a6d096bffb93bce56a399b071e2314eff67ee61b
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::PublicKey;
28 use bitcoin::secp256k1::ecdsa::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34 use ln::onion_utils;
35 use onion_message;
36
37 use prelude::*;
38 use core::fmt;
39 use core::fmt::Debug;
40 use io::{self, Read};
41 use io_extras::read_to_end;
42
43 use util::events::{MessageSendEventsProvider, OnionMessageProvider};
44 use util::logger;
45 use util::ser::{BigSize, LengthReadable, Readable, ReadableArgs, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedBigSize, Hostname};
46
47 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
48
49 /// 21 million * 10^8 * 1000
50 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
51
52 /// An error in decoding a message or struct.
53 #[derive(Clone, Debug, PartialEq)]
54 pub enum DecodeError {
55         /// A version byte specified something we don't know how to handle.
56         /// Includes unknown realm byte in an OnionHopData packet
57         UnknownVersion,
58         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
59         UnknownRequiredFeature,
60         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
61         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
62         /// syntactically incorrect, etc
63         InvalidValue,
64         /// Buffer too short
65         ShortRead,
66         /// A length descriptor in the packet didn't describe the later data correctly
67         BadLengthDescriptor,
68         /// Error from std::io
69         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
70         io::ErrorKind),
71         /// The message included zlib-compressed values, which we don't support.
72         UnsupportedCompression,
73 }
74
75 /// An init message to be sent or received from a peer
76 #[derive(Clone, Debug, PartialEq)]
77 pub struct Init {
78         /// The relevant features which the sender supports
79         pub features: InitFeatures,
80         /// The receipient's network address. This adds the option to report a remote IP address
81         /// back to a connecting peer using the init message. A node can decide to use that information
82         /// to discover a potential update to its public IPv4 address (NAT) and use
83         /// that for a node_announcement update message containing the new address.
84         pub remote_network_address: Option<NetAddress>,
85 }
86
87 /// An error message to be sent or received from a peer
88 #[derive(Clone, Debug, PartialEq)]
89 pub struct ErrorMessage {
90         /// The channel ID involved in the error.
91         ///
92         /// All-0s indicates a general error unrelated to a specific channel, after which all channels
93         /// with the sending peer should be closed.
94         pub channel_id: [u8; 32],
95         /// A possibly human-readable error description.
96         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
97         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
98         /// the terminal emulator or the logging subsystem.
99         pub data: String,
100 }
101
102 /// A warning message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct WarningMessage {
105         /// The channel ID involved in the warning.
106         ///
107         /// All-0s indicates a warning unrelated to a specific channel.
108         pub channel_id: [u8; 32],
109         /// A possibly human-readable warning description.
110         /// The string should be sanitized before it is used (e.g. emitted to logs or printed to
111         /// stdout). Otherwise, a well crafted error message may trigger a security vulnerability in
112         /// the terminal emulator or the logging subsystem.
113         pub data: String,
114 }
115
116 /// A ping message to be sent or received from a peer
117 #[derive(Clone, Debug, PartialEq)]
118 pub struct Ping {
119         /// The desired response length
120         pub ponglen: u16,
121         /// The ping packet size.
122         /// This field is not sent on the wire. byteslen zeros are sent.
123         pub byteslen: u16,
124 }
125
126 /// A pong message to be sent or received from a peer
127 #[derive(Clone, Debug, PartialEq)]
128 pub struct Pong {
129         /// The pong packet size.
130         /// This field is not sent on the wire. byteslen zeros are sent.
131         pub byteslen: u16,
132 }
133
134 /// An open_channel message to be sent or received from a peer
135 #[derive(Clone, Debug, PartialEq)]
136 pub struct OpenChannel {
137         /// The genesis hash of the blockchain where the channel is to be opened
138         pub chain_hash: BlockHash,
139         /// A temporary channel ID, until the funding outpoint is announced
140         pub temporary_channel_id: [u8; 32],
141         /// The channel value
142         pub funding_satoshis: u64,
143         /// The amount to push to the counterparty as part of the open, in milli-satoshi
144         pub push_msat: u64,
145         /// The threshold below which outputs on transactions broadcast by sender will be omitted
146         pub dust_limit_satoshis: u64,
147         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
148         pub max_htlc_value_in_flight_msat: u64,
149         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
150         pub channel_reserve_satoshis: u64,
151         /// The minimum HTLC size incoming to sender, in milli-satoshi
152         pub htlc_minimum_msat: u64,
153         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
154         pub feerate_per_kw: u32,
155         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
156         pub to_self_delay: u16,
157         /// The maximum number of inbound HTLCs towards sender
158         pub max_accepted_htlcs: u16,
159         /// The sender's key controlling the funding transaction
160         pub funding_pubkey: PublicKey,
161         /// Used to derive a revocation key for transactions broadcast by counterparty
162         pub revocation_basepoint: PublicKey,
163         /// A payment key to sender for transactions broadcast by counterparty
164         pub payment_point: PublicKey,
165         /// Used to derive a payment key to sender for transactions broadcast by sender
166         pub delayed_payment_basepoint: PublicKey,
167         /// Used to derive an HTLC payment key to sender
168         pub htlc_basepoint: PublicKey,
169         /// The first to-be-broadcast-by-sender transaction's per commitment point
170         pub first_per_commitment_point: PublicKey,
171         /// Channel flags
172         pub channel_flags: u8,
173         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
174         pub shutdown_scriptpubkey: OptionalField<Script>,
175         /// The channel type that this channel will represent. If none is set, we derive the channel
176         /// type from the intersection of our feature bits with our counterparty's feature bits from
177         /// the Init message.
178         pub channel_type: Option<ChannelTypeFeatures>,
179 }
180
181 /// An accept_channel message to be sent or received from a peer
182 #[derive(Clone, Debug, PartialEq)]
183 pub struct AcceptChannel {
184         /// A temporary channel ID, until the funding outpoint is announced
185         pub temporary_channel_id: [u8; 32],
186         /// The threshold below which outputs on transactions broadcast by sender will be omitted
187         pub dust_limit_satoshis: u64,
188         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
189         pub max_htlc_value_in_flight_msat: u64,
190         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
191         pub channel_reserve_satoshis: u64,
192         /// The minimum HTLC size incoming to sender, in milli-satoshi
193         pub htlc_minimum_msat: u64,
194         /// Minimum depth of the funding transaction before the channel is considered open
195         pub minimum_depth: u32,
196         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
197         pub to_self_delay: u16,
198         /// The maximum number of inbound HTLCs towards sender
199         pub max_accepted_htlcs: u16,
200         /// The sender's key controlling the funding transaction
201         pub funding_pubkey: PublicKey,
202         /// Used to derive a revocation key for transactions broadcast by counterparty
203         pub revocation_basepoint: PublicKey,
204         /// A payment key to sender for transactions broadcast by counterparty
205         pub payment_point: PublicKey,
206         /// Used to derive a payment key to sender for transactions broadcast by sender
207         pub delayed_payment_basepoint: PublicKey,
208         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
209         pub htlc_basepoint: PublicKey,
210         /// The first to-be-broadcast-by-sender transaction's per commitment point
211         pub first_per_commitment_point: PublicKey,
212         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
213         pub shutdown_scriptpubkey: OptionalField<Script>,
214         /// The channel type that this channel will represent. If none is set, we derive the channel
215         /// type from the intersection of our feature bits with our counterparty's feature bits from
216         /// the Init message.
217         ///
218         /// This is required to match the equivalent field in [`OpenChannel::channel_type`].
219         pub channel_type: Option<ChannelTypeFeatures>,
220 }
221
222 /// A funding_created message to be sent or received from a peer
223 #[derive(Clone, Debug, PartialEq)]
224 pub struct FundingCreated {
225         /// A temporary channel ID, until the funding is established
226         pub temporary_channel_id: [u8; 32],
227         /// The funding transaction ID
228         pub funding_txid: Txid,
229         /// The specific output index funding this channel
230         pub funding_output_index: u16,
231         /// The signature of the channel initiator (funder) on the initial commitment transaction
232         pub signature: Signature,
233 }
234
235 /// A funding_signed message to be sent or received from a peer
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct FundingSigned {
238         /// The channel ID
239         pub channel_id: [u8; 32],
240         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
241         pub signature: Signature,
242 }
243
244 /// A channel_ready message to be sent or received from a peer
245 #[derive(Clone, Debug, PartialEq)]
246 pub struct ChannelReady {
247         /// The channel ID
248         pub channel_id: [u8; 32],
249         /// The per-commitment point of the second commitment transaction
250         pub next_per_commitment_point: PublicKey,
251         /// If set, provides a short_channel_id alias for this channel. The sender will accept payments
252         /// to be forwarded over this SCID and forward them to this messages' recipient.
253         pub short_channel_id_alias: Option<u64>,
254 }
255
256 /// A shutdown message to be sent or received from a peer
257 #[derive(Clone, Debug, PartialEq)]
258 pub struct Shutdown {
259         /// The channel ID
260         pub channel_id: [u8; 32],
261         /// The destination of this peer's funds on closing.
262         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
263         pub scriptpubkey: Script,
264 }
265
266 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
267 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
268 /// to use.
269 #[derive(Clone, Debug, PartialEq)]
270 pub struct ClosingSignedFeeRange {
271         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
272         /// transaction.
273         pub min_fee_satoshis: u64,
274         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
275         /// transaction.
276         pub max_fee_satoshis: u64,
277 }
278
279 /// A closing_signed message to be sent or received from a peer
280 #[derive(Clone, Debug, PartialEq)]
281 pub struct ClosingSigned {
282         /// The channel ID
283         pub channel_id: [u8; 32],
284         /// The proposed total fee for the closing transaction
285         pub fee_satoshis: u64,
286         /// A signature on the closing transaction
287         pub signature: Signature,
288         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
289         /// nodes.
290         pub fee_range: Option<ClosingSignedFeeRange>,
291 }
292
293 /// An update_add_htlc message to be sent or received from a peer
294 #[derive(Clone, Debug, PartialEq)]
295 pub struct UpdateAddHTLC {
296         /// The channel ID
297         pub channel_id: [u8; 32],
298         /// The HTLC ID
299         pub htlc_id: u64,
300         /// The HTLC value in milli-satoshi
301         pub amount_msat: u64,
302         /// The payment hash, the pre-image of which controls HTLC redemption
303         pub payment_hash: PaymentHash,
304         /// The expiry height of the HTLC
305         pub cltv_expiry: u32,
306         pub(crate) onion_routing_packet: OnionPacket,
307 }
308
309  /// An onion message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct OnionMessage {
312         /// Used in decrypting the onion packet's payload.
313         pub blinding_point: PublicKey,
314         pub(crate) onion_routing_packet: onion_message::Packet,
315 }
316
317 /// An update_fulfill_htlc message to be sent or received from a peer
318 #[derive(Clone, Debug, PartialEq)]
319 pub struct UpdateFulfillHTLC {
320         /// The channel ID
321         pub channel_id: [u8; 32],
322         /// The HTLC ID
323         pub htlc_id: u64,
324         /// The pre-image of the payment hash, allowing HTLC redemption
325         pub payment_preimage: PaymentPreimage,
326 }
327
328 /// An update_fail_htlc message to be sent or received from a peer
329 #[derive(Clone, Debug, PartialEq)]
330 pub struct UpdateFailHTLC {
331         /// The channel ID
332         pub channel_id: [u8; 32],
333         /// The HTLC ID
334         pub htlc_id: u64,
335         pub(crate) reason: OnionErrorPacket,
336 }
337
338 /// An update_fail_malformed_htlc message to be sent or received from a peer
339 #[derive(Clone, Debug, PartialEq)]
340 pub struct UpdateFailMalformedHTLC {
341         /// The channel ID
342         pub channel_id: [u8; 32],
343         /// The HTLC ID
344         pub htlc_id: u64,
345         pub(crate) sha256_of_onion: [u8; 32],
346         /// The failure code
347         pub failure_code: u16,
348 }
349
350 /// A commitment_signed message to be sent or received from a peer
351 #[derive(Clone, Debug, PartialEq)]
352 pub struct CommitmentSigned {
353         /// The channel ID
354         pub channel_id: [u8; 32],
355         /// A signature on the commitment transaction
356         pub signature: Signature,
357         /// Signatures on the HTLC transactions
358         pub htlc_signatures: Vec<Signature>,
359 }
360
361 /// A revoke_and_ack message to be sent or received from a peer
362 #[derive(Clone, Debug, PartialEq)]
363 pub struct RevokeAndACK {
364         /// The channel ID
365         pub channel_id: [u8; 32],
366         /// The secret corresponding to the per-commitment point
367         pub per_commitment_secret: [u8; 32],
368         /// The next sender-broadcast commitment transaction's per-commitment point
369         pub next_per_commitment_point: PublicKey,
370 }
371
372 /// An update_fee message to be sent or received from a peer
373 #[derive(Clone, Debug, PartialEq)]
374 pub struct UpdateFee {
375         /// The channel ID
376         pub channel_id: [u8; 32],
377         /// Fee rate per 1000-weight of the transaction
378         pub feerate_per_kw: u32,
379 }
380
381 #[derive(Clone, Debug, PartialEq)]
382 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
383 /// This is used to convince the recipient that the channel is at a certain commitment
384 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
385 /// and even later commitments may have been revoked.
386 pub struct DataLossProtect {
387         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
388         /// belonging to the recipient
389         pub your_last_per_commitment_secret: [u8; 32],
390         /// The sender's per-commitment point for their current commitment transaction
391         pub my_current_per_commitment_point: PublicKey,
392 }
393
394 /// A channel_reestablish message to be sent or received from a peer
395 #[derive(Clone, Debug, PartialEq)]
396 pub struct ChannelReestablish {
397         /// The channel ID
398         pub channel_id: [u8; 32],
399         /// The next commitment number for the sender
400         pub next_local_commitment_number: u64,
401         /// The next commitment number for the recipient
402         pub next_remote_commitment_number: u64,
403         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
404         pub data_loss_protect: OptionalField<DataLossProtect>,
405 }
406
407 /// An announcement_signatures message to be sent or received from a peer
408 #[derive(Clone, Debug, PartialEq)]
409 pub struct AnnouncementSignatures {
410         /// The channel ID
411         pub channel_id: [u8; 32],
412         /// The short channel ID
413         pub short_channel_id: u64,
414         /// A signature by the node key
415         pub node_signature: Signature,
416         /// A signature by the funding key
417         pub bitcoin_signature: Signature,
418 }
419
420 /// An address which can be used to connect to a remote peer
421 #[derive(Clone, Debug, PartialEq)]
422 pub enum NetAddress {
423         /// An IPv4 address/port on which the peer is listening.
424         IPv4 {
425                 /// The 4-byte IPv4 address
426                 addr: [u8; 4],
427                 /// The port on which the node is listening
428                 port: u16,
429         },
430         /// An IPv6 address/port on which the peer is listening.
431         IPv6 {
432                 /// The 16-byte IPv6 address
433                 addr: [u8; 16],
434                 /// The port on which the node is listening
435                 port: u16,
436         },
437         /// An old-style Tor onion address/port on which the peer is listening.
438         ///
439         /// This field is deprecated and the Tor network generally no longer supports V2 Onion
440         /// addresses. Thus, the details are not parsed here.
441         OnionV2([u8; 12]),
442         /// A new-style Tor onion address/port on which the peer is listening.
443         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
444         /// wrap as base32 and append ".onion".
445         OnionV3 {
446                 /// The ed25519 long-term public key of the peer
447                 ed25519_pubkey: [u8; 32],
448                 /// The checksum of the pubkey and version, as included in the onion address
449                 checksum: u16,
450                 /// The version byte, as defined by the Tor Onion v3 spec.
451                 version: u8,
452                 /// The port on which the node is listening
453                 port: u16,
454         },
455         /// A hostname/port on which the peer is listening.
456         Hostname {
457                 /// The hostname on which the node is listening.
458                 hostname: Hostname,
459                 /// The port on which the node is listening.
460                 port: u16,
461         },
462 }
463 impl NetAddress {
464         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
465         /// by this.
466         pub(crate) fn get_id(&self) -> u8 {
467                 match self {
468                         &NetAddress::IPv4 {..} => { 1 },
469                         &NetAddress::IPv6 {..} => { 2 },
470                         &NetAddress::OnionV2(_) => { 3 },
471                         &NetAddress::OnionV3 {..} => { 4 },
472                         &NetAddress::Hostname {..} => { 5 },
473                 }
474         }
475
476         /// Strict byte-length of address descriptor, 1-byte type not recorded
477         fn len(&self) -> u16 {
478                 match self {
479                         &NetAddress::IPv4 { .. } => { 6 },
480                         &NetAddress::IPv6 { .. } => { 18 },
481                         &NetAddress::OnionV2(_) => { 12 },
482                         &NetAddress::OnionV3 { .. } => { 37 },
483                         // Consists of 1-byte hostname length, hostname bytes, and 2-byte port.
484                         &NetAddress::Hostname { ref hostname, .. } => { u16::from(hostname.len()) + 3 },
485                 }
486         }
487
488         /// The maximum length of any address descriptor, not including the 1-byte type.
489         /// This maximum length is reached by a hostname address descriptor:
490         /// a hostname with a maximum length of 255, its 1-byte length and a 2-byte port.
491         pub(crate) const MAX_LEN: u16 = 258;
492 }
493
494 impl Writeable for NetAddress {
495         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
496                 match self {
497                         &NetAddress::IPv4 { ref addr, ref port } => {
498                                 1u8.write(writer)?;
499                                 addr.write(writer)?;
500                                 port.write(writer)?;
501                         },
502                         &NetAddress::IPv6 { ref addr, ref port } => {
503                                 2u8.write(writer)?;
504                                 addr.write(writer)?;
505                                 port.write(writer)?;
506                         },
507                         &NetAddress::OnionV2(bytes) => {
508                                 3u8.write(writer)?;
509                                 bytes.write(writer)?;
510                         },
511                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
512                                 4u8.write(writer)?;
513                                 ed25519_pubkey.write(writer)?;
514                                 checksum.write(writer)?;
515                                 version.write(writer)?;
516                                 port.write(writer)?;
517                         },
518                         &NetAddress::Hostname { ref hostname, ref port } => {
519                                 5u8.write(writer)?;
520                                 hostname.write(writer)?;
521                                 port.write(writer)?;
522                         },
523                 }
524                 Ok(())
525         }
526 }
527
528 impl Readable for Result<NetAddress, u8> {
529         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
530                 let byte = <u8 as Readable>::read(reader)?;
531                 match byte {
532                         1 => {
533                                 Ok(Ok(NetAddress::IPv4 {
534                                         addr: Readable::read(reader)?,
535                                         port: Readable::read(reader)?,
536                                 }))
537                         },
538                         2 => {
539                                 Ok(Ok(NetAddress::IPv6 {
540                                         addr: Readable::read(reader)?,
541                                         port: Readable::read(reader)?,
542                                 }))
543                         },
544                         3 => Ok(Ok(NetAddress::OnionV2(Readable::read(reader)?))),
545                         4 => {
546                                 Ok(Ok(NetAddress::OnionV3 {
547                                         ed25519_pubkey: Readable::read(reader)?,
548                                         checksum: Readable::read(reader)?,
549                                         version: Readable::read(reader)?,
550                                         port: Readable::read(reader)?,
551                                 }))
552                         },
553                         5 => {
554                                 Ok(Ok(NetAddress::Hostname {
555                                         hostname: Readable::read(reader)?,
556                                         port: Readable::read(reader)?,
557                                 }))
558                         },
559                         _ => return Ok(Err(byte)),
560                 }
561         }
562 }
563
564 impl Readable for NetAddress {
565         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
566                 match Readable::read(reader) {
567                         Ok(Ok(res)) => Ok(res),
568                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
569                         Err(e) => Err(e),
570                 }
571         }
572 }
573
574
575 /// The unsigned part of a node_announcement
576 #[derive(Clone, Debug, PartialEq)]
577 pub struct UnsignedNodeAnnouncement {
578         /// The advertised features
579         pub features: NodeFeatures,
580         /// A strictly monotonic announcement counter, with gaps allowed
581         pub timestamp: u32,
582         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
583         /// to this node).
584         pub node_id: PublicKey,
585         /// An RGB color for UI purposes
586         pub rgb: [u8; 3],
587         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
588         /// of uniqueness.
589         pub alias: [u8; 32],
590         /// List of addresses on which this node is reachable
591         pub addresses: Vec<NetAddress>,
592         pub(crate) excess_address_data: Vec<u8>,
593         pub(crate) excess_data: Vec<u8>,
594 }
595 #[derive(Clone, Debug, PartialEq)]
596 /// A node_announcement message to be sent or received from a peer
597 pub struct NodeAnnouncement {
598         /// The signature by the node key
599         pub signature: Signature,
600         /// The actual content of the announcement
601         pub contents: UnsignedNodeAnnouncement,
602 }
603
604 /// The unsigned part of a channel_announcement
605 #[derive(Clone, Debug, PartialEq)]
606 pub struct UnsignedChannelAnnouncement {
607         /// The advertised channel features
608         pub features: ChannelFeatures,
609         /// The genesis hash of the blockchain where the channel is to be opened
610         pub chain_hash: BlockHash,
611         /// The short channel ID
612         pub short_channel_id: u64,
613         /// One of the two node_ids which are endpoints of this channel
614         pub node_id_1: PublicKey,
615         /// The other of the two node_ids which are endpoints of this channel
616         pub node_id_2: PublicKey,
617         /// The funding key for the first node
618         pub bitcoin_key_1: PublicKey,
619         /// The funding key for the second node
620         pub bitcoin_key_2: PublicKey,
621         pub(crate) excess_data: Vec<u8>,
622 }
623 /// A channel_announcement message to be sent or received from a peer
624 #[derive(Clone, Debug, PartialEq)]
625 pub struct ChannelAnnouncement {
626         /// Authentication of the announcement by the first public node
627         pub node_signature_1: Signature,
628         /// Authentication of the announcement by the second public node
629         pub node_signature_2: Signature,
630         /// Proof of funding UTXO ownership by the first public node
631         pub bitcoin_signature_1: Signature,
632         /// Proof of funding UTXO ownership by the second public node
633         pub bitcoin_signature_2: Signature,
634         /// The actual announcement
635         pub contents: UnsignedChannelAnnouncement,
636 }
637
638 /// The unsigned part of a channel_update
639 #[derive(Clone, Debug, PartialEq)]
640 pub struct UnsignedChannelUpdate {
641         /// The genesis hash of the blockchain where the channel is to be opened
642         pub chain_hash: BlockHash,
643         /// The short channel ID
644         pub short_channel_id: u64,
645         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
646         pub timestamp: u32,
647         /// Channel flags
648         pub flags: u8,
649         /// The number of blocks such that if:
650         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
651         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
652         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
653         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
654         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
655         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
656         /// constructing the route.
657         pub cltv_expiry_delta: u16,
658         /// The minimum HTLC size incoming to sender, in milli-satoshi
659         pub htlc_minimum_msat: u64,
660         /// The maximum HTLC value incoming to sender, in milli-satoshi. Used to be optional.
661         pub htlc_maximum_msat: u64,
662         /// The base HTLC fee charged by sender, in milli-satoshi
663         pub fee_base_msat: u32,
664         /// The amount to fee multiplier, in micro-satoshi
665         pub fee_proportional_millionths: u32,
666         /// Excess data which was signed as a part of the message which we do not (yet) understand how
667         /// to decode. This is stored to ensure forward-compatibility as new fields are added to the
668         /// lightning gossip
669         pub excess_data: Vec<u8>,
670 }
671 /// A channel_update message to be sent or received from a peer
672 #[derive(Clone, Debug, PartialEq)]
673 pub struct ChannelUpdate {
674         /// A signature of the channel update
675         pub signature: Signature,
676         /// The actual channel update
677         pub contents: UnsignedChannelUpdate,
678 }
679
680 /// A query_channel_range message is used to query a peer for channel
681 /// UTXOs in a range of blocks. The recipient of a query makes a best
682 /// effort to reply to the query using one or more reply_channel_range
683 /// messages.
684 #[derive(Clone, Debug, PartialEq)]
685 pub struct QueryChannelRange {
686         /// The genesis hash of the blockchain being queried
687         pub chain_hash: BlockHash,
688         /// The height of the first block for the channel UTXOs being queried
689         pub first_blocknum: u32,
690         /// The number of blocks to include in the query results
691         pub number_of_blocks: u32,
692 }
693
694 /// A reply_channel_range message is a reply to a query_channel_range
695 /// message. Multiple reply_channel_range messages can be sent in reply
696 /// to a single query_channel_range message. The query recipient makes a
697 /// best effort to respond based on their local network view which may
698 /// not be a perfect view of the network. The short_channel_ids in the
699 /// reply are encoded. We only support encoding_type=0 uncompressed
700 /// serialization and do not support encoding_type=1 zlib serialization.
701 #[derive(Clone, Debug, PartialEq)]
702 pub struct ReplyChannelRange {
703         /// The genesis hash of the blockchain being queried
704         pub chain_hash: BlockHash,
705         /// The height of the first block in the range of the reply
706         pub first_blocknum: u32,
707         /// The number of blocks included in the range of the reply
708         pub number_of_blocks: u32,
709         /// True when this is the final reply for a query
710         pub sync_complete: bool,
711         /// The short_channel_ids in the channel range
712         pub short_channel_ids: Vec<u64>,
713 }
714
715 /// A query_short_channel_ids message is used to query a peer for
716 /// routing gossip messages related to one or more short_channel_ids.
717 /// The query recipient will reply with the latest, if available,
718 /// channel_announcement, channel_update and node_announcement messages
719 /// it maintains for the requested short_channel_ids followed by a
720 /// reply_short_channel_ids_end message. The short_channel_ids sent in
721 /// this query are encoded. We only support encoding_type=0 uncompressed
722 /// serialization and do not support encoding_type=1 zlib serialization.
723 #[derive(Clone, Debug, PartialEq)]
724 pub struct QueryShortChannelIds {
725         /// The genesis hash of the blockchain being queried
726         pub chain_hash: BlockHash,
727         /// The short_channel_ids that are being queried
728         pub short_channel_ids: Vec<u64>,
729 }
730
731 /// A reply_short_channel_ids_end message is sent as a reply to a
732 /// query_short_channel_ids message. The query recipient makes a best
733 /// effort to respond based on their local network view which may not be
734 /// a perfect view of the network.
735 #[derive(Clone, Debug, PartialEq)]
736 pub struct ReplyShortChannelIdsEnd {
737         /// The genesis hash of the blockchain that was queried
738         pub chain_hash: BlockHash,
739         /// Indicates if the query recipient maintains up-to-date channel
740         /// information for the chain_hash
741         pub full_information: bool,
742 }
743
744 /// A gossip_timestamp_filter message is used by a node to request
745 /// gossip relay for messages in the requested time range when the
746 /// gossip_queries feature has been negotiated.
747 #[derive(Clone, Debug, PartialEq)]
748 pub struct GossipTimestampFilter {
749         /// The genesis hash of the blockchain for channel and node information
750         pub chain_hash: BlockHash,
751         /// The starting unix timestamp
752         pub first_timestamp: u32,
753         /// The range of information in seconds
754         pub timestamp_range: u32,
755 }
756
757 /// Encoding type for data compression of collections in gossip queries.
758 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
759 enum EncodingType {
760         Uncompressed = 0x00,
761 }
762
763 /// Used to put an error message in a LightningError
764 #[derive(Clone, Debug)]
765 pub enum ErrorAction {
766         /// The peer took some action which made us think they were useless. Disconnect them.
767         DisconnectPeer {
768                 /// An error message which we should make an effort to send before we disconnect.
769                 msg: Option<ErrorMessage>
770         },
771         /// The peer did something harmless that we weren't able to process, just log and ignore
772         // New code should *not* use this. New code must use IgnoreAndLog, below!
773         IgnoreError,
774         /// The peer did something harmless that we weren't able to meaningfully process.
775         /// If the error is logged, log it at the given level.
776         IgnoreAndLog(logger::Level),
777         /// The peer provided us with a gossip message which we'd already seen. In most cases this
778         /// should be ignored, but it may result in the message being forwarded if it is a duplicate of
779         /// our own channel announcements.
780         IgnoreDuplicateGossip,
781         /// The peer did something incorrect. Tell them.
782         SendErrorMessage {
783                 /// The message to send.
784                 msg: ErrorMessage,
785         },
786         /// The peer did something incorrect. Tell them without closing any channels.
787         SendWarningMessage {
788                 /// The message to send.
789                 msg: WarningMessage,
790                 /// The peer may have done something harmless that we weren't able to meaningfully process,
791                 /// though we should still tell them about it.
792                 /// If this event is logged, log it at the given level.
793                 log_level: logger::Level,
794         },
795 }
796
797 /// An Err type for failure to process messages.
798 #[derive(Clone, Debug)]
799 pub struct LightningError {
800         /// A human-readable message describing the error
801         pub err: String,
802         /// The action which should be taken against the offending peer.
803         pub action: ErrorAction,
804 }
805
806 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
807 /// transaction updates if they were pending.
808 #[derive(Clone, Debug, PartialEq)]
809 pub struct CommitmentUpdate {
810         /// update_add_htlc messages which should be sent
811         pub update_add_htlcs: Vec<UpdateAddHTLC>,
812         /// update_fulfill_htlc messages which should be sent
813         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
814         /// update_fail_htlc messages which should be sent
815         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
816         /// update_fail_malformed_htlc messages which should be sent
817         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
818         /// An update_fee message which should be sent
819         pub update_fee: Option<UpdateFee>,
820         /// Finally, the commitment_signed message which should be sent
821         pub commitment_signed: CommitmentSigned,
822 }
823
824 /// Messages could have optional fields to use with extended features
825 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
826 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
827 /// separate enum type for them.
828 /// (C-not exported) due to a free generic in T
829 #[derive(Clone, Debug, PartialEq)]
830 pub enum OptionalField<T> {
831         /// Optional field is included in message
832         Present(T),
833         /// Optional field is absent in message
834         Absent
835 }
836
837 /// A trait to describe an object which can receive channel messages.
838 ///
839 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
840 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
841 pub trait ChannelMessageHandler : MessageSendEventsProvider {
842         //Channel init:
843         /// Handle an incoming open_channel message from the given peer.
844         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
845         /// Handle an incoming accept_channel message from the given peer.
846         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
847         /// Handle an incoming funding_created message from the given peer.
848         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
849         /// Handle an incoming funding_signed message from the given peer.
850         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
851         /// Handle an incoming channel_ready message from the given peer.
852         fn handle_channel_ready(&self, their_node_id: &PublicKey, msg: &ChannelReady);
853
854         // Channl close:
855         /// Handle an incoming shutdown message from the given peer.
856         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
857         /// Handle an incoming closing_signed message from the given peer.
858         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
859
860         // HTLC handling:
861         /// Handle an incoming update_add_htlc message from the given peer.
862         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
863         /// Handle an incoming update_fulfill_htlc message from the given peer.
864         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
865         /// Handle an incoming update_fail_htlc message from the given peer.
866         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
867         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
868         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
869         /// Handle an incoming commitment_signed message from the given peer.
870         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
871         /// Handle an incoming revoke_and_ack message from the given peer.
872         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
873
874         /// Handle an incoming update_fee message from the given peer.
875         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
876
877         // Channel-to-announce:
878         /// Handle an incoming announcement_signatures message from the given peer.
879         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
880
881         // Connection loss/reestablish:
882         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
883         /// is believed to be possible in the future (eg they're sending us messages we don't
884         /// understand or indicate they require unknown feature bits), no_connection_possible is set
885         /// and any outstanding channels should be failed.
886         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
887
888         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
889         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init);
890         /// Handle an incoming channel_reestablish message from the given peer.
891         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
892
893         /// Handle an incoming channel update from the given peer.
894         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
895
896         // Error:
897         /// Handle an incoming error message from the given peer.
898         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
899
900         // Handler information:
901         /// Gets the node feature flags which this handler itself supports. All available handlers are
902         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
903         /// which are broadcasted in our node_announcement message.
904         fn provided_node_features(&self) -> NodeFeatures;
905
906         /// Gets the init feature flags which should be sent to the given peer. All available handlers
907         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
908         /// which are sent in our [`Init`] message.
909         ///
910         /// Note that this method is called before [`Self::peer_connected`].
911         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
912 }
913
914 /// A trait to describe an object which can receive routing messages.
915 ///
916 /// # Implementor DoS Warnings
917 ///
918 /// For `gossip_queries` messages there are potential DoS vectors when handling
919 /// inbound queries. Implementors using an on-disk network graph should be aware of
920 /// repeated disk I/O for queries accessing different parts of the network graph.
921 pub trait RoutingMessageHandler : MessageSendEventsProvider {
922         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
923         /// false or returning an Err otherwise.
924         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
925         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
926         /// or returning an Err otherwise.
927         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
928         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
929         /// false or returning an Err otherwise.
930         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
931         /// Gets channel announcements and updates required to dump our routing table to a remote node,
932         /// starting at the short_channel_id indicated by starting_point and including announcements
933         /// for a single channel.
934         fn get_next_channel_announcement(&self, starting_point: u64) -> Option<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
935         /// Gets a node announcement required to dump our routing table to a remote node, starting at
936         /// the node *after* the provided pubkey and including up to one announcement immediately
937         /// higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
938         /// If None is provided for starting_point, we start at the first node.
939         fn get_next_node_announcement(&self, starting_point: Option<&PublicKey>) -> Option<NodeAnnouncement>;
940         /// Called when a connection is established with a peer. This can be used to
941         /// perform routing table synchronization using a strategy defined by the
942         /// implementor.
943         fn peer_connected(&self, their_node_id: &PublicKey, init: &Init);
944         /// Handles the reply of a query we initiated to learn about channels
945         /// for a given range of blocks. We can expect to receive one or more
946         /// replies to a single query.
947         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
948         /// Handles the reply of a query we initiated asking for routing gossip
949         /// messages for a list of channels. We should receive this message when
950         /// a node has completed its best effort to send us the pertaining routing
951         /// gossip messages.
952         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
953         /// Handles when a peer asks us to send a list of short_channel_ids
954         /// for the requested range of blocks.
955         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
956         /// Handles when a peer asks us to send routing gossip messages for a
957         /// list of short_channel_ids.
958         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
959
960         // Handler information:
961         /// Gets the node feature flags which this handler itself supports. All available handlers are
962         /// queried similarly and their feature flags are OR'd together to form the [`NodeFeatures`]
963         /// which are broadcasted in our [`NodeAnnouncement`] message.
964         fn provided_node_features(&self) -> NodeFeatures;
965         /// Gets the init feature flags which should be sent to the given peer. All available handlers
966         /// are queried similarly and their feature flags are OR'd together to form the [`InitFeatures`]
967         /// which are sent in our [`Init`] message.
968         ///
969         /// Note that this method is called before [`Self::peer_connected`].
970         fn provided_init_features(&self, their_node_id: &PublicKey) -> InitFeatures;
971 }
972
973 /// A trait to describe an object that can receive onion messages.
974 pub trait OnionMessageHandler : OnionMessageProvider {
975         /// Handle an incoming onion_message message from the given peer.
976         fn handle_onion_message(&self, peer_node_id: &PublicKey, msg: &OnionMessage);
977         /// Called when a connection is established with a peer. Can be used to track which peers
978         /// advertise onion message support and are online.
979         fn peer_connected(&self, their_node_id: &PublicKey, init: &Init);
980         /// Indicates a connection to the peer failed/an existing connection was lost. Allows handlers to
981         /// drop and refuse to forward onion messages to this peer.
982         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
983 }
984
985 mod fuzzy_internal_msgs {
986         use prelude::*;
987         use ln::{PaymentPreimage, PaymentSecret};
988
989         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
990         // them from untrusted input):
991         #[derive(Clone)]
992         pub(crate) struct FinalOnionHopData {
993                 pub(crate) payment_secret: PaymentSecret,
994                 /// The total value, in msat, of the payment as received by the ultimate recipient.
995                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
996                 pub(crate) total_msat: u64,
997         }
998
999         pub(crate) enum OnionHopDataFormat {
1000                 Legacy { // aka Realm-0
1001                         short_channel_id: u64,
1002                 },
1003                 NonFinalNode {
1004                         short_channel_id: u64,
1005                 },
1006                 FinalNode {
1007                         payment_data: Option<FinalOnionHopData>,
1008                         keysend_preimage: Option<PaymentPreimage>,
1009                 },
1010         }
1011
1012         pub struct OnionHopData {
1013                 pub(crate) format: OnionHopDataFormat,
1014                 /// The value, in msat, of the payment after this hop's fee is deducted.
1015                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
1016                 pub(crate) amt_to_forward: u64,
1017                 pub(crate) outgoing_cltv_value: u32,
1018                 // 12 bytes of 0-padding for Legacy format
1019         }
1020
1021         pub struct DecodedOnionErrorPacket {
1022                 pub(crate) hmac: [u8; 32],
1023                 pub(crate) failuremsg: Vec<u8>,
1024                 pub(crate) pad: Vec<u8>,
1025         }
1026 }
1027 #[cfg(fuzzing)]
1028 pub use self::fuzzy_internal_msgs::*;
1029 #[cfg(not(fuzzing))]
1030 pub(crate) use self::fuzzy_internal_msgs::*;
1031
1032 #[derive(Clone)]
1033 pub(crate) struct OnionPacket {
1034         pub(crate) version: u8,
1035         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
1036         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
1037         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
1038         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
1039         pub(crate) hop_data: [u8; 20*65],
1040         pub(crate) hmac: [u8; 32],
1041 }
1042
1043 impl onion_utils::Packet for OnionPacket {
1044         type Data = onion_utils::FixedSizeOnionPacket;
1045         fn new(pubkey: PublicKey, hop_data: onion_utils::FixedSizeOnionPacket, hmac: [u8; 32]) -> Self {
1046                 Self {
1047                         version: 0,
1048                         public_key: Ok(pubkey),
1049                         hop_data: hop_data.0,
1050                         hmac,
1051                 }
1052         }
1053 }
1054
1055 impl PartialEq for OnionPacket {
1056         fn eq(&self, other: &OnionPacket) -> bool {
1057                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
1058                         if i != j { return false; }
1059                 }
1060                 self.version == other.version &&
1061                         self.public_key == other.public_key &&
1062                         self.hmac == other.hmac
1063         }
1064 }
1065
1066 impl fmt::Debug for OnionPacket {
1067         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1068                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
1069         }
1070 }
1071
1072 #[derive(Clone, Debug, PartialEq)]
1073 pub(crate) struct OnionErrorPacket {
1074         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
1075         // (TODO) We limit it in decode to much lower...
1076         pub(crate) data: Vec<u8>,
1077 }
1078
1079 impl fmt::Display for DecodeError {
1080         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1081                 match *self {
1082                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
1083                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
1084                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
1085                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
1086                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
1087                         DecodeError::Io(ref e) => fmt::Debug::fmt(e, f),
1088                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
1089                 }
1090         }
1091 }
1092
1093 impl From<io::Error> for DecodeError {
1094         fn from(e: io::Error) -> Self {
1095                 if e.kind() == io::ErrorKind::UnexpectedEof {
1096                         DecodeError::ShortRead
1097                 } else {
1098                         DecodeError::Io(e.kind())
1099                 }
1100         }
1101 }
1102
1103 impl Writeable for OptionalField<Script> {
1104         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1105                 match *self {
1106                         OptionalField::Present(ref script) => {
1107                                 // Note that Writeable for script includes the 16-bit length tag for us
1108                                 script.write(w)?;
1109                         },
1110                         OptionalField::Absent => {}
1111                 }
1112                 Ok(())
1113         }
1114 }
1115
1116 impl Readable for OptionalField<Script> {
1117         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1118                 match <u16 as Readable>::read(r) {
1119                         Ok(len) => {
1120                                 let mut buf = vec![0; len as usize];
1121                                 r.read_exact(&mut buf)?;
1122                                 Ok(OptionalField::Present(Script::from(buf)))
1123                         },
1124                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
1125                         Err(e) => Err(e)
1126                 }
1127         }
1128 }
1129
1130 impl Writeable for OptionalField<u64> {
1131         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1132                 match *self {
1133                         OptionalField::Present(ref value) => {
1134                                 value.write(w)?;
1135                         },
1136                         OptionalField::Absent => {}
1137                 }
1138                 Ok(())
1139         }
1140 }
1141
1142 impl Readable for OptionalField<u64> {
1143         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1144                 let value: u64 = Readable::read(r)?;
1145                 Ok(OptionalField::Present(value))
1146         }
1147 }
1148
1149
1150 impl_writeable_msg!(AcceptChannel, {
1151         temporary_channel_id,
1152         dust_limit_satoshis,
1153         max_htlc_value_in_flight_msat,
1154         channel_reserve_satoshis,
1155         htlc_minimum_msat,
1156         minimum_depth,
1157         to_self_delay,
1158         max_accepted_htlcs,
1159         funding_pubkey,
1160         revocation_basepoint,
1161         payment_point,
1162         delayed_payment_basepoint,
1163         htlc_basepoint,
1164         first_per_commitment_point,
1165         shutdown_scriptpubkey
1166 }, {
1167         (1, channel_type, option),
1168 });
1169
1170 impl_writeable_msg!(AnnouncementSignatures, {
1171         channel_id,
1172         short_channel_id,
1173         node_signature,
1174         bitcoin_signature
1175 }, {});
1176
1177 impl Writeable for ChannelReestablish {
1178         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1179                 self.channel_id.write(w)?;
1180                 self.next_local_commitment_number.write(w)?;
1181                 self.next_remote_commitment_number.write(w)?;
1182                 match self.data_loss_protect {
1183                         OptionalField::Present(ref data_loss_protect) => {
1184                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1185                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1186                         },
1187                         OptionalField::Absent => {}
1188                 }
1189                 Ok(())
1190         }
1191 }
1192
1193 impl Readable for ChannelReestablish{
1194         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1195                 Ok(Self {
1196                         channel_id: Readable::read(r)?,
1197                         next_local_commitment_number: Readable::read(r)?,
1198                         next_remote_commitment_number: Readable::read(r)?,
1199                         data_loss_protect: {
1200                                 match <[u8; 32] as Readable>::read(r) {
1201                                         Ok(your_last_per_commitment_secret) =>
1202                                                 OptionalField::Present(DataLossProtect {
1203                                                         your_last_per_commitment_secret,
1204                                                         my_current_per_commitment_point: Readable::read(r)?,
1205                                                 }),
1206                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1207                                         Err(e) => return Err(e)
1208                                 }
1209                         }
1210                 })
1211         }
1212 }
1213
1214 impl_writeable_msg!(ClosingSigned,
1215         { channel_id, fee_satoshis, signature },
1216         { (1, fee_range, option) }
1217 );
1218
1219 impl_writeable!(ClosingSignedFeeRange, {
1220         min_fee_satoshis,
1221         max_fee_satoshis
1222 });
1223
1224 impl_writeable_msg!(CommitmentSigned, {
1225         channel_id,
1226         signature,
1227         htlc_signatures
1228 }, {});
1229
1230 impl_writeable!(DecodedOnionErrorPacket, {
1231         hmac,
1232         failuremsg,
1233         pad
1234 });
1235
1236 impl_writeable_msg!(FundingCreated, {
1237         temporary_channel_id,
1238         funding_txid,
1239         funding_output_index,
1240         signature
1241 }, {});
1242
1243 impl_writeable_msg!(FundingSigned, {
1244         channel_id,
1245         signature
1246 }, {});
1247
1248 impl_writeable_msg!(ChannelReady, {
1249         channel_id,
1250         next_per_commitment_point,
1251 }, {
1252         (1, short_channel_id_alias, option),
1253 });
1254
1255 impl Writeable for Init {
1256         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1257                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1258                 // our relevant feature bits. This keeps us compatible with old nodes.
1259                 self.features.write_up_to_13(w)?;
1260                 self.features.write(w)?;
1261                 encode_tlv_stream!(w, {
1262                         (3, self.remote_network_address, option)
1263                 });
1264                 Ok(())
1265         }
1266 }
1267
1268 impl Readable for Init {
1269         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1270                 let global_features: InitFeatures = Readable::read(r)?;
1271                 let features: InitFeatures = Readable::read(r)?;
1272                 let mut remote_network_address: Option<NetAddress> = None;
1273                 decode_tlv_stream!(r, {
1274                         (3, remote_network_address, option)
1275                 });
1276                 Ok(Init {
1277                         features: features.or(global_features),
1278                         remote_network_address,
1279                 })
1280         }
1281 }
1282
1283 impl_writeable_msg!(OpenChannel, {
1284         chain_hash,
1285         temporary_channel_id,
1286         funding_satoshis,
1287         push_msat,
1288         dust_limit_satoshis,
1289         max_htlc_value_in_flight_msat,
1290         channel_reserve_satoshis,
1291         htlc_minimum_msat,
1292         feerate_per_kw,
1293         to_self_delay,
1294         max_accepted_htlcs,
1295         funding_pubkey,
1296         revocation_basepoint,
1297         payment_point,
1298         delayed_payment_basepoint,
1299         htlc_basepoint,
1300         first_per_commitment_point,
1301         channel_flags,
1302         shutdown_scriptpubkey
1303 }, {
1304         (1, channel_type, option),
1305 });
1306
1307 impl_writeable_msg!(RevokeAndACK, {
1308         channel_id,
1309         per_commitment_secret,
1310         next_per_commitment_point
1311 }, {});
1312
1313 impl_writeable_msg!(Shutdown, {
1314         channel_id,
1315         scriptpubkey
1316 }, {});
1317
1318 impl_writeable_msg!(UpdateFailHTLC, {
1319         channel_id,
1320         htlc_id,
1321         reason
1322 }, {});
1323
1324 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1325         channel_id,
1326         htlc_id,
1327         sha256_of_onion,
1328         failure_code
1329 }, {});
1330
1331 impl_writeable_msg!(UpdateFee, {
1332         channel_id,
1333         feerate_per_kw
1334 }, {});
1335
1336 impl_writeable_msg!(UpdateFulfillHTLC, {
1337         channel_id,
1338         htlc_id,
1339         payment_preimage
1340 }, {});
1341
1342 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1343 // serialization format in a way which assumes we know the total serialized length/message end
1344 // position.
1345 impl_writeable!(OnionErrorPacket, {
1346         data
1347 });
1348
1349 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1350 // serialization format in a way which assumes we know the total serialized length/message end
1351 // position.
1352 impl Writeable for OnionPacket {
1353         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1354                 self.version.write(w)?;
1355                 match self.public_key {
1356                         Ok(pubkey) => pubkey.write(w)?,
1357                         Err(_) => [0u8;33].write(w)?,
1358                 }
1359                 w.write_all(&self.hop_data)?;
1360                 self.hmac.write(w)?;
1361                 Ok(())
1362         }
1363 }
1364
1365 impl Readable for OnionPacket {
1366         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1367                 Ok(OnionPacket {
1368                         version: Readable::read(r)?,
1369                         public_key: {
1370                                 let mut buf = [0u8;33];
1371                                 r.read_exact(&mut buf)?;
1372                                 PublicKey::from_slice(&buf)
1373                         },
1374                         hop_data: Readable::read(r)?,
1375                         hmac: Readable::read(r)?,
1376                 })
1377         }
1378 }
1379
1380 impl_writeable_msg!(UpdateAddHTLC, {
1381         channel_id,
1382         htlc_id,
1383         amount_msat,
1384         payment_hash,
1385         cltv_expiry,
1386         onion_routing_packet
1387 }, {});
1388
1389 impl Readable for OnionMessage {
1390         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1391                 let blinding_point: PublicKey = Readable::read(r)?;
1392                 let len: u16 = Readable::read(r)?;
1393                 let mut packet_reader = FixedLengthReader::new(r, len as u64);
1394                 let onion_routing_packet: onion_message::Packet = <onion_message::Packet as LengthReadable>::read(&mut packet_reader)?;
1395                 Ok(Self {
1396                         blinding_point,
1397                         onion_routing_packet,
1398                 })
1399         }
1400 }
1401
1402 impl Writeable for OnionMessage {
1403         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1404                 self.blinding_point.write(w)?;
1405                 let onion_packet_len = self.onion_routing_packet.serialized_length();
1406                 (onion_packet_len as u16).write(w)?;
1407                 self.onion_routing_packet.write(w)?;
1408                 Ok(())
1409         }
1410 }
1411
1412 impl Writeable for FinalOnionHopData {
1413         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1414                 self.payment_secret.0.write(w)?;
1415                 HighZeroBytesDroppedBigSize(self.total_msat).write(w)
1416         }
1417 }
1418
1419 impl Readable for FinalOnionHopData {
1420         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1421                 let secret: [u8; 32] = Readable::read(r)?;
1422                 let amt: HighZeroBytesDroppedBigSize<u64> = Readable::read(r)?;
1423                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1424         }
1425 }
1426
1427 impl Writeable for OnionHopData {
1428         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1429                 match self.format {
1430                         OnionHopDataFormat::Legacy { short_channel_id } => {
1431                                 0u8.write(w)?;
1432                                 short_channel_id.write(w)?;
1433                                 self.amt_to_forward.write(w)?;
1434                                 self.outgoing_cltv_value.write(w)?;
1435                                 w.write_all(&[0;12])?;
1436                         },
1437                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1438                                 encode_varint_length_prefixed_tlv!(w, {
1439                                         (2, HighZeroBytesDroppedBigSize(self.amt_to_forward), required),
1440                                         (4, HighZeroBytesDroppedBigSize(self.outgoing_cltv_value), required),
1441                                         (6, short_channel_id, required)
1442                                 });
1443                         },
1444                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1445                                 encode_varint_length_prefixed_tlv!(w, {
1446                                         (2, HighZeroBytesDroppedBigSize(self.amt_to_forward), required),
1447                                         (4, HighZeroBytesDroppedBigSize(self.outgoing_cltv_value), required),
1448                                         (8, payment_data, option),
1449                                         (5482373484, keysend_preimage, option)
1450                                 });
1451                         },
1452                 }
1453                 Ok(())
1454         }
1455 }
1456
1457 impl Readable for OnionHopData {
1458         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1459                 let b: BigSize = Readable::read(r)?;
1460                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1461                 let (format, amt, cltv_value) = if b.0 != LEGACY_ONION_HOP_FLAG {
1462                         let mut rd = FixedLengthReader::new(r, b.0);
1463                         let mut amt = HighZeroBytesDroppedBigSize(0u64);
1464                         let mut cltv_value = HighZeroBytesDroppedBigSize(0u32);
1465                         let mut short_id: Option<u64> = None;
1466                         let mut payment_data: Option<FinalOnionHopData> = None;
1467                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1468                         decode_tlv_stream!(&mut rd, {
1469                                 (2, amt, required),
1470                                 (4, cltv_value, required),
1471                                 (6, short_id, option),
1472                                 (8, payment_data, option),
1473                                 // See https://github.com/lightning/blips/blob/master/blip-0003.md
1474                                 (5482373484, keysend_preimage, option)
1475                         });
1476                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1477                         let format = if let Some(short_channel_id) = short_id {
1478                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1479                                 OnionHopDataFormat::NonFinalNode {
1480                                         short_channel_id,
1481                                 }
1482                         } else {
1483                                 if let &Some(ref data) = &payment_data {
1484                                         if data.total_msat > MAX_VALUE_MSAT {
1485                                                 return Err(DecodeError::InvalidValue);
1486                                         }
1487                                 }
1488                                 OnionHopDataFormat::FinalNode {
1489                                         payment_data,
1490                                         keysend_preimage,
1491                                 }
1492                         };
1493                         (format, amt.0, cltv_value.0)
1494                 } else {
1495                         let format = OnionHopDataFormat::Legacy {
1496                                 short_channel_id: Readable::read(r)?,
1497                         };
1498                         let amt: u64 = Readable::read(r)?;
1499                         let cltv_value: u32 = Readable::read(r)?;
1500                         r.read_exact(&mut [0; 12])?;
1501                         (format, amt, cltv_value)
1502                 };
1503
1504                 if amt > MAX_VALUE_MSAT {
1505                         return Err(DecodeError::InvalidValue);
1506                 }
1507                 Ok(OnionHopData {
1508                         format,
1509                         amt_to_forward: amt,
1510                         outgoing_cltv_value: cltv_value,
1511                 })
1512         }
1513 }
1514
1515 // ReadableArgs because we need onion_utils::decode_next_hop to accommodate payment packets and
1516 // onion message packets.
1517 impl ReadableArgs<()> for OnionHopData {
1518         fn read<R: Read>(r: &mut R, _arg: ()) -> Result<Self, DecodeError> {
1519                 <Self as Readable>::read(r)
1520         }
1521 }
1522
1523 impl Writeable for Ping {
1524         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1525                 self.ponglen.write(w)?;
1526                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1527                 Ok(())
1528         }
1529 }
1530
1531 impl Readable for Ping {
1532         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1533                 Ok(Ping {
1534                         ponglen: Readable::read(r)?,
1535                         byteslen: {
1536                                 let byteslen = Readable::read(r)?;
1537                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1538                                 byteslen
1539                         }
1540                 })
1541         }
1542 }
1543
1544 impl Writeable for Pong {
1545         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1546                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1547                 Ok(())
1548         }
1549 }
1550
1551 impl Readable for Pong {
1552         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1553                 Ok(Pong {
1554                         byteslen: {
1555                                 let byteslen = Readable::read(r)?;
1556                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1557                                 byteslen
1558                         }
1559                 })
1560         }
1561 }
1562
1563 impl Writeable for UnsignedChannelAnnouncement {
1564         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1565                 self.features.write(w)?;
1566                 self.chain_hash.write(w)?;
1567                 self.short_channel_id.write(w)?;
1568                 self.node_id_1.write(w)?;
1569                 self.node_id_2.write(w)?;
1570                 self.bitcoin_key_1.write(w)?;
1571                 self.bitcoin_key_2.write(w)?;
1572                 w.write_all(&self.excess_data[..])?;
1573                 Ok(())
1574         }
1575 }
1576
1577 impl Readable for UnsignedChannelAnnouncement {
1578         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1579                 Ok(Self {
1580                         features: Readable::read(r)?,
1581                         chain_hash: Readable::read(r)?,
1582                         short_channel_id: Readable::read(r)?,
1583                         node_id_1: Readable::read(r)?,
1584                         node_id_2: Readable::read(r)?,
1585                         bitcoin_key_1: Readable::read(r)?,
1586                         bitcoin_key_2: Readable::read(r)?,
1587                         excess_data: read_to_end(r)?,
1588                 })
1589         }
1590 }
1591
1592 impl_writeable!(ChannelAnnouncement, {
1593         node_signature_1,
1594         node_signature_2,
1595         bitcoin_signature_1,
1596         bitcoin_signature_2,
1597         contents
1598 });
1599
1600 impl Writeable for UnsignedChannelUpdate {
1601         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1602                 // `message_flags` used to indicate presence of `htlc_maximum_msat`, but was deprecated in the spec.
1603                 const MESSAGE_FLAGS: u8 = 1;
1604                 self.chain_hash.write(w)?;
1605                 self.short_channel_id.write(w)?;
1606                 self.timestamp.write(w)?;
1607                 let all_flags = self.flags as u16 | ((MESSAGE_FLAGS as u16) << 8);
1608                 all_flags.write(w)?;
1609                 self.cltv_expiry_delta.write(w)?;
1610                 self.htlc_minimum_msat.write(w)?;
1611                 self.fee_base_msat.write(w)?;
1612                 self.fee_proportional_millionths.write(w)?;
1613                 self.htlc_maximum_msat.write(w)?;
1614                 w.write_all(&self.excess_data[..])?;
1615                 Ok(())
1616         }
1617 }
1618
1619 impl Readable for UnsignedChannelUpdate {
1620         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1621                 Ok(Self {
1622                         chain_hash: Readable::read(r)?,
1623                         short_channel_id: Readable::read(r)?,
1624                         timestamp: Readable::read(r)?,
1625                         flags: {
1626                                 let flags: u16 = Readable::read(r)?;
1627                                 // Note: we ignore the `message_flags` for now, since it was deprecated by the spec.
1628                                 flags as u8
1629                         },
1630                         cltv_expiry_delta: Readable::read(r)?,
1631                         htlc_minimum_msat: Readable::read(r)?,
1632                         fee_base_msat: Readable::read(r)?,
1633                         fee_proportional_millionths: Readable::read(r)?,
1634                         htlc_maximum_msat: Readable::read(r)?,
1635                         excess_data: read_to_end(r)?,
1636                 })
1637         }
1638 }
1639
1640 impl_writeable!(ChannelUpdate, {
1641         signature,
1642         contents
1643 });
1644
1645 impl Writeable for ErrorMessage {
1646         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1647                 self.channel_id.write(w)?;
1648                 (self.data.len() as u16).write(w)?;
1649                 w.write_all(self.data.as_bytes())?;
1650                 Ok(())
1651         }
1652 }
1653
1654 impl Readable for ErrorMessage {
1655         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1656                 Ok(Self {
1657                         channel_id: Readable::read(r)?,
1658                         data: {
1659                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1660                                 let mut data = Vec::with_capacity(sz);
1661                                 data.resize(sz, 0);
1662                                 r.read_exact(&mut data)?;
1663                                 match String::from_utf8(data) {
1664                                         Ok(s) => s,
1665                                         Err(_) => return Err(DecodeError::InvalidValue),
1666                                 }
1667                         }
1668                 })
1669         }
1670 }
1671
1672 impl Writeable for WarningMessage {
1673         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1674                 self.channel_id.write(w)?;
1675                 (self.data.len() as u16).write(w)?;
1676                 w.write_all(self.data.as_bytes())?;
1677                 Ok(())
1678         }
1679 }
1680
1681 impl Readable for WarningMessage {
1682         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1683                 Ok(Self {
1684                         channel_id: Readable::read(r)?,
1685                         data: {
1686                                 let sz: usize = <u16 as Readable>::read(r)? as usize;
1687                                 let mut data = Vec::with_capacity(sz);
1688                                 data.resize(sz, 0);
1689                                 r.read_exact(&mut data)?;
1690                                 match String::from_utf8(data) {
1691                                         Ok(s) => s,
1692                                         Err(_) => return Err(DecodeError::InvalidValue),
1693                                 }
1694                         }
1695                 })
1696         }
1697 }
1698
1699 impl Writeable for UnsignedNodeAnnouncement {
1700         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1701                 self.features.write(w)?;
1702                 self.timestamp.write(w)?;
1703                 self.node_id.write(w)?;
1704                 w.write_all(&self.rgb)?;
1705                 self.alias.write(w)?;
1706
1707                 let mut addr_len = 0;
1708                 for addr in self.addresses.iter() {
1709                         addr_len += 1 + addr.len();
1710                 }
1711                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1712                 for addr in self.addresses.iter() {
1713                         addr.write(w)?;
1714                 }
1715                 w.write_all(&self.excess_address_data[..])?;
1716                 w.write_all(&self.excess_data[..])?;
1717                 Ok(())
1718         }
1719 }
1720
1721 impl Readable for UnsignedNodeAnnouncement {
1722         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1723                 let features: NodeFeatures = Readable::read(r)?;
1724                 let timestamp: u32 = Readable::read(r)?;
1725                 let node_id: PublicKey = Readable::read(r)?;
1726                 let mut rgb = [0; 3];
1727                 r.read_exact(&mut rgb)?;
1728                 let alias: [u8; 32] = Readable::read(r)?;
1729
1730                 let addr_len: u16 = Readable::read(r)?;
1731                 let mut addresses: Vec<NetAddress> = Vec::new();
1732                 let mut addr_readpos = 0;
1733                 let mut excess = false;
1734                 let mut excess_byte = 0;
1735                 loop {
1736                         if addr_len <= addr_readpos { break; }
1737                         match Readable::read(r) {
1738                                 Ok(Ok(addr)) => {
1739                                         if addr_len < addr_readpos + 1 + addr.len() {
1740                                                 return Err(DecodeError::BadLengthDescriptor);
1741                                         }
1742                                         addr_readpos += (1 + addr.len()) as u16;
1743                                         addresses.push(addr);
1744                                 },
1745                                 Ok(Err(unknown_descriptor)) => {
1746                                         excess = true;
1747                                         excess_byte = unknown_descriptor;
1748                                         break;
1749                                 },
1750                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1751                                 Err(e) => return Err(e),
1752                         }
1753                 }
1754
1755                 let mut excess_data = vec![];
1756                 let excess_address_data = if addr_readpos < addr_len {
1757                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1758                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1759                         if excess {
1760                                 excess_address_data[0] = excess_byte;
1761                         }
1762                         excess_address_data
1763                 } else {
1764                         if excess {
1765                                 excess_data.push(excess_byte);
1766                         }
1767                         Vec::new()
1768                 };
1769                 excess_data.extend(read_to_end(r)?.iter());
1770                 Ok(UnsignedNodeAnnouncement {
1771                         features,
1772                         timestamp,
1773                         node_id,
1774                         rgb,
1775                         alias,
1776                         addresses,
1777                         excess_address_data,
1778                         excess_data,
1779                 })
1780         }
1781 }
1782
1783 impl_writeable!(NodeAnnouncement, {
1784         signature,
1785         contents
1786 });
1787
1788 impl Readable for QueryShortChannelIds {
1789         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1790                 let chain_hash: BlockHash = Readable::read(r)?;
1791
1792                 let encoding_len: u16 = Readable::read(r)?;
1793                 let encoding_type: u8 = Readable::read(r)?;
1794
1795                 // Must be encoding_type=0 uncompressed serialization. We do not
1796                 // support encoding_type=1 zlib serialization.
1797                 if encoding_type != EncodingType::Uncompressed as u8 {
1798                         return Err(DecodeError::UnsupportedCompression);
1799                 }
1800
1801                 // We expect the encoding_len to always includes the 1-byte
1802                 // encoding_type and that short_channel_ids are 8-bytes each
1803                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1804                         return Err(DecodeError::InvalidValue);
1805                 }
1806
1807                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1808                 // less the 1-byte encoding_type
1809                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1810                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1811                 for _ in 0..short_channel_id_count {
1812                         short_channel_ids.push(Readable::read(r)?);
1813                 }
1814
1815                 Ok(QueryShortChannelIds {
1816                         chain_hash,
1817                         short_channel_ids,
1818                 })
1819         }
1820 }
1821
1822 impl Writeable for QueryShortChannelIds {
1823         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1824                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1825                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1826
1827                 self.chain_hash.write(w)?;
1828                 encoding_len.write(w)?;
1829
1830                 // We only support type=0 uncompressed serialization
1831                 (EncodingType::Uncompressed as u8).write(w)?;
1832
1833                 for scid in self.short_channel_ids.iter() {
1834                         scid.write(w)?;
1835                 }
1836
1837                 Ok(())
1838         }
1839 }
1840
1841 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1842         chain_hash,
1843         full_information,
1844 }, {});
1845
1846 impl QueryChannelRange {
1847         /**
1848          * Calculates the overflow safe ending block height for the query.
1849          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1850          */
1851         pub fn end_blocknum(&self) -> u32 {
1852                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1853                         Some(block) => block,
1854                         None => u32::max_value(),
1855                 }
1856         }
1857 }
1858
1859 impl_writeable_msg!(QueryChannelRange, {
1860         chain_hash,
1861         first_blocknum,
1862         number_of_blocks
1863 }, {});
1864
1865 impl Readable for ReplyChannelRange {
1866         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1867                 let chain_hash: BlockHash = Readable::read(r)?;
1868                 let first_blocknum: u32 = Readable::read(r)?;
1869                 let number_of_blocks: u32 = Readable::read(r)?;
1870                 let sync_complete: bool = Readable::read(r)?;
1871
1872                 let encoding_len: u16 = Readable::read(r)?;
1873                 let encoding_type: u8 = Readable::read(r)?;
1874
1875                 // Must be encoding_type=0 uncompressed serialization. We do not
1876                 // support encoding_type=1 zlib serialization.
1877                 if encoding_type != EncodingType::Uncompressed as u8 {
1878                         return Err(DecodeError::UnsupportedCompression);
1879                 }
1880
1881                 // We expect the encoding_len to always includes the 1-byte
1882                 // encoding_type and that short_channel_ids are 8-bytes each
1883                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1884                         return Err(DecodeError::InvalidValue);
1885                 }
1886
1887                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1888                 // less the 1-byte encoding_type
1889                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1890                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1891                 for _ in 0..short_channel_id_count {
1892                         short_channel_ids.push(Readable::read(r)?);
1893                 }
1894
1895                 Ok(ReplyChannelRange {
1896                         chain_hash,
1897                         first_blocknum,
1898                         number_of_blocks,
1899                         sync_complete,
1900                         short_channel_ids
1901                 })
1902         }
1903 }
1904
1905 impl Writeable for ReplyChannelRange {
1906         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1907                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1908                 self.chain_hash.write(w)?;
1909                 self.first_blocknum.write(w)?;
1910                 self.number_of_blocks.write(w)?;
1911                 self.sync_complete.write(w)?;
1912
1913                 encoding_len.write(w)?;
1914                 (EncodingType::Uncompressed as u8).write(w)?;
1915                 for scid in self.short_channel_ids.iter() {
1916                         scid.write(w)?;
1917                 }
1918
1919                 Ok(())
1920         }
1921 }
1922
1923 impl_writeable_msg!(GossipTimestampFilter, {
1924         chain_hash,
1925         first_timestamp,
1926         timestamp_range,
1927 }, {});
1928
1929 #[cfg(test)]
1930 mod tests {
1931         use hex;
1932         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1933         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1934         use ln::msgs;
1935         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1936         use util::ser::{Writeable, Readable, Hostname};
1937
1938         use bitcoin::hashes::hex::FromHex;
1939         use bitcoin::util::address::Address;
1940         use bitcoin::network::constants::Network;
1941         use bitcoin::blockdata::script::Builder;
1942         use bitcoin::blockdata::opcodes;
1943         use bitcoin::hash_types::{Txid, BlockHash};
1944
1945         use bitcoin::secp256k1::{PublicKey,SecretKey};
1946         use bitcoin::secp256k1::{Secp256k1, Message};
1947
1948         use io::{self, Cursor};
1949         use prelude::*;
1950         use core::convert::TryFrom;
1951
1952         #[test]
1953         fn encoding_channel_reestablish_no_secret() {
1954                 let cr = msgs::ChannelReestablish {
1955                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1956                         next_local_commitment_number: 3,
1957                         next_remote_commitment_number: 4,
1958                         data_loss_protect: OptionalField::Absent,
1959                 };
1960
1961                 let encoded_value = cr.encode();
1962                 assert_eq!(
1963                         encoded_value,
1964                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1965                 );
1966         }
1967
1968         #[test]
1969         fn encoding_channel_reestablish_with_secret() {
1970                 let public_key = {
1971                         let secp_ctx = Secp256k1::new();
1972                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
1973                 };
1974
1975                 let cr = msgs::ChannelReestablish {
1976                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1977                         next_local_commitment_number: 3,
1978                         next_remote_commitment_number: 4,
1979                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
1980                 };
1981
1982                 let encoded_value = cr.encode();
1983                 assert_eq!(
1984                         encoded_value,
1985                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
1986                 );
1987         }
1988
1989         macro_rules! get_keys_from {
1990                 ($slice: expr, $secp_ctx: expr) => {
1991                         {
1992                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
1993                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
1994                                 (privkey, pubkey)
1995                         }
1996                 }
1997         }
1998
1999         macro_rules! get_sig_on {
2000                 ($privkey: expr, $ctx: expr, $string: expr) => {
2001                         {
2002                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
2003                                 $ctx.sign_ecdsa(&sighash, &$privkey)
2004                         }
2005                 }
2006         }
2007
2008         #[test]
2009         fn encoding_announcement_signatures() {
2010                 let secp_ctx = Secp256k1::new();
2011                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2012                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
2013                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
2014                 let announcement_signatures = msgs::AnnouncementSignatures {
2015                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
2016                         short_channel_id: 2316138423780173,
2017                         node_signature: sig_1,
2018                         bitcoin_signature: sig_2,
2019                 };
2020
2021                 let encoded_value = announcement_signatures.encode();
2022                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
2023         }
2024
2025         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
2026                 let secp_ctx = Secp256k1::new();
2027                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2028                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2029                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2030                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2031                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2032                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2033                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2034                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2035                 let mut features = ChannelFeatures::known();
2036                 if unknown_features_bits {
2037                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
2038                 }
2039                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
2040                         features,
2041                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2042                         short_channel_id: 2316138423780173,
2043                         node_id_1: pubkey_1,
2044                         node_id_2: pubkey_2,
2045                         bitcoin_key_1: pubkey_3,
2046                         bitcoin_key_2: pubkey_4,
2047                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
2048                 };
2049                 let channel_announcement = msgs::ChannelAnnouncement {
2050                         node_signature_1: sig_1,
2051                         node_signature_2: sig_2,
2052                         bitcoin_signature_1: sig_3,
2053                         bitcoin_signature_2: sig_4,
2054                         contents: unsigned_channel_announcement,
2055                 };
2056                 let encoded_value = channel_announcement.encode();
2057                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
2058                 if unknown_features_bits {
2059                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2060                 } else {
2061                         target_value.append(&mut hex::decode("0000").unwrap());
2062                 }
2063                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2064                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
2065                 if excess_data {
2066                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
2067                 }
2068                 assert_eq!(encoded_value, target_value);
2069         }
2070
2071         #[test]
2072         fn encoding_channel_announcement() {
2073                 do_encoding_channel_announcement(true, false);
2074                 do_encoding_channel_announcement(false, true);
2075                 do_encoding_channel_announcement(false, false);
2076                 do_encoding_channel_announcement(true, true);
2077         }
2078
2079         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, hostname: bool, excess_address_data: bool, excess_data: bool) {
2080                 let secp_ctx = Secp256k1::new();
2081                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2082                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2083                 let features = if unknown_features_bits {
2084                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
2085                 } else {
2086                         // Set to some features we may support
2087                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
2088                 };
2089                 let mut addresses = Vec::new();
2090                 if ipv4 {
2091                         addresses.push(msgs::NetAddress::IPv4 {
2092                                 addr: [255, 254, 253, 252],
2093                                 port: 9735
2094                         });
2095                 }
2096                 if ipv6 {
2097                         addresses.push(msgs::NetAddress::IPv6 {
2098                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
2099                                 port: 9735
2100                         });
2101                 }
2102                 if onionv2 {
2103                         addresses.push(msgs::NetAddress::OnionV2(
2104                                 [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 38, 7]
2105                         ));
2106                 }
2107                 if onionv3 {
2108                         addresses.push(msgs::NetAddress::OnionV3 {
2109                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
2110                                 checksum: 32,
2111                                 version: 16,
2112                                 port: 9735
2113                         });
2114                 }
2115                 if hostname {
2116                         addresses.push(msgs::NetAddress::Hostname {
2117                                 hostname: Hostname::try_from(String::from("host")).unwrap(),
2118                                 port: 9735,
2119                         });
2120                 }
2121                 let mut addr_len = 0;
2122                 for addr in &addresses {
2123                         addr_len += addr.len() + 1;
2124                 }
2125                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
2126                         features,
2127                         timestamp: 20190119,
2128                         node_id: pubkey_1,
2129                         rgb: [32; 3],
2130                         alias: [16;32],
2131                         addresses,
2132                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
2133                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
2134                 };
2135                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
2136                 let node_announcement = msgs::NodeAnnouncement {
2137                         signature: sig_1,
2138                         contents: unsigned_node_announcement,
2139                 };
2140                 let encoded_value = node_announcement.encode();
2141                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2142                 if unknown_features_bits {
2143                         target_value.append(&mut hex::decode("0002ffff").unwrap());
2144                 } else {
2145                         target_value.append(&mut hex::decode("000122").unwrap());
2146                 }
2147                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
2148                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
2149                 if ipv4 {
2150                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
2151                 }
2152                 if ipv6 {
2153                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
2154                 }
2155                 if onionv2 {
2156                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
2157                 }
2158                 if onionv3 {
2159                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
2160                 }
2161                 if hostname {
2162                         target_value.append(&mut hex::decode("0504686f73742607").unwrap());
2163                 }
2164                 if excess_address_data {
2165                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
2166                 }
2167                 if excess_data {
2168                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2169                 }
2170                 assert_eq!(encoded_value, target_value);
2171         }
2172
2173         #[test]
2174         fn encoding_node_announcement() {
2175                 do_encoding_node_announcement(true, true, true, true, true, true, true, true);
2176                 do_encoding_node_announcement(false, false, false, false, false, false, false, false);
2177                 do_encoding_node_announcement(false, true, false, false, false, false, false, false);
2178                 do_encoding_node_announcement(false, false, true, false, false, false, false, false);
2179                 do_encoding_node_announcement(false, false, false, true, false, false, false, false);
2180                 do_encoding_node_announcement(false, false, false, false, true, false, false, false);
2181                 do_encoding_node_announcement(false, false, false, false, false, true, false, false);
2182                 do_encoding_node_announcement(false, false, false, false, false, false, true, false);
2183                 do_encoding_node_announcement(false, true, false, true, false, false, true, false);
2184                 do_encoding_node_announcement(false, false, true, false, true, false, false, false);
2185         }
2186
2187         fn do_encoding_channel_update(direction: bool, disable: bool, excess_data: bool) {
2188                 let secp_ctx = Secp256k1::new();
2189                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2190                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2191                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
2192                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2193                         short_channel_id: 2316138423780173,
2194                         timestamp: 20190119,
2195                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2196                         cltv_expiry_delta: 144,
2197                         htlc_minimum_msat: 1000000,
2198                         htlc_maximum_msat: 131355275467161,
2199                         fee_base_msat: 10000,
2200                         fee_proportional_millionths: 20,
2201                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2202                 };
2203                 let channel_update = msgs::ChannelUpdate {
2204                         signature: sig_1,
2205                         contents: unsigned_channel_update
2206                 };
2207                 let encoded_value = channel_update.encode();
2208                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2209                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2210                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2211                 target_value.append(&mut hex::decode("01").unwrap());
2212                 target_value.append(&mut hex::decode("00").unwrap());
2213                 if direction {
2214                         let flag = target_value.last_mut().unwrap();
2215                         *flag = 1;
2216                 }
2217                 if disable {
2218                         let flag = target_value.last_mut().unwrap();
2219                         *flag = *flag | 1 << 1;
2220                 }
2221                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2222                 target_value.append(&mut hex::decode("0000777788889999").unwrap());
2223                 if excess_data {
2224                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2225                 }
2226                 assert_eq!(encoded_value, target_value);
2227         }
2228
2229         #[test]
2230         fn encoding_channel_update() {
2231                 do_encoding_channel_update(false, false, false);
2232                 do_encoding_channel_update(false, false, true);
2233                 do_encoding_channel_update(true, false, false);
2234                 do_encoding_channel_update(true, false, true);
2235                 do_encoding_channel_update(false, true, false);
2236                 do_encoding_channel_update(false, true, true);
2237                 do_encoding_channel_update(true, true, false);
2238                 do_encoding_channel_update(true, true, true);
2239         }
2240
2241         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2242                 let secp_ctx = Secp256k1::new();
2243                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2244                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2245                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2246                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2247                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2248                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2249                 let open_channel = msgs::OpenChannel {
2250                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2251                         temporary_channel_id: [2; 32],
2252                         funding_satoshis: 1311768467284833366,
2253                         push_msat: 2536655962884945560,
2254                         dust_limit_satoshis: 3608586615801332854,
2255                         max_htlc_value_in_flight_msat: 8517154655701053848,
2256                         channel_reserve_satoshis: 8665828695742877976,
2257                         htlc_minimum_msat: 2316138423780173,
2258                         feerate_per_kw: 821716,
2259                         to_self_delay: 49340,
2260                         max_accepted_htlcs: 49340,
2261                         funding_pubkey: pubkey_1,
2262                         revocation_basepoint: pubkey_2,
2263                         payment_point: pubkey_3,
2264                         delayed_payment_basepoint: pubkey_4,
2265                         htlc_basepoint: pubkey_5,
2266                         first_per_commitment_point: pubkey_6,
2267                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2268                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2269                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2270                 };
2271                 let encoded_value = open_channel.encode();
2272                 let mut target_value = Vec::new();
2273                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2274                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2275                 if random_bit {
2276                         target_value.append(&mut hex::decode("20").unwrap());
2277                 } else {
2278                         target_value.append(&mut hex::decode("00").unwrap());
2279                 }
2280                 if shutdown {
2281                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2282                 }
2283                 if incl_chan_type {
2284                         target_value.append(&mut hex::decode("0100").unwrap());
2285                 }
2286                 assert_eq!(encoded_value, target_value);
2287         }
2288
2289         #[test]
2290         fn encoding_open_channel() {
2291                 do_encoding_open_channel(false, false, false);
2292                 do_encoding_open_channel(false, false, true);
2293                 do_encoding_open_channel(false, true, false);
2294                 do_encoding_open_channel(false, true, true);
2295                 do_encoding_open_channel(true, false, false);
2296                 do_encoding_open_channel(true, false, true);
2297                 do_encoding_open_channel(true, true, false);
2298                 do_encoding_open_channel(true, true, true);
2299         }
2300
2301         fn do_encoding_accept_channel(shutdown: bool) {
2302                 let secp_ctx = Secp256k1::new();
2303                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2304                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2305                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2306                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2307                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2308                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2309                 let accept_channel = msgs::AcceptChannel {
2310                         temporary_channel_id: [2; 32],
2311                         dust_limit_satoshis: 1311768467284833366,
2312                         max_htlc_value_in_flight_msat: 2536655962884945560,
2313                         channel_reserve_satoshis: 3608586615801332854,
2314                         htlc_minimum_msat: 2316138423780173,
2315                         minimum_depth: 821716,
2316                         to_self_delay: 49340,
2317                         max_accepted_htlcs: 49340,
2318                         funding_pubkey: pubkey_1,
2319                         revocation_basepoint: pubkey_2,
2320                         payment_point: pubkey_3,
2321                         delayed_payment_basepoint: pubkey_4,
2322                         htlc_basepoint: pubkey_5,
2323                         first_per_commitment_point: pubkey_6,
2324                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2325                         channel_type: None,
2326                 };
2327                 let encoded_value = accept_channel.encode();
2328                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2329                 if shutdown {
2330                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2331                 }
2332                 assert_eq!(encoded_value, target_value);
2333         }
2334
2335         #[test]
2336         fn encoding_accept_channel() {
2337                 do_encoding_accept_channel(false);
2338                 do_encoding_accept_channel(true);
2339         }
2340
2341         #[test]
2342         fn encoding_funding_created() {
2343                 let secp_ctx = Secp256k1::new();
2344                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2345                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2346                 let funding_created = msgs::FundingCreated {
2347                         temporary_channel_id: [2; 32],
2348                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2349                         funding_output_index: 255,
2350                         signature: sig_1,
2351                 };
2352                 let encoded_value = funding_created.encode();
2353                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2354                 assert_eq!(encoded_value, target_value);
2355         }
2356
2357         #[test]
2358         fn encoding_funding_signed() {
2359                 let secp_ctx = Secp256k1::new();
2360                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2361                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2362                 let funding_signed = msgs::FundingSigned {
2363                         channel_id: [2; 32],
2364                         signature: sig_1,
2365                 };
2366                 let encoded_value = funding_signed.encode();
2367                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2368                 assert_eq!(encoded_value, target_value);
2369         }
2370
2371         #[test]
2372         fn encoding_channel_ready() {
2373                 let secp_ctx = Secp256k1::new();
2374                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2375                 let channel_ready = msgs::ChannelReady {
2376                         channel_id: [2; 32],
2377                         next_per_commitment_point: pubkey_1,
2378                         short_channel_id_alias: None,
2379                 };
2380                 let encoded_value = channel_ready.encode();
2381                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2382                 assert_eq!(encoded_value, target_value);
2383         }
2384
2385         fn do_encoding_shutdown(script_type: u8) {
2386                 let secp_ctx = Secp256k1::new();
2387                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2388                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2389                 let shutdown = msgs::Shutdown {
2390                         channel_id: [2; 32],
2391                         scriptpubkey:
2392                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).script_pubkey() }
2393                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).unwrap().script_pubkey() }
2394                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, inner: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2395                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2396                 };
2397                 let encoded_value = shutdown.encode();
2398                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2399                 if script_type == 1 {
2400                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2401                 } else if script_type == 2 {
2402                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2403                 } else if script_type == 3 {
2404                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2405                 } else if script_type == 4 {
2406                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2407                 }
2408                 assert_eq!(encoded_value, target_value);
2409         }
2410
2411         #[test]
2412         fn encoding_shutdown() {
2413                 do_encoding_shutdown(1);
2414                 do_encoding_shutdown(2);
2415                 do_encoding_shutdown(3);
2416                 do_encoding_shutdown(4);
2417         }
2418
2419         #[test]
2420         fn encoding_closing_signed() {
2421                 let secp_ctx = Secp256k1::new();
2422                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2423                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2424                 let closing_signed = msgs::ClosingSigned {
2425                         channel_id: [2; 32],
2426                         fee_satoshis: 2316138423780173,
2427                         signature: sig_1,
2428                         fee_range: None,
2429                 };
2430                 let encoded_value = closing_signed.encode();
2431                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2432                 assert_eq!(encoded_value, target_value);
2433                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2434
2435                 let closing_signed_with_range = msgs::ClosingSigned {
2436                         channel_id: [2; 32],
2437                         fee_satoshis: 2316138423780173,
2438                         signature: sig_1,
2439                         fee_range: Some(msgs::ClosingSignedFeeRange {
2440                                 min_fee_satoshis: 0xdeadbeef,
2441                                 max_fee_satoshis: 0x1badcafe01234567,
2442                         }),
2443                 };
2444                 let encoded_value_with_range = closing_signed_with_range.encode();
2445                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2446                 assert_eq!(encoded_value_with_range, target_value_with_range);
2447                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2448                         closing_signed_with_range);
2449         }
2450
2451         #[test]
2452         fn encoding_update_add_htlc() {
2453                 let secp_ctx = Secp256k1::new();
2454                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2455                 let onion_routing_packet = msgs::OnionPacket {
2456                         version: 255,
2457                         public_key: Ok(pubkey_1),
2458                         hop_data: [1; 20*65],
2459                         hmac: [2; 32]
2460                 };
2461                 let update_add_htlc = msgs::UpdateAddHTLC {
2462                         channel_id: [2; 32],
2463                         htlc_id: 2316138423780173,
2464                         amount_msat: 3608586615801332854,
2465                         payment_hash: PaymentHash([1; 32]),
2466                         cltv_expiry: 821716,
2467                         onion_routing_packet
2468                 };
2469                 let encoded_value = update_add_htlc.encode();
2470                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2471                 assert_eq!(encoded_value, target_value);
2472         }
2473
2474         #[test]
2475         fn encoding_update_fulfill_htlc() {
2476                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2477                         channel_id: [2; 32],
2478                         htlc_id: 2316138423780173,
2479                         payment_preimage: PaymentPreimage([1; 32]),
2480                 };
2481                 let encoded_value = update_fulfill_htlc.encode();
2482                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2483                 assert_eq!(encoded_value, target_value);
2484         }
2485
2486         #[test]
2487         fn encoding_update_fail_htlc() {
2488                 let reason = OnionErrorPacket {
2489                         data: [1; 32].to_vec(),
2490                 };
2491                 let update_fail_htlc = msgs::UpdateFailHTLC {
2492                         channel_id: [2; 32],
2493                         htlc_id: 2316138423780173,
2494                         reason
2495                 };
2496                 let encoded_value = update_fail_htlc.encode();
2497                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2498                 assert_eq!(encoded_value, target_value);
2499         }
2500
2501         #[test]
2502         fn encoding_update_fail_malformed_htlc() {
2503                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2504                         channel_id: [2; 32],
2505                         htlc_id: 2316138423780173,
2506                         sha256_of_onion: [1; 32],
2507                         failure_code: 255
2508                 };
2509                 let encoded_value = update_fail_malformed_htlc.encode();
2510                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2511                 assert_eq!(encoded_value, target_value);
2512         }
2513
2514         fn do_encoding_commitment_signed(htlcs: bool) {
2515                 let secp_ctx = Secp256k1::new();
2516                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2517                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2518                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2519                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2520                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2521                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2522                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2523                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2524                 let commitment_signed = msgs::CommitmentSigned {
2525                         channel_id: [2; 32],
2526                         signature: sig_1,
2527                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2528                 };
2529                 let encoded_value = commitment_signed.encode();
2530                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2531                 if htlcs {
2532                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2533                 } else {
2534                         target_value.append(&mut hex::decode("0000").unwrap());
2535                 }
2536                 assert_eq!(encoded_value, target_value);
2537         }
2538
2539         #[test]
2540         fn encoding_commitment_signed() {
2541                 do_encoding_commitment_signed(true);
2542                 do_encoding_commitment_signed(false);
2543         }
2544
2545         #[test]
2546         fn encoding_revoke_and_ack() {
2547                 let secp_ctx = Secp256k1::new();
2548                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2549                 let raa = msgs::RevokeAndACK {
2550                         channel_id: [2; 32],
2551                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2552                         next_per_commitment_point: pubkey_1,
2553                 };
2554                 let encoded_value = raa.encode();
2555                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2556                 assert_eq!(encoded_value, target_value);
2557         }
2558
2559         #[test]
2560         fn encoding_update_fee() {
2561                 let update_fee = msgs::UpdateFee {
2562                         channel_id: [2; 32],
2563                         feerate_per_kw: 20190119,
2564                 };
2565                 let encoded_value = update_fee.encode();
2566                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2567                 assert_eq!(encoded_value, target_value);
2568         }
2569
2570         #[test]
2571         fn encoding_init() {
2572                 assert_eq!(msgs::Init {
2573                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2574                         remote_network_address: None,
2575                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2576                 assert_eq!(msgs::Init {
2577                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2578                         remote_network_address: None,
2579                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2580                 assert_eq!(msgs::Init {
2581                         features: InitFeatures::from_le_bytes(vec![]),
2582                         remote_network_address: None,
2583                 }.encode(), hex::decode("00000000").unwrap());
2584
2585                 let init_msg = msgs::Init { features: InitFeatures::from_le_bytes(vec![]),
2586                         remote_network_address: Some(msgs::NetAddress::IPv4 {
2587                                 addr: [127, 0, 0, 1],
2588                                 port: 1000,
2589                         }),
2590                 };
2591                 let encoded_value = init_msg.encode();
2592                 let target_value = hex::decode("000000000307017f00000103e8").unwrap();
2593                 assert_eq!(encoded_value, target_value);
2594                 assert_eq!(msgs::Init::read(&mut Cursor::new(&target_value)).unwrap(), init_msg);
2595         }
2596
2597         #[test]
2598         fn encoding_error() {
2599                 let error = msgs::ErrorMessage {
2600                         channel_id: [2; 32],
2601                         data: String::from("rust-lightning"),
2602                 };
2603                 let encoded_value = error.encode();
2604                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2605                 assert_eq!(encoded_value, target_value);
2606         }
2607
2608         #[test]
2609         fn encoding_warning() {
2610                 let error = msgs::WarningMessage {
2611                         channel_id: [2; 32],
2612                         data: String::from("rust-lightning"),
2613                 };
2614                 let encoded_value = error.encode();
2615                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2616                 assert_eq!(encoded_value, target_value);
2617         }
2618
2619         #[test]
2620         fn encoding_ping() {
2621                 let ping = msgs::Ping {
2622                         ponglen: 64,
2623                         byteslen: 64
2624                 };
2625                 let encoded_value = ping.encode();
2626                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2627                 assert_eq!(encoded_value, target_value);
2628         }
2629
2630         #[test]
2631         fn encoding_pong() {
2632                 let pong = msgs::Pong {
2633                         byteslen: 64
2634                 };
2635                 let encoded_value = pong.encode();
2636                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2637                 assert_eq!(encoded_value, target_value);
2638         }
2639
2640         #[test]
2641         fn encoding_legacy_onion_hop_data() {
2642                 let msg = msgs::OnionHopData {
2643                         format: OnionHopDataFormat::Legacy {
2644                                 short_channel_id: 0xdeadbeef1bad1dea,
2645                         },
2646                         amt_to_forward: 0x0badf00d01020304,
2647                         outgoing_cltv_value: 0xffffffff,
2648                 };
2649                 let encoded_value = msg.encode();
2650                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2651                 assert_eq!(encoded_value, target_value);
2652         }
2653
2654         #[test]
2655         fn encoding_nonfinal_onion_hop_data() {
2656                 let mut msg = msgs::OnionHopData {
2657                         format: OnionHopDataFormat::NonFinalNode {
2658                                 short_channel_id: 0xdeadbeef1bad1dea,
2659                         },
2660                         amt_to_forward: 0x0badf00d01020304,
2661                         outgoing_cltv_value: 0xffffffff,
2662                 };
2663                 let encoded_value = msg.encode();
2664                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2665                 assert_eq!(encoded_value, target_value);
2666                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2667                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2668                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2669                 } else { panic!(); }
2670                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2671                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2672         }
2673
2674         #[test]
2675         fn encoding_final_onion_hop_data() {
2676                 let mut msg = msgs::OnionHopData {
2677                         format: OnionHopDataFormat::FinalNode {
2678                                 payment_data: None,
2679                                 keysend_preimage: None,
2680                         },
2681                         amt_to_forward: 0x0badf00d01020304,
2682                         outgoing_cltv_value: 0xffffffff,
2683                 };
2684                 let encoded_value = msg.encode();
2685                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2686                 assert_eq!(encoded_value, target_value);
2687                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2688                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2689                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2690                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2691         }
2692
2693         #[test]
2694         fn encoding_final_onion_hop_data_with_secret() {
2695                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2696                 let mut msg = msgs::OnionHopData {
2697                         format: OnionHopDataFormat::FinalNode {
2698                                 payment_data: Some(FinalOnionHopData {
2699                                         payment_secret: expected_payment_secret,
2700                                         total_msat: 0x1badca1f
2701                                 }),
2702                                 keysend_preimage: None,
2703                         },
2704                         amt_to_forward: 0x0badf00d01020304,
2705                         outgoing_cltv_value: 0xffffffff,
2706                 };
2707                 let encoded_value = msg.encode();
2708                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2709                 assert_eq!(encoded_value, target_value);
2710                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2711                 if let OnionHopDataFormat::FinalNode {
2712                         payment_data: Some(FinalOnionHopData {
2713                                 payment_secret,
2714                                 total_msat: 0x1badca1f
2715                         }),
2716                         keysend_preimage: None,
2717                 } = msg.format {
2718                         assert_eq!(payment_secret, expected_payment_secret);
2719                 } else { panic!(); }
2720                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2721                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2722         }
2723
2724         #[test]
2725         fn query_channel_range_end_blocknum() {
2726                 let tests: Vec<(u32, u32, u32)> = vec![
2727                         (10000, 1500, 11500),
2728                         (0, 0xffffffff, 0xffffffff),
2729                         (1, 0xffffffff, 0xffffffff),
2730                 ];
2731
2732                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2733                         let sut = msgs::QueryChannelRange {
2734                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2735                                 first_blocknum,
2736                                 number_of_blocks,
2737                         };
2738                         assert_eq!(sut.end_blocknum(), expected);
2739                 }
2740         }
2741
2742         #[test]
2743         fn encoding_query_channel_range() {
2744                 let mut query_channel_range = msgs::QueryChannelRange {
2745                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2746                         first_blocknum: 100000,
2747                         number_of_blocks: 1500,
2748                 };
2749                 let encoded_value = query_channel_range.encode();
2750                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2751                 assert_eq!(encoded_value, target_value);
2752
2753                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2754                 assert_eq!(query_channel_range.first_blocknum, 100000);
2755                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2756         }
2757
2758         #[test]
2759         fn encoding_reply_channel_range() {
2760                 do_encoding_reply_channel_range(0);
2761                 do_encoding_reply_channel_range(1);
2762         }
2763
2764         fn do_encoding_reply_channel_range(encoding_type: u8) {
2765                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2766                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2767                 let mut reply_channel_range = msgs::ReplyChannelRange {
2768                         chain_hash: expected_chain_hash,
2769                         first_blocknum: 756230,
2770                         number_of_blocks: 1500,
2771                         sync_complete: true,
2772                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2773                 };
2774
2775                 if encoding_type == 0 {
2776                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2777                         let encoded_value = reply_channel_range.encode();
2778                         assert_eq!(encoded_value, target_value);
2779
2780                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2781                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2782                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2783                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2784                         assert_eq!(reply_channel_range.sync_complete, true);
2785                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2786                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2787                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2788                 } else {
2789                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2790                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2791                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2792                 }
2793         }
2794
2795         #[test]
2796         fn encoding_query_short_channel_ids() {
2797                 do_encoding_query_short_channel_ids(0);
2798                 do_encoding_query_short_channel_ids(1);
2799         }
2800
2801         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2802                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2803                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2804                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2805                         chain_hash: expected_chain_hash,
2806                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2807                 };
2808
2809                 if encoding_type == 0 {
2810                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2811                         let encoded_value = query_short_channel_ids.encode();
2812                         assert_eq!(encoded_value, target_value);
2813
2814                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2815                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2816                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2817                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2818                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2819                 } else {
2820                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2821                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2822                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2823                 }
2824         }
2825
2826         #[test]
2827         fn encoding_reply_short_channel_ids_end() {
2828                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2829                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2830                         chain_hash: expected_chain_hash,
2831                         full_information: true,
2832                 };
2833                 let encoded_value = reply_short_channel_ids_end.encode();
2834                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2835                 assert_eq!(encoded_value, target_value);
2836
2837                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2838                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2839                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2840         }
2841
2842         #[test]
2843         fn encoding_gossip_timestamp_filter(){
2844                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2845                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2846                         chain_hash: expected_chain_hash,
2847                         first_timestamp: 1590000000,
2848                         timestamp_range: 0xffff_ffff,
2849                 };
2850                 let encoded_value = gossip_timestamp_filter.encode();
2851                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2852                 assert_eq!(encoded_value, target_value);
2853
2854                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2855                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2856                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2857                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2858         }
2859
2860         #[test]
2861         fn decode_onion_hop_data_len_as_bigsize() {
2862                 // Tests that we can decode an onion payload that is >253 bytes.
2863                 // Previously, receiving a payload of this size could've caused us to fail to decode a valid
2864                 // payload, because we were decoding the length (a BigSize, big-endian) as a VarInt
2865                 // (little-endian).
2866
2867                 // Encode a test onion payload with a big custom TLV such that it's >253 bytes, forcing the
2868                 // payload length to be encoded over multiple bytes rather than a single u8.
2869                 let big_payload = encode_big_payload().unwrap();
2870                 let mut rd = Cursor::new(&big_payload[..]);
2871                 <msgs::OnionHopData as Readable>::read(&mut rd).unwrap();
2872         }
2873         // see above test, needs to be a separate method for use of the serialization macros.
2874         fn encode_big_payload() -> Result<Vec<u8>, io::Error> {
2875                 use util::ser::HighZeroBytesDroppedBigSize;
2876                 let payload = msgs::OnionHopData {
2877                         format: OnionHopDataFormat::NonFinalNode {
2878                                 short_channel_id: 0xdeadbeef1bad1dea,
2879                         },
2880                         amt_to_forward: 1000,
2881                         outgoing_cltv_value: 0xffffffff,
2882                 };
2883                 let mut encoded_payload = Vec::new();
2884                 let test_bytes = vec![42u8; 1000];
2885                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = payload.format {
2886                         encode_varint_length_prefixed_tlv!(&mut encoded_payload, {
2887                                 (1, test_bytes, vec_type),
2888                                 (2, HighZeroBytesDroppedBigSize(payload.amt_to_forward), required),
2889                                 (4, HighZeroBytesDroppedBigSize(payload.outgoing_cltv_value), required),
2890                                 (6, short_channel_id, required)
2891                         });
2892                 }
2893                 Ok(encoded_payload)
2894         }
2895 }