Move checking of specific require peer feature bits to handlers
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::PublicKey;
28 use bitcoin::secp256k1::ecdsa::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34 use ln::onion_utils;
35 use onion_message;
36
37 use prelude::*;
38 use core::fmt;
39 use core::fmt::Debug;
40 use io::{self, Read};
41 use io_extras::read_to_end;
42
43 use util::events::{MessageSendEventsProvider, OnionMessageProvider};
44 use util::logger;
45 use util::ser::{BigSize, LengthReadable, Readable, ReadableArgs, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedBigSize, Hostname};
46
47 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
48
49 /// 21 million * 10^8 * 1000
50 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
51
52 /// An error in decoding a message or struct.
53 #[derive(Clone, Debug, PartialEq)]
54 pub enum DecodeError {
55         /// A version byte specified something we don't know how to handle.
56         /// Includes unknown realm byte in an OnionHopData packet
57         UnknownVersion,
58         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
59         UnknownRequiredFeature,
60         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
61         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
62         /// syntactically incorrect, etc
63         InvalidValue,
64         /// Buffer too short
65         ShortRead,
66         /// A length descriptor in the packet didn't describe the later data correctly
67         BadLengthDescriptor,
68         /// Error from std::io
69         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
70         io::ErrorKind),
71         /// The message included zlib-compressed values, which we don't support.
72         UnsupportedCompression,
73 }
74
75 /// An init message to be sent or received from a peer
76 #[derive(Clone, Debug, PartialEq)]
77 pub struct Init {
78         /// The relevant features which the sender supports
79         pub features: InitFeatures,
80         /// The receipient's network address. This adds the option to report a remote IP address
81         /// back to a connecting peer using the init message. A node can decide to use that information
82         /// to discover a potential update to its public IPv4 address (NAT) and use
83         /// that for a node_announcement update message containing the new address.
84         pub remote_network_address: Option<NetAddress>,
85 }
86
87 /// An error message to be sent or received from a peer
88 #[derive(Clone, Debug, PartialEq)]
89 pub struct ErrorMessage {
90         /// The channel ID involved in the error.
91         ///
92         /// All-0s indicates a general error unrelated to a specific channel, after which all channels
93         /// with the sending peer should be closed.
94         pub channel_id: [u8; 32],
95         /// A possibly human-readable error description.
96         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
97         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
98         /// the terminal emulator or the logging subsystem.
99         pub data: String,
100 }
101
102 /// A warning message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct WarningMessage {
105         /// The channel ID involved in the warning.
106         ///
107         /// All-0s indicates a warning unrelated to a specific channel.
108         pub channel_id: [u8; 32],
109         /// A possibly human-readable warning description.
110         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
111         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
112         /// the terminal emulator or the logging subsystem.
113         pub data: String,
114 }
115
116 /// A ping message to be sent or received from a peer
117 #[derive(Clone, Debug, PartialEq)]
118 pub struct Ping {
119         /// The desired response length
120         pub ponglen: u16,
121         /// The ping packet size.
122         /// This field is not sent on the wire. byteslen zeros are sent.
123         pub byteslen: u16,
124 }
125
126 /// A pong message to be sent or received from a peer
127 #[derive(Clone, Debug, PartialEq)]
128 pub struct Pong {
129         /// The pong packet size.
130         /// This field is not sent on the wire. byteslen zeros are sent.
131         pub byteslen: u16,
132 }
133
134 /// An open_channel message to be sent or received from a peer
135 #[derive(Clone, Debug, PartialEq)]
136 pub struct OpenChannel {
137         /// The genesis hash of the blockchain where the channel is to be opened
138         pub chain_hash: BlockHash,
139         /// A temporary channel ID, until the funding outpoint is announced
140         pub temporary_channel_id: [u8; 32],
141         /// The channel value
142         pub funding_satoshis: u64,
143         /// The amount to push to the counterparty as part of the open, in milli-satoshi
144         pub push_msat: u64,
145         /// The threshold below which outputs on transactions broadcast by sender will be omitted
146         pub dust_limit_satoshis: u64,
147         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
148         pub max_htlc_value_in_flight_msat: u64,
149         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
150         pub channel_reserve_satoshis: u64,
151         /// The minimum HTLC size incoming to sender, in milli-satoshi
152         pub htlc_minimum_msat: u64,
153         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
154         pub feerate_per_kw: u32,
155         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
156         pub to_self_delay: u16,
157         /// The maximum number of inbound HTLCs towards sender
158         pub max_accepted_htlcs: u16,
159         /// The sender's key controlling the funding transaction
160         pub funding_pubkey: PublicKey,
161         /// Used to derive a revocation key for transactions broadcast by counterparty
162         pub revocation_basepoint: PublicKey,
163         /// A payment key to sender for transactions broadcast by counterparty
164         pub payment_point: PublicKey,
165         /// Used to derive a payment key to sender for transactions broadcast by sender
166         pub delayed_payment_basepoint: PublicKey,
167         /// Used to derive an HTLC payment key to sender
168         pub htlc_basepoint: PublicKey,
169         /// The first to-be-broadcast-by-sender transaction's per commitment point
170         pub first_per_commitment_point: PublicKey,
171         /// Channel flags
172         pub channel_flags: u8,
173         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
174         pub shutdown_scriptpubkey: OptionalField<Script>,
175         /// The channel type that this channel will represent. If none is set, we derive the channel
176         /// type from the intersection of our feature bits with our counterparty's feature bits from
177         /// the Init message.
178         pub channel_type: Option<ChannelTypeFeatures>,
179 }
180
181 /// An accept_channel message to be sent or received from a peer
182 #[derive(Clone, Debug, PartialEq)]
183 pub struct AcceptChannel {
184         /// A temporary channel ID, until the funding outpoint is announced
185         pub temporary_channel_id: [u8; 32],
186         /// The threshold below which outputs on transactions broadcast by sender will be omitted
187         pub dust_limit_satoshis: u64,
188         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
189         pub max_htlc_value_in_flight_msat: u64,
190         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
191         pub channel_reserve_satoshis: u64,
192         /// The minimum HTLC size incoming to sender, in milli-satoshi
193         pub htlc_minimum_msat: u64,
194         /// Minimum depth of the funding transaction before the channel is considered open
195         pub minimum_depth: u32,
196         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
197         pub to_self_delay: u16,
198         /// The maximum number of inbound HTLCs towards sender
199         pub max_accepted_htlcs: u16,
200         /// The sender's key controlling the funding transaction
201         pub funding_pubkey: PublicKey,
202         /// Used to derive a revocation key for transactions broadcast by counterparty
203         pub revocation_basepoint: PublicKey,
204         /// A payment key to sender for transactions broadcast by counterparty
205         pub payment_point: PublicKey,
206         /// Used to derive a payment key to sender for transactions broadcast by sender
207         pub delayed_payment_basepoint: PublicKey,
208         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
209         pub htlc_basepoint: PublicKey,
210         /// The first to-be-broadcast-by-sender transaction's per commitment point
211         pub first_per_commitment_point: PublicKey,
212         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
213         pub shutdown_scriptpubkey: OptionalField<Script>,
214         /// The channel type that this channel will represent. If none is set, we derive the channel
215         /// type from the intersection of our feature bits with our counterparty's feature bits from
216         /// the Init message.
217         ///
218         /// This is required to match the equivalent field in [`OpenChannel::channel_type`].
219         pub channel_type: Option<ChannelTypeFeatures>,
220 }
221
222 /// A funding_created message to be sent or received from a peer
223 #[derive(Clone, Debug, PartialEq)]
224 pub struct FundingCreated {
225         /// A temporary channel ID, until the funding is established
226         pub temporary_channel_id: [u8; 32],
227         /// The funding transaction ID
228         pub funding_txid: Txid,
229         /// The specific output index funding this channel
230         pub funding_output_index: u16,
231         /// The signature of the channel initiator (funder) on the initial commitment transaction
232         pub signature: Signature,
233 }
234
235 /// A funding_signed message to be sent or received from a peer
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct FundingSigned {
238         /// The channel ID
239         pub channel_id: [u8; 32],
240         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
241         pub signature: Signature,
242 }
243
244 /// A channel_ready message to be sent or received from a peer
245 #[derive(Clone, Debug, PartialEq)]
246 pub struct ChannelReady {
247         /// The channel ID
248         pub channel_id: [u8; 32],
249         /// The per-commitment point of the second commitment transaction
250         pub next_per_commitment_point: PublicKey,
251         /// If set, provides a short_channel_id alias for this channel. The sender will accept payments
252         /// to be forwarded over this SCID and forward them to this messages' recipient.
253         pub short_channel_id_alias: Option<u64>,
254 }
255
256 /// A shutdown message to be sent or received from a peer
257 #[derive(Clone, Debug, PartialEq)]
258 pub struct Shutdown {
259         /// The channel ID
260         pub channel_id: [u8; 32],
261         /// The destination of this peer's funds on closing.
262         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
263         pub scriptpubkey: Script,
264 }
265
266 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
267 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
268 /// to use.
269 #[derive(Clone, Debug, PartialEq)]
270 pub struct ClosingSignedFeeRange {
271         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
272         /// transaction.
273         pub min_fee_satoshis: u64,
274         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
275         /// transaction.
276         pub max_fee_satoshis: u64,
277 }
278
279 /// A closing_signed message to be sent or received from a peer
280 #[derive(Clone, Debug, PartialEq)]
281 pub struct ClosingSigned {
282         /// The channel ID
283         pub channel_id: [u8; 32],
284         /// The proposed total fee for the closing transaction
285         pub fee_satoshis: u64,
286         /// A signature on the closing transaction
287         pub signature: Signature,
288         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
289         /// nodes.
290         pub fee_range: Option<ClosingSignedFeeRange>,
291 }
292
293 /// An update_add_htlc message to be sent or received from a peer
294 #[derive(Clone, Debug, PartialEq)]
295 pub struct UpdateAddHTLC {
296         /// The channel ID
297         pub channel_id: [u8; 32],
298         /// The HTLC ID
299         pub htlc_id: u64,
300         /// The HTLC value in milli-satoshi
301         pub amount_msat: u64,
302         /// The payment hash, the pre-image of which controls HTLC redemption
303         pub payment_hash: PaymentHash,
304         /// The expiry height of the HTLC
305         pub cltv_expiry: u32,
306         pub(crate) onion_routing_packet: OnionPacket,
307 }
308
309  /// An onion message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct OnionMessage {
312         /// Used in decrypting the onion packet's payload.
313         pub blinding_point: PublicKey,
314         pub(crate) onion_routing_packet: onion_message::Packet,
315 }
316
317 /// An update_fulfill_htlc message to be sent or received from a peer
318 #[derive(Clone, Debug, PartialEq)]
319 pub struct UpdateFulfillHTLC {
320         /// The channel ID
321         pub channel_id: [u8; 32],
322         /// The HTLC ID
323         pub htlc_id: u64,
324         /// The pre-image of the payment hash, allowing HTLC redemption
325         pub payment_preimage: PaymentPreimage,
326 }
327
328 /// An update_fail_htlc message to be sent or received from a peer
329 #[derive(Clone, Debug, PartialEq)]
330 pub struct UpdateFailHTLC {
331         /// The channel ID
332         pub channel_id: [u8; 32],
333         /// The HTLC ID
334         pub htlc_id: u64,
335         pub(crate) reason: OnionErrorPacket,
336 }
337
338 /// An update_fail_malformed_htlc message to be sent or received from a peer
339 #[derive(Clone, Debug, PartialEq)]
340 pub struct UpdateFailMalformedHTLC {
341         /// The channel ID
342         pub channel_id: [u8; 32],
343         /// The HTLC ID
344         pub htlc_id: u64,
345         pub(crate) sha256_of_onion: [u8; 32],
346         /// The failure code
347         pub failure_code: u16,
348 }
349
350 /// A commitment_signed message to be sent or received from a peer
351 #[derive(Clone, Debug, PartialEq)]
352 pub struct CommitmentSigned {
353         /// The channel ID
354         pub channel_id: [u8; 32],
355         /// A signature on the commitment transaction
356         pub signature: Signature,
357         /// Signatures on the HTLC transactions
358         pub htlc_signatures: Vec<Signature>,
359 }
360
361 /// A revoke_and_ack message to be sent or received from a peer
362 #[derive(Clone, Debug, PartialEq)]
363 pub struct RevokeAndACK {
364         /// The channel ID
365         pub channel_id: [u8; 32],
366         /// The secret corresponding to the per-commitment point
367         pub per_commitment_secret: [u8; 32],
368         /// The next sender-broadcast commitment transaction's per-commitment point
369         pub next_per_commitment_point: PublicKey,
370 }
371
372 /// An update_fee message to be sent or received from a peer
373 #[derive(Clone, Debug, PartialEq)]
374 pub struct UpdateFee {
375         /// The channel ID
376         pub channel_id: [u8; 32],
377         /// Fee rate per 1000-weight of the transaction
378         pub feerate_per_kw: u32,
379 }
380
381 #[derive(Clone, Debug, PartialEq)]
382 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
383 /// This is used to convince the recipient that the channel is at a certain commitment
384 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
385 /// and even later commitments may have been revoked.
386 pub struct DataLossProtect {
387         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
388         /// belonging to the recipient
389         pub your_last_per_commitment_secret: [u8; 32],
390         /// The sender's per-commitment point for their current commitment transaction
391         pub my_current_per_commitment_point: PublicKey,
392 }
393
394 /// A channel_reestablish message to be sent or received from a peer
395 #[derive(Clone, Debug, PartialEq)]
396 pub struct ChannelReestablish {
397         /// The channel ID
398         pub channel_id: [u8; 32],
399         /// The next commitment number for the sender
400         pub next_local_commitment_number: u64,
401         /// The next commitment number for the recipient
402         pub next_remote_commitment_number: u64,
403         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
404         pub data_loss_protect: OptionalField<DataLossProtect>,
405 }
406
407 /// An announcement_signatures message to be sent or received from a peer
408 #[derive(Clone, Debug, PartialEq)]
409 pub struct AnnouncementSignatures {
410         /// The channel ID
411         pub channel_id: [u8; 32],
412         /// The short channel ID
413         pub short_channel_id: u64,
414         /// A signature by the node key
415         pub node_signature: Signature,
416         /// A signature by the funding key
417         pub bitcoin_signature: Signature,
418 }
419
420 /// An address which can be used to connect to a remote peer
421 #[derive(Clone, Debug, PartialEq)]
422 pub enum NetAddress {
423         /// An IPv4 address/port on which the peer is listening.
424         IPv4 {
425                 /// The 4-byte IPv4 address
426                 addr: [u8; 4],
427                 /// The port on which the node is listening
428                 port: u16,
429         },
430         /// An IPv6 address/port on which the peer is listening.
431         IPv6 {
432                 /// The 16-byte IPv6 address
433                 addr: [u8; 16],
434                 /// The port on which the node is listening
435                 port: u16,
436         },
437         /// An old-style Tor onion address/port on which the peer is listening.
438         ///
439         /// This field is deprecated and the Tor network generally no longer supports V2 Onion
440         /// addresses. Thus, the details are not parsed here.
441         OnionV2([u8; 12]),
442         /// A new-style Tor onion address/port on which the peer is listening.
443         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
444         /// wrap as base32 and append ".onion".
445         OnionV3 {
446                 /// The ed25519 long-term public key of the peer
447                 ed25519_pubkey: [u8; 32],
448                 /// The checksum of the pubkey and version, as included in the onion address
449                 checksum: u16,
450                 /// The version byte, as defined by the Tor Onion v3 spec.
451                 version: u8,
452                 /// The port on which the node is listening
453                 port: u16,
454         },
455         /// A hostname/port on which the peer is listening.
456         Hostname {
457                 /// The hostname on which the node is listening.
458                 hostname: Hostname,
459                 /// The port on which the node is listening.
460                 port: u16,
461         },
462 }
463 impl NetAddress {
464         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
465         /// by this.
466         pub(crate) fn get_id(&self) -> u8 {
467                 match self {
468                         &NetAddress::IPv4 {..} => { 1 },
469                         &NetAddress::IPv6 {..} => { 2 },
470                         &NetAddress::OnionV2(_) => { 3 },
471                         &NetAddress::OnionV3 {..} => { 4 },
472                         &NetAddress::Hostname {..} => { 5 },
473                 }
474         }
475
476         /// Strict byte-length of address descriptor, 1-byte type not recorded
477         fn len(&self) -> u16 {
478                 match self {
479                         &NetAddress::IPv4 { .. } => { 6 },
480                         &NetAddress::IPv6 { .. } => { 18 },
481                         &NetAddress::OnionV2(_) => { 12 },
482                         &NetAddress::OnionV3 { .. } => { 37 },
483                         // Consists of 1-byte hostname length, hostname bytes, and 2-byte port.
484                         &NetAddress::Hostname { ref hostname, .. } => { u16::from(hostname.len()) + 3 },
485                 }
486         }
487
488         /// The maximum length of any address descriptor, not including the 1-byte type.
489         /// This maximum length is reached by a hostname address descriptor:
490         /// a hostname with a maximum length of 255, its 1-byte length and a 2-byte port.
491         pub(crate) const MAX_LEN: u16 = 258;
492 }
493
494 impl Writeable for NetAddress {
495         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
496                 match self {
497                         &NetAddress::IPv4 { ref addr, ref port } => {
498                                 1u8.write(writer)?;
499                                 addr.write(writer)?;
500                                 port.write(writer)?;
501                         },
502                         &NetAddress::IPv6 { ref addr, ref port } => {
503                                 2u8.write(writer)?;
504                                 addr.write(writer)?;
505                                 port.write(writer)?;
506                         },
507                         &NetAddress::OnionV2(bytes) => {
508                                 3u8.write(writer)?;
509                                 bytes.write(writer)?;
510                         },
511                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
512                                 4u8.write(writer)?;
513                                 ed25519_pubkey.write(writer)?;
514                                 checksum.write(writer)?;
515                                 version.write(writer)?;
516                                 port.write(writer)?;
517                         },
518                         &NetAddress::Hostname { ref hostname, ref port } => {
519                                 5u8.write(writer)?;
520                                 hostname.write(writer)?;
521                                 port.write(writer)?;
522                         },
523                 }
524                 Ok(())
525         }
526 }
527
528 impl Readable for Result<NetAddress, u8> {
529         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
530                 let byte = <u8 as Readable>::read(reader)?;
531                 match byte {
532                         1 => {
533                                 Ok(Ok(NetAddress::IPv4 {
534                                         addr: Readable::read(reader)?,
535                                         port: Readable::read(reader)?,
536                                 }))
537                         },
538                         2 => {
539                                 Ok(Ok(NetAddress::IPv6 {
540                                         addr: Readable::read(reader)?,
541                                         port: Readable::read(reader)?,
542                                 }))
543                         },
544                         3 => Ok(Ok(NetAddress::OnionV2(Readable::read(reader)?))),
545                         4 => {
546                                 Ok(Ok(NetAddress::OnionV3 {
547                                         ed25519_pubkey: Readable::read(reader)?,
548                                         checksum: Readable::read(reader)?,
549                                         version: Readable::read(reader)?,
550                                         port: Readable::read(reader)?,
551                                 }))
552                         },
553                         5 => {
554                                 Ok(Ok(NetAddress::Hostname {
555                                         hostname: Readable::read(reader)?,
556                                         port: Readable::read(reader)?,
557                                 }))
558                         },
559                         _ => return Ok(Err(byte)),
560                 }
561         }
562 }
563
564 impl Readable for NetAddress {
565         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
566                 match Readable::read(reader) {
567                         Ok(Ok(res)) => Ok(res),
568                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
569                         Err(e) => Err(e),
570                 }
571         }
572 }
573
574
575 /// The unsigned part of a node_announcement
576 #[derive(Clone, Debug, PartialEq)]
577 pub struct UnsignedNodeAnnouncement {
578         /// The advertised features
579         pub features: NodeFeatures,
580         /// A strictly monotonic announcement counter, with gaps allowed
581         pub timestamp: u32,
582         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
583         /// to this node).
584         pub node_id: PublicKey,
585         /// An RGB color for UI purposes
586         pub rgb: [u8; 3],
587         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
588         /// of uniqueness.
589         pub alias: [u8; 32],
590         /// List of addresses on which this node is reachable
591         pub addresses: Vec<NetAddress>,
592         pub(crate) excess_address_data: Vec<u8>,
593         pub(crate) excess_data: Vec<u8>,
594 }
595 #[derive(Clone, Debug, PartialEq)]
596 /// A node_announcement message to be sent or received from a peer
597 pub struct NodeAnnouncement {
598         /// The signature by the node key
599         pub signature: Signature,
600         /// The actual content of the announcement
601         pub contents: UnsignedNodeAnnouncement,
602 }
603
604 /// The unsigned part of a channel_announcement
605 #[derive(Clone, Debug, PartialEq)]
606 pub struct UnsignedChannelAnnouncement {
607         /// The advertised channel features
608         pub features: ChannelFeatures,
609         /// The genesis hash of the blockchain where the channel is to be opened
610         pub chain_hash: BlockHash,
611         /// The short channel ID
612         pub short_channel_id: u64,
613         /// One of the two node_ids which are endpoints of this channel
614         pub node_id_1: PublicKey,
615         /// The other of the two node_ids which are endpoints of this channel
616         pub node_id_2: PublicKey,
617         /// The funding key for the first node
618         pub bitcoin_key_1: PublicKey,
619         /// The funding key for the second node
620         pub bitcoin_key_2: PublicKey,
621         pub(crate) excess_data: Vec<u8>,
622 }
623 /// A channel_announcement message to be sent or received from a peer
624 #[derive(Clone, Debug, PartialEq)]
625 pub struct ChannelAnnouncement {
626         /// Authentication of the announcement by the first public node
627         pub node_signature_1: Signature,
628         /// Authentication of the announcement by the second public node
629         pub node_signature_2: Signature,
630         /// Proof of funding UTXO ownership by the first public node
631         pub bitcoin_signature_1: Signature,
632         /// Proof of funding UTXO ownership by the second public node
633         pub bitcoin_signature_2: Signature,
634         /// The actual announcement
635         pub contents: UnsignedChannelAnnouncement,
636 }
637
638 /// The unsigned part of a channel_update
639 #[derive(Clone, Debug, PartialEq)]
640 pub struct UnsignedChannelUpdate {
641         /// The genesis hash of the blockchain where the channel is to be opened
642         pub chain_hash: BlockHash,
643         /// The short channel ID
644         pub short_channel_id: u64,
645         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
646         pub timestamp: u32,
647         /// Channel flags
648         pub flags: u8,
649         /// The number of blocks such that if:
650         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
651         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
652         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
653         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
654         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
655         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
656         /// constructing the route.
657         pub cltv_expiry_delta: u16,
658         /// The minimum HTLC size incoming to sender, in milli-satoshi
659         pub htlc_minimum_msat: u64,
660         /// The maximum HTLC value incoming to sender, in milli-satoshi. Used to be optional.
661         pub htlc_maximum_msat: u64,
662         /// The base HTLC fee charged by sender, in milli-satoshi
663         pub fee_base_msat: u32,
664         /// The amount to fee multiplier, in micro-satoshi
665         pub fee_proportional_millionths: u32,
666         /// Excess data which was signed as a part of the message which we do not (yet) understand how
667         /// to decode. This is stored to ensure forward-compatibility as new fields are added to the
668         /// lightning gossip
669         pub excess_data: Vec<u8>,
670 }
671 /// A channel_update message to be sent or received from a peer
672 #[derive(Clone, Debug, PartialEq)]
673 pub struct ChannelUpdate {
674         /// A signature of the channel update
675         pub signature: Signature,
676         /// The actual channel update
677         pub contents: UnsignedChannelUpdate,
678 }
679
680 /// A query_channel_range message is used to query a peer for channel
681 /// UTXOs in a range of blocks. The recipient of a query makes a best
682 /// effort to reply to the query using one or more reply_channel_range
683 /// messages.
684 #[derive(Clone, Debug, PartialEq)]
685 pub struct QueryChannelRange {
686         /// The genesis hash of the blockchain being queried
687         pub chain_hash: BlockHash,
688         /// The height of the first block for the channel UTXOs being queried
689         pub first_blocknum: u32,
690         /// The number of blocks to include in the query results
691         pub number_of_blocks: u32,
692 }
693
694 /// A reply_channel_range message is a reply to a query_channel_range
695 /// message. Multiple reply_channel_range messages can be sent in reply
696 /// to a single query_channel_range message. The query recipient makes a
697 /// best effort to respond based on their local network view which may
698 /// not be a perfect view of the network. The short_channel_ids in the
699 /// reply are encoded. We only support encoding_type=0 uncompressed
700 /// serialization and do not support encoding_type=1 zlib serialization.
701 #[derive(Clone, Debug, PartialEq)]
702 pub struct ReplyChannelRange {
703         /// The genesis hash of the blockchain being queried
704         pub chain_hash: BlockHash,
705         /// The height of the first block in the range of the reply
706         pub first_blocknum: u32,
707         /// The number of blocks included in the range of the reply
708         pub number_of_blocks: u32,
709         /// True when this is the final reply for a query
710         pub sync_complete: bool,
711         /// The short_channel_ids in the channel range
712         pub short_channel_ids: Vec<u64>,
713 }
714
715 /// A query_short_channel_ids message is used to query a peer for
716 /// routing gossip messages related to one or more short_channel_ids.
717 /// The query recipient will reply with the latest, if available,
718 /// channel_announcement, channel_update and node_announcement messages
719 /// it maintains for the requested short_channel_ids followed by a
720 /// reply_short_channel_ids_end message. The short_channel_ids sent in
721 /// this query are encoded. We only support encoding_type=0 uncompressed
722 /// serialization and do not support encoding_type=1 zlib serialization.
723 #[derive(Clone, Debug, PartialEq)]
724 pub struct QueryShortChannelIds {
725         /// The genesis hash of the blockchain being queried
726         pub chain_hash: BlockHash,
727         /// The short_channel_ids that are being queried
728         pub short_channel_ids: Vec<u64>,
729 }
730
731 /// A reply_short_channel_ids_end message is sent as a reply to a
732 /// query_short_channel_ids message. The query recipient makes a best
733 /// effort to respond based on their local network view which may not be
734 /// a perfect view of the network.
735 #[derive(Clone, Debug, PartialEq)]
736 pub struct ReplyShortChannelIdsEnd {
737         /// The genesis hash of the blockchain that was queried
738         pub chain_hash: BlockHash,
739         /// Indicates if the query recipient maintains up-to-date channel
740         /// information for the chain_hash
741         pub full_information: bool,
742 }
743
744 /// A gossip_timestamp_filter message is used by a node to request
745 /// gossip relay for messages in the requested time range when the
746 /// gossip_queries feature has been negotiated.
747 #[derive(Clone, Debug, PartialEq)]
748 pub struct GossipTimestampFilter {
749         /// The genesis hash of the blockchain for channel and node information
750         pub chain_hash: BlockHash,
751         /// The starting unix timestamp
752         pub first_timestamp: u32,
753         /// The range of information in seconds
754         pub timestamp_range: u32,
755 }
756
757 /// Encoding type for data compression of collections in gossip queries.
758 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
759 enum EncodingType {
760         Uncompressed = 0x00,
761 }
762
763 /// Used to put an error message in a LightningError
764 #[derive(Clone, Debug)]
765 pub enum ErrorAction {
766         /// The peer took some action which made us think they were useless. Disconnect them.
767         DisconnectPeer {
768                 /// An error message which we should make an effort to send before we disconnect.
769                 msg: Option<ErrorMessage>
770         },
771         /// The peer did something harmless that we weren't able to process, just log and ignore
772         // New code should *not* use this. New code must use IgnoreAndLog, below!
773         IgnoreError,
774         /// The peer did something harmless that we weren't able to meaningfully process.
775         /// If the error is logged, log it at the given level.
776         IgnoreAndLog(logger::Level),
777         /// The peer provided us with a gossip message which we'd already seen. In most cases this
778         /// should be ignored, but it may result in the message being forwarded if it is a duplicate of
779         /// our own channel announcements.
780         IgnoreDuplicateGossip,
781         /// The peer did something incorrect. Tell them.
782         SendErrorMessage {
783                 /// The message to send.
784                 msg: ErrorMessage,
785         },
786         /// The peer did something incorrect. Tell them without closing any channels.
787         SendWarningMessage {
788                 /// The message to send.
789                 msg: WarningMessage,
790                 /// The peer may have done something harmless that we weren't able to meaningfully process,
791                 /// though we should still tell them about it.
792                 /// If this event is logged, log it at the given level.
793                 log_level: logger::Level,
794         },
795 }
796
797 /// An Err type for failure to process messages.
798 #[derive(Clone, Debug)]
799 pub struct LightningError {
800         /// A human-readable message describing the error
801         pub err: String,
802         /// The action which should be taken against the offending peer.
803         pub action: ErrorAction,
804 }
805
806 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
807 /// transaction updates if they were pending.
808 #[derive(Clone, Debug, PartialEq)]
809 pub struct CommitmentUpdate {
810         /// update_add_htlc messages which should be sent
811         pub update_add_htlcs: Vec<UpdateAddHTLC>,
812         /// update_fulfill_htlc messages which should be sent
813         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
814         /// update_fail_htlc messages which should be sent
815         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
816         /// update_fail_malformed_htlc messages which should be sent
817         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
818         /// An update_fee message which should be sent
819         pub update_fee: Option<UpdateFee>,
820         /// Finally, the commitment_signed message which should be sent
821         pub commitment_signed: CommitmentSigned,
822 }
823
824 /// Messages could have optional fields to use with extended features
825 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
826 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
827 /// separate enum type for them.
828 /// (C-not exported) due to a free generic in T
829 #[derive(Clone, Debug, PartialEq)]
830 pub enum OptionalField<T> {
831         /// Optional field is included in message
832         Present(T),
833         /// Optional field is absent in message
834         Absent
835 }
836
837 /// A trait to describe an object which can receive channel messages.
838 ///
839 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
840 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
841 pub trait ChannelMessageHandler : MessageSendEventsProvider {
842         //Channel init:
843         /// Handle an incoming open_channel message from the given peer.
844         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
845         /// Handle an incoming accept_channel message from the given peer.
846         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
847         /// Handle an incoming funding_created message from the given peer.
848         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
849         /// Handle an incoming funding_signed message from the given peer.
850         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
851         /// Handle an incoming channel_ready message from the given peer.
852         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &ChannelReady);
853
854         // Channl close:
855         /// Handle an incoming shutdown message from the given peer.
856         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
857         /// Handle an incoming closing_signed message from the given peer.
858         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
859
860         // HTLC handling:
861         /// Handle an incoming update_add_htlc message from the given peer.
862         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
863         /// Handle an incoming update_fulfill_htlc message from the given peer.
864         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
865         /// Handle an incoming update_fail_htlc message from the given peer.
866         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
867         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
868         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
869         /// Handle an incoming commitment_signed message from the given peer.
870         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
871         /// Handle an incoming revoke_and_ack message from the given peer.
872         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
873
874         /// Handle an incoming update_fee message from the given peer.
875         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
876
877         // Channel-to-announce:
878         /// Handle an incoming announcement_signatures message from the given peer.
879         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
880
881         // Connection loss/reestablish:
882         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
883         /// is believed to be possible in the future (eg they're sending us messages we don't
884         /// understand or indicate they require unknown feature bits), no_connection_possible is set
885         /// and any outstanding channels should be failed.
886         ///
887         /// Note that in some rare cases this may be called without a corresponding
888         /// [`Self::peer_connected`].
889         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
890
891         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
892         ///
893         /// May return an `Err(())` if the features the peer supports are not sufficient to communicate
894         /// with us. Implementors should be somewhat conservative about doing so, however, as other
895         /// message handlers may still wish to communicate with this peer.
896         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init) -> Result<(), ()>;
897         /// Handle an incoming channel_reestablish message from the given peer.
898         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
899
900         /// Handle an incoming channel update from the given peer.
901         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
902
903         // Error:
904         /// Handle an incoming error message from the given peer.
905         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
906
907         // Handler information:
908         /// Gets the node feature flags which this handler itself supports. All available handlers are
909         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
910         /// which are broadcasted in our [`NodeAnnouncement`] message.
911         fn provided_node_features(&self) -> NodeFeatures;
912
913         /// Gets the init feature flags which should be sent to the given peer. All available handlers
914         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
915         /// which are sent in our [`Init`] message.
916         ///
917         /// Note that this method is called before [`Self::peer_connected`].
918         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
919 }
920
921 /// A trait to describe an object which can receive routing messages.
922 ///
923 /// # Implementor DoS Warnings
924 ///
925 /// For `gossip_queries` messages there are potential DoS vectors when handling
926 /// inbound queries. Implementors using an on-disk network graph should be aware of
927 /// repeated disk I/O for queries accessing different parts of the network graph.
928 pub trait RoutingMessageHandler : MessageSendEventsProvider {
929         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
930         /// false or returning an Err otherwise.
931         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
932         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
933         /// or returning an Err otherwise.
934         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
935         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
936         /// false or returning an Err otherwise.
937         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
938         /// Gets channel announcements and updates required to dump our routing table to a remote node,
939         /// starting at the short_channel_id indicated by starting_point and including announcements
940         /// for a single channel.
941         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
942         /// Gets a node announcement required to dump our routing table to a remote node, starting at
943         /// the node *after* the provided pubkey and including up to one announcement immediately
944         /// higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
945         /// If None is provided for starting_point, we start at the first node.
946         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement>;
947         /// Called when a connection is established with a peer. This can be used to
948         /// perform routing table synchronization using a strategy defined by the
949         /// implementor.
950         ///
951         /// May return an `Err(())` if the features the peer supports are not sufficient to communicate
952         /// with us. Implementors should be somewhat conservative about doing so, however, as other
953         /// message handlers may still wish to communicate with this peer.
954         fn peer_connected(&self, their_node_id: &PublicKey, init: &Init) -> Result<(), ()>;
955         /// Handles the reply of a query we initiated to learn about channels
956         /// for a given range of blocks. We can expect to receive one or more
957         /// replies to a single query.
958         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
959         /// Handles the reply of a query we initiated asking for routing gossip
960         /// messages for a list of channels. We should receive this message when
961         /// a node has completed its best effort to send us the pertaining routing
962         /// gossip messages.
963         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
964         /// Handles when a peer asks us to send a list of short_channel_ids
965         /// for the requested range of blocks.
966         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
967         /// Handles when a peer asks us to send routing gossip messages for a
968         /// list of short_channel_ids.
969         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
970
971         // Handler information:
972         /// Gets the node feature flags which this handler itself supports. All available handlers are
973         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
974         /// which are broadcasted in our [`NodeAnnouncement`] message.
975         fn provided_node_features(&self) -> NodeFeatures;
976         /// Gets the init feature flags which should be sent to the given peer. All available handlers
977         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
978         /// which are sent in our [`Init`] message.
979         ///
980         /// Note that this method is called before [`Self::peer_connected`].
981         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
982 }
983
984 /// A trait to describe an object that can receive onion messages.
985 pub trait OnionMessageHandler : OnionMessageProvider {
986         /// Handle an incoming onion_message message from the given peer.
987         fn handle_onion_message(&self, peer_node_id: &PublicKey, msg: &OnionMessage);
988         /// Called when a connection is established with a peer. Can be used to track which peers
989         /// advertise onion message support and are online.
990         ///
991         /// May return an `Err(())` if the features the peer supports are not sufficient to communicate
992         /// with us. Implementors should be somewhat conservative about doing so, however, as other
993         /// message handlers may still wish to communicate with this peer.
994         fn peer_connected(&self, their_node_id: &PublicKey, init: &Init) -> Result<(), ()>;
995         /// Indicates a connection to the peer failed/an existing connection was lost. Allows handlers to
996         /// drop and refuse to forward onion messages to this peer.
997         ///
998         /// Note that in some rare cases this may be called without a corresponding
999         /// [`Self::peer_connected`].
1000         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
1001
1002         // Handler information:
1003         /// Gets the node feature flags which this handler itself supports. All available handlers are
1004         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
1005         /// which are broadcasted in our [`NodeAnnouncement`] message.
1006         fn provided_node_features(&self) -> NodeFeatures;
1007
1008         /// Gets the init feature flags which should be sent to the given peer. All available handlers
1009         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
1010         /// which are sent in our [`Init`] message.
1011         ///
1012         /// Note that this method is called before [`Self::peer_connected`].
1013         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
1014 }
1015
1016 mod fuzzy_internal_msgs {
1017         use prelude::*;
1018         use ln::{PaymentPreimage, PaymentSecret};
1019
1020         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
1021         // them from untrusted input):
1022         #[derive(Clone)]
1023         pub(crate) struct FinalOnionHopData {
1024                 pub(crate) payment_secret: PaymentSecret,
1025                 /// The total value, in msat, of the payment as received by the ultimate recipient.
1026                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
1027                 pub(crate) total_msat: u64,
1028         }
1029
1030         pub(crate) enum OnionHopDataFormat {
1031                 Legacy { // aka Realm-0
1032                         short_channel_id: u64,
1033                 },
1034                 NonFinalNode {
1035                         short_channel_id: u64,
1036                 },
1037                 FinalNode {
1038                         payment_data: Option<FinalOnionHopData>,
1039                         keysend_preimage: Option<PaymentPreimage>,
1040                 },
1041         }
1042
1043         pub struct OnionHopData {
1044                 pub(crate) format: OnionHopDataFormat,
1045                 /// The value, in msat, of the payment after this hop's fee is deducted.
1046                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
1047                 pub(crate) amt_to_forward: u64,
1048                 pub(crate) outgoing_cltv_value: u32,
1049                 // 12 bytes of 0-padding for Legacy format
1050         }
1051
1052         pub struct DecodedOnionErrorPacket {
1053                 pub(crate) hmac: [u8; 32],
1054                 pub(crate) failuremsg: Vec<u8>,
1055                 pub(crate) pad: Vec<u8>,
1056         }
1057 }
1058 #[cfg(fuzzing)]
1059 pub use self::fuzzy_internal_msgs::*;
1060 #[cfg(not(fuzzing))]
1061 pub(crate) use self::fuzzy_internal_msgs::*;
1062
1063 #[derive(Clone)]
1064 pub(crate) struct OnionPacket {
1065         pub(crate) version: u8,
1066         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
1067         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
1068         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
1069         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
1070         pub(crate) hop_data: [u8; 20*65],
1071         pub(crate) hmac: [u8; 32],
1072 }
1073
1074 impl onion_utils::Packet for OnionPacket {
1075         type Data = onion_utils::FixedSizeOnionPacket;
1076         fn new(pubkey: PublicKey, hop_data: onion_utils::FixedSizeOnionPacket, hmac: [u8; 32]) -> Self {
1077                 Self {
1078                         version: 0,
1079                         public_key: Ok(pubkey),
1080                         hop_data: hop_data.0,
1081                         hmac,
1082                 }
1083         }
1084 }
1085
1086 impl PartialEq for OnionPacket {
1087         fn eq(&self, other: &OnionPacket) -> bool {
1088                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
1089                         if i != j { return false; }
1090                 }
1091                 self.version == other.version &&
1092                         self.public_key == other.public_key &&
1093                         self.hmac == other.hmac
1094         }
1095 }
1096
1097 impl fmt::Debug for OnionPacket {
1098         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1099                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
1100         }
1101 }
1102
1103 #[derive(Clone, Debug, PartialEq)]
1104 pub(crate) struct OnionErrorPacket {
1105         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
1106         // (TODO) We limit it in decode to much lower...
1107         pub(crate) data: Vec<u8>,
1108 }
1109
1110 impl fmt::Display for DecodeError {
1111         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1112                 match *self {
1113                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
1114                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
1115                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
1116                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
1117                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
1118                         DecodeError::Io(ref e) => fmt::Debug::fmt(e, f),
1119                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
1120                 }
1121         }
1122 }
1123
1124 impl From<io::Error> for DecodeError {
1125         fn from(e: io::Error) -> Self {
1126                 if e.kind() == io::ErrorKind::UnexpectedEof {
1127                         DecodeError::ShortRead
1128                 } else {
1129                         DecodeError::Io(e.kind())
1130                 }
1131         }
1132 }
1133
1134 impl Writeable for OptionalField<Script> {
1135         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1136                 match *self {
1137                         OptionalField::Present(ref script) => {
1138                                 // Note that Writeable for script includes the 16-bit length tag for us
1139                                 script.write(w)?;
1140                         },
1141                         OptionalField::Absent => {}
1142                 }
1143                 Ok(())
1144         }
1145 }
1146
1147 impl Readable for OptionalField<Script> {
1148         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1149                 match <u16 as Readable>::read(r) {
1150                         Ok(len) => {
1151                                 let mut buf = vec![0; len as usize];
1152                                 r.read_exact(&mut buf)?;
1153                                 Ok(OptionalField::Present(Script::from(buf)))
1154                         },
1155                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
1156                         Err(e) => Err(e)
1157                 }
1158         }
1159 }
1160
1161 impl Writeable for OptionalField<u64> {
1162         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1163                 match *self {
1164                         OptionalField::Present(ref value) => {
1165                                 value.write(w)?;
1166                         },
1167                         OptionalField::Absent => {}
1168                 }
1169                 Ok(())
1170         }
1171 }
1172
1173 impl Readable for OptionalField<u64> {
1174         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1175                 let value: u64 = Readable::read(r)?;
1176                 Ok(OptionalField::Present(value))
1177         }
1178 }
1179
1180
1181 impl_writeable_msg!(AcceptChannel, {
1182         temporary_channel_id,
1183         dust_limit_satoshis,
1184         max_htlc_value_in_flight_msat,
1185         channel_reserve_satoshis,
1186         htlc_minimum_msat,
1187         minimum_depth,
1188         to_self_delay,
1189         max_accepted_htlcs,
1190         funding_pubkey,
1191         revocation_basepoint,
1192         payment_point,
1193         delayed_payment_basepoint,
1194         htlc_basepoint,
1195         first_per_commitment_point,
1196         shutdown_scriptpubkey
1197 }, {
1198         (1, channel_type, option),
1199 });
1200
1201 impl_writeable_msg!(AnnouncementSignatures, {
1202         channel_id,
1203         short_channel_id,
1204         node_signature,
1205         bitcoin_signature
1206 }, {});
1207
1208 impl Writeable for ChannelReestablish {
1209         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1210                 self.channel_id.write(w)?;
1211                 self.next_local_commitment_number.write(w)?;
1212                 self.next_remote_commitment_number.write(w)?;
1213                 match self.data_loss_protect {
1214                         OptionalField::Present(ref data_loss_protect) => {
1215                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1216                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1217                         },
1218                         OptionalField::Absent => {}
1219                 }
1220                 Ok(())
1221         }
1222 }
1223
1224 impl Readable for ChannelReestablish{
1225         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1226                 Ok(Self {
1227                         channel_id: Readable::read(r)?,
1228                         next_local_commitment_number: Readable::read(r)?,
1229                         next_remote_commitment_number: Readable::read(r)?,
1230                         data_loss_protect: {
1231                                 match <[u8; 32] as Readable>::read(r) {
1232                                         Ok(your_last_per_commitment_secret) =>
1233                                                 OptionalField::Present(DataLossProtect {
1234                                                         your_last_per_commitment_secret,
1235                                                         my_current_per_commitment_point: Readable::read(r)?,
1236                                                 }),
1237                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1238                                         Err(e) => return Err(e)
1239                                 }
1240                         }
1241                 })
1242         }
1243 }
1244
1245 impl_writeable_msg!(ClosingSigned,
1246         { channel_id, fee_satoshis, signature },
1247         { (1, fee_range, option) }
1248 );
1249
1250 impl_writeable!(ClosingSignedFeeRange, {
1251         min_fee_satoshis,
1252         max_fee_satoshis
1253 });
1254
1255 impl_writeable_msg!(CommitmentSigned, {
1256         channel_id,
1257         signature,
1258         htlc_signatures
1259 }, {});
1260
1261 impl_writeable!(DecodedOnionErrorPacket, {
1262         hmac,
1263         failuremsg,
1264         pad
1265 });
1266
1267 impl_writeable_msg!(FundingCreated, {
1268         temporary_channel_id,
1269         funding_txid,
1270         funding_output_index,
1271         signature
1272 }, {});
1273
1274 impl_writeable_msg!(FundingSigned, {
1275         channel_id,
1276         signature
1277 }, {});
1278
1279 impl_writeable_msg!(ChannelReady, {
1280         channel_id,
1281         next_per_commitment_point,
1282 }, {
1283         (1, short_channel_id_alias, option),
1284 });
1285
1286 impl Writeable for Init {
1287         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1288                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1289                 // our relevant feature bits. This keeps us compatible with old nodes.
1290                 self.features.write_up_to_13(w)?;
1291                 self.features.write(w)?;
1292                 encode_tlv_stream!(w, {
1293                         (3, self.remote_network_address, option)
1294                 });
1295                 Ok(())
1296         }
1297 }
1298
1299 impl Readable for Init {
1300         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1301                 let global_features: InitFeatures = Readable::read(r)?;
1302                 let features: InitFeatures = Readable::read(r)?;
1303                 let mut remote_network_address: Option<NetAddress> = None;
1304                 decode_tlv_stream!(r, {
1305                         (3, remote_network_address, option)
1306                 });
1307                 Ok(Init {
1308                         features: features.or(global_features),
1309                         remote_network_address,
1310                 })
1311         }
1312 }
1313
1314 impl_writeable_msg!(OpenChannel, {
1315         chain_hash,
1316         temporary_channel_id,
1317         funding_satoshis,
1318         push_msat,
1319         dust_limit_satoshis,
1320         max_htlc_value_in_flight_msat,
1321         channel_reserve_satoshis,
1322         htlc_minimum_msat,
1323         feerate_per_kw,
1324         to_self_delay,
1325         max_accepted_htlcs,
1326         funding_pubkey,
1327         revocation_basepoint,
1328         payment_point,
1329         delayed_payment_basepoint,
1330         htlc_basepoint,
1331         first_per_commitment_point,
1332         channel_flags,
1333         shutdown_scriptpubkey
1334 }, {
1335         (1, channel_type, option),
1336 });
1337
1338 impl_writeable_msg!(RevokeAndACK, {
1339         channel_id,
1340         per_commitment_secret,
1341         next_per_commitment_point
1342 }, {});
1343
1344 impl_writeable_msg!(Shutdown, {
1345         channel_id,
1346         scriptpubkey
1347 }, {});
1348
1349 impl_writeable_msg!(UpdateFailHTLC, {
1350         channel_id,
1351         htlc_id,
1352         reason
1353 }, {});
1354
1355 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1356         channel_id,
1357         htlc_id,
1358         sha256_of_onion,
1359         failure_code
1360 }, {});
1361
1362 impl_writeable_msg!(UpdateFee, {
1363         channel_id,
1364         feerate_per_kw
1365 }, {});
1366
1367 impl_writeable_msg!(UpdateFulfillHTLC, {
1368         channel_id,
1369         htlc_id,
1370         payment_preimage
1371 }, {});
1372
1373 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1374 // serialization format in a way which assumes we know the total serialized length/message end
1375 // position.
1376 impl_writeable!(OnionErrorPacket, {
1377         data
1378 });
1379
1380 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1381 // serialization format in a way which assumes we know the total serialized length/message end
1382 // position.
1383 impl Writeable for OnionPacket {
1384         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1385                 self.version.write(w)?;
1386                 match self.public_key {
1387                         Ok(pubkey) => pubkey.write(w)?,
1388                         Err(_) => [0u8;33].write(w)?,
1389                 }
1390                 w.write_all(&self.hop_data)?;
1391                 self.hmac.write(w)?;
1392                 Ok(())
1393         }
1394 }
1395
1396 impl Readable for OnionPacket {
1397         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1398                 Ok(OnionPacket {
1399                         version: Readable::read(r)?,
1400                         public_key: {
1401                                 let mut buf = [0u8;33];
1402                                 r.read_exact(&mut buf)?;
1403                                 PublicKey::from_slice(&buf)
1404                         },
1405                         hop_data: Readable::read(r)?,
1406                         hmac: Readable::read(r)?,
1407                 })
1408         }
1409 }
1410
1411 impl_writeable_msg!(UpdateAddHTLC, {
1412         channel_id,
1413         htlc_id,
1414         amount_msat,
1415         payment_hash,
1416         cltv_expiry,
1417         onion_routing_packet
1418 }, {});
1419
1420 impl Readable for OnionMessage {
1421         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1422                 let blinding_point: PublicKey = Readable::read(r)?;
1423                 let len: u16 = Readable::read(r)?;
1424                 let mut packet_reader = FixedLengthReader::new(r, len as u64);
1425                 let onion_routing_packet: onion_message::Packet = <onion_message::Packet as LengthReadable>::read(&mut packet_reader)?;
1426                 Ok(Self {
1427                         blinding_point,
1428                         onion_routing_packet,
1429                 })
1430         }
1431 }
1432
1433 impl Writeable for OnionMessage {
1434         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1435                 self.blinding_point.write(w)?;
1436                 let onion_packet_len = self.onion_routing_packet.serialized_length();
1437                 (onion_packet_len as u16).write(w)?;
1438                 self.onion_routing_packet.write(w)?;
1439                 Ok(())
1440         }
1441 }
1442
1443 impl Writeable for FinalOnionHopData {
1444         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1445                 self.payment_secret.0.write(w)?;
1446                 HighZeroBytesDroppedBigSize(self.total_msat).write(w)
1447         }
1448 }
1449
1450 impl Readable for FinalOnionHopData {
1451         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1452                 let secret: [u8; 32] = Readable::read(r)?;
1453                 let amt: HighZeroBytesDroppedBigSize<u64> = Readable::read(r)?;
1454                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1455         }
1456 }
1457
1458 impl Writeable for OnionHopData {
1459         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1460                 match self.format {
1461                         OnionHopDataFormat::Legacy { short_channel_id } => {
1462                                 0u8.write(w)?;
1463                                 short_channel_id.write(w)?;
1464                                 self.amt_to_forward.write(w)?;
1465                                 self.outgoing_cltv_value.write(w)?;
1466                                 w.write_all(&[0;12])?;
1467                         },
1468                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1469                                 encode_varint_length_prefixed_tlv!(w, {
1470                                         (2, HighZeroBytesDroppedBigSize(self.amt_to_forward), required),
1471                                         (4, HighZeroBytesDroppedBigSize(self.outgoing_cltv_value), required),
1472                                         (6, short_channel_id, required)
1473                                 });
1474                         },
1475                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1476                                 encode_varint_length_prefixed_tlv!(w, {
1477                                         (2, HighZeroBytesDroppedBigSize(self.amt_to_forward), required),
1478                                         (4, HighZeroBytesDroppedBigSize(self.outgoing_cltv_value), required),
1479                                         (8, payment_data, option),
1480                                         (5482373484, keysend_preimage, option)
1481                                 });
1482                         },
1483                 }
1484                 Ok(())
1485         }
1486 }
1487
1488 impl Readable for OnionHopData {
1489         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1490                 let b: BigSize = Readable::read(r)?;
1491                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1492                 let (format, amt, cltv_value) = if b.0 != LEGACY_ONION_HOP_FLAG {
1493                         let mut rd = FixedLengthReader::new(r, b.0);
1494                         let mut amt = HighZeroBytesDroppedBigSize(0u64);
1495                         let mut cltv_value = HighZeroBytesDroppedBigSize(0u32);
1496                         let mut short_id: Option<u64> = None;
1497                         let mut payment_data: Option<FinalOnionHopData> = None;
1498                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1499                         decode_tlv_stream!(&mut rd, {
1500                                 (2, amt, required),
1501                                 (4, cltv_value, required),
1502                                 (6, short_id, option),
1503                                 (8, payment_data, option),
1504                                 // See https://github.com/lightning/blips/blob/master/blip-0003.md
1505                                 (5482373484, keysend_preimage, option)
1506                         });
1507                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1508                         let format = if let Some(short_channel_id) = short_id {
1509                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1510                                 OnionHopDataFormat::NonFinalNode {
1511                                         short_channel_id,
1512                                 }
1513                         } else {
1514                                 if let &Some(ref data) = &payment_data {
1515                                         if data.total_msat > MAX_VALUE_MSAT {
1516                                                 return Err(DecodeError::InvalidValue);
1517                                         }
1518                                 }
1519                                 OnionHopDataFormat::FinalNode {
1520                                         payment_data,
1521                                         keysend_preimage,
1522                                 }
1523                         };
1524                         (format, amt.0, cltv_value.0)
1525                 } else {
1526                         let format = OnionHopDataFormat::Legacy {
1527                                 short_channel_id: Readable::read(r)?,
1528                         };
1529                         let amt: u64 = Readable::read(r)?;
1530                         let cltv_value: u32 = Readable::read(r)?;
1531                         r.read_exact(&mut [0; 12])?;
1532                         (format, amt, cltv_value)
1533                 };
1534
1535                 if amt > MAX_VALUE_MSAT {
1536                         return Err(DecodeError::InvalidValue);
1537                 }
1538                 Ok(OnionHopData {
1539                         format,
1540                         amt_to_forward: amt,
1541                         outgoing_cltv_value: cltv_value,
1542                 })
1543         }
1544 }
1545
1546 // ReadableArgs because we need onion_utils::decode_next_hop to accommodate payment packets and
1547 // onion message packets.
1548 impl ReadableArgs<()> for OnionHopData {
1549         fn read<R: Read>(r: &mut R, _arg: ()) -> Result<Self, DecodeError> {
1550                 <Self as Readable>::read(r)
1551         }
1552 }
1553
1554 impl Writeable for Ping {
1555         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1556                 self.ponglen.write(w)?;
1557                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1558                 Ok(())
1559         }
1560 }
1561
1562 impl Readable for Ping {
1563         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1564                 Ok(Ping {
1565                         ponglen: Readable::read(r)?,
1566                         byteslen: {
1567                                 let byteslen = Readable::read(r)?;
1568                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1569                                 byteslen
1570                         }
1571                 })
1572         }
1573 }
1574
1575 impl Writeable for Pong {
1576         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1577                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1578                 Ok(())
1579         }
1580 }
1581
1582 impl Readable for Pong {
1583         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1584                 Ok(Pong {
1585                         byteslen: {
1586                                 let byteslen = Readable::read(r)?;
1587                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1588                                 byteslen
1589                         }
1590                 })
1591         }
1592 }
1593
1594 impl Writeable for UnsignedChannelAnnouncement {
1595         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1596                 self.features.write(w)?;
1597                 self.chain_hash.write(w)?;
1598                 self.short_channel_id.write(w)?;
1599                 self.node_id_1.write(w)?;
1600                 self.node_id_2.write(w)?;
1601                 self.bitcoin_key_1.write(w)?;
1602                 self.bitcoin_key_2.write(w)?;
1603                 w.write_all(&self.excess_data[..])?;
1604                 Ok(())
1605         }
1606 }
1607
1608 impl Readable for UnsignedChannelAnnouncement {
1609         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1610                 Ok(Self {
1611                         features: Readable::read(r)?,
1612                         chain_hash: Readable::read(r)?,
1613                         short_channel_id: Readable::read(r)?,
1614                         node_id_1: Readable::read(r)?,
1615                         node_id_2: Readable::read(r)?,
1616                         bitcoin_key_1: Readable::read(r)?,
1617                         bitcoin_key_2: Readable::read(r)?,
1618                         excess_data: read_to_end(r)?,
1619                 })
1620         }
1621 }
1622
1623 impl_writeable!(ChannelAnnouncement, {
1624         node_signature_1,
1625         node_signature_2,
1626         bitcoin_signature_1,
1627         bitcoin_signature_2,
1628         contents
1629 });
1630
1631 impl Writeable for UnsignedChannelUpdate {
1632         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1633                 // `message_flags` used to indicate presence of `htlc_maximum_msat`, but was deprecated in the spec.
1634                 const MESSAGE_FLAGS: u8 = 1;
1635                 self.chain_hash.write(w)?;
1636                 self.short_channel_id.write(w)?;
1637                 self.timestamp.write(w)?;
1638                 let all_flags = self.flags as u16 | ((MESSAGE_FLAGS as u16) << 8);
1639                 all_flags.write(w)?;
1640                 self.cltv_expiry_delta.write(w)?;
1641                 self.htlc_minimum_msat.write(w)?;
1642                 self.fee_base_msat.write(w)?;
1643                 self.fee_proportional_millionths.write(w)?;
1644                 self.htlc_maximum_msat.write(w)?;
1645                 w.write_all(&self.excess_data[..])?;
1646                 Ok(())
1647         }
1648 }
1649
1650 impl Readable for UnsignedChannelUpdate {
1651         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1652                 Ok(Self {
1653                         chain_hash: Readable::read(r)?,
1654                         short_channel_id: Readable::read(r)?,
1655                         timestamp: Readable::read(r)?,
1656                         flags: {
1657                                 let flags: u16 = Readable::read(r)?;
1658                                 // Note: we ignore the `message_flags` for now, since it was deprecated by the spec.
1659                                 flags as u8
1660                         },
1661                         cltv_expiry_delta: Readable::read(r)?,
1662                         htlc_minimum_msat: Readable::read(r)?,
1663                         fee_base_msat: Readable::read(r)?,
1664                         fee_proportional_millionths: Readable::read(r)?,
1665                         htlc_maximum_msat: Readable::read(r)?,
1666                         excess_data: read_to_end(r)?,
1667                 })
1668         }
1669 }
1670
1671 impl_writeable!(ChannelUpdate, {
1672         signature,
1673         contents
1674 });
1675
1676 impl Writeable for ErrorMessage {
1677         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1678                 self.channel_id.write(w)?;
1679                 (self.data.len() as u16).write(w)?;
1680                 w.write_all(self.data.as_bytes())?;
1681                 Ok(())
1682         }
1683 }
1684
1685 impl Readable for ErrorMessage {
1686         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1687                 Ok(Self {
1688                         channel_id: Readable::read(r)?,
1689                         data: {
1690                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1691                                 let mut data = Vec::with_capacity(sz);
1692                                 data.resize(sz, 0);
1693                                 r.read_exact(&mut data)?;
1694                                 match String::from_utf8(data) {
1695                                         Ok(s) => s,
1696                                         Err(_) => return Err(DecodeError::InvalidValue),
1697                                 }
1698                         }
1699                 })
1700         }
1701 }
1702
1703 impl Writeable for WarningMessage {
1704         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1705                 self.channel_id.write(w)?;
1706                 (self.data.len() as u16).write(w)?;
1707                 w.write_all(self.data.as_bytes())?;
1708                 Ok(())
1709         }
1710 }
1711
1712 impl Readable for WarningMessage {
1713         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1714                 Ok(Self {
1715                         channel_id: Readable::read(r)?,
1716                         data: {
1717                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1718                                 let mut data = Vec::with_capacity(sz);
1719                                 data.resize(sz, 0);
1720                                 r.read_exact(&mut data)?;
1721                                 match String::from_utf8(data) {
1722                                         Ok(s) => s,
1723                                         Err(_) => return Err(DecodeError::InvalidValue),
1724                                 }
1725                         }
1726                 })
1727         }
1728 }
1729
1730 impl Writeable for UnsignedNodeAnnouncement {
1731         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1732                 self.features.write(w)?;
1733                 self.timestamp.write(w)?;
1734                 self.node_id.write(w)?;
1735                 w.write_all(&self.rgb)?;
1736                 self.alias.write(w)?;
1737
1738                 let mut addr_len = 0;
1739                 for addr in self.addresses.iter() {
1740                         addr_len += 1 + addr.len();
1741                 }
1742                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1743                 for addr in self.addresses.iter() {
1744                         addr.write(w)?;
1745                 }
1746                 w.write_all(&self.excess_address_data[..])?;
1747                 w.write_all(&self.excess_data[..])?;
1748                 Ok(())
1749         }
1750 }
1751
1752 impl Readable for UnsignedNodeAnnouncement {
1753         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1754                 let features: NodeFeatures = Readable::read(r)?;
1755                 let timestamp: u32 = Readable::read(r)?;
1756                 let node_id: PublicKey = Readable::read(r)?;
1757                 let mut rgb = [0; 3];
1758                 r.read_exact(&mut rgb)?;
1759                 let alias: [u8; 32] = Readable::read(r)?;
1760
1761                 let addr_len: u16 = Readable::read(r)?;
1762                 let mut addresses: Vec<NetAddress> = Vec::new();
1763                 let mut addr_readpos = 0;
1764                 let mut excess = false;
1765                 let mut excess_byte = 0;
1766                 loop {
1767                         if addr_len <= addr_readpos { break; }
1768                         match Readable::read(r) {
1769                                 Ok(Ok(addr)) => {
1770                                         if addr_len < addr_readpos + 1 + addr.len() {
1771                                                 return Err(DecodeError::BadLengthDescriptor);
1772                                         }
1773                                         addr_readpos += (1 + addr.len()) as u16;
1774                                         addresses.push(addr);
1775                                 },
1776                                 Ok(Err(unknown_descriptor)) => {
1777                                         excess = true;
1778                                         excess_byte = unknown_descriptor;
1779                                         break;
1780                                 },
1781                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1782                                 Err(e) => return Err(e),
1783                         }
1784                 }
1785
1786                 let mut excess_data = vec![];
1787                 let excess_address_data = if addr_readpos < addr_len {
1788                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1789                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1790                         if excess {
1791                                 excess_address_data[0] = excess_byte;
1792                         }
1793                         excess_address_data
1794                 } else {
1795                         if excess {
1796                                 excess_data.push(excess_byte);
1797                         }
1798                         Vec::new()
1799                 };
1800                 excess_data.extend(read_to_end(r)?.iter());
1801                 Ok(UnsignedNodeAnnouncement {
1802                         features,
1803                         timestamp,
1804                         node_id,
1805                         rgb,
1806                         alias,
1807                         addresses,
1808                         excess_address_data,
1809                         excess_data,
1810                 })
1811         }
1812 }
1813
1814 impl_writeable!(NodeAnnouncement, {
1815         signature,
1816         contents
1817 });
1818
1819 impl Readable for QueryShortChannelIds {
1820         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1821                 let chain_hash: BlockHash = Readable::read(r)?;
1822
1823                 let encoding_len: u16 = Readable::read(r)?;
1824                 let encoding_type: u8 = Readable::read(r)?;
1825
1826                 // Must be encoding_type=0 uncompressed serialization. We do not
1827                 // support encoding_type=1 zlib serialization.
1828                 if encoding_type != EncodingType::Uncompressed as u8 {
1829                         return Err(DecodeError::UnsupportedCompression);
1830                 }
1831
1832                 // We expect the encoding_len to always includes the 1-byte
1833                 // encoding_type and that short_channel_ids are 8-bytes each
1834                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1835                         return Err(DecodeError::InvalidValue);
1836                 }
1837
1838                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1839                 // less the 1-byte encoding_type
1840                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1841                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1842                 for _ in 0..short_channel_id_count {
1843                         short_channel_ids.push(Readable::read(r)?);
1844                 }
1845
1846                 Ok(QueryShortChannelIds {
1847                         chain_hash,
1848                         short_channel_ids,
1849                 })
1850         }
1851 }
1852
1853 impl Writeable for QueryShortChannelIds {
1854         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1855                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1856                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1857
1858                 self.chain_hash.write(w)?;
1859                 encoding_len.write(w)?;
1860
1861                 // We only support type=0 uncompressed serialization
1862                 (EncodingType::Uncompressed as u8).write(w)?;
1863
1864                 for scid in self.short_channel_ids.iter() {
1865                         scid.write(w)?;
1866                 }
1867
1868                 Ok(())
1869         }
1870 }
1871
1872 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1873         chain_hash,
1874         full_information,
1875 }, {});
1876
1877 impl QueryChannelRange {
1878         /**
1879          * Calculates the overflow safe ending block height for the query.
1880          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1881          */
1882         pub fn end_blocknum(&self) -> u32 {
1883                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1884                         Some(block) => block,
1885                         None => u32::max_value(),
1886                 }
1887         }
1888 }
1889
1890 impl_writeable_msg!(QueryChannelRange, {
1891         chain_hash,
1892         first_blocknum,
1893         number_of_blocks
1894 }, {});
1895
1896 impl Readable for ReplyChannelRange {
1897         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1898                 let chain_hash: BlockHash = Readable::read(r)?;
1899                 let first_blocknum: u32 = Readable::read(r)?;
1900                 let number_of_blocks: u32 = Readable::read(r)?;
1901                 let sync_complete: bool = Readable::read(r)?;
1902
1903                 let encoding_len: u16 = Readable::read(r)?;
1904                 let encoding_type: u8 = Readable::read(r)?;
1905
1906                 // Must be encoding_type=0 uncompressed serialization. We do not
1907                 // support encoding_type=1 zlib serialization.
1908                 if encoding_type != EncodingType::Uncompressed as u8 {
1909                         return Err(DecodeError::UnsupportedCompression);
1910                 }
1911
1912                 // We expect the encoding_len to always includes the 1-byte
1913                 // encoding_type and that short_channel_ids are 8-bytes each
1914                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1915                         return Err(DecodeError::InvalidValue);
1916                 }
1917
1918                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1919                 // less the 1-byte encoding_type
1920                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1921                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1922                 for _ in 0..short_channel_id_count {
1923                         short_channel_ids.push(Readable::read(r)?);
1924                 }
1925
1926                 Ok(ReplyChannelRange {
1927                         chain_hash,
1928                         first_blocknum,
1929                         number_of_blocks,
1930                         sync_complete,
1931                         short_channel_ids
1932                 })
1933         }
1934 }
1935
1936 impl Writeable for ReplyChannelRange {
1937         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1938                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1939                 self.chain_hash.write(w)?;
1940                 self.first_blocknum.write(w)?;
1941                 self.number_of_blocks.write(w)?;
1942                 self.sync_complete.write(w)?;
1943
1944                 encoding_len.write(w)?;
1945                 (EncodingType::Uncompressed as u8).write(w)?;
1946                 for scid in self.short_channel_ids.iter() {
1947                         scid.write(w)?;
1948                 }
1949
1950                 Ok(())
1951         }
1952 }
1953
1954 impl_writeable_msg!(GossipTimestampFilter, {
1955         chain_hash,
1956         first_timestamp,
1957         timestamp_range,
1958 }, {});
1959
1960 #[cfg(test)]
1961 mod tests {
1962         use hex;
1963         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1964         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1965         use ln::msgs;
1966         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1967         use util::ser::{Writeable, Readable, Hostname};
1968
1969         use bitcoin::hashes::hex::FromHex;
1970         use bitcoin::util::address::Address;
1971         use bitcoin::network::constants::Network;
1972         use bitcoin::blockdata::script::Builder;
1973         use bitcoin::blockdata::opcodes;
1974         use bitcoin::hash_types::{Txid, BlockHash};
1975
1976         use bitcoin::secp256k1::{PublicKey,SecretKey};
1977         use bitcoin::secp256k1::{Secp256k1, Message};
1978
1979         use io::{self, Cursor};
1980         use prelude::*;
1981         use core::convert::TryFrom;
1982
1983         #[test]
1984         fn encoding_channel_reestablish_no_secret() {
1985                 let cr = msgs::ChannelReestablish {
1986                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1987                         next_local_commitment_number: 3,
1988                         next_remote_commitment_number: 4,
1989                         data_loss_protect: OptionalField::Absent,
1990                 };
1991
1992                 let encoded_value = cr.encode();
1993                 assert_eq!(
1994                         encoded_value,
1995                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1996                 );
1997         }
1998
1999         #[test]
2000         fn encoding_channel_reestablish_with_secret() {
2001                 let public_key = {
2002                         let secp_ctx = Secp256k1::new();
2003                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
2004                 };
2005
2006                 let cr = msgs::ChannelReestablish {
2007                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
2008                         next_local_commitment_number: 3,
2009                         next_remote_commitment_number: 4,
2010                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
2011                 };
2012
2013                 let encoded_value = cr.encode();
2014                 assert_eq!(
2015                         encoded_value,
2016                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
2017                 );
2018         }
2019
2020         macro_rules! get_keys_from {
2021                 ($slice: expr, $secp_ctx: expr) => {
2022                         {
2023                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
2024                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
2025                                 (privkey, pubkey)
2026                         }
2027                 }
2028         }
2029
2030         macro_rules! get_sig_on {
2031                 ($privkey: expr, $ctx: expr, $string: expr) => {
2032                         {
2033                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
2034                                 $ctx.sign_ecdsa(&sighash, &$privkey)
2035                         }
2036                 }
2037         }
2038
2039         #[test]
2040         fn encoding_announcement_signatures() {
2041                 let secp_ctx = Secp256k1::new();
2042                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2043                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
2044                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
2045                 let announcement_signatures = msgs::AnnouncementSignatures {
2046                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
2047                         short_channel_id: 2316138423780173,
2048                         node_signature: sig_1,
2049                         bitcoin_signature: sig_2,
2050                 };
2051
2052                 let encoded_value = announcement_signatures.encode();
2053                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
2054         }
2055
2056         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
2057                 let secp_ctx = Secp256k1::new();
2058                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2059                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2060                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2061                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2062                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2063                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2064                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2065                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2066                 let mut features = ChannelFeatures::known();
2067                 if unknown_features_bits {
2068                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
2069                 }
2070                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
2071                         features,
2072                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2073                         short_channel_id: 2316138423780173,
2074                         node_id_1: pubkey_1,
2075                         node_id_2: pubkey_2,
2076                         bitcoin_key_1: pubkey_3,
2077                         bitcoin_key_2: pubkey_4,
2078                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
2079                 };
2080                 let channel_announcement = msgs::ChannelAnnouncement {
2081                         node_signature_1: sig_1,
2082                         node_signature_2: sig_2,
2083                         bitcoin_signature_1: sig_3,
2084                         bitcoin_signature_2: sig_4,
2085                         contents: unsigned_channel_announcement,
2086                 };
2087                 let encoded_value = channel_announcement.encode();
2088                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
2089                 if unknown_features_bits {
2090                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2091                 } else {
2092                         target_value.append(&mut hex::decode("0000").unwrap());
2093                 }
2094                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2095                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
2096                 if excess_data {
2097                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
2098                 }
2099                 assert_eq!(encoded_value, target_value);
2100         }
2101
2102         #[test]
2103         fn encoding_channel_announcement() {
2104                 do_encoding_channel_announcement(true, false);
2105                 do_encoding_channel_announcement(false, true);
2106                 do_encoding_channel_announcement(false, false);
2107                 do_encoding_channel_announcement(true, true);
2108         }
2109
2110         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, hostname: bool, excess_address_data: bool, excess_data: bool) {
2111                 let secp_ctx = Secp256k1::new();
2112                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2113                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2114                 let features = if unknown_features_bits {
2115                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
2116                 } else {
2117                         // Set to some features we may support
2118                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
2119                 };
2120                 let mut addresses = Vec::new();
2121                 if ipv4 {
2122                         addresses.push(msgs::NetAddress::IPv4 {
2123                                 addr: [255, 254, 253, 252],
2124                                 port: 9735
2125                         });
2126                 }
2127                 if ipv6 {
2128                         addresses.push(msgs::NetAddress::IPv6 {
2129                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
2130                                 port: 9735
2131                         });
2132                 }
2133                 if onionv2 {
2134                         addresses.push(msgs::NetAddress::OnionV2(
2135                                 [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 38, 7]
2136                         ));
2137                 }
2138                 if onionv3 {
2139                         addresses.push(msgs::NetAddress::OnionV3 {
2140                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
2141                                 checksum: 32,
2142                                 version: 16,
2143                                 port: 9735
2144                         });
2145                 }
2146                 if hostname {
2147                         addresses.push(msgs::NetAddress::Hostname {
2148                                 hostname: Hostname::try_from(String::from("host")).unwrap(),
2149                                 port: 9735,
2150                         });
2151                 }
2152                 let mut addr_len = 0;
2153                 for addr in &addresses {
2154                         addr_len += addr.len() + 1;
2155                 }
2156                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
2157                         features,
2158                         timestamp: 20190119,
2159                         node_id: pubkey_1,
2160                         rgb: [32; 3],
2161                         alias: [16;32],
2162                         addresses,
2163                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
2164                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
2165                 };
2166                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
2167                 let node_announcement = msgs::NodeAnnouncement {
2168                         signature: sig_1,
2169                         contents: unsigned_node_announcement,
2170                 };
2171                 let encoded_value = node_announcement.encode();
2172                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2173                 if unknown_features_bits {
2174                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2175                 } else {
2176                         target_value.append(&mut hex::decode("000122").unwrap());
2177                 }
2178                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
2179                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
2180                 if ipv4 {
2181                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
2182                 }
2183                 if ipv6 {
2184                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
2185                 }
2186                 if onionv2 {
2187                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
2188                 }
2189                 if onionv3 {
2190                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
2191                 }
2192                 if hostname {
2193                         target_value.append(&mut hex::decode("0504686f73742607").unwrap());
2194                 }
2195                 if excess_address_data {
2196                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
2197                 }
2198                 if excess_data {
2199                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2200                 }
2201                 assert_eq!(encoded_value, target_value);
2202         }
2203
2204         #[test]
2205         fn encoding_node_announcement() {
2206                 do_encoding_node_announcement(true, true, true, true, true, true, true, true);
2207                 do_encoding_node_announcement(false, false, false, false, false, false, false, false);
2208                 do_encoding_node_announcement(false, true, false, false, false, false, false, false);
2209                 do_encoding_node_announcement(false, false, true, false, false, false, false, false);
2210                 do_encoding_node_announcement(false, false, false, true, false, false, false, false);
2211                 do_encoding_node_announcement(false, false, false, false, true, false, false, false);
2212                 do_encoding_node_announcement(false, false, false, false, false, true, false, false);
2213                 do_encoding_node_announcement(false, false, false, false, false, false, true, false);
2214                 do_encoding_node_announcement(false, true, false, true, false, false, true, false);
2215                 do_encoding_node_announcement(false, false, true, false, true, false, false, false);
2216         }
2217
2218         fn do_encoding_channel_update(direction: bool, disable: bool, excess_data: bool) {
2219                 let secp_ctx = Secp256k1::new();
2220                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2221                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2222                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
2223                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2224                         short_channel_id: 2316138423780173,
2225                         timestamp: 20190119,
2226                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2227                         cltv_expiry_delta: 144,
2228                         htlc_minimum_msat: 1000000,
2229                         htlc_maximum_msat: 131355275467161,
2230                         fee_base_msat: 10000,
2231                         fee_proportional_millionths: 20,
2232                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2233                 };
2234                 let channel_update = msgs::ChannelUpdate {
2235                         signature: sig_1,
2236                         contents: unsigned_channel_update
2237                 };
2238                 let encoded_value = channel_update.encode();
2239                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2240                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2241                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2242                 target_value.append(&mut hex::decode("01").unwrap());
2243                 target_value.append(&mut hex::decode("00").unwrap());
2244                 if direction {
2245                         let flag = target_value.last_mut().unwrap();
2246                         *flag = 1;
2247                 }
2248                 if disable {
2249                         let flag = target_value.last_mut().unwrap();
2250                         *flag = *flag | 1 << 1;
2251                 }
2252                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2253                 target_value.append(&mut hex::decode("0000777788889999").unwrap());
2254                 if excess_data {
2255                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2256                 }
2257                 assert_eq!(encoded_value, target_value);
2258         }
2259
2260         #[test]
2261         fn encoding_channel_update() {
2262                 do_encoding_channel_update(false, false, false);
2263                 do_encoding_channel_update(false, false, true);
2264                 do_encoding_channel_update(true, false, false);
2265                 do_encoding_channel_update(true, false, true);
2266                 do_encoding_channel_update(false, true, false);
2267                 do_encoding_channel_update(false, true, true);
2268                 do_encoding_channel_update(true, true, false);
2269                 do_encoding_channel_update(true, true, true);
2270         }
2271
2272         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2273                 let secp_ctx = Secp256k1::new();
2274                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2275                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2276                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2277                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2278                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2279                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2280                 let open_channel = msgs::OpenChannel {
2281                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2282                         temporary_channel_id: [2; 32],
2283                         funding_satoshis: 1311768467284833366,
2284                         push_msat: 2536655962884945560,
2285                         dust_limit_satoshis: 3608586615801332854,
2286                         max_htlc_value_in_flight_msat: 8517154655701053848,
2287                         channel_reserve_satoshis: 8665828695742877976,
2288                         htlc_minimum_msat: 2316138423780173,
2289                         feerate_per_kw: 821716,
2290                         to_self_delay: 49340,
2291                         max_accepted_htlcs: 49340,
2292                         funding_pubkey: pubkey_1,
2293                         revocation_basepoint: pubkey_2,
2294                         payment_point: pubkey_3,
2295                         delayed_payment_basepoint: pubkey_4,
2296                         htlc_basepoint: pubkey_5,
2297                         first_per_commitment_point: pubkey_6,
2298                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2299                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2300                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2301                 };
2302                 let encoded_value = open_channel.encode();
2303                 let mut target_value = Vec::new();
2304                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2305                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2306                 if random_bit {
2307                         target_value.append(&mut hex::decode("20").unwrap());
2308                 } else {
2309                         target_value.append(&mut hex::decode("00").unwrap());
2310                 }
2311                 if shutdown {
2312                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2313                 }
2314                 if incl_chan_type {
2315                         target_value.append(&mut hex::decode("0100").unwrap());
2316                 }
2317                 assert_eq!(encoded_value, target_value);
2318         }
2319
2320         #[test]
2321         fn encoding_open_channel() {
2322                 do_encoding_open_channel(false, false, false);
2323                 do_encoding_open_channel(false, false, true);
2324                 do_encoding_open_channel(false, true, false);
2325                 do_encoding_open_channel(false, true, true);
2326                 do_encoding_open_channel(true, false, false);
2327                 do_encoding_open_channel(true, false, true);
2328                 do_encoding_open_channel(true, true, false);
2329                 do_encoding_open_channel(true, true, true);
2330         }
2331
2332         fn do_encoding_accept_channel(shutdown: bool) {
2333                 let secp_ctx = Secp256k1::new();
2334                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2335                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2336                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2337                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2338                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2339                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2340                 let accept_channel = msgs::AcceptChannel {
2341                         temporary_channel_id: [2; 32],
2342                         dust_limit_satoshis: 1311768467284833366,
2343                         max_htlc_value_in_flight_msat: 2536655962884945560,
2344                         channel_reserve_satoshis: 3608586615801332854,
2345                         htlc_minimum_msat: 2316138423780173,
2346                         minimum_depth: 821716,
2347                         to_self_delay: 49340,
2348                         max_accepted_htlcs: 49340,
2349                         funding_pubkey: pubkey_1,
2350                         revocation_basepoint: pubkey_2,
2351                         payment_point: pubkey_3,
2352                         delayed_payment_basepoint: pubkey_4,
2353                         htlc_basepoint: pubkey_5,
2354                         first_per_commitment_point: pubkey_6,
2355                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2356                         channel_type: None,
2357                 };
2358                 let encoded_value = accept_channel.encode();
2359                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2360                 if shutdown {
2361                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2362                 }
2363                 assert_eq!(encoded_value, target_value);
2364         }
2365
2366         #[test]
2367         fn encoding_accept_channel() {
2368                 do_encoding_accept_channel(false);
2369                 do_encoding_accept_channel(true);
2370         }
2371
2372         #[test]
2373         fn encoding_funding_created() {
2374                 let secp_ctx = Secp256k1::new();
2375                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2376                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2377                 let funding_created = msgs::FundingCreated {
2378                         temporary_channel_id: [2; 32],
2379                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2380                         funding_output_index: 255,
2381                         signature: sig_1,
2382                 };
2383                 let encoded_value = funding_created.encode();
2384                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2385                 assert_eq!(encoded_value, target_value);
2386         }
2387
2388         #[test]
2389         fn encoding_funding_signed() {
2390                 let secp_ctx = Secp256k1::new();
2391                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2392                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2393                 let funding_signed = msgs::FundingSigned {
2394                         channel_id: [2; 32],
2395                         signature: sig_1,
2396                 };
2397                 let encoded_value = funding_signed.encode();
2398                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2399                 assert_eq!(encoded_value, target_value);
2400         }
2401
2402         #[test]
2403         fn encoding_channel_ready() {
2404                 let secp_ctx = Secp256k1::new();
2405                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2406                 let channel_ready = msgs::ChannelReady {
2407                         channel_id: [2; 32],
2408                         next_per_commitment_point: pubkey_1,
2409                         short_channel_id_alias: None,
2410                 };
2411                 let encoded_value = channel_ready.encode();
2412                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2413                 assert_eq!(encoded_value, target_value);
2414         }
2415
2416         fn do_encoding_shutdown(script_type: u8) {
2417                 let secp_ctx = Secp256k1::new();
2418                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2419                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2420                 let shutdown = msgs::Shutdown {
2421                         channel_id: [2; 32],
2422                         scriptpubkey:
2423                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey() }
2424                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).unwrap().script_pubkey() }
2425                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2426                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2427                 };
2428                 let encoded_value = shutdown.encode();
2429                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2430                 if script_type == 1 {
2431                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2432                 } else if script_type == 2 {
2433                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2434                 } else if script_type == 3 {
2435                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2436                 } else if script_type == 4 {
2437                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2438                 }
2439                 assert_eq!(encoded_value, target_value);
2440         }
2441
2442         #[test]
2443         fn encoding_shutdown() {
2444                 do_encoding_shutdown(1);
2445                 do_encoding_shutdown(2);
2446                 do_encoding_shutdown(3);
2447                 do_encoding_shutdown(4);
2448         }
2449
2450         #[test]
2451         fn encoding_closing_signed() {
2452                 let secp_ctx = Secp256k1::new();
2453                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2454                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2455                 let closing_signed = msgs::ClosingSigned {
2456                         channel_id: [2; 32],
2457                         fee_satoshis: 2316138423780173,
2458                         signature: sig_1,
2459                         fee_range: None,
2460                 };
2461                 let encoded_value = closing_signed.encode();
2462                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2463                 assert_eq!(encoded_value, target_value);
2464                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2465
2466                 let closing_signed_with_range = msgs::ClosingSigned {
2467                         channel_id: [2; 32],
2468                         fee_satoshis: 2316138423780173,
2469                         signature: sig_1,
2470                         fee_range: Some(msgs::ClosingSignedFeeRange {
2471                                 min_fee_satoshis: 0xdeadbeef,
2472                                 max_fee_satoshis: 0x1badcafe01234567,
2473                         }),
2474                 };
2475                 let encoded_value_with_range = closing_signed_with_range.encode();
2476                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2477                 assert_eq!(encoded_value_with_range, target_value_with_range);
2478                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2479                         closing_signed_with_range);
2480         }
2481
2482         #[test]
2483         fn encoding_update_add_htlc() {
2484                 let secp_ctx = Secp256k1::new();
2485                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2486                 let onion_routing_packet = msgs::OnionPacket {
2487                         version: 255,
2488                         public_key: Ok(pubkey_1),
2489                         hop_data: [1; 20*65],
2490                         hmac: [2; 32]
2491                 };
2492                 let update_add_htlc = msgs::UpdateAddHTLC {
2493                         channel_id: [2; 32],
2494                         htlc_id: 2316138423780173,
2495                         amount_msat: 3608586615801332854,
2496                         payment_hash: PaymentHash([1; 32]),
2497                         cltv_expiry: 821716,
2498                         onion_routing_packet
2499                 };
2500                 let encoded_value = update_add_htlc.encode();
2501                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2502                 assert_eq!(encoded_value, target_value);
2503         }
2504
2505         #[test]
2506         fn encoding_update_fulfill_htlc() {
2507                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2508                         channel_id: [2; 32],
2509                         htlc_id: 2316138423780173,
2510                         payment_preimage: PaymentPreimage([1; 32]),
2511                 };
2512                 let encoded_value = update_fulfill_htlc.encode();
2513                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2514                 assert_eq!(encoded_value, target_value);
2515         }
2516
2517         #[test]
2518         fn encoding_update_fail_htlc() {
2519                 let reason = OnionErrorPacket {
2520                         data: [1; 32].to_vec(),
2521                 };
2522                 let update_fail_htlc = msgs::UpdateFailHTLC {
2523                         channel_id: [2; 32],
2524                         htlc_id: 2316138423780173,
2525                         reason
2526                 };
2527                 let encoded_value = update_fail_htlc.encode();
2528                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2529                 assert_eq!(encoded_value, target_value);
2530         }
2531
2532         #[test]
2533         fn encoding_update_fail_malformed_htlc() {
2534                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2535                         channel_id: [2; 32],
2536                         htlc_id: 2316138423780173,
2537                         sha256_of_onion: [1; 32],
2538                         failure_code: 255
2539                 };
2540                 let encoded_value = update_fail_malformed_htlc.encode();
2541                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2542                 assert_eq!(encoded_value, target_value);
2543         }
2544
2545         fn do_encoding_commitment_signed(htlcs: bool) {
2546                 let secp_ctx = Secp256k1::new();
2547                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2548                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2549                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2550                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2551                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2552                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2553                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2554                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2555                 let commitment_signed = msgs::CommitmentSigned {
2556                         channel_id: [2; 32],
2557                         signature: sig_1,
2558                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2559                 };
2560                 let encoded_value = commitment_signed.encode();
2561                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2562                 if htlcs {
2563                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2564                 } else {
2565                         target_value.append(&mut hex::decode("0000").unwrap());
2566                 }
2567                 assert_eq!(encoded_value, target_value);
2568         }
2569
2570         #[test]
2571         fn encoding_commitment_signed() {
2572                 do_encoding_commitment_signed(true);
2573                 do_encoding_commitment_signed(false);
2574         }
2575
2576         #[test]
2577         fn encoding_revoke_and_ack() {
2578                 let secp_ctx = Secp256k1::new();
2579                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2580                 let raa = msgs::RevokeAndACK {
2581                         channel_id: [2; 32],
2582                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2583                         next_per_commitment_point: pubkey_1,
2584                 };
2585                 let encoded_value = raa.encode();
2586                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2587                 assert_eq!(encoded_value, target_value);
2588         }
2589
2590         #[test]
2591         fn encoding_update_fee() {
2592                 let update_fee = msgs::UpdateFee {
2593                         channel_id: [2; 32],
2594                         feerate_per_kw: 20190119,
2595                 };
2596                 let encoded_value = update_fee.encode();
2597                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2598                 assert_eq!(encoded_value, target_value);
2599         }
2600
2601         #[test]
2602         fn encoding_init() {
2603                 assert_eq!(msgs::Init {
2604                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2605                         remote_network_address: None,
2606                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2607                 assert_eq!(msgs::Init {
2608                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2609                         remote_network_address: None,
2610                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2611                 assert_eq!(msgs::Init {
2612                         features: InitFeatures::from_le_bytes(vec![]),
2613                         remote_network_address: None,
2614                 }.encode(), hex::decode("00000000").unwrap());
2615
2616                 let init_msg = msgs::Init { features: InitFeatures::from_le_bytes(vec![]),
2617                         remote_network_address: Some(msgs::NetAddress::IPv4 {
2618                                 addr: [127, 0, 0, 1],
2619                                 port: 1000,
2620                         }),
2621                 };
2622                 let encoded_value = init_msg.encode();
2623                 let target_value = hex::decode("000000000307017f00000103e8").unwrap();
2624                 assert_eq!(encoded_value, target_value);
2625                 assert_eq!(msgs::Init::read(&mut Cursor::new(&target_value)).unwrap(), init_msg);
2626         }
2627
2628         #[test]
2629         fn encoding_error() {
2630                 let error = msgs::ErrorMessage {
2631                         channel_id: [2; 32],
2632                         data: String::from("rust-lightning"),
2633                 };
2634                 let encoded_value = error.encode();
2635                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2636                 assert_eq!(encoded_value, target_value);
2637         }
2638
2639         #[test]
2640         fn encoding_warning() {
2641                 let error = msgs::WarningMessage {
2642                         channel_id: [2; 32],
2643                         data: String::from("rust-lightning"),
2644                 };
2645                 let encoded_value = error.encode();
2646                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2647                 assert_eq!(encoded_value, target_value);
2648         }
2649
2650         #[test]
2651         fn encoding_ping() {
2652                 let ping = msgs::Ping {
2653                         ponglen: 64,
2654                         byteslen: 64
2655                 };
2656                 let encoded_value = ping.encode();
2657                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2658                 assert_eq!(encoded_value, target_value);
2659         }
2660
2661         #[test]
2662         fn encoding_pong() {
2663                 let pong = msgs::Pong {
2664                         byteslen: 64
2665                 };
2666                 let encoded_value = pong.encode();
2667                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2668                 assert_eq!(encoded_value, target_value);
2669         }
2670
2671         #[test]
2672         fn encoding_legacy_onion_hop_data() {
2673                 let msg = msgs::OnionHopData {
2674                         format: OnionHopDataFormat::Legacy {
2675                                 short_channel_id: 0xdeadbeef1bad1dea,
2676                         },
2677                         amt_to_forward: 0x0badf00d01020304,
2678                         outgoing_cltv_value: 0xffffffff,
2679                 };
2680                 let encoded_value = msg.encode();
2681                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2682                 assert_eq!(encoded_value, target_value);
2683         }
2684
2685         #[test]
2686         fn encoding_nonfinal_onion_hop_data() {
2687                 let mut msg = msgs::OnionHopData {
2688                         format: OnionHopDataFormat::NonFinalNode {
2689                                 short_channel_id: 0xdeadbeef1bad1dea,
2690                         },
2691                         amt_to_forward: 0x0badf00d01020304,
2692                         outgoing_cltv_value: 0xffffffff,
2693                 };
2694                 let encoded_value = msg.encode();
2695                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2696                 assert_eq!(encoded_value, target_value);
2697                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2698                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2699                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2700                 } else { panic!(); }
2701                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2702                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2703         }
2704
2705         #[test]
2706         fn encoding_final_onion_hop_data() {
2707                 let mut msg = msgs::OnionHopData {
2708                         format: OnionHopDataFormat::FinalNode {
2709                                 payment_data: None,
2710                                 keysend_preimage: None,
2711                         },
2712                         amt_to_forward: 0x0badf00d01020304,
2713                         outgoing_cltv_value: 0xffffffff,
2714                 };
2715                 let encoded_value = msg.encode();
2716                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2717                 assert_eq!(encoded_value, target_value);
2718                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2719                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2720                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2721                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2722         }
2723
2724         #[test]
2725         fn encoding_final_onion_hop_data_with_secret() {
2726                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2727                 let mut msg = msgs::OnionHopData {
2728                         format: OnionHopDataFormat::FinalNode {
2729                                 payment_data: Some(FinalOnionHopData {
2730                                         payment_secret: expected_payment_secret,
2731                                         total_msat: 0x1badca1f
2732                                 }),
2733                                 keysend_preimage: None,
2734                         },
2735                         amt_to_forward: 0x0badf00d01020304,
2736                         outgoing_cltv_value: 0xffffffff,
2737                 };
2738                 let encoded_value = msg.encode();
2739                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2740                 assert_eq!(encoded_value, target_value);
2741                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2742                 if let OnionHopDataFormat::FinalNode {
2743                         payment_data: Some(FinalOnionHopData {
2744                                 payment_secret,
2745                                 total_msat: 0x1badca1f
2746                         }),
2747                         keysend_preimage: None,
2748                 } = msg.format {
2749                         assert_eq!(payment_secret, expected_payment_secret);
2750                 } else { panic!(); }
2751                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2752                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2753         }
2754
2755         #[test]
2756         fn query_channel_range_end_blocknum() {
2757                 let tests: Vec<(u32, u32, u32)> = vec![
2758                         (10000, 1500, 11500),
2759                         (0, 0xffffffff, 0xffffffff),
2760                         (1, 0xffffffff, 0xffffffff),
2761                 ];
2762
2763                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2764                         let sut = msgs::QueryChannelRange {
2765                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2766                                 first_blocknum,
2767                                 number_of_blocks,
2768                         };
2769                         assert_eq!(sut.end_blocknum(), expected);
2770                 }
2771         }
2772
2773         #[test]
2774         fn encoding_query_channel_range() {
2775                 let mut query_channel_range = msgs::QueryChannelRange {
2776                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2777                         first_blocknum: 100000,
2778                         number_of_blocks: 1500,
2779                 };
2780                 let encoded_value = query_channel_range.encode();
2781                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2782                 assert_eq!(encoded_value, target_value);
2783
2784                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2785                 assert_eq!(query_channel_range.first_blocknum, 100000);
2786                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2787         }
2788
2789         #[test]
2790         fn encoding_reply_channel_range() {
2791                 do_encoding_reply_channel_range(0);
2792                 do_encoding_reply_channel_range(1);
2793         }
2794
2795         fn do_encoding_reply_channel_range(encoding_type: u8) {
2796                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2797                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2798                 let mut reply_channel_range = msgs::ReplyChannelRange {
2799                         chain_hash: expected_chain_hash,
2800                         first_blocknum: 756230,
2801                         number_of_blocks: 1500,
2802                         sync_complete: true,
2803                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2804                 };
2805
2806                 if encoding_type == 0 {
2807                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2808                         let encoded_value = reply_channel_range.encode();
2809                         assert_eq!(encoded_value, target_value);
2810
2811                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2812                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2813                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2814                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2815                         assert_eq!(reply_channel_range.sync_complete, true);
2816                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2817                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2818                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2819                 } else {
2820                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2821                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2822                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2823                 }
2824         }
2825
2826         #[test]
2827         fn encoding_query_short_channel_ids() {
2828                 do_encoding_query_short_channel_ids(0);
2829                 do_encoding_query_short_channel_ids(1);
2830         }
2831
2832         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2833                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2834                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2835                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2836                         chain_hash: expected_chain_hash,
2837                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2838                 };
2839
2840                 if encoding_type == 0 {
2841                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2842                         let encoded_value = query_short_channel_ids.encode();
2843                         assert_eq!(encoded_value, target_value);
2844
2845                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2846                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2847                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2848                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2849                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2850                 } else {
2851                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2852                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2853                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2854                 }
2855         }
2856
2857         #[test]
2858         fn encoding_reply_short_channel_ids_end() {
2859                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2860                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2861                         chain_hash: expected_chain_hash,
2862                         full_information: true,
2863                 };
2864                 let encoded_value = reply_short_channel_ids_end.encode();
2865                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2866                 assert_eq!(encoded_value, target_value);
2867
2868                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2869                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2870                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2871         }
2872
2873         #[test]
2874         fn encoding_gossip_timestamp_filter(){
2875                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2876                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2877                         chain_hash: expected_chain_hash,
2878                         first_timestamp: 1590000000,
2879                         timestamp_range: 0xffff_ffff,
2880                 };
2881                 let encoded_value = gossip_timestamp_filter.encode();
2882                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2883                 assert_eq!(encoded_value, target_value);
2884
2885                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2886                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2887                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2888                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2889         }
2890
2891         #[test]
2892         fn decode_onion_hop_data_len_as_bigsize() {
2893                 // Tests that we can decode an onion payload that is >253 bytes.
2894                 // Previously, receiving a payload of this size could've caused us to fail to decode a valid
2895                 // payload, because we were decoding the length (a BigSize, big-endian) as a VarInt
2896                 // (little-endian).
2897
2898                 // Encode a test onion payload with a big custom TLV such that it's >253 bytes, forcing the
2899                 // payload length to be encoded over multiple bytes rather than a single u8.
2900                 let big_payload = encode_big_payload().unwrap();
2901                 let mut rd = Cursor::new(&big_payload[..]);
2902                 <msgs::OnionHopData as Readable>::read(&mut rd).unwrap();
2903         }
2904         // see above test, needs to be a separate method for use of the serialization macros.
2905         fn encode_big_payload() -> Result<Vec<u8>, io::Error> {
2906                 use util::ser::HighZeroBytesDroppedBigSize;
2907                 let payload = msgs::OnionHopData {
2908                         format: OnionHopDataFormat::NonFinalNode {
2909                                 short_channel_id: 0xdeadbeef1bad1dea,
2910                         },
2911                         amt_to_forward: 1000,
2912                         outgoing_cltv_value: 0xffffffff,
2913                 };
2914                 let mut encoded_payload = Vec::new();
2915                 let test_bytes = vec![42u8; 1000];
2916                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = payload.format {
2917                         encode_varint_length_prefixed_tlv!(&mut encoded_payload, {
2918                                 (1, test_bytes, vec_type),
2919                                 (2, HighZeroBytesDroppedBigSize(payload.amt_to_forward), required),
2920                                 (4, HighZeroBytesDroppedBigSize(payload.outgoing_cltv_value), required),
2921                                 (6, short_channel_id, required)
2922                         });
2923                 }
2924                 Ok(encoded_payload)
2925         }
2926 }