Clean up channel updating macro somewhat
[rust-lightning] / lightning / src / ln / channelmanager.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! The top-level channel management and payment tracking stuff lives here.
11 //!
12 //! The ChannelManager is the main chunk of logic implementing the lightning protocol and is
13 //! responsible for tracking which channels are open, HTLCs are in flight and reestablishing those
14 //! upon reconnect to the relevant peer(s).
15 //!
16 //! It does not manage routing logic (see routing::router::get_route for that) nor does it manage constructing
17 //! on-chain transactions (it only monitors the chain to watch for any force-closes that might
18 //! imply it needs to fail HTLCs/payments/channels it manages).
19 //!
20
21 use bitcoin::blockdata::block::{Block, BlockHeader};
22 use bitcoin::blockdata::transaction::Transaction;
23 use bitcoin::blockdata::constants::genesis_block;
24 use bitcoin::network::constants::Network;
25
26 use bitcoin::hashes::{Hash, HashEngine};
27 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
28 use bitcoin::hashes::sha256::Hash as Sha256;
29 use bitcoin::hashes::sha256d::Hash as Sha256dHash;
30 use bitcoin::hashes::cmp::fixed_time_eq;
31 use bitcoin::hash_types::{BlockHash, Txid};
32
33 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
34 use bitcoin::secp256k1::Secp256k1;
35 use bitcoin::secp256k1::ecdh::SharedSecret;
36 use bitcoin::secp256k1;
37
38 use chain;
39 use chain::Confirm;
40 use chain::Watch;
41 use chain::chaininterface::{BroadcasterInterface, FeeEstimator};
42 use chain::channelmonitor::{ChannelMonitor, ChannelMonitorUpdate, ChannelMonitorUpdateStep, ChannelMonitorUpdateErr, HTLC_FAIL_BACK_BUFFER, CLTV_CLAIM_BUFFER, LATENCY_GRACE_PERIOD_BLOCKS, ANTI_REORG_DELAY, MonitorEvent, CLOSED_CHANNEL_UPDATE_ID};
43 use chain::transaction::{OutPoint, TransactionData};
44 // Since this struct is returned in `list_channels` methods, expose it here in case users want to
45 // construct one themselves.
46 use ln::{PaymentHash, PaymentPreimage, PaymentSecret};
47 pub use ln::channel::CounterpartyForwardingInfo;
48 use ln::channel::{Channel, ChannelError, ChannelUpdateStatus};
49 use ln::features::{InitFeatures, NodeFeatures};
50 use routing::router::{Route, RouteHop};
51 use ln::msgs;
52 use ln::msgs::NetAddress;
53 use ln::onion_utils;
54 use ln::msgs::{ChannelMessageHandler, DecodeError, LightningError, OptionalField};
55 use chain::keysinterface::{Sign, KeysInterface, KeysManager, InMemorySigner};
56 use util::config::UserConfig;
57 use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
58 use util::{byte_utils, events};
59 use util::ser::{Readable, ReadableArgs, MaybeReadable, Writeable, Writer};
60 use util::chacha20::{ChaCha20, ChaChaReader};
61 use util::logger::Logger;
62 use util::errors::APIError;
63
64 use std::{cmp, mem};
65 use std::collections::{HashMap, hash_map, HashSet};
66 use std::io::{Cursor, Read};
67 use std::sync::{Arc, Condvar, Mutex, MutexGuard, RwLock, RwLockReadGuard};
68 use std::sync::atomic::{AtomicUsize, Ordering};
69 use std::time::Duration;
70 #[cfg(any(test, feature = "allow_wallclock_use"))]
71 use std::time::Instant;
72 use std::ops::Deref;
73 use bitcoin::hashes::hex::ToHex;
74
75 // We hold various information about HTLC relay in the HTLC objects in Channel itself:
76 //
77 // Upon receipt of an HTLC from a peer, we'll give it a PendingHTLCStatus indicating if it should
78 // forward the HTLC with information it will give back to us when it does so, or if it should Fail
79 // the HTLC with the relevant message for the Channel to handle giving to the remote peer.
80 //
81 // Once said HTLC is committed in the Channel, if the PendingHTLCStatus indicated Forward, the
82 // Channel will return the PendingHTLCInfo back to us, and we will create an HTLCForwardInfo
83 // with it to track where it came from (in case of onwards-forward error), waiting a random delay
84 // before we forward it.
85 //
86 // We will then use HTLCForwardInfo's PendingHTLCInfo to construct an outbound HTLC, with a
87 // relevant HTLCSource::PreviousHopData filled in to indicate where it came from (which we can use
88 // to either fail-backwards or fulfill the HTLC backwards along the relevant path).
89 // Alternatively, we can fill an outbound HTLC with a HTLCSource::OutboundRoute indicating this is
90 // our payment, which we can use to decode errors or inform the user that the payment was sent.
91
92 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
93 enum PendingHTLCRouting {
94         Forward {
95                 onion_packet: msgs::OnionPacket,
96                 short_channel_id: u64, // This should be NonZero<u64> eventually when we bump MSRV
97         },
98         Receive {
99                 payment_data: msgs::FinalOnionHopData,
100                 incoming_cltv_expiry: u32, // Used to track when we should expire pending HTLCs that go unclaimed
101         },
102 }
103
104 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
105 pub(super) struct PendingHTLCInfo {
106         routing: PendingHTLCRouting,
107         incoming_shared_secret: [u8; 32],
108         payment_hash: PaymentHash,
109         pub(super) amt_to_forward: u64,
110         pub(super) outgoing_cltv_value: u32,
111 }
112
113 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
114 pub(super) enum HTLCFailureMsg {
115         Relay(msgs::UpdateFailHTLC),
116         Malformed(msgs::UpdateFailMalformedHTLC),
117 }
118
119 /// Stores whether we can't forward an HTLC or relevant forwarding info
120 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
121 pub(super) enum PendingHTLCStatus {
122         Forward(PendingHTLCInfo),
123         Fail(HTLCFailureMsg),
124 }
125
126 pub(super) enum HTLCForwardInfo {
127         AddHTLC {
128                 forward_info: PendingHTLCInfo,
129
130                 // These fields are produced in `forward_htlcs()` and consumed in
131                 // `process_pending_htlc_forwards()` for constructing the
132                 // `HTLCSource::PreviousHopData` for failed and forwarded
133                 // HTLCs.
134                 prev_short_channel_id: u64,
135                 prev_htlc_id: u64,
136                 prev_funding_outpoint: OutPoint,
137         },
138         FailHTLC {
139                 htlc_id: u64,
140                 err_packet: msgs::OnionErrorPacket,
141         },
142 }
143
144 /// Tracks the inbound corresponding to an outbound HTLC
145 #[derive(Clone, PartialEq)]
146 pub(crate) struct HTLCPreviousHopData {
147         short_channel_id: u64,
148         htlc_id: u64,
149         incoming_packet_shared_secret: [u8; 32],
150
151         // This field is consumed by `claim_funds_from_hop()` when updating a force-closed backwards
152         // channel with a preimage provided by the forward channel.
153         outpoint: OutPoint,
154 }
155
156 struct ClaimableHTLC {
157         prev_hop: HTLCPreviousHopData,
158         value: u64,
159         /// Contains a total_msat (which may differ from value if this is a Multi-Path Payment) and a
160         /// payment_secret which prevents path-probing attacks and can associate different HTLCs which
161         /// are part of the same payment.
162         payment_data: msgs::FinalOnionHopData,
163         cltv_expiry: u32,
164 }
165
166 /// Tracks the inbound corresponding to an outbound HTLC
167 #[derive(Clone, PartialEq)]
168 pub(crate) enum HTLCSource {
169         PreviousHopData(HTLCPreviousHopData),
170         OutboundRoute {
171                 path: Vec<RouteHop>,
172                 session_priv: SecretKey,
173                 /// Technically we can recalculate this from the route, but we cache it here to avoid
174                 /// doing a double-pass on route when we get a failure back
175                 first_hop_htlc_msat: u64,
176         },
177 }
178 #[cfg(test)]
179 impl HTLCSource {
180         pub fn dummy() -> Self {
181                 HTLCSource::OutboundRoute {
182                         path: Vec::new(),
183                         session_priv: SecretKey::from_slice(&[1; 32]).unwrap(),
184                         first_hop_htlc_msat: 0,
185                 }
186         }
187 }
188
189 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
190 pub(super) enum HTLCFailReason {
191         LightningError {
192                 err: msgs::OnionErrorPacket,
193         },
194         Reason {
195                 failure_code: u16,
196                 data: Vec<u8>,
197         }
198 }
199
200 type ShutdownResult = (Option<(OutPoint, ChannelMonitorUpdate)>, Vec<(HTLCSource, PaymentHash)>);
201
202 /// Error type returned across the channel_state mutex boundary. When an Err is generated for a
203 /// Channel, we generally end up with a ChannelError::Close for which we have to close the channel
204 /// immediately (ie with no further calls on it made). Thus, this step happens inside a
205 /// channel_state lock. We then return the set of things that need to be done outside the lock in
206 /// this struct and call handle_error!() on it.
207
208 struct MsgHandleErrInternal {
209         err: msgs::LightningError,
210         shutdown_finish: Option<(ShutdownResult, Option<msgs::ChannelUpdate>)>,
211 }
212 impl MsgHandleErrInternal {
213         #[inline]
214         fn send_err_msg_no_close(err: String, channel_id: [u8; 32]) -> Self {
215                 Self {
216                         err: LightningError {
217                                 err: err.clone(),
218                                 action: msgs::ErrorAction::SendErrorMessage {
219                                         msg: msgs::ErrorMessage {
220                                                 channel_id,
221                                                 data: err
222                                         },
223                                 },
224                         },
225                         shutdown_finish: None,
226                 }
227         }
228         #[inline]
229         fn ignore_no_close(err: String) -> Self {
230                 Self {
231                         err: LightningError {
232                                 err,
233                                 action: msgs::ErrorAction::IgnoreError,
234                         },
235                         shutdown_finish: None,
236                 }
237         }
238         #[inline]
239         fn from_no_close(err: msgs::LightningError) -> Self {
240                 Self { err, shutdown_finish: None }
241         }
242         #[inline]
243         fn from_finish_shutdown(err: String, channel_id: [u8; 32], shutdown_res: ShutdownResult, channel_update: Option<msgs::ChannelUpdate>) -> Self {
244                 Self {
245                         err: LightningError {
246                                 err: err.clone(),
247                                 action: msgs::ErrorAction::SendErrorMessage {
248                                         msg: msgs::ErrorMessage {
249                                                 channel_id,
250                                                 data: err
251                                         },
252                                 },
253                         },
254                         shutdown_finish: Some((shutdown_res, channel_update)),
255                 }
256         }
257         #[inline]
258         fn from_chan_no_close(err: ChannelError, channel_id: [u8; 32]) -> Self {
259                 Self {
260                         err: match err {
261                                 ChannelError::Ignore(msg) => LightningError {
262                                         err: msg,
263                                         action: msgs::ErrorAction::IgnoreError,
264                                 },
265                                 ChannelError::Close(msg) => LightningError {
266                                         err: msg.clone(),
267                                         action: msgs::ErrorAction::SendErrorMessage {
268                                                 msg: msgs::ErrorMessage {
269                                                         channel_id,
270                                                         data: msg
271                                                 },
272                                         },
273                                 },
274                                 ChannelError::CloseDelayBroadcast(msg) => LightningError {
275                                         err: msg.clone(),
276                                         action: msgs::ErrorAction::SendErrorMessage {
277                                                 msg: msgs::ErrorMessage {
278                                                         channel_id,
279                                                         data: msg
280                                                 },
281                                         },
282                                 },
283                         },
284                         shutdown_finish: None,
285                 }
286         }
287 }
288
289 /// We hold back HTLCs we intend to relay for a random interval greater than this (see
290 /// Event::PendingHTLCsForwardable for the API guidelines indicating how long should be waited).
291 /// This provides some limited amount of privacy. Ideally this would range from somewhere like one
292 /// second to 30 seconds, but people expect lightning to be, you know, kinda fast, sadly.
293 const MIN_HTLC_RELAY_HOLDING_CELL_MILLIS: u64 = 100;
294
295 /// For events which result in both a RevokeAndACK and a CommitmentUpdate, by default they should
296 /// be sent in the order they appear in the return value, however sometimes the order needs to be
297 /// variable at runtime (eg Channel::channel_reestablish needs to re-send messages in the order
298 /// they were originally sent). In those cases, this enum is also returned.
299 #[derive(Clone, PartialEq)]
300 pub(super) enum RAACommitmentOrder {
301         /// Send the CommitmentUpdate messages first
302         CommitmentFirst,
303         /// Send the RevokeAndACK message first
304         RevokeAndACKFirst,
305 }
306
307 // Note this is only exposed in cfg(test):
308 pub(super) struct ChannelHolder<Signer: Sign> {
309         pub(super) by_id: HashMap<[u8; 32], Channel<Signer>>,
310         pub(super) short_to_id: HashMap<u64, [u8; 32]>,
311         /// short channel id -> forward infos. Key of 0 means payments received
312         /// Note that while this is held in the same mutex as the channels themselves, no consistency
313         /// guarantees are made about the existence of a channel with the short id here, nor the short
314         /// ids in the PendingHTLCInfo!
315         pub(super) forward_htlcs: HashMap<u64, Vec<HTLCForwardInfo>>,
316         /// Map from payment hash to any HTLCs which are to us and can be failed/claimed by the user.
317         /// Note that while this is held in the same mutex as the channels themselves, no consistency
318         /// guarantees are made about the channels given here actually existing anymore by the time you
319         /// go to read them!
320         claimable_htlcs: HashMap<PaymentHash, Vec<ClaimableHTLC>>,
321         /// Messages to send to peers - pushed to in the same lock that they are generated in (except
322         /// for broadcast messages, where ordering isn't as strict).
323         pub(super) pending_msg_events: Vec<MessageSendEvent>,
324 }
325
326 /// Events which we process internally but cannot be procsesed immediately at the generation site
327 /// for some reason. They are handled in timer_tick_occurred, so may be processed with
328 /// quite some time lag.
329 enum BackgroundEvent {
330         /// Handle a ChannelMonitorUpdate that closes a channel, broadcasting its current latest holder
331         /// commitment transaction.
332         ClosingMonitorUpdate((OutPoint, ChannelMonitorUpdate)),
333 }
334
335 /// State we hold per-peer. In the future we should put channels in here, but for now we only hold
336 /// the latest Init features we heard from the peer.
337 struct PeerState {
338         latest_features: InitFeatures,
339 }
340
341 /// Stores a PaymentSecret and any other data we may need to validate an inbound payment is
342 /// actually ours and not some duplicate HTLC sent to us by a node along the route.
343 ///
344 /// For users who don't want to bother doing their own payment preimage storage, we also store that
345 /// here.
346 struct PendingInboundPayment {
347         /// The payment secret that the sender must use for us to accept this payment
348         payment_secret: PaymentSecret,
349         /// Time at which this HTLC expires - blocks with a header time above this value will result in
350         /// this payment being removed.
351         expiry_time: u64,
352         /// Arbitrary identifier the user specifies (or not)
353         user_payment_id: u64,
354         // Other required attributes of the payment, optionally enforced:
355         payment_preimage: Option<PaymentPreimage>,
356         min_value_msat: Option<u64>,
357 }
358
359 /// SimpleArcChannelManager is useful when you need a ChannelManager with a static lifetime, e.g.
360 /// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
361 /// lifetimes). Other times you can afford a reference, which is more efficient, in which case
362 /// SimpleRefChannelManager is the more appropriate type. Defining these type aliases prevents
363 /// issues such as overly long function definitions. Note that the ChannelManager can take any
364 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
365 /// concrete type of the KeysManager.
366 pub type SimpleArcChannelManager<M, T, F, L> = ChannelManager<InMemorySigner, Arc<M>, Arc<T>, Arc<KeysManager>, Arc<F>, Arc<L>>;
367
368 /// SimpleRefChannelManager is a type alias for a ChannelManager reference, and is the reference
369 /// counterpart to the SimpleArcChannelManager type alias. Use this type by default when you don't
370 /// need a ChannelManager with a static lifetime. You'll need a static lifetime in cases such as
371 /// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
372 /// But if this is not necessary, using a reference is more efficient. Defining these type aliases
373 /// helps with issues such as long function definitions. Note that the ChannelManager can take any
374 /// type that implements KeysInterface for its keys manager, but this type alias chooses the
375 /// concrete type of the KeysManager.
376 pub type SimpleRefChannelManager<'a, 'b, 'c, 'd, 'e, M, T, F, L> = ChannelManager<InMemorySigner, &'a M, &'b T, &'c KeysManager, &'d F, &'e L>;
377
378 /// Manager which keeps track of a number of channels and sends messages to the appropriate
379 /// channel, also tracking HTLC preimages and forwarding onion packets appropriately.
380 ///
381 /// Implements ChannelMessageHandler, handling the multi-channel parts and passing things through
382 /// to individual Channels.
383 ///
384 /// Implements Writeable to write out all channel state to disk. Implies peer_disconnected() for
385 /// all peers during write/read (though does not modify this instance, only the instance being
386 /// serialized). This will result in any channels which have not yet exchanged funding_created (ie
387 /// called funding_transaction_generated for outbound channels).
388 ///
389 /// Note that you can be a bit lazier about writing out ChannelManager than you can be with
390 /// ChannelMonitors. With ChannelMonitors you MUST write each monitor update out to disk before
391 /// returning from chain::Watch::watch_/update_channel, with ChannelManagers, writing updates
392 /// happens out-of-band (and will prevent any other ChannelManager operations from occurring during
393 /// the serialization process). If the deserialized version is out-of-date compared to the
394 /// ChannelMonitors passed by reference to read(), those channels will be force-closed based on the
395 /// ChannelMonitor state and no funds will be lost (mod on-chain transaction fees).
396 ///
397 /// Note that the deserializer is only implemented for (BlockHash, ChannelManager), which
398 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
399 /// the "reorg path" (ie call block_disconnected() until you get to a common block and then call
400 /// block_connected() to step towards your best block) upon deserialization before using the
401 /// object!
402 ///
403 /// Note that ChannelManager is responsible for tracking liveness of its channels and generating
404 /// ChannelUpdate messages informing peers that the channel is temporarily disabled. To avoid
405 /// spam due to quick disconnection/reconnection, updates are not sent until the channel has been
406 /// offline for a full minute. In order to track this, you must call
407 /// timer_tick_occurred roughly once per minute, though it doesn't have to be perfect.
408 ///
409 /// Rather than using a plain ChannelManager, it is preferable to use either a SimpleArcChannelManager
410 /// a SimpleRefChannelManager, for conciseness. See their documentation for more details, but
411 /// essentially you should default to using a SimpleRefChannelManager, and use a
412 /// SimpleArcChannelManager when you require a ChannelManager with a static lifetime, such as when
413 /// you're using lightning-net-tokio.
414 pub struct ChannelManager<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
415         where M::Target: chain::Watch<Signer>,
416         T::Target: BroadcasterInterface,
417         K::Target: KeysInterface<Signer = Signer>,
418         F::Target: FeeEstimator,
419                                 L::Target: Logger,
420 {
421         default_configuration: UserConfig,
422         genesis_hash: BlockHash,
423         fee_estimator: F,
424         chain_monitor: M,
425         tx_broadcaster: T,
426
427         #[cfg(test)]
428         pub(super) best_block: RwLock<BestBlock>,
429         #[cfg(not(test))]
430         best_block: RwLock<BestBlock>,
431         secp_ctx: Secp256k1<secp256k1::All>,
432
433         #[cfg(any(test, feature = "_test_utils"))]
434         pub(super) channel_state: Mutex<ChannelHolder<Signer>>,
435         #[cfg(not(any(test, feature = "_test_utils")))]
436         channel_state: Mutex<ChannelHolder<Signer>>,
437
438         /// Storage for PaymentSecrets and any requirements on future inbound payments before we will
439         /// expose them to users via a PaymentReceived event. HTLCs which do not meet the requirements
440         /// here are failed when we process them as pending-forwardable-HTLCs, and entries are removed
441         /// after we generate a PaymentReceived upon receipt of all MPP parts or when they time out.
442         /// Locked *after* channel_state.
443         pending_inbound_payments: Mutex<HashMap<PaymentHash, PendingInboundPayment>>,
444
445         /// The session_priv bytes of outbound payments which are pending resolution.
446         /// The authoritative state of these HTLCs resides either within Channels or ChannelMonitors
447         /// (if the channel has been force-closed), however we track them here to prevent duplicative
448         /// PaymentSent/PaymentFailed events. Specifically, in the case of a duplicative
449         /// update_fulfill_htlc message after a reconnect, we may "claim" a payment twice.
450         /// Additionally, because ChannelMonitors are often not re-serialized after connecting block(s)
451         /// which may generate a claim event, we may receive similar duplicate claim/fail MonitorEvents
452         /// after reloading from disk while replaying blocks against ChannelMonitors.
453         ///
454         /// Locked *after* channel_state.
455         pending_outbound_payments: Mutex<HashSet<[u8; 32]>>,
456
457         our_network_key: SecretKey,
458         our_network_pubkey: PublicKey,
459
460         /// Used to track the last value sent in a node_announcement "timestamp" field. We ensure this
461         /// value increases strictly since we don't assume access to a time source.
462         last_node_announcement_serial: AtomicUsize,
463
464         /// The highest block timestamp we've seen, which is usually a good guess at the current time.
465         /// Assuming most miners are generating blocks with reasonable timestamps, this shouldn't be
466         /// very far in the past, and can only ever be up to two hours in the future.
467         highest_seen_timestamp: AtomicUsize,
468
469         /// The bulk of our storage will eventually be here (channels and message queues and the like).
470         /// If we are connected to a peer we always at least have an entry here, even if no channels
471         /// are currently open with that peer.
472         /// Because adding or removing an entry is rare, we usually take an outer read lock and then
473         /// operate on the inner value freely. Sadly, this prevents parallel operation when opening a
474         /// new channel.
475         per_peer_state: RwLock<HashMap<PublicKey, Mutex<PeerState>>>,
476
477         pending_events: Mutex<Vec<events::Event>>,
478         pending_background_events: Mutex<Vec<BackgroundEvent>>,
479         /// Used when we have to take a BIG lock to make sure everything is self-consistent.
480         /// Essentially just when we're serializing ourselves out.
481         /// Taken first everywhere where we are making changes before any other locks.
482         /// When acquiring this lock in read mode, rather than acquiring it directly, call
483         /// `PersistenceNotifierGuard::notify_on_drop(..)` and pass the lock to it, to ensure the
484         /// PersistenceNotifier the lock contains sends out a notification when the lock is released.
485         total_consistency_lock: RwLock<()>,
486
487         persistence_notifier: PersistenceNotifier,
488
489         keys_manager: K,
490
491         logger: L,
492 }
493
494 /// Chain-related parameters used to construct a new `ChannelManager`.
495 ///
496 /// Typically, the block-specific parameters are derived from the best block hash for the network,
497 /// as a newly constructed `ChannelManager` will not have created any channels yet. These parameters
498 /// are not needed when deserializing a previously constructed `ChannelManager`.
499 pub struct ChainParameters {
500         /// The network for determining the `chain_hash` in Lightning messages.
501         pub network: Network,
502
503         /// The hash and height of the latest block successfully connected.
504         ///
505         /// Used to track on-chain channel funding outputs and send payments with reliable timelocks.
506         pub best_block: BestBlock,
507 }
508
509 /// The best known block as identified by its hash and height.
510 #[derive(Clone, Copy)]
511 pub struct BestBlock {
512         block_hash: BlockHash,
513         height: u32,
514 }
515
516 impl BestBlock {
517         /// Returns the best block from the genesis of the given network.
518         pub fn from_genesis(network: Network) -> Self {
519                 BestBlock {
520                         block_hash: genesis_block(network).header.block_hash(),
521                         height: 0,
522                 }
523         }
524
525         /// Returns the best block as identified by the given block hash and height.
526         pub fn new(block_hash: BlockHash, height: u32) -> Self {
527                 BestBlock { block_hash, height }
528         }
529
530         /// Returns the best block hash.
531         pub fn block_hash(&self) -> BlockHash { self.block_hash }
532
533         /// Returns the best block height.
534         pub fn height(&self) -> u32 { self.height }
535 }
536
537 #[derive(Copy, Clone, PartialEq)]
538 enum NotifyOption {
539         DoPersist,
540         SkipPersist,
541 }
542
543 /// Whenever we release the `ChannelManager`'s `total_consistency_lock`, from read mode, it is
544 /// desirable to notify any listeners on `await_persistable_update_timeout`/
545 /// `await_persistable_update` when new updates are available for persistence. Therefore, this
546 /// struct is responsible for locking the total consistency lock and, upon going out of scope,
547 /// sending the aforementioned notification (since the lock being released indicates that the
548 /// updates are ready for persistence).
549 ///
550 /// We allow callers to either always notify by constructing with `notify_on_drop` or choose to
551 /// notify or not based on whether relevant changes have been made, providing a closure to
552 /// `optionally_notify` which returns a `NotifyOption`.
553 struct PersistenceNotifierGuard<'a, F: Fn() -> NotifyOption> {
554         persistence_notifier: &'a PersistenceNotifier,
555         should_persist: F,
556         // We hold onto this result so the lock doesn't get released immediately.
557         _read_guard: RwLockReadGuard<'a, ()>,
558 }
559
560 impl<'a> PersistenceNotifierGuard<'a, fn() -> NotifyOption> { // We don't care what the concrete F is here, it's unused
561         fn notify_on_drop(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier) -> PersistenceNotifierGuard<'a, impl Fn() -> NotifyOption> {
562                 PersistenceNotifierGuard::optionally_notify(lock, notifier, || -> NotifyOption { NotifyOption::DoPersist })
563         }
564
565         fn optionally_notify<F: Fn() -> NotifyOption>(lock: &'a RwLock<()>, notifier: &'a PersistenceNotifier, persist_check: F) -> PersistenceNotifierGuard<'a, F> {
566                 let read_guard = lock.read().unwrap();
567
568                 PersistenceNotifierGuard {
569                         persistence_notifier: notifier,
570                         should_persist: persist_check,
571                         _read_guard: read_guard,
572                 }
573         }
574 }
575
576 impl<'a, F: Fn() -> NotifyOption> Drop for PersistenceNotifierGuard<'a, F> {
577         fn drop(&mut self) {
578                 if (self.should_persist)() == NotifyOption::DoPersist {
579                         self.persistence_notifier.notify();
580                 }
581         }
582 }
583
584 /// The amount of time in blocks we require our counterparty wait to claim their money (ie time
585 /// between when we, or our watchtower, must check for them having broadcast a theft transaction).
586 ///
587 /// This can be increased (but not decreased) through [`ChannelHandshakeConfig::our_to_self_delay`]
588 ///
589 /// [`ChannelHandshakeConfig::our_to_self_delay`]: crate::util::config::ChannelHandshakeConfig::our_to_self_delay
590 pub const BREAKDOWN_TIMEOUT: u16 = 6 * 24;
591 /// The amount of time in blocks we're willing to wait to claim money back to us. This matches
592 /// the maximum required amount in lnd as of March 2021.
593 pub(crate) const MAX_LOCAL_BREAKDOWN_TIMEOUT: u16 = 2 * 6 * 24 * 7;
594
595 /// The minimum number of blocks between an inbound HTLC's CLTV and the corresponding outbound
596 /// HTLC's CLTV. The current default represents roughly seven hours of blocks at six blocks/hour.
597 ///
598 /// This can be increased (but not decreased) through [`ChannelConfig::cltv_expiry_delta`]
599 ///
600 /// [`ChannelConfig::cltv_expiry_delta`]: crate::util::config::ChannelConfig::cltv_expiry_delta
601 // This should always be a few blocks greater than channelmonitor::CLTV_CLAIM_BUFFER,
602 // i.e. the node we forwarded the payment on to should always have enough room to reliably time out
603 // the HTLC via a full update_fail_htlc/commitment_signed dance before we hit the
604 // CLTV_CLAIM_BUFFER point (we static assert that it's at least 3 blocks more).
605 pub const MIN_CLTV_EXPIRY_DELTA: u16 = 6*7;
606 pub(super) const CLTV_FAR_FAR_AWAY: u32 = 6 * 24 * 7; //TODO?
607
608 /// Minimum CLTV difference between the current block height and received inbound payments.
609 /// Invoices generated for payment to us must set their `min_final_cltv_expiry` field to at least
610 /// this value.
611 // Note that we fail if exactly HTLC_FAIL_BACK_BUFFER + 1 was used, so we need to add one for
612 // any payments to succeed. Further, we don't want payments to fail if a block was found while
613 // a payment was being routed, so we add an extra block to be safe.
614 pub const MIN_FINAL_CLTV_EXPIRY: u32 = HTLC_FAIL_BACK_BUFFER + 3;
615
616 // Check that our CLTV_EXPIRY is at least CLTV_CLAIM_BUFFER + ANTI_REORG_DELAY + LATENCY_GRACE_PERIOD_BLOCKS,
617 // ie that if the next-hop peer fails the HTLC within
618 // LATENCY_GRACE_PERIOD_BLOCKS then we'll still have CLTV_CLAIM_BUFFER left to timeout it onchain,
619 // then waiting ANTI_REORG_DELAY to be reorg-safe on the outbound HLTC and
620 // failing the corresponding htlc backward, and us now seeing the last block of ANTI_REORG_DELAY before
621 // LATENCY_GRACE_PERIOD_BLOCKS.
622 #[deny(const_err)]
623 #[allow(dead_code)]
624 const CHECK_CLTV_EXPIRY_SANITY: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - CLTV_CLAIM_BUFFER - ANTI_REORG_DELAY - LATENCY_GRACE_PERIOD_BLOCKS;
625
626 // Check for ability of an attacker to make us fail on-chain by delaying an HTLC claim. See
627 // ChannelMontior::would_broadcast_at_height for a description of why this is needed.
628 #[deny(const_err)]
629 #[allow(dead_code)]
630 const CHECK_CLTV_EXPIRY_SANITY_2: u32 = MIN_CLTV_EXPIRY_DELTA as u32 - LATENCY_GRACE_PERIOD_BLOCKS - 2*CLTV_CLAIM_BUFFER;
631
632 /// Details of a channel, as returned by ChannelManager::list_channels and ChannelManager::list_usable_channels
633 #[derive(Clone)]
634 pub struct ChannelDetails {
635         /// The channel's ID (prior to funding transaction generation, this is a random 32 bytes,
636         /// thereafter this is the txid of the funding transaction xor the funding transaction output).
637         /// Note that this means this value is *not* persistent - it can change once during the
638         /// lifetime of the channel.
639         pub channel_id: [u8; 32],
640         /// The Channel's funding transaction output, if we've negotiated the funding transaction with
641         /// our counterparty already.
642         ///
643         /// Note that, if this has been set, `channel_id` will be equivalent to
644         /// `funding_txo.unwrap().to_channel_id()`.
645         pub funding_txo: Option<OutPoint>,
646         /// The position of the funding transaction in the chain. None if the funding transaction has
647         /// not yet been confirmed and the channel fully opened.
648         pub short_channel_id: Option<u64>,
649         /// The node_id of our counterparty
650         pub remote_network_id: PublicKey,
651         /// The Features the channel counterparty provided upon last connection.
652         /// Useful for routing as it is the most up-to-date copy of the counterparty's features and
653         /// many routing-relevant features are present in the init context.
654         pub counterparty_features: InitFeatures,
655         /// The value, in satoshis, of this channel as appears in the funding output
656         pub channel_value_satoshis: u64,
657         /// The user_id passed in to create_channel, or 0 if the channel was inbound.
658         pub user_id: u64,
659         /// The available outbound capacity for sending HTLCs to the remote peer. This does not include
660         /// any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
661         /// available for inclusion in new outbound HTLCs). This further does not include any pending
662         /// outgoing HTLCs which are awaiting some other resolution to be sent.
663         pub outbound_capacity_msat: u64,
664         /// The available inbound capacity for the remote peer to send HTLCs to us. This does not
665         /// include any pending HTLCs which are not yet fully resolved (and, thus, who's balance is not
666         /// available for inclusion in new inbound HTLCs).
667         /// Note that there are some corner cases not fully handled here, so the actual available
668         /// inbound capacity may be slightly higher than this.
669         pub inbound_capacity_msat: u64,
670         /// True if the channel was initiated (and thus funded) by us.
671         pub is_outbound: bool,
672         /// True if the channel is confirmed, funding_locked messages have been exchanged, and the
673         /// channel is not currently being shut down. `funding_locked` message exchange implies the
674         /// required confirmation count has been reached (and we were connected to the peer at some
675         /// point after the funding transaction received enough confirmations).
676         pub is_funding_locked: bool,
677         /// True if the channel is (a) confirmed and funding_locked messages have been exchanged, (b)
678         /// the peer is connected, (c) no monitor update failure is pending resolution, and (d) the
679         /// channel is not currently negotiating a shutdown.
680         ///
681         /// This is a strict superset of `is_funding_locked`.
682         pub is_usable: bool,
683         /// True if this channel is (or will be) publicly-announced.
684         pub is_public: bool,
685         /// Information on the fees and requirements that the counterparty requires when forwarding
686         /// payments to us through this channel.
687         pub counterparty_forwarding_info: Option<CounterpartyForwardingInfo>,
688 }
689
690 /// If a payment fails to send, it can be in one of several states. This enum is returned as the
691 /// Err() type describing which state the payment is in, see the description of individual enum
692 /// states for more.
693 #[derive(Clone, Debug)]
694 pub enum PaymentSendFailure {
695         /// A parameter which was passed to send_payment was invalid, preventing us from attempting to
696         /// send the payment at all. No channel state has been changed or messages sent to peers, and
697         /// once you've changed the parameter at error, you can freely retry the payment in full.
698         ParameterError(APIError),
699         /// A parameter in a single path which was passed to send_payment was invalid, preventing us
700         /// from attempting to send the payment at all. No channel state has been changed or messages
701         /// sent to peers, and once you've changed the parameter at error, you can freely retry the
702         /// payment in full.
703         ///
704         /// The results here are ordered the same as the paths in the route object which was passed to
705         /// send_payment.
706         PathParameterError(Vec<Result<(), APIError>>),
707         /// All paths which were attempted failed to send, with no channel state change taking place.
708         /// You can freely retry the payment in full (though you probably want to do so over different
709         /// paths than the ones selected).
710         AllFailedRetrySafe(Vec<APIError>),
711         /// Some paths which were attempted failed to send, though possibly not all. At least some
712         /// paths have irrevocably committed to the HTLC and retrying the payment in full would result
713         /// in over-/re-payment.
714         ///
715         /// The results here are ordered the same as the paths in the route object which was passed to
716         /// send_payment, and any Errs which are not APIError::MonitorUpdateFailed can be safely
717         /// retried (though there is currently no API with which to do so).
718         ///
719         /// Any entries which contain Err(APIError::MonitorUpdateFailed) or Ok(()) MUST NOT be retried
720         /// as they will result in over-/re-payment. These HTLCs all either successfully sent (in the
721         /// case of Ok(())) or will send once channel_monitor_updated is called on the next-hop channel
722         /// with the latest update_id.
723         PartialFailure(Vec<Result<(), APIError>>),
724 }
725
726 macro_rules! handle_error {
727         ($self: ident, $internal: expr, $counterparty_node_id: expr) => {
728                 match $internal {
729                         Ok(msg) => Ok(msg),
730                         Err(MsgHandleErrInternal { err, shutdown_finish }) => {
731                                 #[cfg(debug_assertions)]
732                                 {
733                                         // In testing, ensure there are no deadlocks where the lock is already held upon
734                                         // entering the macro.
735                                         assert!($self.channel_state.try_lock().is_ok());
736                                 }
737
738                                 let mut msg_events = Vec::with_capacity(2);
739
740                                 if let Some((shutdown_res, update_option)) = shutdown_finish {
741                                         $self.finish_force_close_channel(shutdown_res);
742                                         if let Some(update) = update_option {
743                                                 msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
744                                                         msg: update
745                                                 });
746                                         }
747                                 }
748
749                                 log_error!($self.logger, "{}", err.err);
750                                 if let msgs::ErrorAction::IgnoreError = err.action {
751                                 } else {
752                                         msg_events.push(events::MessageSendEvent::HandleError {
753                                                 node_id: $counterparty_node_id,
754                                                 action: err.action.clone()
755                                         });
756                                 }
757
758                                 if !msg_events.is_empty() {
759                                         $self.channel_state.lock().unwrap().pending_msg_events.append(&mut msg_events);
760                                 }
761
762                                 // Return error in case higher-API need one
763                                 Err(err)
764                         },
765                 }
766         }
767 }
768
769 macro_rules! break_chan_entry {
770         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
771                 match $res {
772                         Ok(res) => res,
773                         Err(ChannelError::Ignore(msg)) => {
774                                 break Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
775                         },
776                         Err(ChannelError::Close(msg)) => {
777                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
778                                 let (channel_id, mut chan) = $entry.remove_entry();
779                                 if let Some(short_id) = chan.get_short_channel_id() {
780                                         $channel_state.short_to_id.remove(&short_id);
781                                 }
782                                 break Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
783                         },
784                         Err(ChannelError::CloseDelayBroadcast(_)) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
785                 }
786         }
787 }
788
789 macro_rules! try_chan_entry {
790         ($self: ident, $res: expr, $channel_state: expr, $entry: expr) => {
791                 match $res {
792                         Ok(res) => res,
793                         Err(ChannelError::Ignore(msg)) => {
794                                 return Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore(msg), $entry.key().clone()))
795                         },
796                         Err(ChannelError::Close(msg)) => {
797                                 log_trace!($self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!($entry.key()[..]), msg);
798                                 let (channel_id, mut chan) = $entry.remove_entry();
799                                 if let Some(short_id) = chan.get_short_channel_id() {
800                                         $channel_state.short_to_id.remove(&short_id);
801                                 }
802                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()))
803                         },
804                         Err(ChannelError::CloseDelayBroadcast(msg)) => {
805                                 log_error!($self.logger, "Channel {} need to be shutdown but closing transactions not broadcast due to {}", log_bytes!($entry.key()[..]), msg);
806                                 let (channel_id, mut chan) = $entry.remove_entry();
807                                 if let Some(short_id) = chan.get_short_channel_id() {
808                                         $channel_state.short_to_id.remove(&short_id);
809                                 }
810                                 let shutdown_res = chan.force_shutdown(false);
811                                 return Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, shutdown_res, $self.get_channel_update(&chan).ok()))
812                         }
813                 }
814         }
815 }
816
817 macro_rules! handle_monitor_err {
818         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
819                 handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, Vec::new(), Vec::new())
820         };
821         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
822                 match $err {
823                         ChannelMonitorUpdateErr::PermanentFailure => {
824                                 log_error!($self.logger, "Closing channel {} due to monitor update PermanentFailure", log_bytes!($entry.key()[..]));
825                                 let (channel_id, mut chan) = $entry.remove_entry();
826                                 if let Some(short_id) = chan.get_short_channel_id() {
827                                         $channel_state.short_to_id.remove(&short_id);
828                                 }
829                                 // TODO: $failed_fails is dropped here, which will cause other channels to hit the
830                                 // chain in a confused state! We need to move them into the ChannelMonitor which
831                                 // will be responsible for failing backwards once things confirm on-chain.
832                                 // It's ok that we drop $failed_forwards here - at this point we'd rather they
833                                 // broadcast HTLC-Timeout and pay the associated fees to get their funds back than
834                                 // us bother trying to claim it just to forward on to another peer. If we're
835                                 // splitting hairs we'd prefer to claim payments that were to us, but we haven't
836                                 // given up the preimage yet, so might as well just wait until the payment is
837                                 // retried, avoiding the on-chain fees.
838                                 let res: Result<(), _> = Err(MsgHandleErrInternal::from_finish_shutdown("ChannelMonitor storage failure".to_owned(), channel_id, chan.force_shutdown(true), $self.get_channel_update(&chan).ok()));
839                                 res
840                         },
841                         ChannelMonitorUpdateErr::TemporaryFailure => {
842                                 log_info!($self.logger, "Disabling channel {} due to monitor update TemporaryFailure. On restore will send {} and process {} forwards and {} fails",
843                                                 log_bytes!($entry.key()[..]),
844                                                 if $resend_commitment && $resend_raa {
845                                                                 match $action_type {
846                                                                         RAACommitmentOrder::CommitmentFirst => { "commitment then RAA" },
847                                                                         RAACommitmentOrder::RevokeAndACKFirst => { "RAA then commitment" },
848                                                                 }
849                                                         } else if $resend_commitment { "commitment" }
850                                                         else if $resend_raa { "RAA" }
851                                                         else { "nothing" },
852                                                 (&$failed_forwards as &Vec<(PendingHTLCInfo, u64)>).len(),
853                                                 (&$failed_fails as &Vec<(HTLCSource, PaymentHash, HTLCFailReason)>).len());
854                                 if !$resend_commitment {
855                                         debug_assert!($action_type == RAACommitmentOrder::RevokeAndACKFirst || !$resend_raa);
856                                 }
857                                 if !$resend_raa {
858                                         debug_assert!($action_type == RAACommitmentOrder::CommitmentFirst || !$resend_commitment);
859                                 }
860                                 $entry.get_mut().monitor_update_failed($resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
861                                 Err(MsgHandleErrInternal::from_chan_no_close(ChannelError::Ignore("Failed to update ChannelMonitor".to_owned()), *$entry.key()))
862                         },
863                 }
864         }
865 }
866
867 macro_rules! return_monitor_err {
868         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
869                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment);
870         };
871         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr, $failed_forwards: expr, $failed_fails: expr) => {
872                 return handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment, $failed_forwards, $failed_fails);
873         }
874 }
875
876 // Does not break in case of TemporaryFailure!
877 macro_rules! maybe_break_monitor_err {
878         ($self: ident, $err: expr, $channel_state: expr, $entry: expr, $action_type: path, $resend_raa: expr, $resend_commitment: expr) => {
879                 match (handle_monitor_err!($self, $err, $channel_state, $entry, $action_type, $resend_raa, $resend_commitment), $err) {
880                         (e, ChannelMonitorUpdateErr::PermanentFailure) => {
881                                 break e;
882                         },
883                         (_, ChannelMonitorUpdateErr::TemporaryFailure) => { },
884                 }
885         }
886 }
887
888 macro_rules! handle_chan_restoration_locked {
889         ($self: expr, $channel_lock: expr, $channel_state: expr, $channel_entry: expr,
890          $raa: expr, $commitment_update: expr, $order: expr,
891          $pending_forwards: expr, $funding_broadcastable: expr, $funding_locked: expr) => { {
892                 let mut htlc_forwards = None;
893                 let counterparty_node_id = $channel_entry.get().get_counterparty_node_id();
894
895                 {
896                         if !$pending_forwards.is_empty() {
897                                 htlc_forwards = Some(($channel_entry.get().get_short_channel_id().expect("We can't have pending forwards before funding confirmation"),
898                                         $channel_entry.get().get_funding_txo().unwrap(), $pending_forwards));
899                         }
900
901                         macro_rules! handle_cs { () => {
902                                 if let Some(update) = $commitment_update {
903                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
904                                                 node_id: counterparty_node_id,
905                                                 updates: update,
906                                         });
907                                 }
908                         } }
909                         macro_rules! handle_raa { () => {
910                                 if let Some(revoke_and_ack) = $raa {
911                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
912                                                 node_id: counterparty_node_id,
913                                                 msg: revoke_and_ack,
914                                         });
915                                 }
916                         } }
917                         match $order {
918                                 RAACommitmentOrder::CommitmentFirst => {
919                                         handle_cs!();
920                                         handle_raa!();
921                                 },
922                                 RAACommitmentOrder::RevokeAndACKFirst => {
923                                         handle_raa!();
924                                         handle_cs!();
925                                 },
926                         }
927                         if let Some(tx) = $funding_broadcastable {
928                                 log_info!($self.logger, "Broadcasting funding transaction with txid {}", tx.txid());
929                                 $self.tx_broadcaster.broadcast_transaction(&tx);
930                         }
931                         if let Some(msg) = $funding_locked {
932                                 $channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
933                                         node_id: counterparty_node_id,
934                                         msg,
935                                 });
936                                 if let Some(announcement_sigs) = $self.get_announcement_sigs($channel_entry.get()) {
937                                         $channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
938                                                 node_id: counterparty_node_id,
939                                                 msg: announcement_sigs,
940                                         });
941                                 }
942                                 $channel_state.short_to_id.insert($channel_entry.get().get_short_channel_id().unwrap(), $channel_entry.get().channel_id());
943                         }
944                 }
945                 htlc_forwards
946         } }
947 }
948
949 macro_rules! post_handle_chan_restoration {
950         ($self: expr, $locked_res: expr) => { {
951                 let htlc_forwards = $locked_res;
952
953                 if let Some(forwards) = htlc_forwards {
954                         $self.forward_htlcs(&mut [forwards][..]);
955                 }
956         } }
957 }
958
959 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
960         where M::Target: chain::Watch<Signer>,
961         T::Target: BroadcasterInterface,
962         K::Target: KeysInterface<Signer = Signer>,
963         F::Target: FeeEstimator,
964         L::Target: Logger,
965 {
966         /// Constructs a new ChannelManager to hold several channels and route between them.
967         ///
968         /// This is the main "logic hub" for all channel-related actions, and implements
969         /// ChannelMessageHandler.
970         ///
971         /// Non-proportional fees are fixed according to our risk using the provided fee estimator.
972         ///
973         /// panics if channel_value_satoshis is >= `MAX_FUNDING_SATOSHIS`!
974         ///
975         /// Users need to notify the new ChannelManager when a new block is connected or
976         /// disconnected using its `block_connected` and `block_disconnected` methods, starting
977         /// from after `params.latest_hash`.
978         pub fn new(fee_est: F, chain_monitor: M, tx_broadcaster: T, logger: L, keys_manager: K, config: UserConfig, params: ChainParameters) -> Self {
979                 let mut secp_ctx = Secp256k1::new();
980                 secp_ctx.seeded_randomize(&keys_manager.get_secure_random_bytes());
981
982                 ChannelManager {
983                         default_configuration: config.clone(),
984                         genesis_hash: genesis_block(params.network).header.block_hash(),
985                         fee_estimator: fee_est,
986                         chain_monitor,
987                         tx_broadcaster,
988
989                         best_block: RwLock::new(params.best_block),
990
991                         channel_state: Mutex::new(ChannelHolder{
992                                 by_id: HashMap::new(),
993                                 short_to_id: HashMap::new(),
994                                 forward_htlcs: HashMap::new(),
995                                 claimable_htlcs: HashMap::new(),
996                                 pending_msg_events: Vec::new(),
997                         }),
998                         pending_inbound_payments: Mutex::new(HashMap::new()),
999                         pending_outbound_payments: Mutex::new(HashSet::new()),
1000
1001                         our_network_key: keys_manager.get_node_secret(),
1002                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &keys_manager.get_node_secret()),
1003                         secp_ctx,
1004
1005                         last_node_announcement_serial: AtomicUsize::new(0),
1006                         highest_seen_timestamp: AtomicUsize::new(0),
1007
1008                         per_peer_state: RwLock::new(HashMap::new()),
1009
1010                         pending_events: Mutex::new(Vec::new()),
1011                         pending_background_events: Mutex::new(Vec::new()),
1012                         total_consistency_lock: RwLock::new(()),
1013                         persistence_notifier: PersistenceNotifier::new(),
1014
1015                         keys_manager,
1016
1017                         logger,
1018                 }
1019         }
1020
1021         /// Gets the current configuration applied to all new channels,  as
1022         pub fn get_current_default_configuration(&self) -> &UserConfig {
1023                 &self.default_configuration
1024         }
1025
1026         /// Creates a new outbound channel to the given remote node and with the given value.
1027         ///
1028         /// user_id will be provided back as user_channel_id in FundingGenerationReady events to allow
1029         /// tracking of which events correspond with which create_channel call. Note that the
1030         /// user_channel_id defaults to 0 for inbound channels, so you may wish to avoid using 0 for
1031         /// user_id here. user_id has no meaning inside of LDK, it is simply copied to events and
1032         /// otherwise ignored.
1033         ///
1034         /// If successful, will generate a SendOpenChannel message event, so you should probably poll
1035         /// PeerManager::process_events afterwards.
1036         ///
1037         /// Raises APIError::APIMisuseError when channel_value_satoshis > 2**24 or push_msat is
1038         /// greater than channel_value_satoshis * 1k or channel_value_satoshis is < 1000.
1039         pub fn create_channel(&self, their_network_key: PublicKey, channel_value_satoshis: u64, push_msat: u64, user_id: u64, override_config: Option<UserConfig>) -> Result<(), APIError> {
1040                 if channel_value_satoshis < 1000 {
1041                         return Err(APIError::APIMisuseError { err: format!("Channel value must be at least 1000 satoshis. It was {}", channel_value_satoshis) });
1042                 }
1043
1044                 let config = if override_config.is_some() { override_config.as_ref().unwrap() } else { &self.default_configuration };
1045                 let channel = Channel::new_outbound(&self.fee_estimator, &self.keys_manager, their_network_key, channel_value_satoshis, push_msat, user_id, config)?;
1046                 let res = channel.get_open_channel(self.genesis_hash.clone());
1047
1048                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1049                 // We want to make sure the lock is actually acquired by PersistenceNotifierGuard.
1050                 debug_assert!(&self.total_consistency_lock.try_write().is_err());
1051
1052                 let mut channel_state = self.channel_state.lock().unwrap();
1053                 match channel_state.by_id.entry(channel.channel_id()) {
1054                         hash_map::Entry::Occupied(_) => {
1055                                 if cfg!(feature = "fuzztarget") {
1056                                         return Err(APIError::APIMisuseError { err: "Fuzzy bad RNG".to_owned() });
1057                                 } else {
1058                                         panic!("RNG is bad???");
1059                                 }
1060                         },
1061                         hash_map::Entry::Vacant(entry) => { entry.insert(channel); }
1062                 }
1063                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendOpenChannel {
1064                         node_id: their_network_key,
1065                         msg: res,
1066                 });
1067                 Ok(())
1068         }
1069
1070         fn list_channels_with_filter<Fn: FnMut(&(&[u8; 32], &Channel<Signer>)) -> bool>(&self, f: Fn) -> Vec<ChannelDetails> {
1071                 let mut res = Vec::new();
1072                 {
1073                         let channel_state = self.channel_state.lock().unwrap();
1074                         res.reserve(channel_state.by_id.len());
1075                         for (channel_id, channel) in channel_state.by_id.iter().filter(f) {
1076                                 let (inbound_capacity_msat, outbound_capacity_msat) = channel.get_inbound_outbound_available_balance_msat();
1077                                 res.push(ChannelDetails {
1078                                         channel_id: (*channel_id).clone(),
1079                                         funding_txo: channel.get_funding_txo(),
1080                                         short_channel_id: channel.get_short_channel_id(),
1081                                         remote_network_id: channel.get_counterparty_node_id(),
1082                                         counterparty_features: InitFeatures::empty(),
1083                                         channel_value_satoshis: channel.get_value_satoshis(),
1084                                         inbound_capacity_msat,
1085                                         outbound_capacity_msat,
1086                                         user_id: channel.get_user_id(),
1087                                         is_outbound: channel.is_outbound(),
1088                                         is_funding_locked: channel.is_usable(),
1089                                         is_usable: channel.is_live(),
1090                                         is_public: channel.should_announce(),
1091                                         counterparty_forwarding_info: channel.counterparty_forwarding_info(),
1092                                 });
1093                         }
1094                 }
1095                 let per_peer_state = self.per_peer_state.read().unwrap();
1096                 for chan in res.iter_mut() {
1097                         if let Some(peer_state) = per_peer_state.get(&chan.remote_network_id) {
1098                                 chan.counterparty_features = peer_state.lock().unwrap().latest_features.clone();
1099                         }
1100                 }
1101                 res
1102         }
1103
1104         /// Gets the list of open channels, in random order. See ChannelDetail field documentation for
1105         /// more information.
1106         pub fn list_channels(&self) -> Vec<ChannelDetails> {
1107                 self.list_channels_with_filter(|_| true)
1108         }
1109
1110         /// Gets the list of usable channels, in random order. Useful as an argument to
1111         /// get_route to ensure non-announced channels are used.
1112         ///
1113         /// These are guaranteed to have their [`ChannelDetails::is_usable`] value set to true, see the
1114         /// documentation for [`ChannelDetails::is_usable`] for more info on exactly what the criteria
1115         /// are.
1116         pub fn list_usable_channels(&self) -> Vec<ChannelDetails> {
1117                 // Note we use is_live here instead of usable which leads to somewhat confused
1118                 // internal/external nomenclature, but that's ok cause that's probably what the user
1119                 // really wanted anyway.
1120                 self.list_channels_with_filter(|&(_, ref channel)| channel.is_live())
1121         }
1122
1123         /// Begins the process of closing a channel. After this call (plus some timeout), no new HTLCs
1124         /// will be accepted on the given channel, and after additional timeout/the closing of all
1125         /// pending HTLCs, the channel will be closed on chain.
1126         ///
1127         /// May generate a SendShutdown message event on success, which should be relayed.
1128         pub fn close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1129                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1130
1131                 let (mut failed_htlcs, chan_option) = {
1132                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1133                         let channel_state = &mut *channel_state_lock;
1134                         match channel_state.by_id.entry(channel_id.clone()) {
1135                                 hash_map::Entry::Occupied(mut chan_entry) => {
1136                                         let (shutdown_msg, failed_htlcs) = chan_entry.get_mut().get_shutdown()?;
1137                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
1138                                                 node_id: chan_entry.get().get_counterparty_node_id(),
1139                                                 msg: shutdown_msg
1140                                         });
1141                                         if chan_entry.get().is_shutdown() {
1142                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
1143                                                         channel_state.short_to_id.remove(&short_id);
1144                                                 }
1145                                                 (failed_htlcs, Some(chan_entry.remove_entry().1))
1146                                         } else { (failed_htlcs, None) }
1147                                 },
1148                                 hash_map::Entry::Vacant(_) => return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()})
1149                         }
1150                 };
1151                 for htlc_source in failed_htlcs.drain(..) {
1152                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1153                 }
1154                 let chan_update = if let Some(chan) = chan_option {
1155                         if let Ok(update) = self.get_channel_update(&chan) {
1156                                 Some(update)
1157                         } else { None }
1158                 } else { None };
1159
1160                 if let Some(update) = chan_update {
1161                         let mut channel_state = self.channel_state.lock().unwrap();
1162                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1163                                 msg: update
1164                         });
1165                 }
1166
1167                 Ok(())
1168         }
1169
1170         #[inline]
1171         fn finish_force_close_channel(&self, shutdown_res: ShutdownResult) {
1172                 let (monitor_update_option, mut failed_htlcs) = shutdown_res;
1173                 log_trace!(self.logger, "Finishing force-closure of channel {} HTLCs to fail", failed_htlcs.len());
1174                 for htlc_source in failed_htlcs.drain(..) {
1175                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
1176                 }
1177                 if let Some((funding_txo, monitor_update)) = monitor_update_option {
1178                         // There isn't anything we can do if we get an update failure - we're already
1179                         // force-closing. The monitor update on the required in-memory copy should broadcast
1180                         // the latest local state, which is the best we can do anyway. Thus, it is safe to
1181                         // ignore the result here.
1182                         let _ = self.chain_monitor.update_channel(funding_txo, monitor_update);
1183                 }
1184         }
1185
1186         fn force_close_channel_with_peer(&self, channel_id: &[u8; 32], peer_node_id: Option<&PublicKey>) -> Result<PublicKey, APIError> {
1187                 let mut chan = {
1188                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1189                         let channel_state = &mut *channel_state_lock;
1190                         if let hash_map::Entry::Occupied(chan) = channel_state.by_id.entry(channel_id.clone()) {
1191                                 if let Some(node_id) = peer_node_id {
1192                                         if chan.get().get_counterparty_node_id() != *node_id {
1193                                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1194                                         }
1195                                 }
1196                                 if let Some(short_id) = chan.get().get_short_channel_id() {
1197                                         channel_state.short_to_id.remove(&short_id);
1198                                 }
1199                                 chan.remove_entry().1
1200                         } else {
1201                                 return Err(APIError::ChannelUnavailable{err: "No such channel".to_owned()});
1202                         }
1203                 };
1204                 log_trace!(self.logger, "Force-closing channel {}", log_bytes!(channel_id[..]));
1205                 self.finish_force_close_channel(chan.force_shutdown(true));
1206                 if let Ok(update) = self.get_channel_update(&chan) {
1207                         let mut channel_state = self.channel_state.lock().unwrap();
1208                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
1209                                 msg: update
1210                         });
1211                 }
1212
1213                 Ok(chan.get_counterparty_node_id())
1214         }
1215
1216         /// Force closes a channel, immediately broadcasting the latest local commitment transaction to
1217         /// the chain and rejecting new HTLCs on the given channel. Fails if channel_id is unknown to the manager.
1218         pub fn force_close_channel(&self, channel_id: &[u8; 32]) -> Result<(), APIError> {
1219                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1220                 match self.force_close_channel_with_peer(channel_id, None) {
1221                         Ok(counterparty_node_id) => {
1222                                 self.channel_state.lock().unwrap().pending_msg_events.push(
1223                                         events::MessageSendEvent::HandleError {
1224                                                 node_id: counterparty_node_id,
1225                                                 action: msgs::ErrorAction::SendErrorMessage {
1226                                                         msg: msgs::ErrorMessage { channel_id: *channel_id, data: "Channel force-closed".to_owned() }
1227                                                 },
1228                                         }
1229                                 );
1230                                 Ok(())
1231                         },
1232                         Err(e) => Err(e)
1233                 }
1234         }
1235
1236         /// Force close all channels, immediately broadcasting the latest local commitment transaction
1237         /// for each to the chain and rejecting new HTLCs on each.
1238         pub fn force_close_all_channels(&self) {
1239                 for chan in self.list_channels() {
1240                         let _ = self.force_close_channel(&chan.channel_id);
1241                 }
1242         }
1243
1244         fn decode_update_add_htlc_onion(&self, msg: &msgs::UpdateAddHTLC) -> (PendingHTLCStatus, MutexGuard<ChannelHolder<Signer>>) {
1245                 macro_rules! return_malformed_err {
1246                         ($msg: expr, $err_code: expr) => {
1247                                 {
1248                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1249                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Malformed(msgs::UpdateFailMalformedHTLC {
1250                                                 channel_id: msg.channel_id,
1251                                                 htlc_id: msg.htlc_id,
1252                                                 sha256_of_onion: Sha256::hash(&msg.onion_routing_packet.hop_data).into_inner(),
1253                                                 failure_code: $err_code,
1254                                         })), self.channel_state.lock().unwrap());
1255                                 }
1256                         }
1257                 }
1258
1259                 if let Err(_) = msg.onion_routing_packet.public_key {
1260                         return_malformed_err!("invalid ephemeral pubkey", 0x8000 | 0x4000 | 6);
1261                 }
1262
1263                 let shared_secret = {
1264                         let mut arr = [0; 32];
1265                         arr.copy_from_slice(&SharedSecret::new(&msg.onion_routing_packet.public_key.unwrap(), &self.our_network_key)[..]);
1266                         arr
1267                 };
1268                 let (rho, mu) = onion_utils::gen_rho_mu_from_shared_secret(&shared_secret);
1269
1270                 if msg.onion_routing_packet.version != 0 {
1271                         //TODO: Spec doesn't indicate if we should only hash hop_data here (and in other
1272                         //sha256_of_onion error data packets), or the entire onion_routing_packet. Either way,
1273                         //the hash doesn't really serve any purpose - in the case of hashing all data, the
1274                         //receiving node would have to brute force to figure out which version was put in the
1275                         //packet by the node that send us the message, in the case of hashing the hop_data, the
1276                         //node knows the HMAC matched, so they already know what is there...
1277                         return_malformed_err!("Unknown onion packet version", 0x8000 | 0x4000 | 4);
1278                 }
1279
1280                 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1281                 hmac.input(&msg.onion_routing_packet.hop_data);
1282                 hmac.input(&msg.payment_hash.0[..]);
1283                 if !fixed_time_eq(&Hmac::from_engine(hmac).into_inner(), &msg.onion_routing_packet.hmac) {
1284                         return_malformed_err!("HMAC Check failed", 0x8000 | 0x4000 | 5);
1285                 }
1286
1287                 let mut channel_state = None;
1288                 macro_rules! return_err {
1289                         ($msg: expr, $err_code: expr, $data: expr) => {
1290                                 {
1291                                         log_info!(self.logger, "Failed to accept/forward incoming HTLC: {}", $msg);
1292                                         if channel_state.is_none() {
1293                                                 channel_state = Some(self.channel_state.lock().unwrap());
1294                                         }
1295                                         return (PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msgs::UpdateFailHTLC {
1296                                                 channel_id: msg.channel_id,
1297                                                 htlc_id: msg.htlc_id,
1298                                                 reason: onion_utils::build_first_hop_failure_packet(&shared_secret, $err_code, $data),
1299                                         })), channel_state.unwrap());
1300                                 }
1301                         }
1302                 }
1303
1304                 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1305                 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&msg.onion_routing_packet.hop_data[..]) };
1306                 let (next_hop_data, next_hop_hmac) = {
1307                         match msgs::OnionHopData::read(&mut chacha_stream) {
1308                                 Err(err) => {
1309                                         let error_code = match err {
1310                                                 msgs::DecodeError::UnknownVersion => 0x4000 | 1, // unknown realm byte
1311                                                 msgs::DecodeError::UnknownRequiredFeature|
1312                                                 msgs::DecodeError::InvalidValue|
1313                                                 msgs::DecodeError::ShortRead => 0x4000 | 22, // invalid_onion_payload
1314                                                 _ => 0x2000 | 2, // Should never happen
1315                                         };
1316                                         return_err!("Unable to decode our hop data", error_code, &[0;0]);
1317                                 },
1318                                 Ok(msg) => {
1319                                         let mut hmac = [0; 32];
1320                                         if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1321                                                 return_err!("Unable to decode hop data", 0x4000 | 22, &[0;0]);
1322                                         }
1323                                         (msg, hmac)
1324                                 },
1325                         }
1326                 };
1327
1328                 let pending_forward_info = if next_hop_hmac == [0; 32] {
1329                                 #[cfg(test)]
1330                                 {
1331                                         // In tests, make sure that the initial onion pcket data is, at least, non-0.
1332                                         // We could do some fancy randomness test here, but, ehh, whatever.
1333                                         // This checks for the issue where you can calculate the path length given the
1334                                         // onion data as all the path entries that the originator sent will be here
1335                                         // as-is (and were originally 0s).
1336                                         // Of course reverse path calculation is still pretty easy given naive routing
1337                                         // algorithms, but this fixes the most-obvious case.
1338                                         let mut next_bytes = [0; 32];
1339                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1340                                         assert_ne!(next_bytes[..], [0; 32][..]);
1341                                         chacha_stream.read_exact(&mut next_bytes).unwrap();
1342                                         assert_ne!(next_bytes[..], [0; 32][..]);
1343                                 }
1344
1345                                 // OUR PAYMENT!
1346                                 // final_expiry_too_soon
1347                                 // We have to have some headroom to broadcast on chain if we have the preimage, so make sure we have at least
1348                                 // HTLC_FAIL_BACK_BUFFER blocks to go.
1349                                 // Also, ensure that, in the case of an unknown payment hash, our payment logic has enough time to fail the HTLC backward
1350                                 // before our onchain logic triggers a channel closure (see HTLC_FAIL_BACK_BUFFER rational).
1351                                 if (msg.cltv_expiry as u64) <= self.best_block.read().unwrap().height() as u64 + HTLC_FAIL_BACK_BUFFER as u64 + 1 {
1352                                         return_err!("The final CLTV expiry is too soon to handle", 17, &[0;0]);
1353                                 }
1354                                 // final_incorrect_htlc_amount
1355                                 if next_hop_data.amt_to_forward > msg.amount_msat {
1356                                         return_err!("Upstream node sent less than we were supposed to receive in payment", 19, &byte_utils::be64_to_array(msg.amount_msat));
1357                                 }
1358                                 // final_incorrect_cltv_expiry
1359                                 if next_hop_data.outgoing_cltv_value != msg.cltv_expiry {
1360                                         return_err!("Upstream node set CLTV to the wrong value", 18, &byte_utils::be32_to_array(msg.cltv_expiry));
1361                                 }
1362
1363                                 let payment_data = match next_hop_data.format {
1364                                         msgs::OnionHopDataFormat::Legacy { .. } => None,
1365                                         msgs::OnionHopDataFormat::NonFinalNode { .. } => return_err!("Got non final data with an HMAC of 0", 0x4000 | 22, &[0;0]),
1366                                         msgs::OnionHopDataFormat::FinalNode { payment_data } => payment_data,
1367                                 };
1368
1369                                 if payment_data.is_none() {
1370                                         return_err!("We require payment_secrets", 0x4000|0x2000|3, &[0;0]);
1371                                 }
1372
1373                                 // Note that we could obviously respond immediately with an update_fulfill_htlc
1374                                 // message, however that would leak that we are the recipient of this payment, so
1375                                 // instead we stay symmetric with the forwarding case, only responding (after a
1376                                 // delay) once they've send us a commitment_signed!
1377
1378                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1379                                         routing: PendingHTLCRouting::Receive {
1380                                                 payment_data: payment_data.unwrap(),
1381                                                 incoming_cltv_expiry: msg.cltv_expiry,
1382                                         },
1383                                         payment_hash: msg.payment_hash.clone(),
1384                                         incoming_shared_secret: shared_secret,
1385                                         amt_to_forward: next_hop_data.amt_to_forward,
1386                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1387                                 })
1388                         } else {
1389                                 let mut new_packet_data = [0; 20*65];
1390                                 let read_pos = chacha_stream.read(&mut new_packet_data).unwrap();
1391                                 #[cfg(debug_assertions)]
1392                                 {
1393                                         // Check two things:
1394                                         // a) that the behavior of our stream here will return Ok(0) even if the TLV
1395                                         //    read above emptied out our buffer and the unwrap() wont needlessly panic
1396                                         // b) that we didn't somehow magically end up with extra data.
1397                                         let mut t = [0; 1];
1398                                         debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1399                                 }
1400                                 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1401                                 // fill the onion hop data we'll forward to our next-hop peer.
1402                                 chacha_stream.chacha.process_in_place(&mut new_packet_data[read_pos..]);
1403
1404                                 let mut new_pubkey = msg.onion_routing_packet.public_key.unwrap();
1405
1406                                 let blinding_factor = {
1407                                         let mut sha = Sha256::engine();
1408                                         sha.input(&new_pubkey.serialize()[..]);
1409                                         sha.input(&shared_secret);
1410                                         Sha256::from_engine(sha).into_inner()
1411                                 };
1412
1413                                 let public_key = if let Err(e) = new_pubkey.mul_assign(&self.secp_ctx, &blinding_factor[..]) {
1414                                         Err(e)
1415                                 } else { Ok(new_pubkey) };
1416
1417                                 let outgoing_packet = msgs::OnionPacket {
1418                                         version: 0,
1419                                         public_key,
1420                                         hop_data: new_packet_data,
1421                                         hmac: next_hop_hmac.clone(),
1422                                 };
1423
1424                                 let short_channel_id = match next_hop_data.format {
1425                                         msgs::OnionHopDataFormat::Legacy { short_channel_id } => short_channel_id,
1426                                         msgs::OnionHopDataFormat::NonFinalNode { short_channel_id } => short_channel_id,
1427                                         msgs::OnionHopDataFormat::FinalNode { .. } => {
1428                                                 return_err!("Final Node OnionHopData provided for us as an intermediary node", 0x4000 | 22, &[0;0]);
1429                                         },
1430                                 };
1431
1432                                 PendingHTLCStatus::Forward(PendingHTLCInfo {
1433                                         routing: PendingHTLCRouting::Forward {
1434                                                 onion_packet: outgoing_packet,
1435                                                 short_channel_id,
1436                                         },
1437                                         payment_hash: msg.payment_hash.clone(),
1438                                         incoming_shared_secret: shared_secret,
1439                                         amt_to_forward: next_hop_data.amt_to_forward,
1440                                         outgoing_cltv_value: next_hop_data.outgoing_cltv_value,
1441                                 })
1442                         };
1443
1444                 channel_state = Some(self.channel_state.lock().unwrap());
1445                 if let &PendingHTLCStatus::Forward(PendingHTLCInfo { ref routing, ref amt_to_forward, ref outgoing_cltv_value, .. }) = &pending_forward_info {
1446                         // If short_channel_id is 0 here, we'll reject the HTLC as there cannot be a channel
1447                         // with a short_channel_id of 0. This is important as various things later assume
1448                         // short_channel_id is non-0 in any ::Forward.
1449                         if let &PendingHTLCRouting::Forward { ref short_channel_id, .. } = routing {
1450                                 let id_option = channel_state.as_ref().unwrap().short_to_id.get(&short_channel_id).cloned();
1451                                 let forwarding_id = match id_option {
1452                                         None => { // unknown_next_peer
1453                                                 return_err!("Don't have available channel for forwarding as requested.", 0x4000 | 10, &[0;0]);
1454                                         },
1455                                         Some(id) => id.clone(),
1456                                 };
1457                                 if let Some((err, code, chan_update)) = loop {
1458                                         let chan = channel_state.as_mut().unwrap().by_id.get_mut(&forwarding_id).unwrap();
1459
1460                                         // Note that we could technically not return an error yet here and just hope
1461                                         // that the connection is reestablished or monitor updated by the time we get
1462                                         // around to doing the actual forward, but better to fail early if we can and
1463                                         // hopefully an attacker trying to path-trace payments cannot make this occur
1464                                         // on a small/per-node/per-channel scale.
1465                                         if !chan.is_live() { // channel_disabled
1466                                                 break Some(("Forwarding channel is not in a ready state.", 0x1000 | 20, Some(self.get_channel_update(chan).unwrap())));
1467                                         }
1468                                         if *amt_to_forward < chan.get_counterparty_htlc_minimum_msat() { // amount_below_minimum
1469                                                 break Some(("HTLC amount was below the htlc_minimum_msat", 0x1000 | 11, Some(self.get_channel_update(chan).unwrap())));
1470                                         }
1471                                         let fee = amt_to_forward.checked_mul(chan.get_fee_proportional_millionths() as u64).and_then(|prop_fee| { (prop_fee / 1000000).checked_add(chan.get_holder_fee_base_msat(&self.fee_estimator) as u64) });
1472                                         if fee.is_none() || msg.amount_msat < fee.unwrap() || (msg.amount_msat - fee.unwrap()) < *amt_to_forward { // fee_insufficient
1473                                                 break Some(("Prior hop has deviated from specified fees parameters or origin node has obsolete ones", 0x1000 | 12, Some(self.get_channel_update(chan).unwrap())));
1474                                         }
1475                                         if (msg.cltv_expiry as u64) < (*outgoing_cltv_value) as u64 + chan.get_cltv_expiry_delta() as u64 { // incorrect_cltv_expiry
1476                                                 break Some(("Forwarding node has tampered with the intended HTLC values or origin node has an obsolete cltv_expiry_delta", 0x1000 | 13, Some(self.get_channel_update(chan).unwrap())));
1477                                         }
1478                                         let cur_height = self.best_block.read().unwrap().height() + 1;
1479                                         // Theoretically, channel counterparty shouldn't send us a HTLC expiring now, but we want to be robust wrt to counterparty
1480                                         // packet sanitization (see HTLC_FAIL_BACK_BUFFER rational)
1481                                         if msg.cltv_expiry <= cur_height + HTLC_FAIL_BACK_BUFFER as u32 { // expiry_too_soon
1482                                                 break Some(("CLTV expiry is too close", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1483                                         }
1484                                         if msg.cltv_expiry > cur_height + CLTV_FAR_FAR_AWAY as u32 { // expiry_too_far
1485                                                 break Some(("CLTV expiry is too far in the future", 21, None));
1486                                         }
1487                                         // In theory, we would be safe against unitentional channel-closure, if we only required a margin of LATENCY_GRACE_PERIOD_BLOCKS.
1488                                         // But, to be safe against policy reception, we use a longuer delay.
1489                                         if (*outgoing_cltv_value) as u64 <= (cur_height + HTLC_FAIL_BACK_BUFFER) as u64 {
1490                                                 break Some(("Outgoing CLTV value is too soon", 0x1000 | 14, Some(self.get_channel_update(chan).unwrap())));
1491                                         }
1492
1493                                         break None;
1494                                 }
1495                                 {
1496                                         let mut res = Vec::with_capacity(8 + 128);
1497                                         if let Some(chan_update) = chan_update {
1498                                                 if code == 0x1000 | 11 || code == 0x1000 | 12 {
1499                                                         res.extend_from_slice(&byte_utils::be64_to_array(msg.amount_msat));
1500                                                 }
1501                                                 else if code == 0x1000 | 13 {
1502                                                         res.extend_from_slice(&byte_utils::be32_to_array(msg.cltv_expiry));
1503                                                 }
1504                                                 else if code == 0x1000 | 20 {
1505                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
1506                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
1507                                                 }
1508                                                 res.extend_from_slice(&chan_update.encode_with_len()[..]);
1509                                         }
1510                                         return_err!(err, code, &res[..]);
1511                                 }
1512                         }
1513                 }
1514
1515                 (pending_forward_info, channel_state.unwrap())
1516         }
1517
1518         /// only fails if the channel does not yet have an assigned short_id
1519         /// May be called with channel_state already locked!
1520         fn get_channel_update(&self, chan: &Channel<Signer>) -> Result<msgs::ChannelUpdate, LightningError> {
1521                 let short_channel_id = match chan.get_short_channel_id() {
1522                         None => return Err(LightningError{err: "Channel not yet established".to_owned(), action: msgs::ErrorAction::IgnoreError}),
1523                         Some(id) => id,
1524                 };
1525
1526                 let were_node_one = PublicKey::from_secret_key(&self.secp_ctx, &self.our_network_key).serialize()[..] < chan.get_counterparty_node_id().serialize()[..];
1527
1528                 let unsigned = msgs::UnsignedChannelUpdate {
1529                         chain_hash: self.genesis_hash,
1530                         short_channel_id,
1531                         timestamp: chan.get_update_time_counter(),
1532                         flags: (!were_node_one) as u8 | ((!chan.is_live() as u8) << 1),
1533                         cltv_expiry_delta: chan.get_cltv_expiry_delta(),
1534                         htlc_minimum_msat: chan.get_counterparty_htlc_minimum_msat(),
1535                         htlc_maximum_msat: OptionalField::Present(chan.get_announced_htlc_max_msat()),
1536                         fee_base_msat: chan.get_holder_fee_base_msat(&self.fee_estimator),
1537                         fee_proportional_millionths: chan.get_fee_proportional_millionths(),
1538                         excess_data: Vec::new(),
1539                 };
1540
1541                 let msg_hash = Sha256dHash::hash(&unsigned.encode()[..]);
1542                 let sig = self.secp_ctx.sign(&hash_to_message!(&msg_hash[..]), &self.our_network_key);
1543
1544                 Ok(msgs::ChannelUpdate {
1545                         signature: sig,
1546                         contents: unsigned
1547                 })
1548         }
1549
1550         // Only public for testing, this should otherwise never be called direcly
1551         pub(crate) fn send_payment_along_path(&self, path: &Vec<RouteHop>, payment_hash: &PaymentHash, payment_secret: &Option<PaymentSecret>, total_value: u64, cur_height: u32) -> Result<(), APIError> {
1552                 log_trace!(self.logger, "Attempting to send payment for path with next hop {}", path.first().unwrap().short_channel_id);
1553                 let prng_seed = self.keys_manager.get_secure_random_bytes();
1554                 let session_priv_bytes = self.keys_manager.get_secure_random_bytes();
1555                 let session_priv = SecretKey::from_slice(&session_priv_bytes[..]).expect("RNG is busted");
1556
1557                 let onion_keys = onion_utils::construct_onion_keys(&self.secp_ctx, &path, &session_priv)
1558                         .map_err(|_| APIError::RouteError{err: "Pubkey along hop was maliciously selected"})?;
1559                 let (onion_payloads, htlc_msat, htlc_cltv) = onion_utils::build_onion_payloads(path, total_value, payment_secret, cur_height)?;
1560                 if onion_utils::route_size_insane(&onion_payloads) {
1561                         return Err(APIError::RouteError{err: "Route size too large considering onion data"});
1562                 }
1563                 let onion_packet = onion_utils::construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash);
1564
1565                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1566                 assert!(self.pending_outbound_payments.lock().unwrap().insert(session_priv_bytes));
1567
1568                 let err: Result<(), _> = loop {
1569                         let mut channel_lock = self.channel_state.lock().unwrap();
1570                         let id = match channel_lock.short_to_id.get(&path.first().unwrap().short_channel_id) {
1571                                 None => return Err(APIError::ChannelUnavailable{err: "No channel available with first hop!".to_owned()}),
1572                                 Some(id) => id.clone(),
1573                         };
1574
1575                         let channel_state = &mut *channel_lock;
1576                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(id) {
1577                                 match {
1578                                         if chan.get().get_counterparty_node_id() != path.first().unwrap().pubkey {
1579                                                 return Err(APIError::RouteError{err: "Node ID mismatch on first hop!"});
1580                                         }
1581                                         if !chan.get().is_live() {
1582                                                 return Err(APIError::ChannelUnavailable{err: "Peer for first hop currently disconnected/pending monitor update!".to_owned()});
1583                                         }
1584                                         break_chan_entry!(self, chan.get_mut().send_htlc_and_commit(htlc_msat, payment_hash.clone(), htlc_cltv, HTLCSource::OutboundRoute {
1585                                                 path: path.clone(),
1586                                                 session_priv: session_priv.clone(),
1587                                                 first_hop_htlc_msat: htlc_msat,
1588                                         }, onion_packet, &self.logger), channel_state, chan)
1589                                 } {
1590                                         Some((update_add, commitment_signed, monitor_update)) => {
1591                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
1592                                                         maybe_break_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true);
1593                                                         // Note that MonitorUpdateFailed here indicates (per function docs)
1594                                                         // that we will resend the commitment update once monitor updating
1595                                                         // is restored. Therefore, we must return an error indicating that
1596                                                         // it is unsafe to retry the payment wholesale, which we do in the
1597                                                         // send_payment check for MonitorUpdateFailed, below.
1598                                                         return Err(APIError::MonitorUpdateFailed);
1599                                                 }
1600
1601                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
1602                                                         node_id: path.first().unwrap().pubkey,
1603                                                         updates: msgs::CommitmentUpdate {
1604                                                                 update_add_htlcs: vec![update_add],
1605                                                                 update_fulfill_htlcs: Vec::new(),
1606                                                                 update_fail_htlcs: Vec::new(),
1607                                                                 update_fail_malformed_htlcs: Vec::new(),
1608                                                                 update_fee: None,
1609                                                                 commitment_signed,
1610                                                         },
1611                                                 });
1612                                         },
1613                                         None => {},
1614                                 }
1615                         } else { unreachable!(); }
1616                         return Ok(());
1617                 };
1618
1619                 match handle_error!(self, err, path.first().unwrap().pubkey) {
1620                         Ok(_) => unreachable!(),
1621                         Err(e) => {
1622                                 Err(APIError::ChannelUnavailable { err: e.err })
1623                         },
1624                 }
1625         }
1626
1627         /// Sends a payment along a given route.
1628         ///
1629         /// Value parameters are provided via the last hop in route, see documentation for RouteHop
1630         /// fields for more info.
1631         ///
1632         /// Note that if the payment_hash already exists elsewhere (eg you're sending a duplicative
1633         /// payment), we don't do anything to stop you! We always try to ensure that if the provided
1634         /// next hop knows the preimage to payment_hash they can claim an additional amount as
1635         /// specified in the last hop in the route! Thus, you should probably do your own
1636         /// payment_preimage tracking (which you should already be doing as they represent "proof of
1637         /// payment") and prevent double-sends yourself.
1638         ///
1639         /// May generate SendHTLCs message(s) event on success, which should be relayed.
1640         ///
1641         /// Each path may have a different return value, and PaymentSendValue may return a Vec with
1642         /// each entry matching the corresponding-index entry in the route paths, see
1643         /// PaymentSendFailure for more info.
1644         ///
1645         /// In general, a path may raise:
1646         ///  * APIError::RouteError when an invalid route or forwarding parameter (cltv_delta, fee,
1647         ///    node public key) is specified.
1648         ///  * APIError::ChannelUnavailable if the next-hop channel is not available for updates
1649         ///    (including due to previous monitor update failure or new permanent monitor update
1650         ///    failure).
1651         ///  * APIError::MonitorUpdateFailed if a new monitor update failure prevented sending the
1652         ///    relevant updates.
1653         ///
1654         /// Note that depending on the type of the PaymentSendFailure the HTLC may have been
1655         /// irrevocably committed to on our end. In such a case, do NOT retry the payment with a
1656         /// different route unless you intend to pay twice!
1657         ///
1658         /// payment_secret is unrelated to payment_hash (or PaymentPreimage) and exists to authenticate
1659         /// the sender to the recipient and prevent payment-probing (deanonymization) attacks. For
1660         /// newer nodes, it will be provided to you in the invoice. If you do not have one, the Route
1661         /// must not contain multiple paths as multi-path payments require a recipient-provided
1662         /// payment_secret.
1663         /// If a payment_secret *is* provided, we assume that the invoice had the payment_secret feature
1664         /// bit set (either as required or as available). If multiple paths are present in the Route,
1665         /// we assume the invoice had the basic_mpp feature set.
1666         pub fn send_payment(&self, route: &Route, payment_hash: PaymentHash, payment_secret: &Option<PaymentSecret>) -> Result<(), PaymentSendFailure> {
1667                 if route.paths.len() < 1 {
1668                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "There must be at least one path to send over"}));
1669                 }
1670                 if route.paths.len() > 10 {
1671                         // This limit is completely arbitrary - there aren't any real fundamental path-count
1672                         // limits. After we support retrying individual paths we should likely bump this, but
1673                         // for now more than 10 paths likely carries too much one-path failure.
1674                         return Err(PaymentSendFailure::ParameterError(APIError::RouteError{err: "Sending over more than 10 paths is not currently supported"}));
1675                 }
1676                 let mut total_value = 0;
1677                 let our_node_id = self.get_our_node_id();
1678                 let mut path_errs = Vec::with_capacity(route.paths.len());
1679                 'path_check: for path in route.paths.iter() {
1680                         if path.len() < 1 || path.len() > 20 {
1681                                 path_errs.push(Err(APIError::RouteError{err: "Path didn't go anywhere/had bogus size"}));
1682                                 continue 'path_check;
1683                         }
1684                         for (idx, hop) in path.iter().enumerate() {
1685                                 if idx != path.len() - 1 && hop.pubkey == our_node_id {
1686                                         path_errs.push(Err(APIError::RouteError{err: "Path went through us but wasn't a simple rebalance loop to us"}));
1687                                         continue 'path_check;
1688                                 }
1689                         }
1690                         total_value += path.last().unwrap().fee_msat;
1691                         path_errs.push(Ok(()));
1692                 }
1693                 if path_errs.iter().any(|e| e.is_err()) {
1694                         return Err(PaymentSendFailure::PathParameterError(path_errs));
1695                 }
1696
1697                 let cur_height = self.best_block.read().unwrap().height() + 1;
1698                 let mut results = Vec::new();
1699                 for path in route.paths.iter() {
1700                         results.push(self.send_payment_along_path(&path, &payment_hash, payment_secret, total_value, cur_height));
1701                 }
1702                 let mut has_ok = false;
1703                 let mut has_err = false;
1704                 for res in results.iter() {
1705                         if res.is_ok() { has_ok = true; }
1706                         if res.is_err() { has_err = true; }
1707                         if let &Err(APIError::MonitorUpdateFailed) = res {
1708                                 // MonitorUpdateFailed is inherently unsafe to retry, so we call it a
1709                                 // PartialFailure.
1710                                 has_err = true;
1711                                 has_ok = true;
1712                                 break;
1713                         }
1714                 }
1715                 if has_err && has_ok {
1716                         Err(PaymentSendFailure::PartialFailure(results))
1717                 } else if has_err {
1718                         Err(PaymentSendFailure::AllFailedRetrySafe(results.drain(..).map(|r| r.unwrap_err()).collect()))
1719                 } else {
1720                         Ok(())
1721                 }
1722         }
1723
1724         /// Handles the generation of a funding transaction, optionally (for tests) with a function
1725         /// which checks the correctness of the funding transaction given the associated channel.
1726         fn funding_transaction_generated_intern<FundingOutput: Fn(&Channel<Signer>, &Transaction) -> Result<OutPoint, APIError>>
1727                         (&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, find_funding_output: FundingOutput) -> Result<(), APIError> {
1728                 let (chan, msg) = {
1729                         let (res, chan) = match self.channel_state.lock().unwrap().by_id.remove(temporary_channel_id) {
1730                                 Some(mut chan) => {
1731                                         let funding_txo = find_funding_output(&chan, &funding_transaction)?;
1732
1733                                         (chan.get_outbound_funding_created(funding_transaction, funding_txo, &self.logger)
1734                                                 .map_err(|e| if let ChannelError::Close(msg) = e {
1735                                                         MsgHandleErrInternal::from_finish_shutdown(msg, chan.channel_id(), chan.force_shutdown(true), None)
1736                                                 } else { unreachable!(); })
1737                                         , chan)
1738                                 },
1739                                 None => { return Err(APIError::ChannelUnavailable { err: "No such channel".to_owned() }) },
1740                         };
1741                         match handle_error!(self, res, chan.get_counterparty_node_id()) {
1742                                 Ok(funding_msg) => {
1743                                         (chan, funding_msg)
1744                                 },
1745                                 Err(_) => { return Err(APIError::ChannelUnavailable {
1746                                         err: "Error deriving keys or signing initial commitment transactions - either our RNG or our counterparty's RNG is broken or the Signer refused to sign".to_owned()
1747                                 }) },
1748                         }
1749                 };
1750
1751                 let mut channel_state = self.channel_state.lock().unwrap();
1752                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingCreated {
1753                         node_id: chan.get_counterparty_node_id(),
1754                         msg,
1755                 });
1756                 match channel_state.by_id.entry(chan.channel_id()) {
1757                         hash_map::Entry::Occupied(_) => {
1758                                 panic!("Generated duplicate funding txid?");
1759                         },
1760                         hash_map::Entry::Vacant(e) => {
1761                                 e.insert(chan);
1762                         }
1763                 }
1764                 Ok(())
1765         }
1766
1767         #[cfg(test)]
1768         pub(crate) fn funding_transaction_generated_unchecked(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction, output_index: u16) -> Result<(), APIError> {
1769                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |_, tx| {
1770                         Ok(OutPoint { txid: tx.txid(), index: output_index })
1771                 })
1772         }
1773
1774         /// Call this upon creation of a funding transaction for the given channel.
1775         ///
1776         /// Returns an [`APIError::APIMisuseError`] if the funding_transaction spent non-SegWit outputs
1777         /// or if no output was found which matches the parameters in [`Event::FundingGenerationReady`].
1778         ///
1779         /// Panics if a funding transaction has already been provided for this channel.
1780         ///
1781         /// May panic if the output found in the funding transaction is duplicative with some other
1782         /// channel (note that this should be trivially prevented by using unique funding transaction
1783         /// keys per-channel).
1784         ///
1785         /// Do NOT broadcast the funding transaction yourself. When we have safely received our
1786         /// counterparty's signature the funding transaction will automatically be broadcast via the
1787         /// [`BroadcasterInterface`] provided when this `ChannelManager` was constructed.
1788         ///
1789         /// Note that this includes RBF or similar transaction replacement strategies - lightning does
1790         /// not currently support replacing a funding transaction on an existing channel. Instead,
1791         /// create a new channel with a conflicting funding transaction.
1792         pub fn funding_transaction_generated(&self, temporary_channel_id: &[u8; 32], funding_transaction: Transaction) -> Result<(), APIError> {
1793                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1794
1795                 for inp in funding_transaction.input.iter() {
1796                         if inp.witness.is_empty() {
1797                                 return Err(APIError::APIMisuseError {
1798                                         err: "Funding transaction must be fully signed and spend Segwit outputs".to_owned()
1799                                 });
1800                         }
1801                 }
1802                 self.funding_transaction_generated_intern(temporary_channel_id, funding_transaction, |chan, tx| {
1803                         let mut output_index = None;
1804                         let expected_spk = chan.get_funding_redeemscript().to_v0_p2wsh();
1805                         for (idx, outp) in tx.output.iter().enumerate() {
1806                                 if outp.script_pubkey == expected_spk && outp.value == chan.get_value_satoshis() {
1807                                         if output_index.is_some() {
1808                                                 return Err(APIError::APIMisuseError {
1809                                                         err: "Multiple outputs matched the expected script and value".to_owned()
1810                                                 });
1811                                         }
1812                                         if idx > u16::max_value() as usize {
1813                                                 return Err(APIError::APIMisuseError {
1814                                                         err: "Transaction had more than 2^16 outputs, which is not supported".to_owned()
1815                                                 });
1816                                         }
1817                                         output_index = Some(idx as u16);
1818                                 }
1819                         }
1820                         if output_index.is_none() {
1821                                 return Err(APIError::APIMisuseError {
1822                                         err: "No output matched the script_pubkey and value in the FundingGenerationReady event".to_owned()
1823                                 });
1824                         }
1825                         Ok(OutPoint { txid: tx.txid(), index: output_index.unwrap() })
1826                 })
1827         }
1828
1829         fn get_announcement_sigs(&self, chan: &Channel<Signer>) -> Option<msgs::AnnouncementSignatures> {
1830                 if !chan.should_announce() {
1831                         log_trace!(self.logger, "Can't send announcement_signatures for private channel {}", log_bytes!(chan.channel_id()));
1832                         return None
1833                 }
1834
1835                 let (announcement, our_bitcoin_sig) = match chan.get_channel_announcement(self.get_our_node_id(), self.genesis_hash.clone()) {
1836                         Ok(res) => res,
1837                         Err(_) => return None, // Only in case of state precondition violations eg channel is closing
1838                 };
1839                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1840                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
1841
1842                 Some(msgs::AnnouncementSignatures {
1843                         channel_id: chan.channel_id(),
1844                         short_channel_id: chan.get_short_channel_id().unwrap(),
1845                         node_signature: our_node_sig,
1846                         bitcoin_signature: our_bitcoin_sig,
1847                 })
1848         }
1849
1850         #[allow(dead_code)]
1851         // Messages of up to 64KB should never end up more than half full with addresses, as that would
1852         // be absurd. We ensure this by checking that at least 500 (our stated public contract on when
1853         // broadcast_node_announcement panics) of the maximum-length addresses would fit in a 64KB
1854         // message...
1855         const HALF_MESSAGE_IS_ADDRS: u32 = ::std::u16::MAX as u32 / (NetAddress::MAX_LEN as u32 + 1) / 2;
1856         #[deny(const_err)]
1857         #[allow(dead_code)]
1858         // ...by failing to compile if the number of addresses that would be half of a message is
1859         // smaller than 500:
1860         const STATIC_ASSERT: u32 = Self::HALF_MESSAGE_IS_ADDRS - 500;
1861
1862         /// Generates a signed node_announcement from the given arguments and creates a
1863         /// BroadcastNodeAnnouncement event. Note that such messages will be ignored unless peers have
1864         /// seen a channel_announcement from us (ie unless we have public channels open).
1865         ///
1866         /// RGB is a node "color" and alias is a printable human-readable string to describe this node
1867         /// to humans. They carry no in-protocol meaning.
1868         ///
1869         /// addresses represent the set (possibly empty) of socket addresses on which this node accepts
1870         /// incoming connections. These will be broadcast to the network, publicly tying these
1871         /// addresses together. If you wish to preserve user privacy, addresses should likely contain
1872         /// only Tor Onion addresses.
1873         ///
1874         /// Panics if addresses is absurdly large (more than 500).
1875         pub fn broadcast_node_announcement(&self, rgb: [u8; 3], alias: [u8; 32], mut addresses: Vec<NetAddress>) {
1876                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1877
1878                 if addresses.len() > 500 {
1879                         panic!("More than half the message size was taken up by public addresses!");
1880                 }
1881
1882                 // While all existing nodes handle unsorted addresses just fine, the spec requires that
1883                 // addresses be sorted for future compatibility.
1884                 addresses.sort_by_key(|addr| addr.get_id());
1885
1886                 let announcement = msgs::UnsignedNodeAnnouncement {
1887                         features: NodeFeatures::known(),
1888                         timestamp: self.last_node_announcement_serial.fetch_add(1, Ordering::AcqRel) as u32,
1889                         node_id: self.get_our_node_id(),
1890                         rgb, alias, addresses,
1891                         excess_address_data: Vec::new(),
1892                         excess_data: Vec::new(),
1893                 };
1894                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
1895
1896                 let mut channel_state = self.channel_state.lock().unwrap();
1897                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastNodeAnnouncement {
1898                         msg: msgs::NodeAnnouncement {
1899                                 signature: self.secp_ctx.sign(&msghash, &self.our_network_key),
1900                                 contents: announcement
1901                         },
1902                 });
1903         }
1904
1905         /// Processes HTLCs which are pending waiting on random forward delay.
1906         ///
1907         /// Should only really ever be called in response to a PendingHTLCsForwardable event.
1908         /// Will likely generate further events.
1909         pub fn process_pending_htlc_forwards(&self) {
1910                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
1911
1912                 let mut new_events = Vec::new();
1913                 let mut failed_forwards = Vec::new();
1914                 let mut handle_errors = Vec::new();
1915                 {
1916                         let mut channel_state_lock = self.channel_state.lock().unwrap();
1917                         let channel_state = &mut *channel_state_lock;
1918
1919                         for (short_chan_id, mut pending_forwards) in channel_state.forward_htlcs.drain() {
1920                                 if short_chan_id != 0 {
1921                                         let forward_chan_id = match channel_state.short_to_id.get(&short_chan_id) {
1922                                                 Some(chan_id) => chan_id.clone(),
1923                                                 None => {
1924                                                         failed_forwards.reserve(pending_forwards.len());
1925                                                         for forward_info in pending_forwards.drain(..) {
1926                                                                 match forward_info {
1927                                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info,
1928                                                                                                    prev_funding_outpoint } => {
1929                                                                                 let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1930                                                                                         short_channel_id: prev_short_channel_id,
1931                                                                                         outpoint: prev_funding_outpoint,
1932                                                                                         htlc_id: prev_htlc_id,
1933                                                                                         incoming_packet_shared_secret: forward_info.incoming_shared_secret,
1934                                                                                 });
1935                                                                                 failed_forwards.push((htlc_source, forward_info.payment_hash,
1936                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 10, data: Vec::new() }
1937                                                                                 ));
1938                                                                         },
1939                                                                         HTLCForwardInfo::FailHTLC { .. } => {
1940                                                                                 // Channel went away before we could fail it. This implies
1941                                                                                 // the channel is now on chain and our counterparty is
1942                                                                                 // trying to broadcast the HTLC-Timeout, but that's their
1943                                                                                 // problem, not ours.
1944                                                                         }
1945                                                                 }
1946                                                         }
1947                                                         continue;
1948                                                 }
1949                                         };
1950                                         if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(forward_chan_id) {
1951                                                 let mut add_htlc_msgs = Vec::new();
1952                                                 let mut fail_htlc_msgs = Vec::new();
1953                                                 for forward_info in pending_forwards.drain(..) {
1954                                                         match forward_info {
1955                                                                 HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
1956                                                                                 routing: PendingHTLCRouting::Forward {
1957                                                                                         onion_packet, ..
1958                                                                                 }, incoming_shared_secret, payment_hash, amt_to_forward, outgoing_cltv_value },
1959                                                                                 prev_funding_outpoint } => {
1960                                                                         log_trace!(self.logger, "Adding HTLC from short id {} with payment_hash {} to channel with short id {} after delay", log_bytes!(payment_hash.0), prev_short_channel_id, short_chan_id);
1961                                                                         let htlc_source = HTLCSource::PreviousHopData(HTLCPreviousHopData {
1962                                                                                 short_channel_id: prev_short_channel_id,
1963                                                                                 outpoint: prev_funding_outpoint,
1964                                                                                 htlc_id: prev_htlc_id,
1965                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
1966                                                                         });
1967                                                                         match chan.get_mut().send_htlc(amt_to_forward, payment_hash, outgoing_cltv_value, htlc_source.clone(), onion_packet) {
1968                                                                                 Err(e) => {
1969                                                                                         if let ChannelError::Ignore(msg) = e {
1970                                                                                                 log_trace!(self.logger, "Failed to forward HTLC with payment_hash {}: {}", log_bytes!(payment_hash.0), msg);
1971                                                                                         } else {
1972                                                                                                 panic!("Stated return value requirements in send_htlc() were not met");
1973                                                                                         }
1974                                                                                         let chan_update = self.get_channel_update(chan.get()).unwrap();
1975                                                                                         failed_forwards.push((htlc_source, payment_hash,
1976                                                                                                 HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.encode_with_len() }
1977                                                                                         ));
1978                                                                                         continue;
1979                                                                                 },
1980                                                                                 Ok(update_add) => {
1981                                                                                         match update_add {
1982                                                                                                 Some(msg) => { add_htlc_msgs.push(msg); },
1983                                                                                                 None => {
1984                                                                                                         // Nothing to do here...we're waiting on a remote
1985                                                                                                         // revoke_and_ack before we can add anymore HTLCs. The Channel
1986                                                                                                         // will automatically handle building the update_add_htlc and
1987                                                                                                         // commitment_signed messages when we can.
1988                                                                                                         // TODO: Do some kind of timer to set the channel as !is_live()
1989                                                                                                         // as we don't really want others relying on us relaying through
1990                                                                                                         // this channel currently :/.
1991                                                                                                 }
1992                                                                                         }
1993                                                                                 }
1994                                                                         }
1995                                                                 },
1996                                                                 HTLCForwardInfo::AddHTLC { .. } => {
1997                                                                         panic!("short_channel_id != 0 should imply any pending_forward entries are of type Forward");
1998                                                                 },
1999                                                                 HTLCForwardInfo::FailHTLC { htlc_id, err_packet } => {
2000                                                                         log_trace!(self.logger, "Failing HTLC back to channel with short id {} after delay", short_chan_id);
2001                                                                         match chan.get_mut().get_update_fail_htlc(htlc_id, err_packet) {
2002                                                                                 Err(e) => {
2003                                                                                         if let ChannelError::Ignore(msg) = e {
2004                                                                                                 log_trace!(self.logger, "Failed to fail backwards to short_id {}: {}", short_chan_id, msg);
2005                                                                                         } else {
2006                                                                                                 panic!("Stated return value requirements in get_update_fail_htlc() were not met");
2007                                                                                         }
2008                                                                                         // fail-backs are best-effort, we probably already have one
2009                                                                                         // pending, and if not that's OK, if not, the channel is on
2010                                                                                         // the chain and sending the HTLC-Timeout is their problem.
2011                                                                                         continue;
2012                                                                                 },
2013                                                                                 Ok(Some(msg)) => { fail_htlc_msgs.push(msg); },
2014                                                                                 Ok(None) => {
2015                                                                                         // Nothing to do here...we're waiting on a remote
2016                                                                                         // revoke_and_ack before we can update the commitment
2017                                                                                         // transaction. The Channel will automatically handle
2018                                                                                         // building the update_fail_htlc and commitment_signed
2019                                                                                         // messages when we can.
2020                                                                                         // We don't need any kind of timer here as they should fail
2021                                                                                         // the channel onto the chain if they can't get our
2022                                                                                         // update_fail_htlc in time, it's not our problem.
2023                                                                                 }
2024                                                                         }
2025                                                                 },
2026                                                         }
2027                                                 }
2028
2029                                                 if !add_htlc_msgs.is_empty() || !fail_htlc_msgs.is_empty() {
2030                                                         let (commitment_msg, monitor_update) = match chan.get_mut().send_commitment(&self.logger) {
2031                                                                 Ok(res) => res,
2032                                                                 Err(e) => {
2033                                                                         // We surely failed send_commitment due to bad keys, in that case
2034                                                                         // close channel and then send error message to peer.
2035                                                                         let counterparty_node_id = chan.get().get_counterparty_node_id();
2036                                                                         let err: Result<(), _>  = match e {
2037                                                                                 ChannelError::Ignore(_) => {
2038                                                                                         panic!("Stated return value requirements in send_commitment() were not met");
2039                                                                                 },
2040                                                                                 ChannelError::Close(msg) => {
2041                                                                                         log_trace!(self.logger, "Closing channel {} due to Close-required error: {}", log_bytes!(chan.key()[..]), msg);
2042                                                                                         let (channel_id, mut channel) = chan.remove_entry();
2043                                                                                         if let Some(short_id) = channel.get_short_channel_id() {
2044                                                                                                 channel_state.short_to_id.remove(&short_id);
2045                                                                                         }
2046                                                                                         Err(MsgHandleErrInternal::from_finish_shutdown(msg, channel_id, channel.force_shutdown(true), self.get_channel_update(&channel).ok()))
2047                                                                                 },
2048                                                                                 ChannelError::CloseDelayBroadcast(_) => { panic!("Wait is only generated on receipt of channel_reestablish, which is handled by try_chan_entry, we don't bother to support it here"); }
2049                                                                         };
2050                                                                         handle_errors.push((counterparty_node_id, err));
2051                                                                         continue;
2052                                                                 }
2053                                                         };
2054                                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2055                                                                 handle_errors.push((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, true)));
2056                                                                 continue;
2057                                                         }
2058                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2059                                                                 node_id: chan.get().get_counterparty_node_id(),
2060                                                                 updates: msgs::CommitmentUpdate {
2061                                                                         update_add_htlcs: add_htlc_msgs,
2062                                                                         update_fulfill_htlcs: Vec::new(),
2063                                                                         update_fail_htlcs: fail_htlc_msgs,
2064                                                                         update_fail_malformed_htlcs: Vec::new(),
2065                                                                         update_fee: None,
2066                                                                         commitment_signed: commitment_msg,
2067                                                                 },
2068                                                         });
2069                                                 }
2070                                         } else {
2071                                                 unreachable!();
2072                                         }
2073                                 } else {
2074                                         for forward_info in pending_forwards.drain(..) {
2075                                                 match forward_info {
2076                                                         HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_htlc_id, forward_info: PendingHTLCInfo {
2077                                                                         routing: PendingHTLCRouting::Receive { payment_data, incoming_cltv_expiry },
2078                                                                         incoming_shared_secret, payment_hash, amt_to_forward, .. },
2079                                                                         prev_funding_outpoint } => {
2080                                                                 let claimable_htlc = ClaimableHTLC {
2081                                                                         prev_hop: HTLCPreviousHopData {
2082                                                                                 short_channel_id: prev_short_channel_id,
2083                                                                                 outpoint: prev_funding_outpoint,
2084                                                                                 htlc_id: prev_htlc_id,
2085                                                                                 incoming_packet_shared_secret: incoming_shared_secret,
2086                                                                         },
2087                                                                         value: amt_to_forward,
2088                                                                         payment_data: payment_data.clone(),
2089                                                                         cltv_expiry: incoming_cltv_expiry,
2090                                                                 };
2091
2092                                                                 macro_rules! fail_htlc {
2093                                                                         ($htlc: expr) => {
2094                                                                                 let mut htlc_msat_height_data = byte_utils::be64_to_array($htlc.value).to_vec();
2095                                                                                 htlc_msat_height_data.extend_from_slice(
2096                                                                                         &byte_utils::be32_to_array(self.best_block.read().unwrap().height()),
2097                                                                                 );
2098                                                                                 failed_forwards.push((HTLCSource::PreviousHopData(HTLCPreviousHopData {
2099                                                                                                 short_channel_id: $htlc.prev_hop.short_channel_id,
2100                                                                                                 outpoint: prev_funding_outpoint,
2101                                                                                                 htlc_id: $htlc.prev_hop.htlc_id,
2102                                                                                                 incoming_packet_shared_secret: $htlc.prev_hop.incoming_packet_shared_secret,
2103                                                                                         }), payment_hash,
2104                                                                                         HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data }
2105                                                                                 ));
2106                                                                         }
2107                                                                 }
2108
2109                                                                 // Check that the payment hash and secret are known. Note that we
2110                                                                 // MUST take care to handle the "unknown payment hash" and
2111                                                                 // "incorrect payment secret" cases here identically or we'd expose
2112                                                                 // that we are the ultimate recipient of the given payment hash.
2113                                                                 // Further, we must not expose whether we have any other HTLCs
2114                                                                 // associated with the same payment_hash pending or not.
2115                                                                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
2116                                                                 match payment_secrets.entry(payment_hash) {
2117                                                                         hash_map::Entry::Vacant(_) => {
2118                                                                                 log_trace!(self.logger, "Failing new HTLC with payment_hash {} as we didn't have a corresponding inbound payment.", log_bytes!(payment_hash.0));
2119                                                                                 fail_htlc!(claimable_htlc);
2120                                                                         },
2121                                                                         hash_map::Entry::Occupied(inbound_payment) => {
2122                                                                                 if inbound_payment.get().payment_secret != payment_data.payment_secret {
2123                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our expected payment secret.", log_bytes!(payment_hash.0));
2124                                                                                         fail_htlc!(claimable_htlc);
2125                                                                                 } else if inbound_payment.get().min_value_msat.is_some() && payment_data.total_msat < inbound_payment.get().min_value_msat.unwrap() {
2126                                                                                         log_trace!(self.logger, "Failing new HTLC with payment_hash {} as it didn't match our minimum value (had {}, needed {}).",
2127                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, inbound_payment.get().min_value_msat.unwrap());
2128                                                                                         fail_htlc!(claimable_htlc);
2129                                                                                 } else {
2130                                                                                         let mut total_value = 0;
2131                                                                                         let htlcs = channel_state.claimable_htlcs.entry(payment_hash)
2132                                                                                                 .or_insert(Vec::new());
2133                                                                                         htlcs.push(claimable_htlc);
2134                                                                                         for htlc in htlcs.iter() {
2135                                                                                                 total_value += htlc.value;
2136                                                                                                 if htlc.payment_data.total_msat != payment_data.total_msat {
2137                                                                                                         log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the HTLCs had inconsistent total values (eg {} and {})",
2138                                                                                                                 log_bytes!(payment_hash.0), payment_data.total_msat, htlc.payment_data.total_msat);
2139                                                                                                         total_value = msgs::MAX_VALUE_MSAT;
2140                                                                                                 }
2141                                                                                                 if total_value >= msgs::MAX_VALUE_MSAT { break; }
2142                                                                                         }
2143                                                                                         if total_value >= msgs::MAX_VALUE_MSAT || total_value > payment_data.total_msat {
2144                                                                                                 log_trace!(self.logger, "Failing HTLCs with payment_hash {} as the total value {} ran over expected value {} (or HTLCs were inconsistent)",
2145                                                                                                         log_bytes!(payment_hash.0), total_value, payment_data.total_msat);
2146                                                                                                 for htlc in htlcs.iter() {
2147                                                                                                         fail_htlc!(htlc);
2148                                                                                                 }
2149                                                                                         } else if total_value == payment_data.total_msat {
2150                                                                                                 new_events.push(events::Event::PaymentReceived {
2151                                                                                                         payment_hash,
2152                                                                                                         payment_preimage: inbound_payment.get().payment_preimage,
2153                                                                                                         payment_secret: payment_data.payment_secret,
2154                                                                                                         amt: total_value,
2155                                                                                                         user_payment_id: inbound_payment.get().user_payment_id,
2156                                                                                                 });
2157                                                                                                 // Only ever generate at most one PaymentReceived
2158                                                                                                 // per registered payment_hash, even if it isn't
2159                                                                                                 // claimed.
2160                                                                                                 inbound_payment.remove_entry();
2161                                                                                         } else {
2162                                                                                                 // Nothing to do - we haven't reached the total
2163                                                                                                 // payment value yet, wait until we receive more
2164                                                                                                 // MPP parts.
2165                                                                                         }
2166                                                                                 }
2167                                                                         },
2168                                                                 };
2169                                                         },
2170                                                         HTLCForwardInfo::AddHTLC { .. } => {
2171                                                                 panic!("short_channel_id == 0 should imply any pending_forward entries are of type Receive");
2172                                                         },
2173                                                         HTLCForwardInfo::FailHTLC { .. } => {
2174                                                                 panic!("Got pending fail of our own HTLC");
2175                                                         }
2176                                                 }
2177                                         }
2178                                 }
2179                         }
2180                 }
2181
2182                 for (htlc_source, payment_hash, failure_reason) in failed_forwards.drain(..) {
2183                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, failure_reason);
2184                 }
2185
2186                 for (counterparty_node_id, err) in handle_errors.drain(..) {
2187                         let _ = handle_error!(self, err, counterparty_node_id);
2188                 }
2189
2190                 if new_events.is_empty() { return }
2191                 let mut events = self.pending_events.lock().unwrap();
2192                 events.append(&mut new_events);
2193         }
2194
2195         /// Free the background events, generally called from timer_tick_occurred.
2196         ///
2197         /// Exposed for testing to allow us to process events quickly without generating accidental
2198         /// BroadcastChannelUpdate events in timer_tick_occurred.
2199         ///
2200         /// Expects the caller to have a total_consistency_lock read lock.
2201         fn process_background_events(&self) -> bool {
2202                 let mut background_events = Vec::new();
2203                 mem::swap(&mut *self.pending_background_events.lock().unwrap(), &mut background_events);
2204                 if background_events.is_empty() {
2205                         return false;
2206                 }
2207
2208                 for event in background_events.drain(..) {
2209                         match event {
2210                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)) => {
2211                                         // The channel has already been closed, so no use bothering to care about the
2212                                         // monitor updating completing.
2213                                         let _ = self.chain_monitor.update_channel(funding_txo, update);
2214                                 },
2215                         }
2216                 }
2217                 true
2218         }
2219
2220         #[cfg(any(test, feature = "_test_utils"))]
2221         pub(crate) fn test_process_background_events(&self) {
2222                 self.process_background_events();
2223         }
2224
2225         /// If a peer is disconnected we mark any channels with that peer as 'disabled'.
2226         /// After some time, if channels are still disabled we need to broadcast a ChannelUpdate
2227         /// to inform the network about the uselessness of these channels.
2228         ///
2229         /// This method handles all the details, and must be called roughly once per minute.
2230         ///
2231         /// Note that in some rare cases this may generate a `chain::Watch::update_channel` call.
2232         pub fn timer_tick_occurred(&self) {
2233                 PersistenceNotifierGuard::optionally_notify(&self.total_consistency_lock, &self.persistence_notifier, || {
2234                         let mut should_persist = NotifyOption::SkipPersist;
2235                         if self.process_background_events() { should_persist = NotifyOption::DoPersist; }
2236
2237                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2238                         let channel_state = &mut *channel_state_lock;
2239                         for (_, chan) in channel_state.by_id.iter_mut() {
2240                                 match chan.channel_update_status() {
2241                                         ChannelUpdateStatus::Enabled if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::DisabledStaged),
2242                                         ChannelUpdateStatus::Disabled if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::EnabledStaged),
2243                                         ChannelUpdateStatus::DisabledStaged if chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Enabled),
2244                                         ChannelUpdateStatus::EnabledStaged if !chan.is_live() => chan.set_channel_update_status(ChannelUpdateStatus::Disabled),
2245                                         ChannelUpdateStatus::DisabledStaged if !chan.is_live() => {
2246                                                 if let Ok(update) = self.get_channel_update(&chan) {
2247                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2248                                                                 msg: update
2249                                                         });
2250                                                 }
2251                                                 should_persist = NotifyOption::DoPersist;
2252                                                 chan.set_channel_update_status(ChannelUpdateStatus::Disabled);
2253                                         },
2254                                         ChannelUpdateStatus::EnabledStaged if chan.is_live() => {
2255                                                 if let Ok(update) = self.get_channel_update(&chan) {
2256                                                         channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2257                                                                 msg: update
2258                                                         });
2259                                                 }
2260                                                 should_persist = NotifyOption::DoPersist;
2261                                                 chan.set_channel_update_status(ChannelUpdateStatus::Enabled);
2262                                         },
2263                                         _ => {},
2264                                 }
2265                         }
2266
2267                         should_persist
2268                 });
2269         }
2270
2271         /// Indicates that the preimage for payment_hash is unknown or the received amount is incorrect
2272         /// after a PaymentReceived event, failing the HTLC back to its origin and freeing resources
2273         /// along the path (including in our own channel on which we received it).
2274         /// Returns false if no payment was found to fail backwards, true if the process of failing the
2275         /// HTLC backwards has been started.
2276         pub fn fail_htlc_backwards(&self, payment_hash: &PaymentHash) -> bool {
2277                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2278
2279                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2280                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(payment_hash);
2281                 if let Some(mut sources) = removed_source {
2282                         for htlc in sources.drain(..) {
2283                                 if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2284                                 let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2285                                 htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2286                                                 self.best_block.read().unwrap().height()));
2287                                 self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2288                                                 HTLCSource::PreviousHopData(htlc.prev_hop), payment_hash,
2289                                                 HTLCFailReason::Reason { failure_code: 0x4000 | 15, data: htlc_msat_height_data });
2290                         }
2291                         true
2292                 } else { false }
2293         }
2294
2295         // Fail a list of HTLCs that were just freed from the holding cell. The HTLCs need to be
2296         // failed backwards or, if they were one of our outgoing HTLCs, then their failure needs to
2297         // be surfaced to the user.
2298         fn fail_holding_cell_htlcs(&self, mut htlcs_to_fail: Vec<(HTLCSource, PaymentHash)>, channel_id: [u8; 32]) {
2299                 for (htlc_src, payment_hash) in htlcs_to_fail.drain(..) {
2300                         match htlc_src {
2301                                 HTLCSource::PreviousHopData(HTLCPreviousHopData { .. }) => {
2302                                         let (failure_code, onion_failure_data) =
2303                                                 match self.channel_state.lock().unwrap().by_id.entry(channel_id) {
2304                                                         hash_map::Entry::Occupied(chan_entry) => {
2305                                                                 if let Ok(upd) = self.get_channel_update(&chan_entry.get()) {
2306                                                                         (0x1000|7, upd.encode_with_len())
2307                                                                 } else {
2308                                                                         (0x4000|10, Vec::new())
2309                                                                 }
2310                                                         },
2311                                                         hash_map::Entry::Vacant(_) => (0x4000|10, Vec::new())
2312                                                 };
2313                                         let channel_state = self.channel_state.lock().unwrap();
2314                                         self.fail_htlc_backwards_internal(channel_state,
2315                                                 htlc_src, &payment_hash, HTLCFailReason::Reason { failure_code, data: onion_failure_data});
2316                                 },
2317                                 HTLCSource::OutboundRoute { session_priv, .. } => {
2318                                         if {
2319                                                 let mut session_priv_bytes = [0; 32];
2320                                                 session_priv_bytes.copy_from_slice(&session_priv[..]);
2321                                                 self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2322                                         } {
2323                                                 self.pending_events.lock().unwrap().push(
2324                                                         events::Event::PaymentFailed {
2325                                                                 payment_hash,
2326                                                                 rejected_by_dest: false,
2327 #[cfg(test)]
2328                                                                 error_code: None,
2329 #[cfg(test)]
2330                                                                 error_data: None,
2331                                                         }
2332                                                 )
2333                                         } else {
2334                                                 log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2335                                         }
2336                                 },
2337                         };
2338                 }
2339         }
2340
2341         /// Fails an HTLC backwards to the sender of it to us.
2342         /// Note that while we take a channel_state lock as input, we do *not* assume consistency here.
2343         /// There are several callsites that do stupid things like loop over a list of payment_hashes
2344         /// to fail and take the channel_state lock for each iteration (as we take ownership and may
2345         /// drop it). In other words, no assumptions are made that entries in claimable_htlcs point to
2346         /// still-available channels.
2347         fn fail_htlc_backwards_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_hash: &PaymentHash, onion_error: HTLCFailReason) {
2348                 //TODO: There is a timing attack here where if a node fails an HTLC back to us they can
2349                 //identify whether we sent it or not based on the (I presume) very different runtime
2350                 //between the branches here. We should make this async and move it into the forward HTLCs
2351                 //timer handling.
2352
2353                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
2354                 // from block_connected which may run during initialization prior to the chain_monitor
2355                 // being fully configured. See the docs for `ChannelManagerReadArgs` for more.
2356                 match source {
2357                         HTLCSource::OutboundRoute { ref path, session_priv, .. } => {
2358                                 if {
2359                                         let mut session_priv_bytes = [0; 32];
2360                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2361                                         !self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2362                                 } {
2363                                         log_trace!(self.logger, "Received duplicative fail for HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2364                                         return;
2365                                 }
2366                                 log_trace!(self.logger, "Failing outbound payment HTLC with payment_hash {}", log_bytes!(payment_hash.0));
2367                                 mem::drop(channel_state_lock);
2368                                 match &onion_error {
2369                                         &HTLCFailReason::LightningError { ref err } => {
2370 #[cfg(test)]
2371                                                 let (channel_update, payment_retryable, onion_error_code, onion_error_data) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2372 #[cfg(not(test))]
2373                                                 let (channel_update, payment_retryable, _, _) = onion_utils::process_onion_failure(&self.secp_ctx, &self.logger, &source, err.data.clone());
2374                                                 // TODO: If we decided to blame ourselves (or one of our channels) in
2375                                                 // process_onion_failure we should close that channel as it implies our
2376                                                 // next-hop is needlessly blaming us!
2377                                                 if let Some(update) = channel_update {
2378                                                         self.channel_state.lock().unwrap().pending_msg_events.push(
2379                                                                 events::MessageSendEvent::PaymentFailureNetworkUpdate {
2380                                                                         update,
2381                                                                 }
2382                                                         );
2383                                                 }
2384                                                 self.pending_events.lock().unwrap().push(
2385                                                         events::Event::PaymentFailed {
2386                                                                 payment_hash: payment_hash.clone(),
2387                                                                 rejected_by_dest: !payment_retryable,
2388 #[cfg(test)]
2389                                                                 error_code: onion_error_code,
2390 #[cfg(test)]
2391                                                                 error_data: onion_error_data
2392                                                         }
2393                                                 );
2394                                         },
2395                                         &HTLCFailReason::Reason {
2396 #[cfg(test)]
2397                                                         ref failure_code,
2398 #[cfg(test)]
2399                                                         ref data,
2400                                                         .. } => {
2401                                                 // we get a fail_malformed_htlc from the first hop
2402                                                 // TODO: We'd like to generate a PaymentFailureNetworkUpdate for temporary
2403                                                 // failures here, but that would be insufficient as get_route
2404                                                 // generally ignores its view of our own channels as we provide them via
2405                                                 // ChannelDetails.
2406                                                 // TODO: For non-temporary failures, we really should be closing the
2407                                                 // channel here as we apparently can't relay through them anyway.
2408                                                 self.pending_events.lock().unwrap().push(
2409                                                         events::Event::PaymentFailed {
2410                                                                 payment_hash: payment_hash.clone(),
2411                                                                 rejected_by_dest: path.len() == 1,
2412 #[cfg(test)]
2413                                                                 error_code: Some(*failure_code),
2414 #[cfg(test)]
2415                                                                 error_data: Some(data.clone()),
2416                                                         }
2417                                                 );
2418                                         }
2419                                 }
2420                         },
2421                         HTLCSource::PreviousHopData(HTLCPreviousHopData { short_channel_id, htlc_id, incoming_packet_shared_secret, .. }) => {
2422                                 let err_packet = match onion_error {
2423                                         HTLCFailReason::Reason { failure_code, data } => {
2424                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards from us with code {}", log_bytes!(payment_hash.0), failure_code);
2425                                                 let packet = onion_utils::build_failure_packet(&incoming_packet_shared_secret, failure_code, &data[..]).encode();
2426                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &packet)
2427                                         },
2428                                         HTLCFailReason::LightningError { err } => {
2429                                                 log_trace!(self.logger, "Failing HTLC with payment_hash {} backwards with pre-built LightningError", log_bytes!(payment_hash.0));
2430                                                 onion_utils::encrypt_failure_packet(&incoming_packet_shared_secret, &err.data)
2431                                         }
2432                                 };
2433
2434                                 let mut forward_event = None;
2435                                 if channel_state_lock.forward_htlcs.is_empty() {
2436                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS));
2437                                 }
2438                                 match channel_state_lock.forward_htlcs.entry(short_channel_id) {
2439                                         hash_map::Entry::Occupied(mut entry) => {
2440                                                 entry.get_mut().push(HTLCForwardInfo::FailHTLC { htlc_id, err_packet });
2441                                         },
2442                                         hash_map::Entry::Vacant(entry) => {
2443                                                 entry.insert(vec!(HTLCForwardInfo::FailHTLC { htlc_id, err_packet }));
2444                                         }
2445                                 }
2446                                 mem::drop(channel_state_lock);
2447                                 if let Some(time) = forward_event {
2448                                         let mut pending_events = self.pending_events.lock().unwrap();
2449                                         pending_events.push(events::Event::PendingHTLCsForwardable {
2450                                                 time_forwardable: time
2451                                         });
2452                                 }
2453                         },
2454                 }
2455         }
2456
2457         /// Provides a payment preimage in response to a PaymentReceived event, returning true and
2458         /// generating message events for the net layer to claim the payment, if possible. Thus, you
2459         /// should probably kick the net layer to go send messages if this returns true!
2460         ///
2461         /// Note that if you did not set an `amount_msat` when calling [`create_inbound_payment`] or
2462         /// [`create_inbound_payment_for_hash`] you must check that the amount in the `PaymentReceived`
2463         /// event matches your expectation. If you fail to do so and call this method, you may provide
2464         /// the sender "proof-of-payment" when they did not fulfill the full expected payment.
2465         ///
2466         /// May panic if called except in response to a PaymentReceived event.
2467         ///
2468         /// [`create_inbound_payment`]: Self::create_inbound_payment
2469         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
2470         pub fn claim_funds(&self, payment_preimage: PaymentPreimage) -> bool {
2471                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
2472
2473                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2474
2475                 let mut channel_state = Some(self.channel_state.lock().unwrap());
2476                 let removed_source = channel_state.as_mut().unwrap().claimable_htlcs.remove(&payment_hash);
2477                 if let Some(mut sources) = removed_source {
2478                         assert!(!sources.is_empty());
2479
2480                         // If we are claiming an MPP payment, we have to take special care to ensure that each
2481                         // channel exists before claiming all of the payments (inside one lock).
2482                         // Note that channel existance is sufficient as we should always get a monitor update
2483                         // which will take care of the real HTLC claim enforcement.
2484                         //
2485                         // If we find an HTLC which we would need to claim but for which we do not have a
2486                         // channel, we will fail all parts of the MPP payment. While we could wait and see if
2487                         // the sender retries the already-failed path(s), it should be a pretty rare case where
2488                         // we got all the HTLCs and then a channel closed while we were waiting for the user to
2489                         // provide the preimage, so worrying too much about the optimal handling isn't worth
2490                         // it.
2491                         let mut valid_mpp = true;
2492                         for htlc in sources.iter() {
2493                                 if let None = channel_state.as_ref().unwrap().short_to_id.get(&htlc.prev_hop.short_channel_id) {
2494                                         valid_mpp = false;
2495                                         break;
2496                                 }
2497                         }
2498
2499                         let mut errs = Vec::new();
2500                         let mut claimed_any_htlcs = false;
2501                         for htlc in sources.drain(..) {
2502                                 if !valid_mpp {
2503                                         if channel_state.is_none() { channel_state = Some(self.channel_state.lock().unwrap()); }
2504                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
2505                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(
2506                                                         self.best_block.read().unwrap().height()));
2507                                         self.fail_htlc_backwards_internal(channel_state.take().unwrap(),
2508                                                                          HTLCSource::PreviousHopData(htlc.prev_hop), &payment_hash,
2509                                                                          HTLCFailReason::Reason { failure_code: 0x4000|15, data: htlc_msat_height_data });
2510                                 } else {
2511                                         match self.claim_funds_from_hop(channel_state.as_mut().unwrap(), htlc.prev_hop, payment_preimage) {
2512                                                 Err(Some(e)) => {
2513                                                         if let msgs::ErrorAction::IgnoreError = e.1.err.action {
2514                                                                 // We got a temporary failure updating monitor, but will claim the
2515                                                                 // HTLC when the monitor updating is restored (or on chain).
2516                                                                 log_error!(self.logger, "Temporary failure claiming HTLC, treating as success: {}", e.1.err.err);
2517                                                                 claimed_any_htlcs = true;
2518                                                         } else { errs.push(e); }
2519                                                 },
2520                                                 Err(None) => unreachable!("We already checked for channel existence, we can't fail here!"),
2521                                                 Ok(()) => claimed_any_htlcs = true,
2522                                         }
2523                                 }
2524                         }
2525
2526                         // Now that we've done the entire above loop in one lock, we can handle any errors
2527                         // which were generated.
2528                         channel_state.take();
2529
2530                         for (counterparty_node_id, err) in errs.drain(..) {
2531                                 let res: Result<(), _> = Err(err);
2532                                 let _ = handle_error!(self, res, counterparty_node_id);
2533                         }
2534
2535                         claimed_any_htlcs
2536                 } else { false }
2537         }
2538
2539         fn claim_funds_from_hop(&self, channel_state_lock: &mut MutexGuard<ChannelHolder<Signer>>, prev_hop: HTLCPreviousHopData, payment_preimage: PaymentPreimage) -> Result<(), Option<(PublicKey, MsgHandleErrInternal)>> {
2540                 //TODO: Delay the claimed_funds relaying just like we do outbound relay!
2541                 let channel_state = &mut **channel_state_lock;
2542                 let chan_id = match channel_state.short_to_id.get(&prev_hop.short_channel_id) {
2543                         Some(chan_id) => chan_id.clone(),
2544                         None => {
2545                                 return Err(None)
2546                         }
2547                 };
2548
2549                 if let hash_map::Entry::Occupied(mut chan) = channel_state.by_id.entry(chan_id) {
2550                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
2551                         match chan.get_mut().get_update_fulfill_htlc_and_commit(prev_hop.htlc_id, payment_preimage, &self.logger) {
2552                                 Ok((msgs, monitor_option)) => {
2553                                         if let Some(monitor_update) = monitor_option {
2554                                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
2555                                                         if was_frozen_for_monitor {
2556                                                                 assert!(msgs.is_none());
2557                                                         } else {
2558                                                                 return Err(Some((chan.get().get_counterparty_node_id(), handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, msgs.is_some()).unwrap_err())));
2559                                                         }
2560                                                 }
2561                                         }
2562                                         if let Some((msg, commitment_signed)) = msgs {
2563                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
2564                                                         node_id: chan.get().get_counterparty_node_id(),
2565                                                         updates: msgs::CommitmentUpdate {
2566                                                                 update_add_htlcs: Vec::new(),
2567                                                                 update_fulfill_htlcs: vec![msg],
2568                                                                 update_fail_htlcs: Vec::new(),
2569                                                                 update_fail_malformed_htlcs: Vec::new(),
2570                                                                 update_fee: None,
2571                                                                 commitment_signed,
2572                                                         }
2573                                                 });
2574                                         }
2575                                         return Ok(())
2576                                 },
2577                                 Err(e) => {
2578                                         // TODO: Do something with e?
2579                                         // This should only occur if we are claiming an HTLC at the same time as the
2580                                         // HTLC is being failed (eg because a block is being connected and this caused
2581                                         // an HTLC to time out). This should, of course, only occur if the user is the
2582                                         // one doing the claiming (as it being a part of a peer claim would imply we're
2583                                         // about to lose funds) and only if the lock in claim_funds was dropped as a
2584                                         // previous HTLC was failed (thus not for an MPP payment).
2585                                         debug_assert!(false, "This shouldn't be reachable except in absurdly rare cases between monitor updates and HTLC timeouts: {:?}", e);
2586                                         return Err(None)
2587                                 },
2588                         }
2589                 } else { unreachable!(); }
2590         }
2591
2592         fn claim_funds_internal(&self, mut channel_state_lock: MutexGuard<ChannelHolder<Signer>>, source: HTLCSource, payment_preimage: PaymentPreimage) {
2593                 match source {
2594                         HTLCSource::OutboundRoute { session_priv, .. } => {
2595                                 mem::drop(channel_state_lock);
2596                                 if {
2597                                         let mut session_priv_bytes = [0; 32];
2598                                         session_priv_bytes.copy_from_slice(&session_priv[..]);
2599                                         self.pending_outbound_payments.lock().unwrap().remove(&session_priv_bytes)
2600                                 } {
2601                                         let mut pending_events = self.pending_events.lock().unwrap();
2602                                         pending_events.push(events::Event::PaymentSent {
2603                                                 payment_preimage
2604                                         });
2605                                 } else {
2606                                         log_trace!(self.logger, "Received duplicative fulfill for HTLC with payment_preimage {}", log_bytes!(payment_preimage.0));
2607                                 }
2608                         },
2609                         HTLCSource::PreviousHopData(hop_data) => {
2610                                 let prev_outpoint = hop_data.outpoint;
2611                                 if let Err((counterparty_node_id, err)) = match self.claim_funds_from_hop(&mut channel_state_lock, hop_data, payment_preimage) {
2612                                         Ok(()) => Ok(()),
2613                                         Err(None) => {
2614                                                 let preimage_update = ChannelMonitorUpdate {
2615                                                         update_id: CLOSED_CHANNEL_UPDATE_ID,
2616                                                         updates: vec![ChannelMonitorUpdateStep::PaymentPreimage {
2617                                                                 payment_preimage: payment_preimage.clone(),
2618                                                         }],
2619                                                 };
2620                                                 // We update the ChannelMonitor on the backward link, after
2621                                                 // receiving an offchain preimage event from the forward link (the
2622                                                 // event being update_fulfill_htlc).
2623                                                 if let Err(e) = self.chain_monitor.update_channel(prev_outpoint, preimage_update) {
2624                                                         log_error!(self.logger, "Critical error: failed to update channel monitor with preimage {:?}: {:?}",
2625                                                                    payment_preimage, e);
2626                                                 }
2627                                                 Ok(())
2628                                         },
2629                                         Err(Some(res)) => Err(res),
2630                                 } {
2631                                         mem::drop(channel_state_lock);
2632                                         let res: Result<(), _> = Err(err);
2633                                         let _ = handle_error!(self, res, counterparty_node_id);
2634                                 }
2635                         },
2636                 }
2637         }
2638
2639         /// Gets the node_id held by this ChannelManager
2640         pub fn get_our_node_id(&self) -> PublicKey {
2641                 self.our_network_pubkey.clone()
2642         }
2643
2644         /// Restores a single, given channel to normal operation after a
2645         /// ChannelMonitorUpdateErr::TemporaryFailure was returned from a channel monitor update
2646         /// operation.
2647         ///
2648         /// All ChannelMonitor updates up to and including highest_applied_update_id must have been
2649         /// fully committed in every copy of the given channels' ChannelMonitors.
2650         ///
2651         /// Note that there is no effect to calling with a highest_applied_update_id other than the
2652         /// current latest ChannelMonitorUpdate and one call to this function after multiple
2653         /// ChannelMonitorUpdateErr::TemporaryFailures is fine. The highest_applied_update_id field
2654         /// exists largely only to prevent races between this and concurrent update_monitor calls.
2655         ///
2656         /// Thus, the anticipated use is, at a high level:
2657         ///  1) You register a chain::Watch with this ChannelManager,
2658         ///  2) it stores each update to disk, and begins updating any remote (eg watchtower) copies of
2659         ///     said ChannelMonitors as it can, returning ChannelMonitorUpdateErr::TemporaryFailures
2660         ///     any time it cannot do so instantly,
2661         ///  3) update(s) are applied to each remote copy of a ChannelMonitor,
2662         ///  4) once all remote copies are updated, you call this function with the update_id that
2663         ///     completed, and once it is the latest the Channel will be re-enabled.
2664         pub fn channel_monitor_updated(&self, funding_txo: &OutPoint, highest_applied_update_id: u64) {
2665                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
2666
2667                 let (mut pending_failures, chan_restoration_res) = {
2668                         let mut channel_lock = self.channel_state.lock().unwrap();
2669                         let channel_state = &mut *channel_lock;
2670                         let mut channel = match channel_state.by_id.entry(funding_txo.to_channel_id()) {
2671                                 hash_map::Entry::Occupied(chan) => chan,
2672                                 hash_map::Entry::Vacant(_) => return,
2673                         };
2674                         if !channel.get().is_awaiting_monitor_update() || channel.get().get_latest_monitor_update_id() != highest_applied_update_id {
2675                                 return;
2676                         }
2677
2678                         let (raa, commitment_update, order, pending_forwards, pending_failures, funding_broadcastable, funding_locked) = channel.get_mut().monitor_updating_restored(&self.logger);
2679                         (pending_failures, handle_chan_restoration_locked!(self, channel_lock, channel_state, channel, raa, commitment_update, order, pending_forwards, funding_broadcastable, funding_locked))
2680                 };
2681                 post_handle_chan_restoration!(self, chan_restoration_res);
2682                 for failure in pending_failures.drain(..) {
2683                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
2684                 }
2685         }
2686
2687         fn internal_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) -> Result<(), MsgHandleErrInternal> {
2688                 if msg.chain_hash != self.genesis_hash {
2689                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Unknown genesis block hash".to_owned(), msg.temporary_channel_id.clone()));
2690                 }
2691
2692                 let channel = Channel::new_from_req(&self.fee_estimator, &self.keys_manager, counterparty_node_id.clone(), their_features, msg, 0, &self.default_configuration)
2693                         .map_err(|e| MsgHandleErrInternal::from_chan_no_close(e, msg.temporary_channel_id))?;
2694                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2695                 let channel_state = &mut *channel_state_lock;
2696                 match channel_state.by_id.entry(channel.channel_id()) {
2697                         hash_map::Entry::Occupied(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("temporary_channel_id collision!".to_owned(), msg.temporary_channel_id.clone())),
2698                         hash_map::Entry::Vacant(entry) => {
2699                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendAcceptChannel {
2700                                         node_id: counterparty_node_id.clone(),
2701                                         msg: channel.get_accept_channel(),
2702                                 });
2703                                 entry.insert(channel);
2704                         }
2705                 }
2706                 Ok(())
2707         }
2708
2709         fn internal_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) -> Result<(), MsgHandleErrInternal> {
2710                 let (value, output_script, user_id) = {
2711                         let mut channel_lock = self.channel_state.lock().unwrap();
2712                         let channel_state = &mut *channel_lock;
2713                         match channel_state.by_id.entry(msg.temporary_channel_id) {
2714                                 hash_map::Entry::Occupied(mut chan) => {
2715                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2716                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2717                                         }
2718                                         try_chan_entry!(self, chan.get_mut().accept_channel(&msg, &self.default_configuration, their_features), channel_state, chan);
2719                                         (chan.get().get_value_satoshis(), chan.get().get_funding_redeemscript().to_v0_p2wsh(), chan.get().get_user_id())
2720                                 },
2721                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2722                         }
2723                 };
2724                 let mut pending_events = self.pending_events.lock().unwrap();
2725                 pending_events.push(events::Event::FundingGenerationReady {
2726                         temporary_channel_id: msg.temporary_channel_id,
2727                         channel_value_satoshis: value,
2728                         output_script,
2729                         user_channel_id: user_id,
2730                 });
2731                 Ok(())
2732         }
2733
2734         fn internal_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) -> Result<(), MsgHandleErrInternal> {
2735                 let ((funding_msg, monitor), mut chan) = {
2736                         let best_block = *self.best_block.read().unwrap();
2737                         let mut channel_lock = self.channel_state.lock().unwrap();
2738                         let channel_state = &mut *channel_lock;
2739                         match channel_state.by_id.entry(msg.temporary_channel_id.clone()) {
2740                                 hash_map::Entry::Occupied(mut chan) => {
2741                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2742                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.temporary_channel_id));
2743                                         }
2744                                         (try_chan_entry!(self, chan.get_mut().funding_created(msg, best_block, &self.logger), channel_state, chan), chan.remove())
2745                                 },
2746                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.temporary_channel_id))
2747                         }
2748                 };
2749                 // Because we have exclusive ownership of the channel here we can release the channel_state
2750                 // lock before watch_channel
2751                 if let Err(e) = self.chain_monitor.watch_channel(monitor.get_funding_txo().0, monitor) {
2752                         match e {
2753                                 ChannelMonitorUpdateErr::PermanentFailure => {
2754                                         // Note that we reply with the new channel_id in error messages if we gave up on the
2755                                         // channel, not the temporary_channel_id. This is compatible with ourselves, but the
2756                                         // spec is somewhat ambiguous here. Not a huge deal since we'll send error messages for
2757                                         // any messages referencing a previously-closed channel anyway.
2758                                         // We do not do a force-close here as that would generate a monitor update for
2759                                         // a monitor that we didn't manage to store (and that we don't care about - we
2760                                         // don't respond with the funding_signed so the channel can never go on chain).
2761                                         let (_monitor_update, failed_htlcs) = chan.force_shutdown(true);
2762                                         assert!(failed_htlcs.is_empty());
2763                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("ChannelMonitor storage failure".to_owned(), funding_msg.channel_id));
2764                                 },
2765                                 ChannelMonitorUpdateErr::TemporaryFailure => {
2766                                         // There's no problem signing a counterparty's funding transaction if our monitor
2767                                         // hasn't persisted to disk yet - we can't lose money on a transaction that we haven't
2768                                         // accepted payment from yet. We do, however, need to wait to send our funding_locked
2769                                         // until we have persisted our monitor.
2770                                         chan.monitor_update_failed(false, false, Vec::new(), Vec::new());
2771                                 },
2772                         }
2773                 }
2774                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2775                 let channel_state = &mut *channel_state_lock;
2776                 match channel_state.by_id.entry(funding_msg.channel_id) {
2777                         hash_map::Entry::Occupied(_) => {
2778                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Already had channel with the new channel_id".to_owned(), funding_msg.channel_id))
2779                         },
2780                         hash_map::Entry::Vacant(e) => {
2781                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingSigned {
2782                                         node_id: counterparty_node_id.clone(),
2783                                         msg: funding_msg,
2784                                 });
2785                                 e.insert(chan);
2786                         }
2787                 }
2788                 Ok(())
2789         }
2790
2791         fn internal_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) -> Result<(), MsgHandleErrInternal> {
2792                 let funding_tx = {
2793                         let best_block = *self.best_block.read().unwrap();
2794                         let mut channel_lock = self.channel_state.lock().unwrap();
2795                         let channel_state = &mut *channel_lock;
2796                         match channel_state.by_id.entry(msg.channel_id) {
2797                                 hash_map::Entry::Occupied(mut chan) => {
2798                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2799                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2800                                         }
2801                                         let (monitor, funding_tx) = match chan.get_mut().funding_signed(&msg, best_block, &self.logger) {
2802                                                 Ok(update) => update,
2803                                                 Err(e) => try_chan_entry!(self, Err(e), channel_state, chan),
2804                                         };
2805                                         if let Err(e) = self.chain_monitor.watch_channel(chan.get().get_funding_txo().unwrap(), monitor) {
2806                                                 return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, false, false);
2807                                         }
2808                                         funding_tx
2809                                 },
2810                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2811                         }
2812                 };
2813                 log_info!(self.logger, "Broadcasting funding transaction with txid {}", funding_tx.txid());
2814                 self.tx_broadcaster.broadcast_transaction(&funding_tx);
2815                 Ok(())
2816         }
2817
2818         fn internal_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) -> Result<(), MsgHandleErrInternal> {
2819                 let mut channel_state_lock = self.channel_state.lock().unwrap();
2820                 let channel_state = &mut *channel_state_lock;
2821                 match channel_state.by_id.entry(msg.channel_id) {
2822                         hash_map::Entry::Occupied(mut chan) => {
2823                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2824                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2825                                 }
2826                                 try_chan_entry!(self, chan.get_mut().funding_locked(&msg), channel_state, chan);
2827                                 if let Some(announcement_sigs) = self.get_announcement_sigs(chan.get()) {
2828                                         log_trace!(self.logger, "Sending announcement_signatures for {} in response to funding_locked", log_bytes!(chan.get().channel_id()));
2829                                         // If we see locking block before receiving remote funding_locked, we broadcast our
2830                                         // announcement_sigs at remote funding_locked reception. If we receive remote
2831                                         // funding_locked before seeing locking block, we broadcast our announcement_sigs at locking
2832                                         // block connection. We should guanrantee to broadcast announcement_sigs to our peer whatever
2833                                         // the order of the events but our peer may not receive it due to disconnection. The specs
2834                                         // lacking an acknowledgement for announcement_sigs we may have to re-send them at peer
2835                                         // connection in the future if simultaneous misses by both peers due to network/hardware
2836                                         // failures is an issue. Note, to achieve its goal, only one of the announcement_sigs needs
2837                                         // to be received, from then sigs are going to be flood to the whole network.
2838                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
2839                                                 node_id: counterparty_node_id.clone(),
2840                                                 msg: announcement_sigs,
2841                                         });
2842                                 }
2843                                 Ok(())
2844                         },
2845                         hash_map::Entry::Vacant(_) => Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2846                 }
2847         }
2848
2849         fn internal_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) -> Result<(), MsgHandleErrInternal> {
2850                 let (mut dropped_htlcs, chan_option) = {
2851                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2852                         let channel_state = &mut *channel_state_lock;
2853
2854                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2855                                 hash_map::Entry::Occupied(mut chan_entry) => {
2856                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2857                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2858                                         }
2859                                         let (shutdown, closing_signed, dropped_htlcs) = try_chan_entry!(self, chan_entry.get_mut().shutdown(&self.fee_estimator, &their_features, &msg), channel_state, chan_entry);
2860                                         if let Some(msg) = shutdown {
2861                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
2862                                                         node_id: counterparty_node_id.clone(),
2863                                                         msg,
2864                                                 });
2865                                         }
2866                                         if let Some(msg) = closing_signed {
2867                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2868                                                         node_id: counterparty_node_id.clone(),
2869                                                         msg,
2870                                                 });
2871                                         }
2872                                         if chan_entry.get().is_shutdown() {
2873                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2874                                                         channel_state.short_to_id.remove(&short_id);
2875                                                 }
2876                                                 (dropped_htlcs, Some(chan_entry.remove_entry().1))
2877                                         } else { (dropped_htlcs, None) }
2878                                 },
2879                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2880                         }
2881                 };
2882                 for htlc_source in dropped_htlcs.drain(..) {
2883                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
2884                 }
2885                 if let Some(chan) = chan_option {
2886                         if let Ok(update) = self.get_channel_update(&chan) {
2887                                 let mut channel_state = self.channel_state.lock().unwrap();
2888                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2889                                         msg: update
2890                                 });
2891                         }
2892                 }
2893                 Ok(())
2894         }
2895
2896         fn internal_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) -> Result<(), MsgHandleErrInternal> {
2897                 let (tx, chan_option) = {
2898                         let mut channel_state_lock = self.channel_state.lock().unwrap();
2899                         let channel_state = &mut *channel_state_lock;
2900                         match channel_state.by_id.entry(msg.channel_id.clone()) {
2901                                 hash_map::Entry::Occupied(mut chan_entry) => {
2902                                         if chan_entry.get().get_counterparty_node_id() != *counterparty_node_id {
2903                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2904                                         }
2905                                         let (closing_signed, tx) = try_chan_entry!(self, chan_entry.get_mut().closing_signed(&self.fee_estimator, &msg), channel_state, chan_entry);
2906                                         if let Some(msg) = closing_signed {
2907                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
2908                                                         node_id: counterparty_node_id.clone(),
2909                                                         msg,
2910                                                 });
2911                                         }
2912                                         if tx.is_some() {
2913                                                 // We're done with this channel, we've got a signed closing transaction and
2914                                                 // will send the closing_signed back to the remote peer upon return. This
2915                                                 // also implies there are no pending HTLCs left on the channel, so we can
2916                                                 // fully delete it from tracking (the channel monitor is still around to
2917                                                 // watch for old state broadcasts)!
2918                                                 if let Some(short_id) = chan_entry.get().get_short_channel_id() {
2919                                                         channel_state.short_to_id.remove(&short_id);
2920                                                 }
2921                                                 (tx, Some(chan_entry.remove_entry().1))
2922                                         } else { (tx, None) }
2923                                 },
2924                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
2925                         }
2926                 };
2927                 if let Some(broadcast_tx) = tx {
2928                         log_info!(self.logger, "Broadcasting {}", log_tx!(broadcast_tx));
2929                         self.tx_broadcaster.broadcast_transaction(&broadcast_tx);
2930                 }
2931                 if let Some(chan) = chan_option {
2932                         if let Ok(update) = self.get_channel_update(&chan) {
2933                                 let mut channel_state = self.channel_state.lock().unwrap();
2934                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
2935                                         msg: update
2936                                 });
2937                         }
2938                 }
2939                 Ok(())
2940         }
2941
2942         fn internal_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) -> Result<(), MsgHandleErrInternal> {
2943                 //TODO: BOLT 4 points out a specific attack where a peer may re-send an onion packet and
2944                 //determine the state of the payment based on our response/if we forward anything/the time
2945                 //we take to respond. We should take care to avoid allowing such an attack.
2946                 //
2947                 //TODO: There exists a further attack where a node may garble the onion data, forward it to
2948                 //us repeatedly garbled in different ways, and compare our error messages, which are
2949                 //encrypted with the same key. It's not immediately obvious how to usefully exploit that,
2950                 //but we should prevent it anyway.
2951
2952                 let (pending_forward_info, mut channel_state_lock) = self.decode_update_add_htlc_onion(msg);
2953                 let channel_state = &mut *channel_state_lock;
2954
2955                 match channel_state.by_id.entry(msg.channel_id) {
2956                         hash_map::Entry::Occupied(mut chan) => {
2957                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
2958                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
2959                                 }
2960
2961                                 let create_pending_htlc_status = |chan: &Channel<Signer>, pending_forward_info: PendingHTLCStatus, error_code: u16| {
2962                                         // Ensure error_code has the UPDATE flag set, since by default we send a
2963                                         // channel update along as part of failing the HTLC.
2964                                         assert!((error_code & 0x1000) != 0);
2965                                         // If the update_add is completely bogus, the call will Err and we will close,
2966                                         // but if we've sent a shutdown and they haven't acknowledged it yet, we just
2967                                         // want to reject the new HTLC and fail it backwards instead of forwarding.
2968                                         match pending_forward_info {
2969                                                 PendingHTLCStatus::Forward(PendingHTLCInfo { ref incoming_shared_secret, .. }) => {
2970                                                         let reason = if let Ok(upd) = self.get_channel_update(chan) {
2971                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, error_code, &{
2972                                                                         let mut res = Vec::with_capacity(8 + 128);
2973                                                                         // TODO: underspecified, follow https://github.com/lightningnetwork/lightning-rfc/issues/791
2974                                                                         res.extend_from_slice(&byte_utils::be16_to_array(0));
2975                                                                         res.extend_from_slice(&upd.encode_with_len()[..]);
2976                                                                         res
2977                                                                 }[..])
2978                                                         } else {
2979                                                                 // The only case where we'd be unable to
2980                                                                 // successfully get a channel update is if the
2981                                                                 // channel isn't in the fully-funded state yet,
2982                                                                 // implying our counterparty is trying to route
2983                                                                 // payments over the channel back to themselves
2984                                                                 // (cause no one else should know the short_id
2985                                                                 // is a lightning channel yet). We should have
2986                                                                 // no problem just calling this
2987                                                                 // unknown_next_peer (0x4000|10).
2988                                                                 onion_utils::build_first_hop_failure_packet(incoming_shared_secret, 0x4000|10, &[])
2989                                                         };
2990                                                         let msg = msgs::UpdateFailHTLC {
2991                                                                 channel_id: msg.channel_id,
2992                                                                 htlc_id: msg.htlc_id,
2993                                                                 reason
2994                                                         };
2995                                                         PendingHTLCStatus::Fail(HTLCFailureMsg::Relay(msg))
2996                                                 },
2997                                                 _ => pending_forward_info
2998                                         }
2999                                 };
3000                                 try_chan_entry!(self, chan.get_mut().update_add_htlc(&msg, pending_forward_info, create_pending_htlc_status, &self.logger), channel_state, chan);
3001                         },
3002                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3003                 }
3004                 Ok(())
3005         }
3006
3007         fn internal_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) -> Result<(), MsgHandleErrInternal> {
3008                 let mut channel_lock = self.channel_state.lock().unwrap();
3009                 let htlc_source = {
3010                         let channel_state = &mut *channel_lock;
3011                         match channel_state.by_id.entry(msg.channel_id) {
3012                                 hash_map::Entry::Occupied(mut chan) => {
3013                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3014                                                 return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3015                                         }
3016                                         try_chan_entry!(self, chan.get_mut().update_fulfill_htlc(&msg), channel_state, chan)
3017                                 },
3018                                 hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3019                         }
3020                 };
3021                 self.claim_funds_internal(channel_lock, htlc_source, msg.payment_preimage.clone());
3022                 Ok(())
3023         }
3024
3025         fn internal_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) -> Result<(), MsgHandleErrInternal> {
3026                 let mut channel_lock = self.channel_state.lock().unwrap();
3027                 let channel_state = &mut *channel_lock;
3028                 match channel_state.by_id.entry(msg.channel_id) {
3029                         hash_map::Entry::Occupied(mut chan) => {
3030                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3031                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3032                                 }
3033                                 try_chan_entry!(self, chan.get_mut().update_fail_htlc(&msg, HTLCFailReason::LightningError { err: msg.reason.clone() }), channel_state, chan);
3034                         },
3035                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3036                 }
3037                 Ok(())
3038         }
3039
3040         fn internal_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) -> Result<(), MsgHandleErrInternal> {
3041                 let mut channel_lock = self.channel_state.lock().unwrap();
3042                 let channel_state = &mut *channel_lock;
3043                 match channel_state.by_id.entry(msg.channel_id) {
3044                         hash_map::Entry::Occupied(mut chan) => {
3045                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3046                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3047                                 }
3048                                 if (msg.failure_code & 0x8000) == 0 {
3049                                         let chan_err: ChannelError = ChannelError::Close("Got update_fail_malformed_htlc with BADONION not set".to_owned());
3050                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3051                                 }
3052                                 try_chan_entry!(self, chan.get_mut().update_fail_malformed_htlc(&msg, HTLCFailReason::Reason { failure_code: msg.failure_code, data: Vec::new() }), channel_state, chan);
3053                                 Ok(())
3054                         },
3055                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3056                 }
3057         }
3058
3059         fn internal_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) -> Result<(), MsgHandleErrInternal> {
3060                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3061                 let channel_state = &mut *channel_state_lock;
3062                 match channel_state.by_id.entry(msg.channel_id) {
3063                         hash_map::Entry::Occupied(mut chan) => {
3064                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3065                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3066                                 }
3067                                 let (revoke_and_ack, commitment_signed, closing_signed, monitor_update) =
3068                                         match chan.get_mut().commitment_signed(&msg, &self.fee_estimator, &self.logger) {
3069                                                 Err((None, e)) => try_chan_entry!(self, Err(e), channel_state, chan),
3070                                                 Err((Some(update), e)) => {
3071                                                         assert!(chan.get().is_awaiting_monitor_update());
3072                                                         let _ = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), update);
3073                                                         try_chan_entry!(self, Err(e), channel_state, chan);
3074                                                         unreachable!();
3075                                                 },
3076                                                 Ok(res) => res
3077                                         };
3078                                 if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3079                                         return_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::RevokeAndACKFirst, true, commitment_signed.is_some());
3080                                         //TODO: Rebroadcast closing_signed if present on monitor update restoration
3081                                 }
3082                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3083                                         node_id: counterparty_node_id.clone(),
3084                                         msg: revoke_and_ack,
3085                                 });
3086                                 if let Some(msg) = commitment_signed {
3087                                         channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3088                                                 node_id: counterparty_node_id.clone(),
3089                                                 updates: msgs::CommitmentUpdate {
3090                                                         update_add_htlcs: Vec::new(),
3091                                                         update_fulfill_htlcs: Vec::new(),
3092                                                         update_fail_htlcs: Vec::new(),
3093                                                         update_fail_malformed_htlcs: Vec::new(),
3094                                                         update_fee: None,
3095                                                         commitment_signed: msg,
3096                                                 },
3097                                         });
3098                                 }
3099                                 if let Some(msg) = closing_signed {
3100                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3101                                                 node_id: counterparty_node_id.clone(),
3102                                                 msg,
3103                                         });
3104                                 }
3105                                 Ok(())
3106                         },
3107                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3108                 }
3109         }
3110
3111         #[inline]
3112         fn forward_htlcs(&self, per_source_pending_forwards: &mut [(u64, OutPoint, Vec<(PendingHTLCInfo, u64)>)]) {
3113                 for &mut (prev_short_channel_id, prev_funding_outpoint, ref mut pending_forwards) in per_source_pending_forwards {
3114                         let mut forward_event = None;
3115                         if !pending_forwards.is_empty() {
3116                                 let mut channel_state = self.channel_state.lock().unwrap();
3117                                 if channel_state.forward_htlcs.is_empty() {
3118                                         forward_event = Some(Duration::from_millis(MIN_HTLC_RELAY_HOLDING_CELL_MILLIS))
3119                                 }
3120                                 for (forward_info, prev_htlc_id) in pending_forwards.drain(..) {
3121                                         match channel_state.forward_htlcs.entry(match forward_info.routing {
3122                                                         PendingHTLCRouting::Forward { short_channel_id, .. } => short_channel_id,
3123                                                         PendingHTLCRouting::Receive { .. } => 0,
3124                                         }) {
3125                                                 hash_map::Entry::Occupied(mut entry) => {
3126                                                         entry.get_mut().push(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3127                                                                                                         prev_htlc_id, forward_info });
3128                                                 },
3129                                                 hash_map::Entry::Vacant(entry) => {
3130                                                         entry.insert(vec!(HTLCForwardInfo::AddHTLC { prev_short_channel_id, prev_funding_outpoint,
3131                                                                                                      prev_htlc_id, forward_info }));
3132                                                 }
3133                                         }
3134                                 }
3135                         }
3136                         match forward_event {
3137                                 Some(time) => {
3138                                         let mut pending_events = self.pending_events.lock().unwrap();
3139                                         pending_events.push(events::Event::PendingHTLCsForwardable {
3140                                                 time_forwardable: time
3141                                         });
3142                                 }
3143                                 None => {},
3144                         }
3145                 }
3146         }
3147
3148         fn internal_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) -> Result<(), MsgHandleErrInternal> {
3149                 let mut htlcs_to_fail = Vec::new();
3150                 let res = loop {
3151                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3152                         let channel_state = &mut *channel_state_lock;
3153                         match channel_state.by_id.entry(msg.channel_id) {
3154                                 hash_map::Entry::Occupied(mut chan) => {
3155                                         if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3156                                                 break Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3157                                         }
3158                                         let was_frozen_for_monitor = chan.get().is_awaiting_monitor_update();
3159                                         let (commitment_update, pending_forwards, pending_failures, closing_signed, monitor_update, htlcs_to_fail_in) =
3160                                                 break_chan_entry!(self, chan.get_mut().revoke_and_ack(&msg, &self.fee_estimator, &self.logger), channel_state, chan);
3161                                         htlcs_to_fail = htlcs_to_fail_in;
3162                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3163                                                 if was_frozen_for_monitor {
3164                                                         assert!(commitment_update.is_none() && closing_signed.is_none() && pending_forwards.is_empty() && pending_failures.is_empty());
3165                                                         break Err(MsgHandleErrInternal::ignore_no_close("Previous monitor update failure prevented responses to RAA".to_owned()));
3166                                                 } else {
3167                                                         if let Err(e) = handle_monitor_err!(self, e, channel_state, chan, RAACommitmentOrder::CommitmentFirst, false, commitment_update.is_some(), pending_forwards, pending_failures) {
3168                                                                 break Err(e);
3169                                                         } else { unreachable!(); }
3170                                                 }
3171                                         }
3172                                         if let Some(updates) = commitment_update {
3173                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3174                                                         node_id: counterparty_node_id.clone(),
3175                                                         updates,
3176                                                 });
3177                                         }
3178                                         if let Some(msg) = closing_signed {
3179                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendClosingSigned {
3180                                                         node_id: counterparty_node_id.clone(),
3181                                                         msg,
3182                                                 });
3183                                         }
3184                                         break Ok((pending_forwards, pending_failures, chan.get().get_short_channel_id().expect("RAA should only work on a short-id-available channel"), chan.get().get_funding_txo().unwrap()))
3185                                 },
3186                                 hash_map::Entry::Vacant(_) => break Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3187                         }
3188                 };
3189                 self.fail_holding_cell_htlcs(htlcs_to_fail, msg.channel_id);
3190                 match res {
3191                         Ok((pending_forwards, mut pending_failures, short_channel_id, channel_outpoint)) => {
3192                                 for failure in pending_failures.drain(..) {
3193                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), failure.0, &failure.1, failure.2);
3194                                 }
3195                                 self.forward_htlcs(&mut [(short_channel_id, channel_outpoint, pending_forwards)]);
3196                                 Ok(())
3197                         },
3198                         Err(e) => Err(e)
3199                 }
3200         }
3201
3202         fn internal_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) -> Result<(), MsgHandleErrInternal> {
3203                 let mut channel_lock = self.channel_state.lock().unwrap();
3204                 let channel_state = &mut *channel_lock;
3205                 match channel_state.by_id.entry(msg.channel_id) {
3206                         hash_map::Entry::Occupied(mut chan) => {
3207                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3208                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3209                                 }
3210                                 try_chan_entry!(self, chan.get_mut().update_fee(&self.fee_estimator, &msg), channel_state, chan);
3211                         },
3212                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3213                 }
3214                 Ok(())
3215         }
3216
3217         fn internal_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) -> Result<(), MsgHandleErrInternal> {
3218                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3219                 let channel_state = &mut *channel_state_lock;
3220
3221                 match channel_state.by_id.entry(msg.channel_id) {
3222                         hash_map::Entry::Occupied(mut chan) => {
3223                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3224                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3225                                 }
3226                                 if !chan.get().is_usable() {
3227                                         return Err(MsgHandleErrInternal::from_no_close(LightningError{err: "Got an announcement_signatures before we were ready for it".to_owned(), action: msgs::ErrorAction::IgnoreError}));
3228                                 }
3229
3230                                 let our_node_id = self.get_our_node_id();
3231                                 let (announcement, our_bitcoin_sig) =
3232                                         try_chan_entry!(self, chan.get_mut().get_channel_announcement(our_node_id.clone(), self.genesis_hash.clone()), channel_state, chan);
3233
3234                                 let were_node_one = announcement.node_id_1 == our_node_id;
3235                                 let msghash = hash_to_message!(&Sha256dHash::hash(&announcement.encode()[..])[..]);
3236                                 {
3237                                         let their_node_key = if were_node_one { &announcement.node_id_2 } else { &announcement.node_id_1 };
3238                                         let their_bitcoin_key = if were_node_one { &announcement.bitcoin_key_2 } else { &announcement.bitcoin_key_1 };
3239                                         match (self.secp_ctx.verify(&msghash, &msg.node_signature, their_node_key),
3240                                                    self.secp_ctx.verify(&msghash, &msg.bitcoin_signature, their_bitcoin_key)) {
3241                                                 (Err(e), _) => {
3242                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify node_signature: {:?}. Maybe using different node_secret for transport and routing msg? UnsignedChannelAnnouncement used for verification is {:?}. their_node_key is {:?}", e, &announcement, their_node_key));
3243                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3244                                                 },
3245                                                 (_, Err(e)) => {
3246                                                         let chan_err: ChannelError = ChannelError::Close(format!("Bad announcement_signatures. Failed to verify bitcoin_signature: {:?}. UnsignedChannelAnnouncement used for verification is {:?}. their_bitcoin_key is ({:?})", e, &announcement, their_bitcoin_key));
3247                                                         try_chan_entry!(self, Err(chan_err), channel_state, chan);
3248                                                 },
3249                                                 _ => {}
3250                                         }
3251                                 }
3252
3253                                 let our_node_sig = self.secp_ctx.sign(&msghash, &self.our_network_key);
3254
3255                                 channel_state.pending_msg_events.push(events::MessageSendEvent::BroadcastChannelAnnouncement {
3256                                         msg: msgs::ChannelAnnouncement {
3257                                                 node_signature_1: if were_node_one { our_node_sig } else { msg.node_signature },
3258                                                 node_signature_2: if were_node_one { msg.node_signature } else { our_node_sig },
3259                                                 bitcoin_signature_1: if were_node_one { our_bitcoin_sig } else { msg.bitcoin_signature },
3260                                                 bitcoin_signature_2: if were_node_one { msg.bitcoin_signature } else { our_bitcoin_sig },
3261                                                 contents: announcement,
3262                                         },
3263                                         update_msg: self.get_channel_update(chan.get()).unwrap(), // can only fail if we're not in a ready state
3264                                 });
3265                         },
3266                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3267                 }
3268                 Ok(())
3269         }
3270
3271         fn internal_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) -> Result<(), MsgHandleErrInternal> {
3272                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3273                 let channel_state = &mut *channel_state_lock;
3274                 let chan_id = match channel_state.short_to_id.get(&msg.contents.short_channel_id) {
3275                         Some(chan_id) => chan_id.clone(),
3276                         None => {
3277                                 // It's not a local channel
3278                                 return Ok(())
3279                         }
3280                 };
3281                 match channel_state.by_id.entry(chan_id) {
3282                         hash_map::Entry::Occupied(mut chan) => {
3283                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3284                                         // TODO: see issue #153, need a consistent behavior on obnoxious behavior from random node
3285                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), chan_id));
3286                                 }
3287                                 try_chan_entry!(self, chan.get_mut().channel_update(&msg), channel_state, chan);
3288                         },
3289                         hash_map::Entry::Vacant(_) => unreachable!()
3290                 }
3291                 Ok(())
3292         }
3293
3294         fn internal_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) -> Result<(), MsgHandleErrInternal> {
3295                 let mut channel_state_lock = self.channel_state.lock().unwrap();
3296                 let channel_state = &mut *channel_state_lock;
3297
3298                 match channel_state.by_id.entry(msg.channel_id) {
3299                         hash_map::Entry::Occupied(mut chan) => {
3300                                 if chan.get().get_counterparty_node_id() != *counterparty_node_id {
3301                                         return Err(MsgHandleErrInternal::send_err_msg_no_close("Got a message for a channel from the wrong node!".to_owned(), msg.channel_id));
3302                                 }
3303                                 // Currently, we expect all holding cell update_adds to be dropped on peer
3304                                 // disconnect, so Channel's reestablish will never hand us any holding cell
3305                                 // freed HTLCs to fail backwards. If in the future we no longer drop pending
3306                                 // add-HTLCs on disconnect, we may be handed HTLCs to fail backwards here.
3307                                 let (funding_locked, revoke_and_ack, commitment_update, monitor_update_opt, mut order, shutdown) =
3308                                         try_chan_entry!(self, chan.get_mut().channel_reestablish(msg, &self.logger), channel_state, chan);
3309                                 if let Some(monitor_update) = monitor_update_opt {
3310                                         if let Err(e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3311                                                 // channel_reestablish doesn't guarantee the order it returns is sensical
3312                                                 // for the messages it returns, but if we're setting what messages to
3313                                                 // re-transmit on monitor update success, we need to make sure it is sane.
3314                                                 if revoke_and_ack.is_none() {
3315                                                         order = RAACommitmentOrder::CommitmentFirst;
3316                                                 }
3317                                                 if commitment_update.is_none() {
3318                                                         order = RAACommitmentOrder::RevokeAndACKFirst;
3319                                                 }
3320                                                 return_monitor_err!(self, e, channel_state, chan, order, revoke_and_ack.is_some(), commitment_update.is_some());
3321                                                 //TODO: Resend the funding_locked if needed once we get the monitor running again
3322                                         }
3323                                 }
3324                                 if let Some(msg) = funding_locked {
3325                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3326                                                 node_id: counterparty_node_id.clone(),
3327                                                 msg
3328                                         });
3329                                 }
3330                                 macro_rules! send_raa { () => {
3331                                         if let Some(msg) = revoke_and_ack {
3332                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::SendRevokeAndACK {
3333                                                         node_id: counterparty_node_id.clone(),
3334                                                         msg
3335                                                 });
3336                                         }
3337                                 } }
3338                                 macro_rules! send_cu { () => {
3339                                         if let Some(updates) = commitment_update {
3340                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3341                                                         node_id: counterparty_node_id.clone(),
3342                                                         updates
3343                                                 });
3344                                         }
3345                                 } }
3346                                 match order {
3347                                         RAACommitmentOrder::RevokeAndACKFirst => {
3348                                                 send_raa!();
3349                                                 send_cu!();
3350                                         },
3351                                         RAACommitmentOrder::CommitmentFirst => {
3352                                                 send_cu!();
3353                                                 send_raa!();
3354                                         },
3355                                 }
3356                                 if let Some(msg) = shutdown {
3357                                         channel_state.pending_msg_events.push(events::MessageSendEvent::SendShutdown {
3358                                                 node_id: counterparty_node_id.clone(),
3359                                                 msg,
3360                                         });
3361                                 }
3362                                 Ok(())
3363                         },
3364                         hash_map::Entry::Vacant(_) => return Err(MsgHandleErrInternal::send_err_msg_no_close("Failed to find corresponding channel".to_owned(), msg.channel_id))
3365                 }
3366         }
3367
3368         /// Begin Update fee process. Allowed only on an outbound channel.
3369         /// If successful, will generate a UpdateHTLCs event, so you should probably poll
3370         /// PeerManager::process_events afterwards.
3371         /// Note: This API is likely to change!
3372         /// (C-not exported) Cause its doc(hidden) anyway
3373         #[doc(hidden)]
3374         pub fn update_fee(&self, channel_id: [u8;32], feerate_per_kw: u32) -> Result<(), APIError> {
3375                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3376                 let counterparty_node_id;
3377                 let err: Result<(), _> = loop {
3378                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3379                         let channel_state = &mut *channel_state_lock;
3380
3381                         match channel_state.by_id.entry(channel_id) {
3382                                 hash_map::Entry::Vacant(_) => return Err(APIError::APIMisuseError{err: format!("Failed to find corresponding channel for id {}", channel_id.to_hex())}),
3383                                 hash_map::Entry::Occupied(mut chan) => {
3384                                         if !chan.get().is_outbound() {
3385                                                 return Err(APIError::APIMisuseError{err: "update_fee cannot be sent for an inbound channel".to_owned()});
3386                                         }
3387                                         if chan.get().is_awaiting_monitor_update() {
3388                                                 return Err(APIError::MonitorUpdateFailed);
3389                                         }
3390                                         if !chan.get().is_live() {
3391                                                 return Err(APIError::ChannelUnavailable{err: "Channel is either not yet fully established or peer is currently disconnected".to_owned()});
3392                                         }
3393                                         counterparty_node_id = chan.get().get_counterparty_node_id();
3394                                         if let Some((update_fee, commitment_signed, monitor_update)) =
3395                                                         break_chan_entry!(self, chan.get_mut().send_update_fee_and_commit(feerate_per_kw, &self.logger), channel_state, chan)
3396                                         {
3397                                                 if let Err(_e) = self.chain_monitor.update_channel(chan.get().get_funding_txo().unwrap(), monitor_update) {
3398                                                         unimplemented!();
3399                                                 }
3400                                                 channel_state.pending_msg_events.push(events::MessageSendEvent::UpdateHTLCs {
3401                                                         node_id: chan.get().get_counterparty_node_id(),
3402                                                         updates: msgs::CommitmentUpdate {
3403                                                                 update_add_htlcs: Vec::new(),
3404                                                                 update_fulfill_htlcs: Vec::new(),
3405                                                                 update_fail_htlcs: Vec::new(),
3406                                                                 update_fail_malformed_htlcs: Vec::new(),
3407                                                                 update_fee: Some(update_fee),
3408                                                                 commitment_signed,
3409                                                         },
3410                                                 });
3411                                         }
3412                                 },
3413                         }
3414                         return Ok(())
3415                 };
3416
3417                 match handle_error!(self, err, counterparty_node_id) {
3418                         Ok(_) => unreachable!(),
3419                         Err(e) => { Err(APIError::APIMisuseError { err: e.err })}
3420                 }
3421         }
3422
3423         /// Process pending events from the `chain::Watch`.
3424         fn process_pending_monitor_events(&self) {
3425                 let mut failed_channels = Vec::new();
3426                 {
3427                         for monitor_event in self.chain_monitor.release_pending_monitor_events() {
3428                                 match monitor_event {
3429                                         MonitorEvent::HTLCEvent(htlc_update) => {
3430                                                 if let Some(preimage) = htlc_update.payment_preimage {
3431                                                         log_trace!(self.logger, "Claiming HTLC with preimage {} from our monitor", log_bytes!(preimage.0));
3432                                                         self.claim_funds_internal(self.channel_state.lock().unwrap(), htlc_update.source, preimage);
3433                                                 } else {
3434                                                         log_trace!(self.logger, "Failing HTLC with hash {} from our monitor", log_bytes!(htlc_update.payment_hash.0));
3435                                                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_update.source, &htlc_update.payment_hash, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
3436                                                 }
3437                                         },
3438                                         MonitorEvent::CommitmentTxBroadcasted(funding_outpoint) => {
3439                                                 let mut channel_lock = self.channel_state.lock().unwrap();
3440                                                 let channel_state = &mut *channel_lock;
3441                                                 let by_id = &mut channel_state.by_id;
3442                                                 let short_to_id = &mut channel_state.short_to_id;
3443                                                 let pending_msg_events = &mut channel_state.pending_msg_events;
3444                                                 if let Some(mut chan) = by_id.remove(&funding_outpoint.to_channel_id()) {
3445                                                         if let Some(short_id) = chan.get_short_channel_id() {
3446                                                                 short_to_id.remove(&short_id);
3447                                                         }
3448                                                         failed_channels.push(chan.force_shutdown(false));
3449                                                         if let Ok(update) = self.get_channel_update(&chan) {
3450                                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3451                                                                         msg: update
3452                                                                 });
3453                                                         }
3454                                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3455                                                                 node_id: chan.get_counterparty_node_id(),
3456                                                                 action: msgs::ErrorAction::SendErrorMessage {
3457                                                                         msg: msgs::ErrorMessage { channel_id: chan.channel_id(), data: "Channel force-closed".to_owned() }
3458                                                                 },
3459                                                         });
3460                                                 }
3461                                         },
3462                                 }
3463                         }
3464                 }
3465
3466                 for failure in failed_channels.drain(..) {
3467                         self.finish_force_close_channel(failure);
3468                 }
3469         }
3470
3471         /// Handle a list of channel failures during a block_connected or block_disconnected call,
3472         /// pushing the channel monitor update (if any) to the background events queue and removing the
3473         /// Channel object.
3474         fn handle_init_event_channel_failures(&self, mut failed_channels: Vec<ShutdownResult>) {
3475                 for mut failure in failed_channels.drain(..) {
3476                         // Either a commitment transactions has been confirmed on-chain or
3477                         // Channel::block_disconnected detected that the funding transaction has been
3478                         // reorganized out of the main chain.
3479                         // We cannot broadcast our latest local state via monitor update (as
3480                         // Channel::force_shutdown tries to make us do) as we may still be in initialization,
3481                         // so we track the update internally and handle it when the user next calls
3482                         // timer_tick_occurred, guaranteeing we're running normally.
3483                         if let Some((funding_txo, update)) = failure.0.take() {
3484                                 assert_eq!(update.updates.len(), 1);
3485                                 if let ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } = update.updates[0] {
3486                                         assert!(should_broadcast);
3487                                 } else { unreachable!(); }
3488                                 self.pending_background_events.lock().unwrap().push(BackgroundEvent::ClosingMonitorUpdate((funding_txo, update)));
3489                         }
3490                         self.finish_force_close_channel(failure);
3491                 }
3492         }
3493
3494         fn set_payment_hash_secret_map(&self, payment_hash: PaymentHash, payment_preimage: Option<PaymentPreimage>, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3495                 assert!(invoice_expiry_delta_secs <= 60*60*24*365); // Sadly bitcoin timestamps are u32s, so panic before 2106
3496
3497                 let payment_secret = PaymentSecret(self.keys_manager.get_secure_random_bytes());
3498
3499                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3500                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3501                 match payment_secrets.entry(payment_hash) {
3502                         hash_map::Entry::Vacant(e) => {
3503                                 e.insert(PendingInboundPayment {
3504                                         payment_secret, min_value_msat, user_payment_id, payment_preimage,
3505                                         // We assume that highest_seen_timestamp is pretty close to the current time -
3506                                         // its updated when we receive a new block with the maximum time we've seen in
3507                                         // a header. It should never be more than two hours in the future.
3508                                         // Thus, we add two hours here as a buffer to ensure we absolutely
3509                                         // never fail a payment too early.
3510                                         // Note that we assume that received blocks have reasonably up-to-date
3511                                         // timestamps.
3512                                         expiry_time: self.highest_seen_timestamp.load(Ordering::Acquire) as u64 + invoice_expiry_delta_secs as u64 + 7200,
3513                                 });
3514                         },
3515                         hash_map::Entry::Occupied(_) => return Err(APIError::APIMisuseError { err: "Duplicate payment hash".to_owned() }),
3516                 }
3517                 Ok(payment_secret)
3518         }
3519
3520         /// Gets a payment secret and payment hash for use in an invoice given to a third party wishing
3521         /// to pay us.
3522         ///
3523         /// This differs from [`create_inbound_payment_for_hash`] only in that it generates the
3524         /// [`PaymentHash`] and [`PaymentPreimage`] for you, returning the first and storing the second.
3525         ///
3526         /// The [`PaymentPreimage`] will ultimately be returned to you in the [`PaymentReceived`], which
3527         /// will have the [`PaymentReceived::payment_preimage`] field filled in. That should then be
3528         /// passed directly to [`claim_funds`].
3529         ///
3530         /// See [`create_inbound_payment_for_hash`] for detailed documentation on behavior and requirements.
3531         ///
3532         /// [`claim_funds`]: Self::claim_funds
3533         /// [`PaymentReceived`]: events::Event::PaymentReceived
3534         /// [`PaymentReceived::payment_preimage`]: events::Event::PaymentReceived::payment_preimage
3535         /// [`create_inbound_payment_for_hash`]: Self::create_inbound_payment_for_hash
3536         pub fn create_inbound_payment(&self, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> (PaymentHash, PaymentSecret) {
3537                 let payment_preimage = PaymentPreimage(self.keys_manager.get_secure_random_bytes());
3538                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0).into_inner());
3539
3540                 (payment_hash,
3541                         self.set_payment_hash_secret_map(payment_hash, Some(payment_preimage), min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3542                                 .expect("RNG Generated Duplicate PaymentHash"))
3543         }
3544
3545         /// Gets a [`PaymentSecret`] for a given [`PaymentHash`], for which the payment preimage is
3546         /// stored external to LDK.
3547         ///
3548         /// A [`PaymentReceived`] event will only be generated if the [`PaymentSecret`] matches a
3549         /// payment secret fetched via this method or [`create_inbound_payment`], and which is at least
3550         /// the `min_value_msat` provided here, if one is provided.
3551         ///
3552         /// The [`PaymentHash`] (and corresponding [`PaymentPreimage`]) must be globally unique. This
3553         /// method may return an Err if another payment with the same payment_hash is still pending.
3554         ///
3555         /// `user_payment_id` will be provided back in [`PaymentReceived::user_payment_id`] events to
3556         /// allow tracking of which events correspond with which calls to this and
3557         /// [`create_inbound_payment`]. `user_payment_id` has no meaning inside of LDK, it is simply
3558         /// copied to events and otherwise ignored. It may be used to correlate PaymentReceived events
3559         /// with invoice metadata stored elsewhere.
3560         ///
3561         /// `min_value_msat` should be set if the invoice being generated contains a value. Any payment
3562         /// received for the returned [`PaymentHash`] will be required to be at least `min_value_msat`
3563         /// before a [`PaymentReceived`] event will be generated, ensuring that we do not provide the
3564         /// sender "proof-of-payment" unless they have paid the required amount.
3565         ///
3566         /// `invoice_expiry_delta_secs` describes the number of seconds that the invoice is valid for
3567         /// in excess of the current time. This should roughly match the expiry time set in the invoice.
3568         /// After this many seconds, we will remove the inbound payment, resulting in any attempts to
3569         /// pay the invoice failing. The BOLT spec suggests 3,600 secs as a default validity time for
3570         /// invoices when no timeout is set.
3571         ///
3572         /// Note that we use block header time to time-out pending inbound payments (with some margin
3573         /// to compensate for the inaccuracy of block header timestamps). Thus, in practice we will
3574         /// accept a payment and generate a [`PaymentReceived`] event for some time after the expiry.
3575         /// If you need exact expiry semantics, you should enforce them upon receipt of
3576         /// [`PaymentReceived`].
3577         ///
3578         /// Pending inbound payments are stored in memory and in serialized versions of this
3579         /// [`ChannelManager`]. If potentially unbounded numbers of inbound payments may exist and
3580         /// space is limited, you may wish to rate-limit inbound payment creation.
3581         ///
3582         /// May panic if `invoice_expiry_delta_secs` is greater than one year.
3583         ///
3584         /// Note that invoices generated for inbound payments should have their `min_final_cltv_expiry`
3585         /// set to at least [`MIN_FINAL_CLTV_EXPIRY`].
3586         ///
3587         /// [`create_inbound_payment`]: Self::create_inbound_payment
3588         /// [`PaymentReceived`]: events::Event::PaymentReceived
3589         /// [`PaymentReceived::user_payment_id`]: events::Event::PaymentReceived::user_payment_id
3590         pub fn create_inbound_payment_for_hash(&self, payment_hash: PaymentHash, min_value_msat: Option<u64>, invoice_expiry_delta_secs: u32, user_payment_id: u64) -> Result<PaymentSecret, APIError> {
3591                 self.set_payment_hash_secret_map(payment_hash, None, min_value_msat, invoice_expiry_delta_secs, user_payment_id)
3592         }
3593 }
3594
3595 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> MessageSendEventsProvider for ChannelManager<Signer, M, T, K, F, L>
3596         where M::Target: chain::Watch<Signer>,
3597         T::Target: BroadcasterInterface,
3598         K::Target: KeysInterface<Signer = Signer>,
3599         F::Target: FeeEstimator,
3600                                 L::Target: Logger,
3601 {
3602         fn get_and_clear_pending_msg_events(&self) -> Vec<MessageSendEvent> {
3603                 //TODO: This behavior should be documented. It's non-intuitive that we query
3604                 // ChannelMonitors when clearing other events.
3605                 self.process_pending_monitor_events();
3606
3607                 let mut ret = Vec::new();
3608                 let mut channel_state = self.channel_state.lock().unwrap();
3609                 mem::swap(&mut ret, &mut channel_state.pending_msg_events);
3610                 ret
3611         }
3612 }
3613
3614 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> EventsProvider for ChannelManager<Signer, M, T, K, F, L>
3615         where M::Target: chain::Watch<Signer>,
3616         T::Target: BroadcasterInterface,
3617         K::Target: KeysInterface<Signer = Signer>,
3618         F::Target: FeeEstimator,
3619                                 L::Target: Logger,
3620 {
3621         fn get_and_clear_pending_events(&self) -> Vec<Event> {
3622                 //TODO: This behavior should be documented. It's non-intuitive that we query
3623                 // ChannelMonitors when clearing other events.
3624                 self.process_pending_monitor_events();
3625
3626                 let mut ret = Vec::new();
3627                 let mut pending_events = self.pending_events.lock().unwrap();
3628                 mem::swap(&mut ret, &mut *pending_events);
3629                 ret
3630         }
3631 }
3632
3633 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Listen for ChannelManager<Signer, M, T, K, F, L>
3634 where
3635         M::Target: chain::Watch<Signer>,
3636         T::Target: BroadcasterInterface,
3637         K::Target: KeysInterface<Signer = Signer>,
3638         F::Target: FeeEstimator,
3639         L::Target: Logger,
3640 {
3641         fn block_connected(&self, block: &Block, height: u32) {
3642                 {
3643                         let best_block = self.best_block.read().unwrap();
3644                         assert_eq!(best_block.block_hash(), block.header.prev_blockhash,
3645                                 "Blocks must be connected in chain-order - the connected header must build on the last connected header");
3646                         assert_eq!(best_block.height(), height - 1,
3647                                 "Blocks must be connected in chain-order - the connected block height must be one greater than the previous height");
3648                 }
3649
3650                 let txdata: Vec<_> = block.txdata.iter().enumerate().collect();
3651                 self.transactions_confirmed(&block.header, &txdata, height);
3652                 self.best_block_updated(&block.header, height);
3653         }
3654
3655         fn block_disconnected(&self, header: &BlockHeader, height: u32) {
3656                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3657                 let new_height = height - 1;
3658                 {
3659                         let mut best_block = self.best_block.write().unwrap();
3660                         assert_eq!(best_block.block_hash(), header.block_hash(),
3661                                 "Blocks must be disconnected in chain-order - the disconnected header must be the last connected header");
3662                         assert_eq!(best_block.height(), height,
3663                                 "Blocks must be disconnected in chain-order - the disconnected block must have the correct height");
3664                         *best_block = BestBlock::new(header.prev_blockhash, new_height)
3665                 }
3666
3667                 self.do_chain_event(Some(new_height), |channel| channel.best_block_updated(new_height, header.time));
3668         }
3669 }
3670
3671 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> chain::Confirm for ChannelManager<Signer, M, T, K, F, L>
3672 where
3673         M::Target: chain::Watch<Signer>,
3674         T::Target: BroadcasterInterface,
3675         K::Target: KeysInterface<Signer = Signer>,
3676         F::Target: FeeEstimator,
3677         L::Target: Logger,
3678 {
3679         fn transactions_confirmed(&self, header: &BlockHeader, txdata: &TransactionData, height: u32) {
3680                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3681                 // during initialization prior to the chain_monitor being fully configured in some cases.
3682                 // See the docs for `ChannelManagerReadArgs` for more.
3683
3684                 let block_hash = header.block_hash();
3685                 log_trace!(self.logger, "{} transactions included in block {} at height {} provided", txdata.len(), block_hash, height);
3686
3687                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3688                 self.do_chain_event(Some(height), |channel| channel.transactions_confirmed(&block_hash, height, txdata, &self.logger).map(|a| (a, Vec::new())));
3689         }
3690
3691         fn best_block_updated(&self, header: &BlockHeader, height: u32) {
3692                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3693                 // during initialization prior to the chain_monitor being fully configured in some cases.
3694                 // See the docs for `ChannelManagerReadArgs` for more.
3695
3696                 let block_hash = header.block_hash();
3697                 log_trace!(self.logger, "New best block: {} at height {}", block_hash, height);
3698
3699                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3700
3701                 *self.best_block.write().unwrap() = BestBlock::new(block_hash, height);
3702
3703                 self.do_chain_event(Some(height), |channel| channel.best_block_updated(height, header.time));
3704
3705                 macro_rules! max_time {
3706                         ($timestamp: expr) => {
3707                                 loop {
3708                                         // Update $timestamp to be the max of its current value and the block
3709                                         // timestamp. This should keep us close to the current time without relying on
3710                                         // having an explicit local time source.
3711                                         // Just in case we end up in a race, we loop until we either successfully
3712                                         // update $timestamp or decide we don't need to.
3713                                         let old_serial = $timestamp.load(Ordering::Acquire);
3714                                         if old_serial >= header.time as usize { break; }
3715                                         if $timestamp.compare_exchange(old_serial, header.time as usize, Ordering::AcqRel, Ordering::Relaxed).is_ok() {
3716                                                 break;
3717                                         }
3718                                 }
3719                         }
3720                 }
3721                 max_time!(self.last_node_announcement_serial);
3722                 max_time!(self.highest_seen_timestamp);
3723                 let mut payment_secrets = self.pending_inbound_payments.lock().unwrap();
3724                 payment_secrets.retain(|_, inbound_payment| {
3725                         inbound_payment.expiry_time > header.time as u64
3726                 });
3727         }
3728
3729         fn get_relevant_txids(&self) -> Vec<Txid> {
3730                 let channel_state = self.channel_state.lock().unwrap();
3731                 let mut res = Vec::with_capacity(channel_state.short_to_id.len());
3732                 for chan in channel_state.by_id.values() {
3733                         if let Some(funding_txo) = chan.get_funding_txo() {
3734                                 res.push(funding_txo.txid);
3735                         }
3736                 }
3737                 res
3738         }
3739
3740         fn transaction_unconfirmed(&self, txid: &Txid) {
3741                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3742                 self.do_chain_event(None, |channel| {
3743                         if let Some(funding_txo) = channel.get_funding_txo() {
3744                                 if funding_txo.txid == *txid {
3745                                         channel.funding_transaction_unconfirmed().map(|_| (None, Vec::new()))
3746                                 } else { Ok((None, Vec::new())) }
3747                         } else { Ok((None, Vec::new())) }
3748                 });
3749         }
3750 }
3751
3752 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> ChannelManager<Signer, M, T, K, F, L>
3753 where
3754         M::Target: chain::Watch<Signer>,
3755         T::Target: BroadcasterInterface,
3756         K::Target: KeysInterface<Signer = Signer>,
3757         F::Target: FeeEstimator,
3758         L::Target: Logger,
3759 {
3760         /// Calls a function which handles an on-chain event (blocks dis/connected, transactions
3761         /// un/confirmed, etc) on each channel, handling any resulting errors or messages generated by
3762         /// the function.
3763         fn do_chain_event<FN: Fn(&mut Channel<Signer>) -> Result<(Option<msgs::FundingLocked>, Vec<(HTLCSource, PaymentHash)>), msgs::ErrorMessage>>
3764                         (&self, height_opt: Option<u32>, f: FN) {
3765                 // Note that we MUST NOT end up calling methods on self.chain_monitor here - we're called
3766                 // during initialization prior to the chain_monitor being fully configured in some cases.
3767                 // See the docs for `ChannelManagerReadArgs` for more.
3768
3769                 let mut failed_channels = Vec::new();
3770                 let mut timed_out_htlcs = Vec::new();
3771                 {
3772                         let mut channel_lock = self.channel_state.lock().unwrap();
3773                         let channel_state = &mut *channel_lock;
3774                         let short_to_id = &mut channel_state.short_to_id;
3775                         let pending_msg_events = &mut channel_state.pending_msg_events;
3776                         channel_state.by_id.retain(|_, channel| {
3777                                 let res = f(channel);
3778                                 if let Ok((chan_res, mut timed_out_pending_htlcs)) = res {
3779                                         for (source, payment_hash) in timed_out_pending_htlcs.drain(..) {
3780                                                 let chan_update = self.get_channel_update(&channel).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
3781                                                 timed_out_htlcs.push((source, payment_hash,  HTLCFailReason::Reason {
3782                                                         failure_code: 0x1000 | 14, // expiry_too_soon, or at least it is now
3783                                                         data: chan_update,
3784                                                 }));
3785                                         }
3786                                         if let Some(funding_locked) = chan_res {
3787                                                 pending_msg_events.push(events::MessageSendEvent::SendFundingLocked {
3788                                                         node_id: channel.get_counterparty_node_id(),
3789                                                         msg: funding_locked,
3790                                                 });
3791                                                 if let Some(announcement_sigs) = self.get_announcement_sigs(channel) {
3792                                                         log_trace!(self.logger, "Sending funding_locked and announcement_signatures for {}", log_bytes!(channel.channel_id()));
3793                                                         pending_msg_events.push(events::MessageSendEvent::SendAnnouncementSignatures {
3794                                                                 node_id: channel.get_counterparty_node_id(),
3795                                                                 msg: announcement_sigs,
3796                                                         });
3797                                                 } else {
3798                                                         log_trace!(self.logger, "Sending funding_locked WITHOUT announcement_signatures for {}", log_bytes!(channel.channel_id()));
3799                                                 }
3800                                                 short_to_id.insert(channel.get_short_channel_id().unwrap(), channel.channel_id());
3801                                         }
3802                                 } else if let Err(e) = res {
3803                                         if let Some(short_id) = channel.get_short_channel_id() {
3804                                                 short_to_id.remove(&short_id);
3805                                         }
3806                                         // It looks like our counterparty went on-chain or funding transaction was
3807                                         // reorged out of the main chain. Close the channel.
3808                                         failed_channels.push(channel.force_shutdown(true));
3809                                         if let Ok(update) = self.get_channel_update(&channel) {
3810                                                 pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3811                                                         msg: update
3812                                                 });
3813                                         }
3814                                         pending_msg_events.push(events::MessageSendEvent::HandleError {
3815                                                 node_id: channel.get_counterparty_node_id(),
3816                                                 action: msgs::ErrorAction::SendErrorMessage { msg: e },
3817                                         });
3818                                         return false;
3819                                 }
3820                                 true
3821                         });
3822
3823                         if let Some(height) = height_opt {
3824                                 channel_state.claimable_htlcs.retain(|payment_hash, htlcs| {
3825                                         htlcs.retain(|htlc| {
3826                                                 // If height is approaching the number of blocks we think it takes us to get
3827                                                 // our commitment transaction confirmed before the HTLC expires, plus the
3828                                                 // number of blocks we generally consider it to take to do a commitment update,
3829                                                 // just give up on it and fail the HTLC.
3830                                                 if height >= htlc.cltv_expiry - HTLC_FAIL_BACK_BUFFER {
3831                                                         let mut htlc_msat_height_data = byte_utils::be64_to_array(htlc.value).to_vec();
3832                                                         htlc_msat_height_data.extend_from_slice(&byte_utils::be32_to_array(height));
3833                                                         timed_out_htlcs.push((HTLCSource::PreviousHopData(htlc.prev_hop.clone()), payment_hash.clone(), HTLCFailReason::Reason {
3834                                                                 failure_code: 0x4000 | 15,
3835                                                                 data: htlc_msat_height_data
3836                                                         }));
3837                                                         false
3838                                                 } else { true }
3839                                         });
3840                                         !htlcs.is_empty() // Only retain this entry if htlcs has at least one entry.
3841                                 });
3842                         }
3843                 }
3844
3845                 self.handle_init_event_channel_failures(failed_channels);
3846
3847                 for (source, payment_hash, reason) in timed_out_htlcs.drain(..) {
3848                         self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), source, &payment_hash, reason);
3849                 }
3850         }
3851
3852         /// Blocks until ChannelManager needs to be persisted or a timeout is reached. It returns a bool
3853         /// indicating whether persistence is necessary. Only one listener on
3854         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3855         /// up.
3856         /// Note that the feature `allow_wallclock_use` must be enabled to use this function.
3857         #[cfg(any(test, feature = "allow_wallclock_use"))]
3858         pub fn await_persistable_update_timeout(&self, max_wait: Duration) -> bool {
3859                 self.persistence_notifier.wait_timeout(max_wait)
3860         }
3861
3862         /// Blocks until ChannelManager needs to be persisted. Only one listener on
3863         /// `await_persistable_update` or `await_persistable_update_timeout` is guaranteed to be woken
3864         /// up.
3865         pub fn await_persistable_update(&self) {
3866                 self.persistence_notifier.wait()
3867         }
3868
3869         #[cfg(any(test, feature = "_test_utils"))]
3870         pub fn get_persistence_condvar_value(&self) -> bool {
3871                 let mutcond = &self.persistence_notifier.persistence_lock;
3872                 let &(ref mtx, _) = mutcond;
3873                 let guard = mtx.lock().unwrap();
3874                 *guard
3875         }
3876 }
3877
3878 impl<Signer: Sign, M: Deref , T: Deref , K: Deref , F: Deref , L: Deref >
3879         ChannelMessageHandler for ChannelManager<Signer, M, T, K, F, L>
3880         where M::Target: chain::Watch<Signer>,
3881         T::Target: BroadcasterInterface,
3882         K::Target: KeysInterface<Signer = Signer>,
3883         F::Target: FeeEstimator,
3884         L::Target: Logger,
3885 {
3886         fn handle_open_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::OpenChannel) {
3887                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3888                 let _ = handle_error!(self, self.internal_open_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3889         }
3890
3891         fn handle_accept_channel(&self, counterparty_node_id: &PublicKey, their_features: InitFeatures, msg: &msgs::AcceptChannel) {
3892                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3893                 let _ = handle_error!(self, self.internal_accept_channel(counterparty_node_id, their_features, msg), *counterparty_node_id);
3894         }
3895
3896         fn handle_funding_created(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingCreated) {
3897                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3898                 let _ = handle_error!(self, self.internal_funding_created(counterparty_node_id, msg), *counterparty_node_id);
3899         }
3900
3901         fn handle_funding_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingSigned) {
3902                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3903                 let _ = handle_error!(self, self.internal_funding_signed(counterparty_node_id, msg), *counterparty_node_id);
3904         }
3905
3906         fn handle_funding_locked(&self, counterparty_node_id: &PublicKey, msg: &msgs::FundingLocked) {
3907                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3908                 let _ = handle_error!(self, self.internal_funding_locked(counterparty_node_id, msg), *counterparty_node_id);
3909         }
3910
3911         fn handle_shutdown(&self, counterparty_node_id: &PublicKey, their_features: &InitFeatures, msg: &msgs::Shutdown) {
3912                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3913                 let _ = handle_error!(self, self.internal_shutdown(counterparty_node_id, their_features, msg), *counterparty_node_id);
3914         }
3915
3916         fn handle_closing_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::ClosingSigned) {
3917                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3918                 let _ = handle_error!(self, self.internal_closing_signed(counterparty_node_id, msg), *counterparty_node_id);
3919         }
3920
3921         fn handle_update_add_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateAddHTLC) {
3922                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3923                 let _ = handle_error!(self, self.internal_update_add_htlc(counterparty_node_id, msg), *counterparty_node_id);
3924         }
3925
3926         fn handle_update_fulfill_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFulfillHTLC) {
3927                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3928                 let _ = handle_error!(self, self.internal_update_fulfill_htlc(counterparty_node_id, msg), *counterparty_node_id);
3929         }
3930
3931         fn handle_update_fail_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailHTLC) {
3932                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3933                 let _ = handle_error!(self, self.internal_update_fail_htlc(counterparty_node_id, msg), *counterparty_node_id);
3934         }
3935
3936         fn handle_update_fail_malformed_htlc(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFailMalformedHTLC) {
3937                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3938                 let _ = handle_error!(self, self.internal_update_fail_malformed_htlc(counterparty_node_id, msg), *counterparty_node_id);
3939         }
3940
3941         fn handle_commitment_signed(&self, counterparty_node_id: &PublicKey, msg: &msgs::CommitmentSigned) {
3942                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3943                 let _ = handle_error!(self, self.internal_commitment_signed(counterparty_node_id, msg), *counterparty_node_id);
3944         }
3945
3946         fn handle_revoke_and_ack(&self, counterparty_node_id: &PublicKey, msg: &msgs::RevokeAndACK) {
3947                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3948                 let _ = handle_error!(self, self.internal_revoke_and_ack(counterparty_node_id, msg), *counterparty_node_id);
3949         }
3950
3951         fn handle_update_fee(&self, counterparty_node_id: &PublicKey, msg: &msgs::UpdateFee) {
3952                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3953                 let _ = handle_error!(self, self.internal_update_fee(counterparty_node_id, msg), *counterparty_node_id);
3954         }
3955
3956         fn handle_announcement_signatures(&self, counterparty_node_id: &PublicKey, msg: &msgs::AnnouncementSignatures) {
3957                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3958                 let _ = handle_error!(self, self.internal_announcement_signatures(counterparty_node_id, msg), *counterparty_node_id);
3959         }
3960
3961         fn handle_channel_update(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelUpdate) {
3962                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3963                 let _ = handle_error!(self, self.internal_channel_update(counterparty_node_id, msg), *counterparty_node_id);
3964         }
3965
3966         fn handle_channel_reestablish(&self, counterparty_node_id: &PublicKey, msg: &msgs::ChannelReestablish) {
3967                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3968                 let _ = handle_error!(self, self.internal_channel_reestablish(counterparty_node_id, msg), *counterparty_node_id);
3969         }
3970
3971         fn peer_disconnected(&self, counterparty_node_id: &PublicKey, no_connection_possible: bool) {
3972                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
3973                 let mut failed_channels = Vec::new();
3974                 let mut failed_payments = Vec::new();
3975                 let mut no_channels_remain = true;
3976                 {
3977                         let mut channel_state_lock = self.channel_state.lock().unwrap();
3978                         let channel_state = &mut *channel_state_lock;
3979                         let short_to_id = &mut channel_state.short_to_id;
3980                         let pending_msg_events = &mut channel_state.pending_msg_events;
3981                         if no_connection_possible {
3982                                 log_debug!(self.logger, "Failing all channels with {} due to no_connection_possible", log_pubkey!(counterparty_node_id));
3983                                 channel_state.by_id.retain(|_, chan| {
3984                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
3985                                                 if let Some(short_id) = chan.get_short_channel_id() {
3986                                                         short_to_id.remove(&short_id);
3987                                                 }
3988                                                 failed_channels.push(chan.force_shutdown(true));
3989                                                 if let Ok(update) = self.get_channel_update(&chan) {
3990                                                         pending_msg_events.push(events::MessageSendEvent::BroadcastChannelUpdate {
3991                                                                 msg: update
3992                                                         });
3993                                                 }
3994                                                 false
3995                                         } else {
3996                                                 true
3997                                         }
3998                                 });
3999                         } else {
4000                                 log_debug!(self.logger, "Marking channels with {} disconnected and generating channel_updates", log_pubkey!(counterparty_node_id));
4001                                 channel_state.by_id.retain(|_, chan| {
4002                                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4003                                                 // Note that currently on channel reestablish we assert that there are no
4004                                                 // holding cell add-HTLCs, so if in the future we stop removing uncommitted HTLCs
4005                                                 // on peer disconnect here, there will need to be corresponding changes in
4006                                                 // reestablish logic.
4007                                                 let failed_adds = chan.remove_uncommitted_htlcs_and_mark_paused(&self.logger);
4008                                                 if !failed_adds.is_empty() {
4009                                                         let chan_update = self.get_channel_update(&chan).map(|u| u.encode_with_len()).unwrap(); // Cannot add/recv HTLCs before we have a short_id so unwrap is safe
4010                                                         failed_payments.push((chan_update, failed_adds));
4011                                                 }
4012                                                 if chan.is_shutdown() {
4013                                                         if let Some(short_id) = chan.get_short_channel_id() {
4014                                                                 short_to_id.remove(&short_id);
4015                                                         }
4016                                                         return false;
4017                                                 } else {
4018                                                         no_channels_remain = false;
4019                                                 }
4020                                         }
4021                                         true
4022                                 })
4023                         }
4024                         pending_msg_events.retain(|msg| {
4025                                 match msg {
4026                                         &events::MessageSendEvent::SendAcceptChannel { ref node_id, .. } => node_id != counterparty_node_id,
4027                                         &events::MessageSendEvent::SendOpenChannel { ref node_id, .. } => node_id != counterparty_node_id,
4028                                         &events::MessageSendEvent::SendFundingCreated { ref node_id, .. } => node_id != counterparty_node_id,
4029                                         &events::MessageSendEvent::SendFundingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4030                                         &events::MessageSendEvent::SendFundingLocked { ref node_id, .. } => node_id != counterparty_node_id,
4031                                         &events::MessageSendEvent::SendAnnouncementSignatures { ref node_id, .. } => node_id != counterparty_node_id,
4032                                         &events::MessageSendEvent::UpdateHTLCs { ref node_id, .. } => node_id != counterparty_node_id,
4033                                         &events::MessageSendEvent::SendRevokeAndACK { ref node_id, .. } => node_id != counterparty_node_id,
4034                                         &events::MessageSendEvent::SendClosingSigned { ref node_id, .. } => node_id != counterparty_node_id,
4035                                         &events::MessageSendEvent::SendShutdown { ref node_id, .. } => node_id != counterparty_node_id,
4036                                         &events::MessageSendEvent::SendChannelReestablish { ref node_id, .. } => node_id != counterparty_node_id,
4037                                         &events::MessageSendEvent::BroadcastChannelAnnouncement { .. } => true,
4038                                         &events::MessageSendEvent::BroadcastNodeAnnouncement { .. } => true,
4039                                         &events::MessageSendEvent::BroadcastChannelUpdate { .. } => true,
4040                                         &events::MessageSendEvent::HandleError { ref node_id, .. } => node_id != counterparty_node_id,
4041                                         &events::MessageSendEvent::PaymentFailureNetworkUpdate { .. } => true,
4042                                         &events::MessageSendEvent::SendChannelRangeQuery { .. } => false,
4043                                         &events::MessageSendEvent::SendShortIdsQuery { .. } => false,
4044                                         &events::MessageSendEvent::SendReplyChannelRange { .. } => false,
4045                                 }
4046                         });
4047                 }
4048                 if no_channels_remain {
4049                         self.per_peer_state.write().unwrap().remove(counterparty_node_id);
4050                 }
4051
4052                 for failure in failed_channels.drain(..) {
4053                         self.finish_force_close_channel(failure);
4054                 }
4055                 for (chan_update, mut htlc_sources) in failed_payments {
4056                         for (htlc_source, payment_hash) in htlc_sources.drain(..) {
4057                                 self.fail_htlc_backwards_internal(self.channel_state.lock().unwrap(), htlc_source, &payment_hash, HTLCFailReason::Reason { failure_code: 0x1000 | 7, data: chan_update.clone() });
4058                         }
4059                 }
4060         }
4061
4062         fn peer_connected(&self, counterparty_node_id: &PublicKey, init_msg: &msgs::Init) {
4063                 log_debug!(self.logger, "Generating channel_reestablish events for {}", log_pubkey!(counterparty_node_id));
4064
4065                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4066
4067                 {
4068                         let mut peer_state_lock = self.per_peer_state.write().unwrap();
4069                         match peer_state_lock.entry(counterparty_node_id.clone()) {
4070                                 hash_map::Entry::Vacant(e) => {
4071                                         e.insert(Mutex::new(PeerState {
4072                                                 latest_features: init_msg.features.clone(),
4073                                         }));
4074                                 },
4075                                 hash_map::Entry::Occupied(e) => {
4076                                         e.get().lock().unwrap().latest_features = init_msg.features.clone();
4077                                 },
4078                         }
4079                 }
4080
4081                 let mut channel_state_lock = self.channel_state.lock().unwrap();
4082                 let channel_state = &mut *channel_state_lock;
4083                 let pending_msg_events = &mut channel_state.pending_msg_events;
4084                 channel_state.by_id.retain(|_, chan| {
4085                         if chan.get_counterparty_node_id() == *counterparty_node_id {
4086                                 if !chan.have_received_message() {
4087                                         // If we created this (outbound) channel while we were disconnected from the
4088                                         // peer we probably failed to send the open_channel message, which is now
4089                                         // lost. We can't have had anything pending related to this channel, so we just
4090                                         // drop it.
4091                                         false
4092                                 } else {
4093                                         pending_msg_events.push(events::MessageSendEvent::SendChannelReestablish {
4094                                                 node_id: chan.get_counterparty_node_id(),
4095                                                 msg: chan.get_channel_reestablish(&self.logger),
4096                                         });
4097                                         true
4098                                 }
4099                         } else { true }
4100                 });
4101                 //TODO: Also re-broadcast announcement_signatures
4102         }
4103
4104         fn handle_error(&self, counterparty_node_id: &PublicKey, msg: &msgs::ErrorMessage) {
4105                 let _persistence_guard = PersistenceNotifierGuard::notify_on_drop(&self.total_consistency_lock, &self.persistence_notifier);
4106
4107                 if msg.channel_id == [0; 32] {
4108                         for chan in self.list_channels() {
4109                                 if chan.remote_network_id == *counterparty_node_id {
4110                                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4111                                         let _ = self.force_close_channel_with_peer(&chan.channel_id, Some(counterparty_node_id));
4112                                 }
4113                         }
4114                 } else {
4115                         // Untrusted messages from peer, we throw away the error if id points to a non-existent channel
4116                         let _ = self.force_close_channel_with_peer(&msg.channel_id, Some(counterparty_node_id));
4117                 }
4118         }
4119 }
4120
4121 /// Used to signal to the ChannelManager persister that the manager needs to be re-persisted to
4122 /// disk/backups, through `await_persistable_update_timeout` and `await_persistable_update`.
4123 struct PersistenceNotifier {
4124         /// Users won't access the persistence_lock directly, but rather wait on its bool using
4125         /// `wait_timeout` and `wait`.
4126         persistence_lock: (Mutex<bool>, Condvar),
4127 }
4128
4129 impl PersistenceNotifier {
4130         fn new() -> Self {
4131                 Self {
4132                         persistence_lock: (Mutex::new(false), Condvar::new()),
4133                 }
4134         }
4135
4136         fn wait(&self) {
4137                 loop {
4138                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4139                         let mut guard = mtx.lock().unwrap();
4140                         if *guard {
4141                                 *guard = false;
4142                                 return;
4143                         }
4144                         guard = cvar.wait(guard).unwrap();
4145                         let result = *guard;
4146                         if result {
4147                                 *guard = false;
4148                                 return
4149                         }
4150                 }
4151         }
4152
4153         #[cfg(any(test, feature = "allow_wallclock_use"))]
4154         fn wait_timeout(&self, max_wait: Duration) -> bool {
4155                 let current_time = Instant::now();
4156                 loop {
4157                         let &(ref mtx, ref cvar) = &self.persistence_lock;
4158                         let mut guard = mtx.lock().unwrap();
4159                         if *guard {
4160                                 *guard = false;
4161                                 return true;
4162                         }
4163                         guard = cvar.wait_timeout(guard, max_wait).unwrap().0;
4164                         // Due to spurious wakeups that can happen on `wait_timeout`, here we need to check if the
4165                         // desired wait time has actually passed, and if not then restart the loop with a reduced wait
4166                         // time. Note that this logic can be highly simplified through the use of
4167                         // `Condvar::wait_while` and `Condvar::wait_timeout_while`, if and when our MSRV is raised to
4168                         // 1.42.0.
4169                         let elapsed = current_time.elapsed();
4170                         let result = *guard;
4171                         if result || elapsed >= max_wait {
4172                                 *guard = false;
4173                                 return result;
4174                         }
4175                         match max_wait.checked_sub(elapsed) {
4176                                 None => return result,
4177                                 Some(_) => continue
4178                         }
4179                 }
4180         }
4181
4182         // Signal to the ChannelManager persister that there are updates necessitating persisting to disk.
4183         fn notify(&self) {
4184                 let &(ref persist_mtx, ref cnd) = &self.persistence_lock;
4185                 let mut persistence_lock = persist_mtx.lock().unwrap();
4186                 *persistence_lock = true;
4187                 mem::drop(persistence_lock);
4188                 cnd.notify_all();
4189         }
4190 }
4191
4192 const SERIALIZATION_VERSION: u8 = 1;
4193 const MIN_SERIALIZATION_VERSION: u8 = 1;
4194
4195 impl Writeable for PendingHTLCInfo {
4196         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4197                 match &self.routing {
4198                         &PendingHTLCRouting::Forward { ref onion_packet, ref short_channel_id } => {
4199                                 0u8.write(writer)?;
4200                                 onion_packet.write(writer)?;
4201                                 short_channel_id.write(writer)?;
4202                         },
4203                         &PendingHTLCRouting::Receive { ref payment_data, ref incoming_cltv_expiry } => {
4204                                 1u8.write(writer)?;
4205                                 payment_data.payment_secret.write(writer)?;
4206                                 payment_data.total_msat.write(writer)?;
4207                                 incoming_cltv_expiry.write(writer)?;
4208                         },
4209                 }
4210                 self.incoming_shared_secret.write(writer)?;
4211                 self.payment_hash.write(writer)?;
4212                 self.amt_to_forward.write(writer)?;
4213                 self.outgoing_cltv_value.write(writer)?;
4214                 Ok(())
4215         }
4216 }
4217
4218 impl Readable for PendingHTLCInfo {
4219         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCInfo, DecodeError> {
4220                 Ok(PendingHTLCInfo {
4221                         routing: match Readable::read(reader)? {
4222                                 0u8 => PendingHTLCRouting::Forward {
4223                                         onion_packet: Readable::read(reader)?,
4224                                         short_channel_id: Readable::read(reader)?,
4225                                 },
4226                                 1u8 => PendingHTLCRouting::Receive {
4227                                         payment_data: msgs::FinalOnionHopData {
4228                                                 payment_secret: Readable::read(reader)?,
4229                                                 total_msat: Readable::read(reader)?,
4230                                         },
4231                                         incoming_cltv_expiry: Readable::read(reader)?,
4232                                 },
4233                                 _ => return Err(DecodeError::InvalidValue),
4234                         },
4235                         incoming_shared_secret: Readable::read(reader)?,
4236                         payment_hash: Readable::read(reader)?,
4237                         amt_to_forward: Readable::read(reader)?,
4238                         outgoing_cltv_value: Readable::read(reader)?,
4239                 })
4240         }
4241 }
4242
4243 impl Writeable for HTLCFailureMsg {
4244         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4245                 match self {
4246                         &HTLCFailureMsg::Relay(ref fail_msg) => {
4247                                 0u8.write(writer)?;
4248                                 fail_msg.write(writer)?;
4249                         },
4250                         &HTLCFailureMsg::Malformed(ref fail_msg) => {
4251                                 1u8.write(writer)?;
4252                                 fail_msg.write(writer)?;
4253                         }
4254                 }
4255                 Ok(())
4256         }
4257 }
4258
4259 impl Readable for HTLCFailureMsg {
4260         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailureMsg, DecodeError> {
4261                 match <u8 as Readable>::read(reader)? {
4262                         0 => Ok(HTLCFailureMsg::Relay(Readable::read(reader)?)),
4263                         1 => Ok(HTLCFailureMsg::Malformed(Readable::read(reader)?)),
4264                         _ => Err(DecodeError::InvalidValue),
4265                 }
4266         }
4267 }
4268
4269 impl Writeable for PendingHTLCStatus {
4270         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4271                 match self {
4272                         &PendingHTLCStatus::Forward(ref forward_info) => {
4273                                 0u8.write(writer)?;
4274                                 forward_info.write(writer)?;
4275                         },
4276                         &PendingHTLCStatus::Fail(ref fail_msg) => {
4277                                 1u8.write(writer)?;
4278                                 fail_msg.write(writer)?;
4279                         }
4280                 }
4281                 Ok(())
4282         }
4283 }
4284
4285 impl Readable for PendingHTLCStatus {
4286         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<PendingHTLCStatus, DecodeError> {
4287                 match <u8 as Readable>::read(reader)? {
4288                         0 => Ok(PendingHTLCStatus::Forward(Readable::read(reader)?)),
4289                         1 => Ok(PendingHTLCStatus::Fail(Readable::read(reader)?)),
4290                         _ => Err(DecodeError::InvalidValue),
4291                 }
4292         }
4293 }
4294
4295 impl_writeable!(HTLCPreviousHopData, 0, {
4296         short_channel_id,
4297         outpoint,
4298         htlc_id,
4299         incoming_packet_shared_secret
4300 });
4301
4302 impl Writeable for ClaimableHTLC {
4303         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4304                 self.prev_hop.write(writer)?;
4305                 self.value.write(writer)?;
4306                 self.payment_data.payment_secret.write(writer)?;
4307                 self.payment_data.total_msat.write(writer)?;
4308                 self.cltv_expiry.write(writer)
4309         }
4310 }
4311
4312 impl Readable for ClaimableHTLC {
4313         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
4314                 Ok(ClaimableHTLC {
4315                         prev_hop: Readable::read(reader)?,
4316                         value: Readable::read(reader)?,
4317                         payment_data: msgs::FinalOnionHopData {
4318                                 payment_secret: Readable::read(reader)?,
4319                                 total_msat: Readable::read(reader)?,
4320                         },
4321                         cltv_expiry: Readable::read(reader)?,
4322                 })
4323         }
4324 }
4325
4326 impl Writeable for HTLCSource {
4327         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4328                 match self {
4329                         &HTLCSource::PreviousHopData(ref hop_data) => {
4330                                 0u8.write(writer)?;
4331                                 hop_data.write(writer)?;
4332                         },
4333                         &HTLCSource::OutboundRoute { ref path, ref session_priv, ref first_hop_htlc_msat } => {
4334                                 1u8.write(writer)?;
4335                                 path.write(writer)?;
4336                                 session_priv.write(writer)?;
4337                                 first_hop_htlc_msat.write(writer)?;
4338                         }
4339                 }
4340                 Ok(())
4341         }
4342 }
4343
4344 impl Readable for HTLCSource {
4345         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCSource, DecodeError> {
4346                 match <u8 as Readable>::read(reader)? {
4347                         0 => Ok(HTLCSource::PreviousHopData(Readable::read(reader)?)),
4348                         1 => Ok(HTLCSource::OutboundRoute {
4349                                 path: Readable::read(reader)?,
4350                                 session_priv: Readable::read(reader)?,
4351                                 first_hop_htlc_msat: Readable::read(reader)?,
4352                         }),
4353                         _ => Err(DecodeError::InvalidValue),
4354                 }
4355         }
4356 }
4357
4358 impl Writeable for HTLCFailReason {
4359         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4360                 match self {
4361                         &HTLCFailReason::LightningError { ref err } => {
4362                                 0u8.write(writer)?;
4363                                 err.write(writer)?;
4364                         },
4365                         &HTLCFailReason::Reason { ref failure_code, ref data } => {
4366                                 1u8.write(writer)?;
4367                                 failure_code.write(writer)?;
4368                                 data.write(writer)?;
4369                         }
4370                 }
4371                 Ok(())
4372         }
4373 }
4374
4375 impl Readable for HTLCFailReason {
4376         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCFailReason, DecodeError> {
4377                 match <u8 as Readable>::read(reader)? {
4378                         0 => Ok(HTLCFailReason::LightningError { err: Readable::read(reader)? }),
4379                         1 => Ok(HTLCFailReason::Reason {
4380                                 failure_code: Readable::read(reader)?,
4381                                 data: Readable::read(reader)?,
4382                         }),
4383                         _ => Err(DecodeError::InvalidValue),
4384                 }
4385         }
4386 }
4387
4388 impl Writeable for HTLCForwardInfo {
4389         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4390                 match self {
4391                         &HTLCForwardInfo::AddHTLC { ref prev_short_channel_id, ref prev_funding_outpoint, ref prev_htlc_id, ref forward_info } => {
4392                                 0u8.write(writer)?;
4393                                 prev_short_channel_id.write(writer)?;
4394                                 prev_funding_outpoint.write(writer)?;
4395                                 prev_htlc_id.write(writer)?;
4396                                 forward_info.write(writer)?;
4397                         },
4398                         &HTLCForwardInfo::FailHTLC { ref htlc_id, ref err_packet } => {
4399                                 1u8.write(writer)?;
4400                                 htlc_id.write(writer)?;
4401                                 err_packet.write(writer)?;
4402                         },
4403                 }
4404                 Ok(())
4405         }
4406 }
4407
4408 impl Readable for HTLCForwardInfo {
4409         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<HTLCForwardInfo, DecodeError> {
4410                 match <u8 as Readable>::read(reader)? {
4411                         0 => Ok(HTLCForwardInfo::AddHTLC {
4412                                 prev_short_channel_id: Readable::read(reader)?,
4413                                 prev_funding_outpoint: Readable::read(reader)?,
4414                                 prev_htlc_id: Readable::read(reader)?,
4415                                 forward_info: Readable::read(reader)?,
4416                         }),
4417                         1 => Ok(HTLCForwardInfo::FailHTLC {
4418                                 htlc_id: Readable::read(reader)?,
4419                                 err_packet: Readable::read(reader)?,
4420                         }),
4421                         _ => Err(DecodeError::InvalidValue),
4422                 }
4423         }
4424 }
4425
4426 impl_writeable!(PendingInboundPayment, 0, {
4427         payment_secret,
4428         expiry_time,
4429         user_payment_id,
4430         payment_preimage,
4431         min_value_msat
4432 });
4433
4434 impl<Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref> Writeable for ChannelManager<Signer, M, T, K, F, L>
4435         where M::Target: chain::Watch<Signer>,
4436         T::Target: BroadcasterInterface,
4437         K::Target: KeysInterface<Signer = Signer>,
4438         F::Target: FeeEstimator,
4439         L::Target: Logger,
4440 {
4441         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
4442                 let _consistency_lock = self.total_consistency_lock.write().unwrap();
4443
4444                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
4445                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
4446
4447                 self.genesis_hash.write(writer)?;
4448                 {
4449                         let best_block = self.best_block.read().unwrap();
4450                         best_block.height().write(writer)?;
4451                         best_block.block_hash().write(writer)?;
4452                 }
4453
4454                 let channel_state = self.channel_state.lock().unwrap();
4455                 let mut unfunded_channels = 0;
4456                 for (_, channel) in channel_state.by_id.iter() {
4457                         if !channel.is_funding_initiated() {
4458                                 unfunded_channels += 1;
4459                         }
4460                 }
4461                 ((channel_state.by_id.len() - unfunded_channels) as u64).write(writer)?;
4462                 for (_, channel) in channel_state.by_id.iter() {
4463                         if channel.is_funding_initiated() {
4464                                 channel.write(writer)?;
4465                         }
4466                 }
4467
4468                 (channel_state.forward_htlcs.len() as u64).write(writer)?;
4469                 for (short_channel_id, pending_forwards) in channel_state.forward_htlcs.iter() {
4470                         short_channel_id.write(writer)?;
4471                         (pending_forwards.len() as u64).write(writer)?;
4472                         for forward in pending_forwards {
4473                                 forward.write(writer)?;
4474                         }
4475                 }
4476
4477                 (channel_state.claimable_htlcs.len() as u64).write(writer)?;
4478                 for (payment_hash, previous_hops) in channel_state.claimable_htlcs.iter() {
4479                         payment_hash.write(writer)?;
4480                         (previous_hops.len() as u64).write(writer)?;
4481                         for htlc in previous_hops.iter() {
4482                                 htlc.write(writer)?;
4483                         }
4484                 }
4485
4486                 let per_peer_state = self.per_peer_state.write().unwrap();
4487                 (per_peer_state.len() as u64).write(writer)?;
4488                 for (peer_pubkey, peer_state_mutex) in per_peer_state.iter() {
4489                         peer_pubkey.write(writer)?;
4490                         let peer_state = peer_state_mutex.lock().unwrap();
4491                         peer_state.latest_features.write(writer)?;
4492                 }
4493
4494                 let events = self.pending_events.lock().unwrap();
4495                 (events.len() as u64).write(writer)?;
4496                 for event in events.iter() {
4497                         event.write(writer)?;
4498                 }
4499
4500                 let background_events = self.pending_background_events.lock().unwrap();
4501                 (background_events.len() as u64).write(writer)?;
4502                 for event in background_events.iter() {
4503                         match event {
4504                                 BackgroundEvent::ClosingMonitorUpdate((funding_txo, monitor_update)) => {
4505                                         0u8.write(writer)?;
4506                                         funding_txo.write(writer)?;
4507                                         monitor_update.write(writer)?;
4508                                 },
4509                         }
4510                 }
4511
4512                 (self.last_node_announcement_serial.load(Ordering::Acquire) as u32).write(writer)?;
4513                 (self.highest_seen_timestamp.load(Ordering::Acquire) as u32).write(writer)?;
4514
4515                 let pending_inbound_payments = self.pending_inbound_payments.lock().unwrap();
4516                 (pending_inbound_payments.len() as u64).write(writer)?;
4517                 for (hash, pending_payment) in pending_inbound_payments.iter() {
4518                         hash.write(writer)?;
4519                         pending_payment.write(writer)?;
4520                 }
4521
4522                 let pending_outbound_payments = self.pending_outbound_payments.lock().unwrap();
4523                 (pending_outbound_payments.len() as u64).write(writer)?;
4524                 for session_priv in pending_outbound_payments.iter() {
4525                         session_priv.write(writer)?;
4526                 }
4527
4528                 Ok(())
4529         }
4530 }
4531
4532 /// Arguments for the creation of a ChannelManager that are not deserialized.
4533 ///
4534 /// At a high-level, the process for deserializing a ChannelManager and resuming normal operation
4535 /// is:
4536 /// 1) Deserialize all stored ChannelMonitors.
4537 /// 2) Deserialize the ChannelManager by filling in this struct and calling:
4538 ///    <(BlockHash, ChannelManager)>::read(reader, args)
4539 ///    This may result in closing some Channels if the ChannelMonitor is newer than the stored
4540 ///    ChannelManager state to ensure no loss of funds. Thus, transactions may be broadcasted.
4541 /// 3) If you are not fetching full blocks, register all relevant ChannelMonitor outpoints the same
4542 ///    way you would handle a `chain::Filter` call using ChannelMonitor::get_outputs_to_watch() and
4543 ///    ChannelMonitor::get_funding_txo().
4544 /// 4) Reconnect blocks on your ChannelMonitors.
4545 /// 5) Disconnect/connect blocks on the ChannelManager.
4546 /// 6) Move the ChannelMonitors into your local chain::Watch.
4547 ///
4548 /// Note that the ordering of #4-6 is not of importance, however all three must occur before you
4549 /// call any other methods on the newly-deserialized ChannelManager.
4550 ///
4551 /// Note that because some channels may be closed during deserialization, it is critical that you
4552 /// always deserialize only the latest version of a ChannelManager and ChannelMonitors available to
4553 /// you. If you deserialize an old ChannelManager (during which force-closure transactions may be
4554 /// broadcast), and then later deserialize a newer version of the same ChannelManager (which will
4555 /// not force-close the same channels but consider them live), you may end up revoking a state for
4556 /// which you've already broadcasted the transaction.
4557 pub struct ChannelManagerReadArgs<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4558         where M::Target: chain::Watch<Signer>,
4559         T::Target: BroadcasterInterface,
4560         K::Target: KeysInterface<Signer = Signer>,
4561         F::Target: FeeEstimator,
4562         L::Target: Logger,
4563 {
4564         /// The keys provider which will give us relevant keys. Some keys will be loaded during
4565         /// deserialization and KeysInterface::read_chan_signer will be used to read per-Channel
4566         /// signing data.
4567         pub keys_manager: K,
4568
4569         /// The fee_estimator for use in the ChannelManager in the future.
4570         ///
4571         /// No calls to the FeeEstimator will be made during deserialization.
4572         pub fee_estimator: F,
4573         /// The chain::Watch for use in the ChannelManager in the future.
4574         ///
4575         /// No calls to the chain::Watch will be made during deserialization. It is assumed that
4576         /// you have deserialized ChannelMonitors separately and will add them to your
4577         /// chain::Watch after deserializing this ChannelManager.
4578         pub chain_monitor: M,
4579
4580         /// The BroadcasterInterface which will be used in the ChannelManager in the future and may be
4581         /// used to broadcast the latest local commitment transactions of channels which must be
4582         /// force-closed during deserialization.
4583         pub tx_broadcaster: T,
4584         /// The Logger for use in the ChannelManager and which may be used to log information during
4585         /// deserialization.
4586         pub logger: L,
4587         /// Default settings used for new channels. Any existing channels will continue to use the
4588         /// runtime settings which were stored when the ChannelManager was serialized.
4589         pub default_config: UserConfig,
4590
4591         /// A map from channel funding outpoints to ChannelMonitors for those channels (ie
4592         /// value.get_funding_txo() should be the key).
4593         ///
4594         /// If a monitor is inconsistent with the channel state during deserialization the channel will
4595         /// be force-closed using the data in the ChannelMonitor and the channel will be dropped. This
4596         /// is true for missing channels as well. If there is a monitor missing for which we find
4597         /// channel data Err(DecodeError::InvalidValue) will be returned.
4598         ///
4599         /// In such cases the latest local transactions will be sent to the tx_broadcaster included in
4600         /// this struct.
4601         ///
4602         /// (C-not exported) because we have no HashMap bindings
4603         pub channel_monitors: HashMap<OutPoint, &'a mut ChannelMonitor<Signer>>,
4604 }
4605
4606 impl<'a, Signer: 'a + Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4607                 ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>
4608         where M::Target: chain::Watch<Signer>,
4609                 T::Target: BroadcasterInterface,
4610                 K::Target: KeysInterface<Signer = Signer>,
4611                 F::Target: FeeEstimator,
4612                 L::Target: Logger,
4613         {
4614         /// Simple utility function to create a ChannelManagerReadArgs which creates the monitor
4615         /// HashMap for you. This is primarily useful for C bindings where it is not practical to
4616         /// populate a HashMap directly from C.
4617         pub fn new(keys_manager: K, fee_estimator: F, chain_monitor: M, tx_broadcaster: T, logger: L, default_config: UserConfig,
4618                         mut channel_monitors: Vec<&'a mut ChannelMonitor<Signer>>) -> Self {
4619                 Self {
4620                         keys_manager, fee_estimator, chain_monitor, tx_broadcaster, logger, default_config,
4621                         channel_monitors: channel_monitors.drain(..).map(|monitor| { (monitor.get_funding_txo().0, monitor) }).collect()
4622                 }
4623         }
4624 }
4625
4626 // Implement ReadableArgs for an Arc'd ChannelManager to make it a bit easier to work with the
4627 // SipmleArcChannelManager type:
4628 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4629         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, Arc<ChannelManager<Signer, M, T, K, F, L>>)
4630         where M::Target: chain::Watch<Signer>,
4631         T::Target: BroadcasterInterface,
4632         K::Target: KeysInterface<Signer = Signer>,
4633         F::Target: FeeEstimator,
4634         L::Target: Logger,
4635 {
4636         fn read<R: ::std::io::Read>(reader: &mut R, args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4637                 let (blockhash, chan_manager) = <(BlockHash, ChannelManager<Signer, M, T, K, F, L>)>::read(reader, args)?;
4638                 Ok((blockhash, Arc::new(chan_manager)))
4639         }
4640 }
4641
4642 impl<'a, Signer: Sign, M: Deref, T: Deref, K: Deref, F: Deref, L: Deref>
4643         ReadableArgs<ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>> for (BlockHash, ChannelManager<Signer, M, T, K, F, L>)
4644         where M::Target: chain::Watch<Signer>,
4645         T::Target: BroadcasterInterface,
4646         K::Target: KeysInterface<Signer = Signer>,
4647         F::Target: FeeEstimator,
4648         L::Target: Logger,
4649 {
4650         fn read<R: ::std::io::Read>(reader: &mut R, mut args: ChannelManagerReadArgs<'a, Signer, M, T, K, F, L>) -> Result<Self, DecodeError> {
4651                 let _ver: u8 = Readable::read(reader)?;
4652                 let min_ver: u8 = Readable::read(reader)?;
4653                 if min_ver > SERIALIZATION_VERSION {
4654                         return Err(DecodeError::UnknownVersion);
4655                 }
4656
4657                 let genesis_hash: BlockHash = Readable::read(reader)?;
4658                 let best_block_height: u32 = Readable::read(reader)?;
4659                 let best_block_hash: BlockHash = Readable::read(reader)?;
4660
4661                 let mut failed_htlcs = Vec::new();
4662
4663                 let channel_count: u64 = Readable::read(reader)?;
4664                 let mut funding_txo_set = HashSet::with_capacity(cmp::min(channel_count as usize, 128));
4665                 let mut by_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4666                 let mut short_to_id = HashMap::with_capacity(cmp::min(channel_count as usize, 128));
4667                 for _ in 0..channel_count {
4668                         let mut channel: Channel<Signer> = Channel::read(reader, &args.keys_manager)?;
4669                         let funding_txo = channel.get_funding_txo().ok_or(DecodeError::InvalidValue)?;
4670                         funding_txo_set.insert(funding_txo.clone());
4671                         if let Some(ref mut monitor) = args.channel_monitors.get_mut(&funding_txo) {
4672                                 if channel.get_cur_holder_commitment_transaction_number() < monitor.get_cur_holder_commitment_number() ||
4673                                                 channel.get_revoked_counterparty_commitment_transaction_number() < monitor.get_min_seen_secret() ||
4674                                                 channel.get_cur_counterparty_commitment_transaction_number() < monitor.get_cur_counterparty_commitment_number() ||
4675                                                 channel.get_latest_monitor_update_id() > monitor.get_latest_update_id() {
4676                                         // If the channel is ahead of the monitor, return InvalidValue:
4677                                         return Err(DecodeError::InvalidValue);
4678                                 } else if channel.get_cur_holder_commitment_transaction_number() > monitor.get_cur_holder_commitment_number() ||
4679                                                 channel.get_revoked_counterparty_commitment_transaction_number() > monitor.get_min_seen_secret() ||
4680                                                 channel.get_cur_counterparty_commitment_transaction_number() > monitor.get_cur_counterparty_commitment_number() ||
4681                                                 channel.get_latest_monitor_update_id() < monitor.get_latest_update_id() {
4682                                         // But if the channel is behind of the monitor, close the channel:
4683                                         let (_, mut new_failed_htlcs) = channel.force_shutdown(true);
4684                                         failed_htlcs.append(&mut new_failed_htlcs);
4685                                         monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4686                                 } else {
4687                                         if let Some(short_channel_id) = channel.get_short_channel_id() {
4688                                                 short_to_id.insert(short_channel_id, channel.channel_id());
4689                                         }
4690                                         by_id.insert(channel.channel_id(), channel);
4691                                 }
4692                         } else {
4693                                 return Err(DecodeError::InvalidValue);
4694                         }
4695                 }
4696
4697                 for (ref funding_txo, ref mut monitor) in args.channel_monitors.iter_mut() {
4698                         if !funding_txo_set.contains(funding_txo) {
4699                                 monitor.broadcast_latest_holder_commitment_txn(&args.tx_broadcaster, &args.logger);
4700                         }
4701                 }
4702
4703                 const MAX_ALLOC_SIZE: usize = 1024 * 64;
4704                 let forward_htlcs_count: u64 = Readable::read(reader)?;
4705                 let mut forward_htlcs = HashMap::with_capacity(cmp::min(forward_htlcs_count as usize, 128));
4706                 for _ in 0..forward_htlcs_count {
4707                         let short_channel_id = Readable::read(reader)?;
4708                         let pending_forwards_count: u64 = Readable::read(reader)?;
4709                         let mut pending_forwards = Vec::with_capacity(cmp::min(pending_forwards_count as usize, MAX_ALLOC_SIZE/mem::size_of::<HTLCForwardInfo>()));
4710                         for _ in 0..pending_forwards_count {
4711                                 pending_forwards.push(Readable::read(reader)?);
4712                         }
4713                         forward_htlcs.insert(short_channel_id, pending_forwards);
4714                 }
4715
4716                 let claimable_htlcs_count: u64 = Readable::read(reader)?;
4717                 let mut claimable_htlcs = HashMap::with_capacity(cmp::min(claimable_htlcs_count as usize, 128));
4718                 for _ in 0..claimable_htlcs_count {
4719                         let payment_hash = Readable::read(reader)?;
4720                         let previous_hops_len: u64 = Readable::read(reader)?;
4721                         let mut previous_hops = Vec::with_capacity(cmp::min(previous_hops_len as usize, MAX_ALLOC_SIZE/mem::size_of::<ClaimableHTLC>()));
4722                         for _ in 0..previous_hops_len {
4723                                 previous_hops.push(Readable::read(reader)?);
4724                         }
4725                         claimable_htlcs.insert(payment_hash, previous_hops);
4726                 }
4727
4728                 let peer_count: u64 = Readable::read(reader)?;
4729                 let mut per_peer_state = HashMap::with_capacity(cmp::min(peer_count as usize, MAX_ALLOC_SIZE/mem::size_of::<(PublicKey, Mutex<PeerState>)>()));
4730                 for _ in 0..peer_count {
4731                         let peer_pubkey = Readable::read(reader)?;
4732                         let peer_state = PeerState {
4733                                 latest_features: Readable::read(reader)?,
4734                         };
4735                         per_peer_state.insert(peer_pubkey, Mutex::new(peer_state));
4736                 }
4737
4738                 let event_count: u64 = Readable::read(reader)?;
4739                 let mut pending_events_read: Vec<events::Event> = Vec::with_capacity(cmp::min(event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<events::Event>()));
4740                 for _ in 0..event_count {
4741                         match MaybeReadable::read(reader)? {
4742                                 Some(event) => pending_events_read.push(event),
4743                                 None => continue,
4744                         }
4745                 }
4746
4747                 let background_event_count: u64 = Readable::read(reader)?;
4748                 let mut pending_background_events_read: Vec<BackgroundEvent> = Vec::with_capacity(cmp::min(background_event_count as usize, MAX_ALLOC_SIZE/mem::size_of::<BackgroundEvent>()));
4749                 for _ in 0..background_event_count {
4750                         match <u8 as Readable>::read(reader)? {
4751                                 0 => pending_background_events_read.push(BackgroundEvent::ClosingMonitorUpdate((Readable::read(reader)?, Readable::read(reader)?))),
4752                                 _ => return Err(DecodeError::InvalidValue),
4753                         }
4754                 }
4755
4756                 let last_node_announcement_serial: u32 = Readable::read(reader)?;
4757                 let highest_seen_timestamp: u32 = Readable::read(reader)?;
4758
4759                 let pending_inbound_payment_count: u64 = Readable::read(reader)?;
4760                 let mut pending_inbound_payments: HashMap<PaymentHash, PendingInboundPayment> = HashMap::with_capacity(cmp::min(pending_inbound_payment_count as usize, MAX_ALLOC_SIZE/(3*32)));
4761                 for _ in 0..pending_inbound_payment_count {
4762                         if pending_inbound_payments.insert(Readable::read(reader)?, Readable::read(reader)?).is_some() {
4763                                 return Err(DecodeError::InvalidValue);
4764                         }
4765                 }
4766
4767                 let pending_outbound_payments_count: u64 = Readable::read(reader)?;
4768                 let mut pending_outbound_payments: HashSet<[u8; 32]> = HashSet::with_capacity(cmp::min(pending_outbound_payments_count as usize, MAX_ALLOC_SIZE/32));
4769                 for _ in 0..pending_outbound_payments_count {
4770                         if !pending_outbound_payments.insert(Readable::read(reader)?) {
4771                                 return Err(DecodeError::InvalidValue);
4772                         }
4773                 }
4774
4775                 let mut secp_ctx = Secp256k1::new();
4776                 secp_ctx.seeded_randomize(&args.keys_manager.get_secure_random_bytes());
4777
4778                 let channel_manager = ChannelManager {
4779                         genesis_hash,
4780                         fee_estimator: args.fee_estimator,
4781                         chain_monitor: args.chain_monitor,
4782                         tx_broadcaster: args.tx_broadcaster,
4783
4784                         best_block: RwLock::new(BestBlock::new(best_block_hash, best_block_height)),
4785
4786                         channel_state: Mutex::new(ChannelHolder {
4787                                 by_id,
4788                                 short_to_id,
4789                                 forward_htlcs,
4790                                 claimable_htlcs,
4791                                 pending_msg_events: Vec::new(),
4792                         }),
4793                         pending_inbound_payments: Mutex::new(pending_inbound_payments),
4794                         pending_outbound_payments: Mutex::new(pending_outbound_payments),
4795
4796                         our_network_key: args.keys_manager.get_node_secret(),
4797                         our_network_pubkey: PublicKey::from_secret_key(&secp_ctx, &args.keys_manager.get_node_secret()),
4798                         secp_ctx,
4799
4800                         last_node_announcement_serial: AtomicUsize::new(last_node_announcement_serial as usize),
4801                         highest_seen_timestamp: AtomicUsize::new(highest_seen_timestamp as usize),
4802
4803                         per_peer_state: RwLock::new(per_peer_state),
4804
4805                         pending_events: Mutex::new(pending_events_read),
4806                         pending_background_events: Mutex::new(pending_background_events_read),
4807                         total_consistency_lock: RwLock::new(()),
4808                         persistence_notifier: PersistenceNotifier::new(),
4809
4810                         keys_manager: args.keys_manager,
4811                         logger: args.logger,
4812                         default_configuration: args.default_config,
4813                 };
4814
4815                 for htlc_source in failed_htlcs.drain(..) {
4816                         channel_manager.fail_htlc_backwards_internal(channel_manager.channel_state.lock().unwrap(), htlc_source.0, &htlc_source.1, HTLCFailReason::Reason { failure_code: 0x4000 | 8, data: Vec::new() });
4817                 }
4818
4819                 //TODO: Broadcast channel update for closed channels, but only after we've made a
4820                 //connection or two.
4821
4822                 Ok((best_block_hash.clone(), channel_manager))
4823         }
4824 }
4825
4826 #[cfg(test)]
4827 mod tests {
4828         use ln::channelmanager::PersistenceNotifier;
4829         use std::sync::Arc;
4830         use std::sync::atomic::{AtomicBool, Ordering};
4831         use std::thread;
4832         use std::time::Duration;
4833
4834         #[test]
4835         fn test_wait_timeout() {
4836                 let persistence_notifier = Arc::new(PersistenceNotifier::new());
4837                 let thread_notifier = Arc::clone(&persistence_notifier);
4838
4839                 let exit_thread = Arc::new(AtomicBool::new(false));
4840                 let exit_thread_clone = exit_thread.clone();
4841                 thread::spawn(move || {
4842                         loop {
4843                                 let &(ref persist_mtx, ref cnd) = &thread_notifier.persistence_lock;
4844                                 let mut persistence_lock = persist_mtx.lock().unwrap();
4845                                 *persistence_lock = true;
4846                                 cnd.notify_all();
4847
4848                                 if exit_thread_clone.load(Ordering::SeqCst) {
4849                                         break
4850                                 }
4851                         }
4852                 });
4853
4854                 // Check that we can block indefinitely until updates are available.
4855                 let _ = persistence_notifier.wait();
4856
4857                 // Check that the PersistenceNotifier will return after the given duration if updates are
4858                 // available.
4859                 loop {
4860                         if persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4861                                 break
4862                         }
4863                 }
4864
4865                 exit_thread.store(true, Ordering::SeqCst);
4866
4867                 // Check that the PersistenceNotifier will return after the given duration even if no updates
4868                 // are available.
4869                 loop {
4870                         if !persistence_notifier.wait_timeout(Duration::from_millis(100)) {
4871                                 break
4872                         }
4873                 }
4874         }
4875 }
4876
4877 #[cfg(all(any(test, feature = "_test_utils"), feature = "unstable"))]
4878 pub mod bench {
4879         use chain::Listen;
4880         use chain::chainmonitor::ChainMonitor;
4881         use chain::channelmonitor::Persist;
4882         use chain::keysinterface::{KeysManager, InMemorySigner};
4883         use ln::channelmanager::{BestBlock, ChainParameters, ChannelManager, PaymentHash, PaymentPreimage};
4884         use ln::features::{InitFeatures, InvoiceFeatures};
4885         use ln::functional_test_utils::*;
4886         use ln::msgs::ChannelMessageHandler;
4887         use routing::network_graph::NetworkGraph;
4888         use routing::router::get_route;
4889         use util::test_utils;
4890         use util::config::UserConfig;
4891         use util::events::{Event, EventsProvider, MessageSendEvent, MessageSendEventsProvider};
4892
4893         use bitcoin::hashes::Hash;
4894         use bitcoin::hashes::sha256::Hash as Sha256;
4895         use bitcoin::{Block, BlockHeader, Transaction, TxOut};
4896
4897         use std::sync::Mutex;
4898
4899         use test::Bencher;
4900
4901         struct NodeHolder<'a, P: Persist<InMemorySigner>> {
4902                 node: &'a ChannelManager<InMemorySigner,
4903                         &'a ChainMonitor<InMemorySigner, &'a test_utils::TestChainSource,
4904                                 &'a test_utils::TestBroadcaster, &'a test_utils::TestFeeEstimator,
4905                                 &'a test_utils::TestLogger, &'a P>,
4906                         &'a test_utils::TestBroadcaster, &'a KeysManager,
4907                         &'a test_utils::TestFeeEstimator, &'a test_utils::TestLogger>
4908         }
4909
4910         #[cfg(test)]
4911         #[bench]
4912         fn bench_sends(bench: &mut Bencher) {
4913                 bench_two_sends(bench, test_utils::TestPersister::new(), test_utils::TestPersister::new());
4914         }
4915
4916         pub fn bench_two_sends<P: Persist<InMemorySigner>>(bench: &mut Bencher, persister_a: P, persister_b: P) {
4917                 // Do a simple benchmark of sending a payment back and forth between two nodes.
4918                 // Note that this is unrealistic as each payment send will require at least two fsync
4919                 // calls per node.
4920                 let network = bitcoin::Network::Testnet;
4921                 let genesis_hash = bitcoin::blockdata::constants::genesis_block(network).header.block_hash();
4922
4923                 let tx_broadcaster = test_utils::TestBroadcaster{txn_broadcasted: Mutex::new(Vec::new())};
4924                 let fee_estimator = test_utils::TestFeeEstimator { sat_per_kw: 253 };
4925
4926                 let mut config: UserConfig = Default::default();
4927                 config.own_channel_config.minimum_depth = 1;
4928
4929                 let logger_a = test_utils::TestLogger::with_id("node a".to_owned());
4930                 let chain_monitor_a = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_a);
4931                 let seed_a = [1u8; 32];
4932                 let keys_manager_a = KeysManager::new(&seed_a, 42, 42);
4933                 let node_a = ChannelManager::new(&fee_estimator, &chain_monitor_a, &tx_broadcaster, &logger_a, &keys_manager_a, config.clone(), ChainParameters {
4934                         network,
4935                         best_block: BestBlock::from_genesis(network),
4936                 });
4937                 let node_a_holder = NodeHolder { node: &node_a };
4938
4939                 let logger_b = test_utils::TestLogger::with_id("node a".to_owned());
4940                 let chain_monitor_b = ChainMonitor::new(None, &tx_broadcaster, &logger_a, &fee_estimator, &persister_b);
4941                 let seed_b = [2u8; 32];
4942                 let keys_manager_b = KeysManager::new(&seed_b, 42, 42);
4943                 let node_b = ChannelManager::new(&fee_estimator, &chain_monitor_b, &tx_broadcaster, &logger_b, &keys_manager_b, config.clone(), ChainParameters {
4944                         network,
4945                         best_block: BestBlock::from_genesis(network),
4946                 });
4947                 let node_b_holder = NodeHolder { node: &node_b };
4948
4949                 node_a.create_channel(node_b.get_our_node_id(), 8_000_000, 100_000_000, 42, None).unwrap();
4950                 node_b.handle_open_channel(&node_a.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_a_holder, MessageSendEvent::SendOpenChannel, node_b.get_our_node_id()));
4951                 node_a.handle_accept_channel(&node_b.get_our_node_id(), InitFeatures::known(), &get_event_msg!(node_b_holder, MessageSendEvent::SendAcceptChannel, node_a.get_our_node_id()));
4952
4953                 let tx;
4954                 if let Event::FundingGenerationReady { temporary_channel_id, output_script, .. } = get_event!(node_a_holder, Event::FundingGenerationReady) {
4955                         tx = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: vec![TxOut {
4956                                 value: 8_000_000, script_pubkey: output_script,
4957                         }]};
4958                         node_a.funding_transaction_generated(&temporary_channel_id, tx.clone()).unwrap();
4959                 } else { panic!(); }
4960
4961                 node_b.handle_funding_created(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingCreated, node_b.get_our_node_id()));
4962                 node_a.handle_funding_signed(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingSigned, node_a.get_our_node_id()));
4963
4964                 assert_eq!(&tx_broadcaster.txn_broadcasted.lock().unwrap()[..], &[tx.clone()]);
4965
4966                 let block = Block {
4967                         header: BlockHeader { version: 0x20000000, prev_blockhash: genesis_hash, merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 },
4968                         txdata: vec![tx],
4969                 };
4970                 Listen::block_connected(&node_a, &block, 1);
4971                 Listen::block_connected(&node_b, &block, 1);
4972
4973                 node_a.handle_funding_locked(&node_b.get_our_node_id(), &get_event_msg!(node_b_holder, MessageSendEvent::SendFundingLocked, node_a.get_our_node_id()));
4974                 node_b.handle_funding_locked(&node_a.get_our_node_id(), &get_event_msg!(node_a_holder, MessageSendEvent::SendFundingLocked, node_b.get_our_node_id()));
4975
4976                 let dummy_graph = NetworkGraph::new(genesis_hash);
4977
4978                 let mut payment_count: u64 = 0;
4979                 macro_rules! send_payment {
4980                         ($node_a: expr, $node_b: expr) => {
4981                                 let usable_channels = $node_a.list_usable_channels();
4982                                 let route = get_route(&$node_a.get_our_node_id(), &dummy_graph, &$node_b.get_our_node_id(), Some(InvoiceFeatures::known()),
4983                                         Some(&usable_channels.iter().map(|r| r).collect::<Vec<_>>()), &[], 10_000, TEST_FINAL_CLTV, &logger_a).unwrap();
4984
4985                                 let mut payment_preimage = PaymentPreimage([0; 32]);
4986                                 payment_preimage.0[0..8].copy_from_slice(&payment_count.to_le_bytes());
4987                                 payment_count += 1;
4988                                 let payment_hash = PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner());
4989                                 let payment_secret = $node_b.create_inbound_payment_for_hash(payment_hash, None, 7200, 0).unwrap();
4990
4991                                 $node_a.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
4992                                 let payment_event = SendEvent::from_event($node_a.get_and_clear_pending_msg_events().pop().unwrap());
4993                                 $node_b.handle_update_add_htlc(&$node_a.get_our_node_id(), &payment_event.msgs[0]);
4994                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &payment_event.commitment_msg);
4995                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_b }, $node_a.get_our_node_id());
4996                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &raa);
4997                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &cs);
4998                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_a }, MessageSendEvent::SendRevokeAndACK, $node_b.get_our_node_id()));
4999
5000                                 expect_pending_htlcs_forwardable!(NodeHolder { node: &$node_b });
5001                                 expect_payment_received!(NodeHolder { node: &$node_b }, payment_hash, payment_secret, 10_000);
5002                                 assert!($node_b.claim_funds(payment_preimage));
5003
5004                                 match $node_b.get_and_clear_pending_msg_events().pop().unwrap() {
5005                                         MessageSendEvent::UpdateHTLCs { node_id, updates } => {
5006                                                 assert_eq!(node_id, $node_a.get_our_node_id());
5007                                                 $node_a.handle_update_fulfill_htlc(&$node_b.get_our_node_id(), &updates.update_fulfill_htlcs[0]);
5008                                                 $node_a.handle_commitment_signed(&$node_b.get_our_node_id(), &updates.commitment_signed);
5009                                         },
5010                                         _ => panic!("Failed to generate claim event"),
5011                                 }
5012
5013                                 let (raa, cs) = get_revoke_commit_msgs!(NodeHolder { node: &$node_a }, $node_b.get_our_node_id());
5014                                 $node_b.handle_revoke_and_ack(&$node_a.get_our_node_id(), &raa);
5015                                 $node_b.handle_commitment_signed(&$node_a.get_our_node_id(), &cs);
5016                                 $node_a.handle_revoke_and_ack(&$node_b.get_our_node_id(), &get_event_msg!(NodeHolder { node: &$node_b }, MessageSendEvent::SendRevokeAndACK, $node_a.get_our_node_id()));
5017
5018                                 expect_payment_sent!(NodeHolder { node: &$node_a }, payment_preimage);
5019                         }
5020                 }
5021
5022                 bench.iter(|| {
5023                         send_payment!(node_a, node_b);
5024                         send_payment!(node_b, node_a);
5025                 });
5026         }
5027 }