Add boilerplate for sending and receiving onion messages in PeerManager
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::PublicKey;
28 use bitcoin::secp256k1::ecdsa::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34 use ln::onion_utils;
35 use onion_message;
36
37 use prelude::*;
38 use core::fmt;
39 use core::fmt::Debug;
40 use io::{self, Read};
41 use io_extras::read_to_end;
42
43 use util::events::{MessageSendEventsProvider, OnionMessageProvider};
44 use util::logger;
45 use util::ser::{BigSize, LengthReadable, Readable, ReadableArgs, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedBigSize, Hostname};
46
47 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
48
49 /// 21 million * 10^8 * 1000
50 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
51
52 /// An error in decoding a message or struct.
53 #[derive(Clone, Debug, PartialEq)]
54 pub enum DecodeError {
55         /// A version byte specified something we don't know how to handle.
56         /// Includes unknown realm byte in an OnionHopData packet
57         UnknownVersion,
58         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
59         UnknownRequiredFeature,
60         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
61         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
62         /// syntactically incorrect, etc
63         InvalidValue,
64         /// Buffer too short
65         ShortRead,
66         /// A length descriptor in the packet didn't describe the later data correctly
67         BadLengthDescriptor,
68         /// Error from std::io
69         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
70         io::ErrorKind),
71         /// The message included zlib-compressed values, which we don't support.
72         UnsupportedCompression,
73 }
74
75 /// An init message to be sent or received from a peer
76 #[derive(Clone, Debug, PartialEq)]
77 pub struct Init {
78         /// The relevant features which the sender supports
79         pub features: InitFeatures,
80         /// The receipient's network address. This adds the option to report a remote IP address
81         /// back to a connecting peer using the init message. A node can decide to use that information
82         /// to discover a potential update to its public IPv4 address (NAT) and use
83         /// that for a node_announcement update message containing the new address.
84         pub remote_network_address: Option<NetAddress>,
85 }
86
87 /// An error message to be sent or received from a peer
88 #[derive(Clone, Debug, PartialEq)]
89 pub struct ErrorMessage {
90         /// The channel ID involved in the error.
91         ///
92         /// All-0s indicates a general error unrelated to a specific channel, after which all channels
93         /// with the sending peer should be closed.
94         pub channel_id: [u8; 32],
95         /// A possibly human-readable error description.
96         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
97         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
98         /// the terminal emulator or the logging subsystem.
99         pub data: String,
100 }
101
102 /// A warning message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct WarningMessage {
105         /// The channel ID involved in the warning.
106         ///
107         /// All-0s indicates a warning unrelated to a specific channel.
108         pub channel_id: [u8; 32],
109         /// A possibly human-readable warning description.
110         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
111         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
112         /// the terminal emulator or the logging subsystem.
113         pub data: String,
114 }
115
116 /// A ping message to be sent or received from a peer
117 #[derive(Clone, Debug, PartialEq)]
118 pub struct Ping {
119         /// The desired response length
120         pub ponglen: u16,
121         /// The ping packet size.
122         /// This field is not sent on the wire. byteslen zeros are sent.
123         pub byteslen: u16,
124 }
125
126 /// A pong message to be sent or received from a peer
127 #[derive(Clone, Debug, PartialEq)]
128 pub struct Pong {
129         /// The pong packet size.
130         /// This field is not sent on the wire. byteslen zeros are sent.
131         pub byteslen: u16,
132 }
133
134 /// An open_channel message to be sent or received from a peer
135 #[derive(Clone, Debug, PartialEq)]
136 pub struct OpenChannel {
137         /// The genesis hash of the blockchain where the channel is to be opened
138         pub chain_hash: BlockHash,
139         /// A temporary channel ID, until the funding outpoint is announced
140         pub temporary_channel_id: [u8; 32],
141         /// The channel value
142         pub funding_satoshis: u64,
143         /// The amount to push to the counterparty as part of the open, in milli-satoshi
144         pub push_msat: u64,
145         /// The threshold below which outputs on transactions broadcast by sender will be omitted
146         pub dust_limit_satoshis: u64,
147         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
148         pub max_htlc_value_in_flight_msat: u64,
149         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
150         pub channel_reserve_satoshis: u64,
151         /// The minimum HTLC size incoming to sender, in milli-satoshi
152         pub htlc_minimum_msat: u64,
153         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
154         pub feerate_per_kw: u32,
155         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
156         pub to_self_delay: u16,
157         /// The maximum number of inbound HTLCs towards sender
158         pub max_accepted_htlcs: u16,
159         /// The sender's key controlling the funding transaction
160         pub funding_pubkey: PublicKey,
161         /// Used to derive a revocation key for transactions broadcast by counterparty
162         pub revocation_basepoint: PublicKey,
163         /// A payment key to sender for transactions broadcast by counterparty
164         pub payment_point: PublicKey,
165         /// Used to derive a payment key to sender for transactions broadcast by sender
166         pub delayed_payment_basepoint: PublicKey,
167         /// Used to derive an HTLC payment key to sender
168         pub htlc_basepoint: PublicKey,
169         /// The first to-be-broadcast-by-sender transaction's per commitment point
170         pub first_per_commitment_point: PublicKey,
171         /// Channel flags
172         pub channel_flags: u8,
173         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
174         pub shutdown_scriptpubkey: OptionalField<Script>,
175         /// The channel type that this channel will represent. If none is set, we derive the channel
176         /// type from the intersection of our feature bits with our counterparty's feature bits from
177         /// the Init message.
178         pub channel_type: Option<ChannelTypeFeatures>,
179 }
180
181 /// An accept_channel message to be sent or received from a peer
182 #[derive(Clone, Debug, PartialEq)]
183 pub struct AcceptChannel {
184         /// A temporary channel ID, until the funding outpoint is announced
185         pub temporary_channel_id: [u8; 32],
186         /// The threshold below which outputs on transactions broadcast by sender will be omitted
187         pub dust_limit_satoshis: u64,
188         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
189         pub max_htlc_value_in_flight_msat: u64,
190         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
191         pub channel_reserve_satoshis: u64,
192         /// The minimum HTLC size incoming to sender, in milli-satoshi
193         pub htlc_minimum_msat: u64,
194         /// Minimum depth of the funding transaction before the channel is considered open
195         pub minimum_depth: u32,
196         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
197         pub to_self_delay: u16,
198         /// The maximum number of inbound HTLCs towards sender
199         pub max_accepted_htlcs: u16,
200         /// The sender's key controlling the funding transaction
201         pub funding_pubkey: PublicKey,
202         /// Used to derive a revocation key for transactions broadcast by counterparty
203         pub revocation_basepoint: PublicKey,
204         /// A payment key to sender for transactions broadcast by counterparty
205         pub payment_point: PublicKey,
206         /// Used to derive a payment key to sender for transactions broadcast by sender
207         pub delayed_payment_basepoint: PublicKey,
208         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
209         pub htlc_basepoint: PublicKey,
210         /// The first to-be-broadcast-by-sender transaction's per commitment point
211         pub first_per_commitment_point: PublicKey,
212         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
213         pub shutdown_scriptpubkey: OptionalField<Script>,
214         /// The channel type that this channel will represent. If none is set, we derive the channel
215         /// type from the intersection of our feature bits with our counterparty's feature bits from
216         /// the Init message.
217         ///
218         /// This is required to match the equivalent field in [`OpenChannel::channel_type`].
219         pub channel_type: Option<ChannelTypeFeatures>,
220 }
221
222 /// A funding_created message to be sent or received from a peer
223 #[derive(Clone, Debug, PartialEq)]
224 pub struct FundingCreated {
225         /// A temporary channel ID, until the funding is established
226         pub temporary_channel_id: [u8; 32],
227         /// The funding transaction ID
228         pub funding_txid: Txid,
229         /// The specific output index funding this channel
230         pub funding_output_index: u16,
231         /// The signature of the channel initiator (funder) on the initial commitment transaction
232         pub signature: Signature,
233 }
234
235 /// A funding_signed message to be sent or received from a peer
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct FundingSigned {
238         /// The channel ID
239         pub channel_id: [u8; 32],
240         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
241         pub signature: Signature,
242 }
243
244 /// A channel_ready message to be sent or received from a peer
245 #[derive(Clone, Debug, PartialEq)]
246 pub struct ChannelReady {
247         /// The channel ID
248         pub channel_id: [u8; 32],
249         /// The per-commitment point of the second commitment transaction
250         pub next_per_commitment_point: PublicKey,
251         /// If set, provides a short_channel_id alias for this channel. The sender will accept payments
252         /// to be forwarded over this SCID and forward them to this messages' recipient.
253         pub short_channel_id_alias: Option<u64>,
254 }
255
256 /// A shutdown message to be sent or received from a peer
257 #[derive(Clone, Debug, PartialEq)]
258 pub struct Shutdown {
259         /// The channel ID
260         pub channel_id: [u8; 32],
261         /// The destination of this peer's funds on closing.
262         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
263         pub scriptpubkey: Script,
264 }
265
266 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
267 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
268 /// to use.
269 #[derive(Clone, Debug, PartialEq)]
270 pub struct ClosingSignedFeeRange {
271         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
272         /// transaction.
273         pub min_fee_satoshis: u64,
274         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
275         /// transaction.
276         pub max_fee_satoshis: u64,
277 }
278
279 /// A closing_signed message to be sent or received from a peer
280 #[derive(Clone, Debug, PartialEq)]
281 pub struct ClosingSigned {
282         /// The channel ID
283         pub channel_id: [u8; 32],
284         /// The proposed total fee for the closing transaction
285         pub fee_satoshis: u64,
286         /// A signature on the closing transaction
287         pub signature: Signature,
288         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
289         /// nodes.
290         pub fee_range: Option<ClosingSignedFeeRange>,
291 }
292
293 /// An update_add_htlc message to be sent or received from a peer
294 #[derive(Clone, Debug, PartialEq)]
295 pub struct UpdateAddHTLC {
296         /// The channel ID
297         pub channel_id: [u8; 32],
298         /// The HTLC ID
299         pub htlc_id: u64,
300         /// The HTLC value in milli-satoshi
301         pub amount_msat: u64,
302         /// The payment hash, the pre-image of which controls HTLC redemption
303         pub payment_hash: PaymentHash,
304         /// The expiry height of the HTLC
305         pub cltv_expiry: u32,
306         pub(crate) onion_routing_packet: OnionPacket,
307 }
308
309  /// An onion message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct OnionMessage {
312         /// Used in decrypting the onion packet's payload.
313         pub blinding_point: PublicKey,
314         pub(crate) onion_routing_packet: onion_message::Packet,
315 }
316
317 /// An update_fulfill_htlc message to be sent or received from a peer
318 #[derive(Clone, Debug, PartialEq)]
319 pub struct UpdateFulfillHTLC {
320         /// The channel ID
321         pub channel_id: [u8; 32],
322         /// The HTLC ID
323         pub htlc_id: u64,
324         /// The pre-image of the payment hash, allowing HTLC redemption
325         pub payment_preimage: PaymentPreimage,
326 }
327
328 /// An update_fail_htlc message to be sent or received from a peer
329 #[derive(Clone, Debug, PartialEq)]
330 pub struct UpdateFailHTLC {
331         /// The channel ID
332         pub channel_id: [u8; 32],
333         /// The HTLC ID
334         pub htlc_id: u64,
335         pub(crate) reason: OnionErrorPacket,
336 }
337
338 /// An update_fail_malformed_htlc message to be sent or received from a peer
339 #[derive(Clone, Debug, PartialEq)]
340 pub struct UpdateFailMalformedHTLC {
341         /// The channel ID
342         pub channel_id: [u8; 32],
343         /// The HTLC ID
344         pub htlc_id: u64,
345         pub(crate) sha256_of_onion: [u8; 32],
346         /// The failure code
347         pub failure_code: u16,
348 }
349
350 /// A commitment_signed message to be sent or received from a peer
351 #[derive(Clone, Debug, PartialEq)]
352 pub struct CommitmentSigned {
353         /// The channel ID
354         pub channel_id: [u8; 32],
355         /// A signature on the commitment transaction
356         pub signature: Signature,
357         /// Signatures on the HTLC transactions
358         pub htlc_signatures: Vec<Signature>,
359 }
360
361 /// A revoke_and_ack message to be sent or received from a peer
362 #[derive(Clone, Debug, PartialEq)]
363 pub struct RevokeAndACK {
364         /// The channel ID
365         pub channel_id: [u8; 32],
366         /// The secret corresponding to the per-commitment point
367         pub per_commitment_secret: [u8; 32],
368         /// The next sender-broadcast commitment transaction's per-commitment point
369         pub next_per_commitment_point: PublicKey,
370 }
371
372 /// An update_fee message to be sent or received from a peer
373 #[derive(Clone, Debug, PartialEq)]
374 pub struct UpdateFee {
375         /// The channel ID
376         pub channel_id: [u8; 32],
377         /// Fee rate per 1000-weight of the transaction
378         pub feerate_per_kw: u32,
379 }
380
381 #[derive(Clone, Debug, PartialEq)]
382 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
383 /// This is used to convince the recipient that the channel is at a certain commitment
384 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
385 /// and even later commitments may have been revoked.
386 pub struct DataLossProtect {
387         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
388         /// belonging to the recipient
389         pub your_last_per_commitment_secret: [u8; 32],
390         /// The sender's per-commitment point for their current commitment transaction
391         pub my_current_per_commitment_point: PublicKey,
392 }
393
394 /// A channel_reestablish message to be sent or received from a peer
395 #[derive(Clone, Debug, PartialEq)]
396 pub struct ChannelReestablish {
397         /// The channel ID
398         pub channel_id: [u8; 32],
399         /// The next commitment number for the sender
400         pub next_local_commitment_number: u64,
401         /// The next commitment number for the recipient
402         pub next_remote_commitment_number: u64,
403         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
404         pub data_loss_protect: OptionalField<DataLossProtect>,
405 }
406
407 /// An announcement_signatures message to be sent or received from a peer
408 #[derive(Clone, Debug, PartialEq)]
409 pub struct AnnouncementSignatures {
410         /// The channel ID
411         pub channel_id: [u8; 32],
412         /// The short channel ID
413         pub short_channel_id: u64,
414         /// A signature by the node key
415         pub node_signature: Signature,
416         /// A signature by the funding key
417         pub bitcoin_signature: Signature,
418 }
419
420 /// An address which can be used to connect to a remote peer
421 #[derive(Clone, Debug, PartialEq)]
422 pub enum NetAddress {
423         /// An IPv4 address/port on which the peer is listening.
424         IPv4 {
425                 /// The 4-byte IPv4 address
426                 addr: [u8; 4],
427                 /// The port on which the node is listening
428                 port: u16,
429         },
430         /// An IPv6 address/port on which the peer is listening.
431         IPv6 {
432                 /// The 16-byte IPv6 address
433                 addr: [u8; 16],
434                 /// The port on which the node is listening
435                 port: u16,
436         },
437         /// An old-style Tor onion address/port on which the peer is listening.
438         ///
439         /// This field is deprecated and the Tor network generally no longer supports V2 Onion
440         /// addresses. Thus, the details are not parsed here.
441         OnionV2([u8; 12]),
442         /// A new-style Tor onion address/port on which the peer is listening.
443         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
444         /// wrap as base32 and append ".onion".
445         OnionV3 {
446                 /// The ed25519 long-term public key of the peer
447                 ed25519_pubkey: [u8; 32],
448                 /// The checksum of the pubkey and version, as included in the onion address
449                 checksum: u16,
450                 /// The version byte, as defined by the Tor Onion v3 spec.
451                 version: u8,
452                 /// The port on which the node is listening
453                 port: u16,
454         },
455         /// A hostname/port on which the peer is listening.
456         Hostname {
457                 /// The hostname on which the node is listening.
458                 hostname: Hostname,
459                 /// The port on which the node is listening.
460                 port: u16,
461         },
462 }
463 impl NetAddress {
464         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
465         /// by this.
466         pub(crate) fn get_id(&self) -> u8 {
467                 match self {
468                         &NetAddress::IPv4 {..} => { 1 },
469                         &NetAddress::IPv6 {..} => { 2 },
470                         &NetAddress::OnionV2(_) => { 3 },
471                         &NetAddress::OnionV3 {..} => { 4 },
472                         &NetAddress::Hostname {..} => { 5 },
473                 }
474         }
475
476         /// Strict byte-length of address descriptor, 1-byte type not recorded
477         fn len(&self) -> u16 {
478                 match self {
479                         &NetAddress::IPv4 { .. } => { 6 },
480                         &NetAddress::IPv6 { .. } => { 18 },
481                         &NetAddress::OnionV2(_) => { 12 },
482                         &NetAddress::OnionV3 { .. } => { 37 },
483                         // Consists of 1-byte hostname length, hostname bytes, and 2-byte port.
484                         &NetAddress::Hostname { ref hostname, .. } => { u16::from(hostname.len()) + 3 },
485                 }
486         }
487
488         /// The maximum length of any address descriptor, not including the 1-byte type.
489         /// This maximum length is reached by a hostname address descriptor:
490         /// a hostname with a maximum length of 255, its 1-byte length and a 2-byte port.
491         pub(crate) const MAX_LEN: u16 = 258;
492 }
493
494 impl Writeable for NetAddress {
495         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
496                 match self {
497                         &NetAddress::IPv4 { ref addr, ref port } => {
498                                 1u8.write(writer)?;
499                                 addr.write(writer)?;
500                                 port.write(writer)?;
501                         },
502                         &NetAddress::IPv6 { ref addr, ref port } => {
503                                 2u8.write(writer)?;
504                                 addr.write(writer)?;
505                                 port.write(writer)?;
506                         },
507                         &NetAddress::OnionV2(bytes) => {
508                                 3u8.write(writer)?;
509                                 bytes.write(writer)?;
510                         },
511                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
512                                 4u8.write(writer)?;
513                                 ed25519_pubkey.write(writer)?;
514                                 checksum.write(writer)?;
515                                 version.write(writer)?;
516                                 port.write(writer)?;
517                         },
518                         &NetAddress::Hostname { ref hostname, ref port } => {
519                                 5u8.write(writer)?;
520                                 hostname.write(writer)?;
521                                 port.write(writer)?;
522                         },
523                 }
524                 Ok(())
525         }
526 }
527
528 impl Readable for Result<NetAddress, u8> {
529         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
530                 let byte = <u8 as Readable>::read(reader)?;
531                 match byte {
532                         1 => {
533                                 Ok(Ok(NetAddress::IPv4 {
534                                         addr: Readable::read(reader)?,
535                                         port: Readable::read(reader)?,
536                                 }))
537                         },
538                         2 => {
539                                 Ok(Ok(NetAddress::IPv6 {
540                                         addr: Readable::read(reader)?,
541                                         port: Readable::read(reader)?,
542                                 }))
543                         },
544                         3 => Ok(Ok(NetAddress::OnionV2(Readable::read(reader)?))),
545                         4 => {
546                                 Ok(Ok(NetAddress::OnionV3 {
547                                         ed25519_pubkey: Readable::read(reader)?,
548                                         checksum: Readable::read(reader)?,
549                                         version: Readable::read(reader)?,
550                                         port: Readable::read(reader)?,
551                                 }))
552                         },
553                         5 => {
554                                 Ok(Ok(NetAddress::Hostname {
555                                         hostname: Readable::read(reader)?,
556                                         port: Readable::read(reader)?,
557                                 }))
558                         },
559                         _ => return Ok(Err(byte)),
560                 }
561         }
562 }
563
564 impl Readable for NetAddress {
565         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
566                 match Readable::read(reader) {
567                         Ok(Ok(res)) => Ok(res),
568                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
569                         Err(e) => Err(e),
570                 }
571         }
572 }
573
574
575 /// The unsigned part of a node_announcement
576 #[derive(Clone, Debug, PartialEq)]
577 pub struct UnsignedNodeAnnouncement {
578         /// The advertised features
579         pub features: NodeFeatures,
580         /// A strictly monotonic announcement counter, with gaps allowed
581         pub timestamp: u32,
582         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
583         /// to this node).
584         pub node_id: PublicKey,
585         /// An RGB color for UI purposes
586         pub rgb: [u8; 3],
587         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
588         /// of uniqueness.
589         pub alias: [u8; 32],
590         /// List of addresses on which this node is reachable
591         pub addresses: Vec<NetAddress>,
592         pub(crate) excess_address_data: Vec<u8>,
593         pub(crate) excess_data: Vec<u8>,
594 }
595 #[derive(Clone, Debug, PartialEq)]
596 /// A node_announcement message to be sent or received from a peer
597 pub struct NodeAnnouncement {
598         /// The signature by the node key
599         pub signature: Signature,
600         /// The actual content of the announcement
601         pub contents: UnsignedNodeAnnouncement,
602 }
603
604 /// The unsigned part of a channel_announcement
605 #[derive(Clone, Debug, PartialEq)]
606 pub struct UnsignedChannelAnnouncement {
607         /// The advertised channel features
608         pub features: ChannelFeatures,
609         /// The genesis hash of the blockchain where the channel is to be opened
610         pub chain_hash: BlockHash,
611         /// The short channel ID
612         pub short_channel_id: u64,
613         /// One of the two node_ids which are endpoints of this channel
614         pub node_id_1: PublicKey,
615         /// The other of the two node_ids which are endpoints of this channel
616         pub node_id_2: PublicKey,
617         /// The funding key for the first node
618         pub bitcoin_key_1: PublicKey,
619         /// The funding key for the second node
620         pub bitcoin_key_2: PublicKey,
621         pub(crate) excess_data: Vec<u8>,
622 }
623 /// A channel_announcement message to be sent or received from a peer
624 #[derive(Clone, Debug, PartialEq)]
625 pub struct ChannelAnnouncement {
626         /// Authentication of the announcement by the first public node
627         pub node_signature_1: Signature,
628         /// Authentication of the announcement by the second public node
629         pub node_signature_2: Signature,
630         /// Proof of funding UTXO ownership by the first public node
631         pub bitcoin_signature_1: Signature,
632         /// Proof of funding UTXO ownership by the second public node
633         pub bitcoin_signature_2: Signature,
634         /// The actual announcement
635         pub contents: UnsignedChannelAnnouncement,
636 }
637
638 /// The unsigned part of a channel_update
639 #[derive(Clone, Debug, PartialEq)]
640 pub struct UnsignedChannelUpdate {
641         /// The genesis hash of the blockchain where the channel is to be opened
642         pub chain_hash: BlockHash,
643         /// The short channel ID
644         pub short_channel_id: u64,
645         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
646         pub timestamp: u32,
647         /// Channel flags
648         pub flags: u8,
649         /// The number of blocks such that if:
650         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
651         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
652         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
653         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
654         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
655         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
656         /// constructing the route.
657         pub cltv_expiry_delta: u16,
658         /// The minimum HTLC size incoming to sender, in milli-satoshi
659         pub htlc_minimum_msat: u64,
660         /// The maximum HTLC value incoming to sender, in milli-satoshi. Used to be optional.
661         pub htlc_maximum_msat: u64,
662         /// The base HTLC fee charged by sender, in milli-satoshi
663         pub fee_base_msat: u32,
664         /// The amount to fee multiplier, in micro-satoshi
665         pub fee_proportional_millionths: u32,
666         /// Excess data which was signed as a part of the message which we do not (yet) understand how
667         /// to decode. This is stored to ensure forward-compatibility as new fields are added to the
668         /// lightning gossip
669         pub excess_data: Vec<u8>,
670 }
671 /// A channel_update message to be sent or received from a peer
672 #[derive(Clone, Debug, PartialEq)]
673 pub struct ChannelUpdate {
674         /// A signature of the channel update
675         pub signature: Signature,
676         /// The actual channel update
677         pub contents: UnsignedChannelUpdate,
678 }
679
680 /// A query_channel_range message is used to query a peer for channel
681 /// UTXOs in a range of blocks. The recipient of a query makes a best
682 /// effort to reply to the query using one or more reply_channel_range
683 /// messages.
684 #[derive(Clone, Debug, PartialEq)]
685 pub struct QueryChannelRange {
686         /// The genesis hash of the blockchain being queried
687         pub chain_hash: BlockHash,
688         /// The height of the first block for the channel UTXOs being queried
689         pub first_blocknum: u32,
690         /// The number of blocks to include in the query results
691         pub number_of_blocks: u32,
692 }
693
694 /// A reply_channel_range message is a reply to a query_channel_range
695 /// message. Multiple reply_channel_range messages can be sent in reply
696 /// to a single query_channel_range message. The query recipient makes a
697 /// best effort to respond based on their local network view which may
698 /// not be a perfect view of the network. The short_channel_ids in the
699 /// reply are encoded. We only support encoding_type=0 uncompressed
700 /// serialization and do not support encoding_type=1 zlib serialization.
701 #[derive(Clone, Debug, PartialEq)]
702 pub struct ReplyChannelRange {
703         /// The genesis hash of the blockchain being queried
704         pub chain_hash: BlockHash,
705         /// The height of the first block in the range of the reply
706         pub first_blocknum: u32,
707         /// The number of blocks included in the range of the reply
708         pub number_of_blocks: u32,
709         /// True when this is the final reply for a query
710         pub sync_complete: bool,
711         /// The short_channel_ids in the channel range
712         pub short_channel_ids: Vec<u64>,
713 }
714
715 /// A query_short_channel_ids message is used to query a peer for
716 /// routing gossip messages related to one or more short_channel_ids.
717 /// The query recipient will reply with the latest, if available,
718 /// channel_announcement, channel_update and node_announcement messages
719 /// it maintains for the requested short_channel_ids followed by a
720 /// reply_short_channel_ids_end message. The short_channel_ids sent in
721 /// this query are encoded. We only support encoding_type=0 uncompressed
722 /// serialization and do not support encoding_type=1 zlib serialization.
723 #[derive(Clone, Debug, PartialEq)]
724 pub struct QueryShortChannelIds {
725         /// The genesis hash of the blockchain being queried
726         pub chain_hash: BlockHash,
727         /// The short_channel_ids that are being queried
728         pub short_channel_ids: Vec<u64>,
729 }
730
731 /// A reply_short_channel_ids_end message is sent as a reply to a
732 /// query_short_channel_ids message. The query recipient makes a best
733 /// effort to respond based on their local network view which may not be
734 /// a perfect view of the network.
735 #[derive(Clone, Debug, PartialEq)]
736 pub struct ReplyShortChannelIdsEnd {
737         /// The genesis hash of the blockchain that was queried
738         pub chain_hash: BlockHash,
739         /// Indicates if the query recipient maintains up-to-date channel
740         /// information for the chain_hash
741         pub full_information: bool,
742 }
743
744 /// A gossip_timestamp_filter message is used by a node to request
745 /// gossip relay for messages in the requested time range when the
746 /// gossip_queries feature has been negotiated.
747 #[derive(Clone, Debug, PartialEq)]
748 pub struct GossipTimestampFilter {
749         /// The genesis hash of the blockchain for channel and node information
750         pub chain_hash: BlockHash,
751         /// The starting unix timestamp
752         pub first_timestamp: u32,
753         /// The range of information in seconds
754         pub timestamp_range: u32,
755 }
756
757 /// Encoding type for data compression of collections in gossip queries.
758 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
759 enum EncodingType {
760         Uncompressed = 0x00,
761 }
762
763 /// Used to put an error message in a LightningError
764 #[derive(Clone, Debug)]
765 pub enum ErrorAction {
766         /// The peer took some action which made us think they were useless. Disconnect them.
767         DisconnectPeer {
768                 /// An error message which we should make an effort to send before we disconnect.
769                 msg: Option<ErrorMessage>
770         },
771         /// The peer did something harmless that we weren't able to process, just log and ignore
772         // New code should *not* use this. New code must use IgnoreAndLog, below!
773         IgnoreError,
774         /// The peer did something harmless that we weren't able to meaningfully process.
775         /// If the error is logged, log it at the given level.
776         IgnoreAndLog(logger::Level),
777         /// The peer provided us with a gossip message which we'd already seen. In most cases this
778         /// should be ignored, but it may result in the message being forwarded if it is a duplicate of
779         /// our own channel announcements.
780         IgnoreDuplicateGossip,
781         /// The peer did something incorrect. Tell them.
782         SendErrorMessage {
783                 /// The message to send.
784                 msg: ErrorMessage,
785         },
786         /// The peer did something incorrect. Tell them without closing any channels.
787         SendWarningMessage {
788                 /// The message to send.
789                 msg: WarningMessage,
790                 /// The peer may have done something harmless that we weren't able to meaningfully process,
791                 /// though we should still tell them about it.
792                 /// If this event is logged, log it at the given level.
793                 log_level: logger::Level,
794         },
795 }
796
797 /// An Err type for failure to process messages.
798 #[derive(Clone, Debug)]
799 pub struct LightningError {
800         /// A human-readable message describing the error
801         pub err: String,
802         /// The action which should be taken against the offending peer.
803         pub action: ErrorAction,
804 }
805
806 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
807 /// transaction updates if they were pending.
808 #[derive(Clone, Debug, PartialEq)]
809 pub struct CommitmentUpdate {
810         /// update_add_htlc messages which should be sent
811         pub update_add_htlcs: Vec<UpdateAddHTLC>,
812         /// update_fulfill_htlc messages which should be sent
813         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
814         /// update_fail_htlc messages which should be sent
815         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
816         /// update_fail_malformed_htlc messages which should be sent
817         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
818         /// An update_fee message which should be sent
819         pub update_fee: Option<UpdateFee>,
820         /// Finally, the commitment_signed message which should be sent
821         pub commitment_signed: CommitmentSigned,
822 }
823
824 /// Messages could have optional fields to use with extended features
825 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
826 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
827 /// separate enum type for them.
828 /// (C-not exported) due to a free generic in T
829 #[derive(Clone, Debug, PartialEq)]
830 pub enum OptionalField<T> {
831         /// Optional field is included in message
832         Present(T),
833         /// Optional field is absent in message
834         Absent
835 }
836
837 /// A trait to describe an object which can receive channel messages.
838 ///
839 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
840 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
841 pub trait ChannelMessageHandler : MessageSendEventsProvider {
842         //Channel init:
843         /// Handle an incoming open_channel message from the given peer.
844         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
845         /// Handle an incoming accept_channel message from the given peer.
846         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
847         /// Handle an incoming funding_created message from the given peer.
848         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
849         /// Handle an incoming funding_signed message from the given peer.
850         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
851         /// Handle an incoming channel_ready message from the given peer.
852         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &ChannelReady);
853
854         // Channl close:
855         /// Handle an incoming shutdown message from the given peer.
856         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
857         /// Handle an incoming closing_signed message from the given peer.
858         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
859
860         // HTLC handling:
861         /// Handle an incoming update_add_htlc message from the given peer.
862         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
863         /// Handle an incoming update_fulfill_htlc message from the given peer.
864         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
865         /// Handle an incoming update_fail_htlc message from the given peer.
866         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
867         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
868         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
869         /// Handle an incoming commitment_signed message from the given peer.
870         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
871         /// Handle an incoming revoke_and_ack message from the given peer.
872         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
873
874         /// Handle an incoming update_fee message from the given peer.
875         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
876
877         // Channel-to-announce:
878         /// Handle an incoming announcement_signatures message from the given peer.
879         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
880
881         // Connection loss/reestablish:
882         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
883         /// is believed to be possible in the future (eg they're sending us messages we don't
884         /// understand or indicate they require unknown feature bits), no_connection_possible is set
885         /// and any outstanding channels should be failed.
886         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
887
888         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
889         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init);
890         /// Handle an incoming channel_reestablish message from the given peer.
891         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
892
893         /// Handle an incoming channel update from the given peer.
894         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
895
896         // Error:
897         /// Handle an incoming error message from the given peer.
898         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
899 }
900
901 /// A trait to describe an object which can receive routing messages.
902 ///
903 /// # Implementor DoS Warnings
904 ///
905 /// For `gossip_queries` messages there are potential DoS vectors when handling
906 /// inbound queries. Implementors using an on-disk network graph should be aware of
907 /// repeated disk I/O for queries accessing different parts of the network graph.
908 pub trait RoutingMessageHandler : MessageSendEventsProvider {
909         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
910         /// false or returning an Err otherwise.
911         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
912         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
913         /// or returning an Err otherwise.
914         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
915         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
916         /// false or returning an Err otherwise.
917         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
918         /// Gets channel announcements and updates required to dump our routing table to a remote node,
919         /// starting at the short_channel_id indicated by starting_point and including announcements
920         /// for a single channel.
921         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
922         /// Gets a node announcement required to dump our routing table to a remote node, starting at
923         /// the node *after* the provided pubkey and including up to one announcement immediately
924         /// higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
925         /// If None is provided for starting_point, we start at the first node.
926         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement>;
927         /// Called when a connection is established with a peer. This can be used to
928         /// perform routing table synchronization using a strategy defined by the
929         /// implementor.
930         fn peer_connected(&self, their_node_id: &PublicKey, init: &Init);
931         /// Handles the reply of a query we initiated to learn about channels
932         /// for a given range of blocks. We can expect to receive one or more
933         /// replies to a single query.
934         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
935         /// Handles the reply of a query we initiated asking for routing gossip
936         /// messages for a list of channels. We should receive this message when
937         /// a node has completed its best effort to send us the pertaining routing
938         /// gossip messages.
939         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
940         /// Handles when a peer asks us to send a list of short_channel_ids
941         /// for the requested range of blocks.
942         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
943         /// Handles when a peer asks us to send routing gossip messages for a
944         /// list of short_channel_ids.
945         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
946 }
947
948 /// A trait to describe an object that can receive onion messages.
949 pub trait OnionMessageHandler : OnionMessageProvider {
950         /// Handle an incoming onion_message message from the given peer.
951         fn handle_onion_message(&self, peer_node_id: &PublicKey, msg: &OnionMessage);
952 }
953
954 mod fuzzy_internal_msgs {
955         use prelude::*;
956         use ln::{PaymentPreimage, PaymentSecret};
957
958         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
959         // them from untrusted input):
960         #[derive(Clone)]
961         pub(crate) struct FinalOnionHopData {
962                 pub(crate) payment_secret: PaymentSecret,
963                 /// The total value, in msat, of the payment as received by the ultimate recipient.
964                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
965                 pub(crate) total_msat: u64,
966         }
967
968         pub(crate) enum OnionHopDataFormat {
969                 Legacy { // aka Realm-0
970                         short_channel_id: u64,
971                 },
972                 NonFinalNode {
973                         short_channel_id: u64,
974                 },
975                 FinalNode {
976                         payment_data: Option<FinalOnionHopData>,
977                         keysend_preimage: Option<PaymentPreimage>,
978                 },
979         }
980
981         pub struct OnionHopData {
982                 pub(crate) format: OnionHopDataFormat,
983                 /// The value, in msat, of the payment after this hop's fee is deducted.
984                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
985                 pub(crate) amt_to_forward: u64,
986                 pub(crate) outgoing_cltv_value: u32,
987                 // 12 bytes of 0-padding for Legacy format
988         }
989
990         pub struct DecodedOnionErrorPacket {
991                 pub(crate) hmac: [u8; 32],
992                 pub(crate) failuremsg: Vec<u8>,
993                 pub(crate) pad: Vec<u8>,
994         }
995 }
996 #[cfg(fuzzing)]
997 pub use self::fuzzy_internal_msgs::*;
998 #[cfg(not(fuzzing))]
999 pub(crate) use self::fuzzy_internal_msgs::*;
1000
1001 #[derive(Clone)]
1002 pub(crate) struct OnionPacket {
1003         pub(crate) version: u8,
1004         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
1005         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
1006         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
1007         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
1008         pub(crate) hop_data: [u8; 20*65],
1009         pub(crate) hmac: [u8; 32],
1010 }
1011
1012 impl onion_utils::Packet for OnionPacket {
1013         type Data = onion_utils::FixedSizeOnionPacket;
1014         fn new(pubkey: PublicKey, hop_data: onion_utils::FixedSizeOnionPacket, hmac: [u8; 32]) -> Self {
1015                 Self {
1016                         version: 0,
1017                         public_key: Ok(pubkey),
1018                         hop_data: hop_data.0,
1019                         hmac,
1020                 }
1021         }
1022 }
1023
1024 impl PartialEq for OnionPacket {
1025         fn eq(&self, other: &OnionPacket) -> bool {
1026                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
1027                         if i != j { return false; }
1028                 }
1029                 self.version == other.version &&
1030                         self.public_key == other.public_key &&
1031                         self.hmac == other.hmac
1032         }
1033 }
1034
1035 impl fmt::Debug for OnionPacket {
1036         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1037                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
1038         }
1039 }
1040
1041 #[derive(Clone, Debug, PartialEq)]
1042 pub(crate) struct OnionErrorPacket {
1043         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
1044         // (TODO) We limit it in decode to much lower...
1045         pub(crate) data: Vec<u8>,
1046 }
1047
1048 impl fmt::Display for DecodeError {
1049         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1050                 match *self {
1051                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
1052                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
1053                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
1054                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
1055                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
1056                         DecodeError::Io(ref e) => fmt::Debug::fmt(e, f),
1057                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
1058                 }
1059         }
1060 }
1061
1062 impl From<io::Error> for DecodeError {
1063         fn from(e: io::Error) -> Self {
1064                 if e.kind() == io::ErrorKind::UnexpectedEof {
1065                         DecodeError::ShortRead
1066                 } else {
1067                         DecodeError::Io(e.kind())
1068                 }
1069         }
1070 }
1071
1072 impl Writeable for OptionalField<Script> {
1073         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1074                 match *self {
1075                         OptionalField::Present(ref script) => {
1076                                 // Note that Writeable for script includes the 16-bit length tag for us
1077                                 script.write(w)?;
1078                         },
1079                         OptionalField::Absent => {}
1080                 }
1081                 Ok(())
1082         }
1083 }
1084
1085 impl Readable for OptionalField<Script> {
1086         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1087                 match <u16 as Readable>::read(r) {
1088                         Ok(len) => {
1089                                 let mut buf = vec![0; len as usize];
1090                                 r.read_exact(&mut buf)?;
1091                                 Ok(OptionalField::Present(Script::from(buf)))
1092                         },
1093                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
1094                         Err(e) => Err(e)
1095                 }
1096         }
1097 }
1098
1099 impl Writeable for OptionalField<u64> {
1100         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1101                 match *self {
1102                         OptionalField::Present(ref value) => {
1103                                 value.write(w)?;
1104                         },
1105                         OptionalField::Absent => {}
1106                 }
1107                 Ok(())
1108         }
1109 }
1110
1111 impl Readable for OptionalField<u64> {
1112         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1113                 let value: u64 = Readable::read(r)?;
1114                 Ok(OptionalField::Present(value))
1115         }
1116 }
1117
1118
1119 impl_writeable_msg!(AcceptChannel, {
1120         temporary_channel_id,
1121         dust_limit_satoshis,
1122         max_htlc_value_in_flight_msat,
1123         channel_reserve_satoshis,
1124         htlc_minimum_msat,
1125         minimum_depth,
1126         to_self_delay,
1127         max_accepted_htlcs,
1128         funding_pubkey,
1129         revocation_basepoint,
1130         payment_point,
1131         delayed_payment_basepoint,
1132         htlc_basepoint,
1133         first_per_commitment_point,
1134         shutdown_scriptpubkey
1135 }, {
1136         (1, channel_type, option),
1137 });
1138
1139 impl_writeable_msg!(AnnouncementSignatures, {
1140         channel_id,
1141         short_channel_id,
1142         node_signature,
1143         bitcoin_signature
1144 }, {});
1145
1146 impl Writeable for ChannelReestablish {
1147         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1148                 self.channel_id.write(w)?;
1149                 self.next_local_commitment_number.write(w)?;
1150                 self.next_remote_commitment_number.write(w)?;
1151                 match self.data_loss_protect {
1152                         OptionalField::Present(ref data_loss_protect) => {
1153                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1154                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1155                         },
1156                         OptionalField::Absent => {}
1157                 }
1158                 Ok(())
1159         }
1160 }
1161
1162 impl Readable for ChannelReestablish{
1163         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1164                 Ok(Self {
1165                         channel_id: Readable::read(r)?,
1166                         next_local_commitment_number: Readable::read(r)?,
1167                         next_remote_commitment_number: Readable::read(r)?,
1168                         data_loss_protect: {
1169                                 match <[u8; 32] as Readable>::read(r) {
1170                                         Ok(your_last_per_commitment_secret) =>
1171                                                 OptionalField::Present(DataLossProtect {
1172                                                         your_last_per_commitment_secret,
1173                                                         my_current_per_commitment_point: Readable::read(r)?,
1174                                                 }),
1175                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1176                                         Err(e) => return Err(e)
1177                                 }
1178                         }
1179                 })
1180         }
1181 }
1182
1183 impl_writeable_msg!(ClosingSigned,
1184         { channel_id, fee_satoshis, signature },
1185         { (1, fee_range, option) }
1186 );
1187
1188 impl_writeable!(ClosingSignedFeeRange, {
1189         min_fee_satoshis,
1190         max_fee_satoshis
1191 });
1192
1193 impl_writeable_msg!(CommitmentSigned, {
1194         channel_id,
1195         signature,
1196         htlc_signatures
1197 }, {});
1198
1199 impl_writeable!(DecodedOnionErrorPacket, {
1200         hmac,
1201         failuremsg,
1202         pad
1203 });
1204
1205 impl_writeable_msg!(FundingCreated, {
1206         temporary_channel_id,
1207         funding_txid,
1208         funding_output_index,
1209         signature
1210 }, {});
1211
1212 impl_writeable_msg!(FundingSigned, {
1213         channel_id,
1214         signature
1215 }, {});
1216
1217 impl_writeable_msg!(ChannelReady, {
1218         channel_id,
1219         next_per_commitment_point,
1220 }, {
1221         (1, short_channel_id_alias, option),
1222 });
1223
1224 impl Writeable for Init {
1225         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1226                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1227                 // our relevant feature bits. This keeps us compatible with old nodes.
1228                 self.features.write_up_to_13(w)?;
1229                 self.features.write(w)?;
1230                 encode_tlv_stream!(w, {
1231                         (3, self.remote_network_address, option)
1232                 });
1233                 Ok(())
1234         }
1235 }
1236
1237 impl Readable for Init {
1238         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1239                 let global_features: InitFeatures = Readable::read(r)?;
1240                 let features: InitFeatures = Readable::read(r)?;
1241                 let mut remote_network_address: Option<NetAddress> = None;
1242                 decode_tlv_stream!(r, {
1243                         (3, remote_network_address, option)
1244                 });
1245                 Ok(Init {
1246                         features: features.or(global_features),
1247                         remote_network_address,
1248                 })
1249         }
1250 }
1251
1252 impl_writeable_msg!(OpenChannel, {
1253         chain_hash,
1254         temporary_channel_id,
1255         funding_satoshis,
1256         push_msat,
1257         dust_limit_satoshis,
1258         max_htlc_value_in_flight_msat,
1259         channel_reserve_satoshis,
1260         htlc_minimum_msat,
1261         feerate_per_kw,
1262         to_self_delay,
1263         max_accepted_htlcs,
1264         funding_pubkey,
1265         revocation_basepoint,
1266         payment_point,
1267         delayed_payment_basepoint,
1268         htlc_basepoint,
1269         first_per_commitment_point,
1270         channel_flags,
1271         shutdown_scriptpubkey
1272 }, {
1273         (1, channel_type, option),
1274 });
1275
1276 impl_writeable_msg!(RevokeAndACK, {
1277         channel_id,
1278         per_commitment_secret,
1279         next_per_commitment_point
1280 }, {});
1281
1282 impl_writeable_msg!(Shutdown, {
1283         channel_id,
1284         scriptpubkey
1285 }, {});
1286
1287 impl_writeable_msg!(UpdateFailHTLC, {
1288         channel_id,
1289         htlc_id,
1290         reason
1291 }, {});
1292
1293 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1294         channel_id,
1295         htlc_id,
1296         sha256_of_onion,
1297         failure_code
1298 }, {});
1299
1300 impl_writeable_msg!(UpdateFee, {
1301         channel_id,
1302         feerate_per_kw
1303 }, {});
1304
1305 impl_writeable_msg!(UpdateFulfillHTLC, {
1306         channel_id,
1307         htlc_id,
1308         payment_preimage
1309 }, {});
1310
1311 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1312 // serialization format in a way which assumes we know the total serialized length/message end
1313 // position.
1314 impl_writeable!(OnionErrorPacket, {
1315         data
1316 });
1317
1318 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1319 // serialization format in a way which assumes we know the total serialized length/message end
1320 // position.
1321 impl Writeable for OnionPacket {
1322         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1323                 self.version.write(w)?;
1324                 match self.public_key {
1325                         Ok(pubkey) => pubkey.write(w)?,
1326                         Err(_) => [0u8;33].write(w)?,
1327                 }
1328                 w.write_all(&self.hop_data)?;
1329                 self.hmac.write(w)?;
1330                 Ok(())
1331         }
1332 }
1333
1334 impl Readable for OnionPacket {
1335         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1336                 Ok(OnionPacket {
1337                         version: Readable::read(r)?,
1338                         public_key: {
1339                                 let mut buf = [0u8;33];
1340                                 r.read_exact(&mut buf)?;
1341                                 PublicKey::from_slice(&buf)
1342                         },
1343                         hop_data: Readable::read(r)?,
1344                         hmac: Readable::read(r)?,
1345                 })
1346         }
1347 }
1348
1349 impl_writeable_msg!(UpdateAddHTLC, {
1350         channel_id,
1351         htlc_id,
1352         amount_msat,
1353         payment_hash,
1354         cltv_expiry,
1355         onion_routing_packet
1356 }, {});
1357
1358 impl Readable for OnionMessage {
1359         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1360                 let blinding_point: PublicKey = Readable::read(r)?;
1361                 let len: u16 = Readable::read(r)?;
1362                 let mut packet_reader = FixedLengthReader::new(r, len as u64);
1363                 let onion_routing_packet: onion_message::Packet = <onion_message::Packet as LengthReadable>::read(&mut packet_reader)?;
1364                 Ok(Self {
1365                         blinding_point,
1366                         onion_routing_packet,
1367                 })
1368         }
1369 }
1370
1371 impl Writeable for OnionMessage {
1372         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1373                 self.blinding_point.write(w)?;
1374                 let onion_packet_len = self.onion_routing_packet.serialized_length();
1375                 (onion_packet_len as u16).write(w)?;
1376                 self.onion_routing_packet.write(w)?;
1377                 Ok(())
1378         }
1379 }
1380
1381 impl Writeable for FinalOnionHopData {
1382         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1383                 self.payment_secret.0.write(w)?;
1384                 HighZeroBytesDroppedBigSize(self.total_msat).write(w)
1385         }
1386 }
1387
1388 impl Readable for FinalOnionHopData {
1389         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1390                 let secret: [u8; 32] = Readable::read(r)?;
1391                 let amt: HighZeroBytesDroppedBigSize<u64> = Readable::read(r)?;
1392                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1393         }
1394 }
1395
1396 impl Writeable for OnionHopData {
1397         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1398                 match self.format {
1399                         OnionHopDataFormat::Legacy { short_channel_id } => {
1400                                 0u8.write(w)?;
1401                                 short_channel_id.write(w)?;
1402                                 self.amt_to_forward.write(w)?;
1403                                 self.outgoing_cltv_value.write(w)?;
1404                                 w.write_all(&[0;12])?;
1405                         },
1406                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1407                                 encode_varint_length_prefixed_tlv!(w, {
1408                                         (2, HighZeroBytesDroppedBigSize(self.amt_to_forward), required),
1409                                         (4, HighZeroBytesDroppedBigSize(self.outgoing_cltv_value), required),
1410                                         (6, short_channel_id, required)
1411                                 });
1412                         },
1413                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1414                                 encode_varint_length_prefixed_tlv!(w, {
1415                                         (2, HighZeroBytesDroppedBigSize(self.amt_to_forward), required),
1416                                         (4, HighZeroBytesDroppedBigSize(self.outgoing_cltv_value), required),
1417                                         (8, payment_data, option),
1418                                         (5482373484, keysend_preimage, option)
1419                                 });
1420                         },
1421                 }
1422                 Ok(())
1423         }
1424 }
1425
1426 impl Readable for OnionHopData {
1427         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1428                 let b: BigSize = Readable::read(r)?;
1429                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1430                 let (format, amt, cltv_value) = if b.0 != LEGACY_ONION_HOP_FLAG {
1431                         let mut rd = FixedLengthReader::new(r, b.0);
1432                         let mut amt = HighZeroBytesDroppedBigSize(0u64);
1433                         let mut cltv_value = HighZeroBytesDroppedBigSize(0u32);
1434                         let mut short_id: Option<u64> = None;
1435                         let mut payment_data: Option<FinalOnionHopData> = None;
1436                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1437                         decode_tlv_stream!(&mut rd, {
1438                                 (2, amt, required),
1439                                 (4, cltv_value, required),
1440                                 (6, short_id, option),
1441                                 (8, payment_data, option),
1442                                 // See https://github.com/lightning/blips/blob/master/blip-0003.md
1443                                 (5482373484, keysend_preimage, option)
1444                         });
1445                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1446                         let format = if let Some(short_channel_id) = short_id {
1447                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1448                                 OnionHopDataFormat::NonFinalNode {
1449                                         short_channel_id,
1450                                 }
1451                         } else {
1452                                 if let &Some(ref data) = &payment_data {
1453                                         if data.total_msat > MAX_VALUE_MSAT {
1454                                                 return Err(DecodeError::InvalidValue);
1455                                         }
1456                                 }
1457                                 OnionHopDataFormat::FinalNode {
1458                                         payment_data,
1459                                         keysend_preimage,
1460                                 }
1461                         };
1462                         (format, amt.0, cltv_value.0)
1463                 } else {
1464                         let format = OnionHopDataFormat::Legacy {
1465                                 short_channel_id: Readable::read(r)?,
1466                         };
1467                         let amt: u64 = Readable::read(r)?;
1468                         let cltv_value: u32 = Readable::read(r)?;
1469                         r.read_exact(&mut [0; 12])?;
1470                         (format, amt, cltv_value)
1471                 };
1472
1473                 if amt > MAX_VALUE_MSAT {
1474                         return Err(DecodeError::InvalidValue);
1475                 }
1476                 Ok(OnionHopData {
1477                         format,
1478                         amt_to_forward: amt,
1479                         outgoing_cltv_value: cltv_value,
1480                 })
1481         }
1482 }
1483
1484 // ReadableArgs because we need onion_utils::decode_next_hop to accommodate payment packets and
1485 // onion message packets.
1486 impl ReadableArgs<()> for OnionHopData {
1487         fn read<R: Read>(r: &mut R, _arg: ()) -> Result<Self, DecodeError> {
1488                 <Self as Readable>::read(r)
1489         }
1490 }
1491
1492 impl Writeable for Ping {
1493         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1494                 self.ponglen.write(w)?;
1495                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1496                 Ok(())
1497         }
1498 }
1499
1500 impl Readable for Ping {
1501         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1502                 Ok(Ping {
1503                         ponglen: Readable::read(r)?,
1504                         byteslen: {
1505                                 let byteslen = Readable::read(r)?;
1506                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1507                                 byteslen
1508                         }
1509                 })
1510         }
1511 }
1512
1513 impl Writeable for Pong {
1514         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1515                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1516                 Ok(())
1517         }
1518 }
1519
1520 impl Readable for Pong {
1521         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1522                 Ok(Pong {
1523                         byteslen: {
1524                                 let byteslen = Readable::read(r)?;
1525                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1526                                 byteslen
1527                         }
1528                 })
1529         }
1530 }
1531
1532 impl Writeable for UnsignedChannelAnnouncement {
1533         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1534                 self.features.write(w)?;
1535                 self.chain_hash.write(w)?;
1536                 self.short_channel_id.write(w)?;
1537                 self.node_id_1.write(w)?;
1538                 self.node_id_2.write(w)?;
1539                 self.bitcoin_key_1.write(w)?;
1540                 self.bitcoin_key_2.write(w)?;
1541                 w.write_all(&self.excess_data[..])?;
1542                 Ok(())
1543         }
1544 }
1545
1546 impl Readable for UnsignedChannelAnnouncement {
1547         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1548                 Ok(Self {
1549                         features: Readable::read(r)?,
1550                         chain_hash: Readable::read(r)?,
1551                         short_channel_id: Readable::read(r)?,
1552                         node_id_1: Readable::read(r)?,
1553                         node_id_2: Readable::read(r)?,
1554                         bitcoin_key_1: Readable::read(r)?,
1555                         bitcoin_key_2: Readable::read(r)?,
1556                         excess_data: read_to_end(r)?,
1557                 })
1558         }
1559 }
1560
1561 impl_writeable!(ChannelAnnouncement, {
1562         node_signature_1,
1563         node_signature_2,
1564         bitcoin_signature_1,
1565         bitcoin_signature_2,
1566         contents
1567 });
1568
1569 impl Writeable for UnsignedChannelUpdate {
1570         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1571                 // `message_flags` used to indicate presence of `htlc_maximum_msat`, but was deprecated in the spec.
1572                 const MESSAGE_FLAGS: u8 = 1;
1573                 self.chain_hash.write(w)?;
1574                 self.short_channel_id.write(w)?;
1575                 self.timestamp.write(w)?;
1576                 let all_flags = self.flags as u16 | ((MESSAGE_FLAGS as u16) << 8);
1577                 all_flags.write(w)?;
1578                 self.cltv_expiry_delta.write(w)?;
1579                 self.htlc_minimum_msat.write(w)?;
1580                 self.fee_base_msat.write(w)?;
1581                 self.fee_proportional_millionths.write(w)?;
1582                 self.htlc_maximum_msat.write(w)?;
1583                 w.write_all(&self.excess_data[..])?;
1584                 Ok(())
1585         }
1586 }
1587
1588 impl Readable for UnsignedChannelUpdate {
1589         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1590                 Ok(Self {
1591                         chain_hash: Readable::read(r)?,
1592                         short_channel_id: Readable::read(r)?,
1593                         timestamp: Readable::read(r)?,
1594                         flags: {
1595                                 let flags: u16 = Readable::read(r)?;
1596                                 // Note: we ignore the `message_flags` for now, since it was deprecated by the spec.
1597                                 flags as u8
1598                         },
1599                         cltv_expiry_delta: Readable::read(r)?,
1600                         htlc_minimum_msat: Readable::read(r)?,
1601                         fee_base_msat: Readable::read(r)?,
1602                         fee_proportional_millionths: Readable::read(r)?,
1603                         htlc_maximum_msat: Readable::read(r)?,
1604                         excess_data: read_to_end(r)?,
1605                 })
1606         }
1607 }
1608
1609 impl_writeable!(ChannelUpdate, {
1610         signature,
1611         contents
1612 });
1613
1614 impl Writeable for ErrorMessage {
1615         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1616                 self.channel_id.write(w)?;
1617                 (self.data.len() as u16).write(w)?;
1618                 w.write_all(self.data.as_bytes())?;
1619                 Ok(())
1620         }
1621 }
1622
1623 impl Readable for ErrorMessage {
1624         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1625                 Ok(Self {
1626                         channel_id: Readable::read(r)?,
1627                         data: {
1628                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1629                                 let mut data = Vec::with_capacity(sz);
1630                                 data.resize(sz, 0);
1631                                 r.read_exact(&mut data)?;
1632                                 match String::from_utf8(data) {
1633                                         Ok(s) => s,
1634                                         Err(_) => return Err(DecodeError::InvalidValue),
1635                                 }
1636                         }
1637                 })
1638         }
1639 }
1640
1641 impl Writeable for WarningMessage {
1642         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1643                 self.channel_id.write(w)?;
1644                 (self.data.len() as u16).write(w)?;
1645                 w.write_all(self.data.as_bytes())?;
1646                 Ok(())
1647         }
1648 }
1649
1650 impl Readable for WarningMessage {
1651         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1652                 Ok(Self {
1653                         channel_id: Readable::read(r)?,
1654                         data: {
1655                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1656                                 let mut data = Vec::with_capacity(sz);
1657                                 data.resize(sz, 0);
1658                                 r.read_exact(&mut data)?;
1659                                 match String::from_utf8(data) {
1660                                         Ok(s) => s,
1661                                         Err(_) => return Err(DecodeError::InvalidValue),
1662                                 }
1663                         }
1664                 })
1665         }
1666 }
1667
1668 impl Writeable for UnsignedNodeAnnouncement {
1669         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1670                 self.features.write(w)?;
1671                 self.timestamp.write(w)?;
1672                 self.node_id.write(w)?;
1673                 w.write_all(&self.rgb)?;
1674                 self.alias.write(w)?;
1675
1676                 let mut addr_len = 0;
1677                 for addr in self.addresses.iter() {
1678                         addr_len += 1 + addr.len();
1679                 }
1680                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1681                 for addr in self.addresses.iter() {
1682                         addr.write(w)?;
1683                 }
1684                 w.write_all(&self.excess_address_data[..])?;
1685                 w.write_all(&self.excess_data[..])?;
1686                 Ok(())
1687         }
1688 }
1689
1690 impl Readable for UnsignedNodeAnnouncement {
1691         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1692                 let features: NodeFeatures = Readable::read(r)?;
1693                 let timestamp: u32 = Readable::read(r)?;
1694                 let node_id: PublicKey = Readable::read(r)?;
1695                 let mut rgb = [0; 3];
1696                 r.read_exact(&mut rgb)?;
1697                 let alias: [u8; 32] = Readable::read(r)?;
1698
1699                 let addr_len: u16 = Readable::read(r)?;
1700                 let mut addresses: Vec<NetAddress> = Vec::new();
1701                 let mut addr_readpos = 0;
1702                 let mut excess = false;
1703                 let mut excess_byte = 0;
1704                 loop {
1705                         if addr_len <= addr_readpos { break; }
1706                         match Readable::read(r) {
1707                                 Ok(Ok(addr)) => {
1708                                         if addr_len < addr_readpos + 1 + addr.len() {
1709                                                 return Err(DecodeError::BadLengthDescriptor);
1710                                         }
1711                                         addr_readpos += (1 + addr.len()) as u16;
1712                                         addresses.push(addr);
1713                                 },
1714                                 Ok(Err(unknown_descriptor)) => {
1715                                         excess = true;
1716                                         excess_byte = unknown_descriptor;
1717                                         break;
1718                                 },
1719                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1720                                 Err(e) => return Err(e),
1721                         }
1722                 }
1723
1724                 let mut excess_data = vec![];
1725                 let excess_address_data = if addr_readpos < addr_len {
1726                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1727                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1728                         if excess {
1729                                 excess_address_data[0] = excess_byte;
1730                         }
1731                         excess_address_data
1732                 } else {
1733                         if excess {
1734                                 excess_data.push(excess_byte);
1735                         }
1736                         Vec::new()
1737                 };
1738                 excess_data.extend(read_to_end(r)?.iter());
1739                 Ok(UnsignedNodeAnnouncement {
1740                         features,
1741                         timestamp,
1742                         node_id,
1743                         rgb,
1744                         alias,
1745                         addresses,
1746                         excess_address_data,
1747                         excess_data,
1748                 })
1749         }
1750 }
1751
1752 impl_writeable!(NodeAnnouncement, {
1753         signature,
1754         contents
1755 });
1756
1757 impl Readable for QueryShortChannelIds {
1758         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1759                 let chain_hash: BlockHash = Readable::read(r)?;
1760
1761                 let encoding_len: u16 = Readable::read(r)?;
1762                 let encoding_type: u8 = Readable::read(r)?;
1763
1764                 // Must be encoding_type=0 uncompressed serialization. We do not
1765                 // support encoding_type=1 zlib serialization.
1766                 if encoding_type != EncodingType::Uncompressed as u8 {
1767                         return Err(DecodeError::UnsupportedCompression);
1768                 }
1769
1770                 // We expect the encoding_len to always includes the 1-byte
1771                 // encoding_type and that short_channel_ids are 8-bytes each
1772                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1773                         return Err(DecodeError::InvalidValue);
1774                 }
1775
1776                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1777                 // less the 1-byte encoding_type
1778                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1779                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1780                 for _ in 0..short_channel_id_count {
1781                         short_channel_ids.push(Readable::read(r)?);
1782                 }
1783
1784                 Ok(QueryShortChannelIds {
1785                         chain_hash,
1786                         short_channel_ids,
1787                 })
1788         }
1789 }
1790
1791 impl Writeable for QueryShortChannelIds {
1792         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1793                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1794                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1795
1796                 self.chain_hash.write(w)?;
1797                 encoding_len.write(w)?;
1798
1799                 // We only support type=0 uncompressed serialization
1800                 (EncodingType::Uncompressed as u8).write(w)?;
1801
1802                 for scid in self.short_channel_ids.iter() {
1803                         scid.write(w)?;
1804                 }
1805
1806                 Ok(())
1807         }
1808 }
1809
1810 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1811         chain_hash,
1812         full_information,
1813 }, {});
1814
1815 impl QueryChannelRange {
1816         /**
1817          * Calculates the overflow safe ending block height for the query.
1818          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1819          */
1820         pub fn end_blocknum(&self) -> u32 {
1821                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1822                         Some(block) => block,
1823                         None => u32::max_value(),
1824                 }
1825         }
1826 }
1827
1828 impl_writeable_msg!(QueryChannelRange, {
1829         chain_hash,
1830         first_blocknum,
1831         number_of_blocks
1832 }, {});
1833
1834 impl Readable for ReplyChannelRange {
1835         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1836                 let chain_hash: BlockHash = Readable::read(r)?;
1837                 let first_blocknum: u32 = Readable::read(r)?;
1838                 let number_of_blocks: u32 = Readable::read(r)?;
1839                 let sync_complete: bool = Readable::read(r)?;
1840
1841                 let encoding_len: u16 = Readable::read(r)?;
1842                 let encoding_type: u8 = Readable::read(r)?;
1843
1844                 // Must be encoding_type=0 uncompressed serialization. We do not
1845                 // support encoding_type=1 zlib serialization.
1846                 if encoding_type != EncodingType::Uncompressed as u8 {
1847                         return Err(DecodeError::UnsupportedCompression);
1848                 }
1849
1850                 // We expect the encoding_len to always includes the 1-byte
1851                 // encoding_type and that short_channel_ids are 8-bytes each
1852                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1853                         return Err(DecodeError::InvalidValue);
1854                 }
1855
1856                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1857                 // less the 1-byte encoding_type
1858                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1859                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1860                 for _ in 0..short_channel_id_count {
1861                         short_channel_ids.push(Readable::read(r)?);
1862                 }
1863
1864                 Ok(ReplyChannelRange {
1865                         chain_hash,
1866                         first_blocknum,
1867                         number_of_blocks,
1868                         sync_complete,
1869                         short_channel_ids
1870                 })
1871         }
1872 }
1873
1874 impl Writeable for ReplyChannelRange {
1875         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1876                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1877                 self.chain_hash.write(w)?;
1878                 self.first_blocknum.write(w)?;
1879                 self.number_of_blocks.write(w)?;
1880                 self.sync_complete.write(w)?;
1881
1882                 encoding_len.write(w)?;
1883                 (EncodingType::Uncompressed as u8).write(w)?;
1884                 for scid in self.short_channel_ids.iter() {
1885                         scid.write(w)?;
1886                 }
1887
1888                 Ok(())
1889         }
1890 }
1891
1892 impl_writeable_msg!(GossipTimestampFilter, {
1893         chain_hash,
1894         first_timestamp,
1895         timestamp_range,
1896 }, {});
1897
1898 #[cfg(test)]
1899 mod tests {
1900         use hex;
1901         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1902         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1903         use ln::msgs;
1904         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1905         use util::ser::{Writeable, Readable, Hostname};
1906
1907         use bitcoin::hashes::hex::FromHex;
1908         use bitcoin::util::address::Address;
1909         use bitcoin::network::constants::Network;
1910         use bitcoin::blockdata::script::Builder;
1911         use bitcoin::blockdata::opcodes;
1912         use bitcoin::hash_types::{Txid, BlockHash};
1913
1914         use bitcoin::secp256k1::{PublicKey,SecretKey};
1915         use bitcoin::secp256k1::{Secp256k1, Message};
1916
1917         use io::{self, Cursor};
1918         use prelude::*;
1919         use core::convert::TryFrom;
1920
1921         #[test]
1922         fn encoding_channel_reestablish_no_secret() {
1923                 let cr = msgs::ChannelReestablish {
1924                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1925                         next_local_commitment_number: 3,
1926                         next_remote_commitment_number: 4,
1927                         data_loss_protect: OptionalField::Absent,
1928                 };
1929
1930                 let encoded_value = cr.encode();
1931                 assert_eq!(
1932                         encoded_value,
1933                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1934                 );
1935         }
1936
1937         #[test]
1938         fn encoding_channel_reestablish_with_secret() {
1939                 let public_key = {
1940                         let secp_ctx = Secp256k1::new();
1941                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
1942                 };
1943
1944                 let cr = msgs::ChannelReestablish {
1945                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1946                         next_local_commitment_number: 3,
1947                         next_remote_commitment_number: 4,
1948                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
1949                 };
1950
1951                 let encoded_value = cr.encode();
1952                 assert_eq!(
1953                         encoded_value,
1954                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
1955                 );
1956         }
1957
1958         macro_rules! get_keys_from {
1959                 ($slice: expr, $secp_ctx: expr) => {
1960                         {
1961                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
1962                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
1963                                 (privkey, pubkey)
1964                         }
1965                 }
1966         }
1967
1968         macro_rules! get_sig_on {
1969                 ($privkey: expr, $ctx: expr, $string: expr) => {
1970                         {
1971                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
1972                                 $ctx.sign_ecdsa(&sighash, &$privkey)
1973                         }
1974                 }
1975         }
1976
1977         #[test]
1978         fn encoding_announcement_signatures() {
1979                 let secp_ctx = Secp256k1::new();
1980                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1981                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
1982                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
1983                 let announcement_signatures = msgs::AnnouncementSignatures {
1984                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1985                         short_channel_id: 2316138423780173,
1986                         node_signature: sig_1,
1987                         bitcoin_signature: sig_2,
1988                 };
1989
1990                 let encoded_value = announcement_signatures.encode();
1991                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
1992         }
1993
1994         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
1995                 let secp_ctx = Secp256k1::new();
1996                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1997                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
1998                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
1999                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2000                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2001                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2002                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2003                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2004                 let mut features = ChannelFeatures::known();
2005                 if unknown_features_bits {
2006                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
2007                 }
2008                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
2009                         features,
2010                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2011                         short_channel_id: 2316138423780173,
2012                         node_id_1: pubkey_1,
2013                         node_id_2: pubkey_2,
2014                         bitcoin_key_1: pubkey_3,
2015                         bitcoin_key_2: pubkey_4,
2016                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
2017                 };
2018                 let channel_announcement = msgs::ChannelAnnouncement {
2019                         node_signature_1: sig_1,
2020                         node_signature_2: sig_2,
2021                         bitcoin_signature_1: sig_3,
2022                         bitcoin_signature_2: sig_4,
2023                         contents: unsigned_channel_announcement,
2024                 };
2025                 let encoded_value = channel_announcement.encode();
2026                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
2027                 if unknown_features_bits {
2028                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2029                 } else {
2030                         target_value.append(&mut hex::decode("0000").unwrap());
2031                 }
2032                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2033                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
2034                 if excess_data {
2035                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
2036                 }
2037                 assert_eq!(encoded_value, target_value);
2038         }
2039
2040         #[test]
2041         fn encoding_channel_announcement() {
2042                 do_encoding_channel_announcement(true, false);
2043                 do_encoding_channel_announcement(false, true);
2044                 do_encoding_channel_announcement(false, false);
2045                 do_encoding_channel_announcement(true, true);
2046         }
2047
2048         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, hostname: bool, excess_address_data: bool, excess_data: bool) {
2049                 let secp_ctx = Secp256k1::new();
2050                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2051                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2052                 let features = if unknown_features_bits {
2053                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
2054                 } else {
2055                         // Set to some features we may support
2056                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
2057                 };
2058                 let mut addresses = Vec::new();
2059                 if ipv4 {
2060                         addresses.push(msgs::NetAddress::IPv4 {
2061                                 addr: [255, 254, 253, 252],
2062                                 port: 9735
2063                         });
2064                 }
2065                 if ipv6 {
2066                         addresses.push(msgs::NetAddress::IPv6 {
2067                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
2068                                 port: 9735
2069                         });
2070                 }
2071                 if onionv2 {
2072                         addresses.push(msgs::NetAddress::OnionV2(
2073                                 [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 38, 7]
2074                         ));
2075                 }
2076                 if onionv3 {
2077                         addresses.push(msgs::NetAddress::OnionV3 {
2078                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
2079                                 checksum: 32,
2080                                 version: 16,
2081                                 port: 9735
2082                         });
2083                 }
2084                 if hostname {
2085                         addresses.push(msgs::NetAddress::Hostname {
2086                                 hostname: Hostname::try_from(String::from("host")).unwrap(),
2087                                 port: 9735,
2088                         });
2089                 }
2090                 let mut addr_len = 0;
2091                 for addr in &addresses {
2092                         addr_len += addr.len() + 1;
2093                 }
2094                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
2095                         features,
2096                         timestamp: 20190119,
2097                         node_id: pubkey_1,
2098                         rgb: [32; 3],
2099                         alias: [16;32],
2100                         addresses,
2101                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
2102                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
2103                 };
2104                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
2105                 let node_announcement = msgs::NodeAnnouncement {
2106                         signature: sig_1,
2107                         contents: unsigned_node_announcement,
2108                 };
2109                 let encoded_value = node_announcement.encode();
2110                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2111                 if unknown_features_bits {
2112                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2113                 } else {
2114                         target_value.append(&mut hex::decode("000122").unwrap());
2115                 }
2116                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
2117                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
2118                 if ipv4 {
2119                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
2120                 }
2121                 if ipv6 {
2122                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
2123                 }
2124                 if onionv2 {
2125                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
2126                 }
2127                 if onionv3 {
2128                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
2129                 }
2130                 if hostname {
2131                         target_value.append(&mut hex::decode("0504686f73742607").unwrap());
2132                 }
2133                 if excess_address_data {
2134                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
2135                 }
2136                 if excess_data {
2137                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2138                 }
2139                 assert_eq!(encoded_value, target_value);
2140         }
2141
2142         #[test]
2143         fn encoding_node_announcement() {
2144                 do_encoding_node_announcement(true, true, true, true, true, true, true, true);
2145                 do_encoding_node_announcement(false, false, false, false, false, false, false, false);
2146                 do_encoding_node_announcement(false, true, false, false, false, false, false, false);
2147                 do_encoding_node_announcement(false, false, true, false, false, false, false, false);
2148                 do_encoding_node_announcement(false, false, false, true, false, false, false, false);
2149                 do_encoding_node_announcement(false, false, false, false, true, false, false, false);
2150                 do_encoding_node_announcement(false, false, false, false, false, true, false, false);
2151                 do_encoding_node_announcement(false, false, false, false, false, false, true, false);
2152                 do_encoding_node_announcement(false, true, false, true, false, false, true, false);
2153                 do_encoding_node_announcement(false, false, true, false, true, false, false, false);
2154         }
2155
2156         fn do_encoding_channel_update(direction: bool, disable: bool, excess_data: bool) {
2157                 let secp_ctx = Secp256k1::new();
2158                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2159                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2160                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
2161                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2162                         short_channel_id: 2316138423780173,
2163                         timestamp: 20190119,
2164                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2165                         cltv_expiry_delta: 144,
2166                         htlc_minimum_msat: 1000000,
2167                         htlc_maximum_msat: 131355275467161,
2168                         fee_base_msat: 10000,
2169                         fee_proportional_millionths: 20,
2170                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2171                 };
2172                 let channel_update = msgs::ChannelUpdate {
2173                         signature: sig_1,
2174                         contents: unsigned_channel_update
2175                 };
2176                 let encoded_value = channel_update.encode();
2177                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2178                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2179                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2180                 target_value.append(&mut hex::decode("01").unwrap());
2181                 target_value.append(&mut hex::decode("00").unwrap());
2182                 if direction {
2183                         let flag = target_value.last_mut().unwrap();
2184                         *flag = 1;
2185                 }
2186                 if disable {
2187                         let flag = target_value.last_mut().unwrap();
2188                         *flag = *flag | 1 << 1;
2189                 }
2190                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2191                 target_value.append(&mut hex::decode("0000777788889999").unwrap());
2192                 if excess_data {
2193                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2194                 }
2195                 assert_eq!(encoded_value, target_value);
2196         }
2197
2198         #[test]
2199         fn encoding_channel_update() {
2200                 do_encoding_channel_update(false, false, false);
2201                 do_encoding_channel_update(false, false, true);
2202                 do_encoding_channel_update(true, false, false);
2203                 do_encoding_channel_update(true, false, true);
2204                 do_encoding_channel_update(false, true, false);
2205                 do_encoding_channel_update(false, true, true);
2206                 do_encoding_channel_update(true, true, false);
2207                 do_encoding_channel_update(true, true, true);
2208         }
2209
2210         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2211                 let secp_ctx = Secp256k1::new();
2212                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2213                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2214                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2215                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2216                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2217                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2218                 let open_channel = msgs::OpenChannel {
2219                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2220                         temporary_channel_id: [2; 32],
2221                         funding_satoshis: 1311768467284833366,
2222                         push_msat: 2536655962884945560,
2223                         dust_limit_satoshis: 3608586615801332854,
2224                         max_htlc_value_in_flight_msat: 8517154655701053848,
2225                         channel_reserve_satoshis: 8665828695742877976,
2226                         htlc_minimum_msat: 2316138423780173,
2227                         feerate_per_kw: 821716,
2228                         to_self_delay: 49340,
2229                         max_accepted_htlcs: 49340,
2230                         funding_pubkey: pubkey_1,
2231                         revocation_basepoint: pubkey_2,
2232                         payment_point: pubkey_3,
2233                         delayed_payment_basepoint: pubkey_4,
2234                         htlc_basepoint: pubkey_5,
2235                         first_per_commitment_point: pubkey_6,
2236                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2237                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2238                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2239                 };
2240                 let encoded_value = open_channel.encode();
2241                 let mut target_value = Vec::new();
2242                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2243                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2244                 if random_bit {
2245                         target_value.append(&mut hex::decode("20").unwrap());
2246                 } else {
2247                         target_value.append(&mut hex::decode("00").unwrap());
2248                 }
2249                 if shutdown {
2250                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2251                 }
2252                 if incl_chan_type {
2253                         target_value.append(&mut hex::decode("0100").unwrap());
2254                 }
2255                 assert_eq!(encoded_value, target_value);
2256         }
2257
2258         #[test]
2259         fn encoding_open_channel() {
2260                 do_encoding_open_channel(false, false, false);
2261                 do_encoding_open_channel(false, false, true);
2262                 do_encoding_open_channel(false, true, false);
2263                 do_encoding_open_channel(false, true, true);
2264                 do_encoding_open_channel(true, false, false);
2265                 do_encoding_open_channel(true, false, true);
2266                 do_encoding_open_channel(true, true, false);
2267                 do_encoding_open_channel(true, true, true);
2268         }
2269
2270         fn do_encoding_accept_channel(shutdown: bool) {
2271                 let secp_ctx = Secp256k1::new();
2272                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2273                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2274                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2275                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2276                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2277                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2278                 let accept_channel = msgs::AcceptChannel {
2279                         temporary_channel_id: [2; 32],
2280                         dust_limit_satoshis: 1311768467284833366,
2281                         max_htlc_value_in_flight_msat: 2536655962884945560,
2282                         channel_reserve_satoshis: 3608586615801332854,
2283                         htlc_minimum_msat: 2316138423780173,
2284                         minimum_depth: 821716,
2285                         to_self_delay: 49340,
2286                         max_accepted_htlcs: 49340,
2287                         funding_pubkey: pubkey_1,
2288                         revocation_basepoint: pubkey_2,
2289                         payment_point: pubkey_3,
2290                         delayed_payment_basepoint: pubkey_4,
2291                         htlc_basepoint: pubkey_5,
2292                         first_per_commitment_point: pubkey_6,
2293                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2294                         channel_type: None,
2295                 };
2296                 let encoded_value = accept_channel.encode();
2297                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2298                 if shutdown {
2299                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2300                 }
2301                 assert_eq!(encoded_value, target_value);
2302         }
2303
2304         #[test]
2305         fn encoding_accept_channel() {
2306                 do_encoding_accept_channel(false);
2307                 do_encoding_accept_channel(true);
2308         }
2309
2310         #[test]
2311         fn encoding_funding_created() {
2312                 let secp_ctx = Secp256k1::new();
2313                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2314                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2315                 let funding_created = msgs::FundingCreated {
2316                         temporary_channel_id: [2; 32],
2317                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2318                         funding_output_index: 255,
2319                         signature: sig_1,
2320                 };
2321                 let encoded_value = funding_created.encode();
2322                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2323                 assert_eq!(encoded_value, target_value);
2324         }
2325
2326         #[test]
2327         fn encoding_funding_signed() {
2328                 let secp_ctx = Secp256k1::new();
2329                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2330                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2331                 let funding_signed = msgs::FundingSigned {
2332                         channel_id: [2; 32],
2333                         signature: sig_1,
2334                 };
2335                 let encoded_value = funding_signed.encode();
2336                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2337                 assert_eq!(encoded_value, target_value);
2338         }
2339
2340         #[test]
2341         fn encoding_channel_ready() {
2342                 let secp_ctx = Secp256k1::new();
2343                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2344                 let channel_ready = msgs::ChannelReady {
2345                         channel_id: [2; 32],
2346                         next_per_commitment_point: pubkey_1,
2347                         short_channel_id_alias: None,
2348                 };
2349                 let encoded_value = channel_ready.encode();
2350                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2351                 assert_eq!(encoded_value, target_value);
2352         }
2353
2354         fn do_encoding_shutdown(script_type: u8) {
2355                 let secp_ctx = Secp256k1::new();
2356                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2357                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2358                 let shutdown = msgs::Shutdown {
2359                         channel_id: [2; 32],
2360                         scriptpubkey:
2361                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey() }
2362                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).unwrap().script_pubkey() }
2363                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2364                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2365                 };
2366                 let encoded_value = shutdown.encode();
2367                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2368                 if script_type == 1 {
2369                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2370                 } else if script_type == 2 {
2371                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2372                 } else if script_type == 3 {
2373                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2374                 } else if script_type == 4 {
2375                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2376                 }
2377                 assert_eq!(encoded_value, target_value);
2378         }
2379
2380         #[test]
2381         fn encoding_shutdown() {
2382                 do_encoding_shutdown(1);
2383                 do_encoding_shutdown(2);
2384                 do_encoding_shutdown(3);
2385                 do_encoding_shutdown(4);
2386         }
2387
2388         #[test]
2389         fn encoding_closing_signed() {
2390                 let secp_ctx = Secp256k1::new();
2391                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2392                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2393                 let closing_signed = msgs::ClosingSigned {
2394                         channel_id: [2; 32],
2395                         fee_satoshis: 2316138423780173,
2396                         signature: sig_1,
2397                         fee_range: None,
2398                 };
2399                 let encoded_value = closing_signed.encode();
2400                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2401                 assert_eq!(encoded_value, target_value);
2402                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2403
2404                 let closing_signed_with_range = msgs::ClosingSigned {
2405                         channel_id: [2; 32],
2406                         fee_satoshis: 2316138423780173,
2407                         signature: sig_1,
2408                         fee_range: Some(msgs::ClosingSignedFeeRange {
2409                                 min_fee_satoshis: 0xdeadbeef,
2410                                 max_fee_satoshis: 0x1badcafe01234567,
2411                         }),
2412                 };
2413                 let encoded_value_with_range = closing_signed_with_range.encode();
2414                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2415                 assert_eq!(encoded_value_with_range, target_value_with_range);
2416                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2417                         closing_signed_with_range);
2418         }
2419
2420         #[test]
2421         fn encoding_update_add_htlc() {
2422                 let secp_ctx = Secp256k1::new();
2423                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2424                 let onion_routing_packet = msgs::OnionPacket {
2425                         version: 255,
2426                         public_key: Ok(pubkey_1),
2427                         hop_data: [1; 20*65],
2428                         hmac: [2; 32]
2429                 };
2430                 let update_add_htlc = msgs::UpdateAddHTLC {
2431                         channel_id: [2; 32],
2432                         htlc_id: 2316138423780173,
2433                         amount_msat: 3608586615801332854,
2434                         payment_hash: PaymentHash([1; 32]),
2435                         cltv_expiry: 821716,
2436                         onion_routing_packet
2437                 };
2438                 let encoded_value = update_add_htlc.encode();
2439                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2440                 assert_eq!(encoded_value, target_value);
2441         }
2442
2443         #[test]
2444         fn encoding_update_fulfill_htlc() {
2445                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2446                         channel_id: [2; 32],
2447                         htlc_id: 2316138423780173,
2448                         payment_preimage: PaymentPreimage([1; 32]),
2449                 };
2450                 let encoded_value = update_fulfill_htlc.encode();
2451                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2452                 assert_eq!(encoded_value, target_value);
2453         }
2454
2455         #[test]
2456         fn encoding_update_fail_htlc() {
2457                 let reason = OnionErrorPacket {
2458                         data: [1; 32].to_vec(),
2459                 };
2460                 let update_fail_htlc = msgs::UpdateFailHTLC {
2461                         channel_id: [2; 32],
2462                         htlc_id: 2316138423780173,
2463                         reason
2464                 };
2465                 let encoded_value = update_fail_htlc.encode();
2466                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2467                 assert_eq!(encoded_value, target_value);
2468         }
2469
2470         #[test]
2471         fn encoding_update_fail_malformed_htlc() {
2472                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2473                         channel_id: [2; 32],
2474                         htlc_id: 2316138423780173,
2475                         sha256_of_onion: [1; 32],
2476                         failure_code: 255
2477                 };
2478                 let encoded_value = update_fail_malformed_htlc.encode();
2479                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2480                 assert_eq!(encoded_value, target_value);
2481         }
2482
2483         fn do_encoding_commitment_signed(htlcs: bool) {
2484                 let secp_ctx = Secp256k1::new();
2485                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2486                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2487                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2488                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2489                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2490                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2491                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2492                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2493                 let commitment_signed = msgs::CommitmentSigned {
2494                         channel_id: [2; 32],
2495                         signature: sig_1,
2496                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2497                 };
2498                 let encoded_value = commitment_signed.encode();
2499                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2500                 if htlcs {
2501                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2502                 } else {
2503                         target_value.append(&mut hex::decode("0000").unwrap());
2504                 }
2505                 assert_eq!(encoded_value, target_value);
2506         }
2507
2508         #[test]
2509         fn encoding_commitment_signed() {
2510                 do_encoding_commitment_signed(true);
2511                 do_encoding_commitment_signed(false);
2512         }
2513
2514         #[test]
2515         fn encoding_revoke_and_ack() {
2516                 let secp_ctx = Secp256k1::new();
2517                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2518                 let raa = msgs::RevokeAndACK {
2519                         channel_id: [2; 32],
2520                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2521                         next_per_commitment_point: pubkey_1,
2522                 };
2523                 let encoded_value = raa.encode();
2524                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2525                 assert_eq!(encoded_value, target_value);
2526         }
2527
2528         #[test]
2529         fn encoding_update_fee() {
2530                 let update_fee = msgs::UpdateFee {
2531                         channel_id: [2; 32],
2532                         feerate_per_kw: 20190119,
2533                 };
2534                 let encoded_value = update_fee.encode();
2535                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2536                 assert_eq!(encoded_value, target_value);
2537         }
2538
2539         #[test]
2540         fn encoding_init() {
2541                 assert_eq!(msgs::Init {
2542                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2543                         remote_network_address: None,
2544                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2545                 assert_eq!(msgs::Init {
2546                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2547                         remote_network_address: None,
2548                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2549                 assert_eq!(msgs::Init {
2550                         features: InitFeatures::from_le_bytes(vec![]),
2551                         remote_network_address: None,
2552                 }.encode(), hex::decode("00000000").unwrap());
2553
2554                 let init_msg = msgs::Init { features: InitFeatures::from_le_bytes(vec![]),
2555                         remote_network_address: Some(msgs::NetAddress::IPv4 {
2556                                 addr: [127, 0, 0, 1],
2557                                 port: 1000,
2558                         }),
2559                 };
2560                 let encoded_value = init_msg.encode();
2561                 let target_value = hex::decode("000000000307017f00000103e8").unwrap();
2562                 assert_eq!(encoded_value, target_value);
2563                 assert_eq!(msgs::Init::read(&mut Cursor::new(&target_value)).unwrap(), init_msg);
2564         }
2565
2566         #[test]
2567         fn encoding_error() {
2568                 let error = msgs::ErrorMessage {
2569                         channel_id: [2; 32],
2570                         data: String::from("rust-lightning"),
2571                 };
2572                 let encoded_value = error.encode();
2573                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2574                 assert_eq!(encoded_value, target_value);
2575         }
2576
2577         #[test]
2578         fn encoding_warning() {
2579                 let error = msgs::WarningMessage {
2580                         channel_id: [2; 32],
2581                         data: String::from("rust-lightning"),
2582                 };
2583                 let encoded_value = error.encode();
2584                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2585                 assert_eq!(encoded_value, target_value);
2586         }
2587
2588         #[test]
2589         fn encoding_ping() {
2590                 let ping = msgs::Ping {
2591                         ponglen: 64,
2592                         byteslen: 64
2593                 };
2594                 let encoded_value = ping.encode();
2595                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2596                 assert_eq!(encoded_value, target_value);
2597         }
2598
2599         #[test]
2600         fn encoding_pong() {
2601                 let pong = msgs::Pong {
2602                         byteslen: 64
2603                 };
2604                 let encoded_value = pong.encode();
2605                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2606                 assert_eq!(encoded_value, target_value);
2607         }
2608
2609         #[test]
2610         fn encoding_legacy_onion_hop_data() {
2611                 let msg = msgs::OnionHopData {
2612                         format: OnionHopDataFormat::Legacy {
2613                                 short_channel_id: 0xdeadbeef1bad1dea,
2614                         },
2615                         amt_to_forward: 0x0badf00d01020304,
2616                         outgoing_cltv_value: 0xffffffff,
2617                 };
2618                 let encoded_value = msg.encode();
2619                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2620                 assert_eq!(encoded_value, target_value);
2621         }
2622
2623         #[test]
2624         fn encoding_nonfinal_onion_hop_data() {
2625                 let mut msg = msgs::OnionHopData {
2626                         format: OnionHopDataFormat::NonFinalNode {
2627                                 short_channel_id: 0xdeadbeef1bad1dea,
2628                         },
2629                         amt_to_forward: 0x0badf00d01020304,
2630                         outgoing_cltv_value: 0xffffffff,
2631                 };
2632                 let encoded_value = msg.encode();
2633                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2634                 assert_eq!(encoded_value, target_value);
2635                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2636                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2637                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2638                 } else { panic!(); }
2639                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2640                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2641         }
2642
2643         #[test]
2644         fn encoding_final_onion_hop_data() {
2645                 let mut msg = msgs::OnionHopData {
2646                         format: OnionHopDataFormat::FinalNode {
2647                                 payment_data: None,
2648                                 keysend_preimage: None,
2649                         },
2650                         amt_to_forward: 0x0badf00d01020304,
2651                         outgoing_cltv_value: 0xffffffff,
2652                 };
2653                 let encoded_value = msg.encode();
2654                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2655                 assert_eq!(encoded_value, target_value);
2656                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2657                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2658                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2659                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2660         }
2661
2662         #[test]
2663         fn encoding_final_onion_hop_data_with_secret() {
2664                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2665                 let mut msg = msgs::OnionHopData {
2666                         format: OnionHopDataFormat::FinalNode {
2667                                 payment_data: Some(FinalOnionHopData {
2668                                         payment_secret: expected_payment_secret,
2669                                         total_msat: 0x1badca1f
2670                                 }),
2671                                 keysend_preimage: None,
2672                         },
2673                         amt_to_forward: 0x0badf00d01020304,
2674                         outgoing_cltv_value: 0xffffffff,
2675                 };
2676                 let encoded_value = msg.encode();
2677                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2678                 assert_eq!(encoded_value, target_value);
2679                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2680                 if let OnionHopDataFormat::FinalNode {
2681                         payment_data: Some(FinalOnionHopData {
2682                                 payment_secret,
2683                                 total_msat: 0x1badca1f
2684                         }),
2685                         keysend_preimage: None,
2686                 } = msg.format {
2687                         assert_eq!(payment_secret, expected_payment_secret);
2688                 } else { panic!(); }
2689                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2690                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2691         }
2692
2693         #[test]
2694         fn query_channel_range_end_blocknum() {
2695                 let tests: Vec<(u32, u32, u32)> = vec![
2696                         (10000, 1500, 11500),
2697                         (0, 0xffffffff, 0xffffffff),
2698                         (1, 0xffffffff, 0xffffffff),
2699                 ];
2700
2701                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2702                         let sut = msgs::QueryChannelRange {
2703                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2704                                 first_blocknum,
2705                                 number_of_blocks,
2706                         };
2707                         assert_eq!(sut.end_blocknum(), expected);
2708                 }
2709         }
2710
2711         #[test]
2712         fn encoding_query_channel_range() {
2713                 let mut query_channel_range = msgs::QueryChannelRange {
2714                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2715                         first_blocknum: 100000,
2716                         number_of_blocks: 1500,
2717                 };
2718                 let encoded_value = query_channel_range.encode();
2719                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2720                 assert_eq!(encoded_value, target_value);
2721
2722                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2723                 assert_eq!(query_channel_range.first_blocknum, 100000);
2724                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2725         }
2726
2727         #[test]
2728         fn encoding_reply_channel_range() {
2729                 do_encoding_reply_channel_range(0);
2730                 do_encoding_reply_channel_range(1);
2731         }
2732
2733         fn do_encoding_reply_channel_range(encoding_type: u8) {
2734                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2735                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2736                 let mut reply_channel_range = msgs::ReplyChannelRange {
2737                         chain_hash: expected_chain_hash,
2738                         first_blocknum: 756230,
2739                         number_of_blocks: 1500,
2740                         sync_complete: true,
2741                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2742                 };
2743
2744                 if encoding_type == 0 {
2745                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2746                         let encoded_value = reply_channel_range.encode();
2747                         assert_eq!(encoded_value, target_value);
2748
2749                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2750                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2751                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2752                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2753                         assert_eq!(reply_channel_range.sync_complete, true);
2754                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2755                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2756                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2757                 } else {
2758                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2759                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2760                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2761                 }
2762         }
2763
2764         #[test]
2765         fn encoding_query_short_channel_ids() {
2766                 do_encoding_query_short_channel_ids(0);
2767                 do_encoding_query_short_channel_ids(1);
2768         }
2769
2770         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2771                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2772                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2773                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2774                         chain_hash: expected_chain_hash,
2775                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2776                 };
2777
2778                 if encoding_type == 0 {
2779                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2780                         let encoded_value = query_short_channel_ids.encode();
2781                         assert_eq!(encoded_value, target_value);
2782
2783                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2784                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2785                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2786                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2787                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2788                 } else {
2789                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2790                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2791                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2792                 }
2793         }
2794
2795         #[test]
2796         fn encoding_reply_short_channel_ids_end() {
2797                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2798                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2799                         chain_hash: expected_chain_hash,
2800                         full_information: true,
2801                 };
2802                 let encoded_value = reply_short_channel_ids_end.encode();
2803                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2804                 assert_eq!(encoded_value, target_value);
2805
2806                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2807                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2808                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2809         }
2810
2811         #[test]
2812         fn encoding_gossip_timestamp_filter(){
2813                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2814                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2815                         chain_hash: expected_chain_hash,
2816                         first_timestamp: 1590000000,
2817                         timestamp_range: 0xffff_ffff,
2818                 };
2819                 let encoded_value = gossip_timestamp_filter.encode();
2820                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2821                 assert_eq!(encoded_value, target_value);
2822
2823                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2824                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2825                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2826                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2827         }
2828
2829         #[test]
2830         fn decode_onion_hop_data_len_as_bigsize() {
2831                 // Tests that we can decode an onion payload that is >253 bytes.
2832                 // Previously, receiving a payload of this size could've caused us to fail to decode a valid
2833                 // payload, because we were decoding the length (a BigSize, big-endian) as a VarInt
2834                 // (little-endian).
2835
2836                 // Encode a test onion payload with a big custom TLV such that it's >253 bytes, forcing the
2837                 // payload length to be encoded over multiple bytes rather than a single u8.
2838                 let big_payload = encode_big_payload().unwrap();
2839                 let mut rd = Cursor::new(&big_payload[..]);
2840                 <msgs::OnionHopData as Readable>::read(&mut rd).unwrap();
2841         }
2842         // see above test, needs to be a separate method for use of the serialization macros.
2843         fn encode_big_payload() -> Result<Vec<u8>, io::Error> {
2844                 use util::ser::HighZeroBytesDroppedBigSize;
2845                 let payload = msgs::OnionHopData {
2846                         format: OnionHopDataFormat::NonFinalNode {
2847                                 short_channel_id: 0xdeadbeef1bad1dea,
2848                         },
2849                         amt_to_forward: 1000,
2850                         outgoing_cltv_value: 0xffffffff,
2851                 };
2852                 let mut encoded_payload = Vec::new();
2853                 let test_bytes = vec![42u8; 1000];
2854                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = payload.format {
2855                         encode_varint_length_prefixed_tlv!(&mut encoded_payload, {
2856                                 (1, test_bytes, vec_type),
2857                                 (2, HighZeroBytesDroppedBigSize(payload.amt_to_forward), required),
2858                                 (4, HighZeroBytesDroppedBigSize(payload.outgoing_cltv_value), required),
2859                                 (6, short_channel_id, required)
2860                         });
2861                 }
2862                 Ok(encoded_payload)
2863         }
2864 }