1 //! The logic to monitor for on-chain transactions and create the relevant claim responses lives
4 //! ChannelMonitor objects are generated by ChannelManager in response to relevant
5 //! messages/actions, and MUST be persisted to disk (and, preferably, remotely) before progress can
6 //! be made in responding to certain messages, see ManyChannelMonitor for more.
8 //! Note that ChannelMonitors are an important part of the lightning trust model and a copy of the
9 //! latest ChannelMonitor must always be actively monitoring for chain updates (and no out-of-date
10 //! ChannelMonitors should do so). Thus, if you're building rust-lightning into an HSM or other
11 //! security-domain-separated system design, you should consider having multiple paths for
12 //! ChannelMonitors to get out of the HSM and onto monitoring devices.
14 use bitcoin::blockdata::block::BlockHeader;
15 use bitcoin::blockdata::transaction::{TxIn,TxOut,SigHashType,Transaction};
16 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
17 use bitcoin::blockdata::script::{Script, Builder};
18 use bitcoin::blockdata::opcodes;
19 use bitcoin::consensus::encode::{self, Decodable, Encodable};
20 use bitcoin::util::hash::BitcoinHash;
21 use bitcoin::util::bip143;
23 use bitcoin_hashes::Hash;
24 use bitcoin_hashes::sha256::Hash as Sha256;
25 use bitcoin_hashes::hash160::Hash as Hash160;
26 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
28 use secp256k1::{Secp256k1,Signature};
29 use secp256k1::key::{SecretKey,PublicKey};
32 use ln::msgs::DecodeError;
34 use ln::chan_utils::HTLCOutputInCommitment;
35 use ln::channelmanager::{HTLCSource, PaymentPreimage, PaymentHash};
36 use ln::channel::{ACCEPTED_HTLC_SCRIPT_WEIGHT, OFFERED_HTLC_SCRIPT_WEIGHT};
37 use chain::chaininterface::{ChainListener, ChainWatchInterface, BroadcasterInterface, FeeEstimator, ConfirmationTarget, MIN_RELAY_FEE_SAT_PER_1000_WEIGHT};
38 use chain::transaction::OutPoint;
39 use chain::keysinterface::SpendableOutputDescriptor;
40 use util::logger::Logger;
41 use util::ser::{ReadableArgs, Readable, Writer, Writeable, WriterWriteAdaptor, U48};
42 use util::{byte_utils, events};
44 use std::collections::{HashMap, hash_map, HashSet};
45 use std::sync::{Arc,Mutex};
46 use std::{hash,cmp, mem};
48 /// An error enum representing a failure to persist a channel monitor update.
50 pub enum ChannelMonitorUpdateErr {
51 /// Used to indicate a temporary failure (eg connection to a watchtower or remote backup of
52 /// our state failed, but is expected to succeed at some point in the future).
54 /// Such a failure will "freeze" a channel, preventing us from revoking old states or
55 /// submitting new commitment transactions to the remote party.
56 /// ChannelManager::test_restore_channel_monitor can be used to retry the update(s) and restore
57 /// the channel to an operational state.
59 /// Note that continuing to operate when no copy of the updated ChannelMonitor could be
60 /// persisted is unsafe - if you failed to store the update on your own local disk you should
61 /// instead return PermanentFailure to force closure of the channel ASAP.
63 /// Even when a channel has been "frozen" updates to the ChannelMonitor can continue to occur
64 /// (eg if an inbound HTLC which we forwarded was claimed upstream resulting in us attempting
65 /// to claim it on this channel) and those updates must be applied wherever they can be. At
66 /// least one such updated ChannelMonitor must be persisted otherwise PermanentFailure should
67 /// be returned to get things on-chain ASAP using only the in-memory copy. Obviously updates to
68 /// the channel which would invalidate previous ChannelMonitors are not made when a channel has
71 /// Note that even if updates made after TemporaryFailure succeed you must still call
72 /// test_restore_channel_monitor to ensure you have the latest monitor and re-enable normal
73 /// channel operation.
75 /// For deployments where a copy of ChannelMonitors and other local state are backed up in a
76 /// remote location (with local copies persisted immediately), it is anticipated that all
77 /// updates will return TemporaryFailure until the remote copies could be updated.
79 /// Used to indicate no further channel monitor updates will be allowed (eg we've moved on to a
80 /// different watchtower and cannot update with all watchtowers that were previously informed
81 /// of this channel). This will force-close the channel in question.
83 /// Should also be used to indicate a failure to update the local copy of the channel monitor.
87 /// General Err type for ChannelMonitor actions. Generally, this implies that the data provided is
88 /// inconsistent with the ChannelMonitor being called. eg for ChannelMonitor::insert_combine this
89 /// means you tried to merge two monitors for different channels or for a channel which was
90 /// restored from a backup and then generated new commitment updates.
91 /// Contains a human-readable error message.
93 pub struct MonitorUpdateError(pub &'static str);
95 /// Simple structure send back by ManyChannelMonitor in case of HTLC detected onchain from a
96 /// forward channel and from which info are needed to update HTLC in a backward channel.
97 pub struct HTLCUpdate {
98 pub(super) payment_hash: PaymentHash,
99 pub(super) payment_preimage: Option<PaymentPreimage>,
100 pub(super) source: HTLCSource
103 /// Simple trait indicating ability to track a set of ChannelMonitors and multiplex events between
104 /// them. Generally should be implemented by keeping a local SimpleManyChannelMonitor and passing
105 /// events to it, while also taking any add_update_monitor events and passing them to some remote
108 /// Note that any updates to a channel's monitor *must* be applied to each instance of the
109 /// channel's monitor everywhere (including remote watchtowers) *before* this function returns. If
110 /// an update occurs and a remote watchtower is left with old state, it may broadcast transactions
111 /// which we have revoked, allowing our counterparty to claim all funds in the channel!
113 /// User needs to notify implementors of ManyChannelMonitor when a new block is connected or
114 /// disconnected using their `block_connected` and `block_disconnected` methods. However, rather
115 /// than calling these methods directly, the user should register implementors as listeners to the
116 /// BlockNotifier and call the BlockNotifier's `block_(dis)connected` methods, which will notify
117 /// all registered listeners in one go.
118 pub trait ManyChannelMonitor: Send + Sync {
119 /// Adds or updates a monitor for the given `funding_txo`.
121 /// Implementor must also ensure that the funding_txo outpoint is registered with any relevant
122 /// ChainWatchInterfaces such that the provided monitor receives block_connected callbacks with
123 /// any spends of it.
124 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr>;
126 /// Used by ChannelManager to get list of HTLC resolved onchain and which needed to be updated
127 /// with success or failure backward
128 fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate>;
131 /// A simple implementation of a ManyChannelMonitor and ChainListener. Can be used to create a
132 /// watchtower or watch our own channels.
134 /// Note that you must provide your own key by which to refer to channels.
136 /// If you're accepting remote monitors (ie are implementing a watchtower), you must verify that
137 /// users cannot overwrite a given channel by providing a duplicate key. ie you should probably
138 /// index by a PublicKey which is required to sign any updates.
140 /// If you're using this for local monitoring of your own channels, you probably want to use
141 /// `OutPoint` as the key, which will give you a ManyChannelMonitor implementation.
142 pub struct SimpleManyChannelMonitor<Key> {
143 #[cfg(test)] // Used in ChannelManager tests to manipulate channels directly
144 pub monitors: Mutex<HashMap<Key, ChannelMonitor>>,
146 monitors: Mutex<HashMap<Key, ChannelMonitor>>,
147 chain_monitor: Arc<ChainWatchInterface>,
148 broadcaster: Arc<BroadcasterInterface>,
149 pending_events: Mutex<Vec<events::Event>>,
150 pending_htlc_updated: Mutex<HashMap<PaymentHash, Vec<(HTLCSource, Option<PaymentPreimage>)>>>,
152 fee_estimator: Arc<FeeEstimator>
155 impl<'a, Key : Send + cmp::Eq + hash::Hash> ChainListener for SimpleManyChannelMonitor<Key> {
157 fn block_connected(&self, header: &BlockHeader, height: u32, txn_matched: &[&Transaction], _indexes_of_txn_matched: &[u32]) {
158 let block_hash = header.bitcoin_hash();
159 let mut new_events: Vec<events::Event> = Vec::with_capacity(0);
160 let mut htlc_updated_infos = Vec::new();
162 let mut monitors = self.monitors.lock().unwrap();
163 for monitor in monitors.values_mut() {
164 let (txn_outputs, spendable_outputs, mut htlc_updated) = monitor.block_connected(txn_matched, height, &block_hash, &*self.broadcaster, &*self.fee_estimator);
165 if spendable_outputs.len() > 0 {
166 new_events.push(events::Event::SpendableOutputs {
167 outputs: spendable_outputs,
171 for (ref txid, ref outputs) in txn_outputs {
172 for (idx, output) in outputs.iter().enumerate() {
173 self.chain_monitor.install_watch_outpoint((txid.clone(), idx as u32), &output.script_pubkey);
176 htlc_updated_infos.append(&mut htlc_updated);
180 // ChannelManager will just need to fetch pending_htlc_updated and pass state backward
181 let mut pending_htlc_updated = self.pending_htlc_updated.lock().unwrap();
182 for htlc in htlc_updated_infos.drain(..) {
183 match pending_htlc_updated.entry(htlc.2) {
184 hash_map::Entry::Occupied(mut e) => {
185 // In case of reorg we may have htlc outputs solved in a different way so
186 // we prefer to keep claims but don't store duplicate updates for a given
187 // (payment_hash, HTLCSource) pair.
188 let mut existing_claim = false;
189 e.get_mut().retain(|htlc_data| {
190 if htlc.0 == htlc_data.0 {
191 if htlc_data.1.is_some() {
192 existing_claim = true;
198 e.get_mut().push((htlc.0, htlc.1));
201 hash_map::Entry::Vacant(e) => {
202 e.insert(vec![(htlc.0, htlc.1)]);
207 let mut pending_events = self.pending_events.lock().unwrap();
208 pending_events.append(&mut new_events);
211 fn block_disconnected(&self, header: &BlockHeader, disconnected_height: u32) {
212 let block_hash = header.bitcoin_hash();
213 let mut monitors = self.monitors.lock().unwrap();
214 for monitor in monitors.values_mut() {
215 monitor.block_disconnected(disconnected_height, &block_hash, &*self.broadcaster, &*self.fee_estimator);
220 impl<Key : Send + cmp::Eq + hash::Hash + 'static> SimpleManyChannelMonitor<Key> {
221 /// Creates a new object which can be used to monitor several channels given the chain
222 /// interface with which to register to receive notifications.
223 pub fn new(chain_monitor: Arc<ChainWatchInterface>, broadcaster: Arc<BroadcasterInterface>, logger: Arc<Logger>, feeest: Arc<FeeEstimator>) -> Arc<SimpleManyChannelMonitor<Key>> {
224 let res = Arc::new(SimpleManyChannelMonitor {
225 monitors: Mutex::new(HashMap::new()),
228 pending_events: Mutex::new(Vec::new()),
229 pending_htlc_updated: Mutex::new(HashMap::new()),
231 fee_estimator: feeest,
237 /// Adds or updates the monitor which monitors the channel referred to by the given key.
238 pub fn add_update_monitor_by_key(&self, key: Key, monitor: ChannelMonitor) -> Result<(), MonitorUpdateError> {
239 let mut monitors = self.monitors.lock().unwrap();
240 match monitors.get_mut(&key) {
241 Some(orig_monitor) => {
242 log_trace!(self, "Updating Channel Monitor for channel {}", log_funding_info!(monitor.key_storage));
243 return orig_monitor.insert_combine(monitor);
247 match monitor.key_storage {
248 Storage::Local { ref funding_info, .. } => {
251 return Err(MonitorUpdateError("Try to update a useless monitor without funding_txo !"));
253 &Some((ref outpoint, ref script)) => {
254 log_trace!(self, "Got new Channel Monitor for channel {}", log_bytes!(outpoint.to_channel_id()[..]));
255 self.chain_monitor.install_watch_tx(&outpoint.txid, script);
256 self.chain_monitor.install_watch_outpoint((outpoint.txid, outpoint.index as u32), script);
260 Storage::Watchtower { .. } => {
261 self.chain_monitor.watch_all_txn();
264 monitors.insert(key, monitor);
269 impl ManyChannelMonitor for SimpleManyChannelMonitor<OutPoint> {
270 fn add_update_monitor(&self, funding_txo: OutPoint, monitor: ChannelMonitor) -> Result<(), ChannelMonitorUpdateErr> {
271 match self.add_update_monitor_by_key(funding_txo, monitor) {
273 Err(_) => Err(ChannelMonitorUpdateErr::PermanentFailure),
277 fn fetch_pending_htlc_updated(&self) -> Vec<HTLCUpdate> {
278 let mut updated = self.pending_htlc_updated.lock().unwrap();
279 let mut pending_htlcs_updated = Vec::with_capacity(updated.len());
280 for (k, v) in updated.drain() {
282 pending_htlcs_updated.push(HTLCUpdate {
284 payment_preimage: htlc_data.1,
289 pending_htlcs_updated
293 impl<Key : Send + cmp::Eq + hash::Hash> events::EventsProvider for SimpleManyChannelMonitor<Key> {
294 fn get_and_clear_pending_events(&self) -> Vec<events::Event> {
295 let mut pending_events = self.pending_events.lock().unwrap();
296 let mut ret = Vec::new();
297 mem::swap(&mut ret, &mut *pending_events);
302 /// If an HTLC expires within this many blocks, don't try to claim it in a shared transaction,
303 /// instead claiming it in its own individual transaction.
304 const CLTV_SHARED_CLAIM_BUFFER: u32 = 12;
305 /// If an HTLC expires within this many blocks, force-close the channel to broadcast the
306 /// HTLC-Success transaction.
307 /// In other words, this is an upper bound on how many blocks we think it can take us to get a
308 /// transaction confirmed (and we use it in a few more, equivalent, places).
309 pub(crate) const CLTV_CLAIM_BUFFER: u32 = 6;
310 /// Number of blocks by which point we expect our counterparty to have seen new blocks on the
311 /// network and done a full update_fail_htlc/commitment_signed dance (+ we've updated all our
312 /// copies of ChannelMonitors, including watchtowers). We could enforce the contract by failing
313 /// at CLTV expiration height but giving a grace period to our peer may be profitable for us if he
314 /// can provide an over-late preimage. Nevertheless, grace period has to be accounted in our
315 /// CLTV_EXPIRY_DELTA to be secure. Following this policy we may decrease the rate of channel failures
316 /// due to expiration but increase the cost of funds being locked longuer in case of failure.
317 /// This delay also cover a low-power peer being slow to process blocks and so being behind us on
318 /// accurate block height.
319 /// In case of onchain failure to be pass backward we may see the last block of ANTI_REORG_DELAY
320 /// with at worst this delay, so we are not only using this value as a mercy for them but also
321 /// us as a safeguard to delay with enough time.
322 pub(crate) const LATENCY_GRACE_PERIOD_BLOCKS: u32 = 3;
323 /// Number of blocks we wait on seeing a HTLC output being solved before we fail corresponding inbound
324 /// HTLCs. This prevents us from failing backwards and then getting a reorg resulting in us losing money.
325 /// We use also this delay to be sure we can remove our in-flight claim txn from bump candidates buffer.
326 /// It may cause spurrious generation of bumped claim txn but that's allright given the outpoint is already
327 /// solved by a previous claim tx. What we want to avoid is reorg evicting our claim tx and us not
328 /// keeping bumping another claim tx to solve the outpoint.
329 pub(crate) const ANTI_REORG_DELAY: u32 = 6;
331 #[derive(Clone, PartialEq)]
334 revocation_base_key: SecretKey,
335 htlc_base_key: SecretKey,
336 delayed_payment_base_key: SecretKey,
337 payment_base_key: SecretKey,
338 shutdown_pubkey: PublicKey,
339 prev_latest_per_commitment_point: Option<PublicKey>,
340 latest_per_commitment_point: Option<PublicKey>,
341 funding_info: Option<(OutPoint, Script)>,
342 current_remote_commitment_txid: Option<Sha256dHash>,
343 prev_remote_commitment_txid: Option<Sha256dHash>,
346 revocation_base_key: PublicKey,
347 htlc_base_key: PublicKey,
351 #[derive(Clone, PartialEq)]
352 struct LocalSignedTx {
353 /// txid of the transaction in tx, just used to make comparison faster
356 revocation_key: PublicKey,
357 a_htlc_key: PublicKey,
358 b_htlc_key: PublicKey,
359 delayed_payment_key: PublicKey,
361 htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option<HTLCSource>)>,
365 enum InputDescriptors {
370 RevokedOutput, // either a revoked to_local output on commitment tx, a revoked HTLC-Timeout output or a revoked HTLC-Success output
373 /// When ChannelMonitor discovers an onchain outpoint being a step of a channel and that it needs
374 /// to generate a tx to push channel state forward, we cache outpoint-solving tx material to build
375 /// a new bumped one in case of lenghty confirmation delay
376 #[derive(Clone, PartialEq)]
380 pubkey: Option<PublicKey>,
388 preimage: Option<PaymentPreimage>,
394 sigs: (Signature, Signature),
395 preimage: Option<PaymentPreimage>,
400 impl Writeable for InputMaterial {
401 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
403 &InputMaterial::Revoked { ref script, ref pubkey, ref key, ref is_htlc, ref amount} => {
404 writer.write_all(&[0; 1])?;
405 script.write(writer)?;
406 pubkey.write(writer)?;
407 writer.write_all(&key[..])?;
409 writer.write_all(&[0; 1])?;
411 writer.write_all(&[1; 1])?;
413 writer.write_all(&byte_utils::be64_to_array(*amount))?;
415 &InputMaterial::RemoteHTLC { ref script, ref key, ref preimage, ref amount, ref locktime } => {
416 writer.write_all(&[1; 1])?;
417 script.write(writer)?;
419 preimage.write(writer)?;
420 writer.write_all(&byte_utils::be64_to_array(*amount))?;
421 writer.write_all(&byte_utils::be32_to_array(*locktime))?;
423 &InputMaterial::LocalHTLC { ref script, ref sigs, ref preimage, ref amount } => {
424 writer.write_all(&[2; 1])?;
425 script.write(writer)?;
426 sigs.0.write(writer)?;
427 sigs.1.write(writer)?;
428 preimage.write(writer)?;
429 writer.write_all(&byte_utils::be64_to_array(*amount))?;
436 impl<R: ::std::io::Read> Readable<R> for InputMaterial {
437 fn read(reader: &mut R) -> Result<Self, DecodeError> {
438 let input_material = match <u8 as Readable<R>>::read(reader)? {
440 let script = Readable::read(reader)?;
441 let pubkey = Readable::read(reader)?;
442 let key = Readable::read(reader)?;
443 let is_htlc = match <u8 as Readable<R>>::read(reader)? {
446 _ => return Err(DecodeError::InvalidValue),
448 let amount = Readable::read(reader)?;
449 InputMaterial::Revoked {
458 let script = Readable::read(reader)?;
459 let key = Readable::read(reader)?;
460 let preimage = Readable::read(reader)?;
461 let amount = Readable::read(reader)?;
462 let locktime = Readable::read(reader)?;
463 InputMaterial::RemoteHTLC {
472 let script = Readable::read(reader)?;
473 let their_sig = Readable::read(reader)?;
474 let our_sig = Readable::read(reader)?;
475 let preimage = Readable::read(reader)?;
476 let amount = Readable::read(reader)?;
477 InputMaterial::LocalHTLC {
479 sigs: (their_sig, our_sig),
484 _ => return Err(DecodeError::InvalidValue),
490 /// Upon discovering of some classes of onchain tx by ChannelMonitor, we may have to take actions on it
491 /// once they mature to enough confirmations (ANTI_REORG_DELAY)
492 #[derive(Clone, PartialEq)]
494 /// Outpoint under claim process by our own tx, once this one get enough confirmations, we remove it from
495 /// bump-txn candidate buffer.
497 claim_request: Sha256dHash,
499 /// HTLC output getting solved by a timeout, at maturation we pass upstream payment source information to solve
500 /// inbound HTLC in backward channel. Note, in case of preimage, we pass info to upstream without delay as we can
501 /// only win from it, so it's never an OnchainEvent
503 htlc_update: (HTLCSource, PaymentHash),
505 /// Claim tx aggregate multiple claimable outpoints. One of the outpoint may be claimed by a remote party tx.
506 /// In this case, we need to drop the outpoint and regenerate a new claim tx. By safety, we keep tracking
507 /// the outpoint to be sure to resurect it back to the claim tx if reorgs happen.
508 ContentiousOutpoint {
509 outpoint: BitcoinOutPoint,
510 input_material: InputMaterial,
514 /// Higher-level cache structure needed to re-generate bumped claim txn if needed
515 #[derive(Clone, PartialEq)]
516 pub struct ClaimTxBumpMaterial {
517 // At every block tick, used to check if pending claiming tx is taking too
518 // much time for confirmation and we need to bump it.
520 // Tracked in case of reorg to wipe out now-superflous bump material
521 feerate_previous: u64,
522 // Soonest timelocks among set of outpoints claimed, used to compute
523 // a priority of not feerate
524 soonest_timelock: u32,
525 // Cache of script, pubkey, sig or key to solve claimable outputs scriptpubkey.
526 per_input_material: HashMap<BitcoinOutPoint, InputMaterial>,
529 impl Writeable for ClaimTxBumpMaterial {
530 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
531 writer.write_all(&byte_utils::be32_to_array(self.height_timer))?;
532 writer.write_all(&byte_utils::be64_to_array(self.feerate_previous))?;
533 writer.write_all(&byte_utils::be32_to_array(self.soonest_timelock))?;
534 writer.write_all(&byte_utils::be64_to_array(self.per_input_material.len() as u64))?;
535 for (outp, tx_material) in self.per_input_material.iter() {
537 tx_material.write(writer)?;
543 impl<R: ::std::io::Read> Readable<R> for ClaimTxBumpMaterial {
544 fn read(reader: &mut R) -> Result<Self, DecodeError> {
545 let height_timer = Readable::read(reader)?;
546 let feerate_previous = Readable::read(reader)?;
547 let soonest_timelock = Readable::read(reader)?;
548 let per_input_material_len: u64 = Readable::read(reader)?;
549 let mut per_input_material = HashMap::with_capacity(cmp::min(per_input_material_len as usize, MAX_ALLOC_SIZE / 128));
550 for _ in 0 ..per_input_material_len {
551 let outpoint = Readable::read(reader)?;
552 let input_material = Readable::read(reader)?;
553 per_input_material.insert(outpoint, input_material);
555 Ok(Self { height_timer, feerate_previous, soonest_timelock, per_input_material })
559 const SERIALIZATION_VERSION: u8 = 1;
560 const MIN_SERIALIZATION_VERSION: u8 = 1;
562 /// A ChannelMonitor handles chain events (blocks connected and disconnected) and generates
563 /// on-chain transactions to ensure no loss of funds occurs.
565 /// You MUST ensure that no ChannelMonitors for a given channel anywhere contain out-of-date
566 /// information and are actively monitoring the chain.
568 pub struct ChannelMonitor {
569 commitment_transaction_number_obscure_factor: u64,
571 key_storage: Storage,
572 their_htlc_base_key: Option<PublicKey>,
573 their_delayed_payment_base_key: Option<PublicKey>,
574 // first is the idx of the first of the two revocation points
575 their_cur_revocation_points: Option<(u64, PublicKey, Option<PublicKey>)>,
577 our_to_self_delay: u16,
578 their_to_self_delay: Option<u16>,
580 old_secrets: [([u8; 32], u64); 49],
581 remote_claimable_outpoints: HashMap<Sha256dHash, Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>>,
582 /// We cannot identify HTLC-Success or HTLC-Timeout transactions by themselves on the chain.
583 /// Nor can we figure out their commitment numbers without the commitment transaction they are
584 /// spending. Thus, in order to claim them via revocation key, we track all the remote
585 /// commitment transactions which we find on-chain, mapping them to the commitment number which
586 /// can be used to derive the revocation key and claim the transactions.
587 remote_commitment_txn_on_chain: HashMap<Sha256dHash, (u64, Vec<Script>)>,
588 /// Cache used to make pruning of payment_preimages faster.
589 /// Maps payment_hash values to commitment numbers for remote transactions for non-revoked
590 /// remote transactions (ie should remain pretty small).
591 /// Serialized to disk but should generally not be sent to Watchtowers.
592 remote_hash_commitment_number: HashMap<PaymentHash, u64>,
594 // We store two local commitment transactions to avoid any race conditions where we may update
595 // some monitors (potentially on watchtowers) but then fail to update others, resulting in the
596 // various monitors for one channel being out of sync, and us broadcasting a local
597 // transaction for which we have deleted claim information on some watchtowers.
598 prev_local_signed_commitment_tx: Option<LocalSignedTx>,
599 current_local_signed_commitment_tx: Option<LocalSignedTx>,
601 // Used just for ChannelManager to make sure it has the latest channel data during
603 current_remote_commitment_number: u64,
605 payment_preimages: HashMap<PaymentHash, PaymentPreimage>,
607 destination_script: Script,
608 // Thanks to data loss protection, we may be able to claim our non-htlc funds
609 // back, this is the script we have to spend from but we need to
610 // scan every commitment transaction for that
611 to_remote_rescue: Option<(Script, SecretKey)>,
613 // Used to track claiming requests. If claim tx doesn't confirm before height timer expiration we need to bump
614 // it (RBF or CPFP). If an input has been part of an aggregate tx at first claim try, we need to keep it within
615 // another bumped aggregate tx to comply with RBF rules. We may have multiple claiming txn in the flight for the
616 // same set of outpoints. One of the outpoints may be spent by a transaction not issued by us. That's why at
617 // block connection we scan all inputs and if any of them is among a set of a claiming request we test for set
618 // equality between spending transaction and claim request. If true, it means transaction was one our claiming one
619 // after a security delay of 6 blocks we remove pending claim request. If false, it means transaction wasn't and
620 // we need to regenerate new claim request we reduced set of stil-claimable outpoints.
621 // Key is identifier of the pending claim request, i.e the txid of the initial claiming transaction generated by
622 // us and is immutable until all outpoint of the claimable set are post-anti-reorg-delay solved.
623 // Entry is cache of elements need to generate a bumped claiming transaction (see ClaimTxBumpMaterial)
624 #[cfg(test)] // Used in functional_test to verify sanitization
625 pub pending_claim_requests: HashMap<Sha256dHash, ClaimTxBumpMaterial>,
627 pending_claim_requests: HashMap<Sha256dHash, ClaimTxBumpMaterial>,
629 // Used to link outpoints claimed in a connected block to a pending claim request.
630 // Key is outpoint than monitor parsing has detected we have keys/scripts to claim
631 // Value is (pending claim request identifier, confirmation_block), identifier
632 // is txid of the initial claiming transaction and is immutable until outpoint is
633 // post-anti-reorg-delay solved, confirmaiton_block is used to erase entry if
634 // block with output gets disconnected.
635 #[cfg(test)] // Used in functional_test to verify sanitization
636 pub claimable_outpoints: HashMap<BitcoinOutPoint, (Sha256dHash, u32)>,
638 claimable_outpoints: HashMap<BitcoinOutPoint, (Sha256dHash, u32)>,
640 // Used to track onchain events, i.e transactions parts of channels confirmed on chain, on which
641 // we have to take actions once they reach enough confs. Key is a block height timer, i.e we enforce
642 // actions when we receive a block with given height. Actions depend on OnchainEvent type.
643 onchain_events_waiting_threshold_conf: HashMap<u32, Vec<OnchainEvent>>,
645 // We simply modify last_block_hash in Channel's block_connected so that serialization is
646 // consistent but hopefully the users' copy handles block_connected in a consistent way.
647 // (we do *not*, however, update them in insert_combine to ensure any local user copies keep
648 // their last_block_hash from its state and not based on updated copies that didn't run through
649 // the full block_connected).
650 pub(crate) last_block_hash: Sha256dHash,
651 secp_ctx: Secp256k1<secp256k1::All>, //TODO: dedup this a bit...
655 macro_rules! subtract_high_prio_fee {
656 ($self: ident, $fee_estimator: expr, $value: expr, $predicted_weight: expr, $used_feerate: expr) => {
658 $used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority);
659 let mut fee = $used_feerate * ($predicted_weight as u64) / 1000;
661 $used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Normal);
662 fee = $used_feerate * ($predicted_weight as u64) / 1000;
664 $used_feerate = $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::Background);
665 fee = $used_feerate * ($predicted_weight as u64) / 1000;
667 log_error!($self, "Failed to generate an on-chain punishment tx as even low priority fee ({} sat) was more than the entire claim balance ({} sat)",
671 log_warn!($self, "Used low priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
677 log_warn!($self, "Used medium priority fee for on-chain punishment tx as high priority fee was more than the entire claim balance ({} sat)",
690 #[cfg(any(test, feature = "fuzztarget"))]
691 /// Used only in testing and fuzztarget to check serialization roundtrips don't change the
692 /// underlying object
693 impl PartialEq for ChannelMonitor {
694 fn eq(&self, other: &Self) -> bool {
695 if self.commitment_transaction_number_obscure_factor != other.commitment_transaction_number_obscure_factor ||
696 self.key_storage != other.key_storage ||
697 self.their_htlc_base_key != other.their_htlc_base_key ||
698 self.their_delayed_payment_base_key != other.their_delayed_payment_base_key ||
699 self.their_cur_revocation_points != other.their_cur_revocation_points ||
700 self.our_to_self_delay != other.our_to_self_delay ||
701 self.their_to_self_delay != other.their_to_self_delay ||
702 self.remote_claimable_outpoints != other.remote_claimable_outpoints ||
703 self.remote_commitment_txn_on_chain != other.remote_commitment_txn_on_chain ||
704 self.remote_hash_commitment_number != other.remote_hash_commitment_number ||
705 self.prev_local_signed_commitment_tx != other.prev_local_signed_commitment_tx ||
706 self.current_remote_commitment_number != other.current_remote_commitment_number ||
707 self.current_local_signed_commitment_tx != other.current_local_signed_commitment_tx ||
708 self.payment_preimages != other.payment_preimages ||
709 self.destination_script != other.destination_script ||
710 self.to_remote_rescue != other.to_remote_rescue ||
711 self.pending_claim_requests != other.pending_claim_requests ||
712 self.claimable_outpoints != other.claimable_outpoints ||
713 self.onchain_events_waiting_threshold_conf != other.onchain_events_waiting_threshold_conf
717 for (&(ref secret, ref idx), &(ref o_secret, ref o_idx)) in self.old_secrets.iter().zip(other.old_secrets.iter()) {
718 if secret != o_secret || idx != o_idx {
727 impl ChannelMonitor {
728 pub(super) fn new(revocation_base_key: &SecretKey, delayed_payment_base_key: &SecretKey, htlc_base_key: &SecretKey, payment_base_key: &SecretKey, shutdown_pubkey: &PublicKey, our_to_self_delay: u16, destination_script: Script, logger: Arc<Logger>) -> ChannelMonitor {
730 commitment_transaction_number_obscure_factor: 0,
732 key_storage: Storage::Local {
733 revocation_base_key: revocation_base_key.clone(),
734 htlc_base_key: htlc_base_key.clone(),
735 delayed_payment_base_key: delayed_payment_base_key.clone(),
736 payment_base_key: payment_base_key.clone(),
737 shutdown_pubkey: shutdown_pubkey.clone(),
738 prev_latest_per_commitment_point: None,
739 latest_per_commitment_point: None,
741 current_remote_commitment_txid: None,
742 prev_remote_commitment_txid: None,
744 their_htlc_base_key: None,
745 their_delayed_payment_base_key: None,
746 their_cur_revocation_points: None,
748 our_to_self_delay: our_to_self_delay,
749 their_to_self_delay: None,
751 old_secrets: [([0; 32], 1 << 48); 49],
752 remote_claimable_outpoints: HashMap::new(),
753 remote_commitment_txn_on_chain: HashMap::new(),
754 remote_hash_commitment_number: HashMap::new(),
756 prev_local_signed_commitment_tx: None,
757 current_local_signed_commitment_tx: None,
758 current_remote_commitment_number: 1 << 48,
760 payment_preimages: HashMap::new(),
761 destination_script: destination_script,
762 to_remote_rescue: None,
764 pending_claim_requests: HashMap::new(),
766 claimable_outpoints: HashMap::new(),
768 onchain_events_waiting_threshold_conf: HashMap::new(),
770 last_block_hash: Default::default(),
771 secp_ctx: Secp256k1::new(),
776 fn get_witnesses_weight(inputs: &[InputDescriptors]) -> usize {
777 let mut tx_weight = 2; // count segwit flags
779 // We use expected weight (and not actual) as signatures and time lock delays may vary
780 tx_weight += match inp {
781 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
782 &InputDescriptors::RevokedOfferedHTLC => {
783 1 + 1 + 73 + 1 + 33 + 1 + 133
785 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
786 &InputDescriptors::RevokedReceivedHTLC => {
787 1 + 1 + 73 + 1 + 33 + 1 + 139
789 // number_of_witness_elements + sig_length + remotehtlc_sig + preimage_length + preimage + witness_script_length + witness_script
790 &InputDescriptors::OfferedHTLC => {
791 1 + 1 + 73 + 1 + 32 + 1 + 133
793 // number_of_witness_elements + sig_length + revocation_sig + pubkey_length + revocationpubkey + witness_script_length + witness_script
794 &InputDescriptors::ReceivedHTLC => {
795 1 + 1 + 73 + 1 + 1 + 1 + 139
797 // number_of_witness_elements + sig_length + revocation_sig + true_length + op_true + witness_script_length + witness_script
798 &InputDescriptors::RevokedOutput => {
799 1 + 1 + 73 + 1 + 1 + 1 + 77
806 fn get_height_timer(current_height: u32, timelock_expiration: u32) -> u32 {
807 if timelock_expiration <= current_height || timelock_expiration - current_height <= 3 {
808 return current_height + 1
809 } else if timelock_expiration - current_height <= 15 {
810 return current_height + 3
816 fn place_secret(idx: u64) -> u8 {
818 if idx & (1 << i) == (1 << i) {
826 fn derive_secret(secret: [u8; 32], bits: u8, idx: u64) -> [u8; 32] {
827 let mut res: [u8; 32] = secret;
829 let bitpos = bits - 1 - i;
830 if idx & (1 << bitpos) == (1 << bitpos) {
831 res[(bitpos / 8) as usize] ^= 1 << (bitpos & 7);
832 res = Sha256::hash(&res).into_inner();
838 /// Inserts a revocation secret into this channel monitor. Prunes old preimages if neither
839 /// needed by local commitment transactions HTCLs nor by remote ones. Unless we haven't already seen remote
840 /// commitment transaction's secret, they are de facto pruned (we can use revocation key).
841 pub(super) fn provide_secret(&mut self, idx: u64, secret: [u8; 32]) -> Result<(), MonitorUpdateError> {
842 let pos = ChannelMonitor::place_secret(idx);
844 let (old_secret, old_idx) = self.old_secrets[i as usize];
845 if ChannelMonitor::derive_secret(secret, pos, old_idx) != old_secret {
846 return Err(MonitorUpdateError("Previous secret did not match new one"));
849 if self.get_min_seen_secret() <= idx {
852 self.old_secrets[pos as usize] = (secret, idx);
854 // Prune HTLCs from the previous remote commitment tx so we don't generate failure/fulfill
855 // events for now-revoked/fulfilled HTLCs.
856 // TODO: We should probably consider whether we're really getting the next secret here.
857 if let Storage::Local { ref mut prev_remote_commitment_txid, .. } = self.key_storage {
858 if let Some(txid) = prev_remote_commitment_txid.take() {
859 for &mut (_, ref mut source) in self.remote_claimable_outpoints.get_mut(&txid).unwrap() {
865 if !self.payment_preimages.is_empty() {
866 let local_signed_commitment_tx = self.current_local_signed_commitment_tx.as_ref().expect("Channel needs at least an initial commitment tx !");
867 let prev_local_signed_commitment_tx = self.prev_local_signed_commitment_tx.as_ref();
868 let min_idx = self.get_min_seen_secret();
869 let remote_hash_commitment_number = &mut self.remote_hash_commitment_number;
871 self.payment_preimages.retain(|&k, _| {
872 for &(ref htlc, _, _) in &local_signed_commitment_tx.htlc_outputs {
873 if k == htlc.payment_hash {
877 if let Some(prev_local_commitment_tx) = prev_local_signed_commitment_tx {
878 for &(ref htlc, _, _) in prev_local_commitment_tx.htlc_outputs.iter() {
879 if k == htlc.payment_hash {
884 let contains = if let Some(cn) = remote_hash_commitment_number.get(&k) {
891 remote_hash_commitment_number.remove(&k);
900 /// Informs this monitor of the latest remote (ie non-broadcastable) commitment transaction.
901 /// The monitor watches for it to be broadcasted and then uses the HTLC information (and
902 /// possibly future revocation/preimage information) to claim outputs where possible.
903 /// We cache also the mapping hash:commitment number to lighten pruning of old preimages by watchtowers.
904 pub(super) fn provide_latest_remote_commitment_tx_info(&mut self, unsigned_commitment_tx: &Transaction, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<Box<HTLCSource>>)>, commitment_number: u64, their_revocation_point: PublicKey) {
905 // TODO: Encrypt the htlc_outputs data with the single-hash of the commitment transaction
906 // so that a remote monitor doesn't learn anything unless there is a malicious close.
907 // (only maybe, sadly we cant do the same for local info, as we need to be aware of
909 for &(ref htlc, _) in &htlc_outputs {
910 self.remote_hash_commitment_number.insert(htlc.payment_hash, commitment_number);
913 let new_txid = unsigned_commitment_tx.txid();
914 log_trace!(self, "Tracking new remote commitment transaction with txid {} at commitment number {} with {} HTLC outputs", new_txid, commitment_number, htlc_outputs.len());
915 log_trace!(self, "New potential remote commitment transaction: {}", encode::serialize_hex(unsigned_commitment_tx));
916 if let Storage::Local { ref mut current_remote_commitment_txid, ref mut prev_remote_commitment_txid, .. } = self.key_storage {
917 *prev_remote_commitment_txid = current_remote_commitment_txid.take();
918 *current_remote_commitment_txid = Some(new_txid);
920 self.remote_claimable_outpoints.insert(new_txid, htlc_outputs);
921 self.current_remote_commitment_number = commitment_number;
922 //TODO: Merge this into the other per-remote-transaction output storage stuff
923 match self.their_cur_revocation_points {
924 Some(old_points) => {
925 if old_points.0 == commitment_number + 1 {
926 self.their_cur_revocation_points = Some((old_points.0, old_points.1, Some(their_revocation_point)));
927 } else if old_points.0 == commitment_number + 2 {
928 if let Some(old_second_point) = old_points.2 {
929 self.their_cur_revocation_points = Some((old_points.0 - 1, old_second_point, Some(their_revocation_point)));
931 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
934 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
938 self.their_cur_revocation_points = Some((commitment_number, their_revocation_point, None));
943 pub(super) fn provide_rescue_remote_commitment_tx_info(&mut self, their_revocation_point: PublicKey) {
944 match self.key_storage {
945 Storage::Local { ref payment_base_key, .. } => {
946 if let Ok(payment_key) = chan_utils::derive_public_key(&self.secp_ctx, &their_revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &payment_base_key)) {
947 let to_remote_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0)
948 .push_slice(&Hash160::hash(&payment_key.serialize())[..])
950 if let Ok(to_remote_key) = chan_utils::derive_private_key(&self.secp_ctx, &their_revocation_point, &payment_base_key) {
951 self.to_remote_rescue = Some((to_remote_script, to_remote_key));
955 Storage::Watchtower { .. } => {}
959 /// Informs this monitor of the latest local (ie broadcastable) commitment transaction. The
960 /// monitor watches for timeouts and may broadcast it if we approach such a timeout. Thus, it
961 /// is important that any clones of this channel monitor (including remote clones) by kept
962 /// up-to-date as our local commitment transaction is updated.
963 /// Panics if set_their_to_self_delay has never been called.
964 /// Also update Storage with latest local per_commitment_point to derive local_delayedkey in
965 /// case of onchain HTLC tx
966 pub(super) fn provide_latest_local_commitment_tx_info(&mut self, signed_commitment_tx: Transaction, local_keys: chan_utils::TxCreationKeys, feerate_per_kw: u64, htlc_outputs: Vec<(HTLCOutputInCommitment, Option<(Signature, Signature)>, Option<HTLCSource>)>) {
967 assert!(self.their_to_self_delay.is_some());
968 self.prev_local_signed_commitment_tx = self.current_local_signed_commitment_tx.take();
969 self.current_local_signed_commitment_tx = Some(LocalSignedTx {
970 txid: signed_commitment_tx.txid(),
971 tx: signed_commitment_tx,
972 revocation_key: local_keys.revocation_key,
973 a_htlc_key: local_keys.a_htlc_key,
974 b_htlc_key: local_keys.b_htlc_key,
975 delayed_payment_key: local_keys.a_delayed_payment_key,
980 if let Storage::Local { ref mut latest_per_commitment_point, .. } = self.key_storage {
981 *latest_per_commitment_point = Some(local_keys.per_commitment_point);
983 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
987 /// Provides a payment_hash->payment_preimage mapping. Will be automatically pruned when all
988 /// commitment_tx_infos which contain the payment hash have been revoked.
989 pub(super) fn provide_payment_preimage(&mut self, payment_hash: &PaymentHash, payment_preimage: &PaymentPreimage) {
990 self.payment_preimages.insert(payment_hash.clone(), payment_preimage.clone());
993 /// Combines this ChannelMonitor with the information contained in the other ChannelMonitor.
994 /// After a successful call this ChannelMonitor is up-to-date and is safe to use to monitor the
995 /// chain for new blocks/transactions.
996 pub fn insert_combine(&mut self, mut other: ChannelMonitor) -> Result<(), MonitorUpdateError> {
997 match self.key_storage {
998 Storage::Local { ref funding_info, .. } => {
999 if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); }
1000 let our_funding_info = funding_info;
1001 if let Storage::Local { ref funding_info, .. } = other.key_storage {
1002 if funding_info.is_none() { return Err(MonitorUpdateError("Try to combine a Local monitor without funding_info")); }
1003 // We should be able to compare the entire funding_txo, but in fuzztarget it's trivially
1004 // easy to collide the funding_txo hash and have a different scriptPubKey.
1005 if funding_info.as_ref().unwrap().0 != our_funding_info.as_ref().unwrap().0 {
1006 return Err(MonitorUpdateError("Funding transaction outputs are not identical!"));
1009 return Err(MonitorUpdateError("Try to combine a Local monitor with a Watchtower one !"));
1012 Storage::Watchtower { .. } => {
1013 if let Storage::Watchtower { .. } = other.key_storage {
1016 return Err(MonitorUpdateError("Try to combine a Watchtower monitor with a Local one !"));
1020 let other_min_secret = other.get_min_seen_secret();
1021 let our_min_secret = self.get_min_seen_secret();
1022 if our_min_secret > other_min_secret {
1023 self.provide_secret(other_min_secret, other.get_secret(other_min_secret).unwrap())?;
1025 if let Some(ref local_tx) = self.current_local_signed_commitment_tx {
1026 if let Some(ref other_local_tx) = other.current_local_signed_commitment_tx {
1027 let our_commitment_number = 0xffffffffffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1028 let other_commitment_number = 0xffffffffffff - ((((other_local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (other_local_tx.tx.lock_time as u64 & 0xffffff)) ^ other.commitment_transaction_number_obscure_factor);
1029 if our_commitment_number >= other_commitment_number {
1030 self.key_storage = other.key_storage;
1034 // TODO: We should use current_remote_commitment_number and the commitment number out of
1035 // local transactions to decide how to merge
1036 if our_min_secret >= other_min_secret {
1037 self.their_cur_revocation_points = other.their_cur_revocation_points;
1038 for (txid, htlcs) in other.remote_claimable_outpoints.drain() {
1039 self.remote_claimable_outpoints.insert(txid, htlcs);
1041 if let Some(local_tx) = other.prev_local_signed_commitment_tx {
1042 self.prev_local_signed_commitment_tx = Some(local_tx);
1044 if let Some(local_tx) = other.current_local_signed_commitment_tx {
1045 self.current_local_signed_commitment_tx = Some(local_tx);
1047 self.payment_preimages = other.payment_preimages;
1048 self.to_remote_rescue = other.to_remote_rescue;
1051 self.current_remote_commitment_number = cmp::min(self.current_remote_commitment_number, other.current_remote_commitment_number);
1055 /// Panics if commitment_transaction_number_obscure_factor doesn't fit in 48 bits
1056 pub(super) fn set_commitment_obscure_factor(&mut self, commitment_transaction_number_obscure_factor: u64) {
1057 assert!(commitment_transaction_number_obscure_factor < (1 << 48));
1058 self.commitment_transaction_number_obscure_factor = commitment_transaction_number_obscure_factor;
1061 /// Allows this monitor to scan only for transactions which are applicable. Note that this is
1062 /// optional, without it this monitor cannot be used in an SPV client, but you may wish to
1063 /// avoid this (or call unset_funding_info) on a monitor you wish to send to a watchtower as it
1064 /// provides slightly better privacy.
1065 /// It's the responsibility of the caller to register outpoint and script with passing the former
1066 /// value as key to add_update_monitor.
1067 pub(super) fn set_funding_info(&mut self, new_funding_info: (OutPoint, Script)) {
1068 match self.key_storage {
1069 Storage::Local { ref mut funding_info, .. } => {
1070 *funding_info = Some(new_funding_info);
1072 Storage::Watchtower { .. } => {
1073 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
1078 /// We log these base keys at channel opening to being able to rebuild redeemscript in case of leaked revoked commit tx
1079 pub(super) fn set_their_base_keys(&mut self, their_htlc_base_key: &PublicKey, their_delayed_payment_base_key: &PublicKey) {
1080 self.their_htlc_base_key = Some(their_htlc_base_key.clone());
1081 self.their_delayed_payment_base_key = Some(their_delayed_payment_base_key.clone());
1084 pub(super) fn set_their_to_self_delay(&mut self, their_to_self_delay: u16) {
1085 self.their_to_self_delay = Some(their_to_self_delay);
1088 pub(super) fn unset_funding_info(&mut self) {
1089 match self.key_storage {
1090 Storage::Local { ref mut funding_info, .. } => {
1091 *funding_info = None;
1093 Storage::Watchtower { .. } => {
1094 panic!("Channel somehow ended up with its internal ChannelMonitor being in Watchtower mode?");
1099 /// Gets the funding transaction outpoint of the channel this ChannelMonitor is monitoring for.
1100 pub fn get_funding_txo(&self) -> Option<OutPoint> {
1101 match self.key_storage {
1102 Storage::Local { ref funding_info, .. } => {
1103 match funding_info {
1104 &Some((outpoint, _)) => Some(outpoint),
1108 Storage::Watchtower { .. } => {
1114 /// Gets the sets of all outpoints which this ChannelMonitor expects to hear about spends of.
1115 /// Generally useful when deserializing as during normal operation the return values of
1116 /// block_connected are sufficient to ensure all relevant outpoints are being monitored (note
1117 /// that the get_funding_txo outpoint and transaction must also be monitored for!).
1118 pub fn get_monitored_outpoints(&self) -> Vec<(Sha256dHash, u32, &Script)> {
1119 let mut res = Vec::with_capacity(self.remote_commitment_txn_on_chain.len() * 2);
1120 for (ref txid, &(_, ref outputs)) in self.remote_commitment_txn_on_chain.iter() {
1121 for (idx, output) in outputs.iter().enumerate() {
1122 res.push(((*txid).clone(), idx as u32, output));
1128 /// Serializes into a vec, with various modes for the exposed pub fns
1129 fn write<W: Writer>(&self, writer: &mut W, for_local_storage: bool) -> Result<(), ::std::io::Error> {
1130 //TODO: We still write out all the serialization here manually instead of using the fancy
1131 //serialization framework we have, we should migrate things over to it.
1132 writer.write_all(&[SERIALIZATION_VERSION; 1])?;
1133 writer.write_all(&[MIN_SERIALIZATION_VERSION; 1])?;
1135 // Set in initial Channel-object creation, so should always be set by now:
1136 U48(self.commitment_transaction_number_obscure_factor).write(writer)?;
1138 macro_rules! write_option {
1145 &None => 0u8.write(writer)?,
1150 match self.key_storage {
1151 Storage::Local { ref revocation_base_key, ref htlc_base_key, ref delayed_payment_base_key, ref payment_base_key, ref shutdown_pubkey, ref prev_latest_per_commitment_point, ref latest_per_commitment_point, ref funding_info, ref current_remote_commitment_txid, ref prev_remote_commitment_txid } => {
1152 writer.write_all(&[0; 1])?;
1153 writer.write_all(&revocation_base_key[..])?;
1154 writer.write_all(&htlc_base_key[..])?;
1155 writer.write_all(&delayed_payment_base_key[..])?;
1156 writer.write_all(&payment_base_key[..])?;
1157 writer.write_all(&shutdown_pubkey.serialize())?;
1158 prev_latest_per_commitment_point.write(writer)?;
1159 latest_per_commitment_point.write(writer)?;
1160 match funding_info {
1161 &Some((ref outpoint, ref script)) => {
1162 writer.write_all(&outpoint.txid[..])?;
1163 writer.write_all(&byte_utils::be16_to_array(outpoint.index))?;
1164 script.write(writer)?;
1167 debug_assert!(false, "Try to serialize a useless Local monitor !");
1170 current_remote_commitment_txid.write(writer)?;
1171 prev_remote_commitment_txid.write(writer)?;
1173 Storage::Watchtower { .. } => unimplemented!(),
1176 writer.write_all(&self.their_htlc_base_key.as_ref().unwrap().serialize())?;
1177 writer.write_all(&self.their_delayed_payment_base_key.as_ref().unwrap().serialize())?;
1179 match self.their_cur_revocation_points {
1180 Some((idx, pubkey, second_option)) => {
1181 writer.write_all(&byte_utils::be48_to_array(idx))?;
1182 writer.write_all(&pubkey.serialize())?;
1183 match second_option {
1184 Some(second_pubkey) => {
1185 writer.write_all(&second_pubkey.serialize())?;
1188 writer.write_all(&[0; 33])?;
1193 writer.write_all(&byte_utils::be48_to_array(0))?;
1197 writer.write_all(&byte_utils::be16_to_array(self.our_to_self_delay))?;
1198 writer.write_all(&byte_utils::be16_to_array(self.their_to_self_delay.unwrap()))?;
1200 for &(ref secret, ref idx) in self.old_secrets.iter() {
1201 writer.write_all(secret)?;
1202 writer.write_all(&byte_utils::be64_to_array(*idx))?;
1205 macro_rules! serialize_htlc_in_commitment {
1206 ($htlc_output: expr) => {
1207 writer.write_all(&[$htlc_output.offered as u8; 1])?;
1208 writer.write_all(&byte_utils::be64_to_array($htlc_output.amount_msat))?;
1209 writer.write_all(&byte_utils::be32_to_array($htlc_output.cltv_expiry))?;
1210 writer.write_all(&$htlc_output.payment_hash.0[..])?;
1211 $htlc_output.transaction_output_index.write(writer)?;
1215 writer.write_all(&byte_utils::be64_to_array(self.remote_claimable_outpoints.len() as u64))?;
1216 for (ref txid, ref htlc_infos) in self.remote_claimable_outpoints.iter() {
1217 writer.write_all(&txid[..])?;
1218 writer.write_all(&byte_utils::be64_to_array(htlc_infos.len() as u64))?;
1219 for &(ref htlc_output, ref htlc_source) in htlc_infos.iter() {
1220 serialize_htlc_in_commitment!(htlc_output);
1221 write_option!(htlc_source);
1225 writer.write_all(&byte_utils::be64_to_array(self.remote_commitment_txn_on_chain.len() as u64))?;
1226 for (ref txid, &(commitment_number, ref txouts)) in self.remote_commitment_txn_on_chain.iter() {
1227 writer.write_all(&txid[..])?;
1228 writer.write_all(&byte_utils::be48_to_array(commitment_number))?;
1229 (txouts.len() as u64).write(writer)?;
1230 for script in txouts.iter() {
1231 script.write(writer)?;
1235 if for_local_storage {
1236 writer.write_all(&byte_utils::be64_to_array(self.remote_hash_commitment_number.len() as u64))?;
1237 for (ref payment_hash, commitment_number) in self.remote_hash_commitment_number.iter() {
1238 writer.write_all(&payment_hash.0[..])?;
1239 writer.write_all(&byte_utils::be48_to_array(*commitment_number))?;
1242 writer.write_all(&byte_utils::be64_to_array(0))?;
1245 macro_rules! serialize_local_tx {
1246 ($local_tx: expr) => {
1247 if let Err(e) = $local_tx.tx.consensus_encode(&mut WriterWriteAdaptor(writer)) {
1249 encode::Error::Io(e) => return Err(e),
1250 _ => panic!("local tx must have been well-formed!"),
1254 writer.write_all(&$local_tx.revocation_key.serialize())?;
1255 writer.write_all(&$local_tx.a_htlc_key.serialize())?;
1256 writer.write_all(&$local_tx.b_htlc_key.serialize())?;
1257 writer.write_all(&$local_tx.delayed_payment_key.serialize())?;
1259 writer.write_all(&byte_utils::be64_to_array($local_tx.feerate_per_kw))?;
1260 writer.write_all(&byte_utils::be64_to_array($local_tx.htlc_outputs.len() as u64))?;
1261 for &(ref htlc_output, ref sigs, ref htlc_source) in $local_tx.htlc_outputs.iter() {
1262 serialize_htlc_in_commitment!(htlc_output);
1263 if let &Some((ref their_sig, ref our_sig)) = sigs {
1265 writer.write_all(&their_sig.serialize_compact())?;
1266 writer.write_all(&our_sig.serialize_compact())?;
1270 write_option!(htlc_source);
1275 if let Some(ref prev_local_tx) = self.prev_local_signed_commitment_tx {
1276 writer.write_all(&[1; 1])?;
1277 serialize_local_tx!(prev_local_tx);
1279 writer.write_all(&[0; 1])?;
1282 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
1283 writer.write_all(&[1; 1])?;
1284 serialize_local_tx!(cur_local_tx);
1286 writer.write_all(&[0; 1])?;
1289 if for_local_storage {
1290 writer.write_all(&byte_utils::be48_to_array(self.current_remote_commitment_number))?;
1292 writer.write_all(&byte_utils::be48_to_array(0))?;
1295 writer.write_all(&byte_utils::be64_to_array(self.payment_preimages.len() as u64))?;
1296 for payment_preimage in self.payment_preimages.values() {
1297 writer.write_all(&payment_preimage.0[..])?;
1300 self.last_block_hash.write(writer)?;
1301 self.destination_script.write(writer)?;
1302 if let Some((ref to_remote_script, ref local_key)) = self.to_remote_rescue {
1303 writer.write_all(&[1; 1])?;
1304 to_remote_script.write(writer)?;
1305 local_key.write(writer)?;
1307 writer.write_all(&[0; 1])?;
1310 writer.write_all(&byte_utils::be64_to_array(self.pending_claim_requests.len() as u64))?;
1311 for (ref ancestor_claim_txid, claim_tx_data) in self.pending_claim_requests.iter() {
1312 ancestor_claim_txid.write(writer)?;
1313 claim_tx_data.write(writer)?;
1316 writer.write_all(&byte_utils::be64_to_array(self.claimable_outpoints.len() as u64))?;
1317 for (ref outp, ref claim_and_height) in self.claimable_outpoints.iter() {
1318 outp.write(writer)?;
1319 claim_and_height.0.write(writer)?;
1320 claim_and_height.1.write(writer)?;
1323 writer.write_all(&byte_utils::be64_to_array(self.onchain_events_waiting_threshold_conf.len() as u64))?;
1324 for (ref target, ref events) in self.onchain_events_waiting_threshold_conf.iter() {
1325 writer.write_all(&byte_utils::be32_to_array(**target))?;
1326 writer.write_all(&byte_utils::be64_to_array(events.len() as u64))?;
1327 for ev in events.iter() {
1329 OnchainEvent::Claim { ref claim_request } => {
1330 writer.write_all(&[0; 1])?;
1331 claim_request.write(writer)?;
1333 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1334 writer.write_all(&[1; 1])?;
1335 htlc_update.0.write(writer)?;
1336 htlc_update.1.write(writer)?;
1338 OnchainEvent::ContentiousOutpoint { ref outpoint, ref input_material } => {
1339 writer.write_all(&[2; 1])?;
1340 outpoint.write(writer)?;
1341 input_material.write(writer)?;
1350 /// Writes this monitor into the given writer, suitable for writing to disk.
1352 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
1353 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
1354 /// the "reorg path" (ie not just starting at the same height but starting at the highest
1355 /// common block that appears on your best chain as well as on the chain which contains the
1356 /// last block hash returned) upon deserializing the object!
1357 pub fn write_for_disk<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
1358 self.write(writer, true)
1361 /// Encodes this monitor into the given writer, suitable for sending to a remote watchtower
1363 /// Note that the deserializer is only implemented for (Sha256dHash, ChannelMonitor), which
1364 /// tells you the last block hash which was block_connect()ed. You MUST rescan any blocks along
1365 /// the "reorg path" (ie not just starting at the same height but starting at the highest
1366 /// common block that appears on your best chain as well as on the chain which contains the
1367 /// last block hash returned) upon deserializing the object!
1368 pub fn write_for_watchtower<W: Writer>(&self, writer: &mut W) -> Result<(), ::std::io::Error> {
1369 self.write(writer, false)
1372 /// Can only fail if idx is < get_min_seen_secret
1373 pub(super) fn get_secret(&self, idx: u64) -> Option<[u8; 32]> {
1374 for i in 0..self.old_secrets.len() {
1375 if (idx & (!((1 << i) - 1))) == self.old_secrets[i].1 {
1376 return Some(ChannelMonitor::derive_secret(self.old_secrets[i].0, i as u8, idx))
1379 assert!(idx < self.get_min_seen_secret());
1383 pub(super) fn get_min_seen_secret(&self) -> u64 {
1384 //TODO This can be optimized?
1385 let mut min = 1 << 48;
1386 for &(_, idx) in self.old_secrets.iter() {
1394 pub(super) fn get_cur_remote_commitment_number(&self) -> u64 {
1395 self.current_remote_commitment_number
1398 pub(super) fn get_cur_local_commitment_number(&self) -> u64 {
1399 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
1400 0xffff_ffff_ffff - ((((local_tx.tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (local_tx.tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor)
1401 } else { 0xffff_ffff_ffff }
1404 /// Attempts to claim a remote commitment transaction's outputs using the revocation key and
1405 /// data in remote_claimable_outpoints. Will directly claim any HTLC outputs which expire at a
1406 /// height > height + CLTV_SHARED_CLAIM_BUFFER. In any case, will install monitoring for
1407 /// HTLC-Success/HTLC-Timeout transactions.
1408 /// Return updates for HTLC pending in the channel and failed automatically by the broadcast of
1409 /// revoked remote commitment tx
1410 fn check_spend_remote_transaction(&mut self, tx: &Transaction, height: u32, fee_estimator: &FeeEstimator) -> (Vec<Transaction>, (Sha256dHash, Vec<TxOut>), Vec<SpendableOutputDescriptor>) {
1411 // Most secp and related errors trying to create keys means we have no hope of constructing
1412 // a spend transaction...so we return no transactions to broadcast
1413 let mut txn_to_broadcast = Vec::new();
1414 let mut watch_outputs = Vec::new();
1415 let mut spendable_outputs = Vec::new();
1417 let commitment_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
1418 let per_commitment_option = self.remote_claimable_outpoints.get(&commitment_txid);
1420 macro_rules! ignore_error {
1421 ( $thing : expr ) => {
1424 Err(_) => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs)
1429 let commitment_number = 0xffffffffffff - ((((tx.input[0].sequence as u64 & 0xffffff) << 3*8) | (tx.lock_time as u64 & 0xffffff)) ^ self.commitment_transaction_number_obscure_factor);
1430 if commitment_number >= self.get_min_seen_secret() {
1431 let secret = self.get_secret(commitment_number).unwrap();
1432 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
1433 let (revocation_pubkey, b_htlc_key, local_payment_key) = match self.key_storage {
1434 Storage::Local { ref revocation_base_key, ref htlc_base_key, ref payment_base_key, .. } => {
1435 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1436 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
1437 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))),
1438 Some(ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, &per_commitment_point, &payment_base_key))))
1440 Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => {
1441 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
1442 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key)),
1443 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &htlc_base_key)),
1447 let delayed_key = ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &self.their_delayed_payment_base_key.unwrap()));
1448 let a_htlc_key = match self.their_htlc_base_key {
1449 None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs),
1450 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key), &their_htlc_base_key)),
1453 let revokeable_redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key);
1454 let revokeable_p2wsh = revokeable_redeemscript.to_v0_p2wsh();
1456 let local_payment_p2wpkh = if let Some(payment_key) = local_payment_key {
1457 // Note that the Network here is ignored as we immediately drop the address for the
1458 // script_pubkey version.
1459 let payment_hash160 = Hash160::hash(&PublicKey::from_secret_key(&self.secp_ctx, &payment_key).serialize());
1460 Some(Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&payment_hash160[..]).into_script())
1463 let mut total_value = 0;
1464 let mut inputs = Vec::new();
1465 let mut inputs_info = Vec::new();
1466 let mut inputs_desc = Vec::new();
1468 for (idx, outp) in tx.output.iter().enumerate() {
1469 if outp.script_pubkey == revokeable_p2wsh {
1471 previous_output: BitcoinOutPoint {
1472 txid: commitment_txid,
1475 script_sig: Script::new(),
1476 sequence: 0xfffffffd,
1477 witness: Vec::new(),
1479 inputs_desc.push(InputDescriptors::RevokedOutput);
1480 inputs_info.push((None, outp.value, self.our_to_self_delay as u32));
1481 total_value += outp.value;
1482 } else if Some(&outp.script_pubkey) == local_payment_p2wpkh.as_ref() {
1483 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1484 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1485 key: local_payment_key.unwrap(),
1486 output: outp.clone(),
1491 macro_rules! sign_input {
1492 ($sighash_parts: expr, $input: expr, $htlc_idx: expr, $amount: expr) => {
1494 let (sig, redeemscript, revocation_key) = match self.key_storage {
1495 Storage::Local { ref revocation_base_key, .. } => {
1496 let redeemscript = if $htlc_idx.is_none() { revokeable_redeemscript.clone() } else {
1497 let htlc = &per_commitment_option.unwrap()[$htlc_idx.unwrap()].0;
1498 chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey)
1500 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]);
1501 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
1502 (self.secp_ctx.sign(&sighash, &revocation_key), redeemscript, revocation_key)
1504 Storage::Watchtower { .. } => {
1508 $input.witness.push(sig.serialize_der().to_vec());
1509 $input.witness[0].push(SigHashType::All as u8);
1510 if $htlc_idx.is_none() {
1511 $input.witness.push(vec!(1));
1513 $input.witness.push(revocation_pubkey.serialize().to_vec());
1515 $input.witness.push(redeemscript.clone().into_bytes());
1516 (redeemscript, revocation_key)
1521 if let Some(ref per_commitment_data) = per_commitment_option {
1522 inputs.reserve_exact(per_commitment_data.len());
1524 for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1525 if let Some(transaction_output_index) = htlc.transaction_output_index {
1526 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1527 if transaction_output_index as usize >= tx.output.len() ||
1528 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
1529 tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
1530 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); // Corrupted per_commitment_data, fuck this user
1533 previous_output: BitcoinOutPoint {
1534 txid: commitment_txid,
1535 vout: transaction_output_index,
1537 script_sig: Script::new(),
1538 sequence: 0xfffffffd,
1539 witness: Vec::new(),
1541 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
1543 inputs_desc.push(if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC });
1544 inputs_info.push((Some(idx), tx.output[transaction_output_index as usize].value, htlc.cltv_expiry));
1545 total_value += tx.output[transaction_output_index as usize].value;
1547 let mut single_htlc_tx = Transaction {
1551 output: vec!(TxOut {
1552 script_pubkey: self.destination_script.clone(),
1553 value: htlc.amount_msat / 1000,
1556 let predicted_weight = single_htlc_tx.get_weight() + Self::get_witnesses_weight(&[if htlc.offered { InputDescriptors::RevokedOfferedHTLC } else { InputDescriptors::RevokedReceivedHTLC }]);
1557 let height_timer = Self::get_height_timer(height, htlc.cltv_expiry);
1558 let mut used_feerate;
1559 if subtract_high_prio_fee!(self, fee_estimator, single_htlc_tx.output[0].value, predicted_weight, used_feerate) {
1560 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
1561 let (redeemscript, revocation_key) = sign_input!(sighash_parts, single_htlc_tx.input[0], Some(idx), htlc.amount_msat / 1000);
1562 assert!(predicted_weight >= single_htlc_tx.get_weight());
1563 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", single_htlc_tx.input[0].previous_output.txid, single_htlc_tx.input[0].previous_output.vout, height_timer);
1564 let mut per_input_material = HashMap::with_capacity(1);
1565 per_input_material.insert(single_htlc_tx.input[0].previous_output, InputMaterial::Revoked { script: redeemscript, pubkey: Some(revocation_pubkey), key: revocation_key, is_htlc: true, amount: htlc.amount_msat / 1000 });
1566 match self.claimable_outpoints.entry(single_htlc_tx.input[0].previous_output) {
1567 hash_map::Entry::Occupied(_) => {},
1568 hash_map::Entry::Vacant(entry) => { entry.insert((single_htlc_tx.txid(), height)); }
1570 match self.pending_claim_requests.entry(single_htlc_tx.txid()) {
1571 hash_map::Entry::Occupied(_) => {},
1572 hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: htlc.cltv_expiry, per_input_material }); }
1574 txn_to_broadcast.push(single_htlc_tx);
1581 if !inputs.is_empty() || !txn_to_broadcast.is_empty() || per_commitment_option.is_some() { // ie we're confident this is actually ours
1582 // We're definitely a remote commitment transaction!
1583 log_trace!(self, "Got broadcast of revoked remote commitment transaction, generating general spend tx with {} inputs and {} other txn to broadcast", inputs.len(), txn_to_broadcast.len());
1584 watch_outputs.append(&mut tx.output.clone());
1585 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1587 macro_rules! check_htlc_fails {
1588 ($txid: expr, $commitment_tx: expr) => {
1589 if let Some(ref outpoints) = self.remote_claimable_outpoints.get($txid) {
1590 for &(ref htlc, ref source_option) in outpoints.iter() {
1591 if let &Some(ref source) = source_option {
1592 log_info!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of revoked remote commitment transaction, waiting for confirmation (at height {})", log_bytes!(htlc.payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1);
1593 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
1594 hash_map::Entry::Occupied(mut entry) => {
1595 let e = entry.get_mut();
1596 e.retain(|ref event| {
1598 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1599 return htlc_update.0 != **source
1604 e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())});
1606 hash_map::Entry::Vacant(entry) => {
1607 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]);
1615 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1616 if let &Some(ref txid) = current_remote_commitment_txid {
1617 check_htlc_fails!(txid, "current");
1619 if let &Some(ref txid) = prev_remote_commitment_txid {
1620 check_htlc_fails!(txid, "remote");
1623 // No need to check local commitment txn, symmetric HTLCSource must be present as per-htlc data on remote commitment tx
1625 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } // Nothing to be done...probably a false positive/local tx
1627 let outputs = vec!(TxOut {
1628 script_pubkey: self.destination_script.clone(),
1631 let mut spend_tx = Transaction {
1638 let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&inputs_desc[..]);
1640 let mut used_feerate;
1641 if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, used_feerate) {
1642 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs);
1645 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1647 let mut per_input_material = HashMap::with_capacity(spend_tx.input.len());
1648 let mut soonest_timelock = ::std::u32::MAX;
1649 for info in inputs_info.iter() {
1650 if info.2 <= soonest_timelock {
1651 soonest_timelock = info.2;
1654 let height_timer = Self::get_height_timer(height, soonest_timelock);
1655 let spend_txid = spend_tx.txid();
1656 for (input, info) in spend_tx.input.iter_mut().zip(inputs_info.iter()) {
1657 let (redeemscript, revocation_key) = sign_input!(sighash_parts, input, info.0, info.1);
1658 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", input.previous_output.txid, input.previous_output.vout, height_timer);
1659 per_input_material.insert(input.previous_output, InputMaterial::Revoked { script: redeemscript, pubkey: if info.0.is_some() { Some(revocation_pubkey) } else { None }, key: revocation_key, is_htlc: if info.0.is_some() { true } else { false }, amount: info.1 });
1660 match self.claimable_outpoints.entry(input.previous_output) {
1661 hash_map::Entry::Occupied(_) => {},
1662 hash_map::Entry::Vacant(entry) => { entry.insert((spend_txid, height)); }
1665 match self.pending_claim_requests.entry(spend_txid) {
1666 hash_map::Entry::Occupied(_) => {},
1667 hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock, per_input_material }); }
1670 assert!(predicted_weight >= spend_tx.get_weight());
1672 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1673 outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 },
1674 output: spend_tx.output[0].clone(),
1676 txn_to_broadcast.push(spend_tx);
1677 } else if let Some(per_commitment_data) = per_commitment_option {
1678 // While this isn't useful yet, there is a potential race where if a counterparty
1679 // revokes a state at the same time as the commitment transaction for that state is
1680 // confirmed, and the watchtower receives the block before the user, the user could
1681 // upload a new ChannelMonitor with the revocation secret but the watchtower has
1682 // already processed the block, resulting in the remote_commitment_txn_on_chain entry
1683 // not being generated by the above conditional. Thus, to be safe, we go ahead and
1685 watch_outputs.append(&mut tx.output.clone());
1686 self.remote_commitment_txn_on_chain.insert(commitment_txid, (commitment_number, tx.output.iter().map(|output| { output.script_pubkey.clone() }).collect()));
1688 log_trace!(self, "Got broadcast of non-revoked remote commitment transaction {}", commitment_txid);
1690 macro_rules! check_htlc_fails {
1691 ($txid: expr, $commitment_tx: expr, $id: tt) => {
1692 if let Some(ref latest_outpoints) = self.remote_claimable_outpoints.get($txid) {
1693 $id: for &(ref htlc, ref source_option) in latest_outpoints.iter() {
1694 if let &Some(ref source) = source_option {
1695 // Check if the HTLC is present in the commitment transaction that was
1696 // broadcast, but not if it was below the dust limit, which we should
1697 // fail backwards immediately as there is no way for us to learn the
1698 // payment_preimage.
1699 // Note that if the dust limit were allowed to change between
1700 // commitment transactions we'd want to be check whether *any*
1701 // broadcastable commitment transaction has the HTLC in it, but it
1702 // cannot currently change after channel initialization, so we don't
1704 for &(ref broadcast_htlc, ref broadcast_source) in per_commitment_data.iter() {
1705 if broadcast_htlc.transaction_output_index.is_some() && Some(source) == broadcast_source.as_ref() {
1709 log_trace!(self, "Failing HTLC with payment_hash {} from {} remote commitment tx due to broadcast of remote commitment transaction", log_bytes!(htlc.payment_hash.0), $commitment_tx);
1710 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
1711 hash_map::Entry::Occupied(mut entry) => {
1712 let e = entry.get_mut();
1713 e.retain(|ref event| {
1715 OnchainEvent::HTLCUpdate { ref htlc_update } => {
1716 return htlc_update.0 != **source
1721 e.push(OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())});
1723 hash_map::Entry::Vacant(entry) => {
1724 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ((**source).clone(), htlc.payment_hash.clone())}]);
1732 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
1733 if let &Some(ref txid) = current_remote_commitment_txid {
1734 check_htlc_fails!(txid, "current", 'current_loop);
1736 if let &Some(ref txid) = prev_remote_commitment_txid {
1737 check_htlc_fails!(txid, "previous", 'prev_loop);
1741 if let Some(revocation_points) = self.their_cur_revocation_points {
1742 let revocation_point_option =
1743 if revocation_points.0 == commitment_number { Some(&revocation_points.1) }
1744 else if let Some(point) = revocation_points.2.as_ref() {
1745 if revocation_points.0 == commitment_number + 1 { Some(point) } else { None }
1747 if let Some(revocation_point) = revocation_point_option {
1748 let (revocation_pubkey, b_htlc_key) = match self.key_storage {
1749 Storage::Local { ref revocation_base_key, ref htlc_base_key, .. } => {
1750 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key))),
1751 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &PublicKey::from_secret_key(&self.secp_ctx, &htlc_base_key))))
1753 Storage::Watchtower { ref revocation_base_key, ref htlc_base_key, .. } => {
1754 (ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, revocation_point, &revocation_base_key)),
1755 ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &htlc_base_key)))
1758 let a_htlc_key = match self.their_htlc_base_key {
1759 None => return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs),
1760 Some(their_htlc_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, revocation_point, &their_htlc_base_key)),
1763 for (idx, outp) in tx.output.iter().enumerate() {
1764 if outp.script_pubkey.is_v0_p2wpkh() {
1765 match self.key_storage {
1766 Storage::Local { ref payment_base_key, .. } => {
1767 if let Ok(local_key) = chan_utils::derive_private_key(&self.secp_ctx, &revocation_point, &payment_base_key) {
1768 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1769 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1771 output: outp.clone(),
1775 Storage::Watchtower { .. } => {}
1777 break; // Only to_remote ouput is claimable
1781 let mut total_value = 0;
1782 let mut inputs = Vec::new();
1783 let mut inputs_desc = Vec::new();
1784 let mut inputs_info = Vec::new();
1786 macro_rules! sign_input {
1787 ($sighash_parts: expr, $input: expr, $amount: expr, $preimage: expr) => {
1789 let (sig, redeemscript, htlc_key) = match self.key_storage {
1790 Storage::Local { ref htlc_base_key, .. } => {
1791 let htlc = &per_commitment_option.unwrap()[$input.sequence as usize].0;
1792 let redeemscript = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1793 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeemscript, $amount)[..]);
1794 let htlc_key = ignore_error!(chan_utils::derive_private_key(&self.secp_ctx, revocation_point, &htlc_base_key));
1795 (self.secp_ctx.sign(&sighash, &htlc_key), redeemscript, htlc_key)
1797 Storage::Watchtower { .. } => {
1801 $input.witness.push(sig.serialize_der().to_vec());
1802 $input.witness[0].push(SigHashType::All as u8);
1803 $input.witness.push($preimage);
1804 $input.witness.push(redeemscript.clone().into_bytes());
1805 (redeemscript, htlc_key)
1810 for (idx, &(ref htlc, _)) in per_commitment_data.iter().enumerate() {
1811 if let Some(transaction_output_index) = htlc.transaction_output_index {
1812 let expected_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &a_htlc_key, &b_htlc_key, &revocation_pubkey);
1813 if transaction_output_index as usize >= tx.output.len() ||
1814 tx.output[transaction_output_index as usize].value != htlc.amount_msat / 1000 ||
1815 tx.output[transaction_output_index as usize].script_pubkey != expected_script.to_v0_p2wsh() {
1816 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); // Corrupted per_commitment_data, fuck this user
1818 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
1821 previous_output: BitcoinOutPoint {
1822 txid: commitment_txid,
1823 vout: transaction_output_index,
1825 script_sig: Script::new(),
1826 sequence: idx as u32, // reset to 0xfffffffd in sign_input
1827 witness: Vec::new(),
1829 if htlc.cltv_expiry > height + CLTV_SHARED_CLAIM_BUFFER {
1831 inputs_desc.push(if htlc.offered { InputDescriptors::OfferedHTLC } else { InputDescriptors::ReceivedHTLC });
1832 inputs_info.push((payment_preimage, tx.output[transaction_output_index as usize].value, htlc.cltv_expiry));
1833 total_value += tx.output[transaction_output_index as usize].value;
1835 let mut single_htlc_tx = Transaction {
1839 output: vec!(TxOut {
1840 script_pubkey: self.destination_script.clone(),
1841 value: htlc.amount_msat / 1000,
1844 let predicted_weight = single_htlc_tx.get_weight() + Self::get_witnesses_weight(&[if htlc.offered { InputDescriptors::OfferedHTLC } else { InputDescriptors::ReceivedHTLC }]);
1845 let height_timer = Self::get_height_timer(height, htlc.cltv_expiry);
1846 let mut used_feerate;
1847 if subtract_high_prio_fee!(self, fee_estimator, single_htlc_tx.output[0].value, predicted_weight, used_feerate) {
1848 let sighash_parts = bip143::SighashComponents::new(&single_htlc_tx);
1849 let (redeemscript, htlc_key) = sign_input!(sighash_parts, single_htlc_tx.input[0], htlc.amount_msat / 1000, payment_preimage.0.to_vec());
1850 assert!(predicted_weight >= single_htlc_tx.get_weight());
1851 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1852 outpoint: BitcoinOutPoint { txid: single_htlc_tx.txid(), vout: 0 },
1853 output: single_htlc_tx.output[0].clone(),
1855 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", single_htlc_tx.input[0].previous_output.txid, single_htlc_tx.input[0].previous_output.vout, height_timer);
1856 let mut per_input_material = HashMap::with_capacity(1);
1857 per_input_material.insert(single_htlc_tx.input[0].previous_output, InputMaterial::RemoteHTLC { script: redeemscript, key: htlc_key, preimage: Some(*payment_preimage), amount: htlc.amount_msat / 1000, locktime: 0 });
1858 match self.claimable_outpoints.entry(single_htlc_tx.input[0].previous_output) {
1859 hash_map::Entry::Occupied(_) => {},
1860 hash_map::Entry::Vacant(entry) => { entry.insert((single_htlc_tx.txid(), height)); }
1862 match self.pending_claim_requests.entry(single_htlc_tx.txid()) {
1863 hash_map::Entry::Occupied(_) => {},
1864 hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: htlc.cltv_expiry, per_input_material}); }
1866 txn_to_broadcast.push(single_htlc_tx);
1872 // TODO: If the HTLC has already expired, potentially merge it with the
1873 // rest of the claim transaction, as above.
1875 previous_output: BitcoinOutPoint {
1876 txid: commitment_txid,
1877 vout: transaction_output_index,
1879 script_sig: Script::new(),
1880 sequence: idx as u32,
1881 witness: Vec::new(),
1883 let mut timeout_tx = Transaction {
1885 lock_time: htlc.cltv_expiry,
1887 output: vec!(TxOut {
1888 script_pubkey: self.destination_script.clone(),
1889 value: htlc.amount_msat / 1000,
1892 let predicted_weight = timeout_tx.get_weight() + Self::get_witnesses_weight(&[InputDescriptors::ReceivedHTLC]);
1893 let height_timer = Self::get_height_timer(height, htlc.cltv_expiry);
1894 let mut used_feerate;
1895 if subtract_high_prio_fee!(self, fee_estimator, timeout_tx.output[0].value, predicted_weight, used_feerate) {
1896 let sighash_parts = bip143::SighashComponents::new(&timeout_tx);
1897 let (redeemscript, htlc_key) = sign_input!(sighash_parts, timeout_tx.input[0], htlc.amount_msat / 1000, vec![0]);
1898 assert!(predicted_weight >= timeout_tx.get_weight());
1899 //TODO: track SpendableOutputDescriptor
1900 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", timeout_tx.input[0].previous_output.txid, timeout_tx.input[0].previous_output.vout, height_timer);
1901 let mut per_input_material = HashMap::with_capacity(1);
1902 per_input_material.insert(timeout_tx.input[0].previous_output, InputMaterial::RemoteHTLC { script : redeemscript, key: htlc_key, preimage: None, amount: htlc.amount_msat / 1000, locktime: htlc.cltv_expiry });
1903 match self.claimable_outpoints.entry(timeout_tx.input[0].previous_output) {
1904 hash_map::Entry::Occupied(_) => {},
1905 hash_map::Entry::Vacant(entry) => { entry.insert((timeout_tx.txid(), height)); }
1907 match self.pending_claim_requests.entry(timeout_tx.txid()) {
1908 hash_map::Entry::Occupied(_) => {},
1909 hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: htlc.cltv_expiry, per_input_material }); }
1912 txn_to_broadcast.push(timeout_tx);
1917 if inputs.is_empty() { return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs); } // Nothing to be done...probably a false positive/local tx
1919 let outputs = vec!(TxOut {
1920 script_pubkey: self.destination_script.clone(),
1923 let mut spend_tx = Transaction {
1930 let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&inputs_desc[..]);
1932 let mut used_feerate;
1933 if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, used_feerate) {
1934 return (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs);
1937 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
1939 let mut per_input_material = HashMap::with_capacity(spend_tx.input.len());
1940 let mut soonest_timelock = ::std::u32::MAX;
1941 for info in inputs_info.iter() {
1942 if info.2 <= soonest_timelock {
1943 soonest_timelock = info.2;
1946 let height_timer = Self::get_height_timer(height, soonest_timelock);
1947 let spend_txid = spend_tx.txid();
1948 for (input, info) in spend_tx.input.iter_mut().zip(inputs_info.iter()) {
1949 let (redeemscript, htlc_key) = sign_input!(sighash_parts, input, info.1, (info.0).0.to_vec());
1950 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", input.previous_output.txid, input.previous_output.vout, height_timer);
1951 per_input_material.insert(input.previous_output, InputMaterial::RemoteHTLC { script: redeemscript, key: htlc_key, preimage: Some(*(info.0)), amount: info.1, locktime: 0});
1952 match self.claimable_outpoints.entry(input.previous_output) {
1953 hash_map::Entry::Occupied(_) => {},
1954 hash_map::Entry::Vacant(entry) => { entry.insert((spend_txid, height)); }
1957 match self.pending_claim_requests.entry(spend_txid) {
1958 hash_map::Entry::Occupied(_) => {},
1959 hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock, per_input_material }); }
1961 assert!(predicted_weight >= spend_tx.get_weight());
1962 spendable_outputs.push(SpendableOutputDescriptor::StaticOutput {
1963 outpoint: BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 },
1964 output: spend_tx.output[0].clone(),
1966 txn_to_broadcast.push(spend_tx);
1969 } else if let Some((ref to_remote_rescue, ref local_key)) = self.to_remote_rescue {
1970 for (idx, outp) in tx.output.iter().enumerate() {
1971 if to_remote_rescue == &outp.script_pubkey {
1972 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WPKH {
1973 outpoint: BitcoinOutPoint { txid: commitment_txid, vout: idx as u32 },
1974 key: local_key.clone(),
1975 output: outp.clone(),
1981 (txn_to_broadcast, (commitment_txid, watch_outputs), spendable_outputs)
1984 /// Attempts to claim a remote HTLC-Success/HTLC-Timeout's outputs using the revocation key
1985 fn check_spend_remote_htlc(&mut self, tx: &Transaction, commitment_number: u64, height: u32, fee_estimator: &FeeEstimator) -> (Option<Transaction>, Option<SpendableOutputDescriptor>) {
1986 //TODO: send back new outputs to guarantee pending_claim_request consistency
1987 if tx.input.len() != 1 || tx.output.len() != 1 {
1991 macro_rules! ignore_error {
1992 ( $thing : expr ) => {
1995 Err(_) => return (None, None)
2000 let secret = if let Some(secret) = self.get_secret(commitment_number) { secret } else { return (None, None); };
2001 let per_commitment_key = ignore_error!(SecretKey::from_slice(&secret));
2002 let per_commitment_point = PublicKey::from_secret_key(&self.secp_ctx, &per_commitment_key);
2003 let revocation_pubkey = match self.key_storage {
2004 Storage::Local { ref revocation_base_key, .. } => {
2005 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &PublicKey::from_secret_key(&self.secp_ctx, &revocation_base_key)))
2007 Storage::Watchtower { ref revocation_base_key, .. } => {
2008 ignore_error!(chan_utils::derive_public_revocation_key(&self.secp_ctx, &per_commitment_point, &revocation_base_key))
2011 let delayed_key = match self.their_delayed_payment_base_key {
2012 None => return (None, None),
2013 Some(their_delayed_payment_base_key) => ignore_error!(chan_utils::derive_public_key(&self.secp_ctx, &per_commitment_point, &their_delayed_payment_base_key)),
2015 let redeemscript = chan_utils::get_revokeable_redeemscript(&revocation_pubkey, self.our_to_self_delay, &delayed_key);
2016 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
2017 let htlc_txid = tx.txid(); //TODO: This is gonna be a performance bottleneck for watchtowers!
2019 let mut inputs = Vec::new();
2022 if tx.output[0].script_pubkey == revokeable_p2wsh { //HTLC transactions have one txin, one txout
2024 previous_output: BitcoinOutPoint {
2028 script_sig: Script::new(),
2029 sequence: 0xfffffffd,
2030 witness: Vec::new(),
2032 amount = tx.output[0].value;
2035 if !inputs.is_empty() {
2036 let outputs = vec!(TxOut {
2037 script_pubkey: self.destination_script.clone(),
2041 let mut spend_tx = Transaction {
2047 let predicted_weight = spend_tx.get_weight() + Self::get_witnesses_weight(&[InputDescriptors::RevokedOutput]);
2048 let mut used_feerate;
2049 if !subtract_high_prio_fee!(self, fee_estimator, spend_tx.output[0].value, predicted_weight, used_feerate) {
2050 return (None, None);
2053 let sighash_parts = bip143::SighashComponents::new(&spend_tx);
2055 let (sig, revocation_key) = match self.key_storage {
2056 Storage::Local { ref revocation_base_key, .. } => {
2057 let sighash = hash_to_message!(&sighash_parts.sighash_all(&spend_tx.input[0], &redeemscript, amount)[..]);
2058 let revocation_key = ignore_error!(chan_utils::derive_private_revocation_key(&self.secp_ctx, &per_commitment_key, &revocation_base_key));
2059 (self.secp_ctx.sign(&sighash, &revocation_key), revocation_key)
2061 Storage::Watchtower { .. } => {
2065 spend_tx.input[0].witness.push(sig.serialize_der().to_vec());
2066 spend_tx.input[0].witness[0].push(SigHashType::All as u8);
2067 spend_tx.input[0].witness.push(vec!(1));
2068 spend_tx.input[0].witness.push(redeemscript.clone().into_bytes());
2070 assert!(predicted_weight >= spend_tx.get_weight());
2071 let outpoint = BitcoinOutPoint { txid: spend_tx.txid(), vout: 0 };
2072 let output = spend_tx.output[0].clone();
2073 let height_timer = Self::get_height_timer(height, self.their_to_self_delay.unwrap() as u32); // We can safely unwrap given we are past channel opening
2074 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", spend_tx.input[0].previous_output.txid, spend_tx.input[0].previous_output.vout, height_timer);
2075 let mut per_input_material = HashMap::with_capacity(1);
2076 per_input_material.insert(spend_tx.input[0].previous_output, InputMaterial::Revoked { script: redeemscript, pubkey: None, key: revocation_key, is_htlc: false, amount: tx.output[0].value });
2077 match self.claimable_outpoints.entry(spend_tx.input[0].previous_output) {
2078 hash_map::Entry::Occupied(_) => {},
2079 hash_map::Entry::Vacant(entry) => { entry.insert((spend_tx.txid(), height)); }
2081 match self.pending_claim_requests.entry(spend_tx.txid()) {
2082 hash_map::Entry::Occupied(_) => {},
2083 hash_map::Entry::Vacant(entry) => { entry.insert(ClaimTxBumpMaterial { height_timer, feerate_previous: used_feerate, soonest_timelock: height + self.our_to_self_delay as u32, per_input_material }); }
2085 (Some(spend_tx), Some(SpendableOutputDescriptor::StaticOutput { outpoint, output }))
2086 } else { (None, None) }
2089 fn broadcast_by_local_state(&self, local_tx: &LocalSignedTx, per_commitment_point: &Option<PublicKey>, delayed_payment_base_key: &Option<SecretKey>, height: u32) -> (Vec<Transaction>, Vec<SpendableOutputDescriptor>, Vec<TxOut>, Vec<(Sha256dHash, ClaimTxBumpMaterial)>) {
2090 let mut res = Vec::with_capacity(local_tx.htlc_outputs.len());
2091 let mut spendable_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
2092 let mut watch_outputs = Vec::with_capacity(local_tx.htlc_outputs.len());
2093 let mut pending_claims = Vec::with_capacity(local_tx.htlc_outputs.len());
2095 macro_rules! add_dynamic_output {
2096 ($father_tx: expr, $vout: expr) => {
2097 if let Some(ref per_commitment_point) = *per_commitment_point {
2098 if let Some(ref delayed_payment_base_key) = *delayed_payment_base_key {
2099 if let Ok(local_delayedkey) = chan_utils::derive_private_key(&self.secp_ctx, per_commitment_point, delayed_payment_base_key) {
2100 spendable_outputs.push(SpendableOutputDescriptor::DynamicOutputP2WSH {
2101 outpoint: BitcoinOutPoint { txid: $father_tx.txid(), vout: $vout },
2102 key: local_delayedkey,
2103 witness_script: chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.our_to_self_delay, &local_tx.delayed_payment_key),
2104 to_self_delay: self.our_to_self_delay,
2105 output: $father_tx.output[$vout as usize].clone(),
2113 let redeemscript = chan_utils::get_revokeable_redeemscript(&local_tx.revocation_key, self.their_to_self_delay.unwrap(), &local_tx.delayed_payment_key);
2114 let revokeable_p2wsh = redeemscript.to_v0_p2wsh();
2115 for (idx, output) in local_tx.tx.output.iter().enumerate() {
2116 if output.script_pubkey == revokeable_p2wsh {
2117 add_dynamic_output!(local_tx.tx, idx as u32);
2122 for &(ref htlc, ref sigs, _) in local_tx.htlc_outputs.iter() {
2123 if let Some(transaction_output_index) = htlc.transaction_output_index {
2124 if let &Some((ref their_sig, ref our_sig)) = sigs {
2126 log_trace!(self, "Broadcasting HTLC-Timeout transaction against local commitment transactions");
2127 let mut htlc_timeout_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
2129 htlc_timeout_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
2131 htlc_timeout_tx.input[0].witness.push(their_sig.serialize_der().to_vec());
2132 htlc_timeout_tx.input[0].witness[1].push(SigHashType::All as u8);
2133 htlc_timeout_tx.input[0].witness.push(our_sig.serialize_der().to_vec());
2134 htlc_timeout_tx.input[0].witness[2].push(SigHashType::All as u8);
2136 htlc_timeout_tx.input[0].witness.push(Vec::new());
2137 let htlc_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key);
2138 htlc_timeout_tx.input[0].witness.push(htlc_script.clone().into_bytes());
2140 add_dynamic_output!(htlc_timeout_tx, 0);
2141 let height_timer = Self::get_height_timer(height, htlc.cltv_expiry);
2142 let mut per_input_material = HashMap::with_capacity(1);
2143 per_input_material.insert(htlc_timeout_tx.input[0].previous_output, InputMaterial::LocalHTLC { script: htlc_script, sigs: (*their_sig, *our_sig), preimage: None, amount: htlc.amount_msat / 1000});
2144 //TODO: with option_simplified_commitment track outpoint too
2145 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", htlc_timeout_tx.input[0].previous_output.vout, htlc_timeout_tx.input[0].previous_output.txid, height_timer);
2146 pending_claims.push((htlc_timeout_tx.txid(), ClaimTxBumpMaterial { height_timer, feerate_previous: 0, soonest_timelock: htlc.cltv_expiry, per_input_material }));
2147 res.push(htlc_timeout_tx);
2149 if let Some(payment_preimage) = self.payment_preimages.get(&htlc.payment_hash) {
2150 log_trace!(self, "Broadcasting HTLC-Success transaction against local commitment transactions");
2151 let mut htlc_success_tx = chan_utils::build_htlc_transaction(&local_tx.txid, local_tx.feerate_per_kw, self.their_to_self_delay.unwrap(), htlc, &local_tx.delayed_payment_key, &local_tx.revocation_key);
2153 htlc_success_tx.input[0].witness.push(Vec::new()); // First is the multisig dummy
2155 htlc_success_tx.input[0].witness.push(their_sig.serialize_der().to_vec());
2156 htlc_success_tx.input[0].witness[1].push(SigHashType::All as u8);
2157 htlc_success_tx.input[0].witness.push(our_sig.serialize_der().to_vec());
2158 htlc_success_tx.input[0].witness[2].push(SigHashType::All as u8);
2160 htlc_success_tx.input[0].witness.push(payment_preimage.0.to_vec());
2161 let htlc_script = chan_utils::get_htlc_redeemscript_with_explicit_keys(htlc, &local_tx.a_htlc_key, &local_tx.b_htlc_key, &local_tx.revocation_key);
2162 htlc_success_tx.input[0].witness.push(htlc_script.clone().into_bytes());
2164 add_dynamic_output!(htlc_success_tx, 0);
2165 let height_timer = Self::get_height_timer(height, htlc.cltv_expiry);
2166 let mut per_input_material = HashMap::with_capacity(1);
2167 per_input_material.insert(htlc_success_tx.input[0].previous_output, InputMaterial::LocalHTLC { script: htlc_script, sigs: (*their_sig, *our_sig), preimage: Some(*payment_preimage), amount: htlc.amount_msat / 1000});
2168 //TODO: with option_simplified_commitment track outpoint too
2169 log_trace!(self, "Outpoint {}:{} is being being claimed, if it doesn't succeed, a bumped claiming txn is going to be broadcast at height {}", htlc_success_tx.input[0].previous_output.vout, htlc_success_tx.input[0].previous_output.txid, height_timer);
2170 pending_claims.push((htlc_success_tx.txid(), ClaimTxBumpMaterial { height_timer, feerate_previous: 0, soonest_timelock: htlc.cltv_expiry, per_input_material }));
2171 res.push(htlc_success_tx);
2174 watch_outputs.push(local_tx.tx.output[transaction_output_index as usize].clone());
2175 } else { panic!("Should have sigs for non-dust local tx outputs!") }
2179 (res, spendable_outputs, watch_outputs, pending_claims)
2182 /// Attempts to claim any claimable HTLCs in a commitment transaction which was not (yet)
2183 /// revoked using data in local_claimable_outpoints.
2184 /// Should not be used if check_spend_revoked_transaction succeeds.
2185 fn check_spend_local_transaction(&mut self, tx: &Transaction, height: u32) -> (Vec<Transaction>, Vec<SpendableOutputDescriptor>, (Sha256dHash, Vec<TxOut>)) {
2186 let commitment_txid = tx.txid();
2187 let mut local_txn = Vec::new();
2188 let mut spendable_outputs = Vec::new();
2189 let mut watch_outputs = Vec::new();
2191 macro_rules! wait_threshold_conf {
2192 ($height: expr, $source: expr, $commitment_tx: expr, $payment_hash: expr) => {
2193 log_trace!(self, "Failing HTLC with payment_hash {} from {} local commitment tx due to broadcast of transaction, waiting confirmation (at height{})", log_bytes!($payment_hash.0), $commitment_tx, height + ANTI_REORG_DELAY - 1);
2194 match self.onchain_events_waiting_threshold_conf.entry($height + ANTI_REORG_DELAY - 1) {
2195 hash_map::Entry::Occupied(mut entry) => {
2196 let e = entry.get_mut();
2197 e.retain(|ref event| {
2199 OnchainEvent::HTLCUpdate { ref htlc_update } => {
2200 return htlc_update.0 != $source
2205 e.push(OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)});
2207 hash_map::Entry::Vacant(entry) => {
2208 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: ($source, $payment_hash)}]);
2214 macro_rules! append_onchain_update {
2215 ($updates: expr) => {
2216 local_txn.append(&mut $updates.0);
2217 spendable_outputs.append(&mut $updates.1);
2218 watch_outputs.append(&mut $updates.2);
2219 for claim in $updates.3 {
2220 match self.pending_claim_requests.entry(claim.0) {
2221 hash_map::Entry::Occupied(_) => {},
2222 hash_map::Entry::Vacant(entry) => { entry.insert(claim.1); }
2228 // HTLCs set may differ between last and previous local commitment txn, in case of one them hitting chain, ensure we cancel all HTLCs backward
2229 let mut is_local_tx = false;
2231 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
2232 if local_tx.txid == commitment_txid {
2234 log_trace!(self, "Got latest local commitment tx broadcast, searching for available HTLCs to claim");
2235 match self.key_storage {
2236 Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => {
2237 append_onchain_update!(self.broadcast_by_local_state(local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key), height));
2239 Storage::Watchtower { .. } => {
2240 append_onchain_update!(self.broadcast_by_local_state(local_tx, &None, &None, height));
2245 if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
2246 if local_tx.txid == commitment_txid {
2248 log_trace!(self, "Got previous local commitment tx broadcast, searching for available HTLCs to claim");
2249 match self.key_storage {
2250 Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => {
2251 append_onchain_update!(self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key), height));
2253 Storage::Watchtower { .. } => {
2254 append_onchain_update!(self.broadcast_by_local_state(local_tx, &None, &None, height));
2260 macro_rules! fail_dust_htlcs_after_threshold_conf {
2261 ($local_tx: expr) => {
2262 for &(ref htlc, _, ref source) in &$local_tx.htlc_outputs {
2263 if htlc.transaction_output_index.is_none() {
2264 if let &Some(ref source) = source {
2265 wait_threshold_conf!(height, source.clone(), "lastest", htlc.payment_hash.clone());
2273 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
2274 fail_dust_htlcs_after_threshold_conf!(local_tx);
2276 if let &Some(ref local_tx) = &self.prev_local_signed_commitment_tx {
2277 fail_dust_htlcs_after_threshold_conf!(local_tx);
2281 (local_txn, spendable_outputs, (commitment_txid, watch_outputs))
2284 /// Generate a spendable output event when closing_transaction get registered onchain.
2285 fn check_spend_closing_transaction(&self, tx: &Transaction) -> Option<SpendableOutputDescriptor> {
2286 if tx.input[0].sequence == 0xFFFFFFFF && !tx.input[0].witness.is_empty() && tx.input[0].witness.last().unwrap().len() == 71 {
2287 match self.key_storage {
2288 Storage::Local { ref shutdown_pubkey, .. } => {
2289 let our_channel_close_key_hash = Hash160::hash(&shutdown_pubkey.serialize());
2290 let shutdown_script = Builder::new().push_opcode(opcodes::all::OP_PUSHBYTES_0).push_slice(&our_channel_close_key_hash[..]).into_script();
2291 for (idx, output) in tx.output.iter().enumerate() {
2292 if shutdown_script == output.script_pubkey {
2293 return Some(SpendableOutputDescriptor::StaticOutput {
2294 outpoint: BitcoinOutPoint { txid: tx.txid(), vout: idx as u32 },
2295 output: output.clone(),
2300 Storage::Watchtower { .. } => {
2301 //TODO: we need to ensure an offline client will generate the event when it
2302 // comes back online after only the watchtower saw the transaction
2309 /// Used by ChannelManager deserialization to broadcast the latest local state if its copy of
2310 /// the Channel was out-of-date. You may use it to get a broadcastable local toxic tx in case of
2311 /// fallen-behind, i.e when receiving a channel_reestablish with a proof that our remote side knows
2312 /// a higher revocation secret than the local commitment number we are aware of. Broadcasting these
2313 /// transactions are UNSAFE, as they allow remote side to punish you. Nevertheless you may want to
2314 /// broadcast them if remote don't close channel with his higher commitment transaction after a
2315 /// substantial amount of time (a month or even a year) to get back funds. Best may be to contact
2316 /// out-of-band the other node operator to coordinate with him if option is available to you.
2317 /// In any-case, choice is up to the user.
2318 pub fn get_latest_local_commitment_txn(&self) -> Vec<Transaction> {
2319 if let &Some(ref local_tx) = &self.current_local_signed_commitment_tx {
2320 let mut res = vec![local_tx.tx.clone()];
2321 match self.key_storage {
2322 Storage::Local { ref delayed_payment_base_key, ref prev_latest_per_commitment_point, .. } => {
2323 res.append(&mut self.broadcast_by_local_state(local_tx, prev_latest_per_commitment_point, &Some(*delayed_payment_base_key), 0).0);
2324 // We throw away the generated waiting_first_conf data as we aren't (yet) confirmed and we don't actually know what the caller wants to do.
2325 // The data will be re-generated and tracked in check_spend_local_transaction if we get a confirmation.
2327 _ => panic!("Can only broadcast by local channelmonitor"),
2335 fn block_connected(&mut self, txn_matched: &[&Transaction], height: u32, block_hash: &Sha256dHash, broadcaster: &BroadcasterInterface, fee_estimator: &FeeEstimator)-> (Vec<(Sha256dHash, Vec<TxOut>)>, Vec<SpendableOutputDescriptor>, Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)>) {
2336 log_trace!(self, "Block {} at height {} connected with {} txn matched", block_hash, height, txn_matched.len());
2337 let mut watch_outputs = Vec::new();
2338 let mut spendable_outputs = Vec::new();
2339 let mut htlc_updated = Vec::new();
2340 let mut bump_candidates = HashSet::new();
2341 for tx in txn_matched {
2342 if tx.input.len() == 1 {
2343 // Assuming our keys were not leaked (in which case we're screwed no matter what),
2344 // commitment transactions and HTLC transactions will all only ever have one input,
2345 // which is an easy way to filter out any potential non-matching txn for lazy
2347 let prevout = &tx.input[0].previous_output;
2348 let mut txn: Vec<Transaction> = Vec::new();
2349 let funding_txo = match self.key_storage {
2350 Storage::Local { ref funding_info, .. } => {
2351 funding_info.clone()
2353 Storage::Watchtower { .. } => {
2357 if funding_txo.is_none() || (prevout.txid == funding_txo.as_ref().unwrap().0.txid && prevout.vout == funding_txo.as_ref().unwrap().0.index as u32) {
2358 if (tx.input[0].sequence >> 8*3) as u8 == 0x80 && (tx.lock_time >> 8*3) as u8 == 0x20 {
2359 let (remote_txn, new_outputs, mut spendable_output) = self.check_spend_remote_transaction(&tx, height, fee_estimator);
2361 spendable_outputs.append(&mut spendable_output);
2362 if !new_outputs.1.is_empty() {
2363 watch_outputs.push(new_outputs);
2366 let (local_txn, mut spendable_output, new_outputs) = self.check_spend_local_transaction(&tx, height);
2367 spendable_outputs.append(&mut spendable_output);
2369 if !new_outputs.1.is_empty() {
2370 watch_outputs.push(new_outputs);
2374 if !funding_txo.is_none() && txn.is_empty() {
2375 if let Some(spendable_output) = self.check_spend_closing_transaction(&tx) {
2376 spendable_outputs.push(spendable_output);
2380 if let Some(&(commitment_number, _)) = self.remote_commitment_txn_on_chain.get(&prevout.txid) {
2381 let (tx, spendable_output) = self.check_spend_remote_htlc(&tx, commitment_number, height, fee_estimator);
2382 if let Some(tx) = tx {
2385 if let Some(spendable_output) = spendable_output {
2386 spendable_outputs.push(spendable_output);
2390 for tx in txn.iter() {
2391 log_trace!(self, "Broadcast onchain {}", log_tx!(tx));
2392 broadcaster.broadcast_transaction(tx);
2395 // While all commitment/HTLC-Success/HTLC-Timeout transactions have one input, HTLCs
2396 // can also be resolved in a few other ways which can have more than one output. Thus,
2397 // we call is_resolving_htlc_output here outside of the tx.input.len() == 1 check.
2398 let mut updated = self.is_resolving_htlc_output(&tx, height);
2399 if updated.len() > 0 {
2400 htlc_updated.append(&mut updated);
2403 // Scan all input to verify is one of the outpoint spent is of interest for us
2404 let mut claimed_outputs_material = Vec::new();
2405 for inp in &tx.input {
2406 if let Some(first_claim_txid_height) = self.claimable_outpoints.get(&inp.previous_output) {
2407 // If outpoint has claim request pending on it...
2408 if let Some(claim_material) = self.pending_claim_requests.get_mut(&first_claim_txid_height.0) {
2409 //... we need to verify equality between transaction outpoints and claim request
2410 // outpoints to know if transaction is the original claim or a bumped one issued
2412 let mut set_equality = true;
2413 if claim_material.per_input_material.len() != tx.input.len() {
2414 set_equality = false;
2416 for (claim_inp, tx_inp) in claim_material.per_input_material.keys().zip(tx.input.iter()) {
2417 if *claim_inp != tx_inp.previous_output {
2418 set_equality = false;
2423 macro_rules! clean_claim_request_after_safety_delay {
2425 let new_event = OnchainEvent::Claim { claim_request: first_claim_txid_height.0.clone() };
2426 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2427 hash_map::Entry::Occupied(mut entry) => {
2428 if !entry.get().contains(&new_event) {
2429 entry.get_mut().push(new_event);
2432 hash_map::Entry::Vacant(entry) => {
2433 entry.insert(vec![new_event]);
2439 // If this is our transaction (or our counterparty spent all the outputs
2440 // before we could anyway with same inputs order than us), wait for
2441 // ANTI_REORG_DELAY and clean the RBF tracking map.
2443 clean_claim_request_after_safety_delay!();
2444 } else { // If false, generate new claim request with update outpoint set
2445 for input in tx.input.iter() {
2446 if let Some(input_material) = claim_material.per_input_material.remove(&input.previous_output) {
2447 claimed_outputs_material.push((input.previous_output, input_material));
2449 // If there are no outpoints left to claim in this request, drop it entirely after ANTI_REORG_DELAY.
2450 if claim_material.per_input_material.is_empty() {
2451 clean_claim_request_after_safety_delay!();
2454 //TODO: recompute soonest_timelock to avoid wasting a bit on fees
2455 bump_candidates.insert(first_claim_txid_height.0.clone());
2457 break; //No need to iterate further, either tx is our or their
2459 panic!("Inconsistencies between pending_claim_requests map and claimable_outpoints map");
2463 for (outpoint, input_material) in claimed_outputs_material.drain(..) {
2464 let new_event = OnchainEvent::ContentiousOutpoint { outpoint, input_material };
2465 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2466 hash_map::Entry::Occupied(mut entry) => {
2467 if !entry.get().contains(&new_event) {
2468 entry.get_mut().push(new_event);
2471 hash_map::Entry::Vacant(entry) => {
2472 entry.insert(vec![new_event]);
2477 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
2478 if self.would_broadcast_at_height(height) {
2479 log_trace!(self, "Broadcast onchain {}", log_tx!(cur_local_tx.tx));
2480 broadcaster.broadcast_transaction(&cur_local_tx.tx);
2481 match self.key_storage {
2482 Storage::Local { ref delayed_payment_base_key, ref latest_per_commitment_point, .. } => {
2483 let (txs, mut spendable_output, new_outputs, _) = self.broadcast_by_local_state(&cur_local_tx, latest_per_commitment_point, &Some(*delayed_payment_base_key), height);
2484 spendable_outputs.append(&mut spendable_output);
2485 if !new_outputs.is_empty() {
2486 watch_outputs.push((cur_local_tx.txid.clone(), new_outputs));
2489 log_trace!(self, "Broadcast onchain {}", log_tx!(tx));
2490 broadcaster.broadcast_transaction(&tx);
2493 Storage::Watchtower { .. } => {
2494 let (txs, mut spendable_output, new_outputs, _) = self.broadcast_by_local_state(&cur_local_tx, &None, &None, height);
2495 spendable_outputs.append(&mut spendable_output);
2496 if !new_outputs.is_empty() {
2497 watch_outputs.push((cur_local_tx.txid.clone(), new_outputs));
2500 log_trace!(self, "Broadcast onchain {}", log_tx!(tx));
2501 broadcaster.broadcast_transaction(&tx);
2507 if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&height) {
2510 OnchainEvent::Claim { claim_request } => {
2511 // We may remove a whole set of claim outpoints here, as these one may have
2512 // been aggregated in a single tx and claimed so atomically
2513 if let Some(bump_material) = self.pending_claim_requests.remove(&claim_request) {
2514 for outpoint in bump_material.per_input_material.keys() {
2515 self.claimable_outpoints.remove(&outpoint);
2519 OnchainEvent::HTLCUpdate { htlc_update } => {
2520 log_trace!(self, "HTLC {} failure update has got enough confirmations to be passed upstream", log_bytes!((htlc_update.1).0));
2521 htlc_updated.push((htlc_update.0, None, htlc_update.1));
2523 OnchainEvent::ContentiousOutpoint { outpoint, .. } => {
2524 self.claimable_outpoints.remove(&outpoint);
2529 for (first_claim_txid, ref mut cached_claim_datas) in self.pending_claim_requests.iter_mut() {
2530 if cached_claim_datas.height_timer == height {
2531 bump_candidates.insert(first_claim_txid.clone());
2534 for first_claim_txid in bump_candidates.iter() {
2535 if let Some((new_timer, new_feerate)) = {
2536 if let Some(claim_material) = self.pending_claim_requests.get(first_claim_txid) {
2537 if let Some((new_timer, new_feerate, bump_tx)) = self.bump_claim_tx(height, &claim_material, fee_estimator) {
2538 broadcaster.broadcast_transaction(&bump_tx);
2539 Some((new_timer, new_feerate))
2541 } else { unreachable!(); }
2543 if let Some(claim_material) = self.pending_claim_requests.get_mut(first_claim_txid) {
2544 claim_material.height_timer = new_timer;
2545 claim_material.feerate_previous = new_feerate;
2546 } else { unreachable!(); }
2549 self.last_block_hash = block_hash.clone();
2550 (watch_outputs, spendable_outputs, htlc_updated)
2553 fn block_disconnected(&mut self, height: u32, block_hash: &Sha256dHash, broadcaster: &BroadcasterInterface, fee_estimator: &FeeEstimator) {
2554 let mut bump_candidates = HashMap::new();
2555 if let Some(events) = self.onchain_events_waiting_threshold_conf.remove(&(height + ANTI_REORG_DELAY - 1)) {
2557 //- htlc update there as failure-trigger tx (revoked commitment tx, non-revoked commitment tx, HTLC-timeout tx) has been disconnected
2558 //- our claim tx on a commitment tx output
2559 //- resurect outpoint back in its claimable set and regenerate tx
2562 OnchainEvent::ContentiousOutpoint { outpoint, input_material } => {
2563 if let Some(ancestor_claimable_txid) = self.claimable_outpoints.get(&outpoint) {
2564 if let Some(claim_material) = self.pending_claim_requests.get_mut(&ancestor_claimable_txid.0) {
2565 claim_material.per_input_material.insert(outpoint, input_material);
2566 // Using a HashMap guarantee us than if we have multiple outpoints getting
2567 // resurrected only one bump claim tx is going to be broadcast
2568 bump_candidates.insert(ancestor_claimable_txid.clone(), claim_material.clone());
2576 for (_, claim_material) in bump_candidates.iter_mut() {
2577 if let Some((new_timer, new_feerate, bump_tx)) = self.bump_claim_tx(height, &claim_material, fee_estimator) {
2578 claim_material.height_timer = new_timer;
2579 claim_material.feerate_previous = new_feerate;
2580 broadcaster.broadcast_transaction(&bump_tx);
2583 for (ancestor_claim_txid, claim_material) in bump_candidates.drain() {
2584 self.pending_claim_requests.insert(ancestor_claim_txid.0, claim_material);
2586 //TODO: if we implement cross-block aggregated claim transaction we need to refresh set of outpoints and regenerate tx but
2587 // right now if one of the outpoint get disconnected, just erase whole pending claim request.
2588 let mut remove_request = Vec::new();
2589 self.claimable_outpoints.retain(|_, ref v|
2591 remove_request.push(v.0.clone());
2594 for req in remove_request {
2595 self.pending_claim_requests.remove(&req);
2597 self.last_block_hash = block_hash.clone();
2600 pub(super) fn would_broadcast_at_height(&self, height: u32) -> bool {
2601 // We need to consider all HTLCs which are:
2602 // * in any unrevoked remote commitment transaction, as they could broadcast said
2603 // transactions and we'd end up in a race, or
2604 // * are in our latest local commitment transaction, as this is the thing we will
2605 // broadcast if we go on-chain.
2606 // Note that we consider HTLCs which were below dust threshold here - while they don't
2607 // strictly imply that we need to fail the channel, we need to go ahead and fail them back
2608 // to the source, and if we don't fail the channel we will have to ensure that the next
2609 // updates that peer sends us are update_fails, failing the channel if not. It's probably
2610 // easier to just fail the channel as this case should be rare enough anyway.
2611 macro_rules! scan_commitment {
2612 ($htlcs: expr, $local_tx: expr) => {
2613 for ref htlc in $htlcs {
2614 // For inbound HTLCs which we know the preimage for, we have to ensure we hit the
2615 // chain with enough room to claim the HTLC without our counterparty being able to
2616 // time out the HTLC first.
2617 // For outbound HTLCs which our counterparty hasn't failed/claimed, our primary
2618 // concern is being able to claim the corresponding inbound HTLC (on another
2619 // channel) before it expires. In fact, we don't even really care if our
2620 // counterparty here claims such an outbound HTLC after it expired as long as we
2621 // can still claim the corresponding HTLC. Thus, to avoid needlessly hitting the
2622 // chain when our counterparty is waiting for expiration to off-chain fail an HTLC
2623 // we give ourselves a few blocks of headroom after expiration before going
2624 // on-chain for an expired HTLC.
2625 // Note that, to avoid a potential attack whereby a node delays claiming an HTLC
2626 // from us until we've reached the point where we go on-chain with the
2627 // corresponding inbound HTLC, we must ensure that outbound HTLCs go on chain at
2628 // least CLTV_CLAIM_BUFFER blocks prior to the inbound HTLC.
2629 // aka outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS == height - CLTV_CLAIM_BUFFER
2630 // inbound_cltv == height + CLTV_CLAIM_BUFFER
2631 // outbound_cltv + LATENCY_GRACE_PERIOD_BLOCKS + CLTV_CLAIM_BUFFER <= inbound_cltv - CLTV_CLAIM_BUFFER
2632 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= inbound_cltv - outbound_cltv
2633 // CLTV_EXPIRY_DELTA <= inbound_cltv - outbound_cltv (by check in ChannelManager::decode_update_add_htlc_onion)
2634 // LATENCY_GRACE_PERIOD_BLOCKS + 2*CLTV_CLAIM_BUFFER <= CLTV_EXPIRY_DELTA
2635 // The final, above, condition is checked for statically in channelmanager
2636 // with CHECK_CLTV_EXPIRY_SANITY_2.
2637 let htlc_outbound = $local_tx == htlc.offered;
2638 if ( htlc_outbound && htlc.cltv_expiry + LATENCY_GRACE_PERIOD_BLOCKS <= height) ||
2639 (!htlc_outbound && htlc.cltv_expiry <= height + CLTV_CLAIM_BUFFER && self.payment_preimages.contains_key(&htlc.payment_hash)) {
2640 log_info!(self, "Force-closing channel due to {} HTLC timeout, HTLC expiry is {}", if htlc_outbound { "outbound" } else { "inbound "}, htlc.cltv_expiry);
2647 if let Some(ref cur_local_tx) = self.current_local_signed_commitment_tx {
2648 scan_commitment!(cur_local_tx.htlc_outputs.iter().map(|&(ref a, _, _)| a), true);
2651 if let Storage::Local { ref current_remote_commitment_txid, ref prev_remote_commitment_txid, .. } = self.key_storage {
2652 if let &Some(ref txid) = current_remote_commitment_txid {
2653 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
2654 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2657 if let &Some(ref txid) = prev_remote_commitment_txid {
2658 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(txid) {
2659 scan_commitment!(htlc_outputs.iter().map(|&(ref a, _)| a), false);
2667 /// Check if any transaction broadcasted is resolving HTLC output by a success or timeout on a local
2668 /// or remote commitment tx, if so send back the source, preimage if found and payment_hash of resolved HTLC
2669 fn is_resolving_htlc_output(&mut self, tx: &Transaction, height: u32) -> Vec<(HTLCSource, Option<PaymentPreimage>, PaymentHash)> {
2670 let mut htlc_updated = Vec::new();
2672 'outer_loop: for input in &tx.input {
2673 let mut payment_data = None;
2674 let revocation_sig_claim = (input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33)
2675 || (input.witness.len() == 3 && input.witness[2].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT && input.witness[1].len() == 33);
2676 let accepted_preimage_claim = input.witness.len() == 5 && input.witness[4].len() == ACCEPTED_HTLC_SCRIPT_WEIGHT;
2677 let offered_preimage_claim = input.witness.len() == 3 && input.witness[2].len() == OFFERED_HTLC_SCRIPT_WEIGHT;
2679 macro_rules! log_claim {
2680 ($tx_info: expr, $local_tx: expr, $htlc: expr, $source_avail: expr) => {
2681 // We found the output in question, but aren't failing it backwards
2682 // as we have no corresponding source and no valid remote commitment txid
2683 // to try a weak source binding with same-hash, same-value still-valid offered HTLC.
2684 // This implies either it is an inbound HTLC or an outbound HTLC on a revoked transaction.
2685 let outbound_htlc = $local_tx == $htlc.offered;
2686 if ($local_tx && revocation_sig_claim) ||
2687 (outbound_htlc && !$source_avail && (accepted_preimage_claim || offered_preimage_claim)) {
2688 log_error!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}!",
2689 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2690 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2691 if revocation_sig_claim { "revocation sig" } else { "preimage claim after we'd passed the HTLC resolution back" });
2693 log_info!(self, "Input spending {} ({}:{}) in {} resolves {} HTLC with payment hash {} with {}",
2694 $tx_info, input.previous_output.txid, input.previous_output.vout, tx.txid(),
2695 if outbound_htlc { "outbound" } else { "inbound" }, log_bytes!($htlc.payment_hash.0),
2696 if revocation_sig_claim { "revocation sig" } else if accepted_preimage_claim || offered_preimage_claim { "preimage" } else { "timeout" });
2701 macro_rules! check_htlc_valid_remote {
2702 ($remote_txid: expr, $htlc_output: expr) => {
2703 if let &Some(txid) = $remote_txid {
2704 for &(ref pending_htlc, ref pending_source) in self.remote_claimable_outpoints.get(&txid).unwrap() {
2705 if pending_htlc.payment_hash == $htlc_output.payment_hash && pending_htlc.amount_msat == $htlc_output.amount_msat {
2706 if let &Some(ref source) = pending_source {
2707 log_claim!("revoked remote commitment tx", false, pending_htlc, true);
2708 payment_data = Some(((**source).clone(), $htlc_output.payment_hash));
2717 macro_rules! scan_commitment {
2718 ($htlcs: expr, $tx_info: expr, $local_tx: expr) => {
2719 for (ref htlc_output, source_option) in $htlcs {
2720 if Some(input.previous_output.vout) == htlc_output.transaction_output_index {
2721 if let Some(ref source) = source_option {
2722 log_claim!($tx_info, $local_tx, htlc_output, true);
2723 // We have a resolution of an HTLC either from one of our latest
2724 // local commitment transactions or an unrevoked remote commitment
2725 // transaction. This implies we either learned a preimage, the HTLC
2726 // has timed out, or we screwed up. In any case, we should now
2727 // resolve the source HTLC with the original sender.
2728 payment_data = Some(((*source).clone(), htlc_output.payment_hash));
2729 } else if !$local_tx {
2730 if let Storage::Local { ref current_remote_commitment_txid, .. } = self.key_storage {
2731 check_htlc_valid_remote!(current_remote_commitment_txid, htlc_output);
2733 if payment_data.is_none() {
2734 if let Storage::Local { ref prev_remote_commitment_txid, .. } = self.key_storage {
2735 check_htlc_valid_remote!(prev_remote_commitment_txid, htlc_output);
2739 if payment_data.is_none() {
2740 log_claim!($tx_info, $local_tx, htlc_output, false);
2741 continue 'outer_loop;
2748 if let Some(ref current_local_signed_commitment_tx) = self.current_local_signed_commitment_tx {
2749 if input.previous_output.txid == current_local_signed_commitment_tx.txid {
2750 scan_commitment!(current_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2751 "our latest local commitment tx", true);
2754 if let Some(ref prev_local_signed_commitment_tx) = self.prev_local_signed_commitment_tx {
2755 if input.previous_output.txid == prev_local_signed_commitment_tx.txid {
2756 scan_commitment!(prev_local_signed_commitment_tx.htlc_outputs.iter().map(|&(ref a, _, ref b)| (a, b.as_ref())),
2757 "our previous local commitment tx", true);
2760 if let Some(ref htlc_outputs) = self.remote_claimable_outpoints.get(&input.previous_output.txid) {
2761 scan_commitment!(htlc_outputs.iter().map(|&(ref a, ref b)| (a, (b.as_ref().clone()).map(|boxed| &**boxed))),
2762 "remote commitment tx", false);
2765 // Check that scan_commitment, above, decided there is some source worth relaying an
2766 // HTLC resolution backwards to and figure out whether we learned a preimage from it.
2767 if let Some((source, payment_hash)) = payment_data {
2768 let mut payment_preimage = PaymentPreimage([0; 32]);
2769 if accepted_preimage_claim {
2770 payment_preimage.0.copy_from_slice(&input.witness[3]);
2771 htlc_updated.push((source, Some(payment_preimage), payment_hash));
2772 } else if offered_preimage_claim {
2773 payment_preimage.0.copy_from_slice(&input.witness[1]);
2774 htlc_updated.push((source, Some(payment_preimage), payment_hash));
2776 log_info!(self, "Failing HTLC with payment_hash {} timeout by a spend tx, waiting for confirmation (at height{})", log_bytes!(payment_hash.0), height + ANTI_REORG_DELAY - 1);
2777 match self.onchain_events_waiting_threshold_conf.entry(height + ANTI_REORG_DELAY - 1) {
2778 hash_map::Entry::Occupied(mut entry) => {
2779 let e = entry.get_mut();
2780 e.retain(|ref event| {
2782 OnchainEvent::HTLCUpdate { ref htlc_update } => {
2783 return htlc_update.0 != source
2788 e.push(OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)});
2790 hash_map::Entry::Vacant(entry) => {
2791 entry.insert(vec![OnchainEvent::HTLCUpdate { htlc_update: (source, payment_hash)}]);
2800 /// Lightning security model (i.e being able to redeem/timeout HTLC or penalize coutnerparty onchain) lays on the assumption of claim transactions getting confirmed before timelock expiration
2801 /// (CSV or CLTV following cases). In case of high-fee spikes, claim tx may stuck in the mempool, so you need to bump its feerate quickly using Replace-By-Fee or Child-Pay-For-Parent.
2802 fn bump_claim_tx(&self, height: u32, cached_claim_datas: &ClaimTxBumpMaterial, fee_estimator: &FeeEstimator) -> Option<(u32, u64, Transaction)> {
2803 if cached_claim_datas.per_input_material.len() == 0 { return None } // But don't prune pending claiming request yet, we may have to resurrect HTLCs
2804 let mut inputs = Vec::new();
2805 for outp in cached_claim_datas.per_input_material.keys() {
2807 previous_output: *outp,
2808 script_sig: Script::new(),
2809 sequence: 0xfffffffd,
2810 witness: Vec::new(),
2813 let mut bumped_tx = Transaction {
2817 output: vec![TxOut {
2818 script_pubkey: self.destination_script.clone(),
2823 macro_rules! RBF_bump {
2824 ($amount: expr, $old_feerate: expr, $fee_estimator: expr, $predicted_weight: expr) => {
2826 let mut used_feerate;
2827 // If old feerate inferior to actual one given back by Fee Estimator, use it to compute new fee...
2828 let new_fee = if $old_feerate < $fee_estimator.get_est_sat_per_1000_weight(ConfirmationTarget::HighPriority) {
2829 let mut value = $amount;
2830 if subtract_high_prio_fee!(self, $fee_estimator, value, $predicted_weight, used_feerate) {
2831 // Overflow check is done in subtract_high_prio_fee
2834 log_trace!(self, "Can't new-estimation bump new claiming tx, amount {} is too small", $amount);
2837 // ...else just increase the previous feerate by 25% (because that's a nice number)
2839 let fee = $old_feerate * $predicted_weight / 750;
2841 log_trace!(self, "Can't 25% bump new claiming tx, amount {} is too small", $amount);
2847 let previous_fee = $old_feerate * $predicted_weight / 1000;
2848 let min_relay_fee = MIN_RELAY_FEE_SAT_PER_1000_WEIGHT * $predicted_weight / 1000;
2849 // BIP 125 Opt-in Full Replace-by-Fee Signaling
2850 // * 3. The replacement transaction pays an absolute fee of at least the sum paid by the original transactions.
2851 // * 4. The replacement transaction must also pay for its own bandwidth at or above the rate set by the node's minimum relay fee setting.
2852 let new_fee = if new_fee < previous_fee + min_relay_fee {
2853 new_fee + previous_fee + min_relay_fee - new_fee
2857 Some((new_fee, new_fee * 1000 / $predicted_weight))
2862 let new_timer = Self::get_height_timer(height, cached_claim_datas.soonest_timelock);
2863 let mut inputs_witnesses_weight = 0;
2865 for per_outp_material in cached_claim_datas.per_input_material.values() {
2866 match per_outp_material {
2867 &InputMaterial::Revoked { ref script, ref is_htlc, ref amount, .. } => {
2868 inputs_witnesses_weight += Self::get_witnesses_weight(if !is_htlc { &[InputDescriptors::RevokedOutput] } else if script.len() == OFFERED_HTLC_SCRIPT_WEIGHT { &[InputDescriptors::RevokedOfferedHTLC] } else if script.len() == ACCEPTED_HTLC_SCRIPT_WEIGHT { &[InputDescriptors::RevokedReceivedHTLC] } else { &[] });
2871 &InputMaterial::RemoteHTLC { ref preimage, ref amount, .. } => {
2872 inputs_witnesses_weight += Self::get_witnesses_weight(if preimage.is_some() { &[InputDescriptors::OfferedHTLC] } else { &[InputDescriptors::ReceivedHTLC] });
2875 &InputMaterial::LocalHTLC { .. } => { return None; }
2879 let predicted_weight = bumped_tx.get_weight() + inputs_witnesses_weight;
2881 if let Some((new_fee, feerate)) = RBF_bump!(amt, cached_claim_datas.feerate_previous, fee_estimator, predicted_weight as u64) {
2882 // If new computed fee is superior at the whole claimable amount burn all in fees
2884 bumped_tx.output[0].value = 0;
2886 bumped_tx.output[0].value = amt - new_fee;
2888 new_feerate = feerate;
2892 assert!(new_feerate != 0);
2894 for (i, (outp, per_outp_material)) in cached_claim_datas.per_input_material.iter().enumerate() {
2895 match per_outp_material {
2896 &InputMaterial::Revoked { ref script, ref pubkey, ref key, ref is_htlc, ref amount } => {
2897 let sighash_parts = bip143::SighashComponents::new(&bumped_tx);
2898 let sighash = hash_to_message!(&sighash_parts.sighash_all(&bumped_tx.input[i], &script, *amount)[..]);
2899 let sig = self.secp_ctx.sign(&sighash, &key);
2900 bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
2901 bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
2903 bumped_tx.input[i].witness.push(pubkey.unwrap().clone().serialize().to_vec());
2905 bumped_tx.input[i].witness.push(vec!(1));
2907 bumped_tx.input[i].witness.push(script.clone().into_bytes());
2908 log_trace!(self, "Going to broadcast bumped Penalty Transaction {} claiming revoked {} output {} from {} with new feerate {}", bumped_tx.txid(), if !is_htlc { "to_local" } else if script.len() == OFFERED_HTLC_SCRIPT_WEIGHT { "offered" } else if script.len() == ACCEPTED_HTLC_SCRIPT_WEIGHT { "received" } else { "" }, outp.vout, outp.txid, new_feerate);
2910 &InputMaterial::RemoteHTLC { ref script, ref key, ref preimage, ref amount, ref locktime } => {
2911 if !preimage.is_some() { bumped_tx.lock_time = *locktime };
2912 let sighash_parts = bip143::SighashComponents::new(&bumped_tx);
2913 let sighash = hash_to_message!(&sighash_parts.sighash_all(&bumped_tx.input[i], &script, *amount)[..]);
2914 let sig = self.secp_ctx.sign(&sighash, &key);
2915 bumped_tx.input[i].witness.push(sig.serialize_der().to_vec());
2916 bumped_tx.input[i].witness[0].push(SigHashType::All as u8);
2917 if let &Some(preimage) = preimage {
2918 bumped_tx.input[i].witness.push(preimage.clone().0.to_vec());
2920 bumped_tx.input[i].witness.push(vec![0]);
2922 bumped_tx.input[i].witness.push(script.clone().into_bytes());
2923 log_trace!(self, "Going to broadcast bumped Claim Transaction {} claiming remote {} htlc output {} from {} with new feerate {}", bumped_tx.txid(), if preimage.is_some() { "offered" } else { "received" }, outp.vout, outp.txid, new_feerate);
2925 &InputMaterial::LocalHTLC { .. } => {
2926 //TODO : Given that Local Commitment Transaction and HTLC-Timeout/HTLC-Success are counter-signed by peer, we can't
2927 // RBF them. Need a Lightning specs change and package relay modification :
2928 // https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-November/016518.html
2933 assert!(predicted_weight >= bumped_tx.get_weight());
2934 Some((new_timer, new_feerate, bumped_tx))
2938 const MAX_ALLOC_SIZE: usize = 64*1024;
2940 impl<R: ::std::io::Read> ReadableArgs<R, Arc<Logger>> for (Sha256dHash, ChannelMonitor) {
2941 fn read(reader: &mut R, logger: Arc<Logger>) -> Result<Self, DecodeError> {
2942 let secp_ctx = Secp256k1::new();
2943 macro_rules! unwrap_obj {
2947 Err(_) => return Err(DecodeError::InvalidValue),
2952 let _ver: u8 = Readable::read(reader)?;
2953 let min_ver: u8 = Readable::read(reader)?;
2954 if min_ver > SERIALIZATION_VERSION {
2955 return Err(DecodeError::UnknownVersion);
2958 let commitment_transaction_number_obscure_factor = <U48 as Readable<R>>::read(reader)?.0;
2960 let key_storage = match <u8 as Readable<R>>::read(reader)? {
2962 let revocation_base_key = Readable::read(reader)?;
2963 let htlc_base_key = Readable::read(reader)?;
2964 let delayed_payment_base_key = Readable::read(reader)?;
2965 let payment_base_key = Readable::read(reader)?;
2966 let shutdown_pubkey = Readable::read(reader)?;
2967 let prev_latest_per_commitment_point = Readable::read(reader)?;
2968 let latest_per_commitment_point = Readable::read(reader)?;
2969 // Technically this can fail and serialize fail a round-trip, but only for serialization of
2970 // barely-init'd ChannelMonitors that we can't do anything with.
2971 let outpoint = OutPoint {
2972 txid: Readable::read(reader)?,
2973 index: Readable::read(reader)?,
2975 let funding_info = Some((outpoint, Readable::read(reader)?));
2976 let current_remote_commitment_txid = Readable::read(reader)?;
2977 let prev_remote_commitment_txid = Readable::read(reader)?;
2979 revocation_base_key,
2981 delayed_payment_base_key,
2984 prev_latest_per_commitment_point,
2985 latest_per_commitment_point,
2987 current_remote_commitment_txid,
2988 prev_remote_commitment_txid,
2991 _ => return Err(DecodeError::InvalidValue),
2994 let their_htlc_base_key = Some(Readable::read(reader)?);
2995 let their_delayed_payment_base_key = Some(Readable::read(reader)?);
2997 let their_cur_revocation_points = {
2998 let first_idx = <U48 as Readable<R>>::read(reader)?.0;
3002 let first_point = Readable::read(reader)?;
3003 let second_point_slice: [u8; 33] = Readable::read(reader)?;
3004 if second_point_slice[0..32] == [0; 32] && second_point_slice[32] == 0 {
3005 Some((first_idx, first_point, None))
3007 Some((first_idx, first_point, Some(unwrap_obj!(PublicKey::from_slice(&second_point_slice)))))
3012 let our_to_self_delay: u16 = Readable::read(reader)?;
3013 let their_to_self_delay: Option<u16> = Some(Readable::read(reader)?);
3015 let mut old_secrets = [([0; 32], 1 << 48); 49];
3016 for &mut (ref mut secret, ref mut idx) in old_secrets.iter_mut() {
3017 *secret = Readable::read(reader)?;
3018 *idx = Readable::read(reader)?;
3021 macro_rules! read_htlc_in_commitment {
3024 let offered: bool = Readable::read(reader)?;
3025 let amount_msat: u64 = Readable::read(reader)?;
3026 let cltv_expiry: u32 = Readable::read(reader)?;
3027 let payment_hash: PaymentHash = Readable::read(reader)?;
3028 let transaction_output_index: Option<u32> = Readable::read(reader)?;
3030 HTLCOutputInCommitment {
3031 offered, amount_msat, cltv_expiry, payment_hash, transaction_output_index
3037 let remote_claimable_outpoints_len: u64 = Readable::read(reader)?;
3038 let mut remote_claimable_outpoints = HashMap::with_capacity(cmp::min(remote_claimable_outpoints_len as usize, MAX_ALLOC_SIZE / 64));
3039 for _ in 0..remote_claimable_outpoints_len {
3040 let txid: Sha256dHash = Readable::read(reader)?;
3041 let htlcs_count: u64 = Readable::read(reader)?;
3042 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_count as usize, MAX_ALLOC_SIZE / 32));
3043 for _ in 0..htlcs_count {
3044 htlcs.push((read_htlc_in_commitment!(), <Option<HTLCSource> as Readable<R>>::read(reader)?.map(|o: HTLCSource| Box::new(o))));
3046 if let Some(_) = remote_claimable_outpoints.insert(txid, htlcs) {
3047 return Err(DecodeError::InvalidValue);
3051 let remote_commitment_txn_on_chain_len: u64 = Readable::read(reader)?;
3052 let mut remote_commitment_txn_on_chain = HashMap::with_capacity(cmp::min(remote_commitment_txn_on_chain_len as usize, MAX_ALLOC_SIZE / 32));
3053 for _ in 0..remote_commitment_txn_on_chain_len {
3054 let txid: Sha256dHash = Readable::read(reader)?;
3055 let commitment_number = <U48 as Readable<R>>::read(reader)?.0;
3056 let outputs_count = <u64 as Readable<R>>::read(reader)?;
3057 let mut outputs = Vec::with_capacity(cmp::min(outputs_count as usize, MAX_ALLOC_SIZE / 8));
3058 for _ in 0..outputs_count {
3059 outputs.push(Readable::read(reader)?);
3061 if let Some(_) = remote_commitment_txn_on_chain.insert(txid, (commitment_number, outputs)) {
3062 return Err(DecodeError::InvalidValue);
3066 let remote_hash_commitment_number_len: u64 = Readable::read(reader)?;
3067 let mut remote_hash_commitment_number = HashMap::with_capacity(cmp::min(remote_hash_commitment_number_len as usize, MAX_ALLOC_SIZE / 32));
3068 for _ in 0..remote_hash_commitment_number_len {
3069 let payment_hash: PaymentHash = Readable::read(reader)?;
3070 let commitment_number = <U48 as Readable<R>>::read(reader)?.0;
3071 if let Some(_) = remote_hash_commitment_number.insert(payment_hash, commitment_number) {
3072 return Err(DecodeError::InvalidValue);
3076 macro_rules! read_local_tx {
3079 let tx = match Transaction::consensus_decode(reader.by_ref()) {
3082 encode::Error::Io(ioe) => return Err(DecodeError::Io(ioe)),
3083 _ => return Err(DecodeError::InvalidValue),
3087 if tx.input.is_empty() {
3088 // Ensure tx didn't hit the 0-input ambiguity case.
3089 return Err(DecodeError::InvalidValue);
3092 let revocation_key = Readable::read(reader)?;
3093 let a_htlc_key = Readable::read(reader)?;
3094 let b_htlc_key = Readable::read(reader)?;
3095 let delayed_payment_key = Readable::read(reader)?;
3096 let feerate_per_kw: u64 = Readable::read(reader)?;
3098 let htlcs_len: u64 = Readable::read(reader)?;
3099 let mut htlcs = Vec::with_capacity(cmp::min(htlcs_len as usize, MAX_ALLOC_SIZE / 128));
3100 for _ in 0..htlcs_len {
3101 let htlc = read_htlc_in_commitment!();
3102 let sigs = match <u8 as Readable<R>>::read(reader)? {
3104 1 => Some((Readable::read(reader)?, Readable::read(reader)?)),
3105 _ => return Err(DecodeError::InvalidValue),
3107 htlcs.push((htlc, sigs, Readable::read(reader)?));
3112 tx, revocation_key, a_htlc_key, b_htlc_key, delayed_payment_key, feerate_per_kw,
3119 let prev_local_signed_commitment_tx = match <u8 as Readable<R>>::read(reader)? {
3122 Some(read_local_tx!())
3124 _ => return Err(DecodeError::InvalidValue),
3127 let current_local_signed_commitment_tx = match <u8 as Readable<R>>::read(reader)? {
3130 Some(read_local_tx!())
3132 _ => return Err(DecodeError::InvalidValue),
3135 let current_remote_commitment_number = <U48 as Readable<R>>::read(reader)?.0;
3137 let payment_preimages_len: u64 = Readable::read(reader)?;
3138 let mut payment_preimages = HashMap::with_capacity(cmp::min(payment_preimages_len as usize, MAX_ALLOC_SIZE / 32));
3139 for _ in 0..payment_preimages_len {
3140 let preimage: PaymentPreimage = Readable::read(reader)?;
3141 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3142 if let Some(_) = payment_preimages.insert(hash, preimage) {
3143 return Err(DecodeError::InvalidValue);
3147 let last_block_hash: Sha256dHash = Readable::read(reader)?;
3148 let destination_script = Readable::read(reader)?;
3149 let to_remote_rescue = match <u8 as Readable<R>>::read(reader)? {
3152 let to_remote_script = Readable::read(reader)?;
3153 let local_key = Readable::read(reader)?;
3154 Some((to_remote_script, local_key))
3156 _ => return Err(DecodeError::InvalidValue),
3159 let pending_claim_requests_len: u64 = Readable::read(reader)?;
3160 let mut pending_claim_requests = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
3161 for _ in 0..pending_claim_requests_len {
3162 pending_claim_requests.insert(Readable::read(reader)?, Readable::read(reader)?);
3165 let claimable_outpoints_len: u64 = Readable::read(reader)?;
3166 let mut claimable_outpoints = HashMap::with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
3167 for _ in 0..claimable_outpoints_len {
3168 let outpoint = Readable::read(reader)?;
3169 let ancestor_claim_txid = Readable::read(reader)?;
3170 let height = Readable::read(reader)?;
3171 claimable_outpoints.insert(outpoint, (ancestor_claim_txid, height));
3174 let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
3175 let mut onchain_events_waiting_threshold_conf = HashMap::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
3176 for _ in 0..waiting_threshold_conf_len {
3177 let height_target = Readable::read(reader)?;
3178 let events_len: u64 = Readable::read(reader)?;
3179 let mut events = Vec::with_capacity(cmp::min(events_len as usize, MAX_ALLOC_SIZE / 128));
3180 for _ in 0..events_len {
3181 let ev = match <u8 as Readable<R>>::read(reader)? {
3183 let claim_request = Readable::read(reader)?;
3184 OnchainEvent::Claim {
3189 let htlc_source = Readable::read(reader)?;
3190 let hash = Readable::read(reader)?;
3191 OnchainEvent::HTLCUpdate {
3192 htlc_update: (htlc_source, hash)
3196 let outpoint = Readable::read(reader)?;
3197 let input_material = Readable::read(reader)?;
3198 OnchainEvent::ContentiousOutpoint {
3203 _ => return Err(DecodeError::InvalidValue),
3207 onchain_events_waiting_threshold_conf.insert(height_target, events);
3210 Ok((last_block_hash.clone(), ChannelMonitor {
3211 commitment_transaction_number_obscure_factor,
3214 their_htlc_base_key,
3215 their_delayed_payment_base_key,
3216 their_cur_revocation_points,
3219 their_to_self_delay,
3222 remote_claimable_outpoints,
3223 remote_commitment_txn_on_chain,
3224 remote_hash_commitment_number,
3226 prev_local_signed_commitment_tx,
3227 current_local_signed_commitment_tx,
3228 current_remote_commitment_number,
3235 pending_claim_requests,
3237 claimable_outpoints,
3239 onchain_events_waiting_threshold_conf,
3251 use bitcoin::blockdata::script::{Script, Builder};
3252 use bitcoin::blockdata::opcodes;
3253 use bitcoin::blockdata::transaction::{Transaction, TxIn, TxOut, SigHashType};
3254 use bitcoin::blockdata::transaction::OutPoint as BitcoinOutPoint;
3255 use bitcoin::util::bip143;
3256 use bitcoin_hashes::Hash;
3257 use bitcoin_hashes::sha256::Hash as Sha256;
3258 use bitcoin_hashes::sha256d::Hash as Sha256dHash;
3259 use bitcoin_hashes::hex::FromHex;
3261 use ln::channelmanager::{PaymentPreimage, PaymentHash};
3262 use ln::channelmonitor::{ChannelMonitor, InputDescriptors};
3264 use ln::chan_utils::{HTLCOutputInCommitment, TxCreationKeys};
3265 use util::test_utils::TestLogger;
3266 use secp256k1::key::{SecretKey,PublicKey};
3267 use secp256k1::Secp256k1;
3268 use rand::{thread_rng,Rng};
3272 fn test_per_commitment_storage() {
3273 // Test vectors from BOLT 3:
3274 let mut secrets: Vec<[u8; 32]> = Vec::new();
3275 let mut monitor: ChannelMonitor;
3276 let secp_ctx = Secp256k1::new();
3277 let logger = Arc::new(TestLogger::new());
3279 macro_rules! test_secrets {
3281 let mut idx = 281474976710655;
3282 for secret in secrets.iter() {
3283 assert_eq!(monitor.get_secret(idx).unwrap(), *secret);
3286 assert_eq!(monitor.get_min_seen_secret(), idx + 1);
3287 assert!(monitor.get_secret(idx).is_none());
3292 // insert_secret correct sequence
3293 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3296 secrets.push([0; 32]);
3297 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3298 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3301 secrets.push([0; 32]);
3302 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3303 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3306 secrets.push([0; 32]);
3307 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3308 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3311 secrets.push([0; 32]);
3312 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3313 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
3316 secrets.push([0; 32]);
3317 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
3318 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
3321 secrets.push([0; 32]);
3322 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
3323 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
3326 secrets.push([0; 32]);
3327 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
3328 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
3331 secrets.push([0; 32]);
3332 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
3333 monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap();
3338 // insert_secret #1 incorrect
3339 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3342 secrets.push([0; 32]);
3343 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
3344 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3347 secrets.push([0; 32]);
3348 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3349 assert_eq!(monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap_err().0,
3350 "Previous secret did not match new one");
3354 // insert_secret #2 incorrect (#1 derived from incorrect)
3355 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3358 secrets.push([0; 32]);
3359 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
3360 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3363 secrets.push([0; 32]);
3364 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
3365 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3368 secrets.push([0; 32]);
3369 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3370 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3373 secrets.push([0; 32]);
3374 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3375 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0,
3376 "Previous secret did not match new one");
3380 // insert_secret #3 incorrect
3381 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3384 secrets.push([0; 32]);
3385 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3386 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3389 secrets.push([0; 32]);
3390 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3391 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3394 secrets.push([0; 32]);
3395 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
3396 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3399 secrets.push([0; 32]);
3400 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3401 assert_eq!(monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap_err().0,
3402 "Previous secret did not match new one");
3406 // insert_secret #4 incorrect (1,2,3 derived from incorrect)
3407 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3410 secrets.push([0; 32]);
3411 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("02a40c85b6f28da08dfdbe0926c53fab2de6d28c10301f8f7c4073d5e42e3148").unwrap());
3412 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3415 secrets.push([0; 32]);
3416 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("dddc3a8d14fddf2b68fa8c7fbad2748274937479dd0f8930d5ebb4ab6bd866a3").unwrap());
3417 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3420 secrets.push([0; 32]);
3421 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c51a18b13e8527e579ec56365482c62f180b7d5760b46e9477dae59e87ed423a").unwrap());
3422 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3425 secrets.push([0; 32]);
3426 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("ba65d7b0ef55a3ba300d4e87af29868f394f8f138d78a7011669c79b37b936f4").unwrap());
3427 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
3430 secrets.push([0; 32]);
3431 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
3432 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
3435 secrets.push([0; 32]);
3436 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
3437 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
3440 secrets.push([0; 32]);
3441 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
3442 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
3445 secrets.push([0; 32]);
3446 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
3447 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
3448 "Previous secret did not match new one");
3452 // insert_secret #5 incorrect
3453 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3456 secrets.push([0; 32]);
3457 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3458 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3461 secrets.push([0; 32]);
3462 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3463 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3466 secrets.push([0; 32]);
3467 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3468 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3471 secrets.push([0; 32]);
3472 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3473 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
3476 secrets.push([0; 32]);
3477 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
3478 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
3481 secrets.push([0; 32]);
3482 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
3483 assert_eq!(monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap_err().0,
3484 "Previous secret did not match new one");
3488 // insert_secret #6 incorrect (5 derived from incorrect)
3489 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3492 secrets.push([0; 32]);
3493 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3494 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3497 secrets.push([0; 32]);
3498 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3499 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3502 secrets.push([0; 32]);
3503 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3504 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3507 secrets.push([0; 32]);
3508 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3509 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
3512 secrets.push([0; 32]);
3513 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("631373ad5f9ef654bb3dade742d09504c567edd24320d2fcd68e3cc47e2ff6a6").unwrap());
3514 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
3517 secrets.push([0; 32]);
3518 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("b7e76a83668bde38b373970155c868a653304308f9896692f904a23731224bb1").unwrap());
3519 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
3522 secrets.push([0; 32]);
3523 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
3524 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
3527 secrets.push([0; 32]);
3528 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
3529 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
3530 "Previous secret did not match new one");
3534 // insert_secret #7 incorrect
3535 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3538 secrets.push([0; 32]);
3539 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3540 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3543 secrets.push([0; 32]);
3544 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3545 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3548 secrets.push([0; 32]);
3549 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3550 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3553 secrets.push([0; 32]);
3554 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3555 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
3558 secrets.push([0; 32]);
3559 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
3560 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
3563 secrets.push([0; 32]);
3564 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
3565 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
3568 secrets.push([0; 32]);
3569 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("e7971de736e01da8ed58b94c2fc216cb1dca9e326f3a96e7194fe8ea8af6c0a3").unwrap());
3570 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
3573 secrets.push([0; 32]);
3574 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("05cde6323d949933f7f7b78776bcc1ea6d9b31447732e3802e1f7ac44b650e17").unwrap());
3575 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
3576 "Previous secret did not match new one");
3580 // insert_secret #8 incorrect
3581 monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3584 secrets.push([0; 32]);
3585 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3586 monitor.provide_secret(281474976710655, secrets.last().unwrap().clone()).unwrap();
3589 secrets.push([0; 32]);
3590 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3591 monitor.provide_secret(281474976710654, secrets.last().unwrap().clone()).unwrap();
3594 secrets.push([0; 32]);
3595 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3596 monitor.provide_secret(281474976710653, secrets.last().unwrap().clone()).unwrap();
3599 secrets.push([0; 32]);
3600 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3601 monitor.provide_secret(281474976710652, secrets.last().unwrap().clone()).unwrap();
3604 secrets.push([0; 32]);
3605 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("c65716add7aa98ba7acb236352d665cab17345fe45b55fb879ff80e6bd0c41dd").unwrap());
3606 monitor.provide_secret(281474976710651, secrets.last().unwrap().clone()).unwrap();
3609 secrets.push([0; 32]);
3610 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("969660042a28f32d9be17344e09374b379962d03db1574df5a8a5a47e19ce3f2").unwrap());
3611 monitor.provide_secret(281474976710650, secrets.last().unwrap().clone()).unwrap();
3614 secrets.push([0; 32]);
3615 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a5a64476122ca0925fb344bdc1854c1c0a59fc614298e50a33e331980a220f32").unwrap());
3616 monitor.provide_secret(281474976710649, secrets.last().unwrap().clone()).unwrap();
3619 secrets.push([0; 32]);
3620 secrets.last_mut().unwrap()[0..32].clone_from_slice(&hex::decode("a7efbc61aac46d34f77778bac22c8a20c6a46ca460addc49009bda875ec88fa4").unwrap());
3621 assert_eq!(monitor.provide_secret(281474976710648, secrets.last().unwrap().clone()).unwrap_err().0,
3622 "Previous secret did not match new one");
3627 fn test_prune_preimages() {
3628 let secp_ctx = Secp256k1::new();
3629 let logger = Arc::new(TestLogger::new());
3631 let dummy_key = PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[42; 32]).unwrap());
3632 macro_rules! dummy_keys {
3636 per_commitment_point: dummy_key.clone(),
3637 revocation_key: dummy_key.clone(),
3638 a_htlc_key: dummy_key.clone(),
3639 b_htlc_key: dummy_key.clone(),
3640 a_delayed_payment_key: dummy_key.clone(),
3641 b_payment_key: dummy_key.clone(),
3646 let dummy_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3648 let mut preimages = Vec::new();
3650 let mut rng = thread_rng();
3652 let mut preimage = PaymentPreimage([0; 32]);
3653 rng.fill_bytes(&mut preimage.0[..]);
3654 let hash = PaymentHash(Sha256::hash(&preimage.0[..]).into_inner());
3655 preimages.push((preimage, hash));
3659 macro_rules! preimages_slice_to_htlc_outputs {
3660 ($preimages_slice: expr) => {
3662 let mut res = Vec::new();
3663 for (idx, preimage) in $preimages_slice.iter().enumerate() {
3664 res.push((HTLCOutputInCommitment {
3668 payment_hash: preimage.1.clone(),
3669 transaction_output_index: Some(idx as u32),
3676 macro_rules! preimages_to_local_htlcs {
3677 ($preimages_slice: expr) => {
3679 let mut inp = preimages_slice_to_htlc_outputs!($preimages_slice);
3680 let res: Vec<_> = inp.drain(..).map(|e| { (e.0, None, e.1) }).collect();
3686 macro_rules! test_preimages_exist {
3687 ($preimages_slice: expr, $monitor: expr) => {
3688 for preimage in $preimages_slice {
3689 assert!($monitor.payment_preimages.contains_key(&preimage.1));
3694 // Prune with one old state and a local commitment tx holding a few overlaps with the
3696 let mut monitor = ChannelMonitor::new(&SecretKey::from_slice(&[42; 32]).unwrap(), &SecretKey::from_slice(&[43; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &SecretKey::from_slice(&[44; 32]).unwrap(), &PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&[45; 32]).unwrap()), 0, Script::new(), logger.clone());
3697 monitor.set_their_to_self_delay(10);
3699 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..10]));
3700 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[5..15]), 281474976710655, dummy_key);
3701 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[15..20]), 281474976710654, dummy_key);
3702 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[17..20]), 281474976710653, dummy_key);
3703 monitor.provide_latest_remote_commitment_tx_info(&dummy_tx, preimages_slice_to_htlc_outputs!(preimages[18..20]), 281474976710652, dummy_key);
3704 for &(ref preimage, ref hash) in preimages.iter() {
3705 monitor.provide_payment_preimage(hash, preimage);
3708 // Now provide a secret, pruning preimages 10-15
3709 let mut secret = [0; 32];
3710 secret[0..32].clone_from_slice(&hex::decode("7cc854b54e3e0dcdb010d7a3fee464a9687be6e8db3be6854c475621e007a5dc").unwrap());
3711 monitor.provide_secret(281474976710655, secret.clone()).unwrap();
3712 assert_eq!(monitor.payment_preimages.len(), 15);
3713 test_preimages_exist!(&preimages[0..10], monitor);
3714 test_preimages_exist!(&preimages[15..20], monitor);
3716 // Now provide a further secret, pruning preimages 15-17
3717 secret[0..32].clone_from_slice(&hex::decode("c7518c8ae4660ed02894df8976fa1a3659c1a8b4b5bec0c4b872abeba4cb8964").unwrap());
3718 monitor.provide_secret(281474976710654, secret.clone()).unwrap();
3719 assert_eq!(monitor.payment_preimages.len(), 13);
3720 test_preimages_exist!(&preimages[0..10], monitor);
3721 test_preimages_exist!(&preimages[17..20], monitor);
3723 // Now update local commitment tx info, pruning only element 18 as we still care about the
3724 // previous commitment tx's preimages too
3725 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..5]));
3726 secret[0..32].clone_from_slice(&hex::decode("2273e227a5b7449b6e70f1fb4652864038b1cbf9cd7c043a7d6456b7fc275ad8").unwrap());
3727 monitor.provide_secret(281474976710653, secret.clone()).unwrap();
3728 assert_eq!(monitor.payment_preimages.len(), 12);
3729 test_preimages_exist!(&preimages[0..10], monitor);
3730 test_preimages_exist!(&preimages[18..20], monitor);
3732 // But if we do it again, we'll prune 5-10
3733 monitor.provide_latest_local_commitment_tx_info(dummy_tx.clone(), dummy_keys!(), 0, preimages_to_local_htlcs!(preimages[0..3]));
3734 secret[0..32].clone_from_slice(&hex::decode("27cddaa5624534cb6cb9d7da077cf2b22ab21e9b506fd4998a51d54502e99116").unwrap());
3735 monitor.provide_secret(281474976710652, secret.clone()).unwrap();
3736 assert_eq!(monitor.payment_preimages.len(), 5);
3737 test_preimages_exist!(&preimages[0..5], monitor);
3741 fn test_claim_txn_weight_computation() {
3742 // We test Claim txn weight, knowing that we want expected weigth and
3743 // not actual case to avoid sigs and time-lock delays hell variances.
3745 let secp_ctx = Secp256k1::new();
3746 let privkey = SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap();
3747 let pubkey = PublicKey::from_secret_key(&secp_ctx, &privkey);
3748 let mut sum_actual_sigs = 0;
3750 macro_rules! sign_input {
3751 ($sighash_parts: expr, $input: expr, $idx: expr, $amount: expr, $input_type: expr, $sum_actual_sigs: expr) => {
3752 let htlc = HTLCOutputInCommitment {
3753 offered: if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::OfferedHTLC { true } else { false },
3755 cltv_expiry: 2 << 16,
3756 payment_hash: PaymentHash([1; 32]),
3757 transaction_output_index: Some($idx),
3759 let redeem_script = if *$input_type == InputDescriptors::RevokedOutput { chan_utils::get_revokeable_redeemscript(&pubkey, 256, &pubkey) } else { chan_utils::get_htlc_redeemscript_with_explicit_keys(&htlc, &pubkey, &pubkey, &pubkey) };
3760 let sighash = hash_to_message!(&$sighash_parts.sighash_all(&$input, &redeem_script, $amount)[..]);
3761 let sig = secp_ctx.sign(&sighash, &privkey);
3762 $input.witness.push(sig.serialize_der().to_vec());
3763 $input.witness[0].push(SigHashType::All as u8);
3764 sum_actual_sigs += $input.witness[0].len();
3765 if *$input_type == InputDescriptors::RevokedOutput {
3766 $input.witness.push(vec!(1));
3767 } else if *$input_type == InputDescriptors::RevokedOfferedHTLC || *$input_type == InputDescriptors::RevokedReceivedHTLC {
3768 $input.witness.push(pubkey.clone().serialize().to_vec());
3769 } else if *$input_type == InputDescriptors::ReceivedHTLC {
3770 $input.witness.push(vec![0]);
3772 $input.witness.push(PaymentPreimage([1; 32]).0.to_vec());
3774 $input.witness.push(redeem_script.into_bytes());
3775 println!("witness[0] {}", $input.witness[0].len());
3776 println!("witness[1] {}", $input.witness[1].len());
3777 println!("witness[2] {}", $input.witness[2].len());
3781 let script_pubkey = Builder::new().push_opcode(opcodes::all::OP_RETURN).into_script();
3782 let txid = Sha256dHash::from_hex("56944c5d3f98413ef45cf54545538103cc9f298e0575820ad3591376e2e0f65d").unwrap();
3784 // Justice tx with 1 to_local, 2 revoked offered HTLCs, 1 revoked received HTLCs
3785 let mut claim_tx = Transaction { version: 0, lock_time: 0, input: Vec::new(), output: Vec::new() };
3787 claim_tx.input.push(TxIn {
3788 previous_output: BitcoinOutPoint {
3792 script_sig: Script::new(),
3793 sequence: 0xfffffffd,
3794 witness: Vec::new(),
3797 claim_tx.output.push(TxOut {
3798 script_pubkey: script_pubkey.clone(),
3801 let base_weight = claim_tx.get_weight();
3802 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
3803 let inputs_des = vec![InputDescriptors::RevokedOutput, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedOfferedHTLC, InputDescriptors::RevokedReceivedHTLC];
3804 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
3805 sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
3807 assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3809 // Claim tx with 1 offered HTLCs, 3 received HTLCs
3810 claim_tx.input.clear();
3811 sum_actual_sigs = 0;
3813 claim_tx.input.push(TxIn {
3814 previous_output: BitcoinOutPoint {
3818 script_sig: Script::new(),
3819 sequence: 0xfffffffd,
3820 witness: Vec::new(),
3823 let base_weight = claim_tx.get_weight();
3824 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
3825 let inputs_des = vec![InputDescriptors::OfferedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC, InputDescriptors::ReceivedHTLC];
3826 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
3827 sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
3829 assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_sig */ (73 * inputs_des.len() - sum_actual_sigs));
3831 // Justice tx with 1 revoked HTLC-Success tx output
3832 claim_tx.input.clear();
3833 sum_actual_sigs = 0;
3834 claim_tx.input.push(TxIn {
3835 previous_output: BitcoinOutPoint {
3839 script_sig: Script::new(),
3840 sequence: 0xfffffffd,
3841 witness: Vec::new(),
3843 let base_weight = claim_tx.get_weight();
3844 let sighash_parts = bip143::SighashComponents::new(&claim_tx);
3845 let inputs_des = vec![InputDescriptors::RevokedOutput];
3846 for (idx, inp) in claim_tx.input.iter_mut().zip(inputs_des.iter()).enumerate() {
3847 sign_input!(sighash_parts, inp.0, idx as u32, 0, inp.1, sum_actual_sigs);
3849 assert_eq!(base_weight + ChannelMonitor::get_witnesses_weight(&inputs_des[..]), claim_tx.get_weight() + /* max_length_isg */ (73 * inputs_des.len() - sum_actual_sigs));
3852 // Further testing is done in the ChannelManager integration tests.