87944ccae639027da172e120ea83ea8b4d06411a
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::key::PublicKey;
28 use bitcoin::secp256k1::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34
35 use prelude::*;
36 use core::{cmp, fmt};
37 use core::fmt::Debug;
38 use io::{self, Read};
39 use io_extras::read_to_end;
40
41 use util::events::MessageSendEventsProvider;
42 use util::logger;
43 use util::ser::{Readable, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedVarInt};
44
45 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
46
47 /// 21 million * 10^8 * 1000
48 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
49
50 /// An error in decoding a message or struct.
51 #[derive(Clone, Debug, PartialEq)]
52 pub enum DecodeError {
53         /// A version byte specified something we don't know how to handle.
54         /// Includes unknown realm byte in an OnionHopData packet
55         UnknownVersion,
56         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
57         UnknownRequiredFeature,
58         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
59         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
60         /// syntactically incorrect, etc
61         InvalidValue,
62         /// Buffer too short
63         ShortRead,
64         /// A length descriptor in the packet didn't describe the later data correctly
65         BadLengthDescriptor,
66         /// Error from std::io
67         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
68         io::ErrorKind),
69         /// The message included zlib-compressed values, which we don't support.
70         UnsupportedCompression,
71 }
72
73 /// An init message to be sent or received from a peer
74 #[derive(Clone, Debug, PartialEq)]
75 pub struct Init {
76         /// The relevant features which the sender supports
77         pub features: InitFeatures,
78 }
79
80 /// An error message to be sent or received from a peer
81 #[derive(Clone, Debug, PartialEq)]
82 pub struct ErrorMessage {
83         /// The channel ID involved in the error
84         pub channel_id: [u8; 32],
85         /// A possibly human-readable error description.
86         /// The string should be sanitized before it is used (e.g. emitted to logs
87         /// or printed to stdout).  Otherwise, a well crafted error message may trigger a security
88         /// vulnerability in the terminal emulator or the logging subsystem.
89         pub data: String,
90 }
91
92 /// A ping message to be sent or received from a peer
93 #[derive(Clone, Debug, PartialEq)]
94 pub struct Ping {
95         /// The desired response length
96         pub ponglen: u16,
97         /// The ping packet size.
98         /// This field is not sent on the wire. byteslen zeros are sent.
99         pub byteslen: u16,
100 }
101
102 /// A pong message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct Pong {
105         /// The pong packet size.
106         /// This field is not sent on the wire. byteslen zeros are sent.
107         pub byteslen: u16,
108 }
109
110 /// An open_channel message to be sent or received from a peer
111 #[derive(Clone, Debug, PartialEq)]
112 pub struct OpenChannel {
113         /// The genesis hash of the blockchain where the channel is to be opened
114         pub chain_hash: BlockHash,
115         /// A temporary channel ID, until the funding outpoint is announced
116         pub temporary_channel_id: [u8; 32],
117         /// The channel value
118         pub funding_satoshis: u64,
119         /// The amount to push to the counterparty as part of the open, in milli-satoshi
120         pub push_msat: u64,
121         /// The threshold below which outputs on transactions broadcast by sender will be omitted
122         pub dust_limit_satoshis: u64,
123         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
124         pub max_htlc_value_in_flight_msat: u64,
125         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
126         pub channel_reserve_satoshis: u64,
127         /// The minimum HTLC size incoming to sender, in milli-satoshi
128         pub htlc_minimum_msat: u64,
129         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
130         pub feerate_per_kw: u32,
131         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
132         pub to_self_delay: u16,
133         /// The maximum number of inbound HTLCs towards sender
134         pub max_accepted_htlcs: u16,
135         /// The sender's key controlling the funding transaction
136         pub funding_pubkey: PublicKey,
137         /// Used to derive a revocation key for transactions broadcast by counterparty
138         pub revocation_basepoint: PublicKey,
139         /// A payment key to sender for transactions broadcast by counterparty
140         pub payment_point: PublicKey,
141         /// Used to derive a payment key to sender for transactions broadcast by sender
142         pub delayed_payment_basepoint: PublicKey,
143         /// Used to derive an HTLC payment key to sender
144         pub htlc_basepoint: PublicKey,
145         /// The first to-be-broadcast-by-sender transaction's per commitment point
146         pub first_per_commitment_point: PublicKey,
147         /// Channel flags
148         pub channel_flags: u8,
149         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
150         pub shutdown_scriptpubkey: OptionalField<Script>,
151         /// The channel type that this channel will represent. If none is set, we derive the channel
152         /// type from the intersection of our feature bits with our counterparty's feature bits from
153         /// the Init message.
154         pub channel_type: Option<ChannelTypeFeatures>,
155 }
156
157 /// An accept_channel message to be sent or received from a peer
158 #[derive(Clone, Debug, PartialEq)]
159 pub struct AcceptChannel {
160         /// A temporary channel ID, until the funding outpoint is announced
161         pub temporary_channel_id: [u8; 32],
162         /// The threshold below which outputs on transactions broadcast by sender will be omitted
163         pub dust_limit_satoshis: u64,
164         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
165         pub max_htlc_value_in_flight_msat: u64,
166         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
167         pub channel_reserve_satoshis: u64,
168         /// The minimum HTLC size incoming to sender, in milli-satoshi
169         pub htlc_minimum_msat: u64,
170         /// Minimum depth of the funding transaction before the channel is considered open
171         pub minimum_depth: u32,
172         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
173         pub to_self_delay: u16,
174         /// The maximum number of inbound HTLCs towards sender
175         pub max_accepted_htlcs: u16,
176         /// The sender's key controlling the funding transaction
177         pub funding_pubkey: PublicKey,
178         /// Used to derive a revocation key for transactions broadcast by counterparty
179         pub revocation_basepoint: PublicKey,
180         /// A payment key to sender for transactions broadcast by counterparty
181         pub payment_point: PublicKey,
182         /// Used to derive a payment key to sender for transactions broadcast by sender
183         pub delayed_payment_basepoint: PublicKey,
184         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
185         pub htlc_basepoint: PublicKey,
186         /// The first to-be-broadcast-by-sender transaction's per commitment point
187         pub first_per_commitment_point: PublicKey,
188         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
189         pub shutdown_scriptpubkey: OptionalField<Script>,
190 }
191
192 /// A funding_created message to be sent or received from a peer
193 #[derive(Clone, Debug, PartialEq)]
194 pub struct FundingCreated {
195         /// A temporary channel ID, until the funding is established
196         pub temporary_channel_id: [u8; 32],
197         /// The funding transaction ID
198         pub funding_txid: Txid,
199         /// The specific output index funding this channel
200         pub funding_output_index: u16,
201         /// The signature of the channel initiator (funder) on the initial commitment transaction
202         pub signature: Signature,
203 }
204
205 /// A funding_signed message to be sent or received from a peer
206 #[derive(Clone, Debug, PartialEq)]
207 pub struct FundingSigned {
208         /// The channel ID
209         pub channel_id: [u8; 32],
210         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
211         pub signature: Signature,
212 }
213
214 /// A funding_locked message to be sent or received from a peer
215 #[derive(Clone, Debug, PartialEq)]
216 pub struct FundingLocked {
217         /// The channel ID
218         pub channel_id: [u8; 32],
219         /// The per-commitment point of the second commitment transaction
220         pub next_per_commitment_point: PublicKey,
221 }
222
223 /// A shutdown message to be sent or received from a peer
224 #[derive(Clone, Debug, PartialEq)]
225 pub struct Shutdown {
226         /// The channel ID
227         pub channel_id: [u8; 32],
228         /// The destination of this peer's funds on closing.
229         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
230         pub scriptpubkey: Script,
231 }
232
233 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
234 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
235 /// to use.
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct ClosingSignedFeeRange {
238         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
239         /// transaction.
240         pub min_fee_satoshis: u64,
241         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
242         /// transaction.
243         pub max_fee_satoshis: u64,
244 }
245
246 /// A closing_signed message to be sent or received from a peer
247 #[derive(Clone, Debug, PartialEq)]
248 pub struct ClosingSigned {
249         /// The channel ID
250         pub channel_id: [u8; 32],
251         /// The proposed total fee for the closing transaction
252         pub fee_satoshis: u64,
253         /// A signature on the closing transaction
254         pub signature: Signature,
255         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
256         /// nodes.
257         pub fee_range: Option<ClosingSignedFeeRange>,
258 }
259
260 /// An update_add_htlc message to be sent or received from a peer
261 #[derive(Clone, Debug, PartialEq)]
262 pub struct UpdateAddHTLC {
263         /// The channel ID
264         pub channel_id: [u8; 32],
265         /// The HTLC ID
266         pub htlc_id: u64,
267         /// The HTLC value in milli-satoshi
268         pub amount_msat: u64,
269         /// The payment hash, the pre-image of which controls HTLC redemption
270         pub payment_hash: PaymentHash,
271         /// The expiry height of the HTLC
272         pub cltv_expiry: u32,
273         pub(crate) onion_routing_packet: OnionPacket,
274 }
275
276 /// An update_fulfill_htlc message to be sent or received from a peer
277 #[derive(Clone, Debug, PartialEq)]
278 pub struct UpdateFulfillHTLC {
279         /// The channel ID
280         pub channel_id: [u8; 32],
281         /// The HTLC ID
282         pub htlc_id: u64,
283         /// The pre-image of the payment hash, allowing HTLC redemption
284         pub payment_preimage: PaymentPreimage,
285 }
286
287 /// An update_fail_htlc message to be sent or received from a peer
288 #[derive(Clone, Debug, PartialEq)]
289 pub struct UpdateFailHTLC {
290         /// The channel ID
291         pub channel_id: [u8; 32],
292         /// The HTLC ID
293         pub htlc_id: u64,
294         pub(crate) reason: OnionErrorPacket,
295 }
296
297 /// An update_fail_malformed_htlc message to be sent or received from a peer
298 #[derive(Clone, Debug, PartialEq)]
299 pub struct UpdateFailMalformedHTLC {
300         /// The channel ID
301         pub channel_id: [u8; 32],
302         /// The HTLC ID
303         pub htlc_id: u64,
304         pub(crate) sha256_of_onion: [u8; 32],
305         /// The failure code
306         pub failure_code: u16,
307 }
308
309 /// A commitment_signed message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct CommitmentSigned {
312         /// The channel ID
313         pub channel_id: [u8; 32],
314         /// A signature on the commitment transaction
315         pub signature: Signature,
316         /// Signatures on the HTLC transactions
317         pub htlc_signatures: Vec<Signature>,
318 }
319
320 /// A revoke_and_ack message to be sent or received from a peer
321 #[derive(Clone, Debug, PartialEq)]
322 pub struct RevokeAndACK {
323         /// The channel ID
324         pub channel_id: [u8; 32],
325         /// The secret corresponding to the per-commitment point
326         pub per_commitment_secret: [u8; 32],
327         /// The next sender-broadcast commitment transaction's per-commitment point
328         pub next_per_commitment_point: PublicKey,
329 }
330
331 /// An update_fee message to be sent or received from a peer
332 #[derive(Clone, Debug, PartialEq)]
333 pub struct UpdateFee {
334         /// The channel ID
335         pub channel_id: [u8; 32],
336         /// Fee rate per 1000-weight of the transaction
337         pub feerate_per_kw: u32,
338 }
339
340 #[derive(Clone, Debug, PartialEq)]
341 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
342 /// This is used to convince the recipient that the channel is at a certain commitment
343 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
344 /// and even later commitments may have been revoked.
345 pub struct DataLossProtect {
346         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
347         /// belonging to the recipient
348         pub your_last_per_commitment_secret: [u8; 32],
349         /// The sender's per-commitment point for their current commitment transaction
350         pub my_current_per_commitment_point: PublicKey,
351 }
352
353 /// A channel_reestablish message to be sent or received from a peer
354 #[derive(Clone, Debug, PartialEq)]
355 pub struct ChannelReestablish {
356         /// The channel ID
357         pub channel_id: [u8; 32],
358         /// The next commitment number for the sender
359         pub next_local_commitment_number: u64,
360         /// The next commitment number for the recipient
361         pub next_remote_commitment_number: u64,
362         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
363         pub data_loss_protect: OptionalField<DataLossProtect>,
364 }
365
366 /// An announcement_signatures message to be sent or received from a peer
367 #[derive(Clone, Debug, PartialEq)]
368 pub struct AnnouncementSignatures {
369         /// The channel ID
370         pub channel_id: [u8; 32],
371         /// The short channel ID
372         pub short_channel_id: u64,
373         /// A signature by the node key
374         pub node_signature: Signature,
375         /// A signature by the funding key
376         pub bitcoin_signature: Signature,
377 }
378
379 /// An address which can be used to connect to a remote peer
380 #[derive(Clone, Debug, PartialEq)]
381 pub enum NetAddress {
382         /// An IPv4 address/port on which the peer is listening.
383         IPv4 {
384                 /// The 4-byte IPv4 address
385                 addr: [u8; 4],
386                 /// The port on which the node is listening
387                 port: u16,
388         },
389         /// An IPv6 address/port on which the peer is listening.
390         IPv6 {
391                 /// The 16-byte IPv6 address
392                 addr: [u8; 16],
393                 /// The port on which the node is listening
394                 port: u16,
395         },
396         /// An old-style Tor onion address/port on which the peer is listening.
397         OnionV2 {
398                 /// The bytes (usually encoded in base32 with ".onion" appended)
399                 addr: [u8; 10],
400                 /// The port on which the node is listening
401                 port: u16,
402         },
403         /// A new-style Tor onion address/port on which the peer is listening.
404         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
405         /// wrap as base32 and append ".onion".
406         OnionV3 {
407                 /// The ed25519 long-term public key of the peer
408                 ed25519_pubkey: [u8; 32],
409                 /// The checksum of the pubkey and version, as included in the onion address
410                 checksum: u16,
411                 /// The version byte, as defined by the Tor Onion v3 spec.
412                 version: u8,
413                 /// The port on which the node is listening
414                 port: u16,
415         },
416 }
417 impl NetAddress {
418         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
419         /// by this.
420         pub(crate) fn get_id(&self) -> u8 {
421                 match self {
422                         &NetAddress::IPv4 {..} => { 1 },
423                         &NetAddress::IPv6 {..} => { 2 },
424                         &NetAddress::OnionV2 {..} => { 3 },
425                         &NetAddress::OnionV3 {..} => { 4 },
426                 }
427         }
428
429         /// Strict byte-length of address descriptor, 1-byte type not recorded
430         fn len(&self) -> u16 {
431                 match self {
432                         &NetAddress::IPv4 { .. } => { 6 },
433                         &NetAddress::IPv6 { .. } => { 18 },
434                         &NetAddress::OnionV2 { .. } => { 12 },
435                         &NetAddress::OnionV3 { .. } => { 37 },
436                 }
437         }
438
439         /// The maximum length of any address descriptor, not including the 1-byte type
440         pub(crate) const MAX_LEN: u16 = 37;
441 }
442
443 impl Writeable for NetAddress {
444         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
445                 match self {
446                         &NetAddress::IPv4 { ref addr, ref port } => {
447                                 1u8.write(writer)?;
448                                 addr.write(writer)?;
449                                 port.write(writer)?;
450                         },
451                         &NetAddress::IPv6 { ref addr, ref port } => {
452                                 2u8.write(writer)?;
453                                 addr.write(writer)?;
454                                 port.write(writer)?;
455                         },
456                         &NetAddress::OnionV2 { ref addr, ref port } => {
457                                 3u8.write(writer)?;
458                                 addr.write(writer)?;
459                                 port.write(writer)?;
460                         },
461                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
462                                 4u8.write(writer)?;
463                                 ed25519_pubkey.write(writer)?;
464                                 checksum.write(writer)?;
465                                 version.write(writer)?;
466                                 port.write(writer)?;
467                         }
468                 }
469                 Ok(())
470         }
471 }
472
473 impl Readable for Result<NetAddress, u8> {
474         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
475                 let byte = <u8 as Readable>::read(reader)?;
476                 match byte {
477                         1 => {
478                                 Ok(Ok(NetAddress::IPv4 {
479                                         addr: Readable::read(reader)?,
480                                         port: Readable::read(reader)?,
481                                 }))
482                         },
483                         2 => {
484                                 Ok(Ok(NetAddress::IPv6 {
485                                         addr: Readable::read(reader)?,
486                                         port: Readable::read(reader)?,
487                                 }))
488                         },
489                         3 => {
490                                 Ok(Ok(NetAddress::OnionV2 {
491                                         addr: Readable::read(reader)?,
492                                         port: Readable::read(reader)?,
493                                 }))
494                         },
495                         4 => {
496                                 Ok(Ok(NetAddress::OnionV3 {
497                                         ed25519_pubkey: Readable::read(reader)?,
498                                         checksum: Readable::read(reader)?,
499                                         version: Readable::read(reader)?,
500                                         port: Readable::read(reader)?,
501                                 }))
502                         },
503                         _ => return Ok(Err(byte)),
504                 }
505         }
506 }
507
508 impl Readable for NetAddress {
509         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
510                 match Readable::read(reader) {
511                         Ok(Ok(res)) => Ok(res),
512                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
513                         Err(e) => Err(e),
514                 }
515         }
516 }
517
518
519 /// The unsigned part of a node_announcement
520 #[derive(Clone, Debug, PartialEq)]
521 pub struct UnsignedNodeAnnouncement {
522         /// The advertised features
523         pub features: NodeFeatures,
524         /// A strictly monotonic announcement counter, with gaps allowed
525         pub timestamp: u32,
526         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
527         /// to this node).
528         pub node_id: PublicKey,
529         /// An RGB color for UI purposes
530         pub rgb: [u8; 3],
531         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
532         /// of uniqueness.
533         pub alias: [u8; 32],
534         /// List of addresses on which this node is reachable
535         pub addresses: Vec<NetAddress>,
536         pub(crate) excess_address_data: Vec<u8>,
537         pub(crate) excess_data: Vec<u8>,
538 }
539 #[derive(Clone, Debug, PartialEq)]
540 /// A node_announcement message to be sent or received from a peer
541 pub struct NodeAnnouncement {
542         /// The signature by the node key
543         pub signature: Signature,
544         /// The actual content of the announcement
545         pub contents: UnsignedNodeAnnouncement,
546 }
547
548 /// The unsigned part of a channel_announcement
549 #[derive(Clone, Debug, PartialEq)]
550 pub struct UnsignedChannelAnnouncement {
551         /// The advertised channel features
552         pub features: ChannelFeatures,
553         /// The genesis hash of the blockchain where the channel is to be opened
554         pub chain_hash: BlockHash,
555         /// The short channel ID
556         pub short_channel_id: u64,
557         /// One of the two node_ids which are endpoints of this channel
558         pub node_id_1: PublicKey,
559         /// The other of the two node_ids which are endpoints of this channel
560         pub node_id_2: PublicKey,
561         /// The funding key for the first node
562         pub bitcoin_key_1: PublicKey,
563         /// The funding key for the second node
564         pub bitcoin_key_2: PublicKey,
565         pub(crate) excess_data: Vec<u8>,
566 }
567 /// A channel_announcement message to be sent or received from a peer
568 #[derive(Clone, Debug, PartialEq)]
569 pub struct ChannelAnnouncement {
570         /// Authentication of the announcement by the first public node
571         pub node_signature_1: Signature,
572         /// Authentication of the announcement by the second public node
573         pub node_signature_2: Signature,
574         /// Proof of funding UTXO ownership by the first public node
575         pub bitcoin_signature_1: Signature,
576         /// Proof of funding UTXO ownership by the second public node
577         pub bitcoin_signature_2: Signature,
578         /// The actual announcement
579         pub contents: UnsignedChannelAnnouncement,
580 }
581
582 /// The unsigned part of a channel_update
583 #[derive(Clone, Debug, PartialEq)]
584 pub struct UnsignedChannelUpdate {
585         /// The genesis hash of the blockchain where the channel is to be opened
586         pub chain_hash: BlockHash,
587         /// The short channel ID
588         pub short_channel_id: u64,
589         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
590         pub timestamp: u32,
591         /// Channel flags
592         pub flags: u8,
593         /// The number of blocks such that if:
594         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
595         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
596         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
597         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
598         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
599         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
600         /// constructing the route.
601         pub cltv_expiry_delta: u16,
602         /// The minimum HTLC size incoming to sender, in milli-satoshi
603         pub htlc_minimum_msat: u64,
604         /// Optionally, the maximum HTLC value incoming to sender, in milli-satoshi
605         pub htlc_maximum_msat: OptionalField<u64>,
606         /// The base HTLC fee charged by sender, in milli-satoshi
607         pub fee_base_msat: u32,
608         /// The amount to fee multiplier, in micro-satoshi
609         pub fee_proportional_millionths: u32,
610         pub(crate) excess_data: Vec<u8>,
611 }
612 /// A channel_update message to be sent or received from a peer
613 #[derive(Clone, Debug, PartialEq)]
614 pub struct ChannelUpdate {
615         /// A signature of the channel update
616         pub signature: Signature,
617         /// The actual channel update
618         pub contents: UnsignedChannelUpdate,
619 }
620
621 /// A query_channel_range message is used to query a peer for channel
622 /// UTXOs in a range of blocks. The recipient of a query makes a best
623 /// effort to reply to the query using one or more reply_channel_range
624 /// messages.
625 #[derive(Clone, Debug, PartialEq)]
626 pub struct QueryChannelRange {
627         /// The genesis hash of the blockchain being queried
628         pub chain_hash: BlockHash,
629         /// The height of the first block for the channel UTXOs being queried
630         pub first_blocknum: u32,
631         /// The number of blocks to include in the query results
632         pub number_of_blocks: u32,
633 }
634
635 /// A reply_channel_range message is a reply to a query_channel_range
636 /// message. Multiple reply_channel_range messages can be sent in reply
637 /// to a single query_channel_range message. The query recipient makes a
638 /// best effort to respond based on their local network view which may
639 /// not be a perfect view of the network. The short_channel_ids in the
640 /// reply are encoded. We only support encoding_type=0 uncompressed
641 /// serialization and do not support encoding_type=1 zlib serialization.
642 #[derive(Clone, Debug, PartialEq)]
643 pub struct ReplyChannelRange {
644         /// The genesis hash of the blockchain being queried
645         pub chain_hash: BlockHash,
646         /// The height of the first block in the range of the reply
647         pub first_blocknum: u32,
648         /// The number of blocks included in the range of the reply
649         pub number_of_blocks: u32,
650         /// True when this is the final reply for a query
651         pub sync_complete: bool,
652         /// The short_channel_ids in the channel range
653         pub short_channel_ids: Vec<u64>,
654 }
655
656 /// A query_short_channel_ids message is used to query a peer for
657 /// routing gossip messages related to one or more short_channel_ids.
658 /// The query recipient will reply with the latest, if available,
659 /// channel_announcement, channel_update and node_announcement messages
660 /// it maintains for the requested short_channel_ids followed by a
661 /// reply_short_channel_ids_end message. The short_channel_ids sent in
662 /// this query are encoded. We only support encoding_type=0 uncompressed
663 /// serialization and do not support encoding_type=1 zlib serialization.
664 #[derive(Clone, Debug, PartialEq)]
665 pub struct QueryShortChannelIds {
666         /// The genesis hash of the blockchain being queried
667         pub chain_hash: BlockHash,
668         /// The short_channel_ids that are being queried
669         pub short_channel_ids: Vec<u64>,
670 }
671
672 /// A reply_short_channel_ids_end message is sent as a reply to a
673 /// query_short_channel_ids message. The query recipient makes a best
674 /// effort to respond based on their local network view which may not be
675 /// a perfect view of the network.
676 #[derive(Clone, Debug, PartialEq)]
677 pub struct ReplyShortChannelIdsEnd {
678         /// The genesis hash of the blockchain that was queried
679         pub chain_hash: BlockHash,
680         /// Indicates if the query recipient maintains up-to-date channel
681         /// information for the chain_hash
682         pub full_information: bool,
683 }
684
685 /// A gossip_timestamp_filter message is used by a node to request
686 /// gossip relay for messages in the requested time range when the
687 /// gossip_queries feature has been negotiated.
688 #[derive(Clone, Debug, PartialEq)]
689 pub struct GossipTimestampFilter {
690         /// The genesis hash of the blockchain for channel and node information
691         pub chain_hash: BlockHash,
692         /// The starting unix timestamp
693         pub first_timestamp: u32,
694         /// The range of information in seconds
695         pub timestamp_range: u32,
696 }
697
698 /// Encoding type for data compression of collections in gossip queries.
699 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
700 enum EncodingType {
701         Uncompressed = 0x00,
702 }
703
704 /// Used to put an error message in a LightningError
705 #[derive(Clone, Debug)]
706 pub enum ErrorAction {
707         /// The peer took some action which made us think they were useless. Disconnect them.
708         DisconnectPeer {
709                 /// An error message which we should make an effort to send before we disconnect.
710                 msg: Option<ErrorMessage>
711         },
712         /// The peer did something harmless that we weren't able to process, just log and ignore
713         // New code should *not* use this. New code must use IgnoreAndLog, below!
714         IgnoreError,
715         /// The peer did something harmless that we weren't able to meaningfully process.
716         /// If the error is logged, log it at the given level.
717         IgnoreAndLog(logger::Level),
718         /// The peer did something incorrect. Tell them.
719         SendErrorMessage {
720                 /// The message to send.
721                 msg: ErrorMessage
722         },
723 }
724
725 /// An Err type for failure to process messages.
726 #[derive(Clone, Debug)]
727 pub struct LightningError {
728         /// A human-readable message describing the error
729         pub err: String,
730         /// The action which should be taken against the offending peer.
731         pub action: ErrorAction,
732 }
733
734 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
735 /// transaction updates if they were pending.
736 #[derive(Clone, Debug, PartialEq)]
737 pub struct CommitmentUpdate {
738         /// update_add_htlc messages which should be sent
739         pub update_add_htlcs: Vec<UpdateAddHTLC>,
740         /// update_fulfill_htlc messages which should be sent
741         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
742         /// update_fail_htlc messages which should be sent
743         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
744         /// update_fail_malformed_htlc messages which should be sent
745         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
746         /// An update_fee message which should be sent
747         pub update_fee: Option<UpdateFee>,
748         /// Finally, the commitment_signed message which should be sent
749         pub commitment_signed: CommitmentSigned,
750 }
751
752 /// Messages could have optional fields to use with extended features
753 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
754 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
755 /// separate enum type for them.
756 /// (C-not exported) due to a free generic in T
757 #[derive(Clone, Debug, PartialEq)]
758 pub enum OptionalField<T> {
759         /// Optional field is included in message
760         Present(T),
761         /// Optional field is absent in message
762         Absent
763 }
764
765 /// A trait to describe an object which can receive channel messages.
766 ///
767 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
768 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
769 pub trait ChannelMessageHandler : MessageSendEventsProvider {
770         //Channel init:
771         /// Handle an incoming open_channel message from the given peer.
772         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
773         /// Handle an incoming accept_channel message from the given peer.
774         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
775         /// Handle an incoming funding_created message from the given peer.
776         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
777         /// Handle an incoming funding_signed message from the given peer.
778         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
779         /// Handle an incoming funding_locked message from the given peer.
780         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &FundingLocked);
781
782         // Channl close:
783         /// Handle an incoming shutdown message from the given peer.
784         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
785         /// Handle an incoming closing_signed message from the given peer.
786         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
787
788         // HTLC handling:
789         /// Handle an incoming update_add_htlc message from the given peer.
790         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
791         /// Handle an incoming update_fulfill_htlc message from the given peer.
792         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
793         /// Handle an incoming update_fail_htlc message from the given peer.
794         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
795         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
796         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
797         /// Handle an incoming commitment_signed message from the given peer.
798         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
799         /// Handle an incoming revoke_and_ack message from the given peer.
800         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
801
802         /// Handle an incoming update_fee message from the given peer.
803         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
804
805         // Channel-to-announce:
806         /// Handle an incoming announcement_signatures message from the given peer.
807         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
808
809         // Connection loss/reestablish:
810         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
811         /// is believed to be possible in the future (eg they're sending us messages we don't
812         /// understand or indicate they require unknown feature bits), no_connection_possible is set
813         /// and any outstanding channels should be failed.
814         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
815
816         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
817         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init);
818         /// Handle an incoming channel_reestablish message from the given peer.
819         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
820
821         /// Handle an incoming channel update from the given peer.
822         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
823
824         // Error:
825         /// Handle an incoming error message from the given peer.
826         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
827 }
828
829 /// A trait to describe an object which can receive routing messages.
830 ///
831 /// # Implementor DoS Warnings
832 ///
833 /// For `gossip_queries` messages there are potential DoS vectors when handling
834 /// inbound queries. Implementors using an on-disk network graph should be aware of
835 /// repeated disk I/O for queries accessing different parts of the network graph.
836 pub trait RoutingMessageHandler : MessageSendEventsProvider {
837         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
838         /// false or returning an Err otherwise.
839         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
840         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
841         /// or returning an Err otherwise.
842         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
843         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
844         /// false or returning an Err otherwise.
845         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
846         /// Gets a subset of the channel announcements and updates required to dump our routing table
847         /// to a remote node, starting at the short_channel_id indicated by starting_point and
848         /// including the batch_amount entries immediately higher in numerical value than starting_point.
849         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
850         /// Gets a subset of the node announcements required to dump our routing table to a remote node,
851         /// starting at the node *after* the provided publickey and including batch_amount entries
852         /// immediately higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
853         /// If None is provided for starting_point, we start at the first node.
854         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement>;
855         /// Called when a connection is established with a peer. This can be used to
856         /// perform routing table synchronization using a strategy defined by the
857         /// implementor.
858         fn sync_routing_table(&self, their_node_id: &PublicKey, init: &Init);
859         /// Handles the reply of a query we initiated to learn about channels
860         /// for a given range of blocks. We can expect to receive one or more
861         /// replies to a single query.
862         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
863         /// Handles the reply of a query we initiated asking for routing gossip
864         /// messages for a list of channels. We should receive this message when
865         /// a node has completed its best effort to send us the pertaining routing
866         /// gossip messages.
867         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
868         /// Handles when a peer asks us to send a list of short_channel_ids
869         /// for the requested range of blocks.
870         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
871         /// Handles when a peer asks us to send routing gossip messages for a
872         /// list of short_channel_ids.
873         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
874 }
875
876 mod fuzzy_internal_msgs {
877         use prelude::*;
878         use ln::{PaymentPreimage, PaymentSecret};
879
880         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
881         // them from untrusted input):
882         #[derive(Clone)]
883         pub(crate) struct FinalOnionHopData {
884                 pub(crate) payment_secret: PaymentSecret,
885                 /// The total value, in msat, of the payment as received by the ultimate recipient.
886                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
887                 pub(crate) total_msat: u64,
888         }
889
890         pub(crate) enum OnionHopDataFormat {
891                 Legacy { // aka Realm-0
892                         short_channel_id: u64,
893                 },
894                 NonFinalNode {
895                         short_channel_id: u64,
896                 },
897                 FinalNode {
898                         payment_data: Option<FinalOnionHopData>,
899                         keysend_preimage: Option<PaymentPreimage>,
900                 },
901         }
902
903         pub struct OnionHopData {
904                 pub(crate) format: OnionHopDataFormat,
905                 /// The value, in msat, of the payment after this hop's fee is deducted.
906                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
907                 pub(crate) amt_to_forward: u64,
908                 pub(crate) outgoing_cltv_value: u32,
909                 // 12 bytes of 0-padding for Legacy format
910         }
911
912         pub struct DecodedOnionErrorPacket {
913                 pub(crate) hmac: [u8; 32],
914                 pub(crate) failuremsg: Vec<u8>,
915                 pub(crate) pad: Vec<u8>,
916         }
917 }
918 #[cfg(feature = "fuzztarget")]
919 pub use self::fuzzy_internal_msgs::*;
920 #[cfg(not(feature = "fuzztarget"))]
921 pub(crate) use self::fuzzy_internal_msgs::*;
922
923 #[derive(Clone)]
924 pub(crate) struct OnionPacket {
925         pub(crate) version: u8,
926         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
927         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
928         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
929         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
930         pub(crate) hop_data: [u8; 20*65],
931         pub(crate) hmac: [u8; 32],
932 }
933
934 impl PartialEq for OnionPacket {
935         fn eq(&self, other: &OnionPacket) -> bool {
936                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
937                         if i != j { return false; }
938                 }
939                 self.version == other.version &&
940                         self.public_key == other.public_key &&
941                         self.hmac == other.hmac
942         }
943 }
944
945 impl fmt::Debug for OnionPacket {
946         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
947                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
948         }
949 }
950
951 #[derive(Clone, Debug, PartialEq)]
952 pub(crate) struct OnionErrorPacket {
953         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
954         // (TODO) We limit it in decode to much lower...
955         pub(crate) data: Vec<u8>,
956 }
957
958 impl fmt::Display for DecodeError {
959         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
960                 match *self {
961                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
962                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
963                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
964                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
965                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
966                         DecodeError::Io(ref e) => e.fmt(f),
967                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
968                 }
969         }
970 }
971
972 impl From<io::Error> for DecodeError {
973         fn from(e: io::Error) -> Self {
974                 if e.kind() == io::ErrorKind::UnexpectedEof {
975                         DecodeError::ShortRead
976                 } else {
977                         DecodeError::Io(e.kind())
978                 }
979         }
980 }
981
982 impl Writeable for OptionalField<Script> {
983         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
984                 match *self {
985                         OptionalField::Present(ref script) => {
986                                 // Note that Writeable for script includes the 16-bit length tag for us
987                                 script.write(w)?;
988                         },
989                         OptionalField::Absent => {}
990                 }
991                 Ok(())
992         }
993 }
994
995 impl Readable for OptionalField<Script> {
996         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
997                 match <u16 as Readable>::read(r) {
998                         Ok(len) => {
999                                 let mut buf = vec![0; len as usize];
1000                                 r.read_exact(&mut buf)?;
1001                                 Ok(OptionalField::Present(Script::from(buf)))
1002                         },
1003                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
1004                         Err(e) => Err(e)
1005                 }
1006         }
1007 }
1008
1009 impl Writeable for OptionalField<u64> {
1010         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1011                 match *self {
1012                         OptionalField::Present(ref value) => {
1013                                 value.write(w)?;
1014                         },
1015                         OptionalField::Absent => {}
1016                 }
1017                 Ok(())
1018         }
1019 }
1020
1021 impl Readable for OptionalField<u64> {
1022         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1023                 let value: u64 = Readable::read(r)?;
1024                 Ok(OptionalField::Present(value))
1025         }
1026 }
1027
1028
1029 impl_writeable_msg!(AcceptChannel, {
1030         temporary_channel_id,
1031         dust_limit_satoshis,
1032         max_htlc_value_in_flight_msat,
1033         channel_reserve_satoshis,
1034         htlc_minimum_msat,
1035         minimum_depth,
1036         to_self_delay,
1037         max_accepted_htlcs,
1038         funding_pubkey,
1039         revocation_basepoint,
1040         payment_point,
1041         delayed_payment_basepoint,
1042         htlc_basepoint,
1043         first_per_commitment_point,
1044         shutdown_scriptpubkey
1045 }, {});
1046
1047 impl_writeable_msg!(AnnouncementSignatures, {
1048         channel_id,
1049         short_channel_id,
1050         node_signature,
1051         bitcoin_signature
1052 }, {});
1053
1054 impl Writeable for ChannelReestablish {
1055         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1056                 self.channel_id.write(w)?;
1057                 self.next_local_commitment_number.write(w)?;
1058                 self.next_remote_commitment_number.write(w)?;
1059                 match self.data_loss_protect {
1060                         OptionalField::Present(ref data_loss_protect) => {
1061                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1062                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1063                         },
1064                         OptionalField::Absent => {}
1065                 }
1066                 Ok(())
1067         }
1068 }
1069
1070 impl Readable for ChannelReestablish{
1071         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1072                 Ok(Self {
1073                         channel_id: Readable::read(r)?,
1074                         next_local_commitment_number: Readable::read(r)?,
1075                         next_remote_commitment_number: Readable::read(r)?,
1076                         data_loss_protect: {
1077                                 match <[u8; 32] as Readable>::read(r) {
1078                                         Ok(your_last_per_commitment_secret) =>
1079                                                 OptionalField::Present(DataLossProtect {
1080                                                         your_last_per_commitment_secret,
1081                                                         my_current_per_commitment_point: Readable::read(r)?,
1082                                                 }),
1083                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1084                                         Err(e) => return Err(e)
1085                                 }
1086                         }
1087                 })
1088         }
1089 }
1090
1091 impl_writeable_msg!(ClosingSigned,
1092         { channel_id, fee_satoshis, signature },
1093         { (1, fee_range, option) }
1094 );
1095
1096 impl_writeable!(ClosingSignedFeeRange, {
1097         min_fee_satoshis,
1098         max_fee_satoshis
1099 });
1100
1101 impl_writeable_msg!(CommitmentSigned, {
1102         channel_id,
1103         signature,
1104         htlc_signatures
1105 }, {});
1106
1107 impl_writeable!(DecodedOnionErrorPacket, {
1108         hmac,
1109         failuremsg,
1110         pad
1111 });
1112
1113 impl_writeable_msg!(FundingCreated, {
1114         temporary_channel_id,
1115         funding_txid,
1116         funding_output_index,
1117         signature
1118 }, {});
1119
1120 impl_writeable_msg!(FundingSigned, {
1121         channel_id,
1122         signature
1123 }, {});
1124
1125 impl_writeable_msg!(FundingLocked, {
1126         channel_id,
1127         next_per_commitment_point,
1128 }, {});
1129
1130 impl Writeable for Init {
1131         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1132                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1133                 // our relevant feature bits. This keeps us compatible with old nodes.
1134                 self.features.write_up_to_13(w)?;
1135                 self.features.write(w)
1136         }
1137 }
1138
1139 impl Readable for Init {
1140         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1141                 let global_features: InitFeatures = Readable::read(r)?;
1142                 let features: InitFeatures = Readable::read(r)?;
1143                 Ok(Init {
1144                         features: features.or(global_features),
1145                 })
1146         }
1147 }
1148
1149 impl_writeable_msg!(OpenChannel, {
1150         chain_hash,
1151         temporary_channel_id,
1152         funding_satoshis,
1153         push_msat,
1154         dust_limit_satoshis,
1155         max_htlc_value_in_flight_msat,
1156         channel_reserve_satoshis,
1157         htlc_minimum_msat,
1158         feerate_per_kw,
1159         to_self_delay,
1160         max_accepted_htlcs,
1161         funding_pubkey,
1162         revocation_basepoint,
1163         payment_point,
1164         delayed_payment_basepoint,
1165         htlc_basepoint,
1166         first_per_commitment_point,
1167         channel_flags,
1168         shutdown_scriptpubkey
1169 }, {
1170         (1, channel_type, option),
1171 });
1172
1173 impl_writeable_msg!(RevokeAndACK, {
1174         channel_id,
1175         per_commitment_secret,
1176         next_per_commitment_point
1177 }, {});
1178
1179 impl_writeable_msg!(Shutdown, {
1180         channel_id,
1181         scriptpubkey
1182 }, {});
1183
1184 impl_writeable_msg!(UpdateFailHTLC, {
1185         channel_id,
1186         htlc_id,
1187         reason
1188 }, {});
1189
1190 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1191         channel_id,
1192         htlc_id,
1193         sha256_of_onion,
1194         failure_code
1195 }, {});
1196
1197 impl_writeable_msg!(UpdateFee, {
1198         channel_id,
1199         feerate_per_kw
1200 }, {});
1201
1202 impl_writeable_msg!(UpdateFulfillHTLC, {
1203         channel_id,
1204         htlc_id,
1205         payment_preimage
1206 }, {});
1207
1208 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1209 // serialization format in a way which assumes we know the total serialized length/message end
1210 // position.
1211 impl_writeable!(OnionErrorPacket, {
1212         data
1213 });
1214
1215 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1216 // serialization format in a way which assumes we know the total serialized length/message end
1217 // position.
1218 impl Writeable for OnionPacket {
1219         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1220                 self.version.write(w)?;
1221                 match self.public_key {
1222                         Ok(pubkey) => pubkey.write(w)?,
1223                         Err(_) => [0u8;33].write(w)?,
1224                 }
1225                 w.write_all(&self.hop_data)?;
1226                 self.hmac.write(w)?;
1227                 Ok(())
1228         }
1229 }
1230
1231 impl Readable for OnionPacket {
1232         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1233                 Ok(OnionPacket {
1234                         version: Readable::read(r)?,
1235                         public_key: {
1236                                 let mut buf = [0u8;33];
1237                                 r.read_exact(&mut buf)?;
1238                                 PublicKey::from_slice(&buf)
1239                         },
1240                         hop_data: Readable::read(r)?,
1241                         hmac: Readable::read(r)?,
1242                 })
1243         }
1244 }
1245
1246 impl_writeable_msg!(UpdateAddHTLC, {
1247         channel_id,
1248         htlc_id,
1249         amount_msat,
1250         payment_hash,
1251         cltv_expiry,
1252         onion_routing_packet
1253 }, {});
1254
1255 impl Writeable for FinalOnionHopData {
1256         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1257                 self.payment_secret.0.write(w)?;
1258                 HighZeroBytesDroppedVarInt(self.total_msat).write(w)
1259         }
1260 }
1261
1262 impl Readable for FinalOnionHopData {
1263         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1264                 let secret: [u8; 32] = Readable::read(r)?;
1265                 let amt: HighZeroBytesDroppedVarInt<u64> = Readable::read(r)?;
1266                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1267         }
1268 }
1269
1270 impl Writeable for OnionHopData {
1271         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1272                 // Note that this should never be reachable if Rust-Lightning generated the message, as we
1273                 // check values are sane long before we get here, though its possible in the future
1274                 // user-generated messages may hit this.
1275                 if self.amt_to_forward > MAX_VALUE_MSAT { panic!("We should never be sending infinite/overflow onion payments"); }
1276                 match self.format {
1277                         OnionHopDataFormat::Legacy { short_channel_id } => {
1278                                 0u8.write(w)?;
1279                                 short_channel_id.write(w)?;
1280                                 self.amt_to_forward.write(w)?;
1281                                 self.outgoing_cltv_value.write(w)?;
1282                                 w.write_all(&[0;12])?;
1283                         },
1284                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1285                                 encode_varint_length_prefixed_tlv!(w, {
1286                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1287                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1288                                         (6, short_channel_id, required)
1289                                 });
1290                         },
1291                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1292                                 if let Some(final_data) = payment_data {
1293                                         if final_data.total_msat > MAX_VALUE_MSAT { panic!("We should never be sending infinite/overflow onion payments"); }
1294                                 }
1295                                 encode_varint_length_prefixed_tlv!(w, {
1296                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1297                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1298                                         (8, payment_data, option),
1299                                         (5482373484, keysend_preimage, option)
1300                                 });
1301                         },
1302                 }
1303                 Ok(())
1304         }
1305 }
1306
1307 impl Readable for OnionHopData {
1308         fn read<R: Read>(mut r: &mut R) -> Result<Self, DecodeError> {
1309                 use bitcoin::consensus::encode::{Decodable, Error, VarInt};
1310                 let v: VarInt = Decodable::consensus_decode(&mut r)
1311                         .map_err(|e| match e {
1312                                 Error::Io(ioe) => DecodeError::from(ioe),
1313                                 _ => DecodeError::InvalidValue
1314                         })?;
1315                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1316                 let (format, amt, cltv_value) = if v.0 != LEGACY_ONION_HOP_FLAG {
1317                         let mut rd = FixedLengthReader::new(r, v.0);
1318                         let mut amt = HighZeroBytesDroppedVarInt(0u64);
1319                         let mut cltv_value = HighZeroBytesDroppedVarInt(0u32);
1320                         let mut short_id: Option<u64> = None;
1321                         let mut payment_data: Option<FinalOnionHopData> = None;
1322                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1323                         // The TLV type is chosen to be compatible with lnd and c-lightning.
1324                         decode_tlv_stream!(&mut rd, {
1325                                 (2, amt, required),
1326                                 (4, cltv_value, required),
1327                                 (6, short_id, option),
1328                                 (8, payment_data, option),
1329                                 (5482373484, keysend_preimage, option)
1330                         });
1331                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1332                         let format = if let Some(short_channel_id) = short_id {
1333                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1334                                 OnionHopDataFormat::NonFinalNode {
1335                                         short_channel_id,
1336                                 }
1337                         } else {
1338                                 if let &Some(ref data) = &payment_data {
1339                                         if data.total_msat > MAX_VALUE_MSAT {
1340                                                 return Err(DecodeError::InvalidValue);
1341                                         }
1342                                 }
1343                                 OnionHopDataFormat::FinalNode {
1344                                         payment_data,
1345                                         keysend_preimage,
1346                                 }
1347                         };
1348                         (format, amt.0, cltv_value.0)
1349                 } else {
1350                         let format = OnionHopDataFormat::Legacy {
1351                                 short_channel_id: Readable::read(r)?,
1352                         };
1353                         let amt: u64 = Readable::read(r)?;
1354                         let cltv_value: u32 = Readable::read(r)?;
1355                         r.read_exact(&mut [0; 12])?;
1356                         (format, amt, cltv_value)
1357                 };
1358
1359                 if amt > MAX_VALUE_MSAT {
1360                         return Err(DecodeError::InvalidValue);
1361                 }
1362                 Ok(OnionHopData {
1363                         format,
1364                         amt_to_forward: amt,
1365                         outgoing_cltv_value: cltv_value,
1366                 })
1367         }
1368 }
1369
1370 impl Writeable for Ping {
1371         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1372                 self.ponglen.write(w)?;
1373                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1374                 Ok(())
1375         }
1376 }
1377
1378 impl Readable for Ping {
1379         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1380                 Ok(Ping {
1381                         ponglen: Readable::read(r)?,
1382                         byteslen: {
1383                                 let byteslen = Readable::read(r)?;
1384                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1385                                 byteslen
1386                         }
1387                 })
1388         }
1389 }
1390
1391 impl Writeable for Pong {
1392         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1393                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1394                 Ok(())
1395         }
1396 }
1397
1398 impl Readable for Pong {
1399         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1400                 Ok(Pong {
1401                         byteslen: {
1402                                 let byteslen = Readable::read(r)?;
1403                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1404                                 byteslen
1405                         }
1406                 })
1407         }
1408 }
1409
1410 impl Writeable for UnsignedChannelAnnouncement {
1411         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1412                 self.features.write(w)?;
1413                 self.chain_hash.write(w)?;
1414                 self.short_channel_id.write(w)?;
1415                 self.node_id_1.write(w)?;
1416                 self.node_id_2.write(w)?;
1417                 self.bitcoin_key_1.write(w)?;
1418                 self.bitcoin_key_2.write(w)?;
1419                 w.write_all(&self.excess_data[..])?;
1420                 Ok(())
1421         }
1422 }
1423
1424 impl Readable for UnsignedChannelAnnouncement {
1425         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1426                 Ok(Self {
1427                         features: Readable::read(r)?,
1428                         chain_hash: Readable::read(r)?,
1429                         short_channel_id: Readable::read(r)?,
1430                         node_id_1: Readable::read(r)?,
1431                         node_id_2: Readable::read(r)?,
1432                         bitcoin_key_1: Readable::read(r)?,
1433                         bitcoin_key_2: Readable::read(r)?,
1434                         excess_data: read_to_end(r)?,
1435                 })
1436         }
1437 }
1438
1439 impl_writeable!(ChannelAnnouncement, {
1440         node_signature_1,
1441         node_signature_2,
1442         bitcoin_signature_1,
1443         bitcoin_signature_2,
1444         contents
1445 });
1446
1447 impl Writeable for UnsignedChannelUpdate {
1448         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1449                 let mut message_flags: u8 = 0;
1450                 if let OptionalField::Present(_) = self.htlc_maximum_msat {
1451                         message_flags = 1;
1452                 }
1453                 self.chain_hash.write(w)?;
1454                 self.short_channel_id.write(w)?;
1455                 self.timestamp.write(w)?;
1456                 let all_flags = self.flags as u16 | ((message_flags as u16) << 8);
1457                 all_flags.write(w)?;
1458                 self.cltv_expiry_delta.write(w)?;
1459                 self.htlc_minimum_msat.write(w)?;
1460                 self.fee_base_msat.write(w)?;
1461                 self.fee_proportional_millionths.write(w)?;
1462                 self.htlc_maximum_msat.write(w)?;
1463                 w.write_all(&self.excess_data[..])?;
1464                 Ok(())
1465         }
1466 }
1467
1468 impl Readable for UnsignedChannelUpdate {
1469         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1470                 let has_htlc_maximum_msat;
1471                 Ok(Self {
1472                         chain_hash: Readable::read(r)?,
1473                         short_channel_id: Readable::read(r)?,
1474                         timestamp: Readable::read(r)?,
1475                         flags: {
1476                                 let flags: u16 = Readable::read(r)?;
1477                                 let message_flags = flags >> 8;
1478                                 has_htlc_maximum_msat = (message_flags as i32 & 1) == 1;
1479                                 flags as u8
1480                         },
1481                         cltv_expiry_delta: Readable::read(r)?,
1482                         htlc_minimum_msat: Readable::read(r)?,
1483                         fee_base_msat: Readable::read(r)?,
1484                         fee_proportional_millionths: Readable::read(r)?,
1485                         htlc_maximum_msat: if has_htlc_maximum_msat { Readable::read(r)? } else { OptionalField::Absent },
1486                         excess_data: read_to_end(r)?,
1487                 })
1488         }
1489 }
1490
1491 impl_writeable!(ChannelUpdate, {
1492         signature,
1493         contents
1494 });
1495
1496 impl Writeable for ErrorMessage {
1497         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1498                 self.channel_id.write(w)?;
1499                 (self.data.len() as u16).write(w)?;
1500                 w.write_all(self.data.as_bytes())?;
1501                 Ok(())
1502         }
1503 }
1504
1505 impl Readable for ErrorMessage {
1506         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1507                 Ok(Self {
1508                         channel_id: Readable::read(r)?,
1509                         data: {
1510                                 let mut sz: usize = <u16 as Readable>::read(r)? as usize;
1511                                 let data = read_to_end(r)?;
1512                                 sz = cmp::min(data.len(), sz);
1513                                 match String::from_utf8(data[..sz as usize].to_vec()) {
1514                                         Ok(s) => s,
1515                                         Err(_) => return Err(DecodeError::InvalidValue),
1516                                 }
1517                         }
1518                 })
1519         }
1520 }
1521
1522 impl Writeable for UnsignedNodeAnnouncement {
1523         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1524                 self.features.write(w)?;
1525                 self.timestamp.write(w)?;
1526                 self.node_id.write(w)?;
1527                 w.write_all(&self.rgb)?;
1528                 self.alias.write(w)?;
1529
1530                 let mut addr_len = 0;
1531                 for addr in self.addresses.iter() {
1532                         addr_len += 1 + addr.len();
1533                 }
1534                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1535                 for addr in self.addresses.iter() {
1536                         addr.write(w)?;
1537                 }
1538                 w.write_all(&self.excess_address_data[..])?;
1539                 w.write_all(&self.excess_data[..])?;
1540                 Ok(())
1541         }
1542 }
1543
1544 impl Readable for UnsignedNodeAnnouncement {
1545         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1546                 let features: NodeFeatures = Readable::read(r)?;
1547                 let timestamp: u32 = Readable::read(r)?;
1548                 let node_id: PublicKey = Readable::read(r)?;
1549                 let mut rgb = [0; 3];
1550                 r.read_exact(&mut rgb)?;
1551                 let alias: [u8; 32] = Readable::read(r)?;
1552
1553                 let addr_len: u16 = Readable::read(r)?;
1554                 let mut addresses: Vec<NetAddress> = Vec::new();
1555                 let mut addr_readpos = 0;
1556                 let mut excess = false;
1557                 let mut excess_byte = 0;
1558                 loop {
1559                         if addr_len <= addr_readpos { break; }
1560                         match Readable::read(r) {
1561                                 Ok(Ok(addr)) => {
1562                                         if addr_len < addr_readpos + 1 + addr.len() {
1563                                                 return Err(DecodeError::BadLengthDescriptor);
1564                                         }
1565                                         addr_readpos += (1 + addr.len()) as u16;
1566                                         addresses.push(addr);
1567                                 },
1568                                 Ok(Err(unknown_descriptor)) => {
1569                                         excess = true;
1570                                         excess_byte = unknown_descriptor;
1571                                         break;
1572                                 },
1573                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1574                                 Err(e) => return Err(e),
1575                         }
1576                 }
1577
1578                 let mut excess_data = vec![];
1579                 let excess_address_data = if addr_readpos < addr_len {
1580                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1581                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1582                         if excess {
1583                                 excess_address_data[0] = excess_byte;
1584                         }
1585                         excess_address_data
1586                 } else {
1587                         if excess {
1588                                 excess_data.push(excess_byte);
1589                         }
1590                         Vec::new()
1591                 };
1592                 excess_data.extend(read_to_end(r)?.iter());
1593                 Ok(UnsignedNodeAnnouncement {
1594                         features,
1595                         timestamp,
1596                         node_id,
1597                         rgb,
1598                         alias,
1599                         addresses,
1600                         excess_address_data,
1601                         excess_data,
1602                 })
1603         }
1604 }
1605
1606 impl_writeable!(NodeAnnouncement, {
1607         signature,
1608         contents
1609 });
1610
1611 impl Readable for QueryShortChannelIds {
1612         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1613                 let chain_hash: BlockHash = Readable::read(r)?;
1614
1615                 let encoding_len: u16 = Readable::read(r)?;
1616                 let encoding_type: u8 = Readable::read(r)?;
1617
1618                 // Must be encoding_type=0 uncompressed serialization. We do not
1619                 // support encoding_type=1 zlib serialization.
1620                 if encoding_type != EncodingType::Uncompressed as u8 {
1621                         return Err(DecodeError::UnsupportedCompression);
1622                 }
1623
1624                 // We expect the encoding_len to always includes the 1-byte
1625                 // encoding_type and that short_channel_ids are 8-bytes each
1626                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1627                         return Err(DecodeError::InvalidValue);
1628                 }
1629
1630                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1631                 // less the 1-byte encoding_type
1632                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1633                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1634                 for _ in 0..short_channel_id_count {
1635                         short_channel_ids.push(Readable::read(r)?);
1636                 }
1637
1638                 Ok(QueryShortChannelIds {
1639                         chain_hash,
1640                         short_channel_ids,
1641                 })
1642         }
1643 }
1644
1645 impl Writeable for QueryShortChannelIds {
1646         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1647                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1648                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1649
1650                 self.chain_hash.write(w)?;
1651                 encoding_len.write(w)?;
1652
1653                 // We only support type=0 uncompressed serialization
1654                 (EncodingType::Uncompressed as u8).write(w)?;
1655
1656                 for scid in self.short_channel_ids.iter() {
1657                         scid.write(w)?;
1658                 }
1659
1660                 Ok(())
1661         }
1662 }
1663
1664 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1665         chain_hash,
1666         full_information,
1667 }, {});
1668
1669 impl QueryChannelRange {
1670         /**
1671          * Calculates the overflow safe ending block height for the query.
1672          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1673          */
1674         pub fn end_blocknum(&self) -> u32 {
1675                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1676                         Some(block) => block,
1677                         None => u32::max_value(),
1678                 }
1679         }
1680 }
1681
1682 impl_writeable_msg!(QueryChannelRange, {
1683         chain_hash,
1684         first_blocknum,
1685         number_of_blocks
1686 }, {});
1687
1688 impl Readable for ReplyChannelRange {
1689         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1690                 let chain_hash: BlockHash = Readable::read(r)?;
1691                 let first_blocknum: u32 = Readable::read(r)?;
1692                 let number_of_blocks: u32 = Readable::read(r)?;
1693                 let sync_complete: bool = Readable::read(r)?;
1694
1695                 let encoding_len: u16 = Readable::read(r)?;
1696                 let encoding_type: u8 = Readable::read(r)?;
1697
1698                 // Must be encoding_type=0 uncompressed serialization. We do not
1699                 // support encoding_type=1 zlib serialization.
1700                 if encoding_type != EncodingType::Uncompressed as u8 {
1701                         return Err(DecodeError::UnsupportedCompression);
1702                 }
1703
1704                 // We expect the encoding_len to always includes the 1-byte
1705                 // encoding_type and that short_channel_ids are 8-bytes each
1706                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1707                         return Err(DecodeError::InvalidValue);
1708                 }
1709
1710                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1711                 // less the 1-byte encoding_type
1712                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1713                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1714                 for _ in 0..short_channel_id_count {
1715                         short_channel_ids.push(Readable::read(r)?);
1716                 }
1717
1718                 Ok(ReplyChannelRange {
1719                         chain_hash,
1720                         first_blocknum,
1721                         number_of_blocks,
1722                         sync_complete,
1723                         short_channel_ids
1724                 })
1725         }
1726 }
1727
1728 impl Writeable for ReplyChannelRange {
1729         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1730                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1731                 self.chain_hash.write(w)?;
1732                 self.first_blocknum.write(w)?;
1733                 self.number_of_blocks.write(w)?;
1734                 self.sync_complete.write(w)?;
1735
1736                 encoding_len.write(w)?;
1737                 (EncodingType::Uncompressed as u8).write(w)?;
1738                 for scid in self.short_channel_ids.iter() {
1739                         scid.write(w)?;
1740                 }
1741
1742                 Ok(())
1743         }
1744 }
1745
1746 impl_writeable_msg!(GossipTimestampFilter, {
1747         chain_hash,
1748         first_timestamp,
1749         timestamp_range,
1750 }, {});
1751
1752 #[cfg(test)]
1753 mod tests {
1754         use hex;
1755         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1756         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1757         use ln::msgs;
1758         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1759         use util::ser::{Writeable, Readable};
1760
1761         use bitcoin::hashes::hex::FromHex;
1762         use bitcoin::util::address::Address;
1763         use bitcoin::network::constants::Network;
1764         use bitcoin::blockdata::script::Builder;
1765         use bitcoin::blockdata::opcodes;
1766         use bitcoin::hash_types::{Txid, BlockHash};
1767
1768         use bitcoin::secp256k1::key::{PublicKey,SecretKey};
1769         use bitcoin::secp256k1::{Secp256k1, Message};
1770
1771         use io::Cursor;
1772         use prelude::*;
1773
1774         #[test]
1775         fn encoding_channel_reestablish_no_secret() {
1776                 let cr = msgs::ChannelReestablish {
1777                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1778                         next_local_commitment_number: 3,
1779                         next_remote_commitment_number: 4,
1780                         data_loss_protect: OptionalField::Absent,
1781                 };
1782
1783                 let encoded_value = cr.encode();
1784                 assert_eq!(
1785                         encoded_value,
1786                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1787                 );
1788         }
1789
1790         #[test]
1791         fn encoding_channel_reestablish_with_secret() {
1792                 let public_key = {
1793                         let secp_ctx = Secp256k1::new();
1794                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
1795                 };
1796
1797                 let cr = msgs::ChannelReestablish {
1798                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1799                         next_local_commitment_number: 3,
1800                         next_remote_commitment_number: 4,
1801                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
1802                 };
1803
1804                 let encoded_value = cr.encode();
1805                 assert_eq!(
1806                         encoded_value,
1807                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
1808                 );
1809         }
1810
1811         macro_rules! get_keys_from {
1812                 ($slice: expr, $secp_ctx: expr) => {
1813                         {
1814                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
1815                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
1816                                 (privkey, pubkey)
1817                         }
1818                 }
1819         }
1820
1821         macro_rules! get_sig_on {
1822                 ($privkey: expr, $ctx: expr, $string: expr) => {
1823                         {
1824                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
1825                                 $ctx.sign(&sighash, &$privkey)
1826                         }
1827                 }
1828         }
1829
1830         #[test]
1831         fn encoding_announcement_signatures() {
1832                 let secp_ctx = Secp256k1::new();
1833                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1834                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
1835                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
1836                 let announcement_signatures = msgs::AnnouncementSignatures {
1837                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1838                         short_channel_id: 2316138423780173,
1839                         node_signature: sig_1,
1840                         bitcoin_signature: sig_2,
1841                 };
1842
1843                 let encoded_value = announcement_signatures.encode();
1844                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
1845         }
1846
1847         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
1848                 let secp_ctx = Secp256k1::new();
1849                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1850                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
1851                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
1852                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
1853                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1854                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
1855                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
1856                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
1857                 let mut features = ChannelFeatures::known();
1858                 if unknown_features_bits {
1859                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
1860                 }
1861                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
1862                         features,
1863                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
1864                         short_channel_id: 2316138423780173,
1865                         node_id_1: pubkey_1,
1866                         node_id_2: pubkey_2,
1867                         bitcoin_key_1: pubkey_3,
1868                         bitcoin_key_2: pubkey_4,
1869                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
1870                 };
1871                 let channel_announcement = msgs::ChannelAnnouncement {
1872                         node_signature_1: sig_1,
1873                         node_signature_2: sig_2,
1874                         bitcoin_signature_1: sig_3,
1875                         bitcoin_signature_2: sig_4,
1876                         contents: unsigned_channel_announcement,
1877                 };
1878                 let encoded_value = channel_announcement.encode();
1879                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
1880                 if unknown_features_bits {
1881                         target_value.append(&mut hex::decode("0002ffff").unwrap());
1882                 } else {
1883                         target_value.append(&mut hex::decode("0000").unwrap());
1884                 }
1885                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
1886                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
1887                 if excess_data {
1888                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
1889                 }
1890                 assert_eq!(encoded_value, target_value);
1891         }
1892
1893         #[test]
1894         fn encoding_channel_announcement() {
1895                 do_encoding_channel_announcement(true, false);
1896                 do_encoding_channel_announcement(false, true);
1897                 do_encoding_channel_announcement(false, false);
1898                 do_encoding_channel_announcement(true, true);
1899         }
1900
1901         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, excess_address_data: bool, excess_data: bool) {
1902                 let secp_ctx = Secp256k1::new();
1903                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1904                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1905                 let features = if unknown_features_bits {
1906                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
1907                 } else {
1908                         // Set to some features we may support
1909                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
1910                 };
1911                 let mut addresses = Vec::new();
1912                 if ipv4 {
1913                         addresses.push(msgs::NetAddress::IPv4 {
1914                                 addr: [255, 254, 253, 252],
1915                                 port: 9735
1916                         });
1917                 }
1918                 if ipv6 {
1919                         addresses.push(msgs::NetAddress::IPv6 {
1920                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
1921                                 port: 9735
1922                         });
1923                 }
1924                 if onionv2 {
1925                         addresses.push(msgs::NetAddress::OnionV2 {
1926                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246],
1927                                 port: 9735
1928                         });
1929                 }
1930                 if onionv3 {
1931                         addresses.push(msgs::NetAddress::OnionV3 {
1932                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
1933                                 checksum: 32,
1934                                 version: 16,
1935                                 port: 9735
1936                         });
1937                 }
1938                 let mut addr_len = 0;
1939                 for addr in &addresses {
1940                         addr_len += addr.len() + 1;
1941                 }
1942                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
1943                         features,
1944                         timestamp: 20190119,
1945                         node_id: pubkey_1,
1946                         rgb: [32; 3],
1947                         alias: [16;32],
1948                         addresses,
1949                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
1950                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
1951                 };
1952                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
1953                 let node_announcement = msgs::NodeAnnouncement {
1954                         signature: sig_1,
1955                         contents: unsigned_node_announcement,
1956                 };
1957                 let encoded_value = node_announcement.encode();
1958                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
1959                 if unknown_features_bits {
1960                         target_value.append(&mut hex::decode("0002ffff").unwrap());
1961                 } else {
1962                         target_value.append(&mut hex::decode("000122").unwrap());
1963                 }
1964                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
1965                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
1966                 if ipv4 {
1967                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
1968                 }
1969                 if ipv6 {
1970                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
1971                 }
1972                 if onionv2 {
1973                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
1974                 }
1975                 if onionv3 {
1976                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
1977                 }
1978                 if excess_address_data {
1979                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
1980                 }
1981                 if excess_data {
1982                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
1983                 }
1984                 assert_eq!(encoded_value, target_value);
1985         }
1986
1987         #[test]
1988         fn encoding_node_announcement() {
1989                 do_encoding_node_announcement(true, true, true, true, true, true, true);
1990                 do_encoding_node_announcement(false, false, false, false, false, false, false);
1991                 do_encoding_node_announcement(false, true, false, false, false, false, false);
1992                 do_encoding_node_announcement(false, false, true, false, false, false, false);
1993                 do_encoding_node_announcement(false, false, false, true, false, false, false);
1994                 do_encoding_node_announcement(false, false, false, false, true, false, false);
1995                 do_encoding_node_announcement(false, false, false, false, false, true, false);
1996                 do_encoding_node_announcement(false, true, false, true, false, true, false);
1997                 do_encoding_node_announcement(false, false, true, false, true, false, false);
1998         }
1999
2000         fn do_encoding_channel_update(direction: bool, disable: bool, htlc_maximum_msat: bool, excess_data: bool) {
2001                 let secp_ctx = Secp256k1::new();
2002                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2003                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2004                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
2005                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2006                         short_channel_id: 2316138423780173,
2007                         timestamp: 20190119,
2008                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2009                         cltv_expiry_delta: 144,
2010                         htlc_minimum_msat: 1000000,
2011                         htlc_maximum_msat: if htlc_maximum_msat { OptionalField::Present(131355275467161) } else { OptionalField::Absent },
2012                         fee_base_msat: 10000,
2013                         fee_proportional_millionths: 20,
2014                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2015                 };
2016                 let channel_update = msgs::ChannelUpdate {
2017                         signature: sig_1,
2018                         contents: unsigned_channel_update
2019                 };
2020                 let encoded_value = channel_update.encode();
2021                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2022                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2023                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2024                 if htlc_maximum_msat {
2025                         target_value.append(&mut hex::decode("01").unwrap());
2026                 } else {
2027                         target_value.append(&mut hex::decode("00").unwrap());
2028                 }
2029                 target_value.append(&mut hex::decode("00").unwrap());
2030                 if direction {
2031                         let flag = target_value.last_mut().unwrap();
2032                         *flag = 1;
2033                 }
2034                 if disable {
2035                         let flag = target_value.last_mut().unwrap();
2036                         *flag = *flag | 1 << 1;
2037                 }
2038                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2039                 if htlc_maximum_msat {
2040                         target_value.append(&mut hex::decode("0000777788889999").unwrap());
2041                 }
2042                 if excess_data {
2043                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2044                 }
2045                 assert_eq!(encoded_value, target_value);
2046         }
2047
2048         #[test]
2049         fn encoding_channel_update() {
2050                 do_encoding_channel_update(false, false, false, false);
2051                 do_encoding_channel_update(false, false, false, true);
2052                 do_encoding_channel_update(true, false, false, false);
2053                 do_encoding_channel_update(true, false, false, true);
2054                 do_encoding_channel_update(false, true, false, false);
2055                 do_encoding_channel_update(false, true, false, true);
2056                 do_encoding_channel_update(false, false, true, false);
2057                 do_encoding_channel_update(false, false, true, true);
2058                 do_encoding_channel_update(true, true, true, false);
2059                 do_encoding_channel_update(true, true, true, true);
2060         }
2061
2062         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2063                 let secp_ctx = Secp256k1::new();
2064                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2065                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2066                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2067                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2068                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2069                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2070                 let open_channel = msgs::OpenChannel {
2071                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2072                         temporary_channel_id: [2; 32],
2073                         funding_satoshis: 1311768467284833366,
2074                         push_msat: 2536655962884945560,
2075                         dust_limit_satoshis: 3608586615801332854,
2076                         max_htlc_value_in_flight_msat: 8517154655701053848,
2077                         channel_reserve_satoshis: 8665828695742877976,
2078                         htlc_minimum_msat: 2316138423780173,
2079                         feerate_per_kw: 821716,
2080                         to_self_delay: 49340,
2081                         max_accepted_htlcs: 49340,
2082                         funding_pubkey: pubkey_1,
2083                         revocation_basepoint: pubkey_2,
2084                         payment_point: pubkey_3,
2085                         delayed_payment_basepoint: pubkey_4,
2086                         htlc_basepoint: pubkey_5,
2087                         first_per_commitment_point: pubkey_6,
2088                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2089                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2090                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2091                 };
2092                 let encoded_value = open_channel.encode();
2093                 let mut target_value = Vec::new();
2094                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2095                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2096                 if random_bit {
2097                         target_value.append(&mut hex::decode("20").unwrap());
2098                 } else {
2099                         target_value.append(&mut hex::decode("00").unwrap());
2100                 }
2101                 if shutdown {
2102                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2103                 }
2104                 if incl_chan_type {
2105                         target_value.append(&mut hex::decode("0100").unwrap());
2106                 }
2107                 assert_eq!(encoded_value, target_value);
2108         }
2109
2110         #[test]
2111         fn encoding_open_channel() {
2112                 do_encoding_open_channel(false, false, false);
2113                 do_encoding_open_channel(false, false, true);
2114                 do_encoding_open_channel(false, true, false);
2115                 do_encoding_open_channel(false, true, true);
2116                 do_encoding_open_channel(true, false, false);
2117                 do_encoding_open_channel(true, false, true);
2118                 do_encoding_open_channel(true, true, false);
2119                 do_encoding_open_channel(true, true, true);
2120         }
2121
2122         fn do_encoding_accept_channel(shutdown: bool) {
2123                 let secp_ctx = Secp256k1::new();
2124                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2125                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2126                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2127                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2128                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2129                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2130                 let accept_channel = msgs::AcceptChannel {
2131                         temporary_channel_id: [2; 32],
2132                         dust_limit_satoshis: 1311768467284833366,
2133                         max_htlc_value_in_flight_msat: 2536655962884945560,
2134                         channel_reserve_satoshis: 3608586615801332854,
2135                         htlc_minimum_msat: 2316138423780173,
2136                         minimum_depth: 821716,
2137                         to_self_delay: 49340,
2138                         max_accepted_htlcs: 49340,
2139                         funding_pubkey: pubkey_1,
2140                         revocation_basepoint: pubkey_2,
2141                         payment_point: pubkey_3,
2142                         delayed_payment_basepoint: pubkey_4,
2143                         htlc_basepoint: pubkey_5,
2144                         first_per_commitment_point: pubkey_6,
2145                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent }
2146                 };
2147                 let encoded_value = accept_channel.encode();
2148                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2149                 if shutdown {
2150                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2151                 }
2152                 assert_eq!(encoded_value, target_value);
2153         }
2154
2155         #[test]
2156         fn encoding_accept_channel() {
2157                 do_encoding_accept_channel(false);
2158                 do_encoding_accept_channel(true);
2159         }
2160
2161         #[test]
2162         fn encoding_funding_created() {
2163                 let secp_ctx = Secp256k1::new();
2164                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2165                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2166                 let funding_created = msgs::FundingCreated {
2167                         temporary_channel_id: [2; 32],
2168                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2169                         funding_output_index: 255,
2170                         signature: sig_1,
2171                 };
2172                 let encoded_value = funding_created.encode();
2173                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2174                 assert_eq!(encoded_value, target_value);
2175         }
2176
2177         #[test]
2178         fn encoding_funding_signed() {
2179                 let secp_ctx = Secp256k1::new();
2180                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2181                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2182                 let funding_signed = msgs::FundingSigned {
2183                         channel_id: [2; 32],
2184                         signature: sig_1,
2185                 };
2186                 let encoded_value = funding_signed.encode();
2187                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2188                 assert_eq!(encoded_value, target_value);
2189         }
2190
2191         #[test]
2192         fn encoding_funding_locked() {
2193                 let secp_ctx = Secp256k1::new();
2194                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2195                 let funding_locked = msgs::FundingLocked {
2196                         channel_id: [2; 32],
2197                         next_per_commitment_point: pubkey_1,
2198                 };
2199                 let encoded_value = funding_locked.encode();
2200                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2201                 assert_eq!(encoded_value, target_value);
2202         }
2203
2204         fn do_encoding_shutdown(script_type: u8) {
2205                 let secp_ctx = Secp256k1::new();
2206                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2207                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2208                 let shutdown = msgs::Shutdown {
2209                         channel_id: [2; 32],
2210                         scriptpubkey:
2211                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey() }
2212                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).script_pubkey() }
2213                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2214                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2215                 };
2216                 let encoded_value = shutdown.encode();
2217                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2218                 if script_type == 1 {
2219                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2220                 } else if script_type == 2 {
2221                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2222                 } else if script_type == 3 {
2223                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2224                 } else if script_type == 4 {
2225                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2226                 }
2227                 assert_eq!(encoded_value, target_value);
2228         }
2229
2230         #[test]
2231         fn encoding_shutdown() {
2232                 do_encoding_shutdown(1);
2233                 do_encoding_shutdown(2);
2234                 do_encoding_shutdown(3);
2235                 do_encoding_shutdown(4);
2236         }
2237
2238         #[test]
2239         fn encoding_closing_signed() {
2240                 let secp_ctx = Secp256k1::new();
2241                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2242                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2243                 let closing_signed = msgs::ClosingSigned {
2244                         channel_id: [2; 32],
2245                         fee_satoshis: 2316138423780173,
2246                         signature: sig_1,
2247                         fee_range: None,
2248                 };
2249                 let encoded_value = closing_signed.encode();
2250                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2251                 assert_eq!(encoded_value, target_value);
2252                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2253
2254                 let closing_signed_with_range = msgs::ClosingSigned {
2255                         channel_id: [2; 32],
2256                         fee_satoshis: 2316138423780173,
2257                         signature: sig_1,
2258                         fee_range: Some(msgs::ClosingSignedFeeRange {
2259                                 min_fee_satoshis: 0xdeadbeef,
2260                                 max_fee_satoshis: 0x1badcafe01234567,
2261                         }),
2262                 };
2263                 let encoded_value_with_range = closing_signed_with_range.encode();
2264                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2265                 assert_eq!(encoded_value_with_range, target_value_with_range);
2266                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2267                         closing_signed_with_range);
2268         }
2269
2270         #[test]
2271         fn encoding_update_add_htlc() {
2272                 let secp_ctx = Secp256k1::new();
2273                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2274                 let onion_routing_packet = msgs::OnionPacket {
2275                         version: 255,
2276                         public_key: Ok(pubkey_1),
2277                         hop_data: [1; 20*65],
2278                         hmac: [2; 32]
2279                 };
2280                 let update_add_htlc = msgs::UpdateAddHTLC {
2281                         channel_id: [2; 32],
2282                         htlc_id: 2316138423780173,
2283                         amount_msat: 3608586615801332854,
2284                         payment_hash: PaymentHash([1; 32]),
2285                         cltv_expiry: 821716,
2286                         onion_routing_packet
2287                 };
2288                 let encoded_value = update_add_htlc.encode();
2289                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2290                 assert_eq!(encoded_value, target_value);
2291         }
2292
2293         #[test]
2294         fn encoding_update_fulfill_htlc() {
2295                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2296                         channel_id: [2; 32],
2297                         htlc_id: 2316138423780173,
2298                         payment_preimage: PaymentPreimage([1; 32]),
2299                 };
2300                 let encoded_value = update_fulfill_htlc.encode();
2301                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2302                 assert_eq!(encoded_value, target_value);
2303         }
2304
2305         #[test]
2306         fn encoding_update_fail_htlc() {
2307                 let reason = OnionErrorPacket {
2308                         data: [1; 32].to_vec(),
2309                 };
2310                 let update_fail_htlc = msgs::UpdateFailHTLC {
2311                         channel_id: [2; 32],
2312                         htlc_id: 2316138423780173,
2313                         reason
2314                 };
2315                 let encoded_value = update_fail_htlc.encode();
2316                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2317                 assert_eq!(encoded_value, target_value);
2318         }
2319
2320         #[test]
2321         fn encoding_update_fail_malformed_htlc() {
2322                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2323                         channel_id: [2; 32],
2324                         htlc_id: 2316138423780173,
2325                         sha256_of_onion: [1; 32],
2326                         failure_code: 255
2327                 };
2328                 let encoded_value = update_fail_malformed_htlc.encode();
2329                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2330                 assert_eq!(encoded_value, target_value);
2331         }
2332
2333         fn do_encoding_commitment_signed(htlcs: bool) {
2334                 let secp_ctx = Secp256k1::new();
2335                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2336                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2337                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2338                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2339                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2340                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2341                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2342                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2343                 let commitment_signed = msgs::CommitmentSigned {
2344                         channel_id: [2; 32],
2345                         signature: sig_1,
2346                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2347                 };
2348                 let encoded_value = commitment_signed.encode();
2349                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2350                 if htlcs {
2351                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2352                 } else {
2353                         target_value.append(&mut hex::decode("0000").unwrap());
2354                 }
2355                 assert_eq!(encoded_value, target_value);
2356         }
2357
2358         #[test]
2359         fn encoding_commitment_signed() {
2360                 do_encoding_commitment_signed(true);
2361                 do_encoding_commitment_signed(false);
2362         }
2363
2364         #[test]
2365         fn encoding_revoke_and_ack() {
2366                 let secp_ctx = Secp256k1::new();
2367                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2368                 let raa = msgs::RevokeAndACK {
2369                         channel_id: [2; 32],
2370                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2371                         next_per_commitment_point: pubkey_1,
2372                 };
2373                 let encoded_value = raa.encode();
2374                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2375                 assert_eq!(encoded_value, target_value);
2376         }
2377
2378         #[test]
2379         fn encoding_update_fee() {
2380                 let update_fee = msgs::UpdateFee {
2381                         channel_id: [2; 32],
2382                         feerate_per_kw: 20190119,
2383                 };
2384                 let encoded_value = update_fee.encode();
2385                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2386                 assert_eq!(encoded_value, target_value);
2387         }
2388
2389         #[test]
2390         fn encoding_init() {
2391                 assert_eq!(msgs::Init {
2392                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2393                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2394                 assert_eq!(msgs::Init {
2395                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2396                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2397                 assert_eq!(msgs::Init {
2398                         features: InitFeatures::from_le_bytes(vec![]),
2399                 }.encode(), hex::decode("00000000").unwrap());
2400         }
2401
2402         #[test]
2403         fn encoding_error() {
2404                 let error = msgs::ErrorMessage {
2405                         channel_id: [2; 32],
2406                         data: String::from("rust-lightning"),
2407                 };
2408                 let encoded_value = error.encode();
2409                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2410                 assert_eq!(encoded_value, target_value);
2411         }
2412
2413         #[test]
2414         fn encoding_ping() {
2415                 let ping = msgs::Ping {
2416                         ponglen: 64,
2417                         byteslen: 64
2418                 };
2419                 let encoded_value = ping.encode();
2420                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2421                 assert_eq!(encoded_value, target_value);
2422         }
2423
2424         #[test]
2425         fn encoding_pong() {
2426                 let pong = msgs::Pong {
2427                         byteslen: 64
2428                 };
2429                 let encoded_value = pong.encode();
2430                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2431                 assert_eq!(encoded_value, target_value);
2432         }
2433
2434         #[test]
2435         fn encoding_legacy_onion_hop_data() {
2436                 let msg = msgs::OnionHopData {
2437                         format: OnionHopDataFormat::Legacy {
2438                                 short_channel_id: 0xdeadbeef1bad1dea,
2439                         },
2440                         amt_to_forward: 0x0badf00d01020304,
2441                         outgoing_cltv_value: 0xffffffff,
2442                 };
2443                 let encoded_value = msg.encode();
2444                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2445                 assert_eq!(encoded_value, target_value);
2446         }
2447
2448         #[test]
2449         fn encoding_nonfinal_onion_hop_data() {
2450                 let mut msg = msgs::OnionHopData {
2451                         format: OnionHopDataFormat::NonFinalNode {
2452                                 short_channel_id: 0xdeadbeef1bad1dea,
2453                         },
2454                         amt_to_forward: 0x0badf00d01020304,
2455                         outgoing_cltv_value: 0xffffffff,
2456                 };
2457                 let encoded_value = msg.encode();
2458                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2459                 assert_eq!(encoded_value, target_value);
2460                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2461                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2462                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2463                 } else { panic!(); }
2464                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2465                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2466         }
2467
2468         #[test]
2469         fn encoding_final_onion_hop_data() {
2470                 let mut msg = msgs::OnionHopData {
2471                         format: OnionHopDataFormat::FinalNode {
2472                                 payment_data: None,
2473                                 keysend_preimage: None,
2474                         },
2475                         amt_to_forward: 0x0badf00d01020304,
2476                         outgoing_cltv_value: 0xffffffff,
2477                 };
2478                 let encoded_value = msg.encode();
2479                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2480                 assert_eq!(encoded_value, target_value);
2481                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2482                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2483                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2484                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2485         }
2486
2487         #[test]
2488         fn encoding_final_onion_hop_data_with_secret() {
2489                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2490                 let mut msg = msgs::OnionHopData {
2491                         format: OnionHopDataFormat::FinalNode {
2492                                 payment_data: Some(FinalOnionHopData {
2493                                         payment_secret: expected_payment_secret,
2494                                         total_msat: 0x1badca1f
2495                                 }),
2496                                 keysend_preimage: None,
2497                         },
2498                         amt_to_forward: 0x0badf00d01020304,
2499                         outgoing_cltv_value: 0xffffffff,
2500                 };
2501                 let encoded_value = msg.encode();
2502                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2503                 assert_eq!(encoded_value, target_value);
2504                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2505                 if let OnionHopDataFormat::FinalNode {
2506                         payment_data: Some(FinalOnionHopData {
2507                                 payment_secret,
2508                                 total_msat: 0x1badca1f
2509                         }),
2510                         keysend_preimage: None,
2511                 } = msg.format {
2512                         assert_eq!(payment_secret, expected_payment_secret);
2513                 } else { panic!(); }
2514                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2515                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2516         }
2517
2518         #[test]
2519         fn query_channel_range_end_blocknum() {
2520                 let tests: Vec<(u32, u32, u32)> = vec![
2521                         (10000, 1500, 11500),
2522                         (0, 0xffffffff, 0xffffffff),
2523                         (1, 0xffffffff, 0xffffffff),
2524                 ];
2525
2526                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2527                         let sut = msgs::QueryChannelRange {
2528                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2529                                 first_blocknum,
2530                                 number_of_blocks,
2531                         };
2532                         assert_eq!(sut.end_blocknum(), expected);
2533                 }
2534         }
2535
2536         #[test]
2537         fn encoding_query_channel_range() {
2538                 let mut query_channel_range = msgs::QueryChannelRange {
2539                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2540                         first_blocknum: 100000,
2541                         number_of_blocks: 1500,
2542                 };
2543                 let encoded_value = query_channel_range.encode();
2544                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2545                 assert_eq!(encoded_value, target_value);
2546
2547                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2548                 assert_eq!(query_channel_range.first_blocknum, 100000);
2549                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2550         }
2551
2552         #[test]
2553         fn encoding_reply_channel_range() {
2554                 do_encoding_reply_channel_range(0);
2555                 do_encoding_reply_channel_range(1);
2556         }
2557
2558         fn do_encoding_reply_channel_range(encoding_type: u8) {
2559                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2560                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2561                 let mut reply_channel_range = msgs::ReplyChannelRange {
2562                         chain_hash: expected_chain_hash,
2563                         first_blocknum: 756230,
2564                         number_of_blocks: 1500,
2565                         sync_complete: true,
2566                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2567                 };
2568
2569                 if encoding_type == 0 {
2570                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2571                         let encoded_value = reply_channel_range.encode();
2572                         assert_eq!(encoded_value, target_value);
2573
2574                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2575                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2576                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2577                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2578                         assert_eq!(reply_channel_range.sync_complete, true);
2579                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2580                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2581                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2582                 } else {
2583                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2584                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2585                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2586                 }
2587         }
2588
2589         #[test]
2590         fn encoding_query_short_channel_ids() {
2591                 do_encoding_query_short_channel_ids(0);
2592                 do_encoding_query_short_channel_ids(1);
2593         }
2594
2595         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2596                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2597                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2598                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2599                         chain_hash: expected_chain_hash,
2600                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2601                 };
2602
2603                 if encoding_type == 0 {
2604                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2605                         let encoded_value = query_short_channel_ids.encode();
2606                         assert_eq!(encoded_value, target_value);
2607
2608                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2609                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2610                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2611                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2612                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2613                 } else {
2614                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2615                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2616                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2617                 }
2618         }
2619
2620         #[test]
2621         fn encoding_reply_short_channel_ids_end() {
2622                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2623                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2624                         chain_hash: expected_chain_hash,
2625                         full_information: true,
2626                 };
2627                 let encoded_value = reply_short_channel_ids_end.encode();
2628                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2629                 assert_eq!(encoded_value, target_value);
2630
2631                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2632                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2633                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2634         }
2635
2636         #[test]
2637         fn encoding_gossip_timestamp_filter(){
2638                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2639                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2640                         chain_hash: expected_chain_hash,
2641                         first_timestamp: 1590000000,
2642                         timestamp_range: 0xffff_ffff,
2643                 };
2644                 let encoded_value = gossip_timestamp_filter.encode();
2645                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2646                 assert_eq!(encoded_value, target_value);
2647
2648                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2649                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2650                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2651                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2652         }
2653 }