Merge pull request #1503 from valentinewallace/2022-05-onion-msgs
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::PublicKey;
28 use bitcoin::secp256k1::ecdsa::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34 use ln::onion_utils;
35 use onion_message;
36
37 use prelude::*;
38 use core::fmt;
39 use core::fmt::Debug;
40 use io::{self, Read};
41 use io_extras::read_to_end;
42
43 use util::events::MessageSendEventsProvider;
44 use util::logger;
45 use util::ser::{LengthReadable, Readable, ReadableArgs, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedVarInt, Hostname};
46
47 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
48
49 /// 21 million * 10^8 * 1000
50 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
51
52 /// An error in decoding a message or struct.
53 #[derive(Clone, Debug, PartialEq)]
54 pub enum DecodeError {
55         /// A version byte specified something we don't know how to handle.
56         /// Includes unknown realm byte in an OnionHopData packet
57         UnknownVersion,
58         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
59         UnknownRequiredFeature,
60         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
61         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
62         /// syntactically incorrect, etc
63         InvalidValue,
64         /// Buffer too short
65         ShortRead,
66         /// A length descriptor in the packet didn't describe the later data correctly
67         BadLengthDescriptor,
68         /// Error from std::io
69         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
70         io::ErrorKind),
71         /// The message included zlib-compressed values, which we don't support.
72         UnsupportedCompression,
73 }
74
75 /// An init message to be sent or received from a peer
76 #[derive(Clone, Debug, PartialEq)]
77 pub struct Init {
78         /// The relevant features which the sender supports
79         pub features: InitFeatures,
80         /// The receipient's network address. This adds the option to report a remote IP address
81         /// back to a connecting peer using the init message. A node can decide to use that information
82         /// to discover a potential update to its public IPv4 address (NAT) and use
83         /// that for a node_announcement update message containing the new address.
84         pub remote_network_address: Option<NetAddress>,
85 }
86
87 /// An error message to be sent or received from a peer
88 #[derive(Clone, Debug, PartialEq)]
89 pub struct ErrorMessage {
90         /// The channel ID involved in the error.
91         ///
92         /// All-0s indicates a general error unrelated to a specific channel, after which all channels
93         /// with the sending peer should be closed.
94         pub channel_id: [u8; 32],
95         /// A possibly human-readable error description.
96         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
97         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
98         /// the terminal emulator or the logging subsystem.
99         pub data: String,
100 }
101
102 /// A warning message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct WarningMessage {
105         /// The channel ID involved in the warning.
106         ///
107         /// All-0s indicates a warning unrelated to a specific channel.
108         pub channel_id: [u8; 32],
109         /// A possibly human-readable warning description.
110         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
111         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
112         /// the terminal emulator or the logging subsystem.
113         pub data: String,
114 }
115
116 /// A ping message to be sent or received from a peer
117 #[derive(Clone, Debug, PartialEq)]
118 pub struct Ping {
119         /// The desired response length
120         pub ponglen: u16,
121         /// The ping packet size.
122         /// This field is not sent on the wire. byteslen zeros are sent.
123         pub byteslen: u16,
124 }
125
126 /// A pong message to be sent or received from a peer
127 #[derive(Clone, Debug, PartialEq)]
128 pub struct Pong {
129         /// The pong packet size.
130         /// This field is not sent on the wire. byteslen zeros are sent.
131         pub byteslen: u16,
132 }
133
134 /// An open_channel message to be sent or received from a peer
135 #[derive(Clone, Debug, PartialEq)]
136 pub struct OpenChannel {
137         /// The genesis hash of the blockchain where the channel is to be opened
138         pub chain_hash: BlockHash,
139         /// A temporary channel ID, until the funding outpoint is announced
140         pub temporary_channel_id: [u8; 32],
141         /// The channel value
142         pub funding_satoshis: u64,
143         /// The amount to push to the counterparty as part of the open, in milli-satoshi
144         pub push_msat: u64,
145         /// The threshold below which outputs on transactions broadcast by sender will be omitted
146         pub dust_limit_satoshis: u64,
147         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
148         pub max_htlc_value_in_flight_msat: u64,
149         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
150         pub channel_reserve_satoshis: u64,
151         /// The minimum HTLC size incoming to sender, in milli-satoshi
152         pub htlc_minimum_msat: u64,
153         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
154         pub feerate_per_kw: u32,
155         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
156         pub to_self_delay: u16,
157         /// The maximum number of inbound HTLCs towards sender
158         pub max_accepted_htlcs: u16,
159         /// The sender's key controlling the funding transaction
160         pub funding_pubkey: PublicKey,
161         /// Used to derive a revocation key for transactions broadcast by counterparty
162         pub revocation_basepoint: PublicKey,
163         /// A payment key to sender for transactions broadcast by counterparty
164         pub payment_point: PublicKey,
165         /// Used to derive a payment key to sender for transactions broadcast by sender
166         pub delayed_payment_basepoint: PublicKey,
167         /// Used to derive an HTLC payment key to sender
168         pub htlc_basepoint: PublicKey,
169         /// The first to-be-broadcast-by-sender transaction's per commitment point
170         pub first_per_commitment_point: PublicKey,
171         /// Channel flags
172         pub channel_flags: u8,
173         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
174         pub shutdown_scriptpubkey: OptionalField<Script>,
175         /// The channel type that this channel will represent. If none is set, we derive the channel
176         /// type from the intersection of our feature bits with our counterparty's feature bits from
177         /// the Init message.
178         pub channel_type: Option<ChannelTypeFeatures>,
179 }
180
181 /// An accept_channel message to be sent or received from a peer
182 #[derive(Clone, Debug, PartialEq)]
183 pub struct AcceptChannel {
184         /// A temporary channel ID, until the funding outpoint is announced
185         pub temporary_channel_id: [u8; 32],
186         /// The threshold below which outputs on transactions broadcast by sender will be omitted
187         pub dust_limit_satoshis: u64,
188         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
189         pub max_htlc_value_in_flight_msat: u64,
190         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
191         pub channel_reserve_satoshis: u64,
192         /// The minimum HTLC size incoming to sender, in milli-satoshi
193         pub htlc_minimum_msat: u64,
194         /// Minimum depth of the funding transaction before the channel is considered open
195         pub minimum_depth: u32,
196         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
197         pub to_self_delay: u16,
198         /// The maximum number of inbound HTLCs towards sender
199         pub max_accepted_htlcs: u16,
200         /// The sender's key controlling the funding transaction
201         pub funding_pubkey: PublicKey,
202         /// Used to derive a revocation key for transactions broadcast by counterparty
203         pub revocation_basepoint: PublicKey,
204         /// A payment key to sender for transactions broadcast by counterparty
205         pub payment_point: PublicKey,
206         /// Used to derive a payment key to sender for transactions broadcast by sender
207         pub delayed_payment_basepoint: PublicKey,
208         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
209         pub htlc_basepoint: PublicKey,
210         /// The first to-be-broadcast-by-sender transaction's per commitment point
211         pub first_per_commitment_point: PublicKey,
212         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
213         pub shutdown_scriptpubkey: OptionalField<Script>,
214         /// The channel type that this channel will represent. If none is set, we derive the channel
215         /// type from the intersection of our feature bits with our counterparty's feature bits from
216         /// the Init message.
217         ///
218         /// This is required to match the equivalent field in [`OpenChannel::channel_type`].
219         pub channel_type: Option<ChannelTypeFeatures>,
220 }
221
222 /// A funding_created message to be sent or received from a peer
223 #[derive(Clone, Debug, PartialEq)]
224 pub struct FundingCreated {
225         /// A temporary channel ID, until the funding is established
226         pub temporary_channel_id: [u8; 32],
227         /// The funding transaction ID
228         pub funding_txid: Txid,
229         /// The specific output index funding this channel
230         pub funding_output_index: u16,
231         /// The signature of the channel initiator (funder) on the initial commitment transaction
232         pub signature: Signature,
233 }
234
235 /// A funding_signed message to be sent or received from a peer
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct FundingSigned {
238         /// The channel ID
239         pub channel_id: [u8; 32],
240         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
241         pub signature: Signature,
242 }
243
244 /// A channel_ready message to be sent or received from a peer
245 #[derive(Clone, Debug, PartialEq)]
246 pub struct ChannelReady {
247         /// The channel ID
248         pub channel_id: [u8; 32],
249         /// The per-commitment point of the second commitment transaction
250         pub next_per_commitment_point: PublicKey,
251         /// If set, provides a short_channel_id alias for this channel. The sender will accept payments
252         /// to be forwarded over this SCID and forward them to this messages' recipient.
253         pub short_channel_id_alias: Option<u64>,
254 }
255
256 /// A shutdown message to be sent or received from a peer
257 #[derive(Clone, Debug, PartialEq)]
258 pub struct Shutdown {
259         /// The channel ID
260         pub channel_id: [u8; 32],
261         /// The destination of this peer's funds on closing.
262         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
263         pub scriptpubkey: Script,
264 }
265
266 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
267 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
268 /// to use.
269 #[derive(Clone, Debug, PartialEq)]
270 pub struct ClosingSignedFeeRange {
271         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
272         /// transaction.
273         pub min_fee_satoshis: u64,
274         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
275         /// transaction.
276         pub max_fee_satoshis: u64,
277 }
278
279 /// A closing_signed message to be sent or received from a peer
280 #[derive(Clone, Debug, PartialEq)]
281 pub struct ClosingSigned {
282         /// The channel ID
283         pub channel_id: [u8; 32],
284         /// The proposed total fee for the closing transaction
285         pub fee_satoshis: u64,
286         /// A signature on the closing transaction
287         pub signature: Signature,
288         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
289         /// nodes.
290         pub fee_range: Option<ClosingSignedFeeRange>,
291 }
292
293 /// An update_add_htlc message to be sent or received from a peer
294 #[derive(Clone, Debug, PartialEq)]
295 pub struct UpdateAddHTLC {
296         /// The channel ID
297         pub channel_id: [u8; 32],
298         /// The HTLC ID
299         pub htlc_id: u64,
300         /// The HTLC value in milli-satoshi
301         pub amount_msat: u64,
302         /// The payment hash, the pre-image of which controls HTLC redemption
303         pub payment_hash: PaymentHash,
304         /// The expiry height of the HTLC
305         pub cltv_expiry: u32,
306         pub(crate) onion_routing_packet: OnionPacket,
307 }
308
309  /// An onion message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct OnionMessage {
312         /// Used in decrypting the onion packet's payload.
313         pub blinding_point: PublicKey,
314         pub(crate) onion_routing_packet: onion_message::Packet,
315 }
316
317 /// An update_fulfill_htlc message to be sent or received from a peer
318 #[derive(Clone, Debug, PartialEq)]
319 pub struct UpdateFulfillHTLC {
320         /// The channel ID
321         pub channel_id: [u8; 32],
322         /// The HTLC ID
323         pub htlc_id: u64,
324         /// The pre-image of the payment hash, allowing HTLC redemption
325         pub payment_preimage: PaymentPreimage,
326 }
327
328 /// An update_fail_htlc message to be sent or received from a peer
329 #[derive(Clone, Debug, PartialEq)]
330 pub struct UpdateFailHTLC {
331         /// The channel ID
332         pub channel_id: [u8; 32],
333         /// The HTLC ID
334         pub htlc_id: u64,
335         pub(crate) reason: OnionErrorPacket,
336 }
337
338 /// An update_fail_malformed_htlc message to be sent or received from a peer
339 #[derive(Clone, Debug, PartialEq)]
340 pub struct UpdateFailMalformedHTLC {
341         /// The channel ID
342         pub channel_id: [u8; 32],
343         /// The HTLC ID
344         pub htlc_id: u64,
345         pub(crate) sha256_of_onion: [u8; 32],
346         /// The failure code
347         pub failure_code: u16,
348 }
349
350 /// A commitment_signed message to be sent or received from a peer
351 #[derive(Clone, Debug, PartialEq)]
352 pub struct CommitmentSigned {
353         /// The channel ID
354         pub channel_id: [u8; 32],
355         /// A signature on the commitment transaction
356         pub signature: Signature,
357         /// Signatures on the HTLC transactions
358         pub htlc_signatures: Vec<Signature>,
359 }
360
361 /// A revoke_and_ack message to be sent or received from a peer
362 #[derive(Clone, Debug, PartialEq)]
363 pub struct RevokeAndACK {
364         /// The channel ID
365         pub channel_id: [u8; 32],
366         /// The secret corresponding to the per-commitment point
367         pub per_commitment_secret: [u8; 32],
368         /// The next sender-broadcast commitment transaction's per-commitment point
369         pub next_per_commitment_point: PublicKey,
370 }
371
372 /// An update_fee message to be sent or received from a peer
373 #[derive(Clone, Debug, PartialEq)]
374 pub struct UpdateFee {
375         /// The channel ID
376         pub channel_id: [u8; 32],
377         /// Fee rate per 1000-weight of the transaction
378         pub feerate_per_kw: u32,
379 }
380
381 #[derive(Clone, Debug, PartialEq)]
382 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
383 /// This is used to convince the recipient that the channel is at a certain commitment
384 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
385 /// and even later commitments may have been revoked.
386 pub struct DataLossProtect {
387         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
388         /// belonging to the recipient
389         pub your_last_per_commitment_secret: [u8; 32],
390         /// The sender's per-commitment point for their current commitment transaction
391         pub my_current_per_commitment_point: PublicKey,
392 }
393
394 /// A channel_reestablish message to be sent or received from a peer
395 #[derive(Clone, Debug, PartialEq)]
396 pub struct ChannelReestablish {
397         /// The channel ID
398         pub channel_id: [u8; 32],
399         /// The next commitment number for the sender
400         pub next_local_commitment_number: u64,
401         /// The next commitment number for the recipient
402         pub next_remote_commitment_number: u64,
403         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
404         pub data_loss_protect: OptionalField<DataLossProtect>,
405 }
406
407 /// An announcement_signatures message to be sent or received from a peer
408 #[derive(Clone, Debug, PartialEq)]
409 pub struct AnnouncementSignatures {
410         /// The channel ID
411         pub channel_id: [u8; 32],
412         /// The short channel ID
413         pub short_channel_id: u64,
414         /// A signature by the node key
415         pub node_signature: Signature,
416         /// A signature by the funding key
417         pub bitcoin_signature: Signature,
418 }
419
420 /// An address which can be used to connect to a remote peer
421 #[derive(Clone, Debug, PartialEq)]
422 pub enum NetAddress {
423         /// An IPv4 address/port on which the peer is listening.
424         IPv4 {
425                 /// The 4-byte IPv4 address
426                 addr: [u8; 4],
427                 /// The port on which the node is listening
428                 port: u16,
429         },
430         /// An IPv6 address/port on which the peer is listening.
431         IPv6 {
432                 /// The 16-byte IPv6 address
433                 addr: [u8; 16],
434                 /// The port on which the node is listening
435                 port: u16,
436         },
437         /// An old-style Tor onion address/port on which the peer is listening.
438         ///
439         /// This field is deprecated and the Tor network generally no longer supports V2 Onion
440         /// addresses. Thus, the details are not parsed here.
441         OnionV2([u8; 12]),
442         /// A new-style Tor onion address/port on which the peer is listening.
443         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
444         /// wrap as base32 and append ".onion".
445         OnionV3 {
446                 /// The ed25519 long-term public key of the peer
447                 ed25519_pubkey: [u8; 32],
448                 /// The checksum of the pubkey and version, as included in the onion address
449                 checksum: u16,
450                 /// The version byte, as defined by the Tor Onion v3 spec.
451                 version: u8,
452                 /// The port on which the node is listening
453                 port: u16,
454         },
455         /// A hostname/port on which the peer is listening.
456         Hostname {
457                 /// The hostname on which the node is listening.
458                 hostname: Hostname,
459                 /// The port on which the node is listening.
460                 port: u16,
461         },
462 }
463 impl NetAddress {
464         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
465         /// by this.
466         pub(crate) fn get_id(&self) -> u8 {
467                 match self {
468                         &NetAddress::IPv4 {..} => { 1 },
469                         &NetAddress::IPv6 {..} => { 2 },
470                         &NetAddress::OnionV2(_) => { 3 },
471                         &NetAddress::OnionV3 {..} => { 4 },
472                         &NetAddress::Hostname {..} => { 5 },
473                 }
474         }
475
476         /// Strict byte-length of address descriptor, 1-byte type not recorded
477         fn len(&self) -> u16 {
478                 match self {
479                         &NetAddress::IPv4 { .. } => { 6 },
480                         &NetAddress::IPv6 { .. } => { 18 },
481                         &NetAddress::OnionV2(_) => { 12 },
482                         &NetAddress::OnionV3 { .. } => { 37 },
483                         // Consists of 1-byte hostname length, hostname bytes, and 2-byte port.
484                         &NetAddress::Hostname { ref hostname, .. } => { u16::from(hostname.len()) + 3 },
485                 }
486         }
487
488         /// The maximum length of any address descriptor, not including the 1-byte type.
489         /// This maximum length is reached by a hostname address descriptor:
490         /// a hostname with a maximum length of 255, its 1-byte length and a 2-byte port.
491         pub(crate) const MAX_LEN: u16 = 258;
492 }
493
494 impl Writeable for NetAddress {
495         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
496                 match self {
497                         &NetAddress::IPv4 { ref addr, ref port } => {
498                                 1u8.write(writer)?;
499                                 addr.write(writer)?;
500                                 port.write(writer)?;
501                         },
502                         &NetAddress::IPv6 { ref addr, ref port } => {
503                                 2u8.write(writer)?;
504                                 addr.write(writer)?;
505                                 port.write(writer)?;
506                         },
507                         &NetAddress::OnionV2(bytes) => {
508                                 3u8.write(writer)?;
509                                 bytes.write(writer)?;
510                         },
511                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
512                                 4u8.write(writer)?;
513                                 ed25519_pubkey.write(writer)?;
514                                 checksum.write(writer)?;
515                                 version.write(writer)?;
516                                 port.write(writer)?;
517                         },
518                         &NetAddress::Hostname { ref hostname, ref port } => {
519                                 5u8.write(writer)?;
520                                 hostname.write(writer)?;
521                                 port.write(writer)?;
522                         },
523                 }
524                 Ok(())
525         }
526 }
527
528 impl Readable for Result<NetAddress, u8> {
529         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
530                 let byte = <u8 as Readable>::read(reader)?;
531                 match byte {
532                         1 => {
533                                 Ok(Ok(NetAddress::IPv4 {
534                                         addr: Readable::read(reader)?,
535                                         port: Readable::read(reader)?,
536                                 }))
537                         },
538                         2 => {
539                                 Ok(Ok(NetAddress::IPv6 {
540                                         addr: Readable::read(reader)?,
541                                         port: Readable::read(reader)?,
542                                 }))
543                         },
544                         3 => Ok(Ok(NetAddress::OnionV2(Readable::read(reader)?))),
545                         4 => {
546                                 Ok(Ok(NetAddress::OnionV3 {
547                                         ed25519_pubkey: Readable::read(reader)?,
548                                         checksum: Readable::read(reader)?,
549                                         version: Readable::read(reader)?,
550                                         port: Readable::read(reader)?,
551                                 }))
552                         },
553                         5 => {
554                                 Ok(Ok(NetAddress::Hostname {
555                                         hostname: Readable::read(reader)?,
556                                         port: Readable::read(reader)?,
557                                 }))
558                         },
559                         _ => return Ok(Err(byte)),
560                 }
561         }
562 }
563
564 impl Readable for NetAddress {
565         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
566                 match Readable::read(reader) {
567                         Ok(Ok(res)) => Ok(res),
568                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
569                         Err(e) => Err(e),
570                 }
571         }
572 }
573
574
575 /// The unsigned part of a node_announcement
576 #[derive(Clone, Debug, PartialEq)]
577 pub struct UnsignedNodeAnnouncement {
578         /// The advertised features
579         pub features: NodeFeatures,
580         /// A strictly monotonic announcement counter, with gaps allowed
581         pub timestamp: u32,
582         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
583         /// to this node).
584         pub node_id: PublicKey,
585         /// An RGB color for UI purposes
586         pub rgb: [u8; 3],
587         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
588         /// of uniqueness.
589         pub alias: [u8; 32],
590         /// List of addresses on which this node is reachable
591         pub addresses: Vec<NetAddress>,
592         pub(crate) excess_address_data: Vec<u8>,
593         pub(crate) excess_data: Vec<u8>,
594 }
595 #[derive(Clone, Debug, PartialEq)]
596 /// A node_announcement message to be sent or received from a peer
597 pub struct NodeAnnouncement {
598         /// The signature by the node key
599         pub signature: Signature,
600         /// The actual content of the announcement
601         pub contents: UnsignedNodeAnnouncement,
602 }
603
604 /// The unsigned part of a channel_announcement
605 #[derive(Clone, Debug, PartialEq)]
606 pub struct UnsignedChannelAnnouncement {
607         /// The advertised channel features
608         pub features: ChannelFeatures,
609         /// The genesis hash of the blockchain where the channel is to be opened
610         pub chain_hash: BlockHash,
611         /// The short channel ID
612         pub short_channel_id: u64,
613         /// One of the two node_ids which are endpoints of this channel
614         pub node_id_1: PublicKey,
615         /// The other of the two node_ids which are endpoints of this channel
616         pub node_id_2: PublicKey,
617         /// The funding key for the first node
618         pub bitcoin_key_1: PublicKey,
619         /// The funding key for the second node
620         pub bitcoin_key_2: PublicKey,
621         pub(crate) excess_data: Vec<u8>,
622 }
623 /// A channel_announcement message to be sent or received from a peer
624 #[derive(Clone, Debug, PartialEq)]
625 pub struct ChannelAnnouncement {
626         /// Authentication of the announcement by the first public node
627         pub node_signature_1: Signature,
628         /// Authentication of the announcement by the second public node
629         pub node_signature_2: Signature,
630         /// Proof of funding UTXO ownership by the first public node
631         pub bitcoin_signature_1: Signature,
632         /// Proof of funding UTXO ownership by the second public node
633         pub bitcoin_signature_2: Signature,
634         /// The actual announcement
635         pub contents: UnsignedChannelAnnouncement,
636 }
637
638 /// The unsigned part of a channel_update
639 #[derive(Clone, Debug, PartialEq)]
640 pub struct UnsignedChannelUpdate {
641         /// The genesis hash of the blockchain where the channel is to be opened
642         pub chain_hash: BlockHash,
643         /// The short channel ID
644         pub short_channel_id: u64,
645         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
646         pub timestamp: u32,
647         /// Channel flags
648         pub flags: u8,
649         /// The number of blocks such that if:
650         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
651         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
652         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
653         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
654         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
655         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
656         /// constructing the route.
657         pub cltv_expiry_delta: u16,
658         /// The minimum HTLC size incoming to sender, in milli-satoshi
659         pub htlc_minimum_msat: u64,
660         /// The maximum HTLC value incoming to sender, in milli-satoshi. Used to be optional.
661         pub htlc_maximum_msat: u64,
662         /// The base HTLC fee charged by sender, in milli-satoshi
663         pub fee_base_msat: u32,
664         /// The amount to fee multiplier, in micro-satoshi
665         pub fee_proportional_millionths: u32,
666         /// Excess data which was signed as a part of the message which we do not (yet) understand how
667         /// to decode. This is stored to ensure forward-compatibility as new fields are added to the
668         /// lightning gossip
669         pub excess_data: Vec<u8>,
670 }
671 /// A channel_update message to be sent or received from a peer
672 #[derive(Clone, Debug, PartialEq)]
673 pub struct ChannelUpdate {
674         /// A signature of the channel update
675         pub signature: Signature,
676         /// The actual channel update
677         pub contents: UnsignedChannelUpdate,
678 }
679
680 /// A query_channel_range message is used to query a peer for channel
681 /// UTXOs in a range of blocks. The recipient of a query makes a best
682 /// effort to reply to the query using one or more reply_channel_range
683 /// messages.
684 #[derive(Clone, Debug, PartialEq)]
685 pub struct QueryChannelRange {
686         /// The genesis hash of the blockchain being queried
687         pub chain_hash: BlockHash,
688         /// The height of the first block for the channel UTXOs being queried
689         pub first_blocknum: u32,
690         /// The number of blocks to include in the query results
691         pub number_of_blocks: u32,
692 }
693
694 /// A reply_channel_range message is a reply to a query_channel_range
695 /// message. Multiple reply_channel_range messages can be sent in reply
696 /// to a single query_channel_range message. The query recipient makes a
697 /// best effort to respond based on their local network view which may
698 /// not be a perfect view of the network. The short_channel_ids in the
699 /// reply are encoded. We only support encoding_type=0 uncompressed
700 /// serialization and do not support encoding_type=1 zlib serialization.
701 #[derive(Clone, Debug, PartialEq)]
702 pub struct ReplyChannelRange {
703         /// The genesis hash of the blockchain being queried
704         pub chain_hash: BlockHash,
705         /// The height of the first block in the range of the reply
706         pub first_blocknum: u32,
707         /// The number of blocks included in the range of the reply
708         pub number_of_blocks: u32,
709         /// True when this is the final reply for a query
710         pub sync_complete: bool,
711         /// The short_channel_ids in the channel range
712         pub short_channel_ids: Vec<u64>,
713 }
714
715 /// A query_short_channel_ids message is used to query a peer for
716 /// routing gossip messages related to one or more short_channel_ids.
717 /// The query recipient will reply with the latest, if available,
718 /// channel_announcement, channel_update and node_announcement messages
719 /// it maintains for the requested short_channel_ids followed by a
720 /// reply_short_channel_ids_end message. The short_channel_ids sent in
721 /// this query are encoded. We only support encoding_type=0 uncompressed
722 /// serialization and do not support encoding_type=1 zlib serialization.
723 #[derive(Clone, Debug, PartialEq)]
724 pub struct QueryShortChannelIds {
725         /// The genesis hash of the blockchain being queried
726         pub chain_hash: BlockHash,
727         /// The short_channel_ids that are being queried
728         pub short_channel_ids: Vec<u64>,
729 }
730
731 /// A reply_short_channel_ids_end message is sent as a reply to a
732 /// query_short_channel_ids message. The query recipient makes a best
733 /// effort to respond based on their local network view which may not be
734 /// a perfect view of the network.
735 #[derive(Clone, Debug, PartialEq)]
736 pub struct ReplyShortChannelIdsEnd {
737         /// The genesis hash of the blockchain that was queried
738         pub chain_hash: BlockHash,
739         /// Indicates if the query recipient maintains up-to-date channel
740         /// information for the chain_hash
741         pub full_information: bool,
742 }
743
744 /// A gossip_timestamp_filter message is used by a node to request
745 /// gossip relay for messages in the requested time range when the
746 /// gossip_queries feature has been negotiated.
747 #[derive(Clone, Debug, PartialEq)]
748 pub struct GossipTimestampFilter {
749         /// The genesis hash of the blockchain for channel and node information
750         pub chain_hash: BlockHash,
751         /// The starting unix timestamp
752         pub first_timestamp: u32,
753         /// The range of information in seconds
754         pub timestamp_range: u32,
755 }
756
757 /// Encoding type for data compression of collections in gossip queries.
758 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
759 enum EncodingType {
760         Uncompressed = 0x00,
761 }
762
763 /// Used to put an error message in a LightningError
764 #[derive(Clone, Debug)]
765 pub enum ErrorAction {
766         /// The peer took some action which made us think they were useless. Disconnect them.
767         DisconnectPeer {
768                 /// An error message which we should make an effort to send before we disconnect.
769                 msg: Option<ErrorMessage>
770         },
771         /// The peer did something harmless that we weren't able to process, just log and ignore
772         // New code should *not* use this. New code must use IgnoreAndLog, below!
773         IgnoreError,
774         /// The peer did something harmless that we weren't able to meaningfully process.
775         /// If the error is logged, log it at the given level.
776         IgnoreAndLog(logger::Level),
777         /// The peer provided us with a gossip message which we'd already seen. In most cases this
778         /// should be ignored, but it may result in the message being forwarded if it is a duplicate of
779         /// our own channel announcements.
780         IgnoreDuplicateGossip,
781         /// The peer did something incorrect. Tell them.
782         SendErrorMessage {
783                 /// The message to send.
784                 msg: ErrorMessage,
785         },
786         /// The peer did something incorrect. Tell them without closing any channels.
787         SendWarningMessage {
788                 /// The message to send.
789                 msg: WarningMessage,
790                 /// The peer may have done something harmless that we weren't able to meaningfully process,
791                 /// though we should still tell them about it.
792                 /// If this event is logged, log it at the given level.
793                 log_level: logger::Level,
794         },
795 }
796
797 /// An Err type for failure to process messages.
798 #[derive(Clone, Debug)]
799 pub struct LightningError {
800         /// A human-readable message describing the error
801         pub err: String,
802         /// The action which should be taken against the offending peer.
803         pub action: ErrorAction,
804 }
805
806 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
807 /// transaction updates if they were pending.
808 #[derive(Clone, Debug, PartialEq)]
809 pub struct CommitmentUpdate {
810         /// update_add_htlc messages which should be sent
811         pub update_add_htlcs: Vec<UpdateAddHTLC>,
812         /// update_fulfill_htlc messages which should be sent
813         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
814         /// update_fail_htlc messages which should be sent
815         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
816         /// update_fail_malformed_htlc messages which should be sent
817         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
818         /// An update_fee message which should be sent
819         pub update_fee: Option<UpdateFee>,
820         /// Finally, the commitment_signed message which should be sent
821         pub commitment_signed: CommitmentSigned,
822 }
823
824 /// Messages could have optional fields to use with extended features
825 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
826 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
827 /// separate enum type for them.
828 /// (C-not exported) due to a free generic in T
829 #[derive(Clone, Debug, PartialEq)]
830 pub enum OptionalField<T> {
831         /// Optional field is included in message
832         Present(T),
833         /// Optional field is absent in message
834         Absent
835 }
836
837 /// A trait to describe an object which can receive channel messages.
838 ///
839 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
840 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
841 pub trait ChannelMessageHandler : MessageSendEventsProvider {
842         //Channel init:
843         /// Handle an incoming open_channel message from the given peer.
844         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
845         /// Handle an incoming accept_channel message from the given peer.
846         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
847         /// Handle an incoming funding_created message from the given peer.
848         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
849         /// Handle an incoming funding_signed message from the given peer.
850         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
851         /// Handle an incoming channel_ready message from the given peer.
852         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &ChannelReady);
853
854         // Channl close:
855         /// Handle an incoming shutdown message from the given peer.
856         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
857         /// Handle an incoming closing_signed message from the given peer.
858         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
859
860         // HTLC handling:
861         /// Handle an incoming update_add_htlc message from the given peer.
862         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
863         /// Handle an incoming update_fulfill_htlc message from the given peer.
864         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
865         /// Handle an incoming update_fail_htlc message from the given peer.
866         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
867         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
868         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
869         /// Handle an incoming commitment_signed message from the given peer.
870         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
871         /// Handle an incoming revoke_and_ack message from the given peer.
872         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
873
874         /// Handle an incoming update_fee message from the given peer.
875         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
876
877         // Channel-to-announce:
878         /// Handle an incoming announcement_signatures message from the given peer.
879         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
880
881         // Connection loss/reestablish:
882         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
883         /// is believed to be possible in the future (eg they're sending us messages we don't
884         /// understand or indicate they require unknown feature bits), no_connection_possible is set
885         /// and any outstanding channels should be failed.
886         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
887
888         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
889         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init);
890         /// Handle an incoming channel_reestablish message from the given peer.
891         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
892
893         /// Handle an incoming channel update from the given peer.
894         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
895
896         // Error:
897         /// Handle an incoming error message from the given peer.
898         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
899 }
900
901 /// A trait to describe an object which can receive routing messages.
902 ///
903 /// # Implementor DoS Warnings
904 ///
905 /// For `gossip_queries` messages there are potential DoS vectors when handling
906 /// inbound queries. Implementors using an on-disk network graph should be aware of
907 /// repeated disk I/O for queries accessing different parts of the network graph.
908 pub trait RoutingMessageHandler : MessageSendEventsProvider {
909         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
910         /// false or returning an Err otherwise.
911         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
912         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
913         /// or returning an Err otherwise.
914         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
915         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
916         /// false or returning an Err otherwise.
917         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
918         /// Gets a subset of the channel announcements and updates required to dump our routing table
919         /// to a remote node, starting at the short_channel_id indicated by starting_point and
920         /// including the batch_amount entries immediately higher in numerical value than starting_point.
921         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
922         /// Gets a subset of the node announcements required to dump our routing table to a remote node,
923         /// starting at the node *after* the provided publickey and including batch_amount entries
924         /// immediately higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
925         /// If None is provided for starting_point, we start at the first node.
926         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement>;
927         /// Called when a connection is established with a peer. This can be used to
928         /// perform routing table synchronization using a strategy defined by the
929         /// implementor.
930         fn peer_connected(&self, their_node_id: &PublicKey, init: &Init);
931         /// Handles the reply of a query we initiated to learn about channels
932         /// for a given range of blocks. We can expect to receive one or more
933         /// replies to a single query.
934         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
935         /// Handles the reply of a query we initiated asking for routing gossip
936         /// messages for a list of channels. We should receive this message when
937         /// a node has completed its best effort to send us the pertaining routing
938         /// gossip messages.
939         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
940         /// Handles when a peer asks us to send a list of short_channel_ids
941         /// for the requested range of blocks.
942         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
943         /// Handles when a peer asks us to send routing gossip messages for a
944         /// list of short_channel_ids.
945         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
946 }
947
948 mod fuzzy_internal_msgs {
949         use prelude::*;
950         use ln::{PaymentPreimage, PaymentSecret};
951
952         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
953         // them from untrusted input):
954         #[derive(Clone)]
955         pub(crate) struct FinalOnionHopData {
956                 pub(crate) payment_secret: PaymentSecret,
957                 /// The total value, in msat, of the payment as received by the ultimate recipient.
958                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
959                 pub(crate) total_msat: u64,
960         }
961
962         pub(crate) enum OnionHopDataFormat {
963                 Legacy { // aka Realm-0
964                         short_channel_id: u64,
965                 },
966                 NonFinalNode {
967                         short_channel_id: u64,
968                 },
969                 FinalNode {
970                         payment_data: Option<FinalOnionHopData>,
971                         keysend_preimage: Option<PaymentPreimage>,
972                 },
973         }
974
975         pub struct OnionHopData {
976                 pub(crate) format: OnionHopDataFormat,
977                 /// The value, in msat, of the payment after this hop's fee is deducted.
978                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
979                 pub(crate) amt_to_forward: u64,
980                 pub(crate) outgoing_cltv_value: u32,
981                 // 12 bytes of 0-padding for Legacy format
982         }
983
984         pub struct DecodedOnionErrorPacket {
985                 pub(crate) hmac: [u8; 32],
986                 pub(crate) failuremsg: Vec<u8>,
987                 pub(crate) pad: Vec<u8>,
988         }
989 }
990 #[cfg(fuzzing)]
991 pub use self::fuzzy_internal_msgs::*;
992 #[cfg(not(fuzzing))]
993 pub(crate) use self::fuzzy_internal_msgs::*;
994
995 #[derive(Clone)]
996 pub(crate) struct OnionPacket {
997         pub(crate) version: u8,
998         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
999         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
1000         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
1001         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
1002         pub(crate) hop_data: [u8; 20*65],
1003         pub(crate) hmac: [u8; 32],
1004 }
1005
1006 impl onion_utils::Packet for OnionPacket {
1007         type Data = onion_utils::FixedSizeOnionPacket;
1008         fn new(pubkey: PublicKey, hop_data: onion_utils::FixedSizeOnionPacket, hmac: [u8; 32]) -> Self {
1009                 Self {
1010                         version: 0,
1011                         public_key: Ok(pubkey),
1012                         hop_data: hop_data.0,
1013                         hmac,
1014                 }
1015         }
1016 }
1017
1018 impl PartialEq for OnionPacket {
1019         fn eq(&self, other: &OnionPacket) -> bool {
1020                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
1021                         if i != j { return false; }
1022                 }
1023                 self.version == other.version &&
1024                         self.public_key == other.public_key &&
1025                         self.hmac == other.hmac
1026         }
1027 }
1028
1029 impl fmt::Debug for OnionPacket {
1030         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1031                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
1032         }
1033 }
1034
1035 #[derive(Clone, Debug, PartialEq)]
1036 pub(crate) struct OnionErrorPacket {
1037         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
1038         // (TODO) We limit it in decode to much lower...
1039         pub(crate) data: Vec<u8>,
1040 }
1041
1042 impl fmt::Display for DecodeError {
1043         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1044                 match *self {
1045                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
1046                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
1047                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
1048                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
1049                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
1050                         DecodeError::Io(ref e) => fmt::Debug::fmt(e, f),
1051                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
1052                 }
1053         }
1054 }
1055
1056 impl From<io::Error> for DecodeError {
1057         fn from(e: io::Error) -> Self {
1058                 if e.kind() == io::ErrorKind::UnexpectedEof {
1059                         DecodeError::ShortRead
1060                 } else {
1061                         DecodeError::Io(e.kind())
1062                 }
1063         }
1064 }
1065
1066 impl Writeable for OptionalField<Script> {
1067         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1068                 match *self {
1069                         OptionalField::Present(ref script) => {
1070                                 // Note that Writeable for script includes the 16-bit length tag for us
1071                                 script.write(w)?;
1072                         },
1073                         OptionalField::Absent => {}
1074                 }
1075                 Ok(())
1076         }
1077 }
1078
1079 impl Readable for OptionalField<Script> {
1080         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1081                 match <u16 as Readable>::read(r) {
1082                         Ok(len) => {
1083                                 let mut buf = vec![0; len as usize];
1084                                 r.read_exact(&mut buf)?;
1085                                 Ok(OptionalField::Present(Script::from(buf)))
1086                         },
1087                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
1088                         Err(e) => Err(e)
1089                 }
1090         }
1091 }
1092
1093 impl Writeable for OptionalField<u64> {
1094         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1095                 match *self {
1096                         OptionalField::Present(ref value) => {
1097                                 value.write(w)?;
1098                         },
1099                         OptionalField::Absent => {}
1100                 }
1101                 Ok(())
1102         }
1103 }
1104
1105 impl Readable for OptionalField<u64> {
1106         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1107                 let value: u64 = Readable::read(r)?;
1108                 Ok(OptionalField::Present(value))
1109         }
1110 }
1111
1112
1113 impl_writeable_msg!(AcceptChannel, {
1114         temporary_channel_id,
1115         dust_limit_satoshis,
1116         max_htlc_value_in_flight_msat,
1117         channel_reserve_satoshis,
1118         htlc_minimum_msat,
1119         minimum_depth,
1120         to_self_delay,
1121         max_accepted_htlcs,
1122         funding_pubkey,
1123         revocation_basepoint,
1124         payment_point,
1125         delayed_payment_basepoint,
1126         htlc_basepoint,
1127         first_per_commitment_point,
1128         shutdown_scriptpubkey
1129 }, {
1130         (1, channel_type, option),
1131 });
1132
1133 impl_writeable_msg!(AnnouncementSignatures, {
1134         channel_id,
1135         short_channel_id,
1136         node_signature,
1137         bitcoin_signature
1138 }, {});
1139
1140 impl Writeable for ChannelReestablish {
1141         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1142                 self.channel_id.write(w)?;
1143                 self.next_local_commitment_number.write(w)?;
1144                 self.next_remote_commitment_number.write(w)?;
1145                 match self.data_loss_protect {
1146                         OptionalField::Present(ref data_loss_protect) => {
1147                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1148                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1149                         },
1150                         OptionalField::Absent => {}
1151                 }
1152                 Ok(())
1153         }
1154 }
1155
1156 impl Readable for ChannelReestablish{
1157         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1158                 Ok(Self {
1159                         channel_id: Readable::read(r)?,
1160                         next_local_commitment_number: Readable::read(r)?,
1161                         next_remote_commitment_number: Readable::read(r)?,
1162                         data_loss_protect: {
1163                                 match <[u8; 32] as Readable>::read(r) {
1164                                         Ok(your_last_per_commitment_secret) =>
1165                                                 OptionalField::Present(DataLossProtect {
1166                                                         your_last_per_commitment_secret,
1167                                                         my_current_per_commitment_point: Readable::read(r)?,
1168                                                 }),
1169                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1170                                         Err(e) => return Err(e)
1171                                 }
1172                         }
1173                 })
1174         }
1175 }
1176
1177 impl_writeable_msg!(ClosingSigned,
1178         { channel_id, fee_satoshis, signature },
1179         { (1, fee_range, option) }
1180 );
1181
1182 impl_writeable!(ClosingSignedFeeRange, {
1183         min_fee_satoshis,
1184         max_fee_satoshis
1185 });
1186
1187 impl_writeable_msg!(CommitmentSigned, {
1188         channel_id,
1189         signature,
1190         htlc_signatures
1191 }, {});
1192
1193 impl_writeable!(DecodedOnionErrorPacket, {
1194         hmac,
1195         failuremsg,
1196         pad
1197 });
1198
1199 impl_writeable_msg!(FundingCreated, {
1200         temporary_channel_id,
1201         funding_txid,
1202         funding_output_index,
1203         signature
1204 }, {});
1205
1206 impl_writeable_msg!(FundingSigned, {
1207         channel_id,
1208         signature
1209 }, {});
1210
1211 impl_writeable_msg!(ChannelReady, {
1212         channel_id,
1213         next_per_commitment_point,
1214 }, {
1215         (1, short_channel_id_alias, option),
1216 });
1217
1218 impl Writeable for Init {
1219         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1220                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1221                 // our relevant feature bits. This keeps us compatible with old nodes.
1222                 self.features.write_up_to_13(w)?;
1223                 self.features.write(w)?;
1224                 encode_tlv_stream!(w, {
1225                         (3, self.remote_network_address, option)
1226                 });
1227                 Ok(())
1228         }
1229 }
1230
1231 impl Readable for Init {
1232         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1233                 let global_features: InitFeatures = Readable::read(r)?;
1234                 let features: InitFeatures = Readable::read(r)?;
1235                 let mut remote_network_address: Option<NetAddress> = None;
1236                 decode_tlv_stream!(r, {
1237                         (3, remote_network_address, option)
1238                 });
1239                 Ok(Init {
1240                         features: features.or(global_features),
1241                         remote_network_address,
1242                 })
1243         }
1244 }
1245
1246 impl_writeable_msg!(OpenChannel, {
1247         chain_hash,
1248         temporary_channel_id,
1249         funding_satoshis,
1250         push_msat,
1251         dust_limit_satoshis,
1252         max_htlc_value_in_flight_msat,
1253         channel_reserve_satoshis,
1254         htlc_minimum_msat,
1255         feerate_per_kw,
1256         to_self_delay,
1257         max_accepted_htlcs,
1258         funding_pubkey,
1259         revocation_basepoint,
1260         payment_point,
1261         delayed_payment_basepoint,
1262         htlc_basepoint,
1263         first_per_commitment_point,
1264         channel_flags,
1265         shutdown_scriptpubkey
1266 }, {
1267         (1, channel_type, option),
1268 });
1269
1270 impl_writeable_msg!(RevokeAndACK, {
1271         channel_id,
1272         per_commitment_secret,
1273         next_per_commitment_point
1274 }, {});
1275
1276 impl_writeable_msg!(Shutdown, {
1277         channel_id,
1278         scriptpubkey
1279 }, {});
1280
1281 impl_writeable_msg!(UpdateFailHTLC, {
1282         channel_id,
1283         htlc_id,
1284         reason
1285 }, {});
1286
1287 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1288         channel_id,
1289         htlc_id,
1290         sha256_of_onion,
1291         failure_code
1292 }, {});
1293
1294 impl_writeable_msg!(UpdateFee, {
1295         channel_id,
1296         feerate_per_kw
1297 }, {});
1298
1299 impl_writeable_msg!(UpdateFulfillHTLC, {
1300         channel_id,
1301         htlc_id,
1302         payment_preimage
1303 }, {});
1304
1305 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1306 // serialization format in a way which assumes we know the total serialized length/message end
1307 // position.
1308 impl_writeable!(OnionErrorPacket, {
1309         data
1310 });
1311
1312 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1313 // serialization format in a way which assumes we know the total serialized length/message end
1314 // position.
1315 impl Writeable for OnionPacket {
1316         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1317                 self.version.write(w)?;
1318                 match self.public_key {
1319                         Ok(pubkey) => pubkey.write(w)?,
1320                         Err(_) => [0u8;33].write(w)?,
1321                 }
1322                 w.write_all(&self.hop_data)?;
1323                 self.hmac.write(w)?;
1324                 Ok(())
1325         }
1326 }
1327
1328 impl Readable for OnionPacket {
1329         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1330                 Ok(OnionPacket {
1331                         version: Readable::read(r)?,
1332                         public_key: {
1333                                 let mut buf = [0u8;33];
1334                                 r.read_exact(&mut buf)?;
1335                                 PublicKey::from_slice(&buf)
1336                         },
1337                         hop_data: Readable::read(r)?,
1338                         hmac: Readable::read(r)?,
1339                 })
1340         }
1341 }
1342
1343 impl_writeable_msg!(UpdateAddHTLC, {
1344         channel_id,
1345         htlc_id,
1346         amount_msat,
1347         payment_hash,
1348         cltv_expiry,
1349         onion_routing_packet
1350 }, {});
1351
1352 impl Readable for OnionMessage {
1353         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1354                 let blinding_point: PublicKey = Readable::read(r)?;
1355                 let len: u16 = Readable::read(r)?;
1356                 let mut packet_reader = FixedLengthReader::new(r, len as u64);
1357                 let onion_routing_packet: onion_message::Packet = <onion_message::Packet as LengthReadable>::read(&mut packet_reader)?;
1358                 Ok(Self {
1359                         blinding_point,
1360                         onion_routing_packet,
1361                 })
1362         }
1363 }
1364
1365 impl Writeable for OnionMessage {
1366         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1367                 self.blinding_point.write(w)?;
1368                 let onion_packet_len = self.onion_routing_packet.serialized_length();
1369                 (onion_packet_len as u16).write(w)?;
1370                 self.onion_routing_packet.write(w)?;
1371                 Ok(())
1372         }
1373 }
1374
1375 impl Writeable for FinalOnionHopData {
1376         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1377                 self.payment_secret.0.write(w)?;
1378                 HighZeroBytesDroppedVarInt(self.total_msat).write(w)
1379         }
1380 }
1381
1382 impl Readable for FinalOnionHopData {
1383         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1384                 let secret: [u8; 32] = Readable::read(r)?;
1385                 let amt: HighZeroBytesDroppedVarInt<u64> = Readable::read(r)?;
1386                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1387         }
1388 }
1389
1390 impl Writeable for OnionHopData {
1391         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1392                 match self.format {
1393                         OnionHopDataFormat::Legacy { short_channel_id } => {
1394                                 0u8.write(w)?;
1395                                 short_channel_id.write(w)?;
1396                                 self.amt_to_forward.write(w)?;
1397                                 self.outgoing_cltv_value.write(w)?;
1398                                 w.write_all(&[0;12])?;
1399                         },
1400                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1401                                 encode_varint_length_prefixed_tlv!(w, {
1402                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1403                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1404                                         (6, short_channel_id, required)
1405                                 });
1406                         },
1407                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1408                                 encode_varint_length_prefixed_tlv!(w, {
1409                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1410                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1411                                         (8, payment_data, option),
1412                                         (5482373484, keysend_preimage, option)
1413                                 });
1414                         },
1415                 }
1416                 Ok(())
1417         }
1418 }
1419
1420 // ReadableArgs because we need onion_utils::decode_next_hop to accommodate payment packets and
1421 // onion message packets.
1422 impl ReadableArgs<()> for OnionHopData {
1423         fn read<R: Read>(r: &mut R, _arg: ()) -> Result<Self, DecodeError> {
1424                 <Self as Readable>::read(r)
1425         }
1426 }
1427
1428 impl Readable for OnionHopData {
1429         fn read<R: Read>(mut r: &mut R) -> Result<Self, DecodeError> {
1430                 use bitcoin::consensus::encode::{Decodable, Error, VarInt};
1431                 let v: VarInt = Decodable::consensus_decode(&mut r)
1432                         .map_err(|e| match e {
1433                                 Error::Io(ioe) => DecodeError::from(ioe),
1434                                 _ => DecodeError::InvalidValue
1435                         })?;
1436                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1437                 let (format, amt, cltv_value) = if v.0 != LEGACY_ONION_HOP_FLAG {
1438                         let mut rd = FixedLengthReader::new(r, v.0);
1439                         let mut amt = HighZeroBytesDroppedVarInt(0u64);
1440                         let mut cltv_value = HighZeroBytesDroppedVarInt(0u32);
1441                         let mut short_id: Option<u64> = None;
1442                         let mut payment_data: Option<FinalOnionHopData> = None;
1443                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1444                         // The TLV type is chosen to be compatible with lnd and c-lightning.
1445                         decode_tlv_stream!(&mut rd, {
1446                                 (2, amt, required),
1447                                 (4, cltv_value, required),
1448                                 (6, short_id, option),
1449                                 (8, payment_data, option),
1450                                 (5482373484, keysend_preimage, option)
1451                         });
1452                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1453                         let format = if let Some(short_channel_id) = short_id {
1454                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1455                                 OnionHopDataFormat::NonFinalNode {
1456                                         short_channel_id,
1457                                 }
1458                         } else {
1459                                 if let &Some(ref data) = &payment_data {
1460                                         if data.total_msat > MAX_VALUE_MSAT {
1461                                                 return Err(DecodeError::InvalidValue);
1462                                         }
1463                                 }
1464                                 OnionHopDataFormat::FinalNode {
1465                                         payment_data,
1466                                         keysend_preimage,
1467                                 }
1468                         };
1469                         (format, amt.0, cltv_value.0)
1470                 } else {
1471                         let format = OnionHopDataFormat::Legacy {
1472                                 short_channel_id: Readable::read(r)?,
1473                         };
1474                         let amt: u64 = Readable::read(r)?;
1475                         let cltv_value: u32 = Readable::read(r)?;
1476                         r.read_exact(&mut [0; 12])?;
1477                         (format, amt, cltv_value)
1478                 };
1479
1480                 if amt > MAX_VALUE_MSAT {
1481                         return Err(DecodeError::InvalidValue);
1482                 }
1483                 Ok(OnionHopData {
1484                         format,
1485                         amt_to_forward: amt,
1486                         outgoing_cltv_value: cltv_value,
1487                 })
1488         }
1489 }
1490
1491 impl Writeable for Ping {
1492         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1493                 self.ponglen.write(w)?;
1494                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1495                 Ok(())
1496         }
1497 }
1498
1499 impl Readable for Ping {
1500         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1501                 Ok(Ping {
1502                         ponglen: Readable::read(r)?,
1503                         byteslen: {
1504                                 let byteslen = Readable::read(r)?;
1505                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1506                                 byteslen
1507                         }
1508                 })
1509         }
1510 }
1511
1512 impl Writeable for Pong {
1513         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1514                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1515                 Ok(())
1516         }
1517 }
1518
1519 impl Readable for Pong {
1520         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1521                 Ok(Pong {
1522                         byteslen: {
1523                                 let byteslen = Readable::read(r)?;
1524                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1525                                 byteslen
1526                         }
1527                 })
1528         }
1529 }
1530
1531 impl Writeable for UnsignedChannelAnnouncement {
1532         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1533                 self.features.write(w)?;
1534                 self.chain_hash.write(w)?;
1535                 self.short_channel_id.write(w)?;
1536                 self.node_id_1.write(w)?;
1537                 self.node_id_2.write(w)?;
1538                 self.bitcoin_key_1.write(w)?;
1539                 self.bitcoin_key_2.write(w)?;
1540                 w.write_all(&self.excess_data[..])?;
1541                 Ok(())
1542         }
1543 }
1544
1545 impl Readable for UnsignedChannelAnnouncement {
1546         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1547                 Ok(Self {
1548                         features: Readable::read(r)?,
1549                         chain_hash: Readable::read(r)?,
1550                         short_channel_id: Readable::read(r)?,
1551                         node_id_1: Readable::read(r)?,
1552                         node_id_2: Readable::read(r)?,
1553                         bitcoin_key_1: Readable::read(r)?,
1554                         bitcoin_key_2: Readable::read(r)?,
1555                         excess_data: read_to_end(r)?,
1556                 })
1557         }
1558 }
1559
1560 impl_writeable!(ChannelAnnouncement, {
1561         node_signature_1,
1562         node_signature_2,
1563         bitcoin_signature_1,
1564         bitcoin_signature_2,
1565         contents
1566 });
1567
1568 impl Writeable for UnsignedChannelUpdate {
1569         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1570                 // `message_flags` used to indicate presence of `htlc_maximum_msat`, but was deprecated in the spec.
1571                 const MESSAGE_FLAGS: u8 = 1;
1572                 self.chain_hash.write(w)?;
1573                 self.short_channel_id.write(w)?;
1574                 self.timestamp.write(w)?;
1575                 let all_flags = self.flags as u16 | ((MESSAGE_FLAGS as u16) << 8);
1576                 all_flags.write(w)?;
1577                 self.cltv_expiry_delta.write(w)?;
1578                 self.htlc_minimum_msat.write(w)?;
1579                 self.fee_base_msat.write(w)?;
1580                 self.fee_proportional_millionths.write(w)?;
1581                 self.htlc_maximum_msat.write(w)?;
1582                 w.write_all(&self.excess_data[..])?;
1583                 Ok(())
1584         }
1585 }
1586
1587 impl Readable for UnsignedChannelUpdate {
1588         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1589                 Ok(Self {
1590                         chain_hash: Readable::read(r)?,
1591                         short_channel_id: Readable::read(r)?,
1592                         timestamp: Readable::read(r)?,
1593                         flags: {
1594                                 let flags: u16 = Readable::read(r)?;
1595                                 // Note: we ignore the `message_flags` for now, since it was deprecated by the spec.
1596                                 flags as u8
1597                         },
1598                         cltv_expiry_delta: Readable::read(r)?,
1599                         htlc_minimum_msat: Readable::read(r)?,
1600                         fee_base_msat: Readable::read(r)?,
1601                         fee_proportional_millionths: Readable::read(r)?,
1602                         htlc_maximum_msat: Readable::read(r)?,
1603                         excess_data: read_to_end(r)?,
1604                 })
1605         }
1606 }
1607
1608 impl_writeable!(ChannelUpdate, {
1609         signature,
1610         contents
1611 });
1612
1613 impl Writeable for ErrorMessage {
1614         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1615                 self.channel_id.write(w)?;
1616                 (self.data.len() as u16).write(w)?;
1617                 w.write_all(self.data.as_bytes())?;
1618                 Ok(())
1619         }
1620 }
1621
1622 impl Readable for ErrorMessage {
1623         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1624                 Ok(Self {
1625                         channel_id: Readable::read(r)?,
1626                         data: {
1627                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1628                                 let mut data = Vec::with_capacity(sz);
1629                                 data.resize(sz, 0);
1630                                 r.read_exact(&mut data)?;
1631                                 match String::from_utf8(data) {
1632                                         Ok(s) => s,
1633                                         Err(_) => return Err(DecodeError::InvalidValue),
1634                                 }
1635                         }
1636                 })
1637         }
1638 }
1639
1640 impl Writeable for WarningMessage {
1641         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1642                 self.channel_id.write(w)?;
1643                 (self.data.len() as u16).write(w)?;
1644                 w.write_all(self.data.as_bytes())?;
1645                 Ok(())
1646         }
1647 }
1648
1649 impl Readable for WarningMessage {
1650         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1651                 Ok(Self {
1652                         channel_id: Readable::read(r)?,
1653                         data: {
1654                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1655                                 let mut data = Vec::with_capacity(sz);
1656                                 data.resize(sz, 0);
1657                                 r.read_exact(&mut data)?;
1658                                 match String::from_utf8(data) {
1659                                         Ok(s) => s,
1660                                         Err(_) => return Err(DecodeError::InvalidValue),
1661                                 }
1662                         }
1663                 })
1664         }
1665 }
1666
1667 impl Writeable for UnsignedNodeAnnouncement {
1668         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1669                 self.features.write(w)?;
1670                 self.timestamp.write(w)?;
1671                 self.node_id.write(w)?;
1672                 w.write_all(&self.rgb)?;
1673                 self.alias.write(w)?;
1674
1675                 let mut addr_len = 0;
1676                 for addr in self.addresses.iter() {
1677                         addr_len += 1 + addr.len();
1678                 }
1679                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1680                 for addr in self.addresses.iter() {
1681                         addr.write(w)?;
1682                 }
1683                 w.write_all(&self.excess_address_data[..])?;
1684                 w.write_all(&self.excess_data[..])?;
1685                 Ok(())
1686         }
1687 }
1688
1689 impl Readable for UnsignedNodeAnnouncement {
1690         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1691                 let features: NodeFeatures = Readable::read(r)?;
1692                 let timestamp: u32 = Readable::read(r)?;
1693                 let node_id: PublicKey = Readable::read(r)?;
1694                 let mut rgb = [0; 3];
1695                 r.read_exact(&mut rgb)?;
1696                 let alias: [u8; 32] = Readable::read(r)?;
1697
1698                 let addr_len: u16 = Readable::read(r)?;
1699                 let mut addresses: Vec<NetAddress> = Vec::new();
1700                 let mut addr_readpos = 0;
1701                 let mut excess = false;
1702                 let mut excess_byte = 0;
1703                 loop {
1704                         if addr_len <= addr_readpos { break; }
1705                         match Readable::read(r) {
1706                                 Ok(Ok(addr)) => {
1707                                         if addr_len < addr_readpos + 1 + addr.len() {
1708                                                 return Err(DecodeError::BadLengthDescriptor);
1709                                         }
1710                                         addr_readpos += (1 + addr.len()) as u16;
1711                                         addresses.push(addr);
1712                                 },
1713                                 Ok(Err(unknown_descriptor)) => {
1714                                         excess = true;
1715                                         excess_byte = unknown_descriptor;
1716                                         break;
1717                                 },
1718                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1719                                 Err(e) => return Err(e),
1720                         }
1721                 }
1722
1723                 let mut excess_data = vec![];
1724                 let excess_address_data = if addr_readpos < addr_len {
1725                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1726                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1727                         if excess {
1728                                 excess_address_data[0] = excess_byte;
1729                         }
1730                         excess_address_data
1731                 } else {
1732                         if excess {
1733                                 excess_data.push(excess_byte);
1734                         }
1735                         Vec::new()
1736                 };
1737                 excess_data.extend(read_to_end(r)?.iter());
1738                 Ok(UnsignedNodeAnnouncement {
1739                         features,
1740                         timestamp,
1741                         node_id,
1742                         rgb,
1743                         alias,
1744                         addresses,
1745                         excess_address_data,
1746                         excess_data,
1747                 })
1748         }
1749 }
1750
1751 impl_writeable!(NodeAnnouncement, {
1752         signature,
1753         contents
1754 });
1755
1756 impl Readable for QueryShortChannelIds {
1757         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1758                 let chain_hash: BlockHash = Readable::read(r)?;
1759
1760                 let encoding_len: u16 = Readable::read(r)?;
1761                 let encoding_type: u8 = Readable::read(r)?;
1762
1763                 // Must be encoding_type=0 uncompressed serialization. We do not
1764                 // support encoding_type=1 zlib serialization.
1765                 if encoding_type != EncodingType::Uncompressed as u8 {
1766                         return Err(DecodeError::UnsupportedCompression);
1767                 }
1768
1769                 // We expect the encoding_len to always includes the 1-byte
1770                 // encoding_type and that short_channel_ids are 8-bytes each
1771                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1772                         return Err(DecodeError::InvalidValue);
1773                 }
1774
1775                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1776                 // less the 1-byte encoding_type
1777                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1778                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1779                 for _ in 0..short_channel_id_count {
1780                         short_channel_ids.push(Readable::read(r)?);
1781                 }
1782
1783                 Ok(QueryShortChannelIds {
1784                         chain_hash,
1785                         short_channel_ids,
1786                 })
1787         }
1788 }
1789
1790 impl Writeable for QueryShortChannelIds {
1791         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1792                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1793                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1794
1795                 self.chain_hash.write(w)?;
1796                 encoding_len.write(w)?;
1797
1798                 // We only support type=0 uncompressed serialization
1799                 (EncodingType::Uncompressed as u8).write(w)?;
1800
1801                 for scid in self.short_channel_ids.iter() {
1802                         scid.write(w)?;
1803                 }
1804
1805                 Ok(())
1806         }
1807 }
1808
1809 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1810         chain_hash,
1811         full_information,
1812 }, {});
1813
1814 impl QueryChannelRange {
1815         /**
1816          * Calculates the overflow safe ending block height for the query.
1817          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1818          */
1819         pub fn end_blocknum(&self) -> u32 {
1820                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1821                         Some(block) => block,
1822                         None => u32::max_value(),
1823                 }
1824         }
1825 }
1826
1827 impl_writeable_msg!(QueryChannelRange, {
1828         chain_hash,
1829         first_blocknum,
1830         number_of_blocks
1831 }, {});
1832
1833 impl Readable for ReplyChannelRange {
1834         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1835                 let chain_hash: BlockHash = Readable::read(r)?;
1836                 let first_blocknum: u32 = Readable::read(r)?;
1837                 let number_of_blocks: u32 = Readable::read(r)?;
1838                 let sync_complete: bool = Readable::read(r)?;
1839
1840                 let encoding_len: u16 = Readable::read(r)?;
1841                 let encoding_type: u8 = Readable::read(r)?;
1842
1843                 // Must be encoding_type=0 uncompressed serialization. We do not
1844                 // support encoding_type=1 zlib serialization.
1845                 if encoding_type != EncodingType::Uncompressed as u8 {
1846                         return Err(DecodeError::UnsupportedCompression);
1847                 }
1848
1849                 // We expect the encoding_len to always includes the 1-byte
1850                 // encoding_type and that short_channel_ids are 8-bytes each
1851                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1852                         return Err(DecodeError::InvalidValue);
1853                 }
1854
1855                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1856                 // less the 1-byte encoding_type
1857                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1858                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1859                 for _ in 0..short_channel_id_count {
1860                         short_channel_ids.push(Readable::read(r)?);
1861                 }
1862
1863                 Ok(ReplyChannelRange {
1864                         chain_hash,
1865                         first_blocknum,
1866                         number_of_blocks,
1867                         sync_complete,
1868                         short_channel_ids
1869                 })
1870         }
1871 }
1872
1873 impl Writeable for ReplyChannelRange {
1874         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1875                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1876                 self.chain_hash.write(w)?;
1877                 self.first_blocknum.write(w)?;
1878                 self.number_of_blocks.write(w)?;
1879                 self.sync_complete.write(w)?;
1880
1881                 encoding_len.write(w)?;
1882                 (EncodingType::Uncompressed as u8).write(w)?;
1883                 for scid in self.short_channel_ids.iter() {
1884                         scid.write(w)?;
1885                 }
1886
1887                 Ok(())
1888         }
1889 }
1890
1891 impl_writeable_msg!(GossipTimestampFilter, {
1892         chain_hash,
1893         first_timestamp,
1894         timestamp_range,
1895 }, {});
1896
1897 #[cfg(test)]
1898 mod tests {
1899         use hex;
1900         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1901         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1902         use ln::msgs;
1903         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1904         use util::ser::{Writeable, Readable, Hostname};
1905
1906         use bitcoin::hashes::hex::FromHex;
1907         use bitcoin::util::address::Address;
1908         use bitcoin::network::constants::Network;
1909         use bitcoin::blockdata::script::Builder;
1910         use bitcoin::blockdata::opcodes;
1911         use bitcoin::hash_types::{Txid, BlockHash};
1912
1913         use bitcoin::secp256k1::{PublicKey,SecretKey};
1914         use bitcoin::secp256k1::{Secp256k1, Message};
1915
1916         use io::Cursor;
1917         use prelude::*;
1918         use core::convert::TryFrom;
1919
1920         #[test]
1921         fn encoding_channel_reestablish_no_secret() {
1922                 let cr = msgs::ChannelReestablish {
1923                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1924                         next_local_commitment_number: 3,
1925                         next_remote_commitment_number: 4,
1926                         data_loss_protect: OptionalField::Absent,
1927                 };
1928
1929                 let encoded_value = cr.encode();
1930                 assert_eq!(
1931                         encoded_value,
1932                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1933                 );
1934         }
1935
1936         #[test]
1937         fn encoding_channel_reestablish_with_secret() {
1938                 let public_key = {
1939                         let secp_ctx = Secp256k1::new();
1940                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
1941                 };
1942
1943                 let cr = msgs::ChannelReestablish {
1944                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1945                         next_local_commitment_number: 3,
1946                         next_remote_commitment_number: 4,
1947                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
1948                 };
1949
1950                 let encoded_value = cr.encode();
1951                 assert_eq!(
1952                         encoded_value,
1953                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
1954                 );
1955         }
1956
1957         macro_rules! get_keys_from {
1958                 ($slice: expr, $secp_ctx: expr) => {
1959                         {
1960                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
1961                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
1962                                 (privkey, pubkey)
1963                         }
1964                 }
1965         }
1966
1967         macro_rules! get_sig_on {
1968                 ($privkey: expr, $ctx: expr, $string: expr) => {
1969                         {
1970                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
1971                                 $ctx.sign_ecdsa(&sighash, &$privkey)
1972                         }
1973                 }
1974         }
1975
1976         #[test]
1977         fn encoding_announcement_signatures() {
1978                 let secp_ctx = Secp256k1::new();
1979                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1980                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
1981                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
1982                 let announcement_signatures = msgs::AnnouncementSignatures {
1983                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1984                         short_channel_id: 2316138423780173,
1985                         node_signature: sig_1,
1986                         bitcoin_signature: sig_2,
1987                 };
1988
1989                 let encoded_value = announcement_signatures.encode();
1990                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
1991         }
1992
1993         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
1994                 let secp_ctx = Secp256k1::new();
1995                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1996                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
1997                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
1998                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
1999                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2000                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2001                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2002                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2003                 let mut features = ChannelFeatures::known();
2004                 if unknown_features_bits {
2005                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
2006                 }
2007                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
2008                         features,
2009                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2010                         short_channel_id: 2316138423780173,
2011                         node_id_1: pubkey_1,
2012                         node_id_2: pubkey_2,
2013                         bitcoin_key_1: pubkey_3,
2014                         bitcoin_key_2: pubkey_4,
2015                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
2016                 };
2017                 let channel_announcement = msgs::ChannelAnnouncement {
2018                         node_signature_1: sig_1,
2019                         node_signature_2: sig_2,
2020                         bitcoin_signature_1: sig_3,
2021                         bitcoin_signature_2: sig_4,
2022                         contents: unsigned_channel_announcement,
2023                 };
2024                 let encoded_value = channel_announcement.encode();
2025                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
2026                 if unknown_features_bits {
2027                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2028                 } else {
2029                         target_value.append(&mut hex::decode("0000").unwrap());
2030                 }
2031                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2032                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
2033                 if excess_data {
2034                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
2035                 }
2036                 assert_eq!(encoded_value, target_value);
2037         }
2038
2039         #[test]
2040         fn encoding_channel_announcement() {
2041                 do_encoding_channel_announcement(true, false);
2042                 do_encoding_channel_announcement(false, true);
2043                 do_encoding_channel_announcement(false, false);
2044                 do_encoding_channel_announcement(true, true);
2045         }
2046
2047         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, hostname: bool, excess_address_data: bool, excess_data: bool) {
2048                 let secp_ctx = Secp256k1::new();
2049                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2050                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2051                 let features = if unknown_features_bits {
2052                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
2053                 } else {
2054                         // Set to some features we may support
2055                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
2056                 };
2057                 let mut addresses = Vec::new();
2058                 if ipv4 {
2059                         addresses.push(msgs::NetAddress::IPv4 {
2060                                 addr: [255, 254, 253, 252],
2061                                 port: 9735
2062                         });
2063                 }
2064                 if ipv6 {
2065                         addresses.push(msgs::NetAddress::IPv6 {
2066                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
2067                                 port: 9735
2068                         });
2069                 }
2070                 if onionv2 {
2071                         addresses.push(msgs::NetAddress::OnionV2(
2072                                 [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 38, 7]
2073                         ));
2074                 }
2075                 if onionv3 {
2076                         addresses.push(msgs::NetAddress::OnionV3 {
2077                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
2078                                 checksum: 32,
2079                                 version: 16,
2080                                 port: 9735
2081                         });
2082                 }
2083                 if hostname {
2084                         addresses.push(msgs::NetAddress::Hostname {
2085                                 hostname: Hostname::try_from(String::from("host")).unwrap(),
2086                                 port: 9735,
2087                         });
2088                 }
2089                 let mut addr_len = 0;
2090                 for addr in &addresses {
2091                         addr_len += addr.len() + 1;
2092                 }
2093                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
2094                         features,
2095                         timestamp: 20190119,
2096                         node_id: pubkey_1,
2097                         rgb: [32; 3],
2098                         alias: [16;32],
2099                         addresses,
2100                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
2101                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
2102                 };
2103                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
2104                 let node_announcement = msgs::NodeAnnouncement {
2105                         signature: sig_1,
2106                         contents: unsigned_node_announcement,
2107                 };
2108                 let encoded_value = node_announcement.encode();
2109                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2110                 if unknown_features_bits {
2111                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2112                 } else {
2113                         target_value.append(&mut hex::decode("000122").unwrap());
2114                 }
2115                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
2116                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
2117                 if ipv4 {
2118                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
2119                 }
2120                 if ipv6 {
2121                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
2122                 }
2123                 if onionv2 {
2124                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
2125                 }
2126                 if onionv3 {
2127                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
2128                 }
2129                 if hostname {
2130                         target_value.append(&mut hex::decode("0504686f73742607").unwrap());
2131                 }
2132                 if excess_address_data {
2133                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
2134                 }
2135                 if excess_data {
2136                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2137                 }
2138                 assert_eq!(encoded_value, target_value);
2139         }
2140
2141         #[test]
2142         fn encoding_node_announcement() {
2143                 do_encoding_node_announcement(true, true, true, true, true, true, true, true);
2144                 do_encoding_node_announcement(false, false, false, false, false, false, false, false);
2145                 do_encoding_node_announcement(false, true, false, false, false, false, false, false);
2146                 do_encoding_node_announcement(false, false, true, false, false, false, false, false);
2147                 do_encoding_node_announcement(false, false, false, true, false, false, false, false);
2148                 do_encoding_node_announcement(false, false, false, false, true, false, false, false);
2149                 do_encoding_node_announcement(false, false, false, false, false, true, false, false);
2150                 do_encoding_node_announcement(false, false, false, false, false, false, true, false);
2151                 do_encoding_node_announcement(false, true, false, true, false, false, true, false);
2152                 do_encoding_node_announcement(false, false, true, false, true, false, false, false);
2153         }
2154
2155         fn do_encoding_channel_update(direction: bool, disable: bool, excess_data: bool) {
2156                 let secp_ctx = Secp256k1::new();
2157                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2158                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2159                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
2160                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2161                         short_channel_id: 2316138423780173,
2162                         timestamp: 20190119,
2163                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2164                         cltv_expiry_delta: 144,
2165                         htlc_minimum_msat: 1000000,
2166                         htlc_maximum_msat: 131355275467161,
2167                         fee_base_msat: 10000,
2168                         fee_proportional_millionths: 20,
2169                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2170                 };
2171                 let channel_update = msgs::ChannelUpdate {
2172                         signature: sig_1,
2173                         contents: unsigned_channel_update
2174                 };
2175                 let encoded_value = channel_update.encode();
2176                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2177                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2178                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2179                 target_value.append(&mut hex::decode("01").unwrap());
2180                 target_value.append(&mut hex::decode("00").unwrap());
2181                 if direction {
2182                         let flag = target_value.last_mut().unwrap();
2183                         *flag = 1;
2184                 }
2185                 if disable {
2186                         let flag = target_value.last_mut().unwrap();
2187                         *flag = *flag | 1 << 1;
2188                 }
2189                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2190                 target_value.append(&mut hex::decode("0000777788889999").unwrap());
2191                 if excess_data {
2192                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2193                 }
2194                 assert_eq!(encoded_value, target_value);
2195         }
2196
2197         #[test]
2198         fn encoding_channel_update() {
2199                 do_encoding_channel_update(false, false, false);
2200                 do_encoding_channel_update(false, false, true);
2201                 do_encoding_channel_update(true, false, false);
2202                 do_encoding_channel_update(true, false, true);
2203                 do_encoding_channel_update(false, true, false);
2204                 do_encoding_channel_update(false, true, true);
2205                 do_encoding_channel_update(true, true, false);
2206                 do_encoding_channel_update(true, true, true);
2207         }
2208
2209         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2210                 let secp_ctx = Secp256k1::new();
2211                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2212                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2213                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2214                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2215                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2216                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2217                 let open_channel = msgs::OpenChannel {
2218                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2219                         temporary_channel_id: [2; 32],
2220                         funding_satoshis: 1311768467284833366,
2221                         push_msat: 2536655962884945560,
2222                         dust_limit_satoshis: 3608586615801332854,
2223                         max_htlc_value_in_flight_msat: 8517154655701053848,
2224                         channel_reserve_satoshis: 8665828695742877976,
2225                         htlc_minimum_msat: 2316138423780173,
2226                         feerate_per_kw: 821716,
2227                         to_self_delay: 49340,
2228                         max_accepted_htlcs: 49340,
2229                         funding_pubkey: pubkey_1,
2230                         revocation_basepoint: pubkey_2,
2231                         payment_point: pubkey_3,
2232                         delayed_payment_basepoint: pubkey_4,
2233                         htlc_basepoint: pubkey_5,
2234                         first_per_commitment_point: pubkey_6,
2235                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2236                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2237                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2238                 };
2239                 let encoded_value = open_channel.encode();
2240                 let mut target_value = Vec::new();
2241                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2242                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2243                 if random_bit {
2244                         target_value.append(&mut hex::decode("20").unwrap());
2245                 } else {
2246                         target_value.append(&mut hex::decode("00").unwrap());
2247                 }
2248                 if shutdown {
2249                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2250                 }
2251                 if incl_chan_type {
2252                         target_value.append(&mut hex::decode("0100").unwrap());
2253                 }
2254                 assert_eq!(encoded_value, target_value);
2255         }
2256
2257         #[test]
2258         fn encoding_open_channel() {
2259                 do_encoding_open_channel(false, false, false);
2260                 do_encoding_open_channel(false, false, true);
2261                 do_encoding_open_channel(false, true, false);
2262                 do_encoding_open_channel(false, true, true);
2263                 do_encoding_open_channel(true, false, false);
2264                 do_encoding_open_channel(true, false, true);
2265                 do_encoding_open_channel(true, true, false);
2266                 do_encoding_open_channel(true, true, true);
2267         }
2268
2269         fn do_encoding_accept_channel(shutdown: bool) {
2270                 let secp_ctx = Secp256k1::new();
2271                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2272                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2273                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2274                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2275                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2276                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2277                 let accept_channel = msgs::AcceptChannel {
2278                         temporary_channel_id: [2; 32],
2279                         dust_limit_satoshis: 1311768467284833366,
2280                         max_htlc_value_in_flight_msat: 2536655962884945560,
2281                         channel_reserve_satoshis: 3608586615801332854,
2282                         htlc_minimum_msat: 2316138423780173,
2283                         minimum_depth: 821716,
2284                         to_self_delay: 49340,
2285                         max_accepted_htlcs: 49340,
2286                         funding_pubkey: pubkey_1,
2287                         revocation_basepoint: pubkey_2,
2288                         payment_point: pubkey_3,
2289                         delayed_payment_basepoint: pubkey_4,
2290                         htlc_basepoint: pubkey_5,
2291                         first_per_commitment_point: pubkey_6,
2292                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2293                         channel_type: None,
2294                 };
2295                 let encoded_value = accept_channel.encode();
2296                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2297                 if shutdown {
2298                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2299                 }
2300                 assert_eq!(encoded_value, target_value);
2301         }
2302
2303         #[test]
2304         fn encoding_accept_channel() {
2305                 do_encoding_accept_channel(false);
2306                 do_encoding_accept_channel(true);
2307         }
2308
2309         #[test]
2310         fn encoding_funding_created() {
2311                 let secp_ctx = Secp256k1::new();
2312                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2313                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2314                 let funding_created = msgs::FundingCreated {
2315                         temporary_channel_id: [2; 32],
2316                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2317                         funding_output_index: 255,
2318                         signature: sig_1,
2319                 };
2320                 let encoded_value = funding_created.encode();
2321                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2322                 assert_eq!(encoded_value, target_value);
2323         }
2324
2325         #[test]
2326         fn encoding_funding_signed() {
2327                 let secp_ctx = Secp256k1::new();
2328                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2329                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2330                 let funding_signed = msgs::FundingSigned {
2331                         channel_id: [2; 32],
2332                         signature: sig_1,
2333                 };
2334                 let encoded_value = funding_signed.encode();
2335                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2336                 assert_eq!(encoded_value, target_value);
2337         }
2338
2339         #[test]
2340         fn encoding_channel_ready() {
2341                 let secp_ctx = Secp256k1::new();
2342                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2343                 let channel_ready = msgs::ChannelReady {
2344                         channel_id: [2; 32],
2345                         next_per_commitment_point: pubkey_1,
2346                         short_channel_id_alias: None,
2347                 };
2348                 let encoded_value = channel_ready.encode();
2349                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2350                 assert_eq!(encoded_value, target_value);
2351         }
2352
2353         fn do_encoding_shutdown(script_type: u8) {
2354                 let secp_ctx = Secp256k1::new();
2355                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2356                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2357                 let shutdown = msgs::Shutdown {
2358                         channel_id: [2; 32],
2359                         scriptpubkey:
2360                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey() }
2361                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).unwrap().script_pubkey() }
2362                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2363                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2364                 };
2365                 let encoded_value = shutdown.encode();
2366                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2367                 if script_type == 1 {
2368                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2369                 } else if script_type == 2 {
2370                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2371                 } else if script_type == 3 {
2372                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2373                 } else if script_type == 4 {
2374                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2375                 }
2376                 assert_eq!(encoded_value, target_value);
2377         }
2378
2379         #[test]
2380         fn encoding_shutdown() {
2381                 do_encoding_shutdown(1);
2382                 do_encoding_shutdown(2);
2383                 do_encoding_shutdown(3);
2384                 do_encoding_shutdown(4);
2385         }
2386
2387         #[test]
2388         fn encoding_closing_signed() {
2389                 let secp_ctx = Secp256k1::new();
2390                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2391                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2392                 let closing_signed = msgs::ClosingSigned {
2393                         channel_id: [2; 32],
2394                         fee_satoshis: 2316138423780173,
2395                         signature: sig_1,
2396                         fee_range: None,
2397                 };
2398                 let encoded_value = closing_signed.encode();
2399                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2400                 assert_eq!(encoded_value, target_value);
2401                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2402
2403                 let closing_signed_with_range = msgs::ClosingSigned {
2404                         channel_id: [2; 32],
2405                         fee_satoshis: 2316138423780173,
2406                         signature: sig_1,
2407                         fee_range: Some(msgs::ClosingSignedFeeRange {
2408                                 min_fee_satoshis: 0xdeadbeef,
2409                                 max_fee_satoshis: 0x1badcafe01234567,
2410                         }),
2411                 };
2412                 let encoded_value_with_range = closing_signed_with_range.encode();
2413                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2414                 assert_eq!(encoded_value_with_range, target_value_with_range);
2415                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2416                         closing_signed_with_range);
2417         }
2418
2419         #[test]
2420         fn encoding_update_add_htlc() {
2421                 let secp_ctx = Secp256k1::new();
2422                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2423                 let onion_routing_packet = msgs::OnionPacket {
2424                         version: 255,
2425                         public_key: Ok(pubkey_1),
2426                         hop_data: [1; 20*65],
2427                         hmac: [2; 32]
2428                 };
2429                 let update_add_htlc = msgs::UpdateAddHTLC {
2430                         channel_id: [2; 32],
2431                         htlc_id: 2316138423780173,
2432                         amount_msat: 3608586615801332854,
2433                         payment_hash: PaymentHash([1; 32]),
2434                         cltv_expiry: 821716,
2435                         onion_routing_packet
2436                 };
2437                 let encoded_value = update_add_htlc.encode();
2438                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2439                 assert_eq!(encoded_value, target_value);
2440         }
2441
2442         #[test]
2443         fn encoding_update_fulfill_htlc() {
2444                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2445                         channel_id: [2; 32],
2446                         htlc_id: 2316138423780173,
2447                         payment_preimage: PaymentPreimage([1; 32]),
2448                 };
2449                 let encoded_value = update_fulfill_htlc.encode();
2450                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2451                 assert_eq!(encoded_value, target_value);
2452         }
2453
2454         #[test]
2455         fn encoding_update_fail_htlc() {
2456                 let reason = OnionErrorPacket {
2457                         data: [1; 32].to_vec(),
2458                 };
2459                 let update_fail_htlc = msgs::UpdateFailHTLC {
2460                         channel_id: [2; 32],
2461                         htlc_id: 2316138423780173,
2462                         reason
2463                 };
2464                 let encoded_value = update_fail_htlc.encode();
2465                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2466                 assert_eq!(encoded_value, target_value);
2467         }
2468
2469         #[test]
2470         fn encoding_update_fail_malformed_htlc() {
2471                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2472                         channel_id: [2; 32],
2473                         htlc_id: 2316138423780173,
2474                         sha256_of_onion: [1; 32],
2475                         failure_code: 255
2476                 };
2477                 let encoded_value = update_fail_malformed_htlc.encode();
2478                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2479                 assert_eq!(encoded_value, target_value);
2480         }
2481
2482         fn do_encoding_commitment_signed(htlcs: bool) {
2483                 let secp_ctx = Secp256k1::new();
2484                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2485                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2486                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2487                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2488                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2489                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2490                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2491                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2492                 let commitment_signed = msgs::CommitmentSigned {
2493                         channel_id: [2; 32],
2494                         signature: sig_1,
2495                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2496                 };
2497                 let encoded_value = commitment_signed.encode();
2498                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2499                 if htlcs {
2500                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2501                 } else {
2502                         target_value.append(&mut hex::decode("0000").unwrap());
2503                 }
2504                 assert_eq!(encoded_value, target_value);
2505         }
2506
2507         #[test]
2508         fn encoding_commitment_signed() {
2509                 do_encoding_commitment_signed(true);
2510                 do_encoding_commitment_signed(false);
2511         }
2512
2513         #[test]
2514         fn encoding_revoke_and_ack() {
2515                 let secp_ctx = Secp256k1::new();
2516                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2517                 let raa = msgs::RevokeAndACK {
2518                         channel_id: [2; 32],
2519                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2520                         next_per_commitment_point: pubkey_1,
2521                 };
2522                 let encoded_value = raa.encode();
2523                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2524                 assert_eq!(encoded_value, target_value);
2525         }
2526
2527         #[test]
2528         fn encoding_update_fee() {
2529                 let update_fee = msgs::UpdateFee {
2530                         channel_id: [2; 32],
2531                         feerate_per_kw: 20190119,
2532                 };
2533                 let encoded_value = update_fee.encode();
2534                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2535                 assert_eq!(encoded_value, target_value);
2536         }
2537
2538         #[test]
2539         fn encoding_init() {
2540                 assert_eq!(msgs::Init {
2541                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2542                         remote_network_address: None,
2543                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2544                 assert_eq!(msgs::Init {
2545                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2546                         remote_network_address: None,
2547                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2548                 assert_eq!(msgs::Init {
2549                         features: InitFeatures::from_le_bytes(vec![]),
2550                         remote_network_address: None,
2551                 }.encode(), hex::decode("00000000").unwrap());
2552
2553                 let init_msg = msgs::Init { features: InitFeatures::from_le_bytes(vec![]),
2554                         remote_network_address: Some(msgs::NetAddress::IPv4 {
2555                                 addr: [127, 0, 0, 1],
2556                                 port: 1000,
2557                         }),
2558                 };
2559                 let encoded_value = init_msg.encode();
2560                 let target_value = hex::decode("000000000307017f00000103e8").unwrap();
2561                 assert_eq!(encoded_value, target_value);
2562                 assert_eq!(msgs::Init::read(&mut Cursor::new(&target_value)).unwrap(), init_msg);
2563         }
2564
2565         #[test]
2566         fn encoding_error() {
2567                 let error = msgs::ErrorMessage {
2568                         channel_id: [2; 32],
2569                         data: String::from("rust-lightning"),
2570                 };
2571                 let encoded_value = error.encode();
2572                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2573                 assert_eq!(encoded_value, target_value);
2574         }
2575
2576         #[test]
2577         fn encoding_warning() {
2578                 let error = msgs::WarningMessage {
2579                         channel_id: [2; 32],
2580                         data: String::from("rust-lightning"),
2581                 };
2582                 let encoded_value = error.encode();
2583                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2584                 assert_eq!(encoded_value, target_value);
2585         }
2586
2587         #[test]
2588         fn encoding_ping() {
2589                 let ping = msgs::Ping {
2590                         ponglen: 64,
2591                         byteslen: 64
2592                 };
2593                 let encoded_value = ping.encode();
2594                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2595                 assert_eq!(encoded_value, target_value);
2596         }
2597
2598         #[test]
2599         fn encoding_pong() {
2600                 let pong = msgs::Pong {
2601                         byteslen: 64
2602                 };
2603                 let encoded_value = pong.encode();
2604                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2605                 assert_eq!(encoded_value, target_value);
2606         }
2607
2608         #[test]
2609         fn encoding_legacy_onion_hop_data() {
2610                 let msg = msgs::OnionHopData {
2611                         format: OnionHopDataFormat::Legacy {
2612                                 short_channel_id: 0xdeadbeef1bad1dea,
2613                         },
2614                         amt_to_forward: 0x0badf00d01020304,
2615                         outgoing_cltv_value: 0xffffffff,
2616                 };
2617                 let encoded_value = msg.encode();
2618                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2619                 assert_eq!(encoded_value, target_value);
2620         }
2621
2622         #[test]
2623         fn encoding_nonfinal_onion_hop_data() {
2624                 let mut msg = msgs::OnionHopData {
2625                         format: OnionHopDataFormat::NonFinalNode {
2626                                 short_channel_id: 0xdeadbeef1bad1dea,
2627                         },
2628                         amt_to_forward: 0x0badf00d01020304,
2629                         outgoing_cltv_value: 0xffffffff,
2630                 };
2631                 let encoded_value = msg.encode();
2632                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2633                 assert_eq!(encoded_value, target_value);
2634                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2635                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2636                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2637                 } else { panic!(); }
2638                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2639                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2640         }
2641
2642         #[test]
2643         fn encoding_final_onion_hop_data() {
2644                 let mut msg = msgs::OnionHopData {
2645                         format: OnionHopDataFormat::FinalNode {
2646                                 payment_data: None,
2647                                 keysend_preimage: None,
2648                         },
2649                         amt_to_forward: 0x0badf00d01020304,
2650                         outgoing_cltv_value: 0xffffffff,
2651                 };
2652                 let encoded_value = msg.encode();
2653                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2654                 assert_eq!(encoded_value, target_value);
2655                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2656                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2657                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2658                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2659         }
2660
2661         #[test]
2662         fn encoding_final_onion_hop_data_with_secret() {
2663                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2664                 let mut msg = msgs::OnionHopData {
2665                         format: OnionHopDataFormat::FinalNode {
2666                                 payment_data: Some(FinalOnionHopData {
2667                                         payment_secret: expected_payment_secret,
2668                                         total_msat: 0x1badca1f
2669                                 }),
2670                                 keysend_preimage: None,
2671                         },
2672                         amt_to_forward: 0x0badf00d01020304,
2673                         outgoing_cltv_value: 0xffffffff,
2674                 };
2675                 let encoded_value = msg.encode();
2676                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2677                 assert_eq!(encoded_value, target_value);
2678                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2679                 if let OnionHopDataFormat::FinalNode {
2680                         payment_data: Some(FinalOnionHopData {
2681                                 payment_secret,
2682                                 total_msat: 0x1badca1f
2683                         }),
2684                         keysend_preimage: None,
2685                 } = msg.format {
2686                         assert_eq!(payment_secret, expected_payment_secret);
2687                 } else { panic!(); }
2688                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2689                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2690         }
2691
2692         #[test]
2693         fn query_channel_range_end_blocknum() {
2694                 let tests: Vec<(u32, u32, u32)> = vec![
2695                         (10000, 1500, 11500),
2696                         (0, 0xffffffff, 0xffffffff),
2697                         (1, 0xffffffff, 0xffffffff),
2698                 ];
2699
2700                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2701                         let sut = msgs::QueryChannelRange {
2702                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2703                                 first_blocknum,
2704                                 number_of_blocks,
2705                         };
2706                         assert_eq!(sut.end_blocknum(), expected);
2707                 }
2708         }
2709
2710         #[test]
2711         fn encoding_query_channel_range() {
2712                 let mut query_channel_range = msgs::QueryChannelRange {
2713                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2714                         first_blocknum: 100000,
2715                         number_of_blocks: 1500,
2716                 };
2717                 let encoded_value = query_channel_range.encode();
2718                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2719                 assert_eq!(encoded_value, target_value);
2720
2721                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2722                 assert_eq!(query_channel_range.first_blocknum, 100000);
2723                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2724         }
2725
2726         #[test]
2727         fn encoding_reply_channel_range() {
2728                 do_encoding_reply_channel_range(0);
2729                 do_encoding_reply_channel_range(1);
2730         }
2731
2732         fn do_encoding_reply_channel_range(encoding_type: u8) {
2733                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2734                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2735                 let mut reply_channel_range = msgs::ReplyChannelRange {
2736                         chain_hash: expected_chain_hash,
2737                         first_blocknum: 756230,
2738                         number_of_blocks: 1500,
2739                         sync_complete: true,
2740                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2741                 };
2742
2743                 if encoding_type == 0 {
2744                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2745                         let encoded_value = reply_channel_range.encode();
2746                         assert_eq!(encoded_value, target_value);
2747
2748                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2749                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2750                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2751                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2752                         assert_eq!(reply_channel_range.sync_complete, true);
2753                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2754                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2755                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2756                 } else {
2757                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2758                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2759                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2760                 }
2761         }
2762
2763         #[test]
2764         fn encoding_query_short_channel_ids() {
2765                 do_encoding_query_short_channel_ids(0);
2766                 do_encoding_query_short_channel_ids(1);
2767         }
2768
2769         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2770                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2771                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2772                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2773                         chain_hash: expected_chain_hash,
2774                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2775                 };
2776
2777                 if encoding_type == 0 {
2778                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2779                         let encoded_value = query_short_channel_ids.encode();
2780                         assert_eq!(encoded_value, target_value);
2781
2782                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2783                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2784                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2785                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2786                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2787                 } else {
2788                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2789                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2790                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2791                 }
2792         }
2793
2794         #[test]
2795         fn encoding_reply_short_channel_ids_end() {
2796                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2797                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2798                         chain_hash: expected_chain_hash,
2799                         full_information: true,
2800                 };
2801                 let encoded_value = reply_short_channel_ids_end.encode();
2802                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2803                 assert_eq!(encoded_value, target_value);
2804
2805                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2806                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2807                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2808         }
2809
2810         #[test]
2811         fn encoding_gossip_timestamp_filter(){
2812                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2813                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2814                         chain_hash: expected_chain_hash,
2815                         first_timestamp: 1590000000,
2816                         timestamp_range: 0xffff_ffff,
2817                 };
2818                 let encoded_value = gossip_timestamp_filter.encode();
2819                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2820                 assert_eq!(encoded_value, target_value);
2821
2822                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2823                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2824                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2825                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2826         }
2827 }