // Note that by the time we get past the required read for type 6 above, prev_funding_outpoint will be
10972 // filled in, so we can safely unwrap it here.
10973 (7, prev_channel_id, (default_value, ChannelId::v1_from_funding_outpoint(prev_funding_outpoint.0.unwrap()))),
10976 impl Writeable for HTLCForwardInfo {
10977 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
10978 const FAIL_HTLC_VARIANT_ID: u8 = 1;
10980 Self::AddHTLC(info) => {
10984 Self::FailHTLC { htlc_id, err_packet } => {
10985 FAIL_HTLC_VARIANT_ID.write(w)?;
10986 write_tlv_fields!(w, {
10987 (0, htlc_id, required),
10988 (2, err_packet, required),
10991 Self::FailMalformedHTLC { htlc_id, failure_code, sha256_of_onion } => {
10992 // Since this variant was added in 0.0.119, write this as `::FailHTLC` with an empty error
10993 // packet so older versions have something to fail back with, but serialize the real data as
10994 // optional TLVs for the benefit of newer versions.
10995 FAIL_HTLC_VARIANT_ID.write(w)?;
10996 let dummy_err_packet = msgs::OnionErrorPacket { data: Vec::new() };
10997 write_tlv_fields!(w, {
10998 (0, htlc_id, required),
10999 (1, failure_code, required),
11000 (2, dummy_err_packet, required),
11001 (3, sha256_of_onion, required),
11009 impl Readable for HTLCForwardInfo {
11010 fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
11011 let id: u8 = Readable::read(r)?;
11013 0 => Self::AddHTLC(Readable::read(r)?),
11015 _init_and_read_len_prefixed_tlv_fields!(r, {
11016 (0, htlc_id, required),
11017 (1, malformed_htlc_failure_code, option),
11018 (2, err_packet, required),
11019 (3, sha256_of_onion, option),
11021 if let Some(failure_code) = malformed_htlc_failure_code {
11022 Self::FailMalformedHTLC {
11023 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11025 sha256_of_onion: sha256_of_onion.ok_or(DecodeError::InvalidValue)?,
11029 htlc_id: _init_tlv_based_struct_field!(htlc_id, required),
11030 err_packet: _init_tlv_based_struct_field!(err_packet, required),
11034 _ => return Err(DecodeError::InvalidValue),
11039 impl_writeable_tlv_based!(PendingInboundPayment, {
11040 (0, payment_secret, required),
11041 (2, expiry_time, required),
11042 (4, user_payment_id, required),
11043 (6, payment_preimage, required),
11044 (8, min_value_msat, required),
11047 impl<M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref> Writeable for ChannelManager<M, T, ES, NS, SP, F, R, L>
11049 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11050 T::Target: BroadcasterInterface,
11051 ES::Target: EntropySource,
11052 NS::Target: NodeSigner,
11053 SP::Target: SignerProvider,
11054 F::Target: FeeEstimator,
11058 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
11059 let _consistency_lock = self.total_consistency_lock.write().unwrap();
11061 write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
11063 self.chain_hash.write(writer)?;
11065 let best_block = self.best_block.read().unwrap();
11066 best_block.height.write(writer)?;
11067 best_block.block_hash.write(writer)?;
11070 let per_peer_state = self.per_peer_state.write().unwrap();
11072 let mut serializable_peer_count: u64 = 0;
11074 let mut number_of_funded_channels = 0;
11075 for (_, peer_state_mutex) in per_peer_state.iter() {
11076 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11077 let peer_state = &mut *peer_state_lock;
11078 if !peer_state.ok_to_remove(false) {
11079 serializable_peer_count += 1;
11082 number_of_funded_channels += peer_state.channel_by_id.iter().filter(
11083 |(_, phase)| if let ChannelPhase::Funded(chan) = phase { chan.context.is_funding_broadcast() } else { false }
11087 (number_of_funded_channels as u64).write(writer)?;
11089 for (_, peer_state_mutex) in per_peer_state.iter() {
11090 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
11091 let peer_state = &mut *peer_state_lock;
11092 for channel in peer_state.channel_by_id.iter().filter_map(
11093 |(_, phase)| if let ChannelPhase::Funded(channel) = phase {
11094 if channel.context.is_funding_broadcast() { Some(channel) } else { None }
11097 channel.write(writer)?;
11103 let forward_htlcs = self.forward_htlcs.lock().unwrap();
11104 (forward_htlcs.len() as u64).write(writer)?;
11105 for (short_channel_id, pending_forwards) in forward_htlcs.iter() {
11106 short_channel_id.write(writer)?;
11107 (pending_forwards.len() as u64).write(writer)?;
11108 for forward in pending_forwards {
11109 forward.write(writer)?;
11114 let mut decode_update_add_htlcs_opt = None;
11115 let decode_update_add_htlcs = self.decode_update_add_htlcs.lock().unwrap();
11116 if !decode_update_add_htlcs.is_empty() {
11117 decode_update_add_htlcs_opt = Some(decode_update_add_htlcs);
11120 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
11121 let claimable_payments = self.claimable_payments.lock().unwrap();
11122 let pending_outbound_payments = self.pending_outbound_payments.pending_outbound_payments.lock().unwrap();
11124 let mut htlc_purposes: Vec<&events::PaymentPurpose> = Vec::new();
11125 let mut htlc_onion_fields: Vec<&_> = Vec::new();
11126 (claimable_payments.claimable_payments.len() as u64).write(writer)?;
11127 for (payment_hash, payment) in claimable_payments.claimable_payments.iter() {
11128 payment_hash.write(writer)?;
11129 (payment.htlcs.len() as u64).write(writer)?;
11130 for htlc in payment.htlcs.iter() {
11131 htlc.write(writer)?;
11133 htlc_purposes.push(&payment.purpose);
11134 htlc_onion_fields.push(&payment.onion_fields);
11137 let mut monitor_update_blocked_actions_per_peer = None;
11138 let mut peer_states = Vec::new();
11139 for (_, peer_state_mutex) in per_peer_state.iter() {
11140 // Because we're holding the owning `per_peer_state` write lock here there's no chance
11141 // of a lockorder violation deadlock - no other thread can be holding any
11142 // per_peer_state lock at all.
11143 peer_states.push(peer_state_mutex.unsafe_well_ordered_double_lock_self());
11146 (serializable_peer_count).write(writer)?;
11147 for ((peer_pubkey, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11148 // Peers which we have no channels to should be dropped once disconnected. As we
11149 // disconnect all peers when shutting down and serializing the ChannelManager, we
11150 // consider all peers as disconnected here. There's therefore no need write peers with
11152 if !peer_state.ok_to_remove(false) {
11153 peer_pubkey.write(writer)?;
11154 peer_state.latest_features.write(writer)?;
11155 if !peer_state.monitor_update_blocked_actions.is_empty() {
11156 monitor_update_blocked_actions_per_peer
11157 .get_or_insert_with(Vec::new)
11158 .push((*peer_pubkey, &peer_state.monitor_update_blocked_actions));
11163 let events = self.pending_events.lock().unwrap();
11164 // LDK versions prior to 0.0.115 don't support post-event actions, thus if there's no
11165 // actions at all, skip writing the required TLV. Otherwise, pre-0.0.115 versions will
11166 // refuse to read the new ChannelManager.
11167 let events_not_backwards_compatible = events.iter().any(|(_, action)| action.is_some());
11168 if events_not_backwards_compatible {
11169 // If we're gonna write a even TLV that will overwrite our events anyway we might as
11170 // well save the space and not write any events here.
11171 0u64.write(writer)?;
11173 (events.len() as u64).write(writer)?;
11174 for (event, _) in events.iter() {
11175 event.write(writer)?;
11179 // LDK versions prior to 0.0.116 wrote the `pending_background_events`
11180 // `MonitorUpdateRegeneratedOnStartup`s here, however there was never a reason to do so -
11181 // the closing monitor updates were always effectively replayed on startup (either directly
11182 // by calling `broadcast_latest_holder_commitment_txn` on a `ChannelMonitor` during
11183 // deserialization or, in 0.0.115, by regenerating the monitor update itself).
11184 0u64.write(writer)?;
11186 // Prior to 0.0.111 we tracked node_announcement serials here, however that now happens in
11187 // `PeerManager`, and thus we simply write the `highest_seen_timestamp` twice, which is
11188 // likely to be identical.
11189 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11190 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
11192 (pending_inbound_payments.len() as u64).write(writer)?;
11193 for (hash, pending_payment) in pending_inbound_payments.iter() {
11194 hash.write(writer)?;
11195 pending_payment.write(writer)?;
11198 // For backwards compat, write the session privs and their total length.
11199 let mut num_pending_outbounds_compat: u64 = 0;
11200 for (_, outbound) in pending_outbound_payments.iter() {
11201 if !outbound.is_fulfilled() && !outbound.abandoned() {
11202 num_pending_outbounds_compat += outbound.remaining_parts() as u64;
11205 num_pending_outbounds_compat.write(writer)?;
11206 for (_, outbound) in pending_outbound_payments.iter() {
11208 PendingOutboundPayment::Legacy { session_privs } |
11209 PendingOutboundPayment::Retryable { session_privs, .. } => {
11210 for session_priv in session_privs.iter() {
11211 session_priv.write(writer)?;
11214 PendingOutboundPayment::AwaitingInvoice { .. } => {},
11215 PendingOutboundPayment::InvoiceReceived { .. } => {},
11216 PendingOutboundPayment::Fulfilled { .. } => {},
11217 PendingOutboundPayment::Abandoned { .. } => {},
11221 // Encode without retry info for 0.0.101 compatibility.
11222 let mut pending_outbound_payments_no_retry: HashMap<PaymentId, HashSet<[u8; 32]>> = new_hash_map();
11223 for (id, outbound) in pending_outbound_payments.iter() {
11225 PendingOutboundPayment::Legacy { session_privs } |
11226 PendingOutboundPayment::Retryable { session_privs, .. } => {
11227 pending_outbound_payments_no_retry.insert(*id, session_privs.clone());
11233 let mut pending_intercepted_htlcs = None;
11234 let our_pending_intercepts = self.pending_intercepted_htlcs.lock().unwrap();
11235 if our_pending_intercepts.len() != 0 {
11236 pending_intercepted_htlcs = Some(our_pending_intercepts);
11239 let mut pending_claiming_payments = Some(&claimable_payments.pending_claiming_payments);
11240 if pending_claiming_payments.as_ref().unwrap().is_empty() {
11241 // LDK versions prior to 0.0.113 do not know how to read the pending claimed payments
11242 // map. Thus, if there are no entries we skip writing a TLV for it.
11243 pending_claiming_payments = None;
11246 let mut in_flight_monitor_updates: Option<HashMap<(&PublicKey, &OutPoint), &Vec<ChannelMonitorUpdate>>> = None;
11247 for ((counterparty_id, _), peer_state) in per_peer_state.iter().zip(peer_states.iter()) {
11248 for (funding_outpoint, updates) in peer_state.in_flight_monitor_updates.iter() {
11249 if !updates.is_empty() {
11250 if in_flight_monitor_updates.is_none() { in_flight_monitor_updates = Some(new_hash_map()); }
11251 in_flight_monitor_updates.as_mut().unwrap().insert((counterparty_id, funding_outpoint), updates);
11256 write_tlv_fields!(writer, {
11257 (1, pending_outbound_payments_no_retry, required),
11258 (2, pending_intercepted_htlcs, option),
11259 (3, pending_outbound_payments, required),
11260 (4, pending_claiming_payments, option),
11261 (5, self.our_network_pubkey, required),
11262 (6, monitor_update_blocked_actions_per_peer, option),
11263 (7, self.fake_scid_rand_bytes, required),
11264 (8, if events_not_backwards_compatible { Some(&*events) } else { None }, option),
11265 (9, htlc_purposes, required_vec),
11266 (10, in_flight_monitor_updates, option),
11267 (11, self.probing_cookie_secret, required),
11268 (13, htlc_onion_fields, optional_vec),
11269 (14, decode_update_add_htlcs_opt, option),
11276 impl Writeable for VecDeque<(Event, Option<EventCompletionAction>)> {
11277 fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
11278 (self.len() as u64).write(w)?;
11279 for (event, action) in self.iter() {
11282 #[cfg(debug_assertions)] {
11283 // Events are MaybeReadable, in some cases indicating that they shouldn't actually
11284 // be persisted and are regenerated on restart. However, if such an event has a
11285 // post-event-handling action we'll write nothing for the event and would have to
11286 // either forget the action or fail on deserialization (which we do below). Thus,
11287 // check that the event is sane here.
11288 let event_encoded = event.encode();
11289 let event_read: Option<Event> =
11290 MaybeReadable::read(&mut &event_encoded[..]).unwrap();
11291 if action.is_some() { assert!(event_read.is_some()); }
11297 impl Readable for VecDeque<(Event, Option<EventCompletionAction>)> {
11298 fn read<R: Read>(reader: &mut R) -> Result<Self, DecodeError> {
11299 let len: u64 = Readable::read(reader)?;
11300 const MAX_ALLOC_SIZE: u64 = 1024 * 16;
11301 let mut events: Self = VecDeque::with_capacity(cmp::min(
11302 MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>() as u64,
11305 let ev_opt = MaybeReadable::read(reader)?;
11306 let action = Readable::read(reader)?;
11307 if let Some(ev) = ev_opt {
11308 events.push_back((ev, action));
11309 } else if action.is_some() {
11310 return Err(DecodeError::InvalidValue);
11317 impl_writeable_tlv_based_enum!(ChannelShutdownState,
11318 (0, NotShuttingDown) => {},
11319 (2, ShutdownInitiated) => {},
11320 (4, ResolvingHTLCs) => {},
11321 (6, NegotiatingClosingFee) => {},
11322 (8, ShutdownComplete) => {}, ;
11325 /// Arguments for the creation of a ChannelManager that are not deserialized.
11327 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
11329 /// 1) Deserialize all stored [`ChannelMonitor`]s.
11330 /// 2) Deserialize the [`ChannelManager`] by filling in this struct and calling:
11331 /// `<(BlockHash, ChannelManager)>::read(reader, args)`
11332 /// This may result in closing some channels if the [`ChannelMonitor`] is newer than the stored
11333 /// [`ChannelManager`] state to ensure no loss of funds. Thus, transactions may be broadcasted.
11334 /// 3) If you are not fetching full blocks, register all relevant [`ChannelMonitor`] outpoints the
11335 /// same way you would handle a [`chain::Filter`] call using
11336 /// [`ChannelMonitor::get_outputs_to_watch`] and [`ChannelMonitor::get_funding_txo`].
11337 /// 4) Reconnect blocks on your [`ChannelMonitor`]s.
11338 /// 5) Disconnect/connect blocks on the [`ChannelManager`].
11339 /// 6) Re-persist the [`ChannelMonitor`]s to ensure the latest state is on disk.
11340 /// Note that if you're using a [`ChainMonitor`] for your [`chain::Watch`] implementation, you
11341 /// will likely accomplish this as a side-effect of calling [`chain::Watch::watch_channel`] in
11343 /// 7) Move the [`ChannelMonitor`]s into your local [`chain::Watch`]. If you're using a
11344 /// [`ChainMonitor`], this is done by calling [`chain::Watch::watch_channel`].
11346 /// Note that the ordering of #4-7 is not of importance, however all four must occur before you
11347 /// call any other methods on the newly-deserialized [`ChannelManager`].
11349 /// Note that because some channels may be closed during deserialization, it is critical that you
11350 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
11351 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
11352 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
11353 /// not force-close the same channels but consider them live), you may end up revoking a state for
11354 /// which you've already broadcasted the transaction.
11356 /// [`ChainMonitor`]: crate::chain::chainmonitor::ChainMonitor
11357 pub struct ChannelManagerReadArgs<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11359 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11360 T::Target: BroadcasterInterface,
11361 ES::Target: EntropySource,
11362 NS::Target: NodeSigner,
11363 SP::Target: SignerProvider,
11364 F::Target: FeeEstimator,
11368 /// A cryptographically secure source of entropy.
11369 pub entropy_source: ES,
11371 /// A signer that is able to perform node-scoped cryptographic operations.
11372 pub node_signer: NS,
11374 /// The keys provider which will give us relevant keys. Some keys will be loaded during
11375 /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
11377 pub signer_provider: SP,
11379 /// The fee_estimator for use in the ChannelManager in the future.
11381 /// No calls to the FeeEstimator will be made during deserialization.
11382 pub fee_estimator: F,
11383 /// The chain::Watch for use in the ChannelManager in the future.
11385 /// No calls to the chain::Watch will be made during deserialization. It is assumed that
11386 /// you have deserialized ChannelMonitors separately and will add them to your
11387 /// chain::Watch after deserializing this ChannelManager.
11388 pub chain_monitor: M,
11390 /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
11391 /// used to broadcast the latest local commitment transactions of channels which must be
11392 /// force-closed during deserialization.
11393 pub tx_broadcaster: T,
11394 /// The router which will be used in the ChannelManager in the future for finding routes
11395 /// on-the-fly for trampoline payments. Absent in private nodes that don't support forwarding.
11397 /// No calls to the router will be made during deserialization.
11399 /// The Logger for use in the ChannelManager and which may be used to log information during
11400 /// deserialization.
11402 /// Default settings used for new channels. Any existing channels will continue to use the
11403 /// runtime settings which were stored when the ChannelManager was serialized.
11404 pub default_config: UserConfig,
11406 /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
11407 /// value.context.get_funding_txo() should be the key).
11409 /// If a monitor is inconsistent with the channel state during deserialization the channel will
11410 /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
11411 /// is true for missing channels as well. If there is a monitor missing for which we find
11412 /// channel data Err(DecodeError::InvalidValue) will be returned.
11414 /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
11417 /// This is not exported to bindings users because we have no HashMap bindings
11418 pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>,
11421 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11422 ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>
11424 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11425 T::Target: BroadcasterInterface,
11426 ES::Target: EntropySource,
11427 NS::Target: NodeSigner,
11428 SP::Target: SignerProvider,
11429 F::Target: FeeEstimator,
11433 /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
11434 /// HashMap for you. This is primarily useful for C bindings where it is not practical to
11435 /// populate a HashMap directly from C.
11436 pub fn new(entropy_source: ES, node_signer: NS, signer_provider: SP, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, router: R, logger: L, default_config: UserConfig,
11437 mut channel_monitors: Vec<&'a mut ChannelMonitor<<SP::Target as SignerProvider>::EcdsaSigner>>) -> Self {
11439 entropy_source, node_signer, signer_provider, fee_estimator, chain_monitor, tx_broadcaster, router, logger, default_config,
11440 channel_monitors: hash_map_from_iter(
11441 channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) })
11447 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
11448 // SipmleArcChannelManager type:
11449 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11450 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, Arc<ChannelManager<M, T, ES, NS, SP, F, R, L>>)
11452 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11453 T::Target: BroadcasterInterface,
11454 ES::Target: EntropySource,
11455 NS::Target: NodeSigner,
11456 SP::Target: SignerProvider,
11457 F::Target: FeeEstimator,
11461 fn read<Reader: io::Read>(reader: &mut Reader, args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11462 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)>::read(reader, args)?;
11463 Ok((blockhash, Arc::new(chan_manager)))
11467 impl<'a, M: Deref, T: Deref, ES: Deref, NS: Deref, SP: Deref, F: Deref, R: Deref, L: Deref>
11468 ReadableArgs<ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>> for (BlockHash, ChannelManager<M, T, ES, NS, SP, F, R, L>)
11470 M::Target: chain::Watch<<SP::Target as SignerProvider>::EcdsaSigner>,
11471 T::Target: BroadcasterInterface,
11472 ES::Target: EntropySource,
11473 NS::Target: NodeSigner,
11474 SP::Target: SignerProvider,
11475 F::Target: FeeEstimator,
11479 fn read<Reader: io::Read>(reader: &mut Reader, mut args: ChannelManagerReadArgs<'a, M, T, ES, NS, SP, F, R, L>) -> Result<Self, DecodeError> {
11480 let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
11482 let chain_hash: ChainHash = Readable::read(reader)?;
11483 let best_block_height: u32 = Readable::read(reader)?;
11484 let best_block_hash: BlockHash = Readable::read(reader)?;
11486 let mut failed_htlcs = Vec::new();
11488 let channel_count: u64 = Readable::read(reader)?;
11489 let mut funding_txo_set = hash_set_with_capacity(cmp::min(channel_count as usize, 128));
11490 let mut funded_peer_channels: HashMap<PublicKey, HashMap<ChannelId, ChannelPhase<SP>>> = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11491 let mut outpoint_to_peer = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11492 let mut short_to_chan_info = hash_map_with_capacity(cmp::min(channel_count as usize, 128));
11493 let mut channel_closures = VecDeque::new();
11494 let mut close_background_events = Vec::new();
11495 let mut funding_txo_to_channel_id = hash_map_with_capacity(channel_count as usize);
11496 for _ in 0..channel_count {
11497 let mut channel: Channel<SP> = Channel::read(reader, (
11498 &args.entropy_source, &args.signer_provider, best_block_height, &provided_channel_type_features(&args.default_config)
11500 let logger = WithChannelContext::from(&args.logger, &channel.context);
11501 let funding_txo = channel.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11502 funding_txo_to_channel_id.insert(funding_txo, channel.context.channel_id());
11503 funding_txo_set.insert(funding_txo.clone());
11504 if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
11505 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
11506 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
11507 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
11508 channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11509 // But if the channel is behind of the monitor, close the channel:
11510 log_error!(logger, "A ChannelManager is stale compared to the current ChannelMonitor!");
11511 log_error!(logger, " The channel will be force-closed and the latest commitment transaction from the ChannelMonitor broadcast.");
11512 if channel.context.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
11513 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} but the ChannelManager is at update_id {}.",
11514 &channel.context.channel_id(), monitor.get_latest_update_id(), channel.context.get_latest_monitor_update_id());
11516 if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() {
11517 log_error!(logger, " The ChannelMonitor for channel {} is at holder commitment number {} but the ChannelManager is at holder commitment number {}.",
11518 &channel.context.channel_id(), monitor.get_cur_holder_commitment_number(), channel.get_cur_holder_commitment_transaction_number());
11520 if channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() {
11521 log_error!(logger, " The ChannelMonitor for channel {} is at revoked counterparty transaction number {} but the ChannelManager is at revoked counterparty transaction number {}.",
11522 &channel.context.channel_id(), monitor.get_min_seen_secret(), channel.get_revoked_counterparty_commitment_transaction_number());
11524 if channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() {
11525 log_error!(logger, " The ChannelMonitor for channel {} is at counterparty commitment transaction number {} but the ChannelManager is at counterparty commitment transaction number {}.",
11526 &channel.context.channel_id(), monitor.get_cur_counterparty_commitment_number(), channel.get_cur_counterparty_commitment_transaction_number());
11528 let mut shutdown_result = channel.context.force_shutdown(true, ClosureReason::OutdatedChannelManager);
11529 if shutdown_result.unbroadcasted_batch_funding_txid.is_some() {
11530 return Err(DecodeError::InvalidValue);
11532 if let Some((counterparty_node_id, funding_txo, channel_id, update)) = shutdown_result.monitor_update {
11533 close_background_events.push(BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11534 counterparty_node_id, funding_txo, channel_id, update
11537 failed_htlcs.append(&mut shutdown_result.dropped_outbound_htlcs);
11538 channel_closures.push_back((events::Event::ChannelClosed {
11539 channel_id: channel.context.channel_id(),
11540 user_channel_id: channel.context.get_user_id(),
11541 reason: ClosureReason::OutdatedChannelManager,
11542 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11543 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11544 channel_funding_txo: channel.context.get_funding_txo(),
11546 for (channel_htlc_source, payment_hash) in channel.inflight_htlc_sources() {
11547 let mut found_htlc = false;
11548 for (monitor_htlc_source, _) in monitor.get_all_current_outbound_htlcs() {
11549 if *channel_htlc_source == monitor_htlc_source { found_htlc = true; break; }
11552 // If we have some HTLCs in the channel which are not present in the newer
11553 // ChannelMonitor, they have been removed and should be failed back to
11554 // ensure we don't forget them entirely. Note that if the missing HTLC(s)
11555 // were actually claimed we'd have generated and ensured the previous-hop
11556 // claim update ChannelMonitor updates were persisted prior to persising
11557 // the ChannelMonitor update for the forward leg, so attempting to fail the
11558 // backwards leg of the HTLC will simply be rejected.
11560 "Failing HTLC with hash {} as it is missing in the ChannelMonitor for channel {} but was present in the (stale) ChannelManager",
11561 &channel.context.channel_id(), &payment_hash);
11562 failed_htlcs.push((channel_htlc_source.clone(), *payment_hash, channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11566 log_info!(logger, "Successfully loaded channel {} at update_id {} against monitor at update id {}",
11567 &channel.context.channel_id(), channel.context.get_latest_monitor_update_id(),
11568 monitor.get_latest_update_id());
11569 if let Some(short_channel_id) = channel.context.get_short_channel_id() {
11570 short_to_chan_info.insert(short_channel_id, (channel.context.get_counterparty_node_id(), channel.context.channel_id()));
11572 if let Some(funding_txo) = channel.context.get_funding_txo() {
11573 outpoint_to_peer.insert(funding_txo, channel.context.get_counterparty_node_id());
11575 match funded_peer_channels.entry(channel.context.get_counterparty_node_id()) {
11576 hash_map::Entry::Occupied(mut entry) => {
11577 let by_id_map = entry.get_mut();
11578 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11580 hash_map::Entry::Vacant(entry) => {
11581 let mut by_id_map = new_hash_map();
11582 by_id_map.insert(channel.context.channel_id(), ChannelPhase::Funded(channel));
11583 entry.insert(by_id_map);
11587 } else if channel.is_awaiting_initial_mon_persist() {
11588 // If we were persisted and shut down while the initial ChannelMonitor persistence
11589 // was in-progress, we never broadcasted the funding transaction and can still
11590 // safely discard the channel.
11591 let _ = channel.context.force_shutdown(false, ClosureReason::DisconnectedPeer);
11592 channel_closures.push_back((events::Event::ChannelClosed {
11593 channel_id: channel.context.channel_id(),
11594 user_channel_id: channel.context.get_user_id(),
11595 reason: ClosureReason::DisconnectedPeer,
11596 counterparty_node_id: Some(channel.context.get_counterparty_node_id()),
11597 channel_capacity_sats: Some(channel.context.get_value_satoshis()),
11598 channel_funding_txo: channel.context.get_funding_txo(),
11601 log_error!(logger, "Missing ChannelMonitor for channel {} needed by ChannelManager.", &channel.context.channel_id());
11602 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11603 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11604 log_error!(logger, " Without the ChannelMonitor we cannot continue without risking funds.");
11605 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11606 return Err(DecodeError::InvalidValue);
11610 for (funding_txo, monitor) in args.channel_monitors.iter() {
11611 if !funding_txo_set.contains(funding_txo) {
11612 let logger = WithChannelMonitor::from(&args.logger, monitor);
11613 let channel_id = monitor.channel_id();
11614 log_info!(logger, "Queueing monitor update to ensure missing channel {} is force closed",
11616 let monitor_update = ChannelMonitorUpdate {
11617 update_id: CLOSED_CHANNEL_UPDATE_ID,
11618 counterparty_node_id: None,
11619 updates: vec![ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast: true }],
11620 channel_id: Some(monitor.channel_id()),
11622 close_background_events.push(BackgroundEvent::ClosedMonitorUpdateRegeneratedOnStartup((*funding_txo, channel_id, monitor_update)));
11626 const MAX_ALLOC_SIZE: usize = 1024 * 64;
11627 let forward_htlcs_count: u64 = Readable::read(reader)?;
11628 let mut forward_htlcs = hash_map_with_capacity(cmp::min(forward_htlcs_count as usize, 128));
11629 for _ in 0..forward_htlcs_count {
11630 let short_channel_id = Readable::read(reader)?;
11631 let pending_forwards_count: u64 = Readable::read(reader)?;
11632 let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
11633 for _ in 0..pending_forwards_count {
11634 pending_forwards.push(Readable::read(reader)?);
11636 forward_htlcs.insert(short_channel_id, pending_forwards);
11639 let claimable_htlcs_count: u64 = Readable::read(reader)?;
11640 let mut claimable_htlcs_list = Vec::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
11641 for _ in 0..claimable_htlcs_count {
11642 let payment_hash = Readable::read(reader)?;
11643 let previous_hops_len: u64 = Readable::read(reader)?;
11644 let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
11645 for _ in 0..previous_hops_len {
11646 previous_hops.push(<ClaimableHTLC as Readable>::read(reader)?);
11648 claimable_htlcs_list.push((payment_hash, previous_hops));
11651 let peer_state_from_chans = |channel_by_id| {
11654 inbound_channel_request_by_id: new_hash_map(),
11655 latest_features: InitFeatures::empty(),
11656 pending_msg_events: Vec::new(),
11657 in_flight_monitor_updates: BTreeMap::new(),
11658 monitor_update_blocked_actions: BTreeMap::new(),
11659 actions_blocking_raa_monitor_updates: BTreeMap::new(),
11660 is_connected: false,
11664 let peer_count: u64 = Readable::read(reader)?;
11665 let mut per_peer_state = hash_map_with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState<SP>>)>()));
11666 for _ in 0..peer_count {
11667 let peer_pubkey = Readable::read(reader)?;
11668 let peer_chans = funded_peer_channels.remove(&peer_pubkey).unwrap_or(new_hash_map());
11669 let mut peer_state = peer_state_from_chans(peer_chans);
11670 peer_state.latest_features = Readable::read(reader)?;
11671 per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
11674 let event_count: u64 = Readable::read(reader)?;
11675 let mut pending_events_read: VecDeque<(events::Event, Option<EventCompletionAction>)> =
11676 VecDeque::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(events::Event, Option<EventCompletionAction>)>()));
11677 for _ in 0..event_count {
11678 match MaybeReadable::read(reader)? {
11679 Some(event) => pending_events_read.push_back((event, None)),
11684 let background_event_count: u64 = Readable::read(reader)?;
11685 for _ in 0..background_event_count {
11686 match <u8 as Readable>::read(reader)? {
11688 // LDK versions prior to 0.0.116 wrote pending `MonitorUpdateRegeneratedOnStartup`s here,
11689 // however we really don't (and never did) need them - we regenerate all
11690 // on-startup monitor updates.
11691 let _: OutPoint = Readable::read(reader)?;
11692 let _: ChannelMonitorUpdate = Readable::read(reader)?;
11694 _ => return Err(DecodeError::InvalidValue),
11698 let _last_node_announcement_serial: u32 = Readable::read(reader)?; // Only used < 0.0.111
11699 let highest_seen_timestamp: u32 = Readable::read(reader)?;
11701 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
11702 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = hash_map_with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
11703 for _ in 0..pending_inbound_payment_count {
11704 if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
11705 return Err(DecodeError::InvalidValue);
11709 let pending_outbound_payments_count_compat: u64 = Readable::read(reader)?;
11710 let mut pending_outbound_payments_compat: HashMap<PaymentId, PendingOutboundPayment> =
11711 hash_map_with_capacity(cmp::min(pending_outbound_payments_count_compat as usize, MAX_ALLOC_SIZE/32));
11712 for _ in 0..pending_outbound_payments_count_compat {
11713 let session_priv = Readable::read(reader)?;
11714 let payment = PendingOutboundPayment::Legacy {
11715 session_privs: hash_set_from_iter([session_priv]),
11717 if pending_outbound_payments_compat.insert(PaymentId(session_priv), payment).is_some() {
11718 return Err(DecodeError::InvalidValue)
11722 // pending_outbound_payments_no_retry is for compatibility with 0.0.101 clients.
11723 let mut pending_outbound_payments_no_retry: Option<HashMap<PaymentId, HashSet<[u8; 32]>>> = None;
11724 let mut pending_outbound_payments = None;
11725 let mut pending_intercepted_htlcs: Option<HashMap<InterceptId, PendingAddHTLCInfo>> = Some(new_hash_map());
11726 let mut received_network_pubkey: Option<PublicKey> = None;
11727 let mut fake_scid_rand_bytes: Option<[u8; 32]> = None;
11728 let mut probing_cookie_secret: Option<[u8; 32]> = None;
11729 let mut claimable_htlc_purposes = None;
11730 let mut claimable_htlc_onion_fields = None;
11731 let mut pending_claiming_payments = Some(new_hash_map());
11732 let mut monitor_update_blocked_actions_per_peer: Option<Vec<(_, BTreeMap<_, Vec<_>>)>> = Some(Vec::new());
11733 let mut events_override = None;
11734 let mut in_flight_monitor_updates: Option<HashMap<(PublicKey, OutPoint), Vec<ChannelMonitorUpdate>>> = None;
11735 let mut decode_update_add_htlcs: Option<HashMap<u64, Vec<msgs::UpdateAddHTLC>>> = None;
11736 read_tlv_fields!(reader, {
11737 (1, pending_outbound_payments_no_retry, option),
11738 (2, pending_intercepted_htlcs, option),
11739 (3, pending_outbound_payments, option),
11740 (4, pending_claiming_payments, option),
11741 (5, received_network_pubkey, option),
11742 (6, monitor_update_blocked_actions_per_peer, option),
11743 (7, fake_scid_rand_bytes, option),
11744 (8, events_override, option),
11745 (9, claimable_htlc_purposes, optional_vec),
11746 (10, in_flight_monitor_updates, option),
11747 (11, probing_cookie_secret, option),
11748 (13, claimable_htlc_onion_fields, optional_vec),
11749 (14, decode_update_add_htlcs, option),
11751 let mut decode_update_add_htlcs = decode_update_add_htlcs.unwrap_or_else(|| new_hash_map());
11752 if fake_scid_rand_bytes.is_none() {
11753 fake_scid_rand_bytes = Some(args.entropy_source.get_secure_random_bytes());
11756 if probing_cookie_secret.is_none() {
11757 probing_cookie_secret = Some(args.entropy_source.get_secure_random_bytes());
11760 if let Some(events) = events_override {
11761 pending_events_read = events;
11764 if !channel_closures.is_empty() {
11765 pending_events_read.append(&mut channel_closures);
11768 if pending_outbound_payments.is_none() && pending_outbound_payments_no_retry.is_none() {
11769 pending_outbound_payments = Some(pending_outbound_payments_compat);
11770 } else if pending_outbound_payments.is_none() {
11771 let mut outbounds = new_hash_map();
11772 for (id, session_privs) in pending_outbound_payments_no_retry.unwrap().drain() {
11773 outbounds.insert(id, PendingOutboundPayment::Legacy { session_privs });
11775 pending_outbound_payments = Some(outbounds);
11777 let pending_outbounds = OutboundPayments {
11778 pending_outbound_payments: Mutex::new(pending_outbound_payments.unwrap()),
11779 retry_lock: Mutex::new(())
11782 // We have to replay (or skip, if they were completed after we wrote the `ChannelManager`)
11783 // each `ChannelMonitorUpdate` in `in_flight_monitor_updates`. After doing so, we have to
11784 // check that each channel we have isn't newer than the latest `ChannelMonitorUpdate`(s) we
11785 // replayed, and for each monitor update we have to replay we have to ensure there's a
11786 // `ChannelMonitor` for it.
11788 // In order to do so we first walk all of our live channels (so that we can check their
11789 // state immediately after doing the update replays, when we have the `update_id`s
11790 // available) and then walk any remaining in-flight updates.
11792 // Because the actual handling of the in-flight updates is the same, it's macro'ized here:
11793 let mut pending_background_events = Vec::new();
11794 macro_rules! handle_in_flight_updates {
11795 ($counterparty_node_id: expr, $chan_in_flight_upds: expr, $funding_txo: expr,
11796 $monitor: expr, $peer_state: expr, $logger: expr, $channel_info_log: expr
11798 let mut max_in_flight_update_id = 0;
11799 $chan_in_flight_upds.retain(|upd| upd.update_id > $monitor.get_latest_update_id());
11800 for update in $chan_in_flight_upds.iter() {
11801 log_trace!($logger, "Replaying ChannelMonitorUpdate {} for {}channel {}",
11802 update.update_id, $channel_info_log, &$monitor.channel_id());
11803 max_in_flight_update_id = cmp::max(max_in_flight_update_id, update.update_id);
11804 pending_background_events.push(
11805 BackgroundEvent::MonitorUpdateRegeneratedOnStartup {
11806 counterparty_node_id: $counterparty_node_id,
11807 funding_txo: $funding_txo,
11808 channel_id: $monitor.channel_id(),
11809 update: update.clone(),
11812 if $chan_in_flight_upds.is_empty() {
11813 // We had some updates to apply, but it turns out they had completed before we
11814 // were serialized, we just weren't notified of that. Thus, we may have to run
11815 // the completion actions for any monitor updates, but otherwise are done.
11816 pending_background_events.push(
11817 BackgroundEvent::MonitorUpdatesComplete {
11818 counterparty_node_id: $counterparty_node_id,
11819 channel_id: $monitor.channel_id(),
11822 if $peer_state.in_flight_monitor_updates.insert($funding_txo, $chan_in_flight_upds).is_some() {
11823 log_error!($logger, "Duplicate in-flight monitor update set for the same channel!");
11824 return Err(DecodeError::InvalidValue);
11826 max_in_flight_update_id
11830 for (counterparty_id, peer_state_mtx) in per_peer_state.iter_mut() {
11831 let mut peer_state_lock = peer_state_mtx.lock().unwrap();
11832 let peer_state = &mut *peer_state_lock;
11833 for phase in peer_state.channel_by_id.values() {
11834 if let ChannelPhase::Funded(chan) = phase {
11835 let logger = WithChannelContext::from(&args.logger, &chan.context);
11837 // Channels that were persisted have to be funded, otherwise they should have been
11839 let funding_txo = chan.context.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
11840 let monitor = args.channel_monitors.get(&funding_txo)
11841 .expect("We already checked for monitor presence when loading channels");
11842 let mut max_in_flight_update_id = monitor.get_latest_update_id();
11843 if let Some(in_flight_upds) = &mut in_flight_monitor_updates {
11844 if let Some(mut chan_in_flight_upds) = in_flight_upds.remove(&(*counterparty_id, funding_txo)) {
11845 max_in_flight_update_id = cmp::max(max_in_flight_update_id,
11846 handle_in_flight_updates!(*counterparty_id, chan_in_flight_upds,
11847 funding_txo, monitor, peer_state, logger, ""));
11850 if chan.get_latest_unblocked_monitor_update_id() > max_in_flight_update_id {
11851 // If the channel is ahead of the monitor, return DangerousValue:
11852 log_error!(logger, "A ChannelMonitor is stale compared to the current ChannelManager! This indicates a potentially-critical violation of the chain::Watch API!");
11853 log_error!(logger, " The ChannelMonitor for channel {} is at update_id {} with update_id through {} in-flight",
11854 chan.context.channel_id(), monitor.get_latest_update_id(), max_in_flight_update_id);
11855 log_error!(logger, " but the ChannelManager is at update_id {}.", chan.get_latest_unblocked_monitor_update_id());
11856 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11857 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11858 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11859 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11860 return Err(DecodeError::DangerousValue);
11863 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
11864 // created in this `channel_by_id` map.
11865 debug_assert!(false);
11866 return Err(DecodeError::InvalidValue);
11871 if let Some(in_flight_upds) = in_flight_monitor_updates {
11872 for ((counterparty_id, funding_txo), mut chan_in_flight_updates) in in_flight_upds {
11873 let channel_id = funding_txo_to_channel_id.get(&funding_txo).copied();
11874 let logger = WithContext::from(&args.logger, Some(counterparty_id), channel_id);
11875 if let Some(monitor) = args.channel_monitors.get(&funding_txo) {
11876 // Now that we've removed all the in-flight monitor updates for channels that are
11877 // still open, we need to replay any monitor updates that are for closed channels,
11878 // creating the neccessary peer_state entries as we go.
11879 let peer_state_mutex = per_peer_state.entry(counterparty_id).or_insert_with(|| {
11880 Mutex::new(peer_state_from_chans(new_hash_map()))
11882 let mut peer_state = peer_state_mutex.lock().unwrap();
11883 handle_in_flight_updates!(counterparty_id, chan_in_flight_updates,
11884 funding_txo, monitor, peer_state, logger, "closed ");
11886 log_error!(logger, "A ChannelMonitor is missing even though we have in-flight updates for it! This indicates a potentially-critical violation of the chain::Watch API!");
11887 log_error!(logger, " The ChannelMonitor for channel {} is missing.", if let Some(channel_id) =
11888 channel_id { channel_id.to_string() } else { format!("with outpoint {}", funding_txo) } );
11889 log_error!(logger, " The chain::Watch API *requires* that monitors are persisted durably before returning,");
11890 log_error!(logger, " client applications must ensure that ChannelMonitor data is always available and the latest to avoid funds loss!");
11891 log_error!(logger, " Without the latest ChannelMonitor we cannot continue without risking funds.");
11892 log_error!(logger, " Please ensure the chain::Watch API requirements are met and file a bug report at https://github.com/lightningdevkit/rust-lightning");
11893 return Err(DecodeError::InvalidValue);
11898 // Note that we have to do the above replays before we push new monitor updates.
11899 pending_background_events.append(&mut close_background_events);
11901 // If there's any preimages for forwarded HTLCs hanging around in ChannelMonitors we
11902 // should ensure we try them again on the inbound edge. We put them here and do so after we
11903 // have a fully-constructed `ChannelManager` at the end.
11904 let mut pending_claims_to_replay = Vec::new();
11907 // If we're tracking pending payments, ensure we haven't lost any by looking at the
11908 // ChannelMonitor data for any channels for which we do not have authorative state
11909 // (i.e. those for which we just force-closed above or we otherwise don't have a
11910 // corresponding `Channel` at all).
11911 // This avoids several edge-cases where we would otherwise "forget" about pending
11912 // payments which are still in-flight via their on-chain state.
11913 // We only rebuild the pending payments map if we were most recently serialized by
11915 for (_, monitor) in args.channel_monitors.iter() {
11916 let counterparty_opt = outpoint_to_peer.get(&monitor.get_funding_txo().0);
11917 if counterparty_opt.is_none() {
11918 let logger = WithChannelMonitor::from(&args.logger, monitor);
11919 for (htlc_source, (htlc, _)) in monitor.get_pending_or_resolved_outbound_htlcs() {
11920 if let HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } = htlc_source {
11921 if path.hops.is_empty() {
11922 log_error!(logger, "Got an empty path for a pending payment");
11923 return Err(DecodeError::InvalidValue);
11926 let path_amt = path.final_value_msat();
11927 let mut session_priv_bytes = [0; 32];
11928 session_priv_bytes[..].copy_from_slice(&session_priv[..]);
11929 match pending_outbounds.pending_outbound_payments.lock().unwrap().entry(payment_id) {
11930 hash_map::Entry::Occupied(mut entry) => {
11931 let newly_added = entry.get_mut().insert(session_priv_bytes, &path);
11932 log_info!(logger, "{} a pending payment path for {} msat for session priv {} on an existing pending payment with payment hash {}",
11933 if newly_added { "Added" } else { "Had" }, path_amt, log_bytes!(session_priv_bytes), htlc.payment_hash);
11935 hash_map::Entry::Vacant(entry) => {
11936 let path_fee = path.fee_msat();
11937 entry.insert(PendingOutboundPayment::Retryable {
11938 retry_strategy: None,
11939 attempts: PaymentAttempts::new(),
11940 payment_params: None,
11941 session_privs: hash_set_from_iter([session_priv_bytes]),
11942 payment_hash: htlc.payment_hash,
11943 payment_secret: None, // only used for retries, and we'll never retry on startup
11944 payment_metadata: None, // only used for retries, and we'll never retry on startup
11945 keysend_preimage: None, // only used for retries, and we'll never retry on startup
11946 custom_tlvs: Vec::new(), // only used for retries, and we'll never retry on startup
11947 pending_amt_msat: path_amt,
11948 pending_fee_msat: Some(path_fee),
11949 total_msat: path_amt,
11950 starting_block_height: best_block_height,
11951 remaining_max_total_routing_fee_msat: None, // only used for retries, and we'll never retry on startup
11953 log_info!(logger, "Added a pending payment for {} msat with payment hash {} for path with session priv {}",
11954 path_amt, &htlc.payment_hash, log_bytes!(session_priv_bytes));
11959 for (htlc_source, (htlc, preimage_opt)) in monitor.get_all_current_outbound_htlcs() {
11960 match htlc_source {
11961 HTLCSource::PreviousHopData(prev_hop_data) => {
11962 let pending_forward_matches_htlc = |info: &PendingAddHTLCInfo| {
11963 info.prev_funding_outpoint == prev_hop_data.outpoint &&
11964 info.prev_htlc_id == prev_hop_data.htlc_id
11966 // The ChannelMonitor is now responsible for this HTLC's
11967 // failure/success and will let us know what its outcome is. If we
11968 // still have an entry for this HTLC in `forward_htlcs` or
11969 // `pending_intercepted_htlcs`, we were apparently not persisted after
11970 // the monitor was when forwarding the payment.
11971 decode_update_add_htlcs.retain(|scid, update_add_htlcs| {
11972 update_add_htlcs.retain(|update_add_htlc| {
11973 let matches = *scid == prev_hop_data.short_channel_id &&
11974 update_add_htlc.htlc_id == prev_hop_data.htlc_id;
11976 log_info!(logger, "Removing pending to-decode HTLC with hash {} as it was forwarded to the closed channel {}",
11977 &htlc.payment_hash, &monitor.channel_id());
11981 !update_add_htlcs.is_empty()
11983 forward_htlcs.retain(|_, forwards| {
11984 forwards.retain(|forward| {
11985 if let HTLCForwardInfo::AddHTLC(htlc_info) = forward {
11986 if pending_forward_matches_htlc(&htlc_info) {
11987 log_info!(logger, "Removing pending to-forward HTLC with hash {} as it was forwarded to the closed channel {}",
11988 &htlc.payment_hash, &monitor.channel_id());
11993 !forwards.is_empty()
11995 pending_intercepted_htlcs.as_mut().unwrap().retain(|intercepted_id, htlc_info| {
11996 if pending_forward_matches_htlc(&htlc_info) {
11997 log_info!(logger, "Removing pending intercepted HTLC with hash {} as it was forwarded to the closed channel {}",
11998 &htlc.payment_hash, &monitor.channel_id());
11999 pending_events_read.retain(|(event, _)| {
12000 if let Event::HTLCIntercepted { intercept_id: ev_id, .. } = event {
12001 intercepted_id != ev_id
12008 HTLCSource::OutboundRoute { payment_id, session_priv, path, .. } => {
12009 if let Some(preimage) = preimage_opt {
12010 let pending_events = Mutex::new(pending_events_read);
12011 // Note that we set `from_onchain` to "false" here,
12012 // deliberately keeping the pending payment around forever.
12013 // Given it should only occur when we have a channel we're
12014 // force-closing for being stale that's okay.
12015 // The alternative would be to wipe the state when claiming,
12016 // generating a `PaymentPathSuccessful` event but regenerating
12017 // it and the `PaymentSent` on every restart until the
12018 // `ChannelMonitor` is removed.
12020 EventCompletionAction::ReleaseRAAChannelMonitorUpdate {
12021 channel_funding_outpoint: monitor.get_funding_txo().0,
12022 channel_id: monitor.channel_id(),
12023 counterparty_node_id: path.hops[0].pubkey,
12025 pending_outbounds.claim_htlc(payment_id, preimage, session_priv,
12026 path, false, compl_action, &pending_events, &&logger);
12027 pending_events_read = pending_events.into_inner().unwrap();
12034 // Whether the downstream channel was closed or not, try to re-apply any payment
12035 // preimages from it which may be needed in upstream channels for forwarded
12037 let outbound_claimed_htlcs_iter = monitor.get_all_current_outbound_htlcs()
12039 .filter_map(|(htlc_source, (htlc, preimage_opt))| {
12040 if let HTLCSource::PreviousHopData(_) = htlc_source {
12041 if let Some(payment_preimage) = preimage_opt {
12042 Some((htlc_source, payment_preimage, htlc.amount_msat,
12043 // Check if `counterparty_opt.is_none()` to see if the
12044 // downstream chan is closed (because we don't have a
12045 // channel_id -> peer map entry).
12046 counterparty_opt.is_none(),
12047 counterparty_opt.cloned().or(monitor.get_counterparty_node_id()),
12048 monitor.get_funding_txo().0, monitor.channel_id()))
12051 // If it was an outbound payment, we've handled it above - if a preimage
12052 // came in and we persisted the `ChannelManager` we either handled it and
12053 // are good to go or the channel force-closed - we don't have to handle the
12054 // channel still live case here.
12058 for tuple in outbound_claimed_htlcs_iter {
12059 pending_claims_to_replay.push(tuple);
12064 if !forward_htlcs.is_empty() || !decode_update_add_htlcs.is_empty() || pending_outbounds.needs_abandon() {
12065 // If we have pending HTLCs to forward, assume we either dropped a
12066 // `PendingHTLCsForwardable` or the user received it but never processed it as they
12067 // shut down before the timer hit. Either way, set the time_forwardable to a small
12068 // constant as enough time has likely passed that we should simply handle the forwards
12069 // now, or at least after the user gets a chance to reconnect to our peers.
12070 pending_events_read.push_back((events::Event::PendingHTLCsForwardable {
12071 time_forwardable: Duration::from_secs(2),
12075 let inbound_pmt_key_material = args.node_signer.get_inbound_payment_key_material();
12076 let expanded_inbound_key = inbound_payment::ExpandedKey::new(&inbound_pmt_key_material);
12078 let mut claimable_payments = hash_map_with_capacity(claimable_htlcs_list.len());
12079 if let Some(purposes) = claimable_htlc_purposes {
12080 if purposes.len() != claimable_htlcs_list.len() {
12081 return Err(DecodeError::InvalidValue);
12083 if let Some(onion_fields) = claimable_htlc_onion_fields {
12084 if onion_fields.len() != claimable_htlcs_list.len() {
12085 return Err(DecodeError::InvalidValue);
12087 for (purpose, (onion, (payment_hash, htlcs))) in
12088 purposes.into_iter().zip(onion_fields.into_iter().zip(claimable_htlcs_list.into_iter()))
12090 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12091 purpose, htlcs, onion_fields: onion,
12093 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12096 for (purpose, (payment_hash, htlcs)) in purposes.into_iter().zip(claimable_htlcs_list.into_iter()) {
12097 let existing_payment = claimable_payments.insert(payment_hash, ClaimablePayment {
12098 purpose, htlcs, onion_fields: None,
12100 if existing_payment.is_some() { return Err(DecodeError::InvalidValue); }
12104 // LDK versions prior to 0.0.107 did not write a `pending_htlc_purposes`, but do
12105 // include a `_legacy_hop_data` in the `OnionPayload`.
12106 for (payment_hash, htlcs) in claimable_htlcs_list.drain(..) {
12107 if htlcs.is_empty() {
12108 return Err(DecodeError::InvalidValue);
12110 let purpose = match &htlcs[0].onion_payload {
12111 OnionPayload::Invoice { _legacy_hop_data, payment_context: _ } => {
12112 if let Some(hop_data) = _legacy_hop_data {
12113 events::PaymentPurpose::Bolt11InvoicePayment {
12114 payment_preimage: match pending_inbound_payments.get(&payment_hash) {
12115 Some(inbound_payment) => inbound_payment.payment_preimage,
12116 None => match inbound_payment::verify(payment_hash, &hop_data, 0, &expanded_inbound_key, &args.logger) {
12117 Ok((payment_preimage, _)) => payment_preimage,
12119 log_error!(args.logger, "Failed to read claimable payment data for HTLC with payment hash {} - was not a pending inbound payment and didn't match our payment key", &payment_hash);
12120 return Err(DecodeError::InvalidValue);
12124 payment_secret: hop_data.payment_secret,
12126 } else { return Err(DecodeError::InvalidValue); }
12128 OnionPayload::Spontaneous(payment_preimage) =>
12129 events::PaymentPurpose::SpontaneousPayment(*payment_preimage),
12131 claimable_payments.insert(payment_hash, ClaimablePayment {
12132 purpose, htlcs, onion_fields: None,
12137 let mut secp_ctx = Secp256k1::new();
12138 secp_ctx.seeded_randomize(&args.entropy_source.get_secure_random_bytes());
12140 let our_network_pubkey = match args.node_signer.get_node_id(Recipient::Node) {
12142 Err(()) => return Err(DecodeError::InvalidValue)
12144 if let Some(network_pubkey) = received_network_pubkey {
12145 if network_pubkey != our_network_pubkey {
12146 log_error!(args.logger, "Key that was generated does not match the existing key.");
12147 return Err(DecodeError::InvalidValue);
12151 let mut outbound_scid_aliases = new_hash_set();
12152 for (_peer_node_id, peer_state_mutex) in per_peer_state.iter_mut() {
12153 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12154 let peer_state = &mut *peer_state_lock;
12155 for (chan_id, phase) in peer_state.channel_by_id.iter_mut() {
12156 if let ChannelPhase::Funded(chan) = phase {
12157 let logger = WithChannelContext::from(&args.logger, &chan.context);
12158 if chan.context.outbound_scid_alias() == 0 {
12159 let mut outbound_scid_alias;
12161 outbound_scid_alias = fake_scid::Namespace::OutboundAlias
12162 .get_fake_scid(best_block_height, &chain_hash, fake_scid_rand_bytes.as_ref().unwrap(), &args.entropy_source);
12163 if outbound_scid_aliases.insert(outbound_scid_alias) { break; }
12165 chan.context.set_outbound_scid_alias(outbound_scid_alias);
12166 } else if !outbound_scid_aliases.insert(chan.context.outbound_scid_alias()) {
12167 // Note that in rare cases its possible to hit this while reading an older
12168 // channel if we just happened to pick a colliding outbound alias above.
12169 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12170 return Err(DecodeError::InvalidValue);
12172 if chan.context.is_usable() {
12173 if short_to_chan_info.insert(chan.context.outbound_scid_alias(), (chan.context.get_counterparty_node_id(), *chan_id)).is_some() {
12174 // Note that in rare cases its possible to hit this while reading an older
12175 // channel if we just happened to pick a colliding outbound alias above.
12176 log_error!(logger, "Got duplicate outbound SCID alias; {}", chan.context.outbound_scid_alias());
12177 return Err(DecodeError::InvalidValue);
12181 // We shouldn't have persisted (or read) any unfunded channel types so none should have been
12182 // created in this `channel_by_id` map.
12183 debug_assert!(false);
12184 return Err(DecodeError::InvalidValue);
12189 let bounded_fee_estimator = LowerBoundedFeeEstimator::new(args.fee_estimator);
12191 for (_, monitor) in args.channel_monitors.iter() {
12192 for (payment_hash, payment_preimage) in monitor.get_stored_preimages() {
12193 if let Some(payment) = claimable_payments.remove(&payment_hash) {
12194 log_info!(args.logger, "Re-claiming HTLCs with payment hash {} as we've released the preimage to a ChannelMonitor!", &payment_hash);
12195 let mut claimable_amt_msat = 0;
12196 let mut receiver_node_id = Some(our_network_pubkey);
12197 let phantom_shared_secret = payment.htlcs[0].prev_hop.phantom_shared_secret;
12198 if phantom_shared_secret.is_some() {
12199 let phantom_pubkey = args.node_signer.get_node_id(Recipient::PhantomNode)
12200 .expect("Failed to get node_id for phantom node recipient");
12201 receiver_node_id = Some(phantom_pubkey)
12203 for claimable_htlc in &payment.htlcs {
12204 claimable_amt_msat += claimable_htlc.value;
12206 // Add a holding-cell claim of the payment to the Channel, which should be
12207 // applied ~immediately on peer reconnection. Because it won't generate a
12208 // new commitment transaction we can just provide the payment preimage to
12209 // the corresponding ChannelMonitor and nothing else.
12211 // We do so directly instead of via the normal ChannelMonitor update
12212 // procedure as the ChainMonitor hasn't yet been initialized, implying
12213 // we're not allowed to call it directly yet. Further, we do the update
12214 // without incrementing the ChannelMonitor update ID as there isn't any
12216 // If we were to generate a new ChannelMonitor update ID here and then
12217 // crash before the user finishes block connect we'd end up force-closing
12218 // this channel as well. On the flip side, there's no harm in restarting
12219 // without the new monitor persisted - we'll end up right back here on
12221 let previous_channel_id = claimable_htlc.prev_hop.channel_id;
12222 if let Some(peer_node_id) = outpoint_to_peer.get(&claimable_htlc.prev_hop.outpoint) {
12223 let peer_state_mutex = per_peer_state.get(peer_node_id).unwrap();
12224 let mut peer_state_lock = peer_state_mutex.lock().unwrap();
12225 let peer_state = &mut *peer_state_lock;
12226 if let Some(ChannelPhase::Funded(channel)) = peer_state.channel_by_id.get_mut(&previous_channel_id) {
12227 let logger = WithChannelContext::from(&args.logger, &channel.context);
12228 channel.claim_htlc_while_disconnected_dropping_mon_update(claimable_htlc.prev_hop.htlc_id, payment_preimage, &&logger);
12231 if let Some(previous_hop_monitor) = args.channel_monitors.get(&claimable_htlc.prev_hop.outpoint) {
12232 previous_hop_monitor.provide_payment_preimage(&payment_hash, &payment_preimage, &args.tx_broadcaster, &bounded_fee_estimator, &args.logger);
12235 pending_events_read.push_back((events::Event::PaymentClaimed {
12238 purpose: payment.purpose,
12239 amount_msat: claimable_amt_msat,
12240 htlcs: payment.htlcs.iter().map(events::ClaimedHTLC::from).collect(),
12241 sender_intended_total_msat: payment.htlcs.first().map(|htlc| htlc.total_msat),
12247 for (node_id, monitor_update_blocked_actions) in monitor_update_blocked_actions_per_peer.unwrap() {
12248 if let Some(peer_state) = per_peer_state.get(&node_id) {
12249 for (channel_id, actions) in monitor_update_blocked_actions.iter() {
12250 let logger = WithContext::from(&args.logger, Some(node_id), Some(*channel_id));
12251 for action in actions.iter() {
12252 if let MonitorUpdateCompletionAction::EmitEventAndFreeOtherChannel {
12253 downstream_counterparty_and_funding_outpoint:
12254 Some((blocked_node_id, _blocked_channel_outpoint, blocked_channel_id, blocking_action)), ..
12256 if let Some(blocked_peer_state) = per_peer_state.get(blocked_node_id) {
12258 "Holding the next revoke_and_ack from {} until the preimage is durably persisted in the inbound edge's ChannelMonitor",
12259 blocked_channel_id);
12260 blocked_peer_state.lock().unwrap().actions_blocking_raa_monitor_updates
12261 .entry(*blocked_channel_id)
12262 .or_insert_with(Vec::new).push(blocking_action.clone());
12264 // If the channel we were blocking has closed, we don't need to
12265 // worry about it - the blocked monitor update should never have
12266 // been released from the `Channel` object so it can't have
12267 // completed, and if the channel closed there's no reason to bother
12271 if let MonitorUpdateCompletionAction::FreeOtherChannelImmediately { .. } = action {
12272 debug_assert!(false, "Non-event-generating channel freeing should not appear in our queue");
12276 peer_state.lock().unwrap().monitor_update_blocked_actions = monitor_update_blocked_actions;
12278 log_error!(WithContext::from(&args.logger, Some(node_id), None), "Got blocked actions without a per-peer-state for {}", node_id);
12279 return Err(DecodeError::InvalidValue);
12283 let channel_manager = ChannelManager {
12285 fee_estimator: bounded_fee_estimator,
12286 chain_monitor: args.chain_monitor,
12287 tx_broadcaster: args.tx_broadcaster,
12288 router: args.router,
12290 best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
12292 inbound_payment_key: expanded_inbound_key,
12293 pending_inbound_payments: Mutex::new(pending_inbound_payments),
12294 pending_outbound_payments: pending_outbounds,
12295 pending_intercepted_htlcs: Mutex::new(pending_intercepted_htlcs.unwrap()),
12297 forward_htlcs: Mutex::new(forward_htlcs),
12298 decode_update_add_htlcs: Mutex::new(decode_update_add_htlcs),
12299 claimable_payments: Mutex::new(ClaimablePayments { claimable_payments, pending_claiming_payments: pending_claiming_payments.unwrap() }),
12300 outbound_scid_aliases: Mutex::new(outbound_scid_aliases),
12301 outpoint_to_peer: Mutex::new(outpoint_to_peer),
12302 short_to_chan_info: FairRwLock::new(short_to_chan_info),
12303 fake_scid_rand_bytes: fake_scid_rand_bytes.unwrap(),
12305 probing_cookie_secret: probing_cookie_secret.unwrap(),
12307 our_network_pubkey,
12310 highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
12312 per_peer_state: FairRwLock::new(per_peer_state),
12314 pending_events: Mutex::new(pending_events_read),
12315 pending_events_processor: AtomicBool::new(false),
12316 pending_background_events: Mutex::new(pending_background_events),
12317 total_consistency_lock: RwLock::new(()),
12318 background_events_processed_since_startup: AtomicBool::new(false),
12320 event_persist_notifier: Notifier::new(),
12321 needs_persist_flag: AtomicBool::new(false),
12323 funding_batch_states: Mutex::new(BTreeMap::new()),
12325 pending_offers_messages: Mutex::new(Vec::new()),
12327 pending_broadcast_messages: Mutex::new(Vec::new()),
12329 entropy_source: args.entropy_source,
12330 node_signer: args.node_signer,
12331 signer_provider: args.signer_provider,
12333 logger: args.logger,
12334 default_configuration: args.default_config,
12337 for htlc_source in failed_htlcs.drain(..) {
12338 let (source, payment_hash, counterparty_node_id, channel_id) = htlc_source;
12339 let receiver = HTLCDestination::NextHopChannel { node_id: Some(counterparty_node_id), channel_id };
12340 let reason = HTLCFailReason::from_failure_code(0x4000 | 8);
12341 channel_manager.fail_htlc_backwards_internal(&source, &payment_hash, &reason, receiver);
12344 for (source, preimage, downstream_value, downstream_closed, downstream_node_id, downstream_funding, downstream_channel_id) in pending_claims_to_replay {
12345 // We use `downstream_closed` in place of `from_onchain` here just as a guess - we
12346 // don't remember in the `ChannelMonitor` where we got a preimage from, but if the
12347 // channel is closed we just assume that it probably came from an on-chain claim.
12348 channel_manager.claim_funds_internal(source, preimage, Some(downstream_value), None,
12349 downstream_closed, true, downstream_node_id, downstream_funding,
12350 downstream_channel_id, None
12354 //TODO: Broadcast channel update for closed channels, but only after we've made a
12355 //connection or two.
12357 Ok((best_block_hash.clone(), channel_manager))
12363 use bitcoin::hashes::Hash;
12364 use bitcoin::hashes::sha256::Hash as Sha256;
12365 use bitcoin::secp256k1::{PublicKey, Secp256k1, SecretKey};
12366 use core::sync::atomic::Ordering;
12367 use crate::events::{Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider, ClosureReason};
12368 use crate::ln::{PaymentPreimage, PaymentHash, PaymentSecret};
12369 use crate::ln::ChannelId;
12370 use crate::ln::channelmanager::{create_recv_pending_htlc_info, HTLCForwardInfo, inbound_payment, PaymentId, PaymentSendFailure, RecipientOnionFields, InterceptId};
12371 use crate::ln::functional_test_utils::*;
12372 use crate::ln::msgs::{self, ErrorAction};
12373 use crate::ln::msgs::ChannelMessageHandler;
12374 use crate::prelude::*;
12375 use crate::routing::router::{PaymentParameters, RouteParameters, find_route};
12376 use crate::util::errors::APIError;
12377 use crate::util::ser::Writeable;
12378 use crate::util::test_utils;
12379 use crate::util::config::{ChannelConfig, ChannelConfigUpdate};
12380 use crate::sign::EntropySource;
12383 fn test_notify_limits() {
12384 // Check that a few cases which don't require the persistence of a new ChannelManager,
12385 // indeed, do not cause the persistence of a new ChannelManager.
12386 let chanmon_cfgs = create_chanmon_cfgs(3);
12387 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12388 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12389 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12391 // All nodes start with a persistable update pending as `create_network` connects each node
12392 // with all other nodes to make most tests simpler.
12393 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12394 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12395 assert!(nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12397 let mut chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12399 // We check that the channel info nodes have doesn't change too early, even though we try
12400 // to connect messages with new values
12401 chan.0.contents.fee_base_msat *= 2;
12402 chan.1.contents.fee_base_msat *= 2;
12403 let node_a_chan_info = nodes[0].node.list_channels_with_counterparty(
12404 &nodes[1].node.get_our_node_id()).pop().unwrap();
12405 let node_b_chan_info = nodes[1].node.list_channels_with_counterparty(
12406 &nodes[0].node.get_our_node_id()).pop().unwrap();
12408 // The first two nodes (which opened a channel) should now require fresh persistence
12409 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12410 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12411 // ... but the last node should not.
12412 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12413 // After persisting the first two nodes they should no longer need fresh persistence.
12414 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12415 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12417 // Node 3, unrelated to the only channel, shouldn't care if it receives a channel_update
12418 // about the channel.
12419 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.0);
12420 nodes[2].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &chan.1);
12421 assert!(!nodes[2].node.get_event_or_persistence_needed_future().poll_is_complete());
12423 // The nodes which are a party to the channel should also ignore messages from unrelated
12425 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12426 nodes[0].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12427 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.0);
12428 nodes[1].node.handle_channel_update(&nodes[2].node.get_our_node_id(), &chan.1);
12429 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12430 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12432 // At this point the channel info given by peers should still be the same.
12433 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12434 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12436 // An earlier version of handle_channel_update didn't check the directionality of the
12437 // update message and would always update the local fee info, even if our peer was
12438 // (spuriously) forwarding us our own channel_update.
12439 let as_node_one = nodes[0].node.get_our_node_id().serialize()[..] < nodes[1].node.get_our_node_id().serialize()[..];
12440 let as_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.0 } else { &chan.1 };
12441 let bs_update = if as_node_one == (chan.0.contents.flags & 1 == 0 /* chan.0 is from node one */) { &chan.1 } else { &chan.0 };
12443 // First deliver each peers' own message, checking that the node doesn't need to be
12444 // persisted and that its channel info remains the same.
12445 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &as_update);
12446 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &bs_update);
12447 assert!(!nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12448 assert!(!nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12449 assert_eq!(nodes[0].node.list_channels()[0], node_a_chan_info);
12450 assert_eq!(nodes[1].node.list_channels()[0], node_b_chan_info);
12452 // Finally, deliver the other peers' message, ensuring each node needs to be persisted and
12453 // the channel info has updated.
12454 nodes[0].node.handle_channel_update(&nodes[1].node.get_our_node_id(), &bs_update);
12455 nodes[1].node.handle_channel_update(&nodes[0].node.get_our_node_id(), &as_update);
12456 assert!(nodes[0].node.get_event_or_persistence_needed_future().poll_is_complete());
12457 assert!(nodes[1].node.get_event_or_persistence_needed_future().poll_is_complete());
12458 assert_ne!(nodes[0].node.list_channels()[0], node_a_chan_info);
12459 assert_ne!(nodes[1].node.list_channels()[0], node_b_chan_info);
12463 fn test_keysend_dup_hash_partial_mpp() {
12464 // Test that a keysend payment with a duplicate hash to an existing partial MPP payment fails as
12466 let chanmon_cfgs = create_chanmon_cfgs(2);
12467 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12468 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12469 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12470 create_announced_chan_between_nodes(&nodes, 0, 1);
12472 // First, send a partial MPP payment.
12473 let (route, our_payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
12474 let mut mpp_route = route.clone();
12475 mpp_route.paths.push(mpp_route.paths[0].clone());
12477 let payment_id = PaymentId([42; 32]);
12478 // Use the utility function send_payment_along_path to send the payment with MPP data which
12479 // indicates there are more HTLCs coming.
12480 let cur_height = CHAN_CONFIRM_DEPTH + 1; // route_payment calls send_payment, which adds 1 to the current height. So we do the same here to match.
12481 let session_privs = nodes[0].node.test_add_new_pending_payment(our_payment_hash,
12482 RecipientOnionFields::secret_only(payment_secret), payment_id, &mpp_route).unwrap();
12483 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[0], &our_payment_hash,
12484 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[0]).unwrap();
12485 check_added_monitors!(nodes[0], 1);
12486 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12487 assert_eq!(events.len(), 1);
12488 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), false, None);
12490 // Next, send a keysend payment with the same payment_hash and make sure it fails.
12491 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12492 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12493 check_added_monitors!(nodes[0], 1);
12494 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12495 assert_eq!(events.len(), 1);
12496 let ev = events.drain(..).next().unwrap();
12497 let payment_event = SendEvent::from_event(ev);
12498 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12499 check_added_monitors!(nodes[1], 0);
12500 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12501 expect_pending_htlcs_forwardable!(nodes[1]);
12502 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash: our_payment_hash }]);
12503 check_added_monitors!(nodes[1], 1);
12504 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12505 assert!(updates.update_add_htlcs.is_empty());
12506 assert!(updates.update_fulfill_htlcs.is_empty());
12507 assert_eq!(updates.update_fail_htlcs.len(), 1);
12508 assert!(updates.update_fail_malformed_htlcs.is_empty());
12509 assert!(updates.update_fee.is_none());
12510 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12511 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12512 expect_payment_failed!(nodes[0], our_payment_hash, true);
12514 // Send the second half of the original MPP payment.
12515 nodes[0].node.test_send_payment_along_path(&mpp_route.paths[1], &our_payment_hash,
12516 RecipientOnionFields::secret_only(payment_secret), 200_000, cur_height, payment_id, &None, session_privs[1]).unwrap();
12517 check_added_monitors!(nodes[0], 1);
12518 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12519 assert_eq!(events.len(), 1);
12520 pass_along_path(&nodes[0], &[&nodes[1]], 200_000, our_payment_hash, Some(payment_secret), events.drain(..).next().unwrap(), true, None);
12522 // Claim the full MPP payment. Note that we can't use a test utility like
12523 // claim_funds_along_route because the ordering of the messages causes the second half of the
12524 // payment to be put in the holding cell, which confuses the test utilities. So we exchange the
12525 // lightning messages manually.
12526 nodes[1].node.claim_funds(payment_preimage);
12527 expect_payment_claimed!(nodes[1], our_payment_hash, 200_000);
12528 check_added_monitors!(nodes[1], 2);
12530 let bs_first_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12531 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_first_updates.update_fulfill_htlcs[0]);
12532 expect_payment_sent(&nodes[0], payment_preimage, None, false, false);
12533 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_first_updates.commitment_signed);
12534 check_added_monitors!(nodes[0], 1);
12535 let (as_first_raa, as_first_cs) = get_revoke_commit_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12536 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_first_raa);
12537 check_added_monitors!(nodes[1], 1);
12538 let bs_second_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12539 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_first_cs);
12540 check_added_monitors!(nodes[1], 1);
12541 let bs_first_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12542 nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &bs_second_updates.update_fulfill_htlcs[0]);
12543 nodes[0].node.handle_commitment_signed(&nodes[1].node.get_our_node_id(), &bs_second_updates.commitment_signed);
12544 check_added_monitors!(nodes[0], 1);
12545 let as_second_raa = get_event_msg!(nodes[0], MessageSendEvent::SendRevokeAndACK, nodes[1].node.get_our_node_id());
12546 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_first_raa);
12547 let as_second_updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12548 check_added_monitors!(nodes[0], 1);
12549 nodes[1].node.handle_revoke_and_ack(&nodes[0].node.get_our_node_id(), &as_second_raa);
12550 check_added_monitors!(nodes[1], 1);
12551 nodes[1].node.handle_commitment_signed(&nodes[0].node.get_our_node_id(), &as_second_updates.commitment_signed);
12552 check_added_monitors!(nodes[1], 1);
12553 let bs_third_raa = get_event_msg!(nodes[1], MessageSendEvent::SendRevokeAndACK, nodes[0].node.get_our_node_id());
12554 nodes[0].node.handle_revoke_and_ack(&nodes[1].node.get_our_node_id(), &bs_third_raa);
12555 check_added_monitors!(nodes[0], 1);
12557 // Note that successful MPP payments will generate a single PaymentSent event upon the first
12558 // path's success and a PaymentPathSuccessful event for each path's success.
12559 let events = nodes[0].node.get_and_clear_pending_events();
12560 assert_eq!(events.len(), 2);
12562 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12563 assert_eq!(payment_id, *actual_payment_id);
12564 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12565 assert_eq!(route.paths[0], *path);
12567 _ => panic!("Unexpected event"),
12570 Event::PaymentPathSuccessful { payment_id: ref actual_payment_id, ref payment_hash, ref path } => {
12571 assert_eq!(payment_id, *actual_payment_id);
12572 assert_eq!(our_payment_hash, *payment_hash.as_ref().unwrap());
12573 assert_eq!(route.paths[0], *path);
12575 _ => panic!("Unexpected event"),
12580 fn test_keysend_dup_payment_hash() {
12581 do_test_keysend_dup_payment_hash(false);
12582 do_test_keysend_dup_payment_hash(true);
12585 fn do_test_keysend_dup_payment_hash(accept_mpp_keysend: bool) {
12586 // (1): Test that a keysend payment with a duplicate payment hash to an existing pending
12587 // outbound regular payment fails as expected.
12588 // (2): Test that a regular payment with a duplicate payment hash to an existing keysend payment
12589 // fails as expected.
12590 // (3): Test that a keysend payment with a duplicate payment hash to an existing keysend
12591 // payment fails as expected. When `accept_mpp_keysend` is false, this tests that we
12592 // reject MPP keysend payments, since in this case where the payment has no payment
12593 // secret, a keysend payment with a duplicate hash is basically an MPP keysend. If
12594 // `accept_mpp_keysend` is true, this tests that we only accept MPP keysends with
12595 // payment secrets and reject otherwise.
12596 let chanmon_cfgs = create_chanmon_cfgs(2);
12597 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12598 let mut mpp_keysend_cfg = test_default_channel_config();
12599 mpp_keysend_cfg.accept_mpp_keysend = accept_mpp_keysend;
12600 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(mpp_keysend_cfg)]);
12601 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12602 create_announced_chan_between_nodes(&nodes, 0, 1);
12603 let scorer = test_utils::TestScorer::new();
12604 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12606 // To start (1), send a regular payment but don't claim it.
12607 let expected_route = [&nodes[1]];
12608 let (payment_preimage, payment_hash, ..) = route_payment(&nodes[0], &expected_route, 100_000);
12610 // Next, attempt a keysend payment and make sure it fails.
12611 let route_params = RouteParameters::from_payment_params_and_value(
12612 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(),
12613 TEST_FINAL_CLTV, false), 100_000);
12614 let route = find_route(
12615 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12616 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12618 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12619 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12620 check_added_monitors!(nodes[0], 1);
12621 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12622 assert_eq!(events.len(), 1);
12623 let ev = events.drain(..).next().unwrap();
12624 let payment_event = SendEvent::from_event(ev);
12625 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12626 check_added_monitors!(nodes[1], 0);
12627 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12628 // We have to forward pending HTLCs twice - once tries to forward the payment forward (and
12629 // fails), the second will process the resulting failure and fail the HTLC backward
12630 expect_pending_htlcs_forwardable!(nodes[1]);
12631 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12632 check_added_monitors!(nodes[1], 1);
12633 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12634 assert!(updates.update_add_htlcs.is_empty());
12635 assert!(updates.update_fulfill_htlcs.is_empty());
12636 assert_eq!(updates.update_fail_htlcs.len(), 1);
12637 assert!(updates.update_fail_malformed_htlcs.is_empty());
12638 assert!(updates.update_fee.is_none());
12639 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12640 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12641 expect_payment_failed!(nodes[0], payment_hash, true);
12643 // Finally, claim the original payment.
12644 claim_payment(&nodes[0], &expected_route, payment_preimage);
12646 // To start (2), send a keysend payment but don't claim it.
12647 let payment_preimage = PaymentPreimage([42; 32]);
12648 let route = find_route(
12649 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12650 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12652 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12653 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_preimage.0)).unwrap();
12654 check_added_monitors!(nodes[0], 1);
12655 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12656 assert_eq!(events.len(), 1);
12657 let event = events.pop().unwrap();
12658 let path = vec![&nodes[1]];
12659 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12661 // Next, attempt a regular payment and make sure it fails.
12662 let payment_secret = PaymentSecret([43; 32]);
12663 nodes[0].node.send_payment_with_route(&route, payment_hash,
12664 RecipientOnionFields::secret_only(payment_secret), PaymentId(payment_hash.0)).unwrap();
12665 check_added_monitors!(nodes[0], 1);
12666 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12667 assert_eq!(events.len(), 1);
12668 let ev = events.drain(..).next().unwrap();
12669 let payment_event = SendEvent::from_event(ev);
12670 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12671 check_added_monitors!(nodes[1], 0);
12672 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12673 expect_pending_htlcs_forwardable!(nodes[1]);
12674 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12675 check_added_monitors!(nodes[1], 1);
12676 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12677 assert!(updates.update_add_htlcs.is_empty());
12678 assert!(updates.update_fulfill_htlcs.is_empty());
12679 assert_eq!(updates.update_fail_htlcs.len(), 1);
12680 assert!(updates.update_fail_malformed_htlcs.is_empty());
12681 assert!(updates.update_fee.is_none());
12682 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12683 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12684 expect_payment_failed!(nodes[0], payment_hash, true);
12686 // Finally, succeed the keysend payment.
12687 claim_payment(&nodes[0], &expected_route, payment_preimage);
12689 // To start (3), send a keysend payment but don't claim it.
12690 let payment_id_1 = PaymentId([44; 32]);
12691 let payment_hash = nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12692 RecipientOnionFields::spontaneous_empty(), payment_id_1).unwrap();
12693 check_added_monitors!(nodes[0], 1);
12694 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12695 assert_eq!(events.len(), 1);
12696 let event = events.pop().unwrap();
12697 let path = vec![&nodes[1]];
12698 pass_along_path(&nodes[0], &path, 100_000, payment_hash, None, event, true, Some(payment_preimage));
12700 // Next, attempt a keysend payment and make sure it fails.
12701 let route_params = RouteParameters::from_payment_params_and_value(
12702 PaymentParameters::for_keysend(expected_route.last().unwrap().node.get_our_node_id(), TEST_FINAL_CLTV, false),
12705 let route = find_route(
12706 &nodes[0].node.get_our_node_id(), &route_params, &nodes[0].network_graph,
12707 None, nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12709 let payment_id_2 = PaymentId([45; 32]);
12710 nodes[0].node.send_spontaneous_payment(&route, Some(payment_preimage),
12711 RecipientOnionFields::spontaneous_empty(), payment_id_2).unwrap();
12712 check_added_monitors!(nodes[0], 1);
12713 let mut events = nodes[0].node.get_and_clear_pending_msg_events();
12714 assert_eq!(events.len(), 1);
12715 let ev = events.drain(..).next().unwrap();
12716 let payment_event = SendEvent::from_event(ev);
12717 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
12718 check_added_monitors!(nodes[1], 0);
12719 commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
12720 expect_pending_htlcs_forwardable!(nodes[1]);
12721 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
12722 check_added_monitors!(nodes[1], 1);
12723 let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
12724 assert!(updates.update_add_htlcs.is_empty());
12725 assert!(updates.update_fulfill_htlcs.is_empty());
12726 assert_eq!(updates.update_fail_htlcs.len(), 1);
12727 assert!(updates.update_fail_malformed_htlcs.is_empty());
12728 assert!(updates.update_fee.is_none());
12729 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
12730 commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, true, true);
12731 expect_payment_failed!(nodes[0], payment_hash, true);
12733 // Finally, claim the original payment.
12734 claim_payment(&nodes[0], &expected_route, payment_preimage);
12738 fn test_keysend_hash_mismatch() {
12739 // Test that if we receive a keysend `update_add_htlc` msg, we fail as expected if the keysend
12740 // preimage doesn't match the msg's payment hash.
12741 let chanmon_cfgs = create_chanmon_cfgs(2);
12742 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12743 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12744 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12746 let payer_pubkey = nodes[0].node.get_our_node_id();
12747 let payee_pubkey = nodes[1].node.get_our_node_id();
12749 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12750 let route_params = RouteParameters::from_payment_params_and_value(
12751 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12752 let network_graph = nodes[0].network_graph;
12753 let first_hops = nodes[0].node.list_usable_channels();
12754 let scorer = test_utils::TestScorer::new();
12755 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12756 let route = find_route(
12757 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12758 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12761 let test_preimage = PaymentPreimage([42; 32]);
12762 let mismatch_payment_hash = PaymentHash([43; 32]);
12763 let session_privs = nodes[0].node.test_add_new_pending_payment(mismatch_payment_hash,
12764 RecipientOnionFields::spontaneous_empty(), PaymentId(mismatch_payment_hash.0), &route).unwrap();
12765 nodes[0].node.test_send_payment_internal(&route, mismatch_payment_hash,
12766 RecipientOnionFields::spontaneous_empty(), Some(test_preimage), PaymentId(mismatch_payment_hash.0), None, session_privs).unwrap();
12767 check_added_monitors!(nodes[0], 1);
12769 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12770 assert_eq!(updates.update_add_htlcs.len(), 1);
12771 assert!(updates.update_fulfill_htlcs.is_empty());
12772 assert!(updates.update_fail_htlcs.is_empty());
12773 assert!(updates.update_fail_malformed_htlcs.is_empty());
12774 assert!(updates.update_fee.is_none());
12775 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12777 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "Payment preimage didn't match payment hash", 1);
12781 fn test_keysend_msg_with_secret_err() {
12782 // Test that we error as expected if we receive a keysend payment that includes a payment
12783 // secret when we don't support MPP keysend.
12784 let mut reject_mpp_keysend_cfg = test_default_channel_config();
12785 reject_mpp_keysend_cfg.accept_mpp_keysend = false;
12786 let chanmon_cfgs = create_chanmon_cfgs(2);
12787 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12788 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(reject_mpp_keysend_cfg)]);
12789 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12791 let payer_pubkey = nodes[0].node.get_our_node_id();
12792 let payee_pubkey = nodes[1].node.get_our_node_id();
12794 let _chan = create_chan_between_nodes(&nodes[0], &nodes[1]);
12795 let route_params = RouteParameters::from_payment_params_and_value(
12796 PaymentParameters::for_keysend(payee_pubkey, 40, false), 10_000);
12797 let network_graph = nodes[0].network_graph;
12798 let first_hops = nodes[0].node.list_usable_channels();
12799 let scorer = test_utils::TestScorer::new();
12800 let random_seed_bytes = chanmon_cfgs[1].keys_manager.get_secure_random_bytes();
12801 let route = find_route(
12802 &payer_pubkey, &route_params, &network_graph, Some(&first_hops.iter().collect::<Vec<_>>()),
12803 nodes[0].logger, &scorer, &Default::default(), &random_seed_bytes
12806 let test_preimage = PaymentPreimage([42; 32]);
12807 let test_secret = PaymentSecret([43; 32]);
12808 let payment_hash = PaymentHash(Sha256::hash(&test_preimage.0).to_byte_array());
12809 let session_privs = nodes[0].node.test_add_new_pending_payment(payment_hash,
12810 RecipientOnionFields::secret_only(test_secret), PaymentId(payment_hash.0), &route).unwrap();
12811 nodes[0].node.test_send_payment_internal(&route, payment_hash,
12812 RecipientOnionFields::secret_only(test_secret), Some(test_preimage),
12813 PaymentId(payment_hash.0), None, session_privs).unwrap();
12814 check_added_monitors!(nodes[0], 1);
12816 let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
12817 assert_eq!(updates.update_add_htlcs.len(), 1);
12818 assert!(updates.update_fulfill_htlcs.is_empty());
12819 assert!(updates.update_fail_htlcs.is_empty());
12820 assert!(updates.update_fail_malformed_htlcs.is_empty());
12821 assert!(updates.update_fee.is_none());
12822 nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &updates.update_add_htlcs[0]);
12824 nodes[1].logger.assert_log_contains("lightning::ln::channelmanager", "We don't support MPP keysend payments", 1);
12828 fn test_multi_hop_missing_secret() {
12829 let chanmon_cfgs = create_chanmon_cfgs(4);
12830 let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
12831 let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
12832 let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
12834 let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1).0.contents.short_channel_id;
12835 let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2).0.contents.short_channel_id;
12836 let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3).0.contents.short_channel_id;
12837 let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3).0.contents.short_channel_id;
12839 // Marshall an MPP route.
12840 let (mut route, payment_hash, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
12841 let path = route.paths[0].clone();
12842 route.paths.push(path);
12843 route.paths[0].hops[0].pubkey = nodes[1].node.get_our_node_id();
12844 route.paths[0].hops[0].short_channel_id = chan_1_id;
12845 route.paths[0].hops[1].short_channel_id = chan_3_id;
12846 route.paths[1].hops[0].pubkey = nodes[2].node.get_our_node_id();
12847 route.paths[1].hops[0].short_channel_id = chan_2_id;
12848 route.paths[1].hops[1].short_channel_id = chan_4_id;
12850 match nodes[0].node.send_payment_with_route(&route, payment_hash,
12851 RecipientOnionFields::spontaneous_empty(), PaymentId(payment_hash.0))
12853 PaymentSendFailure::ParameterError(APIError::APIMisuseError { ref err }) => {
12854 assert!(regex::Regex::new(r"Payment secret is required for multi-path payments").unwrap().is_match(err))
12856 _ => panic!("unexpected error")
12861 fn test_channel_update_cached() {
12862 let chanmon_cfgs = create_chanmon_cfgs(3);
12863 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
12864 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
12865 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
12867 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12869 nodes[0].node.force_close_channel_with_peer(&chan.2, &nodes[1].node.get_our_node_id(), None, true).unwrap();
12870 check_added_monitors!(nodes[0], 1);
12871 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12873 // Confirm that the channel_update was not sent immediately to node[1] but was cached.
12874 let node_1_events = nodes[1].node.get_and_clear_pending_msg_events();
12875 assert_eq!(node_1_events.len(), 0);
12878 // Assert that ChannelUpdate message has been added to node[0] pending broadcast messages
12879 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12880 assert_eq!(pending_broadcast_messages.len(), 1);
12883 // Test that we do not retrieve the pending broadcast messages when we are not connected to any peer
12884 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12885 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12887 nodes[0].node.peer_disconnected(&nodes[2].node.get_our_node_id());
12888 nodes[2].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12890 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12891 assert_eq!(node_0_events.len(), 0);
12893 // Now we reconnect to a peer
12894 nodes[0].node.peer_connected(&nodes[2].node.get_our_node_id(), &msgs::Init {
12895 features: nodes[2].node.init_features(), networks: None, remote_network_address: None
12897 nodes[2].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
12898 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
12899 }, false).unwrap();
12901 // Confirm that get_and_clear_pending_msg_events correctly captures pending broadcast messages
12902 let node_0_events = nodes[0].node.get_and_clear_pending_msg_events();
12903 assert_eq!(node_0_events.len(), 1);
12904 match &node_0_events[0] {
12905 MessageSendEvent::BroadcastChannelUpdate { .. } => (),
12906 _ => panic!("Unexpected event"),
12909 // Assert that ChannelUpdate message has been cleared from nodes[0] pending broadcast messages
12910 let pending_broadcast_messages= nodes[0].node.pending_broadcast_messages.lock().unwrap();
12911 assert_eq!(pending_broadcast_messages.len(), 0);
12916 fn test_drop_disconnected_peers_when_removing_channels() {
12917 let chanmon_cfgs = create_chanmon_cfgs(2);
12918 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12919 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12920 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12922 let chan = create_announced_chan_between_nodes(&nodes, 0, 1);
12924 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
12925 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
12927 nodes[0].node.force_close_broadcasting_latest_txn(&chan.2, &nodes[1].node.get_our_node_id()).unwrap();
12928 check_closed_broadcast!(nodes[0], true);
12929 check_added_monitors!(nodes[0], 1);
12930 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
12933 // Assert that nodes[1] is awaiting removal for nodes[0] once nodes[1] has been
12934 // disconnected and the channel between has been force closed.
12935 let nodes_0_per_peer_state = nodes[0].node.per_peer_state.read().unwrap();
12936 // Assert that nodes[1] isn't removed before `timer_tick_occurred` has been executed.
12937 assert_eq!(nodes_0_per_peer_state.len(), 1);
12938 assert!(nodes_0_per_peer_state.get(&nodes[1].node.get_our_node_id()).is_some());
12941 nodes[0].node.timer_tick_occurred();
12944 // Assert that nodes[1] has now been removed.
12945 assert_eq!(nodes[0].node.per_peer_state.read().unwrap().len(), 0);
12950 fn bad_inbound_payment_hash() {
12951 // Add coverage for checking that a user-provided payment hash matches the payment secret.
12952 let chanmon_cfgs = create_chanmon_cfgs(2);
12953 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12954 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12955 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12957 let (_, payment_hash, payment_secret) = get_payment_preimage_hash!(&nodes[0]);
12958 let payment_data = msgs::FinalOnionHopData {
12960 total_msat: 100_000,
12963 // Ensure that if the payment hash given to `inbound_payment::verify` differs from the original,
12964 // payment verification fails as expected.
12965 let mut bad_payment_hash = payment_hash.clone();
12966 bad_payment_hash.0[0] += 1;
12967 match inbound_payment::verify(bad_payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger) {
12968 Ok(_) => panic!("Unexpected ok"),
12970 nodes[0].logger.assert_log_contains("lightning::ln::inbound_payment", "Failing HTLC with user-generated payment_hash", 1);
12974 // Check that using the original payment hash succeeds.
12975 assert!(inbound_payment::verify(payment_hash, &payment_data, nodes[0].node.highest_seen_timestamp.load(Ordering::Acquire) as u64, &nodes[0].node.inbound_payment_key, &nodes[0].logger).is_ok());
12979 fn test_outpoint_to_peer_coverage() {
12980 // Test that the `ChannelManager:outpoint_to_peer` contains channels which have been assigned
12981 // a `channel_id` (i.e. have had the funding tx created), and that they are removed once
12982 // the channel is successfully closed.
12983 let chanmon_cfgs = create_chanmon_cfgs(2);
12984 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
12985 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
12986 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
12988 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 1_000_000, 500_000_000, 42, None, None).unwrap();
12989 let open_channel = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
12990 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel);
12991 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
12992 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
12994 let (temporary_channel_id, tx, funding_output) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 1_000_000, 42);
12995 let channel_id = ChannelId::from_bytes(tx.txid().to_byte_array());
12997 // Ensure that the `outpoint_to_peer` map is empty until either party has received the
12998 // funding transaction, and have the real `channel_id`.
12999 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13000 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13003 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx.clone()).unwrap();
13005 // Assert that `nodes[0]`'s `outpoint_to_peer` map is populated with the channel as soon as
13006 // as it has the funding transaction.
13007 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13008 assert_eq!(nodes_0_lock.len(), 1);
13009 assert!(nodes_0_lock.contains_key(&funding_output));
13012 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13014 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13016 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13018 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13019 assert_eq!(nodes_0_lock.len(), 1);
13020 assert!(nodes_0_lock.contains_key(&funding_output));
13022 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13025 // Assert that `nodes[1]`'s `outpoint_to_peer` map is populated with the channel as
13026 // soon as it has the funding transaction.
13027 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13028 assert_eq!(nodes_1_lock.len(), 1);
13029 assert!(nodes_1_lock.contains_key(&funding_output));
13031 check_added_monitors!(nodes[1], 1);
13032 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13033 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13034 check_added_monitors!(nodes[0], 1);
13035 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13036 let (channel_ready, _) = create_chan_between_nodes_with_value_confirm(&nodes[0], &nodes[1], &tx);
13037 let (announcement, nodes_0_update, nodes_1_update) = create_chan_between_nodes_with_value_b(&nodes[0], &nodes[1], &channel_ready);
13038 update_nodes_with_chan_announce(&nodes, 0, 1, &announcement, &nodes_0_update, &nodes_1_update);
13040 nodes[0].node.close_channel(&channel_id, &nodes[1].node.get_our_node_id()).unwrap();
13041 nodes[1].node.handle_shutdown(&nodes[0].node.get_our_node_id(), &get_event_msg!(nodes[0], MessageSendEvent::SendShutdown, nodes[1].node.get_our_node_id()));
13042 let nodes_1_shutdown = get_event_msg!(nodes[1], MessageSendEvent::SendShutdown, nodes[0].node.get_our_node_id());
13043 nodes[0].node.handle_shutdown(&nodes[1].node.get_our_node_id(), &nodes_1_shutdown);
13045 let closing_signed_node_0 = get_event_msg!(nodes[0], MessageSendEvent::SendClosingSigned, nodes[1].node.get_our_node_id());
13046 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0);
13048 // Assert that the channel is kept in the `outpoint_to_peer` map for both nodes until the
13049 // channel can be fully closed by both parties (i.e. no outstanding htlcs exists, the
13050 // fee for the closing transaction has been negotiated and the parties has the other
13051 // party's signature for the fee negotiated closing transaction.)
13052 let nodes_0_lock = nodes[0].node.outpoint_to_peer.lock().unwrap();
13053 assert_eq!(nodes_0_lock.len(), 1);
13054 assert!(nodes_0_lock.contains_key(&funding_output));
13058 // At this stage, `nodes[1]` has proposed a fee for the closing transaction in the
13059 // `handle_closing_signed` call above. As `nodes[1]` has not yet received the signature
13060 // from `nodes[0]` for the closing transaction with the proposed fee, the channel is
13061 // kept in the `nodes[1]`'s `outpoint_to_peer` map.
13062 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13063 assert_eq!(nodes_1_lock.len(), 1);
13064 assert!(nodes_1_lock.contains_key(&funding_output));
13067 nodes[0].node.handle_closing_signed(&nodes[1].node.get_our_node_id(), &get_event_msg!(nodes[1], MessageSendEvent::SendClosingSigned, nodes[0].node.get_our_node_id()));
13069 // `nodes[0]` accepts `nodes[1]`'s proposed fee for the closing transaction, and
13070 // therefore has all it needs to fully close the channel (both signatures for the
13071 // closing transaction).
13072 // Assert that the channel is removed from `nodes[0]`'s `outpoint_to_peer` map as it can be
13073 // fully closed by `nodes[0]`.
13074 assert_eq!(nodes[0].node.outpoint_to_peer.lock().unwrap().len(), 0);
13076 // Assert that the channel is still in `nodes[1]`'s `outpoint_to_peer` map, as `nodes[1]`
13077 // doesn't have `nodes[0]`'s signature for the closing transaction yet.
13078 let nodes_1_lock = nodes[1].node.outpoint_to_peer.lock().unwrap();
13079 assert_eq!(nodes_1_lock.len(), 1);
13080 assert!(nodes_1_lock.contains_key(&funding_output));
13083 let (_nodes_0_update, closing_signed_node_0) = get_closing_signed_broadcast!(nodes[0].node, nodes[1].node.get_our_node_id());
13085 nodes[1].node.handle_closing_signed(&nodes[0].node.get_our_node_id(), &closing_signed_node_0.unwrap());
13087 // Assert that the channel has now been removed from both parties `outpoint_to_peer` map once
13088 // they both have everything required to fully close the channel.
13089 assert_eq!(nodes[1].node.outpoint_to_peer.lock().unwrap().len(), 0);
13091 let (_nodes_1_update, _none) = get_closing_signed_broadcast!(nodes[1].node, nodes[0].node.get_our_node_id());
13093 check_closed_event!(nodes[0], 1, ClosureReason::LocallyInitiatedCooperativeClosure, [nodes[1].node.get_our_node_id()], 1000000);
13094 check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyInitiatedCooperativeClosure, [nodes[0].node.get_our_node_id()], 1000000);
13097 fn check_not_connected_to_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13098 let expected_message = format!("Not connected to node: {}", expected_public_key);
13099 check_api_error_message(expected_message, res_err)
13102 fn check_unkown_peer_error<T>(res_err: Result<T, APIError>, expected_public_key: PublicKey) {
13103 let expected_message = format!("Can't find a peer matching the passed counterparty node_id {}", expected_public_key);
13104 check_api_error_message(expected_message, res_err)
13107 fn check_channel_unavailable_error<T>(res_err: Result<T, APIError>, expected_channel_id: ChannelId, peer_node_id: PublicKey) {
13108 let expected_message = format!("Channel with id {} not found for the passed counterparty node_id {}", expected_channel_id, peer_node_id);
13109 check_api_error_message(expected_message, res_err)
13112 fn check_api_misuse_error<T>(res_err: Result<T, APIError>) {
13113 let expected_message = "No such channel awaiting to be accepted.".to_string();
13114 check_api_error_message(expected_message, res_err)
13117 fn check_api_error_message<T>(expected_err_message: String, res_err: Result<T, APIError>) {
13119 Err(APIError::APIMisuseError { err }) => {
13120 assert_eq!(err, expected_err_message);
13122 Err(APIError::ChannelUnavailable { err }) => {
13123 assert_eq!(err, expected_err_message);
13125 Ok(_) => panic!("Unexpected Ok"),
13126 Err(_) => panic!("Unexpected Error"),
13131 fn test_api_calls_with_unkown_counterparty_node() {
13132 // Tests that our API functions that expects a `counterparty_node_id` as input, behaves as
13133 // expected if the `counterparty_node_id` is an unkown peer in the
13134 // `ChannelManager::per_peer_state` map.
13135 let chanmon_cfg = create_chanmon_cfgs(2);
13136 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13137 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13138 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13141 let channel_id = ChannelId::from_bytes([4; 32]);
13142 let unkown_public_key = PublicKey::from_secret_key(&Secp256k1::signing_only(), &SecretKey::from_slice(&[42; 32]).unwrap());
13143 let intercept_id = InterceptId([0; 32]);
13145 // Test the API functions.
13146 check_not_connected_to_peer_error(nodes[0].node.create_channel(unkown_public_key, 1_000_000, 500_000_000, 42, None, None), unkown_public_key);
13148 check_unkown_peer_error(nodes[0].node.accept_inbound_channel(&channel_id, &unkown_public_key, 42), unkown_public_key);
13150 check_unkown_peer_error(nodes[0].node.close_channel(&channel_id, &unkown_public_key), unkown_public_key);
13152 check_unkown_peer_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &unkown_public_key), unkown_public_key);
13154 check_unkown_peer_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &unkown_public_key), unkown_public_key);
13156 check_unkown_peer_error(nodes[0].node.forward_intercepted_htlc(intercept_id, &channel_id, unkown_public_key, 1_000_000), unkown_public_key);
13158 check_unkown_peer_error(nodes[0].node.update_channel_config(&unkown_public_key, &[channel_id], &ChannelConfig::default()), unkown_public_key);
13162 fn test_api_calls_with_unavailable_channel() {
13163 // Tests that our API functions that expects a `counterparty_node_id` and a `channel_id`
13164 // as input, behaves as expected if the `counterparty_node_id` is a known peer in the
13165 // `ChannelManager::per_peer_state` map, but the peer state doesn't contain a channel with
13166 // the given `channel_id`.
13167 let chanmon_cfg = create_chanmon_cfgs(2);
13168 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13169 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[None, None]);
13170 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13172 let counterparty_node_id = nodes[1].node.get_our_node_id();
13175 let channel_id = ChannelId::from_bytes([4; 32]);
13177 // Test the API functions.
13178 check_api_misuse_error(nodes[0].node.accept_inbound_channel(&channel_id, &counterparty_node_id, 42));
13180 check_channel_unavailable_error(nodes[0].node.close_channel(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13182 check_channel_unavailable_error(nodes[0].node.force_close_broadcasting_latest_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13184 check_channel_unavailable_error(nodes[0].node.force_close_without_broadcasting_txn(&channel_id, &counterparty_node_id), channel_id, counterparty_node_id);
13186 check_channel_unavailable_error(nodes[0].node.forward_intercepted_htlc(InterceptId([0; 32]), &channel_id, counterparty_node_id, 1_000_000), channel_id, counterparty_node_id);
13188 check_channel_unavailable_error(nodes[0].node.update_channel_config(&counterparty_node_id, &[channel_id], &ChannelConfig::default()), channel_id, counterparty_node_id);
13192 fn test_connection_limiting() {
13193 // Test that we limit un-channel'd peers and un-funded channels properly.
13194 let chanmon_cfgs = create_chanmon_cfgs(2);
13195 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13196 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13197 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13199 // Note that create_network connects the nodes together for us
13201 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13202 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13204 let mut funding_tx = None;
13205 for idx in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13206 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13207 let accept_channel = get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13210 nodes[0].node.handle_accept_channel(&nodes[1].node.get_our_node_id(), &accept_channel);
13211 let (temporary_channel_id, tx, _) = create_funding_transaction(&nodes[0], &nodes[1].node.get_our_node_id(), 100_000, 42);
13212 funding_tx = Some(tx.clone());
13213 nodes[0].node.funding_transaction_generated(&temporary_channel_id, &nodes[1].node.get_our_node_id(), tx).unwrap();
13214 let funding_created_msg = get_event_msg!(nodes[0], MessageSendEvent::SendFundingCreated, nodes[1].node.get_our_node_id());
13216 nodes[1].node.handle_funding_created(&nodes[0].node.get_our_node_id(), &funding_created_msg);
13217 check_added_monitors!(nodes[1], 1);
13218 expect_channel_pending_event(&nodes[1], &nodes[0].node.get_our_node_id());
13220 let funding_signed = get_event_msg!(nodes[1], MessageSendEvent::SendFundingSigned, nodes[0].node.get_our_node_id());
13222 nodes[0].node.handle_funding_signed(&nodes[1].node.get_our_node_id(), &funding_signed);
13223 check_added_monitors!(nodes[0], 1);
13224 expect_channel_pending_event(&nodes[0], &nodes[1].node.get_our_node_id());
13226 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13229 // A MAX_UNFUNDED_CHANS_PER_PEER + 1 channel will be summarily rejected
13230 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(
13231 &nodes[0].keys_manager);
13232 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13233 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13234 open_channel_msg.common_fields.temporary_channel_id);
13236 // Further, because all of our channels with nodes[0] are inbound, and none of them funded,
13237 // it doesn't count as a "protected" peer, i.e. it counts towards the MAX_NO_CHANNEL_PEERS
13239 let mut peer_pks = Vec::with_capacity(super::MAX_NO_CHANNEL_PEERS);
13240 for _ in 1..super::MAX_NO_CHANNEL_PEERS {
13241 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13242 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13243 peer_pks.push(random_pk);
13244 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13245 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13248 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13249 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13250 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13251 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13252 }, true).unwrap_err();
13254 // Also importantly, because nodes[0] isn't "protected", we will refuse a reconnection from
13255 // them if we have too many un-channel'd peers.
13256 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13257 let chan_closed_events = nodes[1].node.get_and_clear_pending_events();
13258 assert_eq!(chan_closed_events.len(), super::MAX_UNFUNDED_CHANS_PER_PEER - 1);
13259 for ev in chan_closed_events {
13260 if let Event::ChannelClosed { .. } = ev { } else { panic!(); }
13262 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13263 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13265 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13266 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13267 }, true).unwrap_err();
13269 // but of course if the connection is outbound its allowed...
13270 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13271 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13272 }, false).unwrap();
13273 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13275 // Now nodes[0] is disconnected but still has a pending, un-funded channel lying around.
13276 // Even though we accept one more connection from new peers, we won't actually let them
13278 assert!(peer_pks.len() > super::MAX_UNFUNDED_CHANNEL_PEERS - 1);
13279 for i in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13280 nodes[1].node.handle_open_channel(&peer_pks[i], &open_channel_msg);
13281 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, peer_pks[i]);
13282 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13284 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13285 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13286 open_channel_msg.common_fields.temporary_channel_id);
13288 // Of course, however, outbound channels are always allowed
13289 nodes[1].node.create_channel(last_random_pk, 100_000, 0, 42, None, None).unwrap();
13290 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, last_random_pk);
13292 // If we fund the first channel, nodes[0] has a live on-chain channel with us, it is now
13293 // "protected" and can connect again.
13294 mine_transaction(&nodes[1], funding_tx.as_ref().unwrap());
13295 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13296 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13298 get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
13300 // Further, because the first channel was funded, we can open another channel with
13302 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13303 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13307 fn test_outbound_chans_unlimited() {
13308 // Test that we never refuse an outbound channel even if a peer is unfuned-channel-limited
13309 let chanmon_cfgs = create_chanmon_cfgs(2);
13310 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13311 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
13312 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13314 // Note that create_network connects the nodes together for us
13316 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13317 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13319 for _ in 0..super::MAX_UNFUNDED_CHANS_PER_PEER {
13320 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13321 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13322 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13325 // Once we have MAX_UNFUNDED_CHANS_PER_PEER unfunded channels, new inbound channels will be
13327 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13328 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13329 open_channel_msg.common_fields.temporary_channel_id);
13331 // but we can still open an outbound channel.
13332 nodes[1].node.create_channel(nodes[0].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13333 get_event_msg!(nodes[1], MessageSendEvent::SendOpenChannel, nodes[0].node.get_our_node_id());
13335 // but even with such an outbound channel, additional inbound channels will still fail.
13336 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13337 assert_eq!(get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id()).channel_id,
13338 open_channel_msg.common_fields.temporary_channel_id);
13342 fn test_0conf_limiting() {
13343 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13344 // flag set and (sometimes) accept channels as 0conf.
13345 let chanmon_cfgs = create_chanmon_cfgs(2);
13346 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13347 let mut settings = test_default_channel_config();
13348 settings.manually_accept_inbound_channels = true;
13349 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, Some(settings)]);
13350 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13352 // Note that create_network connects the nodes together for us
13354 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13355 let mut open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13357 // First, get us up to MAX_UNFUNDED_CHANNEL_PEERS so we can test at the edge
13358 for _ in 0..super::MAX_UNFUNDED_CHANNEL_PEERS - 1 {
13359 let random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13360 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13361 nodes[1].node.peer_connected(&random_pk, &msgs::Init {
13362 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13365 nodes[1].node.handle_open_channel(&random_pk, &open_channel_msg);
13366 let events = nodes[1].node.get_and_clear_pending_events();
13368 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13369 nodes[1].node.accept_inbound_channel(&temporary_channel_id, &random_pk, 23).unwrap();
13371 _ => panic!("Unexpected event"),
13373 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, random_pk);
13374 open_channel_msg.common_fields.temporary_channel_id = ChannelId::temporary_from_entropy_source(&nodes[0].keys_manager);
13377 // If we try to accept a channel from another peer non-0conf it will fail.
13378 let last_random_pk = PublicKey::from_secret_key(&nodes[0].node.secp_ctx,
13379 &SecretKey::from_slice(&nodes[1].keys_manager.get_secure_random_bytes()).unwrap());
13380 nodes[1].node.peer_connected(&last_random_pk, &msgs::Init {
13381 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13383 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13384 let events = nodes[1].node.get_and_clear_pending_events();
13386 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13387 match nodes[1].node.accept_inbound_channel(&temporary_channel_id, &last_random_pk, 23) {
13388 Err(APIError::APIMisuseError { err }) =>
13389 assert_eq!(err, "Too many peers with unfunded channels, refusing to accept new ones"),
13393 _ => panic!("Unexpected event"),
13395 assert_eq!(get_err_msg(&nodes[1], &last_random_pk).channel_id,
13396 open_channel_msg.common_fields.temporary_channel_id);
13398 // ...however if we accept the same channel 0conf it should work just fine.
13399 nodes[1].node.handle_open_channel(&last_random_pk, &open_channel_msg);
13400 let events = nodes[1].node.get_and_clear_pending_events();
13402 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13403 nodes[1].node.accept_inbound_channel_from_trusted_peer_0conf(&temporary_channel_id, &last_random_pk, 23).unwrap();
13405 _ => panic!("Unexpected event"),
13407 get_event_msg!(nodes[1], MessageSendEvent::SendAcceptChannel, last_random_pk);
13411 fn reject_excessively_underpaying_htlcs() {
13412 let chanmon_cfg = create_chanmon_cfgs(1);
13413 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13414 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13415 let node = create_network(1, &node_cfg, &node_chanmgr);
13416 let sender_intended_amt_msat = 100;
13417 let extra_fee_msat = 10;
13418 let hop_data = msgs::InboundOnionPayload::Receive {
13419 sender_intended_htlc_amt_msat: 100,
13420 cltv_expiry_height: 42,
13421 payment_metadata: None,
13422 keysend_preimage: None,
13423 payment_data: Some(msgs::FinalOnionHopData {
13424 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13426 custom_tlvs: Vec::new(),
13428 // Check that if the amount we received + the penultimate hop extra fee is less than the sender
13429 // intended amount, we fail the payment.
13430 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13431 if let Err(crate::ln::channelmanager::InboundHTLCErr { err_code, .. }) =
13432 create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13433 sender_intended_amt_msat - extra_fee_msat - 1, 42, None, true, Some(extra_fee_msat),
13434 current_height, node[0].node.default_configuration.accept_mpp_keysend)
13436 assert_eq!(err_code, 19);
13437 } else { panic!(); }
13439 // If amt_received + extra_fee is equal to the sender intended amount, we're fine.
13440 let hop_data = msgs::InboundOnionPayload::Receive { // This is the same payload as above, InboundOnionPayload doesn't implement Clone
13441 sender_intended_htlc_amt_msat: 100,
13442 cltv_expiry_height: 42,
13443 payment_metadata: None,
13444 keysend_preimage: None,
13445 payment_data: Some(msgs::FinalOnionHopData {
13446 payment_secret: PaymentSecret([0; 32]), total_msat: sender_intended_amt_msat,
13448 custom_tlvs: Vec::new(),
13450 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13451 assert!(create_recv_pending_htlc_info(hop_data, [0; 32], PaymentHash([0; 32]),
13452 sender_intended_amt_msat - extra_fee_msat, 42, None, true, Some(extra_fee_msat),
13453 current_height, node[0].node.default_configuration.accept_mpp_keysend).is_ok());
13457 fn test_final_incorrect_cltv(){
13458 let chanmon_cfg = create_chanmon_cfgs(1);
13459 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13460 let node_chanmgr = create_node_chanmgrs(1, &node_cfg, &[None]);
13461 let node = create_network(1, &node_cfg, &node_chanmgr);
13463 let current_height: u32 = node[0].node.best_block.read().unwrap().height;
13464 let result = create_recv_pending_htlc_info(msgs::InboundOnionPayload::Receive {
13465 sender_intended_htlc_amt_msat: 100,
13466 cltv_expiry_height: 22,
13467 payment_metadata: None,
13468 keysend_preimage: None,
13469 payment_data: Some(msgs::FinalOnionHopData {
13470 payment_secret: PaymentSecret([0; 32]), total_msat: 100,
13472 custom_tlvs: Vec::new(),
13473 }, [0; 32], PaymentHash([0; 32]), 100, 23, None, true, None, current_height,
13474 node[0].node.default_configuration.accept_mpp_keysend);
13476 // Should not return an error as this condition:
13477 // https://github.com/lightning/bolts/blob/4dcc377209509b13cf89a4b91fde7d478f5b46d8/04-onion-routing.md?plain=1#L334
13478 // is not satisfied.
13479 assert!(result.is_ok());
13483 fn test_inbound_anchors_manual_acceptance() {
13484 // Tests that we properly limit inbound channels when we have the manual-channel-acceptance
13485 // flag set and (sometimes) accept channels as 0conf.
13486 let mut anchors_cfg = test_default_channel_config();
13487 anchors_cfg.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13489 let mut anchors_manual_accept_cfg = anchors_cfg.clone();
13490 anchors_manual_accept_cfg.manually_accept_inbound_channels = true;
13492 let chanmon_cfgs = create_chanmon_cfgs(3);
13493 let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
13494 let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs,
13495 &[Some(anchors_cfg.clone()), Some(anchors_cfg.clone()), Some(anchors_manual_accept_cfg.clone())]);
13496 let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
13498 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 42, None, None).unwrap();
13499 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13501 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13502 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13503 let msg_events = nodes[1].node.get_and_clear_pending_msg_events();
13504 match &msg_events[0] {
13505 MessageSendEvent::HandleError { node_id, action } => {
13506 assert_eq!(*node_id, nodes[0].node.get_our_node_id());
13508 ErrorAction::SendErrorMessage { msg } =>
13509 assert_eq!(msg.data, "No channels with anchor outputs accepted".to_owned()),
13510 _ => panic!("Unexpected error action"),
13513 _ => panic!("Unexpected event"),
13516 nodes[2].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13517 let events = nodes[2].node.get_and_clear_pending_events();
13519 Event::OpenChannelRequest { temporary_channel_id, .. } =>
13520 nodes[2].node.accept_inbound_channel(&temporary_channel_id, &nodes[0].node.get_our_node_id(), 23).unwrap(),
13521 _ => panic!("Unexpected event"),
13523 get_event_msg!(nodes[2], MessageSendEvent::SendAcceptChannel, nodes[0].node.get_our_node_id());
13527 fn test_anchors_zero_fee_htlc_tx_fallback() {
13528 // Tests that if both nodes support anchors, but the remote node does not want to accept
13529 // anchor channels at the moment, an error it sent to the local node such that it can retry
13530 // the channel without the anchors feature.
13531 let chanmon_cfgs = create_chanmon_cfgs(2);
13532 let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
13533 let mut anchors_config = test_default_channel_config();
13534 anchors_config.channel_handshake_config.negotiate_anchors_zero_fee_htlc_tx = true;
13535 anchors_config.manually_accept_inbound_channels = true;
13536 let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[Some(anchors_config.clone()), Some(anchors_config.clone())]);
13537 let nodes = create_network(2, &node_cfgs, &node_chanmgrs);
13539 nodes[0].node.create_channel(nodes[1].node.get_our_node_id(), 100_000, 0, 0, None, None).unwrap();
13540 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13541 assert!(open_channel_msg.common_fields.channel_type.as_ref().unwrap().supports_anchors_zero_fee_htlc_tx());
13543 nodes[1].node.handle_open_channel(&nodes[0].node.get_our_node_id(), &open_channel_msg);
13544 let events = nodes[1].node.get_and_clear_pending_events();
13546 Event::OpenChannelRequest { temporary_channel_id, .. } => {
13547 nodes[1].node.force_close_broadcasting_latest_txn(&temporary_channel_id, &nodes[0].node.get_our_node_id()).unwrap();
13549 _ => panic!("Unexpected event"),
13552 let error_msg = get_err_msg(&nodes[1], &nodes[0].node.get_our_node_id());
13553 nodes[0].node.handle_error(&nodes[1].node.get_our_node_id(), &error_msg);
13555 let open_channel_msg = get_event_msg!(nodes[0], MessageSendEvent::SendOpenChannel, nodes[1].node.get_our_node_id());
13556 assert!(!open_channel_msg.common_fields.channel_type.unwrap().supports_anchors_zero_fee_htlc_tx());
13558 // Since nodes[1] should not have accepted the channel, it should
13559 // not have generated any events.
13560 assert!(nodes[1].node.get_and_clear_pending_events().is_empty());
13564 fn test_update_channel_config() {
13565 let chanmon_cfg = create_chanmon_cfgs(2);
13566 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13567 let mut user_config = test_default_channel_config();
13568 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13569 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13570 let _ = create_announced_chan_between_nodes(&nodes, 0, 1);
13571 let channel = &nodes[0].node.list_channels()[0];
13573 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13574 let events = nodes[0].node.get_and_clear_pending_msg_events();
13575 assert_eq!(events.len(), 0);
13577 user_config.channel_config.forwarding_fee_base_msat += 10;
13578 nodes[0].node.update_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &user_config.channel_config).unwrap();
13579 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_base_msat, user_config.channel_config.forwarding_fee_base_msat);
13580 let events = nodes[0].node.get_and_clear_pending_msg_events();
13581 assert_eq!(events.len(), 1);
13583 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13584 _ => panic!("expected BroadcastChannelUpdate event"),
13587 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate::default()).unwrap();
13588 let events = nodes[0].node.get_and_clear_pending_msg_events();
13589 assert_eq!(events.len(), 0);
13591 let new_cltv_expiry_delta = user_config.channel_config.cltv_expiry_delta + 6;
13592 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13593 cltv_expiry_delta: Some(new_cltv_expiry_delta),
13594 ..Default::default()
13596 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13597 let events = nodes[0].node.get_and_clear_pending_msg_events();
13598 assert_eq!(events.len(), 1);
13600 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13601 _ => panic!("expected BroadcastChannelUpdate event"),
13604 let new_fee = user_config.channel_config.forwarding_fee_proportional_millionths + 100;
13605 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id], &ChannelConfigUpdate {
13606 forwarding_fee_proportional_millionths: Some(new_fee),
13607 ..Default::default()
13609 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().cltv_expiry_delta, new_cltv_expiry_delta);
13610 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, new_fee);
13611 let events = nodes[0].node.get_and_clear_pending_msg_events();
13612 assert_eq!(events.len(), 1);
13614 MessageSendEvent::BroadcastChannelUpdate { .. } => {},
13615 _ => panic!("expected BroadcastChannelUpdate event"),
13618 // If we provide a channel_id not associated with the peer, we should get an error and no updates
13619 // should be applied to ensure update atomicity as specified in the API docs.
13620 let bad_channel_id = ChannelId::v1_from_funding_txid(&[10; 32], 10);
13621 let current_fee = nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths;
13622 let new_fee = current_fee + 100;
13625 nodes[0].node.update_partial_channel_config(&channel.counterparty.node_id, &[channel.channel_id, bad_channel_id], &ChannelConfigUpdate {
13626 forwarding_fee_proportional_millionths: Some(new_fee),
13627 ..Default::default()
13629 Err(APIError::ChannelUnavailable { err: _ }),
13632 // Check that the fee hasn't changed for the channel that exists.
13633 assert_eq!(nodes[0].node.list_channels()[0].config.unwrap().forwarding_fee_proportional_millionths, current_fee);
13634 let events = nodes[0].node.get_and_clear_pending_msg_events();
13635 assert_eq!(events.len(), 0);
13639 fn test_payment_display() {
13640 let payment_id = PaymentId([42; 32]);
13641 assert_eq!(format!("{}", &payment_id), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13642 let payment_hash = PaymentHash([42; 32]);
13643 assert_eq!(format!("{}", &payment_hash), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13644 let payment_preimage = PaymentPreimage([42; 32]);
13645 assert_eq!(format!("{}", &payment_preimage), "2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a");
13649 fn test_trigger_lnd_force_close() {
13650 let chanmon_cfg = create_chanmon_cfgs(2);
13651 let node_cfg = create_node_cfgs(2, &chanmon_cfg);
13652 let user_config = test_default_channel_config();
13653 let node_chanmgr = create_node_chanmgrs(2, &node_cfg, &[Some(user_config), Some(user_config)]);
13654 let nodes = create_network(2, &node_cfg, &node_chanmgr);
13656 // Open a channel, immediately disconnect each other, and broadcast Alice's latest state.
13657 let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1);
13658 nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id());
13659 nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id());
13660 nodes[0].node.force_close_broadcasting_latest_txn(&chan_id, &nodes[1].node.get_our_node_id()).unwrap();
13661 check_closed_broadcast(&nodes[0], 1, true);
13662 check_added_monitors(&nodes[0], 1);
13663 check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed, [nodes[1].node.get_our_node_id()], 100000);
13665 let txn = nodes[0].tx_broadcaster.txn_broadcast();
13666 assert_eq!(txn.len(), 1);
13667 check_spends!(txn[0], funding_tx);
13670 // Since they're disconnected, Bob won't receive Alice's `Error` message. Reconnect them
13671 // such that Bob sends a `ChannelReestablish` to Alice since the channel is still open from
13673 nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init {
13674 features: nodes[1].node.init_features(), networks: None, remote_network_address: None
13676 nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init {
13677 features: nodes[0].node.init_features(), networks: None, remote_network_address: None
13678 }, false).unwrap();
13679 assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
13680 let channel_reestablish = get_event_msg!(
13681 nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id()
13683 nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &channel_reestablish);
13685 // Alice should respond with an error since the channel isn't known, but a bogus
13686 // `ChannelReestablish` should be sent first, such that we actually trigger Bob to force
13687 // close even if it was an lnd node.
13688 let msg_events = nodes[0].node.get_and_clear_pending_msg_events();
13689 assert_eq!(msg_events.len(), 2);
13690 if let MessageSendEvent::SendChannelReestablish { node_id, msg } = &msg_events[0] {
13691 assert_eq!(*node_id, nodes[1].node.get_our_node_id());
13692 assert_eq!(msg.next_local_commitment_number, 0);
13693 assert_eq!(msg.next_remote_commitment_number, 0);
13694 nodes[1].node.handle_channel_reestablish(&nodes[0].node.get_our_node_id(), &msg);
13695 } else { panic!() };
13696 check_closed_broadcast(&nodes[1], 1, true);
13697 check_added_monitors(&nodes[1], 1);
13698 let expected_close_reason = ClosureReason::ProcessingError {
13699 err: "Peer sent an invalid channel_reestablish to force close in a non-standard way".to_string()
13701 check_closed_event!(nodes[1], 1, expected_close_reason, [nodes[0].node.get_our_node_id()], 100000);
13703 let txn = nodes[1].tx_broadcaster.txn_broadcast();
13704 assert_eq!(txn.len(), 1);
13705 check_spends!(txn[0], funding_tx);
13710 fn test_malformed_forward_htlcs_ser() {
13711 // Ensure that `HTLCForwardInfo::FailMalformedHTLC`s are (de)serialized properly.
13712 let chanmon_cfg = create_chanmon_cfgs(1);
13713 let node_cfg = create_node_cfgs(1, &chanmon_cfg);
13716 let chanmgrs = create_node_chanmgrs(1, &node_cfg, &[None]);
13717 let deserialized_chanmgr;
13718 let mut nodes = create_network(1, &node_cfg, &chanmgrs);
13720 let dummy_failed_htlc = |htlc_id| {
13721 HTLCForwardInfo::FailHTLC { htlc_id, err_packet: msgs::OnionErrorPacket { data: vec![42] }, }
13723 let dummy_malformed_htlc = |htlc_id| {
13724 HTLCForwardInfo::FailMalformedHTLC { htlc_id, failure_code: 0x4000, sha256_of_onion: [0; 32] }
13727 let dummy_htlcs_1: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13728 if htlc_id % 2 == 0 {
13729 dummy_failed_htlc(htlc_id)
13731 dummy_malformed_htlc(htlc_id)
13735 let dummy_htlcs_2: Vec<HTLCForwardInfo> = (1..10).map(|htlc_id| {
13736 if htlc_id % 2 == 1 {
13737 dummy_failed_htlc(htlc_id)
13739 dummy_malformed_htlc(htlc_id)
13744 let (scid_1, scid_2) = (42, 43);
13745 let mut forward_htlcs = new_hash_map();
13746 forward_htlcs.insert(scid_1, dummy_htlcs_1.clone());
13747 forward_htlcs.insert(scid_2, dummy_htlcs_2.clone());
13749 let mut chanmgr_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13750 *chanmgr_fwd_htlcs = forward_htlcs.clone();
13751 core::mem::drop(chanmgr_fwd_htlcs);
13753 reload_node!(nodes[0], nodes[0].node.encode(), &[], persister, chain_monitor, deserialized_chanmgr);
13755 let mut deserialized_fwd_htlcs = nodes[0].node.forward_htlcs.lock().unwrap();
13756 for scid in [scid_1, scid_2].iter() {
13757 let deserialized_htlcs = deserialized_fwd_htlcs.remove(scid).unwrap();
13758 assert_eq!(forward_htlcs.remove(scid).unwrap(), deserialized_htlcs);
13760 assert!(deserialized_fwd_htlcs.is_empty());
13761 core::mem::drop(deserialized_fwd_htlcs);
13763 expect_pending_htlcs_forwardable!(nodes[0]);
13769 use crate::chain::Listen;
13770 use crate::chain::chainmonitor::{ChainMonitor, Persist};
13771 use crate::sign::{KeysManager, InMemorySigner};
13772 use crate::events::{Event, MessageSendEvent, MessageSendEventsProvider};
13773 use crate::ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage, PaymentId, RecipientOnionFields, Retry};
13774 use crate::ln::functional_test_utils::*;
13775 use crate::ln::msgs::{ChannelMessageHandler, Init};
13776 use crate::routing::gossip::NetworkGraph;
13777 use crate::routing::router::{PaymentParameters, RouteParameters};
13778 use crate::util::test_utils;
13779 use crate::util::config::{UserConfig, MaxDustHTLCExposure};
13781 use bitcoin::blockdata::locktime::absolute::LockTime;
13782 use bitcoin::hashes::Hash;
13783 use bitcoin::hashes::sha256::Hash as Sha256;
13784 use bitcoin::{Transaction, TxOut};
13786 use crate::sync::{Arc, Mutex, RwLock};
13788 use criterion::Criterion;
13790 type Manager<'a, P> = ChannelManager<
13791 &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
13792 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
13793 &'a test_utils::TestLogger, &'a P>,
13794 &'a test_utils::TestBroadcaster, &'a KeysManager, &'a KeysManager, &'a KeysManager,
13795 &'a test_utils::TestFeeEstimator, &'a test_utils::TestRouter<'a>,
13796 &'a test_utils::TestLogger>;
13798 struct ANodeHolder<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> {
13799 node: &'node_cfg Manager<'chan_mon_cfg, P>,
13801 impl<'node_cfg, 'chan_mon_cfg: 'node_cfg, P: Persist<InMemorySigner>> NodeHolder for ANodeHolder<'node_cfg, 'chan_mon_cfg, P> {
13802 type CM = Manager<'chan_mon_cfg, P>;
13804 fn node(&self) -> &Manager<'chan_mon_cfg, P> { self.node }
13806 fn chain_monitor(&self) -> Option<&test_utils::TestChainMonitor> { None }
13809 pub fn bench_sends(bench: &mut Criterion) {
13810 bench_two_sends(bench, "bench_sends", test_utils::TestPersister::new(), test_utils::TestPersister::new());
13813 pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Criterion, bench_name: &str, persister_a: P, persister_b: P) {
13814 // Do a simple benchmark of sending a payment back and forth between two nodes.
13815 // Note that this is unrealistic as each payment send will require at least two fsync
13817 let network = bitcoin::Network::Testnet;
13818 let genesis_block = bitcoin::blockdata::constants::genesis_block(network);
13820 let tx_broadcaster = test_utils::TestBroadcaster::new(network);
13821 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: Mutex::new(253) };
13822 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
13823 let scorer = RwLock::new(test_utils::TestScorer::new());
13824 let router = test_utils::TestRouter::new(Arc::new(NetworkGraph::new(network, &logger_a)), &logger_a, &scorer);
13826 let mut config: UserConfig = Default::default();
13827 config.channel_config.max_dust_htlc_exposure = MaxDustHTLCExposure::FeeRateMultiplier(5_000_000 / 253);
13828 config.channel_handshake_config.minimum_depth = 1;
13830 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
13831 let seed_a = [1u8; 32];
13832 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
13833 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &router, &logger_a, &keys_manager_a, &keys_manager_a, &keys_manager_a, config.clone(), ChainParameters {
13835 best_block: BestBlock::from_network(network),
13836 }, genesis_block.header.time);
13837 let node_a_holder = ANodeHolder { node: &node_a };
13839 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
13840 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
13841 let seed_b = [2u8; 32];
13842 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
13843 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &router, &logger_b, &keys_manager_b, &keys_manager_b, &keys_manager_b, config.clone(), ChainParameters {
13845 best_block: BestBlock::from_network(network),
13846 }, genesis_block.header.time);
13847 let node_b_holder = ANodeHolder { node: &node_b };
13849 node_a.peer_connected(&node_b.get_our_node_id(), &Init {
13850 features: node_b.init_features(), networks: None, remote_network_address: None
13852 node_b.peer_connected(&node_a.get_our_node_id(), &Init {
13853 features: node_a.init_features(), networks: None, remote_network_address: None
13854 }, false).unwrap();
13855 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None, None).unwrap();
13856 node_b.handle_open_channel(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
13857 node_a.handle_accept_channel(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
13860 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
13861 tx = Transaction { version: 2, lock_time: LockTime::ZERO, input: Vec::new(), output: vec![TxOut {
13862 value: 8_000_000, script_pubkey: output_script,
13864 node_a.funding_transaction_generated(&temporary_channel_id, &node_b.get_our_node_id(), tx.clone()).unwrap();
13865 } else { panic!(); }
13867 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
13868 let events_b = node_b.get_and_clear_pending_events();
13869 assert_eq!(events_b.len(), 1);
13870 match events_b[0] {
13871 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13872 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13874 _ => panic!("Unexpected event"),
13877 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
13878 let events_a = node_a.get_and_clear_pending_events();
13879 assert_eq!(events_a.len(), 1);
13880 match events_a[0] {
13881 Event::ChannelPending{ ref counterparty_node_id, .. } => {
13882 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13884 _ => panic!("Unexpected event"),
13887 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
13889 let block = create_dummy_block(BestBlock::from_network(network).block_hash, 42, vec![tx]);
13890 Listen::block_connected(&node_a, &block, 1);
13891 Listen::block_connected(&node_b, &block, 1);
13893 node_a.handle_channel_ready(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendChannelReady, node_a.get_our_node_id()));
13894 let msg_events = node_a.get_and_clear_pending_msg_events();
13895 assert_eq!(msg_events.len(), 2);
13896 match msg_events[0] {
13897 MessageSendEvent::SendChannelReady { ref msg, .. } => {
13898 node_b.handle_channel_ready(&node_a.get_our_node_id(), msg);
13899 get_event_msg!(node_b_holder, MessageSendEvent::SendChannelUpdate, node_a.get_our_node_id());
13903 match msg_events[1] {
13904 MessageSendEvent::SendChannelUpdate { .. } => {},
13908 let events_a = node_a.get_and_clear_pending_events();
13909 assert_eq!(events_a.len(), 1);
13910 match events_a[0] {
13911 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13912 assert_eq!(*counterparty_node_id, node_b.get_our_node_id());
13914 _ => panic!("Unexpected event"),
13917 let events_b = node_b.get_and_clear_pending_events();
13918 assert_eq!(events_b.len(), 1);
13919 match events_b[0] {
13920 Event::ChannelReady{ ref counterparty_node_id, .. } => {
13921 assert_eq!(*counterparty_node_id, node_a.get_our_node_id());
13923 _ => panic!("Unexpected event"),
13926 let mut payment_count: u64 = 0;
13927 macro_rules! send_payment {
13928 ($node_a: expr, $node_b: expr) => {
13929 let payment_params = PaymentParameters::from_node_id($node_b.get_our_node_id(), TEST_FINAL_CLTV)
13930 .with_bolt11_features($node_b.bolt11_invoice_features()).unwrap();
13931 let mut payment_preimage = PaymentPreimage([0; 32]);
13932 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
13933 payment_count += 1;
13934 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).to_byte_array());
13935 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, None).unwrap();
13937 $node_a.send_payment(payment_hash, RecipientOnionFields::secret_only(payment_secret),
13938 PaymentId(payment_hash.0),
13939 RouteParameters::from_payment_params_and_value(payment_params, 10_000),
13940 Retry::Attempts(0)).unwrap();
13941 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
13942 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
13943 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
13944 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_b }, &$node_a.get_our_node_id());
13945 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
13946 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
13947 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
13949 expect_pending_htlcs_forwardable!(ANodeHolder { node: &$node_b });
13950 expect_payment_claimable!(ANodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
13951 $node_b.claim_funds(payment_preimage);
13952 expect_payment_claimed!(ANodeHolder { node: &$node_b }, payment_hash, 10_000);
13954 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
13955 MessageSendEvent::UpdateHTLCs { node_id, updates } => {
13956 assert_eq!(node_id, $node_a.get_our_node_id());
13957 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
13958 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
13960 _ => panic!("Failed to generate claim event"),
13963 let (raa, cs) = get_revoke_commit_msgs(&ANodeHolder { node: &$node_a }, &$node_b.get_our_node_id());
13964 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
13965 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
13966 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(ANodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
13968 expect_payment_sent!(ANodeHolder { node: &$node_a }, payment_preimage);
13972 bench.bench_function(bench_name, |b| b.iter(|| {
13973 send_payment!(node_a, node_b);
13974 send_payment!(node_b, node_a);