Extend KeysInterface with derive_channel_keys
[rust-lightning] / lightning / src / ln / channelmonitor.rs
1 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
2 //! here.
3 //!
4 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
5 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
6 //! be made in responding to certain messages, see ManyChannelMonitor for more.
7 //!
8 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
9 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
10 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
11 //! security-domain-separated system design, you should consider having multiple paths for
12 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
13
14 use bitcoin::blockdata::block::BlockHeader;
15 use bitcoin::blockdata::transaction::{TxOut,Transaction};
16 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
17 use bitcoin::blockdata::script::{Script, Builder};
18 use bitcoin::blockdata::opcodes;
19 use bitcoin::consensus::encode;
20 use bitcoin::util::hash::BitcoinHash;
21
22 use bitcoin::hashes::Hash;
23 use bitcoin::hashes::sha256::Hash as Sha256;
24 use bitcoin::hash_types::{Txid, BlockHash, WPubkeyHash};
25
26 use bitcoin::secp256k1::{Secp256k1,Signature};
27 use bitcoin::secp256k1::key::{SecretKey,PublicKey};
28 use bitcoin::secp256k1;
29
30 use ln::msgs::DecodeError;
31 use ln::chan_utils;
32 use ln::chan_utils::{CounterpartyCommitmentSecrets, HTLCOutputInCommitment, LocalCommitmentTransaction, HTLCType};
33 use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash};
34 use ln::onchaintx::{OnchainTxHandler, InputDescriptors};
35 use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface, FeeEstimator};
36 use chain::transaction::OutPoint;
37 use chain::keysinterface::{SpendableOutputDescriptor, ChannelKeys};
38 use util::logger::Logger;
39 use util::ser::{Readable, MaybeReadable, Writer, Writeable, U48};
40 use util::{byte_utils, events};
41
42 use std::collections::{HashMap, hash_map};
43 use std::sync::Mutex;
44 use std::{hash,cmp, mem};
45 use std::ops::Deref;
46
47 /// An update generated by the underlying Channel itself which contains some new information the
48 /// ChannelMonitor should be made aware of.
49 #[cfg_attr(test, derive(PartialEq))]
50 #[derive(Clone)]
51 #[must_use]
52 pub struct ChannelMonitorUpdate {
53         pub(super) updates: Vec<ChannelMonitorUpdateStep>,
54         /// The sequence number of this update. Updates *must* be replayed in-order according to this
55         /// sequence number (and updates may panic if they are not). The update_id values are strictly
56         /// increasing and increase by one for each new update.
57         ///
58         /// This sequence number is also used to track up to which points updates which returned
59         /// ChannelMonitorUpdateErr::TemporaryFailure have been applied to all copies of a given
60         /// ChannelMonitor when ChannelManager::channel_monitor_updated is called.
61         pub update_id: u64,
62 }
63
64 impl Writeable for ChannelMonitorUpdate {
65         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
66                 self.update_id.write(w)?;
67                 (self.updates.len() as u64).write(w)?;
68                 for update_step in self.updates.iter() {
69                         update_step.write(w)?;
70                 }
71                 Ok(())
72         }
73 }
74 impl Readable for ChannelMonitorUpdate {
75         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
76                 let update_id: u64 = Readable::read(r)?;
77                 let len: u64 = Readable::read(r)?;
78                 let mut updates = Vec::with_capacity(cmp::min(len as usize, MAX_ALLOC_SIZE / ::std::mem::size_of::<ChannelMonitorUpdateStep>()));
79                 for _ in 0..len {
80                         updates.push(Readable::read(r)?);
81                 }
82                 Ok(Self { update_id, updates })
83         }
84 }
85
86 /// An error enum representing a failure to persist a channel monitor update.
87 #[derive(Clone)]
88 pub enum ChannelMonitorUpdateErr {
89         /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
90         /// our state failed, but is expected to succeed at some point in the future).
91         ///
92         /// Such a failure will "freeze" a channel, preventing us from revoking old states or
93         /// submitting new commitment transactions to the remote party. Once the update(s) which failed
94         /// have been successfully applied, ChannelManager::channel_monitor_updated can be used to
95         /// restore the channel to an operational state.
96         ///
97         /// Note that a given ChannelManager will *never* re-generate a given ChannelMonitorUpdate. If
98         /// you return a TemporaryFailure you must ensure that it is written to disk safely before
99         /// writing out the latest ChannelManager state.
100         ///
101         /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
102         /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
103         /// to claim it on this channel) and those updates must be applied wherever they can be. At
104         /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
105         /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
106         /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
107         /// been "frozen".
108         ///
109         /// Note that even if updates made after TemporaryFailure succeed you must still call
110         /// channel_monitor_updated to ensure you have the latest monitor and re-enable normal channel
111         /// operation.
112         ///
113         /// Note that the update being processed here will not be replayed for you when you call
114         /// ChannelManager::channel_monitor_updated, so you must store the update itself along
115         /// with the persisted ChannelMonitor on your own local disk prior to returning a
116         /// TemporaryFailure. You may, of course, employ a journaling approach, storing only the
117         /// ChannelMonitorUpdate on disk without updating the monitor itself, replaying the journal at
118         /// reload-time.
119         ///
120         /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
121         /// remote location (with local copies persisted immediately), it is anticipated that all
122         /// updates will return TemporaryFailure until the remote copies could be updated.
123         TemporaryFailure,
124         /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
125         /// different watchtower and cannot update with all watchtowers that were previously informed
126         /// of this channel). This will force-close the channel in question (which will generate one
127         /// final ChannelMonitorUpdate which must be delivered to at least one ChannelMonitor copy).
128         ///
129         /// Should also be used to indicate a failure to update the local persisted copy of the channel
130         /// monitor.
131         PermanentFailure,
132 }
133
134 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
135 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::update_monitor this
136 /// means you tried to update a monitor for a different channel or the ChannelMonitorUpdate was
137 /// corrupted.
138 /// Contains a human-readable error message.
139 #[derive(Debug)]
140 pub struct MonitorUpdateError(pub &'static str);
141
142 /// Simple structure send back by ManyChannelMonitor in case of HTLC detected onchain from a
143 /// forward channel and from which info are needed to update HTLC in a backward channel.
144 #[derive(Clone, PartialEq)]
145 pub struct HTLCUpdate {
146         pub(super) payment_hash: PaymentHash,
147         pub(super) payment_preimage: Option<PaymentPreimage>,
148         pub(super) source: HTLCSource
149 }
150 impl_writeable!(HTLCUpdate, 0, { payment_hash, payment_preimage, source });
151
152 /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between
153 /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing
154 /// events to it, while also taking any add/update_monitor events and passing them to some remote
155 /// server(s).
156 ///
157 /// In general, you must always have at least one local copy in memory, which must never fail to
158 /// update (as it is responsible for broadcasting the latest state in case the channel is closed),
159 /// and then persist it to various on-disk locations. If, for some reason, the in-memory copy fails
160 /// to update (eg out-of-memory or some other condition), you must immediately shut down without
161 /// taking any further action such as writing the current state to disk. This should likely be
162 /// accomplished via panic!() or abort().
163 ///
164 /// Note that any updates to a channel's monitor *must* be applied to each instance of the
165 /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If
166 /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions
167 /// which we have revoked, allowing our counterparty to claim all funds in the channel!
168 ///
169 /// User needs to notify implementors of ManyChannelMonitor when a new block is connected or
170 /// disconnected using their `block_connected` and `block_disconnected` methods. However, rather
171 /// than calling these methods directly, the user should register implementors as listeners to the
172 /// BlockNotifier and call the BlockNotifier's `block_(dis)connected` methods, which will notify
173 /// all registered listeners in one go.
174 pub trait ManyChannelMonitor<ChanSigner: ChannelKeys>: Send + Sync {
175         /// Adds a monitor for the given `funding_txo`.
176         ///
177         /// Implementer must also ensure that the funding_txo txid *and* outpoint are registered with
178         /// any relevant ChainWatchInterfaces such that the provided monitor receives block_connected
179         /// callbacks with the funding transaction, or any spends of it.
180         ///
181         /// Further, the implementer must also ensure that each output returned in
182         /// monitor.get_outputs_to_watch() is registered to ensure that the provided monitor learns about
183         /// any spends of any of the outputs.
184         ///
185         /// Any spends of outputs which should have been registered which aren't passed to
186         /// ChannelMonitors via block_connected may result in FUNDS LOSS.
187         fn add_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor<ChanSigner>) -> Result<(), ChannelMonitorUpdateErr>;
188
189         /// Updates a monitor for the given `funding_txo`.
190         ///
191         /// Implementer must also ensure that the funding_txo txid *and* outpoint are registered with
192         /// any relevant ChainWatchInterfaces such that the provided monitor receives block_connected
193         /// callbacks with the funding transaction, or any spends of it.
194         ///
195         /// Further, the implementer must also ensure that each output returned in
196         /// monitor.get_watch_outputs() is registered to ensure that the provided monitor learns about
197         /// any spends of any of the outputs.
198         ///
199         /// Any spends of outputs which should have been registered which aren't passed to
200         /// ChannelMonitors via block_connected may result in FUNDS LOSS.
201         fn update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr>;
202
203         /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated
204         /// with success or failure.
205         ///
206         /// You should probably just call through to
207         /// ChannelMonitor::get_and_clear_pending_htlcs_updated() for each ChannelMonitor and return
208         /// the full list.
209         fn get_and_clear_pending_htlcs_updated(&self) -> Vec<HTLCUpdate>;
210 }
211
212 /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a
213 /// watchtower or watch our own channels.
214 ///
215 /// Note that you must provide your own key by which to refer to channels.
216 ///
217 /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that
218 /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably
219 /// index by a PublicKey which is required to sign any updates.
220 ///
221 /// If you're using this for local monitoring of your own channels, you probably want to use
222 /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation.
223 pub struct SimpleManyChannelMonitor<Key, ChanSigner: ChannelKeys, T: Deref, F: Deref, L: Deref, C: Deref>
224         where T::Target: BroadcasterInterface,
225         F::Target: FeeEstimator,
226         L::Target: Logger,
227         C::Target: ChainWatchInterface,
228 {
229         #[cfg(test)] // Used in ChannelManager tests to manipulate channels directly
230         pub monitors: Mutex<HashMap<Key, ChannelMonitor<ChanSigner>>>,
231         #[cfg(not(test))]
232         monitors: Mutex<HashMap<Key, ChannelMonitor<ChanSigner>>>,
233         chain_monitor: C,
234         broadcaster: T,
235         logger: L,
236         fee_estimator: F
237 }
238
239 impl<Key : Send + cmp::Eq + hash::Hash, ChanSigner: ChannelKeys, T: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send, C: Deref + Sync + Send>
240         ChainListener for SimpleManyChannelMonitor<Key, ChanSigner, T, F, L, C>
241         where T::Target: BroadcasterInterface,
242               F::Target: FeeEstimator,
243               L::Target: Logger,
244         C::Target: ChainWatchInterface,
245 {
246         fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) {
247                 let block_hash = header.bitcoin_hash();
248                 {
249                         let mut monitors = self.monitors.lock().unwrap();
250                         for monitor in monitors.values_mut() {
251                                 let txn_outputs = monitor.block_connected(txn_matched, height, &block_hash, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
252
253                                 for (ref txid, ref outputs) in txn_outputs {
254                                         for (idx, output) in outputs.iter().enumerate() {
255                                                 self.chain_monitor.install_watch_outpoint((txid.clone(), idx as u32), &output.script_pubkey);
256                                         }
257                                 }
258                         }
259                 }
260         }
261
262         fn block_disconnected(&self, header: &BlockHeader, disconnected_height: u32) {
263                 let block_hash = header.bitcoin_hash();
264                 let mut monitors = self.monitors.lock().unwrap();
265                 for monitor in monitors.values_mut() {
266                         monitor.block_disconnected(disconnected_height, &block_hash, &*self.broadcaster, &*self.fee_estimator, &*self.logger);
267                 }
268         }
269 }
270
271 impl<Key : Send + cmp::Eq + hash::Hash + 'static, ChanSigner: ChannelKeys, T: Deref, F: Deref, L: Deref, C: Deref> SimpleManyChannelMonitor<Key, ChanSigner, T, F, L, C>
272         where T::Target: BroadcasterInterface,
273               F::Target: FeeEstimator,
274               L::Target: Logger,
275         C::Target: ChainWatchInterface,
276 {
277         /// Creates a new object which can be used to monitor several channels given the chain
278         /// interface with which to register to receive notifications.
279         pub fn new(chain_monitor: C, broadcaster: T, logger: L, feeest: F) -> SimpleManyChannelMonitor<Key, ChanSigner, T, F, L, C> {
280                 let res = SimpleManyChannelMonitor {
281                         monitors: Mutex::new(HashMap::new()),
282                         chain_monitor,
283                         broadcaster,
284                         logger,
285                         fee_estimator: feeest,
286                 };
287
288                 res
289         }
290
291         /// Adds or updates the monitor which monitors the channel referred to by the given key.
292         pub fn add_monitor_by_key(&self, key: Key, monitor: ChannelMonitor<ChanSigner>) -> Result<(), MonitorUpdateError> {
293                 let mut monitors = self.monitors.lock().unwrap();
294                 let entry = match monitors.entry(key) {
295                         hash_map::Entry::Occupied(_) => return Err(MonitorUpdateError("Channel monitor for given key is already present")),
296                         hash_map::Entry::Vacant(e) => e,
297                 };
298                 log_trace!(self.logger, "Got new Channel Monitor for channel {}", log_bytes!(monitor.funding_info.0.to_channel_id()[..]));
299                 self.chain_monitor.install_watch_tx(&monitor.funding_info.0.txid, &monitor.funding_info.1);
300                 self.chain_monitor.install_watch_outpoint((monitor.funding_info.0.txid, monitor.funding_info.0.index as u32), &monitor.funding_info.1);
301                 for (txid, outputs) in monitor.get_outputs_to_watch().iter() {
302                         for (idx, script) in outputs.iter().enumerate() {
303                                 self.chain_monitor.install_watch_outpoint((*txid, idx as u32), script);
304                         }
305                 }
306                 entry.insert(monitor);
307                 Ok(())
308         }
309
310         /// Updates the monitor which monitors the channel referred to by the given key.
311         pub fn update_monitor_by_key(&self, key: Key, update: ChannelMonitorUpdate) -> Result<(), MonitorUpdateError> {
312                 let mut monitors = self.monitors.lock().unwrap();
313                 match monitors.get_mut(&key) {
314                         Some(orig_monitor) => {
315                                 log_trace!(self.logger, "Updating Channel Monitor for channel {}", log_funding_info!(orig_monitor));
316                                 orig_monitor.update_monitor(update, &self.broadcaster, &self.logger)
317                         },
318                         None => Err(MonitorUpdateError("No such monitor registered"))
319                 }
320         }
321 }
322
323 impl<ChanSigner: ChannelKeys, T: Deref + Sync + Send, F: Deref + Sync + Send, L: Deref + Sync + Send, C: Deref + Sync + Send> ManyChannelMonitor<ChanSigner> for SimpleManyChannelMonitor<OutPoint, ChanSigner, T, F, L, C>
324         where T::Target: BroadcasterInterface,
325               F::Target: FeeEstimator,
326               L::Target: Logger,
327         C::Target: ChainWatchInterface,
328 {
329         fn add_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor<ChanSigner>) -> Result<(), ChannelMonitorUpdateErr> {
330                 match self.add_monitor_by_key(funding_txo, monitor) {
331                         Ok(_) => Ok(()),
332                         Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure),
333                 }
334         }
335
336         fn update_monitor(&self, funding_txo: OutPoint, update: ChannelMonitorUpdate) -> Result<(), ChannelMonitorUpdateErr> {
337                 match self.update_monitor_by_key(funding_txo, update) {
338                         Ok(_) => Ok(()),
339                         Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure),
340                 }
341         }
342
343         fn get_and_clear_pending_htlcs_updated(&self) -> Vec<HTLCUpdate> {
344                 let mut pending_htlcs_updated = Vec::new();
345                 for chan in self.monitors.lock().unwrap().values_mut() {
346                         pending_htlcs_updated.append(&mut chan.get_and_clear_pending_htlcs_updated());
347                 }
348                 pending_htlcs_updated
349         }
350 }
351
352 impl<Key : Send + cmp::Eq + hash::Hash, ChanSigner: ChannelKeys, T: Deref, F: Deref, L: Deref, C: Deref> events::EventsProvider for SimpleManyChannelMonitor<Key, ChanSigner, T, F, L, C>
353         where T::Target: BroadcasterInterface,
354               F::Target: FeeEstimator,
355               L::Target: Logger,
356         C::Target: ChainWatchInterface,
357 {
358         fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
359                 let mut pending_events = Vec::new();
360                 for chan in self.monitors.lock().unwrap().values_mut() {
361                         pending_events.append(&mut chan.get_and_clear_pending_events());
362                 }
363                 pending_events
364         }
365 }
366
367 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
368 /// instead claiming it in its own individual transaction.
369 pub(crate) const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
370 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
371 /// HTLC-Success transaction.
372 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
373 /// transaction confirmed (and we use it in a few more, equivalent, places).
374 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
375 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
376 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
377 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
378 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
379 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
380 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
381 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
382 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
383 /// accurate block height.
384 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
385 /// with at worst this delay, so we are not only using this value as a mercy for them but also
386 /// us as a safeguard to delay with enough time.
387 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
388 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
389 /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
390 /// We use also this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
391 /// It may cause spurrious generation of bumped claim txn but that's allright given the outpoint is already
392 /// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
393 /// keeping bumping another claim tx to solve the outpoint.
394 pub(crate) const ANTI_REORG_DELAY: u32 = 6;
395 /// Number of blocks before confirmation at which we fail back an un-relayed HTLC or at which we
396 /// refuse to accept a new HTLC.
397 ///
398 /// This is used for a few separate purposes:
399 /// 1) if we've received an MPP HTLC to us and it expires within this many blocks and we are
400 ///    waiting on additional parts (or waiting on the preimage for any HTLC from the user), we will
401 ///    fail this HTLC,
402 /// 2) if we receive an HTLC within this many blocks of its expiry (plus one to avoid a race
403 ///    condition with the above), we will fail this HTLC without telling the user we received it,
404 /// 3) if we are waiting on a connection or a channel state update to send an HTLC to a peer, and
405 ///    that HTLC expires within this many blocks, we will simply fail the HTLC instead.
406 ///
407 /// (1) is all about protecting us - we need enough time to update the channel state before we hit
408 /// CLTV_CLAIM_BUFFER, at which point we'd go on chain to claim the HTLC with the preimage.
409 ///
410 /// (2) is the same, but with an additional buffer to avoid accepting an HTLC which is immediately
411 /// in a race condition between the user connecting a block (which would fail it) and the user
412 /// providing us the preimage (which would claim it).
413 ///
414 /// (3) is about our counterparty - we don't want to relay an HTLC to a counterparty when they may
415 /// end up force-closing the channel on us to claim it.
416 pub(crate) const HTLC_FAIL_BACK_BUFFER: u32 = CLTV_CLAIM_BUFFER + LATENCY_GRACE_PERIOD_BLOCKS;
417
418 #[derive(Clone, PartialEq)]
419 struct LocalSignedTx {
420         /// txid of the transaction in tx, just used to make comparison faster
421         txid: Txid,
422         revocation_key: PublicKey,
423         a_htlc_key: PublicKey,
424         b_htlc_key: PublicKey,
425         delayed_payment_key: PublicKey,
426         per_commitment_point: PublicKey,
427         feerate_per_kw: u64,
428         htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
429 }
430
431 /// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs
432 /// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build
433 /// a new bumped one in case of lenghty confirmation delay
434 #[derive(Clone, PartialEq)]
435 pub(crate) enum InputMaterial {
436         Revoked {
437                 per_commitment_point: PublicKey,
438                 per_commitment_key: SecretKey,
439                 input_descriptor: InputDescriptors,
440                 amount: u64,
441         },
442         RemoteHTLC {
443                 per_commitment_point: PublicKey,
444                 preimage: Option<PaymentPreimage>,
445                 amount: u64,
446                 locktime: u32,
447         },
448         LocalHTLC {
449                 preimage: Option<PaymentPreimage>,
450                 amount: u64,
451         },
452         Funding {
453                 funding_redeemscript: Script,
454         }
455 }
456
457 impl Writeable for InputMaterial  {
458         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
459                 match self {
460                         &InputMaterial::Revoked { ref per_commitment_point, ref per_commitment_key, ref input_descriptor, ref amount} => {
461                                 writer.write_all(&[0; 1])?;
462                                 per_commitment_point.write(writer)?;
463                                 writer.write_all(&per_commitment_key[..])?;
464                                 input_descriptor.write(writer)?;
465                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
466                         },
467                         &InputMaterial::RemoteHTLC { ref per_commitment_point, ref preimage, ref amount, ref locktime } => {
468                                 writer.write_all(&[1; 1])?;
469                                 per_commitment_point.write(writer)?;
470                                 preimage.write(writer)?;
471                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
472                                 writer.write_all(&byte_utils::be32_to_array(*locktime))?;
473                         },
474                         &InputMaterial::LocalHTLC { ref preimage, ref amount } => {
475                                 writer.write_all(&[2; 1])?;
476                                 preimage.write(writer)?;
477                                 writer.write_all(&byte_utils::be64_to_array(*amount))?;
478                         },
479                         &InputMaterial::Funding { ref funding_redeemscript } => {
480                                 writer.write_all(&[3; 1])?;
481                                 funding_redeemscript.write(writer)?;
482                         }
483                 }
484                 Ok(())
485         }
486 }
487
488 impl Readable for InputMaterial {
489         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
490                 let input_material = match <u8 as Readable>::read(reader)? {
491                         0 => {
492                                 let per_commitment_point = Readable::read(reader)?;
493                                 let per_commitment_key = Readable::read(reader)?;
494                                 let input_descriptor = Readable::read(reader)?;
495                                 let amount = Readable::read(reader)?;
496                                 InputMaterial::Revoked {
497                                         per_commitment_point,
498                                         per_commitment_key,
499                                         input_descriptor,
500                                         amount
501                                 }
502                         },
503                         1 => {
504                                 let per_commitment_point = Readable::read(reader)?;
505                                 let preimage = Readable::read(reader)?;
506                                 let amount = Readable::read(reader)?;
507                                 let locktime = Readable::read(reader)?;
508                                 InputMaterial::RemoteHTLC {
509                                         per_commitment_point,
510                                         preimage,
511                                         amount,
512                                         locktime
513                                 }
514                         },
515                         2 => {
516                                 let preimage = Readable::read(reader)?;
517                                 let amount = Readable::read(reader)?;
518                                 InputMaterial::LocalHTLC {
519                                         preimage,
520                                         amount,
521                                 }
522                         },
523                         3 => {
524                                 InputMaterial::Funding {
525                                         funding_redeemscript: Readable::read(reader)?,
526                                 }
527                         }
528                         _ => return Err(DecodeError::InvalidValue),
529                 };
530                 Ok(input_material)
531         }
532 }
533
534 /// ClaimRequest is a descriptor structure to communicate between detection
535 /// and reaction module. They are generated by ChannelMonitor while parsing
536 /// onchain txn leaked from a channel and handed over to OnchainTxHandler which
537 /// is responsible for opportunistic aggregation, selecting and enforcing
538 /// bumping logic, building and signing transactions.
539 pub(crate) struct ClaimRequest {
540         // Block height before which claiming is exclusive to one party,
541         // after reaching it, claiming may be contentious.
542         pub(crate) absolute_timelock: u32,
543         // Timeout tx must have nLocktime set which means aggregating multiple
544         // ones must take the higher nLocktime among them to satisfy all of them.
545         // Sadly it has few pitfalls, a) it takes longuer to get fund back b) CLTV_DELTA
546         // of a sooner-HTLC could be swallowed by the highest nLocktime of the HTLC set.
547         // Do simplify we mark them as non-aggregable.
548         pub(crate) aggregable: bool,
549         // Basic bitcoin outpoint (txid, vout)
550         pub(crate) outpoint: BitcoinOutPoint,
551         // Following outpoint type, set of data needed to generate transaction digest
552         // and satisfy witness program.
553         pub(crate) witness_data: InputMaterial
554 }
555
556 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
557 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
558 #[derive(Clone, PartialEq)]
559 enum OnchainEvent {
560         /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
561         /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
562         /// only win from it, so it's never an OnchainEvent
563         HTLCUpdate {
564                 htlc_update: (HTLCSource, PaymentHash),
565         },
566         MaturingOutput {
567                 descriptor: SpendableOutputDescriptor,
568         },
569 }
570
571 const SERIALIZATION_VERSION: u8 = 1;
572 const MIN_SERIALIZATION_VERSION: u8 = 1;
573
574 #[cfg_attr(test, derive(PartialEq))]
575 #[derive(Clone)]
576 pub(super) enum ChannelMonitorUpdateStep {
577         LatestLocalCommitmentTXInfo {
578                 commitment_tx: LocalCommitmentTransaction,
579                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>,
580         },
581         LatestRemoteCommitmentTXInfo {
582                 unsigned_commitment_tx: Transaction, // TODO: We should actually only need the txid here
583                 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>,
584                 commitment_number: u64,
585                 their_revocation_point: PublicKey,
586         },
587         PaymentPreimage {
588                 payment_preimage: PaymentPreimage,
589         },
590         CommitmentSecret {
591                 idx: u64,
592                 secret: [u8; 32],
593         },
594         /// Used to indicate that the no future updates will occur, and likely that the latest local
595         /// commitment transaction(s) should be broadcast, as the channel has been force-closed.
596         ChannelForceClosed {
597                 /// If set to false, we shouldn't broadcast the latest local commitment transaction as we
598                 /// think we've fallen behind!
599                 should_broadcast: bool,
600         },
601 }
602
603 impl Writeable for ChannelMonitorUpdateStep {
604         fn write<W: Writer>(&self, w: &mut W) -> Result<(), ::std::io::Error> {
605                 match self {
606                         &ChannelMonitorUpdateStep::LatestLocalCommitmentTXInfo { ref commitment_tx, ref htlc_outputs } => {
607                                 0u8.write(w)?;
608                                 commitment_tx.write(w)?;
609                                 (htlc_outputs.len() as u64).write(w)?;
610                                 for &(ref output, ref signature, ref source) in htlc_outputs.iter() {
611                                         output.write(w)?;
612                                         signature.write(w)?;
613                                         source.write(w)?;
614                                 }
615                         }
616                         &ChannelMonitorUpdateStep::LatestRemoteCommitmentTXInfo { ref unsigned_commitment_tx, ref htlc_outputs, ref commitment_number, ref their_revocation_point } => {
617                                 1u8.write(w)?;
618                                 unsigned_commitment_tx.write(w)?;
619                                 commitment_number.write(w)?;
620                                 their_revocation_point.write(w)?;
621                                 (htlc_outputs.len() as u64).write(w)?;
622                                 for &(ref output, ref source) in htlc_outputs.iter() {
623                                         output.write(w)?;
624                                         source.as_ref().map(|b| b.as_ref()).write(w)?;
625                                 }
626                         },
627                         &ChannelMonitorUpdateStep::PaymentPreimage { ref payment_preimage } => {
628                                 2u8.write(w)?;
629                                 payment_preimage.write(w)?;
630                         },
631                         &ChannelMonitorUpdateStep::CommitmentSecret { ref idx, ref secret } => {
632                                 3u8.write(w)?;
633                                 idx.write(w)?;
634                                 secret.write(w)?;
635                         },
636                         &ChannelMonitorUpdateStep::ChannelForceClosed { ref should_broadcast } => {
637                                 4u8.write(w)?;
638                                 should_broadcast.write(w)?;
639                         },
640                 }
641                 Ok(())
642         }
643 }
644 impl Readable for ChannelMonitorUpdateStep {
645         fn read<R: ::std::io::Read>(r: &mut R) -> Result<Self, DecodeError> {
646                 match Readable::read(r)? {
647                         0u8 => {
648                                 Ok(ChannelMonitorUpdateStep::LatestLocalCommitmentTXInfo {
649                                         commitment_tx: Readable::read(r)?,
650                                         htlc_outputs: {
651                                                 let len: u64 = Readable::read(r)?;
652                                                 let mut res = Vec::new();
653                                                 for _ in 0..len {
654                                                         res.push((Readable::read(r)?, Readable::read(r)?, Readable::read(r)?));
655                                                 }
656                                                 res
657                                         },
658                                 })
659                         },
660                         1u8 => {
661                                 Ok(ChannelMonitorUpdateStep::LatestRemoteCommitmentTXInfo {
662                                         unsigned_commitment_tx: Readable::read(r)?,
663                                         commitment_number: Readable::read(r)?,
664                                         their_revocation_point: Readable::read(r)?,
665                                         htlc_outputs: {
666                                                 let len: u64 = Readable::read(r)?;
667                                                 let mut res = Vec::new();
668                                                 for _ in 0..len {
669                                                         res.push((Readable::read(r)?, <Option<HTLCSource> as Readable>::read(r)?.map(|o| Box::new(o))));
670                                                 }
671                                                 res
672                                         },
673                                 })
674                         },
675                         2u8 => {
676                                 Ok(ChannelMonitorUpdateStep::PaymentPreimage {
677                                         payment_preimage: Readable::read(r)?,
678                                 })
679                         },
680                         3u8 => {
681                                 Ok(ChannelMonitorUpdateStep::CommitmentSecret {
682                                         idx: Readable::read(r)?,
683                                         secret: Readable::read(r)?,
684                                 })
685                         },
686                         4u8 => {
687                                 Ok(ChannelMonitorUpdateStep::ChannelForceClosed {
688                                         should_broadcast: Readable::read(r)?
689                                 })
690                         },
691                         _ => Err(DecodeError::InvalidValue),
692                 }
693         }
694 }
695
696 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
697 /// on-chain transactions to ensure no loss of funds occurs.
698 ///
699 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
700 /// information and are actively monitoring the chain.
701 ///
702 /// Pending Events or updated HTLCs which have not yet been read out by
703 /// get_and_clear_pending_htlcs_updated or get_and_clear_pending_events are serialized to disk and
704 /// reloaded at deserialize-time. Thus, you must ensure that, when handling events, all events
705 /// gotten are fully handled before re-serializing the new state.
706 pub struct ChannelMonitor<ChanSigner: ChannelKeys> {
707         latest_update_id: u64,
708         commitment_transaction_number_obscure_factor: u64,
709
710         destination_script: Script,
711         broadcasted_local_revokable_script: Option<(Script, SecretKey, Script)>,
712         remote_payment_script: Script,
713         shutdown_script: Script,
714
715         keys: ChanSigner,
716         funding_info: (OutPoint, Script),
717         current_remote_commitment_txid: Option<Txid>,
718         prev_remote_commitment_txid: Option<Txid>,
719
720         their_htlc_base_key: PublicKey,
721         their_delayed_payment_base_key: PublicKey,
722         funding_redeemscript: Script,
723         channel_value_satoshis: u64,
724         // first is the idx of the first of the two revocation points
725         their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
726
727         our_to_self_delay: u16,
728         their_to_self_delay: u16,
729
730         commitment_secrets: CounterpartyCommitmentSecrets,
731         remote_claimable_outpoints: HashMap<Txid, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
732         /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
733         /// Nor can we figure out their commitment numbers without the commitment transaction they are
734         /// spending. Thus, in order to claim them via revocation key, we track all the remote
735         /// commitment transactions which we find on-chain, mapping them to the commitment number which
736         /// can be used to derive the revocation key and claim the transactions.
737         remote_commitment_txn_on_chain: HashMap<Txid, (u64, Vec<Script>)>,
738         /// Cache used to make pruning of payment_preimages faster.
739         /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked
740         /// remote transactions (ie should remain pretty small).
741         /// Serialized to disk but should generally not be sent to Watchtowers.
742         remote_hash_commitment_number: HashMap<PaymentHash, u64>,
743
744         // We store two local commitment transactions to avoid any race conditions where we may update
745         // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
746         // various monitors for one channel being out of sync, and us broadcasting a local
747         // transaction for which we have deleted claim information on some watchtowers.
748         prev_local_signed_commitment_tx: Option<LocalSignedTx>,
749         current_local_commitment_tx: LocalSignedTx,
750
751         // Used just for ChannelManager to make sure it has the latest channel data during
752         // deserialization
753         current_remote_commitment_number: u64,
754         // Used just for ChannelManager to make sure it has the latest channel data during
755         // deserialization
756         current_local_commitment_number: u64,
757
758         payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
759
760         pending_htlcs_updated: Vec<HTLCUpdate>,
761         pending_events: Vec<events::Event>,
762
763         // Used to track onchain events, i.e transactions parts of channels confirmed on chain, on which
764         // we have to take actions once they reach enough confs. Key is a block height timer, i.e we enforce
765         // actions when we receive a block with given height. Actions depend on OnchainEvent type.
766         onchain_events_waiting_threshold_conf: HashMap<u32, Vec<OnchainEvent>>,
767
768         // If we get serialized out and re-read, we need to make sure that the chain monitoring
769         // interface knows about the TXOs that we want to be notified of spends of. We could probably
770         // be smart and derive them from the above storage fields, but its much simpler and more
771         // Obviously Correct (tm) if we just keep track of them explicitly.
772         outputs_to_watch: HashMap<Txid, Vec<Script>>,
773
774         #[cfg(test)]
775         pub onchain_tx_handler: OnchainTxHandler<ChanSigner>,
776         #[cfg(not(test))]
777         onchain_tx_handler: OnchainTxHandler<ChanSigner>,
778
779         // This is set when the Channel[Manager] generated a ChannelMonitorUpdate which indicated the
780         // channel has been force-closed. After this is set, no further local commitment transaction
781         // updates may occur, and we panic!() if one is provided.
782         lockdown_from_offchain: bool,
783
784         // Set once we've signed a local commitment transaction and handed it over to our
785         // OnchainTxHandler. After this is set, no future updates to our local commitment transactions
786         // may occur, and we fail any such monitor updates.
787         local_tx_signed: bool,
788
789         // We simply modify last_block_hash in Channel's block_connected so that serialization is
790         // consistent but hopefully the users' copy handles block_connected in a consistent way.
791         // (we do *not*, however, update them in update_monitor to ensure any local user copies keep
792         // their last_block_hash from its state and not based on updated copies that didn't run through
793         // the full block_connected).
794         pub(crate) last_block_hash: BlockHash,
795         secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
796 }
797
798 #[cfg(any(test, feature = "fuzztarget"))]
799 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
800 /// underlying object
801 impl<ChanSigner: ChannelKeys> PartialEq for ChannelMonitor<ChanSigner> {
802         fn eq(&self, other: &Self) -> bool {
803                 if self.latest_update_id != other.latest_update_id ||
804                         self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
805                         self.destination_script != other.destination_script ||
806                         self.broadcasted_local_revokable_script != other.broadcasted_local_revokable_script ||
807                         self.remote_payment_script != other.remote_payment_script ||
808                         self.keys.pubkeys() != other.keys.pubkeys() ||
809                         self.funding_info != other.funding_info ||
810                         self.current_remote_commitment_txid != other.current_remote_commitment_txid ||
811                         self.prev_remote_commitment_txid != other.prev_remote_commitment_txid ||
812                         self.their_htlc_base_key != other.their_htlc_base_key ||
813                         self.their_delayed_payment_base_key != other.their_delayed_payment_base_key ||
814                         self.funding_redeemscript != other.funding_redeemscript ||
815                         self.channel_value_satoshis != other.channel_value_satoshis ||
816                         self.their_cur_revocation_points != other.their_cur_revocation_points ||
817                         self.our_to_self_delay != other.our_to_self_delay ||
818                         self.their_to_self_delay != other.their_to_self_delay ||
819                         self.commitment_secrets != other.commitment_secrets ||
820                         self.remote_claimable_outpoints != other.remote_claimable_outpoints ||
821                         self.remote_commitment_txn_on_chain != other.remote_commitment_txn_on_chain ||
822                         self.remote_hash_commitment_number != other.remote_hash_commitment_number ||
823                         self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx ||
824                         self.current_remote_commitment_number != other.current_remote_commitment_number ||
825                         self.current_local_commitment_number != other.current_local_commitment_number ||
826                         self.current_local_commitment_tx != other.current_local_commitment_tx ||
827                         self.payment_preimages != other.payment_preimages ||
828                         self.pending_htlcs_updated != other.pending_htlcs_updated ||
829                         self.pending_events.len() != other.pending_events.len() || // We trust events to round-trip properly
830                         self.onchain_events_waiting_threshold_conf != other.onchain_events_waiting_threshold_conf ||
831                         self.outputs_to_watch != other.outputs_to_watch ||
832                         self.lockdown_from_offchain != other.lockdown_from_offchain ||
833                         self.local_tx_signed != other.local_tx_signed
834                 {
835                         false
836                 } else {
837                         true
838                 }
839         }
840 }
841
842 impl<ChanSigner: ChannelKeys + Writeable> ChannelMonitor<ChanSigner> {
843         /// Writes this monitor into the given writer, suitable for writing to disk.
844         ///
845         /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
846         /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
847         /// the "reorg path" (ie disconnecting blocks until you find a common ancestor from both the
848         /// returned block hash and the the current chain and then reconnecting blocks to get to the
849         /// best chain) upon deserializing the object!
850         pub fn write_for_disk<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
851                 //TODO: We still write out all the serialization here manually instead of using the fancy
852                 //serialization framework we have, we should migrate things over to it.
853                 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
854                 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
855
856                 self.latest_update_id.write(writer)?;
857
858                 // Set in initial Channel-object creation, so should always be set by now:
859                 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
860
861                 self.destination_script.write(writer)?;
862                 if let Some(ref broadcasted_local_revokable_script) = self.broadcasted_local_revokable_script {
863                         writer.write_all(&[0; 1])?;
864                         broadcasted_local_revokable_script.0.write(writer)?;
865                         broadcasted_local_revokable_script.1.write(writer)?;
866                         broadcasted_local_revokable_script.2.write(writer)?;
867                 } else {
868                         writer.write_all(&[1; 1])?;
869                 }
870
871                 self.remote_payment_script.write(writer)?;
872                 self.shutdown_script.write(writer)?;
873
874                 self.keys.write(writer)?;
875                 writer.write_all(&self.funding_info.0.txid[..])?;
876                 writer.write_all(&byte_utils::be16_to_array(self.funding_info.0.index))?;
877                 self.funding_info.1.write(writer)?;
878                 self.current_remote_commitment_txid.write(writer)?;
879                 self.prev_remote_commitment_txid.write(writer)?;
880
881                 writer.write_all(&self.their_htlc_base_key.serialize())?;
882                 writer.write_all(&self.their_delayed_payment_base_key.serialize())?;
883                 self.funding_redeemscript.write(writer)?;
884                 self.channel_value_satoshis.write(writer)?;
885
886                 match self.their_cur_revocation_points {
887                         Some((idx, pubkey, second_option)) => {
888                                 writer.write_all(&byte_utils::be48_to_array(idx))?;
889                                 writer.write_all(&pubkey.serialize())?;
890                                 match second_option {
891                                         Some(second_pubkey) => {
892                                                 writer.write_all(&second_pubkey.serialize())?;
893                                         },
894                                         None => {
895                                                 writer.write_all(&[0; 33])?;
896                                         },
897                                 }
898                         },
899                         None => {
900                                 writer.write_all(&byte_utils::be48_to_array(0))?;
901                         },
902                 }
903
904                 writer.write_all(&byte_utils::be16_to_array(self.our_to_self_delay))?;
905                 writer.write_all(&byte_utils::be16_to_array(self.their_to_self_delay))?;
906
907                 self.commitment_secrets.write(writer)?;
908
909                 macro_rules! serialize_htlc_in_commitment {
910                         ($htlc_output: expr) => {
911                                 writer.write_all(&[$htlc_output.offered as u8; 1])?;
912                                 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
913                                 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
914                                 writer.write_all(&$htlc_output.payment_hash.0[..])?;
915                                 $htlc_output.transaction_output_index.write(writer)?;
916                         }
917                 }
918
919                 writer.write_all(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64))?;
920                 for (ref txid, ref htlc_infos) in self.remote_claimable_outpoints.iter() {
921                         writer.write_all(&txid[..])?;
922                         writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
923                         for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
924                                 serialize_htlc_in_commitment!(htlc_output);
925                                 htlc_source.as_ref().map(|b| b.as_ref()).write(writer)?;
926                         }
927                 }
928
929                 writer.write_all(&byte_utils::be64_to_array(self.remote_commitment_txn_on_chain.len() as u64))?;
930                 for (ref txid, &(commitment_number, ref txouts)) in self.remote_commitment_txn_on_chain.iter() {
931                         writer.write_all(&txid[..])?;
932                         writer.write_all(&byte_utils::be48_to_array(commitment_number))?;
933                         (txouts.len() as u64).write(writer)?;
934                         for script in txouts.iter() {
935                                 script.write(writer)?;
936                         }
937                 }
938
939                 writer.write_all(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64))?;
940                 for (ref payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() {
941                         writer.write_all(&payment_hash.0[..])?;
942                         writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
943                 }
944
945                 macro_rules! serialize_local_tx {
946                         ($local_tx: expr) => {
947                                 $local_tx.txid.write(writer)?;
948                                 writer.write_all(&$local_tx.revocation_key.serialize())?;
949                                 writer.write_all(&$local_tx.a_htlc_key.serialize())?;
950                                 writer.write_all(&$local_tx.b_htlc_key.serialize())?;
951                                 writer.write_all(&$local_tx.delayed_payment_key.serialize())?;
952                                 writer.write_all(&$local_tx.per_commitment_point.serialize())?;
953
954                                 writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?;
955                                 writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?;
956                                 for &(ref htlc_output, ref sig, ref htlc_source) in $local_tx.htlc_outputs.iter() {
957                                         serialize_htlc_in_commitment!(htlc_output);
958                                         if let &Some(ref their_sig) = sig {
959                                                 1u8.write(writer)?;
960                                                 writer.write_all(&their_sig.serialize_compact())?;
961                                         } else {
962                                                 0u8.write(writer)?;
963                                         }
964                                         htlc_source.write(writer)?;
965                                 }
966                         }
967                 }
968
969                 if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx {
970                         writer.write_all(&[1; 1])?;
971                         serialize_local_tx!(prev_local_tx);
972                 } else {
973                         writer.write_all(&[0; 1])?;
974                 }
975
976                 serialize_local_tx!(self.current_local_commitment_tx);
977
978                 writer.write_all(&byte_utils::be48_to_array(self.current_remote_commitment_number))?;
979                 writer.write_all(&byte_utils::be48_to_array(self.current_local_commitment_number))?;
980
981                 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
982                 for payment_preimage in self.payment_preimages.values() {
983                         writer.write_all(&payment_preimage.0[..])?;
984                 }
985
986                 writer.write_all(&byte_utils::be64_to_array(self.pending_htlcs_updated.len() as u64))?;
987                 for data in self.pending_htlcs_updated.iter() {
988                         data.write(writer)?;
989                 }
990
991                 writer.write_all(&byte_utils::be64_to_array(self.pending_events.len() as u64))?;
992                 for event in self.pending_events.iter() {
993                         event.write(writer)?;
994                 }
995
996                 self.last_block_hash.write(writer)?;
997
998                 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_waiting_threshold_conf.len() as u64))?;
999                 for (ref target, ref events) in self.onchain_events_waiting_threshold_conf.iter() {
1000                         writer.write_all(&byte_utils::be32_to_array(**target))?;
1001                         writer.write_all(&byte_utils::be64_to_array(events.len() as u64))?;
1002                         for ev in events.iter() {
1003                                 match *ev {
1004                                         OnchainEvent::HTLCUpdate { ref htlc_update } => {
1005                                                 0u8.write(writer)?;
1006                                                 htlc_update.0.write(writer)?;
1007                                                 htlc_update.1.write(writer)?;
1008                                         },
1009                                         OnchainEvent::MaturingOutput { ref descriptor } => {
1010                                                 1u8.write(writer)?;
1011                                                 descriptor.write(writer)?;
1012                                         },
1013                                 }
1014                         }
1015                 }
1016
1017                 (self.outputs_to_watch.len() as u64).write(writer)?;
1018                 for (txid, output_scripts) in self.outputs_to_watch.iter() {
1019                         txid.write(writer)?;
1020                         (output_scripts.len() as u64).write(writer)?;
1021                         for script in output_scripts.iter() {
1022                                 script.write(writer)?;
1023                         }
1024                 }
1025                 self.onchain_tx_handler.write(writer)?;
1026
1027                 self.lockdown_from_offchain.write(writer)?;
1028                 self.local_tx_signed.write(writer)?;
1029
1030                 Ok(())
1031         }
1032 }
1033
1034 impl<ChanSigner: ChannelKeys> ChannelMonitor<ChanSigner> {
1035         pub(super) fn new(keys: ChanSigner, shutdown_pubkey: &PublicKey,
1036                         our_to_self_delay: u16, destination_script: &Script, funding_info: (OutPoint, Script),
1037                         their_htlc_base_key: &PublicKey, their_delayed_payment_base_key: &PublicKey,
1038                         their_to_self_delay: u16, funding_redeemscript: Script, channel_value_satoshis: u64,
1039                         commitment_transaction_number_obscure_factor: u64,
1040                         initial_local_commitment_tx: LocalCommitmentTransaction) -> ChannelMonitor<ChanSigner> {
1041
1042                 assert!(commitment_transaction_number_obscure_factor <= (1 << 48));
1043                 let our_channel_close_key_hash = WPubkeyHash::hash(&shutdown_pubkey.serialize());
1044                 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
1045                 let payment_key_hash = WPubkeyHash::hash(&keys.pubkeys().payment_point.serialize());
1046                 let remote_payment_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_key_hash[..]).into_script();
1047
1048                 let mut onchain_tx_handler = OnchainTxHandler::new(destination_script.clone(), keys.clone(), their_to_self_delay, their_delayed_payment_base_key.clone(), their_htlc_base_key.clone(), our_to_self_delay);
1049
1050                 let local_tx_sequence = initial_local_commitment_tx.unsigned_tx.input[0].sequence as u64;
1051                 let local_tx_locktime = initial_local_commitment_tx.unsigned_tx.lock_time as u64;
1052                 let local_commitment_tx = LocalSignedTx {
1053                         txid: initial_local_commitment_tx.txid(),
1054                         revocation_key: initial_local_commitment_tx.local_keys.revocation_key,
1055                         a_htlc_key: initial_local_commitment_tx.local_keys.a_htlc_key,
1056                         b_htlc_key: initial_local_commitment_tx.local_keys.b_htlc_key,
1057                         delayed_payment_key: initial_local_commitment_tx.local_keys.a_delayed_payment_key,
1058                         per_commitment_point: initial_local_commitment_tx.local_keys.per_commitment_point,
1059                         feerate_per_kw: initial_local_commitment_tx.feerate_per_kw,
1060                         htlc_outputs: Vec::new(), // There are never any HTLCs in the initial commitment transactions
1061                 };
1062                 // Returning a monitor error before updating tracking points means in case of using
1063                 // a concurrent watchtower implementation for same channel, if this one doesn't
1064                 // reject update as we do, you MAY have the latest local valid commitment tx onchain
1065                 // for which you want to spend outputs. We're NOT robust again this scenario right
1066                 // now but we should consider it later.
1067                 onchain_tx_handler.provide_latest_local_tx(initial_local_commitment_tx).unwrap();
1068
1069                 ChannelMonitor {
1070                         latest_update_id: 0,
1071                         commitment_transaction_number_obscure_factor,
1072
1073                         destination_script: destination_script.clone(),
1074                         broadcasted_local_revokable_script: None,
1075                         remote_payment_script,
1076                         shutdown_script,
1077
1078                         keys,
1079                         funding_info,
1080                         current_remote_commitment_txid: None,
1081                         prev_remote_commitment_txid: None,
1082
1083                         their_htlc_base_key: *their_htlc_base_key,
1084                         their_delayed_payment_base_key: *their_delayed_payment_base_key,
1085                         funding_redeemscript,
1086                         channel_value_satoshis: channel_value_satoshis,
1087                         their_cur_revocation_points: None,
1088
1089                         our_to_self_delay,
1090                         their_to_self_delay,
1091
1092                         commitment_secrets: CounterpartyCommitmentSecrets::new(),
1093                         remote_claimable_outpoints: HashMap::new(),
1094                         remote_commitment_txn_on_chain: HashMap::new(),
1095                         remote_hash_commitment_number: HashMap::new(),
1096
1097                         prev_local_signed_commitment_tx: None,
1098                         current_local_commitment_tx: local_commitment_tx,
1099                         current_remote_commitment_number: 1 << 48,
1100                         current_local_commitment_number: 0xffff_ffff_ffff - ((((local_tx_sequence & 0xffffff) << 3*8) | (local_tx_locktime as u64 & 0xffffff)) ^ commitment_transaction_number_obscure_factor),
1101
1102                         payment_preimages: HashMap::new(),
1103                         pending_htlcs_updated: Vec::new(),
1104                         pending_events: Vec::new(),
1105
1106                         onchain_events_waiting_threshold_conf: HashMap::new(),
1107                         outputs_to_watch: HashMap::new(),
1108
1109                         onchain_tx_handler,
1110
1111                         lockdown_from_offchain: false,
1112                         local_tx_signed: false,
1113
1114                         last_block_hash: Default::default(),
1115                         secp_ctx: Secp256k1::new(),
1116                 }
1117         }
1118
1119         /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
1120         /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote
1121         /// commitment transaction's secret, they are de facto pruned (we can use revocation key).
1122         pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
1123                 if let Err(()) = self.commitment_secrets.provide_secret(idx, secret) {
1124                         return Err(MonitorUpdateError("Previous secret did not match new one"));
1125                 }
1126
1127                 // Prune HTLCs from the previous remote commitment tx so we don't generate failure/fulfill
1128                 // events for now-revoked/fulfilled HTLCs.
1129                 if let Some(txid) = self.prev_remote_commitment_txid.take() {
1130                         for &mut (_, ref mut source) in self.remote_claimable_outpoints.get_mut(&txid).unwrap() {
1131                                 *source = None;
1132                         }
1133                 }
1134
1135                 if !self.payment_preimages.is_empty() {
1136                         let cur_local_signed_commitment_tx = &self.current_local_commitment_tx;
1137                         let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref();
1138                         let min_idx = self.get_min_seen_secret();
1139                         let remote_hash_commitment_number = &mut self.remote_hash_commitment_number;
1140
1141                         self.payment_preimages.retain(|&k, _| {
1142                                 for &(ref htlc, _, _) in cur_local_signed_commitment_tx.htlc_outputs.iter() {
1143                                         if k == htlc.payment_hash {
1144                                                 return true
1145                                         }
1146                                 }
1147                                 if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx {
1148                                         for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() {
1149                                                 if k == htlc.payment_hash {
1150                                                         return true
1151                                                 }
1152                                         }
1153                                 }
1154                                 let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) {
1155                                         if *cn < min_idx {
1156                                                 return true
1157                                         }
1158                                         true
1159                                 } else { false };
1160                                 if contains {
1161                                         remote_hash_commitment_number.remove(&k);
1162                                 }
1163                                 false
1164                         });
1165                 }
1166
1167                 Ok(())
1168         }
1169
1170         /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction.
1171         /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
1172         /// possibly future revocation/preimage information) to claim outputs where possible.
1173         /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
1174         pub(super) fn provide_latest_remote_commitment_tx_info<L: Deref>(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey, logger: &L) where L::Target: Logger {
1175                 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
1176                 // so that a remote monitor doesn't learn anything unless there is a malicious close.
1177                 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
1178                 // timeouts)
1179                 for &(ref htlc, _) in &htlc_outputs {
1180                         self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
1181                 }
1182
1183                 let new_txid = unsigned_commitment_tx.txid();
1184                 log_trace!(logger, "Tracking new remote commitment transaction with txid {} at commitment number {} with {} HTLC outputs", new_txid, commitment_number, htlc_outputs.len());
1185                 log_trace!(logger, "New potential remote commitment transaction: {}", encode::serialize_hex(unsigned_commitment_tx));
1186                 self.prev_remote_commitment_txid = self.current_remote_commitment_txid.take();
1187                 self.current_remote_commitment_txid = Some(new_txid);
1188                 self.remote_claimable_outpoints.insert(new_txid, htlc_outputs.clone());
1189                 self.current_remote_commitment_number = commitment_number;
1190                 //TODO: Merge this into the other per-remote-transaction output storage stuff
1191                 match self.their_cur_revocation_points {
1192                         Some(old_points) => {
1193                                 if old_points.0 == commitment_number + 1 {
1194                                         self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
1195                                 } else if old_points.0 == commitment_number + 2 {
1196                                         if let Some(old_second_point) = old_points.2 {
1197                                                 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
1198                                         } else {
1199                                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1200                                         }
1201                                 } else {
1202                                         self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1203                                 }
1204                         },
1205                         None => {
1206                                 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
1207                         }
1208                 }
1209                 let mut htlcs = Vec::with_capacity(htlc_outputs.len());
1210                 for htlc in htlc_outputs {
1211                         if htlc.0.transaction_output_index.is_some() {
1212                                 htlcs.push(htlc.0);
1213                         }
1214                 }
1215                 self.onchain_tx_handler.provide_latest_remote_tx(new_txid, htlcs);
1216         }
1217
1218         /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The
1219         /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
1220         /// is important that any clones of this channel monitor (including remote clones) by kept
1221         /// up-to-date as our local commitment transaction is updated.
1222         /// Panics if set_their_to_self_delay has never been called.
1223         pub(super) fn provide_latest_local_commitment_tx_info(&mut self, commitment_tx: LocalCommitmentTransaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Signature>, Option<HTLCSource>)>) -> Result<(), MonitorUpdateError> {
1224                 if self.local_tx_signed {
1225                         return Err(MonitorUpdateError("A local commitment tx has already been signed, no new local commitment txn can be sent to our counterparty"));
1226                 }
1227                 let txid = commitment_tx.txid();
1228                 let sequence = commitment_tx.unsigned_tx.input[0].sequence as u64;
1229                 let locktime = commitment_tx.unsigned_tx.lock_time as u64;
1230                 let mut new_local_commitment_tx = LocalSignedTx {
1231                         txid,
1232                         revocation_key: commitment_tx.local_keys.revocation_key,
1233                         a_htlc_key: commitment_tx.local_keys.a_htlc_key,
1234                         b_htlc_key: commitment_tx.local_keys.b_htlc_key,
1235                         delayed_payment_key: commitment_tx.local_keys.a_delayed_payment_key,
1236                         per_commitment_point: commitment_tx.local_keys.per_commitment_point,
1237                         feerate_per_kw: commitment_tx.feerate_per_kw,
1238                         htlc_outputs: htlc_outputs,
1239                 };
1240                 // Returning a monitor error before updating tracking points means in case of using
1241                 // a concurrent watchtower implementation for same channel, if this one doesn't
1242                 // reject update as we do, you MAY have the latest local valid commitment tx onchain
1243                 // for which you want to spend outputs. We're NOT robust again this scenario right
1244                 // now but we should consider it later.
1245                 if let Err(_) = self.onchain_tx_handler.provide_latest_local_tx(commitment_tx) {
1246                         return Err(MonitorUpdateError("Local commitment signed has already been signed, no further update of LOCAL commitment transaction is allowed"));
1247                 }
1248                 self.current_local_commitment_number = 0xffff_ffff_ffff - ((((sequence & 0xffffff) << 3*8) | (locktime as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1249                 mem::swap(&mut new_local_commitment_tx, &mut self.current_local_commitment_tx);
1250                 self.prev_local_signed_commitment_tx = Some(new_local_commitment_tx);
1251                 Ok(())
1252         }
1253
1254         /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
1255         /// commitment_tx_infos which contain the payment hash have been revoked.
1256         pub(super) fn provide_payment_preimage(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage) {
1257                 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
1258         }
1259
1260         pub(super) fn broadcast_latest_local_commitment_txn<B: Deref, L: Deref>(&mut self, broadcaster: &B, logger: &L)
1261                 where B::Target: BroadcasterInterface,
1262                                         L::Target: Logger,
1263         {
1264                 for tx in self.get_latest_local_commitment_txn(logger).iter() {
1265                         broadcaster.broadcast_transaction(tx);
1266                 }
1267         }
1268
1269         /// Used in Channel to cheat wrt the update_ids since it plays games, will be removed soon!
1270         pub(super) fn update_monitor_ooo<L: Deref>(&mut self, mut updates: ChannelMonitorUpdate, logger: &L) -> Result<(), MonitorUpdateError> where L::Target: Logger {
1271                 for update in updates.updates.drain(..) {
1272                         match update {
1273                                 ChannelMonitorUpdateStep::LatestLocalCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1274                                         if self.lockdown_from_offchain { panic!(); }
1275                                         self.provide_latest_local_commitment_tx_info(commitment_tx, htlc_outputs)?
1276                                 },
1277                                 ChannelMonitorUpdateStep::LatestRemoteCommitmentTXInfo { unsigned_commitment_tx, htlc_outputs, commitment_number, their_revocation_point } =>
1278                                         self.provide_latest_remote_commitment_tx_info(&unsigned_commitment_tx, htlc_outputs, commitment_number, their_revocation_point, logger),
1279                                 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } =>
1280                                         self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage),
1281                                 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } =>
1282                                         self.provide_secret(idx, secret)?,
1283                                 ChannelMonitorUpdateStep::ChannelForceClosed { .. } => {},
1284                         }
1285                 }
1286                 self.latest_update_id = updates.update_id;
1287                 Ok(())
1288         }
1289
1290         /// Updates a ChannelMonitor on the basis of some new information provided by the Channel
1291         /// itself.
1292         ///
1293         /// panics if the given update is not the next update by update_id.
1294         pub fn update_monitor<B: Deref, L: Deref>(&mut self, mut updates: ChannelMonitorUpdate, broadcaster: &B, logger: &L) -> Result<(), MonitorUpdateError>
1295                 where B::Target: BroadcasterInterface,
1296                                         L::Target: Logger,
1297         {
1298                 if self.latest_update_id + 1 != updates.update_id {
1299                         panic!("Attempted to apply ChannelMonitorUpdates out of order, check the update_id before passing an update to update_monitor!");
1300                 }
1301                 for update in updates.updates.drain(..) {
1302                         match update {
1303                                 ChannelMonitorUpdateStep::LatestLocalCommitmentTXInfo { commitment_tx, htlc_outputs } => {
1304                                         if self.lockdown_from_offchain { panic!(); }
1305                                         self.provide_latest_local_commitment_tx_info(commitment_tx, htlc_outputs)?
1306                                 },
1307                                 ChannelMonitorUpdateStep::LatestRemoteCommitmentTXInfo { unsigned_commitment_tx, htlc_outputs, commitment_number, their_revocation_point } =>
1308                                         self.provide_latest_remote_commitment_tx_info(&unsigned_commitment_tx, htlc_outputs, commitment_number, their_revocation_point, logger),
1309                                 ChannelMonitorUpdateStep::PaymentPreimage { payment_preimage } =>
1310                                         self.provide_payment_preimage(&PaymentHash(Sha256::hash(&payment_preimage.0[..]).into_inner()), &payment_preimage),
1311                                 ChannelMonitorUpdateStep::CommitmentSecret { idx, secret } =>
1312                                         self.provide_secret(idx, secret)?,
1313                                 ChannelMonitorUpdateStep::ChannelForceClosed { should_broadcast } => {
1314                                         self.lockdown_from_offchain = true;
1315                                         if should_broadcast {
1316                                                 self.broadcast_latest_local_commitment_txn(broadcaster, logger);
1317                                         } else {
1318                                                 log_error!(logger, "You have a toxic local commitment transaction avaible in channel monitor, read comment in ChannelMonitor::get_latest_local_commitment_txn to be informed of manual action to take");
1319                                         }
1320                                 }
1321                         }
1322                 }
1323                 self.latest_update_id = updates.update_id;
1324                 Ok(())
1325         }
1326
1327         /// Gets the update_id from the latest ChannelMonitorUpdate which was applied to this
1328         /// ChannelMonitor.
1329         pub fn get_latest_update_id(&self) -> u64 {
1330                 self.latest_update_id
1331         }
1332
1333         /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1334         pub fn get_funding_txo(&self) -> OutPoint {
1335                 self.funding_info.0
1336         }
1337
1338         /// Gets a list of txids, with their output scripts (in the order they appear in the
1339         /// transaction), which we must learn about spends of via block_connected().
1340         pub fn get_outputs_to_watch(&self) -> &HashMap<Txid, Vec<Script>> {
1341                 &self.outputs_to_watch
1342         }
1343
1344         /// Gets the sets of all outpoints which this ChannelMonitor expects to hear about spends of.
1345         /// Generally useful when deserializing as during normal operation the return values of
1346         /// block_connected are sufficient to ensure all relevant outpoints are being monitored (note
1347         /// that the get_funding_txo outpoint and transaction must also be monitored for!).
1348         pub fn get_monitored_outpoints(&self) -> Vec<(Txid, u32, &Script)> {
1349                 let mut res = Vec::with_capacity(self.remote_commitment_txn_on_chain.len() * 2);
1350                 for (ref txid, &(_, ref outputs)) in self.remote_commitment_txn_on_chain.iter() {
1351                         for (idx, output) in outputs.iter().enumerate() {
1352                                 res.push(((*txid).clone(), idx as u32, output));
1353                         }
1354                 }
1355                 res
1356         }
1357
1358         /// Get the list of HTLCs who's status has been updated on chain. This should be called by
1359         /// ChannelManager via ManyChannelMonitor::get_and_clear_pending_htlcs_updated().
1360         pub fn get_and_clear_pending_htlcs_updated(&mut self) -> Vec<HTLCUpdate> {
1361                 let mut ret = Vec::new();
1362                 mem::swap(&mut ret, &mut self.pending_htlcs_updated);
1363                 ret
1364         }
1365
1366         /// Gets the list of pending events which were generated by previous actions, clearing the list
1367         /// in the process.
1368         ///
1369         /// This is called by ManyChannelMonitor::get_and_clear_pending_events() and is equivalent to
1370         /// EventsProvider::get_and_clear_pending_events() except that it requires &mut self as we do
1371         /// no internal locking in ChannelMonitors.
1372         pub fn get_and_clear_pending_events(&mut self) -> Vec<events::Event> {
1373                 let mut ret = Vec::new();
1374                 mem::swap(&mut ret, &mut self.pending_events);
1375                 ret
1376         }
1377
1378         /// Can only fail if idx is < get_min_seen_secret
1379         pub(super) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1380                 self.commitment_secrets.get_secret(idx)
1381         }
1382
1383         pub(super) fn get_min_seen_secret(&self) -> u64 {
1384                 self.commitment_secrets.get_min_seen_secret()
1385         }
1386
1387         pub(super) fn get_cur_remote_commitment_number(&self) -> u64 {
1388                 self.current_remote_commitment_number
1389         }
1390
1391         pub(super) fn get_cur_local_commitment_number(&self) -> u64 {
1392                 self.current_local_commitment_number
1393         }
1394
1395         /// Attempts to claim a remote commitment transaction's outputs using the revocation key and
1396         /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1397         /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1398         /// HTLC-Success/HTLC-Timeout transactions.
1399         /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1400         /// revoked remote commitment tx
1401         fn check_spend_remote_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, (Txid, Vec<TxOut>)) where L::Target: Logger {
1402                 // Most secp and related errors trying to create keys means we have no hope of constructing
1403                 // a spend transaction...so we return no transactions to broadcast
1404                 let mut claimable_outpoints = Vec::new();
1405                 let mut watch_outputs = Vec::new();
1406
1407                 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1408                 let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid);
1409
1410                 macro_rules! ignore_error {
1411                         ( $thing : expr ) => {
1412                                 match $thing {
1413                                         Ok(a) => a,
1414                                         Err(_) => return (claimable_outpoints, (commitment_txid, watch_outputs))
1415                                 }
1416                         };
1417                 }
1418
1419                 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1420                 if commitment_number >= self.get_min_seen_secret() {
1421                         let secret = self.get_secret(commitment_number).unwrap();
1422                         let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1423                         let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1424                         let revocation_pubkey = ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &self.keys.pubkeys().revocation_basepoint));
1425                         let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.their_delayed_payment_base_key));
1426
1427                         let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key);
1428                         let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1429
1430                         // First, process non-htlc outputs (to_local & to_remote)
1431                         for (idx, outp) in tx.output.iter().enumerate() {
1432                                 if outp.script_pubkey == revokeable_p2wsh {
1433                                         let witness_data = InputMaterial::Revoked { per_commitment_point, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: outp.value };
1434                                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height + self.our_to_self_delay as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 }, witness_data});
1435                                 }
1436                         }
1437
1438                         // Then, try to find revoked htlc outputs
1439                         if let Some(ref per_commitment_data) = per_commitment_option {
1440                                 for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1441                                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1442                                                 if transaction_output_index as usize >= tx.output.len() ||
1443                                                                 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1444                                                         return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
1445                                                 }
1446                                                 let witness_data = InputMaterial::Revoked { per_commitment_point, per_commitment_key, input_descriptor: if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }, amount: tx.output[transaction_output_index as usize].value };
1447                                                 claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable: true, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1448                                         }
1449                                 }
1450                         }
1451
1452                         // Last, track onchain revoked commitment transaction and fail backward outgoing HTLCs as payment path is broken
1453                         if !claimable_outpoints.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1454                                 // We're definitely a remote commitment transaction!
1455                                 log_trace!(logger, "Got broadcast of revoked remote commitment transaction, going to generate general spend tx with {} inputs", claimable_outpoints.len());
1456                                 watch_outputs.append(&mut tx.output.clone());
1457                                 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1458
1459                                 macro_rules! check_htlc_fails {
1460                                         ($txid: expr, $commitment_tx: expr) => {
1461                                                 if let Some(ref outpoints) = self.remote_claimable_outpoints.get($txid) {
1462                                                         for &(ref htlc, ref source_option) in outpoints.iter() {
1463                                                                 if let &Some(ref source) = source_option {
1464                                                                         log_info!(logger, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of revoked remote commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1);
1465                                                                         match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
1466                                                                                 hash_map::Entry::Occupied(mut entry) => {
1467                                                                                         let e = entry.get_mut();
1468                                                                                         e.retain(|ref event| {
1469                                                                                                 match **event {
1470                                                                                                         OnchainEvent::HTLCUpdate { ref htlc_update } => {
1471                                                                                                                 return htlc_update.0 != **source
1472                                                                                                         },
1473                                                                                                         _ => true
1474                                                                                                 }
1475                                                                                         });
1476                                                                                         e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())});
1477                                                                                 }
1478                                                                                 hash_map::Entry::Vacant(entry) => {
1479                                                                                         entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]);
1480                                                                                 }
1481                                                                         }
1482                                                                 }
1483                                                         }
1484                                                 }
1485                                         }
1486                                 }
1487                                 if let Some(ref txid) = self.current_remote_commitment_txid {
1488                                         check_htlc_fails!(txid, "current");
1489                                 }
1490                                 if let Some(ref txid) = self.prev_remote_commitment_txid {
1491                                         check_htlc_fails!(txid, "remote");
1492                                 }
1493                                 // No need to check local commitment txn, symmetric HTLCSource must be present as per-htlc data on remote commitment tx
1494                         }
1495                 } else if let Some(per_commitment_data) = per_commitment_option {
1496                         // While this isn't useful yet, there is a potential race where if a counterparty
1497                         // revokes a state at the same time as the commitment transaction for that state is
1498                         // confirmed, and the watchtower receives the block before the user, the user could
1499                         // upload a new ChannelMonitor with the revocation secret but the watchtower has
1500                         // already processed the block, resulting in the remote_commitment_txn_on_chain entry
1501                         // not being generated by the above conditional. Thus, to be safe, we go ahead and
1502                         // insert it here.
1503                         watch_outputs.append(&mut tx.output.clone());
1504                         self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1505
1506                         log_trace!(logger, "Got broadcast of non-revoked remote commitment transaction {}", commitment_txid);
1507
1508                         macro_rules! check_htlc_fails {
1509                                 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1510                                         if let Some(ref latest_outpoints) = self.remote_claimable_outpoints.get($txid) {
1511                                                 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1512                                                         if let &Some(ref source) = source_option {
1513                                                                 // Check if the HTLC is present in the commitment transaction that was
1514                                                                 // broadcast, but not if it was below the dust limit, which we should
1515                                                                 // fail backwards immediately as there is no way for us to learn the
1516                                                                 // payment_preimage.
1517                                                                 // Note that if the dust limit were allowed to change between
1518                                                                 // commitment transactions we'd want to be check whether *any*
1519                                                                 // broadcastable commitment transaction has the HTLC in it, but it
1520                                                                 // cannot currently change after channel initialization, so we don't
1521                                                                 // need to here.
1522                                                                 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1523                                                                         if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1524                                                                                 continue $id;
1525                                                                         }
1526                                                                 }
1527                                                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of remote commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1528                                                                 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
1529                                                                         hash_map::Entry::Occupied(mut entry) => {
1530                                                                                 let e = entry.get_mut();
1531                                                                                 e.retain(|ref event| {
1532                                                                                         match **event {
1533                                                                                                 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1534                                                                                                         return htlc_update.0 != **source
1535                                                                                                 },
1536                                                                                                 _ => true
1537                                                                                         }
1538                                                                                 });
1539                                                                                 e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())});
1540                                                                         }
1541                                                                         hash_map::Entry::Vacant(entry) => {
1542                                                                                 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]);
1543                                                                         }
1544                                                                 }
1545                                                         }
1546                                                 }
1547                                         }
1548                                 }
1549                         }
1550                         if let Some(ref txid) = self.current_remote_commitment_txid {
1551                                 check_htlc_fails!(txid, "current", 'current_loop);
1552                         }
1553                         if let Some(ref txid) = self.prev_remote_commitment_txid {
1554                                 check_htlc_fails!(txid, "previous", 'prev_loop);
1555                         }
1556
1557                         if let Some(revocation_points) = self.their_cur_revocation_points {
1558                                 let revocation_point_option =
1559                                         if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1560                                         else if let Some(point) = revocation_points.2.as_ref() {
1561                                                 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1562                                         } else { None };
1563                                 if let Some(revocation_point) = revocation_point_option {
1564                                         self.remote_payment_script = {
1565                                                 // Note that the Network here is ignored as we immediately drop the address for the
1566                                                 // script_pubkey version
1567                                                 let payment_hash160 = WPubkeyHash::hash(&PublicKey::from_secret_key(&self.secp_ctx, &self.keys.payment_key()).serialize());
1568                                                 Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script()
1569                                         };
1570
1571                                         // Then, try to find htlc outputs
1572                                         for (_, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1573                                                 if let Some(transaction_output_index) = htlc.transaction_output_index {
1574                                                         if transaction_output_index as usize >= tx.output.len() ||
1575                                                                         tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 {
1576                                                                 return (claimable_outpoints, (commitment_txid, watch_outputs)); // Corrupted per_commitment_data, fuck this user
1577                                                         }
1578                                                         let preimage = if htlc.offered { if let Some(p) = self.payment_preimages.get(&htlc.payment_hash) { Some(*p) } else { None } } else { None };
1579                                                         let aggregable = if !htlc.offered { false } else { true };
1580                                                         if preimage.is_some() || !htlc.offered {
1581                                                                 let witness_data = InputMaterial::RemoteHTLC { per_commitment_point: *revocation_point, preimage, amount: htlc.amount_msat / 1000, locktime: htlc.cltv_expiry };
1582                                                                 claimable_outpoints.push(ClaimRequest { absolute_timelock: htlc.cltv_expiry, aggregable, outpoint: BitcoinOutPoint { txid: commitment_txid, vout: transaction_output_index }, witness_data });
1583                                                         }
1584                                                 }
1585                                         }
1586                                 }
1587                         }
1588                 }
1589                 (claimable_outpoints, (commitment_txid, watch_outputs))
1590         }
1591
1592         /// Attempts to claim a remote HTLC-Success/HTLC-Timeout's outputs using the revocation key
1593         fn check_spend_remote_htlc<L: Deref>(&mut self, tx: &Transaction, commitment_number: u64, height: u32, logger: &L) -> (Vec<ClaimRequest>, Option<(Txid, Vec<TxOut>)>) where L::Target: Logger {
1594                 let htlc_txid = tx.txid();
1595                 if tx.input.len() != 1 || tx.output.len() != 1 || tx.input[0].witness.len() != 5 {
1596                         return (Vec::new(), None)
1597                 }
1598
1599                 macro_rules! ignore_error {
1600                         ( $thing : expr ) => {
1601                                 match $thing {
1602                                         Ok(a) => a,
1603                                         Err(_) => return (Vec::new(), None)
1604                                 }
1605                         };
1606                 }
1607
1608                 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (Vec::new(), None); };
1609                 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1610                 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1611
1612                 log_trace!(logger, "Remote HTLC broadcast {}:{}", htlc_txid, 0);
1613                 let witness_data = InputMaterial::Revoked { per_commitment_point, per_commitment_key, input_descriptor: InputDescriptors::RevokedOutput, amount: tx.output[0].value };
1614                 let claimable_outpoints = vec!(ClaimRequest { absolute_timelock: height + self.our_to_self_delay as u32, aggregable: true, outpoint: BitcoinOutPoint { txid: htlc_txid, vout: 0}, witness_data });
1615                 (claimable_outpoints, Some((htlc_txid, tx.output.clone())))
1616         }
1617
1618         fn broadcast_by_local_state(&self, commitment_tx: &Transaction, local_tx: &LocalSignedTx) -> (Vec<ClaimRequest>, Vec<TxOut>, Option<(Script, SecretKey, Script)>) {
1619                 let mut claim_requests = Vec::with_capacity(local_tx.htlc_outputs.len());
1620                 let mut watch_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
1621
1622                 let redeemscript = chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.their_to_self_delay, &local_tx.delayed_payment_key);
1623                 let broadcasted_local_revokable_script = if let Ok(local_delayedkey) = chan_utils::derive_private_key(&self.secp_ctx, &local_tx.per_commitment_point, self.keys.delayed_payment_base_key()) {
1624                         Some((redeemscript.to_v0_p2wsh(), local_delayedkey, redeemscript))
1625                 } else { None };
1626
1627                 for &(ref htlc, _, _) in local_tx.htlc_outputs.iter() {
1628                         if let Some(transaction_output_index) = htlc.transaction_output_index {
1629                                 claim_requests.push(ClaimRequest { absolute_timelock: ::std::u32::MAX, aggregable: false, outpoint: BitcoinOutPoint { txid: local_tx.txid, vout: transaction_output_index as u32 },
1630                                         witness_data: InputMaterial::LocalHTLC {
1631                                                 preimage: if !htlc.offered {
1632                                                                 if let Some(preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1633                                                                         Some(preimage.clone())
1634                                                                 } else {
1635                                                                         // We can't build an HTLC-Success transaction without the preimage
1636                                                                         continue;
1637                                                                 }
1638                                                         } else { None },
1639                                                 amount: htlc.amount_msat,
1640                                 }});
1641                                 watch_outputs.push(commitment_tx.output[transaction_output_index as usize].clone());
1642                         }
1643                 }
1644
1645                 (claim_requests, watch_outputs, broadcasted_local_revokable_script)
1646         }
1647
1648         /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
1649         /// revoked using data in local_claimable_outpoints.
1650         /// Should not be used if check_spend_revoked_transaction succeeds.
1651         fn check_spend_local_transaction<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) -> (Vec<ClaimRequest>, (Txid, Vec<TxOut>)) where L::Target: Logger {
1652                 let commitment_txid = tx.txid();
1653                 let mut claim_requests = Vec::new();
1654                 let mut watch_outputs = Vec::new();
1655
1656                 macro_rules! wait_threshold_conf {
1657                         ($height: expr, $source: expr, $commitment_tx: expr, $payment_hash: expr) => {
1658                                 log_trace!(logger, "Failing HTLC with payment_hash {} from {} local commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1);
1659                                 match self.onchain_events_waiting_threshold_conf.entry($height + ANTI_REORG_DELAY - 1) {
1660                                         hash_map::Entry::Occupied(mut entry) => {
1661                                                 let e = entry.get_mut();
1662                                                 e.retain(|ref event| {
1663                                                         match **event {
1664                                                                 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1665                                                                         return htlc_update.0 != $source
1666                                                                 },
1667                                                                 _ => true
1668                                                         }
1669                                                 });
1670                                                 e.push(OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)});
1671                                         }
1672                                         hash_map::Entry::Vacant(entry) => {
1673                                                 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}]);
1674                                         }
1675                                 }
1676                         }
1677                 }
1678
1679                 macro_rules! append_onchain_update {
1680                         ($updates: expr) => {
1681                                 claim_requests = $updates.0;
1682                                 watch_outputs.append(&mut $updates.1);
1683                                 self.broadcasted_local_revokable_script = $updates.2;
1684                         }
1685                 }
1686
1687                 // HTLCs set may differ between last and previous local commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
1688                 let mut is_local_tx = false;
1689
1690                 if self.current_local_commitment_tx.txid == commitment_txid {
1691                         is_local_tx = true;
1692                         log_trace!(logger, "Got latest local commitment tx broadcast, searching for available HTLCs to claim");
1693                         let mut res = self.broadcast_by_local_state(tx, &self.current_local_commitment_tx);
1694                         append_onchain_update!(res);
1695                 } else if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
1696                         if local_tx.txid == commitment_txid {
1697                                 is_local_tx = true;
1698                                 log_trace!(logger, "Got previous local commitment tx broadcast, searching for available HTLCs to claim");
1699                                 let mut res = self.broadcast_by_local_state(tx, local_tx);
1700                                 append_onchain_update!(res);
1701                         }
1702                 }
1703
1704                 macro_rules! fail_dust_htlcs_after_threshold_conf {
1705                         ($local_tx: expr) => {
1706                                 for &(ref htlc, _, ref source) in &$local_tx.htlc_outputs {
1707                                         if htlc.transaction_output_index.is_none() {
1708                                                 if let &Some(ref source) = source {
1709                                                         wait_threshold_conf!(height, source.clone(), "lastest", htlc.payment_hash.clone());
1710                                                 }
1711                                         }
1712                                 }
1713                         }
1714                 }
1715
1716                 if is_local_tx {
1717                         fail_dust_htlcs_after_threshold_conf!(self.current_local_commitment_tx);
1718                         if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
1719                                 fail_dust_htlcs_after_threshold_conf!(local_tx);
1720                         }
1721                 }
1722
1723                 (claim_requests, (commitment_txid, watch_outputs))
1724         }
1725
1726         /// Used by ChannelManager deserialization to broadcast the latest local state if its copy of
1727         /// the Channel was out-of-date. You may use it to get a broadcastable local toxic tx in case of
1728         /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our remote side knows
1729         /// a higher revocation secret than the local commitment number we are aware of. Broadcasting these
1730         /// transactions are UNSAFE, as they allow remote side to punish you. Nevertheless you may want to
1731         /// broadcast them if remote don't close channel with his higher commitment transaction after a
1732         /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
1733         /// out-of-band the other node operator to coordinate with him if option is available to you.
1734         /// In any-case, choice is up to the user.
1735         pub fn get_latest_local_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1736                 log_trace!(logger, "Getting signed latest local commitment transaction!");
1737                 self.local_tx_signed = true;
1738                 if let Some(commitment_tx) = self.onchain_tx_handler.get_fully_signed_local_tx(&self.funding_redeemscript) {
1739                         let txid = commitment_tx.txid();
1740                         let mut res = vec![commitment_tx];
1741                         for htlc in self.current_local_commitment_tx.htlc_outputs.iter() {
1742                                 if let Some(vout) = htlc.0.transaction_output_index {
1743                                         let preimage = if !htlc.0.offered {
1744                                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1745                                                                 // We can't build an HTLC-Success transaction without the preimage
1746                                                                 continue;
1747                                                         }
1748                                                 } else { None };
1749                                         if let Some(htlc_tx) = self.onchain_tx_handler.get_fully_signed_htlc_tx(
1750                                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
1751                                                 res.push(htlc_tx);
1752                                         }
1753                                 }
1754                         }
1755                         // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
1756                         // The data will be re-generated and tracked in check_spend_local_transaction if we get a confirmation.
1757                         return res
1758                 }
1759                 Vec::new()
1760         }
1761
1762         /// Unsafe test-only version of get_latest_local_commitment_txn used by our test framework
1763         /// to bypass LocalCommitmentTransaction state update lockdown after signature and generate
1764         /// revoked commitment transaction.
1765         #[cfg(test)]
1766         pub fn unsafe_get_latest_local_commitment_txn<L: Deref>(&mut self, logger: &L) -> Vec<Transaction> where L::Target: Logger {
1767                 log_trace!(logger, "Getting signed copy of latest local commitment transaction!");
1768                 if let Some(commitment_tx) = self.onchain_tx_handler.get_fully_signed_copy_local_tx(&self.funding_redeemscript) {
1769                         let txid = commitment_tx.txid();
1770                         let mut res = vec![commitment_tx];
1771                         for htlc in self.current_local_commitment_tx.htlc_outputs.iter() {
1772                                 if let Some(vout) = htlc.0.transaction_output_index {
1773                                         let preimage = if !htlc.0.offered {
1774                                                         if let Some(preimage) = self.payment_preimages.get(&htlc.0.payment_hash) { Some(preimage.clone()) } else {
1775                                                                 // We can't build an HTLC-Success transaction without the preimage
1776                                                                 continue;
1777                                                         }
1778                                                 } else { None };
1779                                         if let Some(htlc_tx) = self.onchain_tx_handler.unsafe_get_fully_signed_htlc_tx(
1780                                                         &::bitcoin::OutPoint { txid, vout }, &preimage) {
1781                                                 res.push(htlc_tx);
1782                                         }
1783                                 }
1784                         }
1785                         return res
1786                 }
1787                 Vec::new()
1788         }
1789
1790         /// Called by SimpleManyChannelMonitor::block_connected, which implements
1791         /// ChainListener::block_connected.
1792         /// Eventually this should be pub and, roughly, implement ChainListener, however this requires
1793         /// &mut self, as well as returns new spendable outputs and outpoints to watch for spending of
1794         /// on-chain.
1795         fn block_connected<B: Deref, F: Deref, L: Deref>(&mut self, txn_matched: &[&Transaction], height: u32, block_hash: &BlockHash, broadcaster: B, fee_estimator: F, logger: L)-> Vec<(Txid, Vec<TxOut>)>
1796                 where B::Target: BroadcasterInterface,
1797                       F::Target: FeeEstimator,
1798                                         L::Target: Logger,
1799         {
1800                 for tx in txn_matched {
1801                         let mut output_val = 0;
1802                         for out in tx.output.iter() {
1803                                 if out.value > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
1804                                 output_val += out.value;
1805                                 if output_val > 21_000_000_0000_0000 { panic!("Value-overflowing transaction provided to block connected"); }
1806                         }
1807                 }
1808
1809                 log_trace!(logger, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());
1810                 let mut watch_outputs = Vec::new();
1811                 let mut claimable_outpoints = Vec::new();
1812                 for tx in txn_matched {
1813                         if tx.input.len() == 1 {
1814                                 // Assuming our keys were not leaked (in which case we're screwed no matter what),
1815                                 // commitment transactions and HTLC transactions will all only ever have one input,
1816                                 // which is an easy way to filter out any potential non-matching txn for lazy
1817                                 // filters.
1818                                 let prevout = &tx.input[0].previous_output;
1819                                 if prevout.txid == self.funding_info.0.txid && prevout.vout == self.funding_info.0.index as u32 {
1820                                         if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
1821                                                 let (mut new_outpoints, new_outputs) = self.check_spend_remote_transaction(&tx, height, &logger);
1822                                                 if !new_outputs.1.is_empty() {
1823                                                         watch_outputs.push(new_outputs);
1824                                                 }
1825                                                 if new_outpoints.is_empty() {
1826                                                         let (mut new_outpoints, new_outputs) = self.check_spend_local_transaction(&tx, height, &logger);
1827                                                         if !new_outputs.1.is_empty() {
1828                                                                 watch_outputs.push(new_outputs);
1829                                                         }
1830                                                         claimable_outpoints.append(&mut new_outpoints);
1831                                                 }
1832                                                 claimable_outpoints.append(&mut new_outpoints);
1833                                         }
1834                                 } else {
1835                                         if let Some(&(commitment_number, _)) = self.remote_commitment_txn_on_chain.get(&prevout.txid) {
1836                                                 let (mut new_outpoints, new_outputs_option) = self.check_spend_remote_htlc(&tx, commitment_number, height, &logger);
1837                                                 claimable_outpoints.append(&mut new_outpoints);
1838                                                 if let Some(new_outputs) = new_outputs_option {
1839                                                         watch_outputs.push(new_outputs);
1840                                                 }
1841                                         }
1842                                 }
1843                         }
1844                         // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
1845                         // can also be resolved in a few other ways which can have more than one output. Thus,
1846                         // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
1847                         self.is_resolving_htlc_output(&tx, height, &logger);
1848
1849                         self.is_paying_spendable_output(&tx, height, &logger);
1850                 }
1851                 let should_broadcast = self.would_broadcast_at_height(height, &logger);
1852                 if should_broadcast {
1853                         claimable_outpoints.push(ClaimRequest { absolute_timelock: height, aggregable: false, outpoint: BitcoinOutPoint { txid: self.funding_info.0.txid.clone(), vout: self.funding_info.0.index as u32 }, witness_data: InputMaterial::Funding { funding_redeemscript: self.funding_redeemscript.clone() }});
1854                 }
1855                 if should_broadcast {
1856                         if let Some(commitment_tx) = self.onchain_tx_handler.get_fully_signed_local_tx(&self.funding_redeemscript) {
1857                                 let (mut new_outpoints, new_outputs, _) = self.broadcast_by_local_state(&commitment_tx, &self.current_local_commitment_tx);
1858                                 if !new_outputs.is_empty() {
1859                                         watch_outputs.push((self.current_local_commitment_tx.txid.clone(), new_outputs));
1860                                 }
1861                                 claimable_outpoints.append(&mut new_outpoints);
1862                         }
1863                 }
1864                 if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&height) {
1865                         for ev in events {
1866                                 match ev {
1867                                         OnchainEvent::HTLCUpdate { htlc_update } => {
1868                                                 log_trace!(logger, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0));
1869                                                 self.pending_htlcs_updated.push(HTLCUpdate {
1870                                                         payment_hash: htlc_update.1,
1871                                                         payment_preimage: None,
1872                                                         source: htlc_update.0,
1873                                                 });
1874                                         },
1875                                         OnchainEvent::MaturingOutput { descriptor } => {
1876                                                 log_trace!(logger, "Descriptor {} has got enough confirmations to be passed upstream", log_spendable!(descriptor));
1877                                                 self.pending_events.push(events::Event::SpendableOutputs {
1878                                                         outputs: vec![descriptor]
1879                                                 });
1880                                         }
1881                                 }
1882                         }
1883                 }
1884                 self.onchain_tx_handler.block_connected(txn_matched, claimable_outpoints, height, &*broadcaster, &*fee_estimator, &*logger);
1885
1886                 self.last_block_hash = block_hash.clone();
1887                 for &(ref txid, ref output_scripts) in watch_outputs.iter() {
1888                         self.outputs_to_watch.insert(txid.clone(), output_scripts.iter().map(|o| o.script_pubkey.clone()).collect());
1889                 }
1890
1891                 watch_outputs
1892         }
1893
1894         fn block_disconnected<B: Deref, F: Deref, L: Deref>(&mut self, height: u32, block_hash: &BlockHash, broadcaster: B, fee_estimator: F, logger: L)
1895                 where B::Target: BroadcasterInterface,
1896                       F::Target: FeeEstimator,
1897                       L::Target: Logger,
1898         {
1899                 log_trace!(logger, "Block {} at height {} disconnected", block_hash, height);
1900                 if let Some(_) = self.onchain_events_waiting_threshold_conf.remove(&(height + ANTI_REORG_DELAY - 1)) {
1901                         //We may discard:
1902                         //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
1903                         //- maturing spendable output has transaction paying us has been disconnected
1904                 }
1905
1906                 self.onchain_tx_handler.block_disconnected(height, broadcaster, fee_estimator, logger);
1907
1908                 self.last_block_hash = block_hash.clone();
1909         }
1910
1911         pub(super) fn would_broadcast_at_height<L: Deref>(&self, height: u32, logger: &L) -> bool where L::Target: Logger {
1912                 // We need to consider all HTLCs which are:
1913                 //  * in any unrevoked remote commitment transaction, as they could broadcast said
1914                 //    transactions and we'd end up in a race, or
1915                 //  * are in our latest local commitment transaction, as this is the thing we will
1916                 //    broadcast if we go on-chain.
1917                 // Note that we consider HTLCs which were below dust threshold here - while they don't
1918                 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
1919                 // to the source, and if we don't fail the channel we will have to ensure that the next
1920                 // updates that peer sends us are update_fails, failing the channel if not. It's probably
1921                 // easier to just fail the channel as this case should be rare enough anyway.
1922                 macro_rules! scan_commitment {
1923                         ($htlcs: expr, $local_tx: expr) => {
1924                                 for ref htlc in $htlcs {
1925                                         // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
1926                                         // chain with enough room to claim the HTLC without our counterparty being able to
1927                                         // time out the HTLC first.
1928                                         // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
1929                                         // concern is being able to claim the corresponding inbound HTLC (on another
1930                                         // channel) before it expires. In fact, we don't even really care if our
1931                                         // counterparty here claims such an outbound HTLC after it expired as long as we
1932                                         // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
1933                                         // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
1934                                         // we give ourselves a few blocks of headroom after expiration before going
1935                                         // on-chain for an expired HTLC.
1936                                         // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
1937                                         // from us until we've reached the point where we go on-chain with the
1938                                         // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
1939                                         // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
1940                                         //  aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
1941                                         //      inbound_cltv == height + CLTV_CLAIM_BUFFER
1942                                         //      outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
1943                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
1944                                         //      CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
1945                                         //      LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
1946                                         //  The final, above, condition is checked for statically in channelmanager
1947                                         //  with CHECK_CLTV_EXPIRY_SANITY_2.
1948                                         let htlc_outbound = $local_tx == htlc.offered;
1949                                         if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
1950                                            (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
1951                                                 log_info!(logger, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
1952                                                 return true;
1953                                         }
1954                                 }
1955                         }
1956                 }
1957
1958                 scan_commitment!(self.current_local_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
1959
1960                 if let Some(ref txid) = self.current_remote_commitment_txid {
1961                         if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
1962                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
1963                         }
1964                 }
1965                 if let Some(ref txid) = self.prev_remote_commitment_txid {
1966                         if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
1967                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
1968                         }
1969                 }
1970
1971                 false
1972         }
1973
1974         /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a local
1975         /// or remote commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
1976         fn is_resolving_htlc_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
1977                 'outer_loop: for input in &tx.input {
1978                         let mut payment_data = None;
1979                         let revocation_sig_claim = (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC) && input.witness[1].len() == 33)
1980                                 || (input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::AcceptedHTLC) && input.witness[1].len() == 33);
1981                         let accepted_preimage_claim = input.witness.len() == 5 && HTLCType::scriptlen_to_htlctype(input.witness[4].len()) == Some(HTLCType::AcceptedHTLC);
1982                         let offered_preimage_claim = input.witness.len() == 3 && HTLCType::scriptlen_to_htlctype(input.witness[2].len()) == Some(HTLCType::OfferedHTLC);
1983
1984                         macro_rules! log_claim {
1985                                 ($tx_info: expr, $local_tx: expr, $htlc: expr, $source_avail: expr) => {
1986                                         // We found the output in question, but aren't failing it backwards
1987                                         // as we have no corresponding source and no valid remote commitment txid
1988                                         // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
1989                                         // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
1990                                         let outbound_htlc = $local_tx == $htlc.offered;
1991                                         if ($local_tx && revocation_sig_claim) ||
1992                                                         (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
1993                                                 log_error!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
1994                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
1995                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
1996                                                         if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
1997                                         } else {
1998                                                 log_info!(logger, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
1999                                                         $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2000                                                         if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2001                                                         if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2002                                         }
2003                                 }
2004                         }
2005
2006                         macro_rules! check_htlc_valid_remote {
2007                                 ($remote_txid: expr, $htlc_output: expr) => {
2008                                         if let Some(txid) = $remote_txid {
2009                                                 for &(ref pending_htlc, ref pending_source) in self.remote_claimable_outpoints.get(&txid).unwrap() {
2010                                                         if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2011                                                                 if let &Some(ref source) = pending_source {
2012                                                                         log_claim!("revoked remote commitment tx", false, pending_htlc, true);
2013                                                                         payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2014                                                                         break;
2015                                                                 }
2016                                                         }
2017                                                 }
2018                                         }
2019                                 }
2020                         }
2021
2022                         macro_rules! scan_commitment {
2023                                 ($htlcs: expr, $tx_info: expr, $local_tx: expr) => {
2024                                         for (ref htlc_output, source_option) in $htlcs {
2025                                                 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2026                                                         if let Some(ref source) = source_option {
2027                                                                 log_claim!($tx_info, $local_tx, htlc_output, true);
2028                                                                 // We have a resolution of an HTLC either from one of our latest
2029                                                                 // local commitment transactions or an unrevoked remote commitment
2030                                                                 // transaction. This implies we either learned a preimage, the HTLC
2031                                                                 // has timed out, or we screwed up. In any case, we should now
2032                                                                 // resolve the source HTLC with the original sender.
2033                                                                 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2034                                                         } else if !$local_tx {
2035                                                                         check_htlc_valid_remote!(self.current_remote_commitment_txid, htlc_output);
2036                                                                 if payment_data.is_none() {
2037                                                                         check_htlc_valid_remote!(self.prev_remote_commitment_txid, htlc_output);
2038                                                                 }
2039                                                         }
2040                                                         if payment_data.is_none() {
2041                                                                 log_claim!($tx_info, $local_tx, htlc_output, false);
2042                                                                 continue 'outer_loop;
2043                                                         }
2044                                                 }
2045                                         }
2046                                 }
2047                         }
2048
2049                         if input.previous_output.txid == self.current_local_commitment_tx.txid {
2050                                 scan_commitment!(self.current_local_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2051                                         "our latest local commitment tx", true);
2052                         }
2053                         if let Some(ref prev_local_signed_commitment_tx) = self.prev_local_signed_commitment_tx {
2054                                 if input.previous_output.txid == prev_local_signed_commitment_tx.txid {
2055                                         scan_commitment!(prev_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2056                                                 "our previous local commitment tx", true);
2057                                 }
2058                         }
2059                         if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(&input.previous_output.txid) {
2060                                 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2061                                         "remote commitment tx", false);
2062                         }
2063
2064                         // Check that scan_commitment, above, decided there is some source worth relaying an
2065                         // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2066                         if let Some((source, payment_hash)) = payment_data {
2067                                 let mut payment_preimage = PaymentPreimage([0; 32]);
2068                                 if accepted_preimage_claim {
2069                                         if !self.pending_htlcs_updated.iter().any(|update| update.source == source) {
2070                                                 payment_preimage.0.copy_from_slice(&input.witness[3]);
2071                                                 self.pending_htlcs_updated.push(HTLCUpdate {
2072                                                         source,
2073                                                         payment_preimage: Some(payment_preimage),
2074                                                         payment_hash
2075                                                 });
2076                                         }
2077                                 } else if offered_preimage_claim {
2078                                         if !self.pending_htlcs_updated.iter().any(|update| update.source == source) {
2079                                                 payment_preimage.0.copy_from_slice(&input.witness[1]);
2080                                                 self.pending_htlcs_updated.push(HTLCUpdate {
2081                                                         source,
2082                                                         payment_preimage: Some(payment_preimage),
2083                                                         payment_hash
2084                                                 });
2085                                         }
2086                                 } else {
2087                                         log_info!(logger, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), height + ANTI_REORG_DELAY - 1);
2088                                         match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2089                                                 hash_map::Entry::Occupied(mut entry) => {
2090                                                         let e = entry.get_mut();
2091                                                         e.retain(|ref event| {
2092                                                                 match **event {
2093                                                                         OnchainEvent::HTLCUpdate { ref htlc_update } => {
2094                                                                                 return htlc_update.0 != source
2095                                                                         },
2096                                                                         _ => true
2097                                                                 }
2098                                                         });
2099                                                         e.push(OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)});
2100                                                 }
2101                                                 hash_map::Entry::Vacant(entry) => {
2102                                                         entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}]);
2103                                                 }
2104                                         }
2105                                 }
2106                         }
2107                 }
2108         }
2109
2110         /// Check if any transaction broadcasted is paying fund back to some address we can assume to own
2111         fn is_paying_spendable_output<L: Deref>(&mut self, tx: &Transaction, height: u32, logger: &L) where L::Target: Logger {
2112                 let mut spendable_output = None;
2113                 for (i, outp) in tx.output.iter().enumerate() { // There is max one spendable output for any channel tx, including ones generated by us
2114                         if outp.script_pubkey == self.destination_script {
2115                                 spendable_output =  Some(SpendableOutputDescriptor::StaticOutput {
2116                                         outpoint: BitcoinOutPoint { txid: tx.txid(), vout: i as u32 },
2117                                         output: outp.clone(),
2118                                 });
2119                                 break;
2120                         } else if let Some(ref broadcasted_local_revokable_script) = self.broadcasted_local_revokable_script {
2121                                 if broadcasted_local_revokable_script.0 == outp.script_pubkey {
2122                                         spendable_output =  Some(SpendableOutputDescriptor::DynamicOutputP2WSH {
2123                                                 outpoint: BitcoinOutPoint { txid: tx.txid(), vout: i as u32 },
2124                                                 key: broadcasted_local_revokable_script.1,
2125                                                 witness_script: broadcasted_local_revokable_script.2.clone(),
2126                                                 to_self_delay: self.their_to_self_delay,
2127                                                 output: outp.clone(),
2128                                         });
2129                                         break;
2130                                 }
2131                         } else if self.remote_payment_script == outp.script_pubkey {
2132                                 spendable_output = Some(SpendableOutputDescriptor::DynamicOutputP2WPKH {
2133                                         outpoint: BitcoinOutPoint { txid: tx.txid(), vout: i as u32 },
2134                                         key: self.keys.payment_key().clone(),
2135                                         output: outp.clone(),
2136                                 });
2137                                 break;
2138                         } else if outp.script_pubkey == self.shutdown_script {
2139                                 spendable_output = Some(SpendableOutputDescriptor::StaticOutput {
2140                                         outpoint: BitcoinOutPoint { txid: tx.txid(), vout: i as u32 },
2141                                         output: outp.clone(),
2142                                 });
2143                         }
2144                 }
2145                 if let Some(spendable_output) = spendable_output {
2146                         log_trace!(logger, "Maturing {} until {}", log_spendable!(spendable_output), height + ANTI_REORG_DELAY - 1);
2147                         match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2148                                 hash_map::Entry::Occupied(mut entry) => {
2149                                         let e = entry.get_mut();
2150                                         e.push(OnchainEvent::MaturingOutput { descriptor: spendable_output });
2151                                 }
2152                                 hash_map::Entry::Vacant(entry) => {
2153                                         entry.insert(vec![OnchainEvent::MaturingOutput { descriptor: spendable_output }]);
2154                                 }
2155                         }
2156                 }
2157         }
2158 }
2159
2160 const MAX_ALLOC_SIZE: usize = 64*1024;
2161
2162 impl<ChanSigner: ChannelKeys + Readable> Readable for (BlockHash, ChannelMonitor<ChanSigner>) {
2163         fn read<R: ::std::io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
2164                 macro_rules! unwrap_obj {
2165                         ($key: expr) => {
2166                                 match $key {
2167                                         Ok(res) => res,
2168                                         Err(_) => return Err(DecodeError::InvalidValue),
2169                                 }
2170                         }
2171                 }
2172
2173                 let _ver: u8 = Readable::read(reader)?;
2174                 let min_ver: u8 = Readable::read(reader)?;
2175                 if min_ver > SERIALIZATION_VERSION {
2176                         return Err(DecodeError::UnknownVersion);
2177                 }
2178
2179                 let latest_update_id: u64 = Readable::read(reader)?;
2180                 let commitment_transaction_number_obscure_factor = <U48 as Readable>::read(reader)?.0;
2181
2182                 let destination_script = Readable::read(reader)?;
2183                 let broadcasted_local_revokable_script = match <u8 as Readable>::read(reader)? {
2184                         0 => {
2185                                 let revokable_address = Readable::read(reader)?;
2186                                 let local_delayedkey = Readable::read(reader)?;
2187                                 let revokable_script = Readable::read(reader)?;
2188                                 Some((revokable_address, local_delayedkey, revokable_script))
2189                         },
2190                         1 => { None },
2191                         _ => return Err(DecodeError::InvalidValue),
2192                 };
2193                 let remote_payment_script = Readable::read(reader)?;
2194                 let shutdown_script = Readable::read(reader)?;
2195
2196                 let keys = Readable::read(reader)?;
2197                 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2198                 // barely-init'd ChannelMonitors that we can't do anything with.
2199                 let outpoint = OutPoint {
2200                         txid: Readable::read(reader)?,
2201                         index: Readable::read(reader)?,
2202                 };
2203                 let funding_info = (outpoint, Readable::read(reader)?);
2204                 let current_remote_commitment_txid = Readable::read(reader)?;
2205                 let prev_remote_commitment_txid = Readable::read(reader)?;
2206
2207                 let their_htlc_base_key = Readable::read(reader)?;
2208                 let their_delayed_payment_base_key = Readable::read(reader)?;
2209                 let funding_redeemscript = Readable::read(reader)?;
2210                 let channel_value_satoshis = Readable::read(reader)?;
2211
2212                 let their_cur_revocation_points = {
2213                         let first_idx = <U48 as Readable>::read(reader)?.0;
2214                         if first_idx == 0 {
2215                                 None
2216                         } else {
2217                                 let first_point = Readable::read(reader)?;
2218                                 let second_point_slice: [u8; 33] = Readable::read(reader)?;
2219                                 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
2220                                         Some((first_idx, first_point, None))
2221                                 } else {
2222                                         Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
2223                                 }
2224                         }
2225                 };
2226
2227                 let our_to_self_delay: u16 = Readable::read(reader)?;
2228                 let their_to_self_delay: u16 = Readable::read(reader)?;
2229
2230                 let commitment_secrets = Readable::read(reader)?;
2231
2232                 macro_rules! read_htlc_in_commitment {
2233                         () => {
2234                                 {
2235                                         let offered: bool = Readable::read(reader)?;
2236                                         let amount_msat: u64 = Readable::read(reader)?;
2237                                         let cltv_expiry: u32 = Readable::read(reader)?;
2238                                         let payment_hash: PaymentHash = Readable::read(reader)?;
2239                                         let transaction_output_index: Option<u32> = Readable::read(reader)?;
2240
2241                                         HTLCOutputInCommitment {
2242                                                 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
2243                                         }
2244                                 }
2245                         }
2246                 }
2247
2248                 let remote_claimable_outpoints_len: u64 = Readable::read(reader)?;
2249                 let mut remote_claimable_outpoints = HashMap::with_capacity(cmp::min(remote_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
2250                 for _ in 0..remote_claimable_outpoints_len {
2251                         let txid: Txid = Readable::read(reader)?;
2252                         let htlcs_count: u64 = Readable::read(reader)?;
2253                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
2254                         for _ in 0..htlcs_count {
2255                                 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
2256                         }
2257                         if let Some(_) = remote_claimable_outpoints.insert(txid, htlcs) {
2258                                 return Err(DecodeError::InvalidValue);
2259                         }
2260                 }
2261
2262                 let remote_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
2263                 let mut remote_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(remote_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
2264                 for _ in 0..remote_commitment_txn_on_chain_len {
2265                         let txid: Txid = Readable::read(reader)?;
2266                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2267                         let outputs_count = <u64 as Readable>::read(reader)?;
2268                         let mut outputs = Vec::with_capacity(cmp::min(outputs_count as usize, MAX_ALLOC_SIZE / 8));
2269                         for _ in 0..outputs_count {
2270                                 outputs.push(Readable::read(reader)?);
2271                         }
2272                         if let Some(_) = remote_commitment_txn_on_chain.insert(txid, (commitment_number, outputs)) {
2273                                 return Err(DecodeError::InvalidValue);
2274                         }
2275                 }
2276
2277                 let remote_hash_commitment_number_len: u64 = Readable::read(reader)?;
2278                 let mut remote_hash_commitment_number = HashMap::with_capacity(cmp::min(remote_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
2279                 for _ in 0..remote_hash_commitment_number_len {
2280                         let payment_hash: PaymentHash = Readable::read(reader)?;
2281                         let commitment_number = <U48 as Readable>::read(reader)?.0;
2282                         if let Some(_) = remote_hash_commitment_number.insert(payment_hash, commitment_number) {
2283                                 return Err(DecodeError::InvalidValue);
2284                         }
2285                 }
2286
2287                 macro_rules! read_local_tx {
2288                         () => {
2289                                 {
2290                                         let txid = Readable::read(reader)?;
2291                                         let revocation_key = Readable::read(reader)?;
2292                                         let a_htlc_key = Readable::read(reader)?;
2293                                         let b_htlc_key = Readable::read(reader)?;
2294                                         let delayed_payment_key = Readable::read(reader)?;
2295                                         let per_commitment_point = Readable::read(reader)?;
2296                                         let feerate_per_kw: u64 = Readable::read(reader)?;
2297
2298                                         let htlcs_len: u64 = Readable::read(reader)?;
2299                                         let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
2300                                         for _ in 0..htlcs_len {
2301                                                 let htlc = read_htlc_in_commitment!();
2302                                                 let sigs = match <u8 as Readable>::read(reader)? {
2303                                                         0 => None,
2304                                                         1 => Some(Readable::read(reader)?),
2305                                                         _ => return Err(DecodeError::InvalidValue),
2306                                                 };
2307                                                 htlcs.push((htlc, sigs, Readable::read(reader)?));
2308                                         }
2309
2310                                         LocalSignedTx {
2311                                                 txid,
2312                                                 revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, per_commitment_point, feerate_per_kw,
2313                                                 htlc_outputs: htlcs
2314                                         }
2315                                 }
2316                         }
2317                 }
2318
2319                 let prev_local_signed_commitment_tx = match <u8 as Readable>::read(reader)? {
2320                         0 => None,
2321                         1 => {
2322                                 Some(read_local_tx!())
2323                         },
2324                         _ => return Err(DecodeError::InvalidValue),
2325                 };
2326                 let current_local_commitment_tx = read_local_tx!();
2327
2328                 let current_remote_commitment_number = <U48 as Readable>::read(reader)?.0;
2329                 let current_local_commitment_number = <U48 as Readable>::read(reader)?.0;
2330
2331                 let payment_preimages_len: u64 = Readable::read(reader)?;
2332                 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
2333                 for _ in 0..payment_preimages_len {
2334                         let preimage: PaymentPreimage = Readable::read(reader)?;
2335                         let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2336                         if let Some(_) = payment_preimages.insert(hash, preimage) {
2337                                 return Err(DecodeError::InvalidValue);
2338                         }
2339                 }
2340
2341                 let pending_htlcs_updated_len: u64 = Readable::read(reader)?;
2342                 let mut pending_htlcs_updated = Vec::with_capacity(cmp::min(pending_htlcs_updated_len as usize, MAX_ALLOC_SIZE / (32 + 8*3)));
2343                 for _ in 0..pending_htlcs_updated_len {
2344                         pending_htlcs_updated.push(Readable::read(reader)?);
2345                 }
2346
2347                 let pending_events_len: u64 = Readable::read(reader)?;
2348                 let mut pending_events = Vec::with_capacity(cmp::min(pending_events_len as usize, MAX_ALLOC_SIZE / mem::size_of::<events::Event>()));
2349                 for _ in 0..pending_events_len {
2350                         if let Some(event) = MaybeReadable::read(reader)? {
2351                                 pending_events.push(event);
2352                         }
2353                 }
2354
2355                 let last_block_hash: BlockHash = Readable::read(reader)?;
2356
2357                 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
2358                 let mut onchain_events_waiting_threshold_conf = HashMap::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
2359                 for _ in 0..waiting_threshold_conf_len {
2360                         let height_target = Readable::read(reader)?;
2361                         let events_len: u64 = Readable::read(reader)?;
2362                         let mut events = Vec::with_capacity(cmp::min(events_len as usize, MAX_ALLOC_SIZE / 128));
2363                         for _ in 0..events_len {
2364                                 let ev = match <u8 as Readable>::read(reader)? {
2365                                         0 => {
2366                                                 let htlc_source = Readable::read(reader)?;
2367                                                 let hash = Readable::read(reader)?;
2368                                                 OnchainEvent::HTLCUpdate {
2369                                                         htlc_update: (htlc_source, hash)
2370                                                 }
2371                                         },
2372                                         1 => {
2373                                                 let descriptor = Readable::read(reader)?;
2374                                                 OnchainEvent::MaturingOutput {
2375                                                         descriptor
2376                                                 }
2377                                         },
2378                                         _ => return Err(DecodeError::InvalidValue),
2379                                 };
2380                                 events.push(ev);
2381                         }
2382                         onchain_events_waiting_threshold_conf.insert(height_target, events);
2383                 }
2384
2385                 let outputs_to_watch_len: u64 = Readable::read(reader)?;
2386                 let mut outputs_to_watch = HashMap::with_capacity(cmp::min(outputs_to_watch_len as usize, MAX_ALLOC_SIZE / (mem::size_of::<Txid>() + mem::size_of::<Vec<Script>>())));
2387                 for _ in 0..outputs_to_watch_len {
2388                         let txid = Readable::read(reader)?;
2389                         let outputs_len: u64 = Readable::read(reader)?;
2390                         let mut outputs = Vec::with_capacity(cmp::min(outputs_len as usize, MAX_ALLOC_SIZE / mem::size_of::<Script>()));
2391                         for _ in 0..outputs_len {
2392                                 outputs.push(Readable::read(reader)?);
2393                         }
2394                         if let Some(_) = outputs_to_watch.insert(txid, outputs) {
2395                                 return Err(DecodeError::InvalidValue);
2396                         }
2397                 }
2398                 let onchain_tx_handler = Readable::read(reader)?;
2399
2400                 let lockdown_from_offchain = Readable::read(reader)?;
2401                 let local_tx_signed = Readable::read(reader)?;
2402
2403                 Ok((last_block_hash.clone(), ChannelMonitor {
2404                         latest_update_id,
2405                         commitment_transaction_number_obscure_factor,
2406
2407                         destination_script,
2408                         broadcasted_local_revokable_script,
2409                         remote_payment_script,
2410                         shutdown_script,
2411
2412                         keys,
2413                         funding_info,
2414                         current_remote_commitment_txid,
2415                         prev_remote_commitment_txid,
2416
2417                         their_htlc_base_key,
2418                         their_delayed_payment_base_key,
2419                         funding_redeemscript,
2420                         channel_value_satoshis,
2421                         their_cur_revocation_points,
2422
2423                         our_to_self_delay,
2424                         their_to_self_delay,
2425
2426                         commitment_secrets,
2427                         remote_claimable_outpoints,
2428                         remote_commitment_txn_on_chain,
2429                         remote_hash_commitment_number,
2430
2431                         prev_local_signed_commitment_tx,
2432                         current_local_commitment_tx,
2433                         current_remote_commitment_number,
2434                         current_local_commitment_number,
2435
2436                         payment_preimages,
2437                         pending_htlcs_updated,
2438                         pending_events,
2439
2440                         onchain_events_waiting_threshold_conf,
2441                         outputs_to_watch,
2442
2443                         onchain_tx_handler,
2444
2445                         lockdown_from_offchain,
2446                         local_tx_signed,
2447
2448                         last_block_hash,
2449                         secp_ctx: Secp256k1::new(),
2450                 }))
2451         }
2452 }
2453
2454 #[cfg(test)]
2455 mod tests {
2456         use bitcoin::blockdata::script::{Script, Builder};
2457         use bitcoin::blockdata::opcodes;
2458         use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
2459         use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
2460         use bitcoin::util::bip143;
2461         use bitcoin::hashes::Hash;
2462         use bitcoin::hashes::sha256::Hash as Sha256;
2463         use bitcoin::hashes::hex::FromHex;
2464         use bitcoin::hash_types::Txid;
2465         use hex;
2466         use chain::transaction::OutPoint;
2467         use ln::channelmanager::{PaymentPreimage, PaymentHash};
2468         use ln::channelmonitor::ChannelMonitor;
2469         use ln::onchaintx::{OnchainTxHandler, InputDescriptors};
2470         use ln::chan_utils;
2471         use ln::chan_utils::{HTLCOutputInCommitment, LocalCommitmentTransaction};
2472         use util::test_utils::TestLogger;
2473         use bitcoin::secp256k1::key::{SecretKey,PublicKey};
2474         use bitcoin::secp256k1::Secp256k1;
2475         use rand::{thread_rng,Rng};
2476         use std::sync::Arc;
2477         use chain::keysinterface::InMemoryChannelKeys;
2478
2479         #[test]
2480         fn test_prune_preimages() {
2481                 let secp_ctx = Secp256k1::new();
2482                 let logger = Arc::new(TestLogger::new());
2483
2484                 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
2485                 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2486
2487                 let mut preimages = Vec::new();
2488                 {
2489                         let mut rng  = thread_rng();
2490                         for _ in 0..20 {
2491                                 let mut preimage = PaymentPreimage([0; 32]);
2492                                 rng.fill_bytes(&mut preimage.0[..]);
2493                                 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
2494                                 preimages.push((preimage, hash));
2495                         }
2496                 }
2497
2498                 macro_rules! preimages_slice_to_htlc_outputs {
2499                         ($preimages_slice: expr) => {
2500                                 {
2501                                         let mut res = Vec::new();
2502                                         for (idx, preimage) in $preimages_slice.iter().enumerate() {
2503                                                 res.push((HTLCOutputInCommitment {
2504                                                         offered: true,
2505                                                         amount_msat: 0,
2506                                                         cltv_expiry: 0,
2507                                                         payment_hash: preimage.1.clone(),
2508                                                         transaction_output_index: Some(idx as u32),
2509                                                 }, None));
2510                                         }
2511                                         res
2512                                 }
2513                         }
2514                 }
2515                 macro_rules! preimages_to_local_htlcs {
2516                         ($preimages_slice: expr) => {
2517                                 {
2518                                         let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
2519                                         let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
2520                                         res
2521                                 }
2522                         }
2523                 }
2524
2525                 macro_rules! test_preimages_exist {
2526                         ($preimages_slice: expr, $monitor: expr) => {
2527                                 for preimage in $preimages_slice {
2528                                         assert!($monitor.payment_preimages.contains_key(&preimage.1));
2529                                 }
2530                         }
2531                 }
2532
2533                 let keys = InMemoryChannelKeys::new(
2534                         &secp_ctx,
2535                         SecretKey::from_slice(&[41; 32]).unwrap(),
2536                         SecretKey::from_slice(&[41; 32]).unwrap(),
2537                         SecretKey::from_slice(&[41; 32]).unwrap(),
2538                         SecretKey::from_slice(&[41; 32]).unwrap(),
2539                         SecretKey::from_slice(&[41; 32]).unwrap(),
2540                         [41; 32],
2541                         0,
2542                         (0, 0)
2543                 );
2544
2545                 // Prune with one old state and a local commitment tx holding a few overlaps with the
2546                 // old state.
2547                 let mut monitor = ChannelMonitor::new(keys,
2548                         &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap()), 0, &Script::new(),
2549                         (OutPoint { txid: Txid::from_slice(&[43; 32]).unwrap(), index: 0 }, Script::new()),
2550                         &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[44; 32]).unwrap()),
2551                         &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()),
2552                         10, Script::new(), 46, 0, LocalCommitmentTransaction::dummy());
2553
2554                 monitor.provide_latest_local_commitment_tx_info(LocalCommitmentTransaction::dummy(), preimages_to_local_htlcs!(preimages[0..10])).unwrap();
2555                 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key, &logger);
2556                 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key, &logger);
2557                 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key, &logger);
2558                 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key, &logger);
2559                 for &(ref preimage, ref hash) in preimages.iter() {
2560                         monitor.provide_payment_preimage(hash, preimage);
2561                 }
2562
2563                 // Now provide a secret, pruning preimages 10-15
2564                 let mut secret = [0; 32];
2565                 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
2566                 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
2567                 assert_eq!(monitor.payment_preimages.len(), 15);
2568                 test_preimages_exist!(&preimages[0..10], monitor);
2569                 test_preimages_exist!(&preimages[15..20], monitor);
2570
2571                 // Now provide a further secret, pruning preimages 15-17
2572                 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
2573                 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
2574                 assert_eq!(monitor.payment_preimages.len(), 13);
2575                 test_preimages_exist!(&preimages[0..10], monitor);
2576                 test_preimages_exist!(&preimages[17..20], monitor);
2577
2578                 // Now update local commitment tx info, pruning only element 18 as we still care about the
2579                 // previous commitment tx's preimages too
2580                 monitor.provide_latest_local_commitment_tx_info(LocalCommitmentTransaction::dummy(), preimages_to_local_htlcs!(preimages[0..5])).unwrap();
2581                 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
2582                 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
2583                 assert_eq!(monitor.payment_preimages.len(), 12);
2584                 test_preimages_exist!(&preimages[0..10], monitor);
2585                 test_preimages_exist!(&preimages[18..20], monitor);
2586
2587                 // But if we do it again, we'll prune 5-10
2588                 monitor.provide_latest_local_commitment_tx_info(LocalCommitmentTransaction::dummy(), preimages_to_local_htlcs!(preimages[0..3])).unwrap();
2589                 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
2590                 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
2591                 assert_eq!(monitor.payment_preimages.len(), 5);
2592                 test_preimages_exist!(&preimages[0..5], monitor);
2593         }
2594
2595         #[test]
2596         fn test_claim_txn_weight_computation() {
2597                 // We test Claim txn weight, knowing that we want expected weigth and
2598                 // not actual case to avoid sigs and time-lock delays hell variances.
2599
2600                 let secp_ctx = Secp256k1::new();
2601                 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
2602                 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
2603                 let mut sum_actual_sigs = 0;
2604
2605                 macro_rules! sign_input {
2606                         ($sighash_parts: expr, $input: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => {
2607                                 let htlc = HTLCOutputInCommitment {
2608                                         offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false },
2609                                         amount_msat: 0,
2610                                         cltv_expiry: 2 << 16,
2611                                         payment_hash: PaymentHash([1; 32]),
2612                                         transaction_output_index: Some($idx),
2613                                 };
2614                                 let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
2615                                 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeem_script, $amount)[..]);
2616                                 let sig = secp_ctx.sign(&sighash, &privkey);
2617                                 $input.witness.push(sig.serialize_der().to_vec());
2618                                 $input.witness[0].push(SigHashType::All as u8);
2619                                 sum_actual_sigs += $input.witness[0].len();
2620                                 if *$input_type == InputDescriptors::RevokedOutput {
2621                                         $input.witness.push(vec!(1));
2622                                 } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC {
2623                                         $input.witness.push(pubkey.clone().serialize().to_vec());
2624                                 } else if *$input_type == InputDescriptors::ReceivedHTLC {
2625                                         $input.witness.push(vec![0]);
2626                                 } else {
2627                                         $input.witness.push(PaymentPreimage([1; 32]).0.to_vec());
2628                                 }
2629                                 $input.witness.push(redeem_script.into_bytes());
2630                                 println!("witness[0] {}", $input.witness[0].len());
2631                                 println!("witness[1] {}", $input.witness[1].len());
2632                                 println!("witness[2] {}", $input.witness[2].len());
2633                         }
2634                 }
2635
2636                 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
2637                 let txid = Txid::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
2638
2639                 // Justice tx with 1 to_local, 2 revoked offered HTLCs, 1 revoked received HTLCs
2640                 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
2641                 for i in 0..4 {
2642                         claim_tx.input.push(TxIn {
2643                                 previous_output: BitcoinOutPoint {
2644                                         txid,
2645                                         vout: i,
2646                                 },
2647                                 script_sig: Script::new(),
2648                                 sequence: 0xfffffffd,
2649                                 witness: Vec::new(),
2650                         });
2651                 }
2652                 claim_tx.output.push(TxOut {
2653                         script_pubkey: script_pubkey.clone(),
2654                         value: 0,
2655                 });
2656                 let base_weight = claim_tx.get_weight();
2657                 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
2658                 let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC];
2659                 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
2660                         sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
2661                 }
2662                 assert_eq!(base_weight + OnchainTxHandler::<InMemoryChannelKeys>::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
2663
2664                 // Claim tx with 1 offered HTLCs, 3 received HTLCs
2665                 claim_tx.input.clear();
2666                 sum_actual_sigs = 0;
2667                 for i in 0..4 {
2668                         claim_tx.input.push(TxIn {
2669                                 previous_output: BitcoinOutPoint {
2670                                         txid,
2671                                         vout: i,
2672                                 },
2673                                 script_sig: Script::new(),
2674                                 sequence: 0xfffffffd,
2675                                 witness: Vec::new(),
2676                         });
2677                 }
2678                 let base_weight = claim_tx.get_weight();
2679                 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
2680                 let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC];
2681                 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
2682                         sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
2683                 }
2684                 assert_eq!(base_weight + OnchainTxHandler::<InMemoryChannelKeys>::get_witnesses_weight(&inputs_des[..]),  claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
2685
2686                 // Justice tx with 1 revoked HTLC-Success tx output
2687                 claim_tx.input.clear();
2688                 sum_actual_sigs = 0;
2689                 claim_tx.input.push(TxIn {
2690                         previous_output: BitcoinOutPoint {
2691                                 txid,
2692                                 vout: 0,
2693                         },
2694                         script_sig: Script::new(),
2695                         sequence: 0xfffffffd,
2696                         witness: Vec::new(),
2697                 });
2698                 let base_weight = claim_tx.get_weight();
2699                 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
2700                 let inputs_des = vec![InputDescriptors::RevokedOutput];
2701                 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
2702                         sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
2703                 }
2704                 assert_eq!(base_weight + OnchainTxHandler::<InMemoryChannelKeys>::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() - sum_actual_sigs));
2705         }
2706
2707         // Further testing is done in the ChannelManager integration tests.
2708 }