Remove OnionV2 parsing support
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::key::PublicKey;
28 use bitcoin::secp256k1::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34
35 use prelude::*;
36 use core::{cmp, fmt};
37 use core::fmt::Debug;
38 use io::{self, Read};
39 use io_extras::read_to_end;
40
41 use util::events::MessageSendEventsProvider;
42 use util::logger;
43 use util::ser::{Readable, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedVarInt};
44
45 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
46
47 /// 21 million * 10^8 * 1000
48 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
49
50 /// An error in decoding a message or struct.
51 #[derive(Clone, Debug, PartialEq)]
52 pub enum DecodeError {
53         /// A version byte specified something we don't know how to handle.
54         /// Includes unknown realm byte in an OnionHopData packet
55         UnknownVersion,
56         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
57         UnknownRequiredFeature,
58         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
59         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
60         /// syntactically incorrect, etc
61         InvalidValue,
62         /// Buffer too short
63         ShortRead,
64         /// A length descriptor in the packet didn't describe the later data correctly
65         BadLengthDescriptor,
66         /// Error from std::io
67         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
68         io::ErrorKind),
69         /// The message included zlib-compressed values, which we don't support.
70         UnsupportedCompression,
71 }
72
73 /// An init message to be sent or received from a peer
74 #[derive(Clone, Debug, PartialEq)]
75 pub struct Init {
76         /// The relevant features which the sender supports
77         pub features: InitFeatures,
78 }
79
80 /// An error message to be sent or received from a peer
81 #[derive(Clone, Debug, PartialEq)]
82 pub struct ErrorMessage {
83         /// The channel ID involved in the error
84         pub channel_id: [u8; 32],
85         /// A possibly human-readable error description.
86         /// The string should be sanitized before it is used (e.g. emitted to logs
87         /// or printed to stdout).  Otherwise, a well crafted error message may trigger a security
88         /// vulnerability in the terminal emulator or the logging subsystem.
89         pub data: String,
90 }
91
92 /// A ping message to be sent or received from a peer
93 #[derive(Clone, Debug, PartialEq)]
94 pub struct Ping {
95         /// The desired response length
96         pub ponglen: u16,
97         /// The ping packet size.
98         /// This field is not sent on the wire. byteslen zeros are sent.
99         pub byteslen: u16,
100 }
101
102 /// A pong message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct Pong {
105         /// The pong packet size.
106         /// This field is not sent on the wire. byteslen zeros are sent.
107         pub byteslen: u16,
108 }
109
110 /// An open_channel message to be sent or received from a peer
111 #[derive(Clone, Debug, PartialEq)]
112 pub struct OpenChannel {
113         /// The genesis hash of the blockchain where the channel is to be opened
114         pub chain_hash: BlockHash,
115         /// A temporary channel ID, until the funding outpoint is announced
116         pub temporary_channel_id: [u8; 32],
117         /// The channel value
118         pub funding_satoshis: u64,
119         /// The amount to push to the counterparty as part of the open, in milli-satoshi
120         pub push_msat: u64,
121         /// The threshold below which outputs on transactions broadcast by sender will be omitted
122         pub dust_limit_satoshis: u64,
123         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
124         pub max_htlc_value_in_flight_msat: u64,
125         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
126         pub channel_reserve_satoshis: u64,
127         /// The minimum HTLC size incoming to sender, in milli-satoshi
128         pub htlc_minimum_msat: u64,
129         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
130         pub feerate_per_kw: u32,
131         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
132         pub to_self_delay: u16,
133         /// The maximum number of inbound HTLCs towards sender
134         pub max_accepted_htlcs: u16,
135         /// The sender's key controlling the funding transaction
136         pub funding_pubkey: PublicKey,
137         /// Used to derive a revocation key for transactions broadcast by counterparty
138         pub revocation_basepoint: PublicKey,
139         /// A payment key to sender for transactions broadcast by counterparty
140         pub payment_point: PublicKey,
141         /// Used to derive a payment key to sender for transactions broadcast by sender
142         pub delayed_payment_basepoint: PublicKey,
143         /// Used to derive an HTLC payment key to sender
144         pub htlc_basepoint: PublicKey,
145         /// The first to-be-broadcast-by-sender transaction's per commitment point
146         pub first_per_commitment_point: PublicKey,
147         /// Channel flags
148         pub channel_flags: u8,
149         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
150         pub shutdown_scriptpubkey: OptionalField<Script>,
151         /// The channel type that this channel will represent. If none is set, we derive the channel
152         /// type from the intersection of our feature bits with our counterparty's feature bits from
153         /// the Init message.
154         pub channel_type: Option<ChannelTypeFeatures>,
155 }
156
157 /// An accept_channel message to be sent or received from a peer
158 #[derive(Clone, Debug, PartialEq)]
159 pub struct AcceptChannel {
160         /// A temporary channel ID, until the funding outpoint is announced
161         pub temporary_channel_id: [u8; 32],
162         /// The threshold below which outputs on transactions broadcast by sender will be omitted
163         pub dust_limit_satoshis: u64,
164         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
165         pub max_htlc_value_in_flight_msat: u64,
166         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
167         pub channel_reserve_satoshis: u64,
168         /// The minimum HTLC size incoming to sender, in milli-satoshi
169         pub htlc_minimum_msat: u64,
170         /// Minimum depth of the funding transaction before the channel is considered open
171         pub minimum_depth: u32,
172         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
173         pub to_self_delay: u16,
174         /// The maximum number of inbound HTLCs towards sender
175         pub max_accepted_htlcs: u16,
176         /// The sender's key controlling the funding transaction
177         pub funding_pubkey: PublicKey,
178         /// Used to derive a revocation key for transactions broadcast by counterparty
179         pub revocation_basepoint: PublicKey,
180         /// A payment key to sender for transactions broadcast by counterparty
181         pub payment_point: PublicKey,
182         /// Used to derive a payment key to sender for transactions broadcast by sender
183         pub delayed_payment_basepoint: PublicKey,
184         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
185         pub htlc_basepoint: PublicKey,
186         /// The first to-be-broadcast-by-sender transaction's per commitment point
187         pub first_per_commitment_point: PublicKey,
188         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
189         pub shutdown_scriptpubkey: OptionalField<Script>,
190 }
191
192 /// A funding_created message to be sent or received from a peer
193 #[derive(Clone, Debug, PartialEq)]
194 pub struct FundingCreated {
195         /// A temporary channel ID, until the funding is established
196         pub temporary_channel_id: [u8; 32],
197         /// The funding transaction ID
198         pub funding_txid: Txid,
199         /// The specific output index funding this channel
200         pub funding_output_index: u16,
201         /// The signature of the channel initiator (funder) on the initial commitment transaction
202         pub signature: Signature,
203 }
204
205 /// A funding_signed message to be sent or received from a peer
206 #[derive(Clone, Debug, PartialEq)]
207 pub struct FundingSigned {
208         /// The channel ID
209         pub channel_id: [u8; 32],
210         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
211         pub signature: Signature,
212 }
213
214 /// A funding_locked message to be sent or received from a peer
215 #[derive(Clone, Debug, PartialEq)]
216 pub struct FundingLocked {
217         /// The channel ID
218         pub channel_id: [u8; 32],
219         /// The per-commitment point of the second commitment transaction
220         pub next_per_commitment_point: PublicKey,
221 }
222
223 /// A shutdown message to be sent or received from a peer
224 #[derive(Clone, Debug, PartialEq)]
225 pub struct Shutdown {
226         /// The channel ID
227         pub channel_id: [u8; 32],
228         /// The destination of this peer's funds on closing.
229         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
230         pub scriptpubkey: Script,
231 }
232
233 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
234 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
235 /// to use.
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct ClosingSignedFeeRange {
238         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
239         /// transaction.
240         pub min_fee_satoshis: u64,
241         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
242         /// transaction.
243         pub max_fee_satoshis: u64,
244 }
245
246 /// A closing_signed message to be sent or received from a peer
247 #[derive(Clone, Debug, PartialEq)]
248 pub struct ClosingSigned {
249         /// The channel ID
250         pub channel_id: [u8; 32],
251         /// The proposed total fee for the closing transaction
252         pub fee_satoshis: u64,
253         /// A signature on the closing transaction
254         pub signature: Signature,
255         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
256         /// nodes.
257         pub fee_range: Option<ClosingSignedFeeRange>,
258 }
259
260 /// An update_add_htlc message to be sent or received from a peer
261 #[derive(Clone, Debug, PartialEq)]
262 pub struct UpdateAddHTLC {
263         /// The channel ID
264         pub channel_id: [u8; 32],
265         /// The HTLC ID
266         pub htlc_id: u64,
267         /// The HTLC value in milli-satoshi
268         pub amount_msat: u64,
269         /// The payment hash, the pre-image of which controls HTLC redemption
270         pub payment_hash: PaymentHash,
271         /// The expiry height of the HTLC
272         pub cltv_expiry: u32,
273         pub(crate) onion_routing_packet: OnionPacket,
274 }
275
276 /// An update_fulfill_htlc message to be sent or received from a peer
277 #[derive(Clone, Debug, PartialEq)]
278 pub struct UpdateFulfillHTLC {
279         /// The channel ID
280         pub channel_id: [u8; 32],
281         /// The HTLC ID
282         pub htlc_id: u64,
283         /// The pre-image of the payment hash, allowing HTLC redemption
284         pub payment_preimage: PaymentPreimage,
285 }
286
287 /// An update_fail_htlc message to be sent or received from a peer
288 #[derive(Clone, Debug, PartialEq)]
289 pub struct UpdateFailHTLC {
290         /// The channel ID
291         pub channel_id: [u8; 32],
292         /// The HTLC ID
293         pub htlc_id: u64,
294         pub(crate) reason: OnionErrorPacket,
295 }
296
297 /// An update_fail_malformed_htlc message to be sent or received from a peer
298 #[derive(Clone, Debug, PartialEq)]
299 pub struct UpdateFailMalformedHTLC {
300         /// The channel ID
301         pub channel_id: [u8; 32],
302         /// The HTLC ID
303         pub htlc_id: u64,
304         pub(crate) sha256_of_onion: [u8; 32],
305         /// The failure code
306         pub failure_code: u16,
307 }
308
309 /// A commitment_signed message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct CommitmentSigned {
312         /// The channel ID
313         pub channel_id: [u8; 32],
314         /// A signature on the commitment transaction
315         pub signature: Signature,
316         /// Signatures on the HTLC transactions
317         pub htlc_signatures: Vec<Signature>,
318 }
319
320 /// A revoke_and_ack message to be sent or received from a peer
321 #[derive(Clone, Debug, PartialEq)]
322 pub struct RevokeAndACK {
323         /// The channel ID
324         pub channel_id: [u8; 32],
325         /// The secret corresponding to the per-commitment point
326         pub per_commitment_secret: [u8; 32],
327         /// The next sender-broadcast commitment transaction's per-commitment point
328         pub next_per_commitment_point: PublicKey,
329 }
330
331 /// An update_fee message to be sent or received from a peer
332 #[derive(Clone, Debug, PartialEq)]
333 pub struct UpdateFee {
334         /// The channel ID
335         pub channel_id: [u8; 32],
336         /// Fee rate per 1000-weight of the transaction
337         pub feerate_per_kw: u32,
338 }
339
340 #[derive(Clone, Debug, PartialEq)]
341 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
342 /// This is used to convince the recipient that the channel is at a certain commitment
343 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
344 /// and even later commitments may have been revoked.
345 pub struct DataLossProtect {
346         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
347         /// belonging to the recipient
348         pub your_last_per_commitment_secret: [u8; 32],
349         /// The sender's per-commitment point for their current commitment transaction
350         pub my_current_per_commitment_point: PublicKey,
351 }
352
353 /// A channel_reestablish message to be sent or received from a peer
354 #[derive(Clone, Debug, PartialEq)]
355 pub struct ChannelReestablish {
356         /// The channel ID
357         pub channel_id: [u8; 32],
358         /// The next commitment number for the sender
359         pub next_local_commitment_number: u64,
360         /// The next commitment number for the recipient
361         pub next_remote_commitment_number: u64,
362         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
363         pub data_loss_protect: OptionalField<DataLossProtect>,
364 }
365
366 /// An announcement_signatures message to be sent or received from a peer
367 #[derive(Clone, Debug, PartialEq)]
368 pub struct AnnouncementSignatures {
369         /// The channel ID
370         pub channel_id: [u8; 32],
371         /// The short channel ID
372         pub short_channel_id: u64,
373         /// A signature by the node key
374         pub node_signature: Signature,
375         /// A signature by the funding key
376         pub bitcoin_signature: Signature,
377 }
378
379 /// An address which can be used to connect to a remote peer
380 #[derive(Clone, Debug, PartialEq)]
381 pub enum NetAddress {
382         /// An IPv4 address/port on which the peer is listening.
383         IPv4 {
384                 /// The 4-byte IPv4 address
385                 addr: [u8; 4],
386                 /// The port on which the node is listening
387                 port: u16,
388         },
389         /// An IPv6 address/port on which the peer is listening.
390         IPv6 {
391                 /// The 16-byte IPv6 address
392                 addr: [u8; 16],
393                 /// The port on which the node is listening
394                 port: u16,
395         },
396         /// An old-style Tor onion address/port on which the peer is listening.
397         ///
398         /// This field is deprecated and the Tor network generally no longer supports V2 Onion
399         /// addresses. Thus, the details are not parsed here.
400         OnionV2([u8; 12]),
401         /// A new-style Tor onion address/port on which the peer is listening.
402         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
403         /// wrap as base32 and append ".onion".
404         OnionV3 {
405                 /// The ed25519 long-term public key of the peer
406                 ed25519_pubkey: [u8; 32],
407                 /// The checksum of the pubkey and version, as included in the onion address
408                 checksum: u16,
409                 /// The version byte, as defined by the Tor Onion v3 spec.
410                 version: u8,
411                 /// The port on which the node is listening
412                 port: u16,
413         },
414 }
415 impl NetAddress {
416         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
417         /// by this.
418         pub(crate) fn get_id(&self) -> u8 {
419                 match self {
420                         &NetAddress::IPv4 {..} => { 1 },
421                         &NetAddress::IPv6 {..} => { 2 },
422                         &NetAddress::OnionV2(_) => { 3 },
423                         &NetAddress::OnionV3 {..} => { 4 },
424                 }
425         }
426
427         /// Strict byte-length of address descriptor, 1-byte type not recorded
428         fn len(&self) -> u16 {
429                 match self {
430                         &NetAddress::IPv4 { .. } => { 6 },
431                         &NetAddress::IPv6 { .. } => { 18 },
432                         &NetAddress::OnionV2(_) => { 12 },
433                         &NetAddress::OnionV3 { .. } => { 37 },
434                 }
435         }
436
437         /// The maximum length of any address descriptor, not including the 1-byte type
438         pub(crate) const MAX_LEN: u16 = 37;
439 }
440
441 impl Writeable for NetAddress {
442         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
443                 match self {
444                         &NetAddress::IPv4 { ref addr, ref port } => {
445                                 1u8.write(writer)?;
446                                 addr.write(writer)?;
447                                 port.write(writer)?;
448                         },
449                         &NetAddress::IPv6 { ref addr, ref port } => {
450                                 2u8.write(writer)?;
451                                 addr.write(writer)?;
452                                 port.write(writer)?;
453                         },
454                         &NetAddress::OnionV2(bytes) => {
455                                 3u8.write(writer)?;
456                                 bytes.write(writer)?;
457                         },
458                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
459                                 4u8.write(writer)?;
460                                 ed25519_pubkey.write(writer)?;
461                                 checksum.write(writer)?;
462                                 version.write(writer)?;
463                                 port.write(writer)?;
464                         }
465                 }
466                 Ok(())
467         }
468 }
469
470 impl Readable for Result<NetAddress, u8> {
471         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
472                 let byte = <u8 as Readable>::read(reader)?;
473                 match byte {
474                         1 => {
475                                 Ok(Ok(NetAddress::IPv4 {
476                                         addr: Readable::read(reader)?,
477                                         port: Readable::read(reader)?,
478                                 }))
479                         },
480                         2 => {
481                                 Ok(Ok(NetAddress::IPv6 {
482                                         addr: Readable::read(reader)?,
483                                         port: Readable::read(reader)?,
484                                 }))
485                         },
486                         3 => Ok(Ok(NetAddress::OnionV2(Readable::read(reader)?))),
487                         4 => {
488                                 Ok(Ok(NetAddress::OnionV3 {
489                                         ed25519_pubkey: Readable::read(reader)?,
490                                         checksum: Readable::read(reader)?,
491                                         version: Readable::read(reader)?,
492                                         port: Readable::read(reader)?,
493                                 }))
494                         },
495                         _ => return Ok(Err(byte)),
496                 }
497         }
498 }
499
500 impl Readable for NetAddress {
501         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
502                 match Readable::read(reader) {
503                         Ok(Ok(res)) => Ok(res),
504                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
505                         Err(e) => Err(e),
506                 }
507         }
508 }
509
510
511 /// The unsigned part of a node_announcement
512 #[derive(Clone, Debug, PartialEq)]
513 pub struct UnsignedNodeAnnouncement {
514         /// The advertised features
515         pub features: NodeFeatures,
516         /// A strictly monotonic announcement counter, with gaps allowed
517         pub timestamp: u32,
518         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
519         /// to this node).
520         pub node_id: PublicKey,
521         /// An RGB color for UI purposes
522         pub rgb: [u8; 3],
523         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
524         /// of uniqueness.
525         pub alias: [u8; 32],
526         /// List of addresses on which this node is reachable
527         pub addresses: Vec<NetAddress>,
528         pub(crate) excess_address_data: Vec<u8>,
529         pub(crate) excess_data: Vec<u8>,
530 }
531 #[derive(Clone, Debug, PartialEq)]
532 /// A node_announcement message to be sent or received from a peer
533 pub struct NodeAnnouncement {
534         /// The signature by the node key
535         pub signature: Signature,
536         /// The actual content of the announcement
537         pub contents: UnsignedNodeAnnouncement,
538 }
539
540 /// The unsigned part of a channel_announcement
541 #[derive(Clone, Debug, PartialEq)]
542 pub struct UnsignedChannelAnnouncement {
543         /// The advertised channel features
544         pub features: ChannelFeatures,
545         /// The genesis hash of the blockchain where the channel is to be opened
546         pub chain_hash: BlockHash,
547         /// The short channel ID
548         pub short_channel_id: u64,
549         /// One of the two node_ids which are endpoints of this channel
550         pub node_id_1: PublicKey,
551         /// The other of the two node_ids which are endpoints of this channel
552         pub node_id_2: PublicKey,
553         /// The funding key for the first node
554         pub bitcoin_key_1: PublicKey,
555         /// The funding key for the second node
556         pub bitcoin_key_2: PublicKey,
557         pub(crate) excess_data: Vec<u8>,
558 }
559 /// A channel_announcement message to be sent or received from a peer
560 #[derive(Clone, Debug, PartialEq)]
561 pub struct ChannelAnnouncement {
562         /// Authentication of the announcement by the first public node
563         pub node_signature_1: Signature,
564         /// Authentication of the announcement by the second public node
565         pub node_signature_2: Signature,
566         /// Proof of funding UTXO ownership by the first public node
567         pub bitcoin_signature_1: Signature,
568         /// Proof of funding UTXO ownership by the second public node
569         pub bitcoin_signature_2: Signature,
570         /// The actual announcement
571         pub contents: UnsignedChannelAnnouncement,
572 }
573
574 /// The unsigned part of a channel_update
575 #[derive(Clone, Debug, PartialEq)]
576 pub struct UnsignedChannelUpdate {
577         /// The genesis hash of the blockchain where the channel is to be opened
578         pub chain_hash: BlockHash,
579         /// The short channel ID
580         pub short_channel_id: u64,
581         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
582         pub timestamp: u32,
583         /// Channel flags
584         pub flags: u8,
585         /// The number of blocks such that if:
586         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
587         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
588         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
589         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
590         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
591         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
592         /// constructing the route.
593         pub cltv_expiry_delta: u16,
594         /// The minimum HTLC size incoming to sender, in milli-satoshi
595         pub htlc_minimum_msat: u64,
596         /// Optionally, the maximum HTLC value incoming to sender, in milli-satoshi
597         pub htlc_maximum_msat: OptionalField<u64>,
598         /// The base HTLC fee charged by sender, in milli-satoshi
599         pub fee_base_msat: u32,
600         /// The amount to fee multiplier, in micro-satoshi
601         pub fee_proportional_millionths: u32,
602         pub(crate) excess_data: Vec<u8>,
603 }
604 /// A channel_update message to be sent or received from a peer
605 #[derive(Clone, Debug, PartialEq)]
606 pub struct ChannelUpdate {
607         /// A signature of the channel update
608         pub signature: Signature,
609         /// The actual channel update
610         pub contents: UnsignedChannelUpdate,
611 }
612
613 /// A query_channel_range message is used to query a peer for channel
614 /// UTXOs in a range of blocks. The recipient of a query makes a best
615 /// effort to reply to the query using one or more reply_channel_range
616 /// messages.
617 #[derive(Clone, Debug, PartialEq)]
618 pub struct QueryChannelRange {
619         /// The genesis hash of the blockchain being queried
620         pub chain_hash: BlockHash,
621         /// The height of the first block for the channel UTXOs being queried
622         pub first_blocknum: u32,
623         /// The number of blocks to include in the query results
624         pub number_of_blocks: u32,
625 }
626
627 /// A reply_channel_range message is a reply to a query_channel_range
628 /// message. Multiple reply_channel_range messages can be sent in reply
629 /// to a single query_channel_range message. The query recipient makes a
630 /// best effort to respond based on their local network view which may
631 /// not be a perfect view of the network. The short_channel_ids in the
632 /// reply are encoded. We only support encoding_type=0 uncompressed
633 /// serialization and do not support encoding_type=1 zlib serialization.
634 #[derive(Clone, Debug, PartialEq)]
635 pub struct ReplyChannelRange {
636         /// The genesis hash of the blockchain being queried
637         pub chain_hash: BlockHash,
638         /// The height of the first block in the range of the reply
639         pub first_blocknum: u32,
640         /// The number of blocks included in the range of the reply
641         pub number_of_blocks: u32,
642         /// True when this is the final reply for a query
643         pub sync_complete: bool,
644         /// The short_channel_ids in the channel range
645         pub short_channel_ids: Vec<u64>,
646 }
647
648 /// A query_short_channel_ids message is used to query a peer for
649 /// routing gossip messages related to one or more short_channel_ids.
650 /// The query recipient will reply with the latest, if available,
651 /// channel_announcement, channel_update and node_announcement messages
652 /// it maintains for the requested short_channel_ids followed by a
653 /// reply_short_channel_ids_end message. The short_channel_ids sent in
654 /// this query are encoded. We only support encoding_type=0 uncompressed
655 /// serialization and do not support encoding_type=1 zlib serialization.
656 #[derive(Clone, Debug, PartialEq)]
657 pub struct QueryShortChannelIds {
658         /// The genesis hash of the blockchain being queried
659         pub chain_hash: BlockHash,
660         /// The short_channel_ids that are being queried
661         pub short_channel_ids: Vec<u64>,
662 }
663
664 /// A reply_short_channel_ids_end message is sent as a reply to a
665 /// query_short_channel_ids message. The query recipient makes a best
666 /// effort to respond based on their local network view which may not be
667 /// a perfect view of the network.
668 #[derive(Clone, Debug, PartialEq)]
669 pub struct ReplyShortChannelIdsEnd {
670         /// The genesis hash of the blockchain that was queried
671         pub chain_hash: BlockHash,
672         /// Indicates if the query recipient maintains up-to-date channel
673         /// information for the chain_hash
674         pub full_information: bool,
675 }
676
677 /// A gossip_timestamp_filter message is used by a node to request
678 /// gossip relay for messages in the requested time range when the
679 /// gossip_queries feature has been negotiated.
680 #[derive(Clone, Debug, PartialEq)]
681 pub struct GossipTimestampFilter {
682         /// The genesis hash of the blockchain for channel and node information
683         pub chain_hash: BlockHash,
684         /// The starting unix timestamp
685         pub first_timestamp: u32,
686         /// The range of information in seconds
687         pub timestamp_range: u32,
688 }
689
690 /// Encoding type for data compression of collections in gossip queries.
691 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
692 enum EncodingType {
693         Uncompressed = 0x00,
694 }
695
696 /// Used to put an error message in a LightningError
697 #[derive(Clone, Debug)]
698 pub enum ErrorAction {
699         /// The peer took some action which made us think they were useless. Disconnect them.
700         DisconnectPeer {
701                 /// An error message which we should make an effort to send before we disconnect.
702                 msg: Option<ErrorMessage>
703         },
704         /// The peer did something harmless that we weren't able to process, just log and ignore
705         // New code should *not* use this. New code must use IgnoreAndLog, below!
706         IgnoreError,
707         /// The peer did something harmless that we weren't able to meaningfully process.
708         /// If the error is logged, log it at the given level.
709         IgnoreAndLog(logger::Level),
710         /// The peer did something incorrect. Tell them.
711         SendErrorMessage {
712                 /// The message to send.
713                 msg: ErrorMessage
714         },
715 }
716
717 /// An Err type for failure to process messages.
718 #[derive(Clone, Debug)]
719 pub struct LightningError {
720         /// A human-readable message describing the error
721         pub err: String,
722         /// The action which should be taken against the offending peer.
723         pub action: ErrorAction,
724 }
725
726 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
727 /// transaction updates if they were pending.
728 #[derive(Clone, Debug, PartialEq)]
729 pub struct CommitmentUpdate {
730         /// update_add_htlc messages which should be sent
731         pub update_add_htlcs: Vec<UpdateAddHTLC>,
732         /// update_fulfill_htlc messages which should be sent
733         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
734         /// update_fail_htlc messages which should be sent
735         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
736         /// update_fail_malformed_htlc messages which should be sent
737         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
738         /// An update_fee message which should be sent
739         pub update_fee: Option<UpdateFee>,
740         /// Finally, the commitment_signed message which should be sent
741         pub commitment_signed: CommitmentSigned,
742 }
743
744 /// Messages could have optional fields to use with extended features
745 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
746 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
747 /// separate enum type for them.
748 /// (C-not exported) due to a free generic in T
749 #[derive(Clone, Debug, PartialEq)]
750 pub enum OptionalField<T> {
751         /// Optional field is included in message
752         Present(T),
753         /// Optional field is absent in message
754         Absent
755 }
756
757 /// A trait to describe an object which can receive channel messages.
758 ///
759 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
760 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
761 pub trait ChannelMessageHandler : MessageSendEventsProvider {
762         //Channel init:
763         /// Handle an incoming open_channel message from the given peer.
764         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
765         /// Handle an incoming accept_channel message from the given peer.
766         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
767         /// Handle an incoming funding_created message from the given peer.
768         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
769         /// Handle an incoming funding_signed message from the given peer.
770         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
771         /// Handle an incoming funding_locked message from the given peer.
772         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &FundingLocked);
773
774         // Channl close:
775         /// Handle an incoming shutdown message from the given peer.
776         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
777         /// Handle an incoming closing_signed message from the given peer.
778         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
779
780         // HTLC handling:
781         /// Handle an incoming update_add_htlc message from the given peer.
782         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
783         /// Handle an incoming update_fulfill_htlc message from the given peer.
784         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
785         /// Handle an incoming update_fail_htlc message from the given peer.
786         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
787         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
788         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
789         /// Handle an incoming commitment_signed message from the given peer.
790         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
791         /// Handle an incoming revoke_and_ack message from the given peer.
792         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
793
794         /// Handle an incoming update_fee message from the given peer.
795         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
796
797         // Channel-to-announce:
798         /// Handle an incoming announcement_signatures message from the given peer.
799         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
800
801         // Connection loss/reestablish:
802         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
803         /// is believed to be possible in the future (eg they're sending us messages we don't
804         /// understand or indicate they require unknown feature bits), no_connection_possible is set
805         /// and any outstanding channels should be failed.
806         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
807
808         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
809         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init);
810         /// Handle an incoming channel_reestablish message from the given peer.
811         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
812
813         /// Handle an incoming channel update from the given peer.
814         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
815
816         // Error:
817         /// Handle an incoming error message from the given peer.
818         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
819 }
820
821 /// A trait to describe an object which can receive routing messages.
822 ///
823 /// # Implementor DoS Warnings
824 ///
825 /// For `gossip_queries` messages there are potential DoS vectors when handling
826 /// inbound queries. Implementors using an on-disk network graph should be aware of
827 /// repeated disk I/O for queries accessing different parts of the network graph.
828 pub trait RoutingMessageHandler : MessageSendEventsProvider {
829         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
830         /// false or returning an Err otherwise.
831         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
832         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
833         /// or returning an Err otherwise.
834         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
835         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
836         /// false or returning an Err otherwise.
837         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
838         /// Gets a subset of the channel announcements and updates required to dump our routing table
839         /// to a remote node, starting at the short_channel_id indicated by starting_point and
840         /// including the batch_amount entries immediately higher in numerical value than starting_point.
841         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
842         /// Gets a subset of the node announcements required to dump our routing table to a remote node,
843         /// starting at the node *after* the provided publickey and including batch_amount entries
844         /// immediately higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
845         /// If None is provided for starting_point, we start at the first node.
846         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement>;
847         /// Called when a connection is established with a peer. This can be used to
848         /// perform routing table synchronization using a strategy defined by the
849         /// implementor.
850         fn sync_routing_table(&self, their_node_id: &PublicKey, init: &Init);
851         /// Handles the reply of a query we initiated to learn about channels
852         /// for a given range of blocks. We can expect to receive one or more
853         /// replies to a single query.
854         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
855         /// Handles the reply of a query we initiated asking for routing gossip
856         /// messages for a list of channels. We should receive this message when
857         /// a node has completed its best effort to send us the pertaining routing
858         /// gossip messages.
859         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
860         /// Handles when a peer asks us to send a list of short_channel_ids
861         /// for the requested range of blocks.
862         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
863         /// Handles when a peer asks us to send routing gossip messages for a
864         /// list of short_channel_ids.
865         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
866 }
867
868 mod fuzzy_internal_msgs {
869         use prelude::*;
870         use ln::{PaymentPreimage, PaymentSecret};
871
872         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
873         // them from untrusted input):
874         #[derive(Clone)]
875         pub(crate) struct FinalOnionHopData {
876                 pub(crate) payment_secret: PaymentSecret,
877                 /// The total value, in msat, of the payment as received by the ultimate recipient.
878                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
879                 pub(crate) total_msat: u64,
880         }
881
882         pub(crate) enum OnionHopDataFormat {
883                 Legacy { // aka Realm-0
884                         short_channel_id: u64,
885                 },
886                 NonFinalNode {
887                         short_channel_id: u64,
888                 },
889                 FinalNode {
890                         payment_data: Option<FinalOnionHopData>,
891                         keysend_preimage: Option<PaymentPreimage>,
892                 },
893         }
894
895         pub struct OnionHopData {
896                 pub(crate) format: OnionHopDataFormat,
897                 /// The value, in msat, of the payment after this hop's fee is deducted.
898                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
899                 pub(crate) amt_to_forward: u64,
900                 pub(crate) outgoing_cltv_value: u32,
901                 // 12 bytes of 0-padding for Legacy format
902         }
903
904         pub struct DecodedOnionErrorPacket {
905                 pub(crate) hmac: [u8; 32],
906                 pub(crate) failuremsg: Vec<u8>,
907                 pub(crate) pad: Vec<u8>,
908         }
909 }
910 #[cfg(feature = "fuzztarget")]
911 pub use self::fuzzy_internal_msgs::*;
912 #[cfg(not(feature = "fuzztarget"))]
913 pub(crate) use self::fuzzy_internal_msgs::*;
914
915 #[derive(Clone)]
916 pub(crate) struct OnionPacket {
917         pub(crate) version: u8,
918         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
919         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
920         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
921         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
922         pub(crate) hop_data: [u8; 20*65],
923         pub(crate) hmac: [u8; 32],
924 }
925
926 impl PartialEq for OnionPacket {
927         fn eq(&self, other: &OnionPacket) -> bool {
928                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
929                         if i != j { return false; }
930                 }
931                 self.version == other.version &&
932                         self.public_key == other.public_key &&
933                         self.hmac == other.hmac
934         }
935 }
936
937 impl fmt::Debug for OnionPacket {
938         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
939                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
940         }
941 }
942
943 #[derive(Clone, Debug, PartialEq)]
944 pub(crate) struct OnionErrorPacket {
945         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
946         // (TODO) We limit it in decode to much lower...
947         pub(crate) data: Vec<u8>,
948 }
949
950 impl fmt::Display for DecodeError {
951         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
952                 match *self {
953                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
954                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
955                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
956                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
957                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
958                         DecodeError::Io(ref e) => e.fmt(f),
959                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
960                 }
961         }
962 }
963
964 impl From<io::Error> for DecodeError {
965         fn from(e: io::Error) -> Self {
966                 if e.kind() == io::ErrorKind::UnexpectedEof {
967                         DecodeError::ShortRead
968                 } else {
969                         DecodeError::Io(e.kind())
970                 }
971         }
972 }
973
974 impl Writeable for OptionalField<Script> {
975         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
976                 match *self {
977                         OptionalField::Present(ref script) => {
978                                 // Note that Writeable for script includes the 16-bit length tag for us
979                                 script.write(w)?;
980                         },
981                         OptionalField::Absent => {}
982                 }
983                 Ok(())
984         }
985 }
986
987 impl Readable for OptionalField<Script> {
988         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
989                 match <u16 as Readable>::read(r) {
990                         Ok(len) => {
991                                 let mut buf = vec![0; len as usize];
992                                 r.read_exact(&mut buf)?;
993                                 Ok(OptionalField::Present(Script::from(buf)))
994                         },
995                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
996                         Err(e) => Err(e)
997                 }
998         }
999 }
1000
1001 impl Writeable for OptionalField<u64> {
1002         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1003                 match *self {
1004                         OptionalField::Present(ref value) => {
1005                                 value.write(w)?;
1006                         },
1007                         OptionalField::Absent => {}
1008                 }
1009                 Ok(())
1010         }
1011 }
1012
1013 impl Readable for OptionalField<u64> {
1014         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1015                 let value: u64 = Readable::read(r)?;
1016                 Ok(OptionalField::Present(value))
1017         }
1018 }
1019
1020
1021 impl_writeable_msg!(AcceptChannel, {
1022         temporary_channel_id,
1023         dust_limit_satoshis,
1024         max_htlc_value_in_flight_msat,
1025         channel_reserve_satoshis,
1026         htlc_minimum_msat,
1027         minimum_depth,
1028         to_self_delay,
1029         max_accepted_htlcs,
1030         funding_pubkey,
1031         revocation_basepoint,
1032         payment_point,
1033         delayed_payment_basepoint,
1034         htlc_basepoint,
1035         first_per_commitment_point,
1036         shutdown_scriptpubkey
1037 }, {});
1038
1039 impl_writeable_msg!(AnnouncementSignatures, {
1040         channel_id,
1041         short_channel_id,
1042         node_signature,
1043         bitcoin_signature
1044 }, {});
1045
1046 impl Writeable for ChannelReestablish {
1047         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1048                 self.channel_id.write(w)?;
1049                 self.next_local_commitment_number.write(w)?;
1050                 self.next_remote_commitment_number.write(w)?;
1051                 match self.data_loss_protect {
1052                         OptionalField::Present(ref data_loss_protect) => {
1053                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1054                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1055                         },
1056                         OptionalField::Absent => {}
1057                 }
1058                 Ok(())
1059         }
1060 }
1061
1062 impl Readable for ChannelReestablish{
1063         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1064                 Ok(Self {
1065                         channel_id: Readable::read(r)?,
1066                         next_local_commitment_number: Readable::read(r)?,
1067                         next_remote_commitment_number: Readable::read(r)?,
1068                         data_loss_protect: {
1069                                 match <[u8; 32] as Readable>::read(r) {
1070                                         Ok(your_last_per_commitment_secret) =>
1071                                                 OptionalField::Present(DataLossProtect {
1072                                                         your_last_per_commitment_secret,
1073                                                         my_current_per_commitment_point: Readable::read(r)?,
1074                                                 }),
1075                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1076                                         Err(e) => return Err(e)
1077                                 }
1078                         }
1079                 })
1080         }
1081 }
1082
1083 impl_writeable_msg!(ClosingSigned,
1084         { channel_id, fee_satoshis, signature },
1085         { (1, fee_range, option) }
1086 );
1087
1088 impl_writeable!(ClosingSignedFeeRange, {
1089         min_fee_satoshis,
1090         max_fee_satoshis
1091 });
1092
1093 impl_writeable_msg!(CommitmentSigned, {
1094         channel_id,
1095         signature,
1096         htlc_signatures
1097 }, {});
1098
1099 impl_writeable!(DecodedOnionErrorPacket, {
1100         hmac,
1101         failuremsg,
1102         pad
1103 });
1104
1105 impl_writeable_msg!(FundingCreated, {
1106         temporary_channel_id,
1107         funding_txid,
1108         funding_output_index,
1109         signature
1110 }, {});
1111
1112 impl_writeable_msg!(FundingSigned, {
1113         channel_id,
1114         signature
1115 }, {});
1116
1117 impl_writeable_msg!(FundingLocked, {
1118         channel_id,
1119         next_per_commitment_point,
1120 }, {});
1121
1122 impl Writeable for Init {
1123         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1124                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1125                 // our relevant feature bits. This keeps us compatible with old nodes.
1126                 self.features.write_up_to_13(w)?;
1127                 self.features.write(w)
1128         }
1129 }
1130
1131 impl Readable for Init {
1132         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1133                 let global_features: InitFeatures = Readable::read(r)?;
1134                 let features: InitFeatures = Readable::read(r)?;
1135                 Ok(Init {
1136                         features: features.or(global_features),
1137                 })
1138         }
1139 }
1140
1141 impl_writeable_msg!(OpenChannel, {
1142         chain_hash,
1143         temporary_channel_id,
1144         funding_satoshis,
1145         push_msat,
1146         dust_limit_satoshis,
1147         max_htlc_value_in_flight_msat,
1148         channel_reserve_satoshis,
1149         htlc_minimum_msat,
1150         feerate_per_kw,
1151         to_self_delay,
1152         max_accepted_htlcs,
1153         funding_pubkey,
1154         revocation_basepoint,
1155         payment_point,
1156         delayed_payment_basepoint,
1157         htlc_basepoint,
1158         first_per_commitment_point,
1159         channel_flags,
1160         shutdown_scriptpubkey
1161 }, {
1162         (1, channel_type, option),
1163 });
1164
1165 impl_writeable_msg!(RevokeAndACK, {
1166         channel_id,
1167         per_commitment_secret,
1168         next_per_commitment_point
1169 }, {});
1170
1171 impl_writeable_msg!(Shutdown, {
1172         channel_id,
1173         scriptpubkey
1174 }, {});
1175
1176 impl_writeable_msg!(UpdateFailHTLC, {
1177         channel_id,
1178         htlc_id,
1179         reason
1180 }, {});
1181
1182 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1183         channel_id,
1184         htlc_id,
1185         sha256_of_onion,
1186         failure_code
1187 }, {});
1188
1189 impl_writeable_msg!(UpdateFee, {
1190         channel_id,
1191         feerate_per_kw
1192 }, {});
1193
1194 impl_writeable_msg!(UpdateFulfillHTLC, {
1195         channel_id,
1196         htlc_id,
1197         payment_preimage
1198 }, {});
1199
1200 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1201 // serialization format in a way which assumes we know the total serialized length/message end
1202 // position.
1203 impl_writeable!(OnionErrorPacket, {
1204         data
1205 });
1206
1207 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1208 // serialization format in a way which assumes we know the total serialized length/message end
1209 // position.
1210 impl Writeable for OnionPacket {
1211         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1212                 self.version.write(w)?;
1213                 match self.public_key {
1214                         Ok(pubkey) => pubkey.write(w)?,
1215                         Err(_) => [0u8;33].write(w)?,
1216                 }
1217                 w.write_all(&self.hop_data)?;
1218                 self.hmac.write(w)?;
1219                 Ok(())
1220         }
1221 }
1222
1223 impl Readable for OnionPacket {
1224         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1225                 Ok(OnionPacket {
1226                         version: Readable::read(r)?,
1227                         public_key: {
1228                                 let mut buf = [0u8;33];
1229                                 r.read_exact(&mut buf)?;
1230                                 PublicKey::from_slice(&buf)
1231                         },
1232                         hop_data: Readable::read(r)?,
1233                         hmac: Readable::read(r)?,
1234                 })
1235         }
1236 }
1237
1238 impl_writeable_msg!(UpdateAddHTLC, {
1239         channel_id,
1240         htlc_id,
1241         amount_msat,
1242         payment_hash,
1243         cltv_expiry,
1244         onion_routing_packet
1245 }, {});
1246
1247 impl Writeable for FinalOnionHopData {
1248         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1249                 self.payment_secret.0.write(w)?;
1250                 HighZeroBytesDroppedVarInt(self.total_msat).write(w)
1251         }
1252 }
1253
1254 impl Readable for FinalOnionHopData {
1255         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1256                 let secret: [u8; 32] = Readable::read(r)?;
1257                 let amt: HighZeroBytesDroppedVarInt<u64> = Readable::read(r)?;
1258                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1259         }
1260 }
1261
1262 impl Writeable for OnionHopData {
1263         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1264                 // Note that this should never be reachable if Rust-Lightning generated the message, as we
1265                 // check values are sane long before we get here, though its possible in the future
1266                 // user-generated messages may hit this.
1267                 if self.amt_to_forward > MAX_VALUE_MSAT { panic!("We should never be sending infinite/overflow onion payments"); }
1268                 match self.format {
1269                         OnionHopDataFormat::Legacy { short_channel_id } => {
1270                                 0u8.write(w)?;
1271                                 short_channel_id.write(w)?;
1272                                 self.amt_to_forward.write(w)?;
1273                                 self.outgoing_cltv_value.write(w)?;
1274                                 w.write_all(&[0;12])?;
1275                         },
1276                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1277                                 encode_varint_length_prefixed_tlv!(w, {
1278                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1279                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1280                                         (6, short_channel_id, required)
1281                                 });
1282                         },
1283                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1284                                 if let Some(final_data) = payment_data {
1285                                         if final_data.total_msat > MAX_VALUE_MSAT { panic!("We should never be sending infinite/overflow onion payments"); }
1286                                 }
1287                                 encode_varint_length_prefixed_tlv!(w, {
1288                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1289                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1290                                         (8, payment_data, option),
1291                                         (5482373484, keysend_preimage, option)
1292                                 });
1293                         },
1294                 }
1295                 Ok(())
1296         }
1297 }
1298
1299 impl Readable for OnionHopData {
1300         fn read<R: Read>(mut r: &mut R) -> Result<Self, DecodeError> {
1301                 use bitcoin::consensus::encode::{Decodable, Error, VarInt};
1302                 let v: VarInt = Decodable::consensus_decode(&mut r)
1303                         .map_err(|e| match e {
1304                                 Error::Io(ioe) => DecodeError::from(ioe),
1305                                 _ => DecodeError::InvalidValue
1306                         })?;
1307                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1308                 let (format, amt, cltv_value) = if v.0 != LEGACY_ONION_HOP_FLAG {
1309                         let mut rd = FixedLengthReader::new(r, v.0);
1310                         let mut amt = HighZeroBytesDroppedVarInt(0u64);
1311                         let mut cltv_value = HighZeroBytesDroppedVarInt(0u32);
1312                         let mut short_id: Option<u64> = None;
1313                         let mut payment_data: Option<FinalOnionHopData> = None;
1314                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1315                         // The TLV type is chosen to be compatible with lnd and c-lightning.
1316                         decode_tlv_stream!(&mut rd, {
1317                                 (2, amt, required),
1318                                 (4, cltv_value, required),
1319                                 (6, short_id, option),
1320                                 (8, payment_data, option),
1321                                 (5482373484, keysend_preimage, option)
1322                         });
1323                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1324                         let format = if let Some(short_channel_id) = short_id {
1325                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1326                                 OnionHopDataFormat::NonFinalNode {
1327                                         short_channel_id,
1328                                 }
1329                         } else {
1330                                 if let &Some(ref data) = &payment_data {
1331                                         if data.total_msat > MAX_VALUE_MSAT {
1332                                                 return Err(DecodeError::InvalidValue);
1333                                         }
1334                                 }
1335                                 OnionHopDataFormat::FinalNode {
1336                                         payment_data,
1337                                         keysend_preimage,
1338                                 }
1339                         };
1340                         (format, amt.0, cltv_value.0)
1341                 } else {
1342                         let format = OnionHopDataFormat::Legacy {
1343                                 short_channel_id: Readable::read(r)?,
1344                         };
1345                         let amt: u64 = Readable::read(r)?;
1346                         let cltv_value: u32 = Readable::read(r)?;
1347                         r.read_exact(&mut [0; 12])?;
1348                         (format, amt, cltv_value)
1349                 };
1350
1351                 if amt > MAX_VALUE_MSAT {
1352                         return Err(DecodeError::InvalidValue);
1353                 }
1354                 Ok(OnionHopData {
1355                         format,
1356                         amt_to_forward: amt,
1357                         outgoing_cltv_value: cltv_value,
1358                 })
1359         }
1360 }
1361
1362 impl Writeable for Ping {
1363         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1364                 self.ponglen.write(w)?;
1365                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1366                 Ok(())
1367         }
1368 }
1369
1370 impl Readable for Ping {
1371         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1372                 Ok(Ping {
1373                         ponglen: Readable::read(r)?,
1374                         byteslen: {
1375                                 let byteslen = Readable::read(r)?;
1376                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1377                                 byteslen
1378                         }
1379                 })
1380         }
1381 }
1382
1383 impl Writeable for Pong {
1384         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1385                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1386                 Ok(())
1387         }
1388 }
1389
1390 impl Readable for Pong {
1391         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1392                 Ok(Pong {
1393                         byteslen: {
1394                                 let byteslen = Readable::read(r)?;
1395                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1396                                 byteslen
1397                         }
1398                 })
1399         }
1400 }
1401
1402 impl Writeable for UnsignedChannelAnnouncement {
1403         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1404                 self.features.write(w)?;
1405                 self.chain_hash.write(w)?;
1406                 self.short_channel_id.write(w)?;
1407                 self.node_id_1.write(w)?;
1408                 self.node_id_2.write(w)?;
1409                 self.bitcoin_key_1.write(w)?;
1410                 self.bitcoin_key_2.write(w)?;
1411                 w.write_all(&self.excess_data[..])?;
1412                 Ok(())
1413         }
1414 }
1415
1416 impl Readable for UnsignedChannelAnnouncement {
1417         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1418                 Ok(Self {
1419                         features: Readable::read(r)?,
1420                         chain_hash: Readable::read(r)?,
1421                         short_channel_id: Readable::read(r)?,
1422                         node_id_1: Readable::read(r)?,
1423                         node_id_2: Readable::read(r)?,
1424                         bitcoin_key_1: Readable::read(r)?,
1425                         bitcoin_key_2: Readable::read(r)?,
1426                         excess_data: read_to_end(r)?,
1427                 })
1428         }
1429 }
1430
1431 impl_writeable!(ChannelAnnouncement, {
1432         node_signature_1,
1433         node_signature_2,
1434         bitcoin_signature_1,
1435         bitcoin_signature_2,
1436         contents
1437 });
1438
1439 impl Writeable for UnsignedChannelUpdate {
1440         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1441                 let mut message_flags: u8 = 0;
1442                 if let OptionalField::Present(_) = self.htlc_maximum_msat {
1443                         message_flags = 1;
1444                 }
1445                 self.chain_hash.write(w)?;
1446                 self.short_channel_id.write(w)?;
1447                 self.timestamp.write(w)?;
1448                 let all_flags = self.flags as u16 | ((message_flags as u16) << 8);
1449                 all_flags.write(w)?;
1450                 self.cltv_expiry_delta.write(w)?;
1451                 self.htlc_minimum_msat.write(w)?;
1452                 self.fee_base_msat.write(w)?;
1453                 self.fee_proportional_millionths.write(w)?;
1454                 self.htlc_maximum_msat.write(w)?;
1455                 w.write_all(&self.excess_data[..])?;
1456                 Ok(())
1457         }
1458 }
1459
1460 impl Readable for UnsignedChannelUpdate {
1461         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1462                 let has_htlc_maximum_msat;
1463                 Ok(Self {
1464                         chain_hash: Readable::read(r)?,
1465                         short_channel_id: Readable::read(r)?,
1466                         timestamp: Readable::read(r)?,
1467                         flags: {
1468                                 let flags: u16 = Readable::read(r)?;
1469                                 let message_flags = flags >> 8;
1470                                 has_htlc_maximum_msat = (message_flags as i32 & 1) == 1;
1471                                 flags as u8
1472                         },
1473                         cltv_expiry_delta: Readable::read(r)?,
1474                         htlc_minimum_msat: Readable::read(r)?,
1475                         fee_base_msat: Readable::read(r)?,
1476                         fee_proportional_millionths: Readable::read(r)?,
1477                         htlc_maximum_msat: if has_htlc_maximum_msat { Readable::read(r)? } else { OptionalField::Absent },
1478                         excess_data: read_to_end(r)?,
1479                 })
1480         }
1481 }
1482
1483 impl_writeable!(ChannelUpdate, {
1484         signature,
1485         contents
1486 });
1487
1488 impl Writeable for ErrorMessage {
1489         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1490                 self.channel_id.write(w)?;
1491                 (self.data.len() as u16).write(w)?;
1492                 w.write_all(self.data.as_bytes())?;
1493                 Ok(())
1494         }
1495 }
1496
1497 impl Readable for ErrorMessage {
1498         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1499                 Ok(Self {
1500                         channel_id: Readable::read(r)?,
1501                         data: {
1502                                 let mut sz: usize = <u16 as Readable>::read(r)? as usize;
1503                                 let data = read_to_end(r)?;
1504                                 sz = cmp::min(data.len(), sz);
1505                                 match String::from_utf8(data[..sz as usize].to_vec()) {
1506                                         Ok(s) => s,
1507                                         Err(_) => return Err(DecodeError::InvalidValue),
1508                                 }
1509                         }
1510                 })
1511         }
1512 }
1513
1514 impl Writeable for UnsignedNodeAnnouncement {
1515         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1516                 self.features.write(w)?;
1517                 self.timestamp.write(w)?;
1518                 self.node_id.write(w)?;
1519                 w.write_all(&self.rgb)?;
1520                 self.alias.write(w)?;
1521
1522                 let mut addr_len = 0;
1523                 for addr in self.addresses.iter() {
1524                         addr_len += 1 + addr.len();
1525                 }
1526                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1527                 for addr in self.addresses.iter() {
1528                         addr.write(w)?;
1529                 }
1530                 w.write_all(&self.excess_address_data[..])?;
1531                 w.write_all(&self.excess_data[..])?;
1532                 Ok(())
1533         }
1534 }
1535
1536 impl Readable for UnsignedNodeAnnouncement {
1537         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1538                 let features: NodeFeatures = Readable::read(r)?;
1539                 let timestamp: u32 = Readable::read(r)?;
1540                 let node_id: PublicKey = Readable::read(r)?;
1541                 let mut rgb = [0; 3];
1542                 r.read_exact(&mut rgb)?;
1543                 let alias: [u8; 32] = Readable::read(r)?;
1544
1545                 let addr_len: u16 = Readable::read(r)?;
1546                 let mut addresses: Vec<NetAddress> = Vec::new();
1547                 let mut addr_readpos = 0;
1548                 let mut excess = false;
1549                 let mut excess_byte = 0;
1550                 loop {
1551                         if addr_len <= addr_readpos { break; }
1552                         match Readable::read(r) {
1553                                 Ok(Ok(addr)) => {
1554                                         if addr_len < addr_readpos + 1 + addr.len() {
1555                                                 return Err(DecodeError::BadLengthDescriptor);
1556                                         }
1557                                         addr_readpos += (1 + addr.len()) as u16;
1558                                         addresses.push(addr);
1559                                 },
1560                                 Ok(Err(unknown_descriptor)) => {
1561                                         excess = true;
1562                                         excess_byte = unknown_descriptor;
1563                                         break;
1564                                 },
1565                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1566                                 Err(e) => return Err(e),
1567                         }
1568                 }
1569
1570                 let mut excess_data = vec![];
1571                 let excess_address_data = if addr_readpos < addr_len {
1572                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1573                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1574                         if excess {
1575                                 excess_address_data[0] = excess_byte;
1576                         }
1577                         excess_address_data
1578                 } else {
1579                         if excess {
1580                                 excess_data.push(excess_byte);
1581                         }
1582                         Vec::new()
1583                 };
1584                 excess_data.extend(read_to_end(r)?.iter());
1585                 Ok(UnsignedNodeAnnouncement {
1586                         features,
1587                         timestamp,
1588                         node_id,
1589                         rgb,
1590                         alias,
1591                         addresses,
1592                         excess_address_data,
1593                         excess_data,
1594                 })
1595         }
1596 }
1597
1598 impl_writeable!(NodeAnnouncement, {
1599         signature,
1600         contents
1601 });
1602
1603 impl Readable for QueryShortChannelIds {
1604         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1605                 let chain_hash: BlockHash = Readable::read(r)?;
1606
1607                 let encoding_len: u16 = Readable::read(r)?;
1608                 let encoding_type: u8 = Readable::read(r)?;
1609
1610                 // Must be encoding_type=0 uncompressed serialization. We do not
1611                 // support encoding_type=1 zlib serialization.
1612                 if encoding_type != EncodingType::Uncompressed as u8 {
1613                         return Err(DecodeError::UnsupportedCompression);
1614                 }
1615
1616                 // We expect the encoding_len to always includes the 1-byte
1617                 // encoding_type and that short_channel_ids are 8-bytes each
1618                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1619                         return Err(DecodeError::InvalidValue);
1620                 }
1621
1622                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1623                 // less the 1-byte encoding_type
1624                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1625                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1626                 for _ in 0..short_channel_id_count {
1627                         short_channel_ids.push(Readable::read(r)?);
1628                 }
1629
1630                 Ok(QueryShortChannelIds {
1631                         chain_hash,
1632                         short_channel_ids,
1633                 })
1634         }
1635 }
1636
1637 impl Writeable for QueryShortChannelIds {
1638         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1639                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1640                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1641
1642                 self.chain_hash.write(w)?;
1643                 encoding_len.write(w)?;
1644
1645                 // We only support type=0 uncompressed serialization
1646                 (EncodingType::Uncompressed as u8).write(w)?;
1647
1648                 for scid in self.short_channel_ids.iter() {
1649                         scid.write(w)?;
1650                 }
1651
1652                 Ok(())
1653         }
1654 }
1655
1656 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1657         chain_hash,
1658         full_information,
1659 }, {});
1660
1661 impl QueryChannelRange {
1662         /**
1663          * Calculates the overflow safe ending block height for the query.
1664          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1665          */
1666         pub fn end_blocknum(&self) -> u32 {
1667                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1668                         Some(block) => block,
1669                         None => u32::max_value(),
1670                 }
1671         }
1672 }
1673
1674 impl_writeable_msg!(QueryChannelRange, {
1675         chain_hash,
1676         first_blocknum,
1677         number_of_blocks
1678 }, {});
1679
1680 impl Readable for ReplyChannelRange {
1681         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1682                 let chain_hash: BlockHash = Readable::read(r)?;
1683                 let first_blocknum: u32 = Readable::read(r)?;
1684                 let number_of_blocks: u32 = Readable::read(r)?;
1685                 let sync_complete: bool = Readable::read(r)?;
1686
1687                 let encoding_len: u16 = Readable::read(r)?;
1688                 let encoding_type: u8 = Readable::read(r)?;
1689
1690                 // Must be encoding_type=0 uncompressed serialization. We do not
1691                 // support encoding_type=1 zlib serialization.
1692                 if encoding_type != EncodingType::Uncompressed as u8 {
1693                         return Err(DecodeError::UnsupportedCompression);
1694                 }
1695
1696                 // We expect the encoding_len to always includes the 1-byte
1697                 // encoding_type and that short_channel_ids are 8-bytes each
1698                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1699                         return Err(DecodeError::InvalidValue);
1700                 }
1701
1702                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1703                 // less the 1-byte encoding_type
1704                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1705                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1706                 for _ in 0..short_channel_id_count {
1707                         short_channel_ids.push(Readable::read(r)?);
1708                 }
1709
1710                 Ok(ReplyChannelRange {
1711                         chain_hash,
1712                         first_blocknum,
1713                         number_of_blocks,
1714                         sync_complete,
1715                         short_channel_ids
1716                 })
1717         }
1718 }
1719
1720 impl Writeable for ReplyChannelRange {
1721         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1722                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1723                 self.chain_hash.write(w)?;
1724                 self.first_blocknum.write(w)?;
1725                 self.number_of_blocks.write(w)?;
1726                 self.sync_complete.write(w)?;
1727
1728                 encoding_len.write(w)?;
1729                 (EncodingType::Uncompressed as u8).write(w)?;
1730                 for scid in self.short_channel_ids.iter() {
1731                         scid.write(w)?;
1732                 }
1733
1734                 Ok(())
1735         }
1736 }
1737
1738 impl_writeable_msg!(GossipTimestampFilter, {
1739         chain_hash,
1740         first_timestamp,
1741         timestamp_range,
1742 }, {});
1743
1744 #[cfg(test)]
1745 mod tests {
1746         use hex;
1747         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1748         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1749         use ln::msgs;
1750         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1751         use util::ser::{Writeable, Readable};
1752
1753         use bitcoin::hashes::hex::FromHex;
1754         use bitcoin::util::address::Address;
1755         use bitcoin::network::constants::Network;
1756         use bitcoin::blockdata::script::Builder;
1757         use bitcoin::blockdata::opcodes;
1758         use bitcoin::hash_types::{Txid, BlockHash};
1759
1760         use bitcoin::secp256k1::key::{PublicKey,SecretKey};
1761         use bitcoin::secp256k1::{Secp256k1, Message};
1762
1763         use io::Cursor;
1764         use prelude::*;
1765
1766         #[test]
1767         fn encoding_channel_reestablish_no_secret() {
1768                 let cr = msgs::ChannelReestablish {
1769                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1770                         next_local_commitment_number: 3,
1771                         next_remote_commitment_number: 4,
1772                         data_loss_protect: OptionalField::Absent,
1773                 };
1774
1775                 let encoded_value = cr.encode();
1776                 assert_eq!(
1777                         encoded_value,
1778                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1779                 );
1780         }
1781
1782         #[test]
1783         fn encoding_channel_reestablish_with_secret() {
1784                 let public_key = {
1785                         let secp_ctx = Secp256k1::new();
1786                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
1787                 };
1788
1789                 let cr = msgs::ChannelReestablish {
1790                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1791                         next_local_commitment_number: 3,
1792                         next_remote_commitment_number: 4,
1793                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
1794                 };
1795
1796                 let encoded_value = cr.encode();
1797                 assert_eq!(
1798                         encoded_value,
1799                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
1800                 );
1801         }
1802
1803         macro_rules! get_keys_from {
1804                 ($slice: expr, $secp_ctx: expr) => {
1805                         {
1806                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
1807                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
1808                                 (privkey, pubkey)
1809                         }
1810                 }
1811         }
1812
1813         macro_rules! get_sig_on {
1814                 ($privkey: expr, $ctx: expr, $string: expr) => {
1815                         {
1816                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
1817                                 $ctx.sign(&sighash, &$privkey)
1818                         }
1819                 }
1820         }
1821
1822         #[test]
1823         fn encoding_announcement_signatures() {
1824                 let secp_ctx = Secp256k1::new();
1825                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1826                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
1827                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
1828                 let announcement_signatures = msgs::AnnouncementSignatures {
1829                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1830                         short_channel_id: 2316138423780173,
1831                         node_signature: sig_1,
1832                         bitcoin_signature: sig_2,
1833                 };
1834
1835                 let encoded_value = announcement_signatures.encode();
1836                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
1837         }
1838
1839         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
1840                 let secp_ctx = Secp256k1::new();
1841                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1842                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
1843                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
1844                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
1845                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1846                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
1847                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
1848                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
1849                 let mut features = ChannelFeatures::known();
1850                 if unknown_features_bits {
1851                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
1852                 }
1853                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
1854                         features,
1855                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
1856                         short_channel_id: 2316138423780173,
1857                         node_id_1: pubkey_1,
1858                         node_id_2: pubkey_2,
1859                         bitcoin_key_1: pubkey_3,
1860                         bitcoin_key_2: pubkey_4,
1861                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
1862                 };
1863                 let channel_announcement = msgs::ChannelAnnouncement {
1864                         node_signature_1: sig_1,
1865                         node_signature_2: sig_2,
1866                         bitcoin_signature_1: sig_3,
1867                         bitcoin_signature_2: sig_4,
1868                         contents: unsigned_channel_announcement,
1869                 };
1870                 let encoded_value = channel_announcement.encode();
1871                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
1872                 if unknown_features_bits {
1873                         target_value.append(&mut hex::decode("0002ffff").unwrap());
1874                 } else {
1875                         target_value.append(&mut hex::decode("0000").unwrap());
1876                 }
1877                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
1878                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
1879                 if excess_data {
1880                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
1881                 }
1882                 assert_eq!(encoded_value, target_value);
1883         }
1884
1885         #[test]
1886         fn encoding_channel_announcement() {
1887                 do_encoding_channel_announcement(true, false);
1888                 do_encoding_channel_announcement(false, true);
1889                 do_encoding_channel_announcement(false, false);
1890                 do_encoding_channel_announcement(true, true);
1891         }
1892
1893         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, excess_address_data: bool, excess_data: bool) {
1894                 let secp_ctx = Secp256k1::new();
1895                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1896                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1897                 let features = if unknown_features_bits {
1898                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
1899                 } else {
1900                         // Set to some features we may support
1901                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
1902                 };
1903                 let mut addresses = Vec::new();
1904                 if ipv4 {
1905                         addresses.push(msgs::NetAddress::IPv4 {
1906                                 addr: [255, 254, 253, 252],
1907                                 port: 9735
1908                         });
1909                 }
1910                 if ipv6 {
1911                         addresses.push(msgs::NetAddress::IPv6 {
1912                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
1913                                 port: 9735
1914                         });
1915                 }
1916                 if onionv2 {
1917                         addresses.push(msgs::NetAddress::OnionV2(
1918                                 [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 38, 7]
1919                         ));
1920                 }
1921                 if onionv3 {
1922                         addresses.push(msgs::NetAddress::OnionV3 {
1923                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
1924                                 checksum: 32,
1925                                 version: 16,
1926                                 port: 9735
1927                         });
1928                 }
1929                 let mut addr_len = 0;
1930                 for addr in &addresses {
1931                         addr_len += addr.len() + 1;
1932                 }
1933                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
1934                         features,
1935                         timestamp: 20190119,
1936                         node_id: pubkey_1,
1937                         rgb: [32; 3],
1938                         alias: [16;32],
1939                         addresses,
1940                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
1941                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
1942                 };
1943                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
1944                 let node_announcement = msgs::NodeAnnouncement {
1945                         signature: sig_1,
1946                         contents: unsigned_node_announcement,
1947                 };
1948                 let encoded_value = node_announcement.encode();
1949                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
1950                 if unknown_features_bits {
1951                         target_value.append(&mut hex::decode("0002ffff").unwrap());
1952                 } else {
1953                         target_value.append(&mut hex::decode("000122").unwrap());
1954                 }
1955                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
1956                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
1957                 if ipv4 {
1958                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
1959                 }
1960                 if ipv6 {
1961                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
1962                 }
1963                 if onionv2 {
1964                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
1965                 }
1966                 if onionv3 {
1967                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
1968                 }
1969                 if excess_address_data {
1970                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
1971                 }
1972                 if excess_data {
1973                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
1974                 }
1975                 assert_eq!(encoded_value, target_value);
1976         }
1977
1978         #[test]
1979         fn encoding_node_announcement() {
1980                 do_encoding_node_announcement(true, true, true, true, true, true, true);
1981                 do_encoding_node_announcement(false, false, false, false, false, false, false);
1982                 do_encoding_node_announcement(false, true, false, false, false, false, false);
1983                 do_encoding_node_announcement(false, false, true, false, false, false, false);
1984                 do_encoding_node_announcement(false, false, false, true, false, false, false);
1985                 do_encoding_node_announcement(false, false, false, false, true, false, false);
1986                 do_encoding_node_announcement(false, false, false, false, false, true, false);
1987                 do_encoding_node_announcement(false, true, false, true, false, true, false);
1988                 do_encoding_node_announcement(false, false, true, false, true, false, false);
1989         }
1990
1991         fn do_encoding_channel_update(direction: bool, disable: bool, htlc_maximum_msat: bool, excess_data: bool) {
1992                 let secp_ctx = Secp256k1::new();
1993                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1994                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1995                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
1996                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
1997                         short_channel_id: 2316138423780173,
1998                         timestamp: 20190119,
1999                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2000                         cltv_expiry_delta: 144,
2001                         htlc_minimum_msat: 1000000,
2002                         htlc_maximum_msat: if htlc_maximum_msat { OptionalField::Present(131355275467161) } else { OptionalField::Absent },
2003                         fee_base_msat: 10000,
2004                         fee_proportional_millionths: 20,
2005                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2006                 };
2007                 let channel_update = msgs::ChannelUpdate {
2008                         signature: sig_1,
2009                         contents: unsigned_channel_update
2010                 };
2011                 let encoded_value = channel_update.encode();
2012                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2013                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2014                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2015                 if htlc_maximum_msat {
2016                         target_value.append(&mut hex::decode("01").unwrap());
2017                 } else {
2018                         target_value.append(&mut hex::decode("00").unwrap());
2019                 }
2020                 target_value.append(&mut hex::decode("00").unwrap());
2021                 if direction {
2022                         let flag = target_value.last_mut().unwrap();
2023                         *flag = 1;
2024                 }
2025                 if disable {
2026                         let flag = target_value.last_mut().unwrap();
2027                         *flag = *flag | 1 << 1;
2028                 }
2029                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2030                 if htlc_maximum_msat {
2031                         target_value.append(&mut hex::decode("0000777788889999").unwrap());
2032                 }
2033                 if excess_data {
2034                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2035                 }
2036                 assert_eq!(encoded_value, target_value);
2037         }
2038
2039         #[test]
2040         fn encoding_channel_update() {
2041                 do_encoding_channel_update(false, false, false, false);
2042                 do_encoding_channel_update(false, false, false, true);
2043                 do_encoding_channel_update(true, false, false, false);
2044                 do_encoding_channel_update(true, false, false, true);
2045                 do_encoding_channel_update(false, true, false, false);
2046                 do_encoding_channel_update(false, true, false, true);
2047                 do_encoding_channel_update(false, false, true, false);
2048                 do_encoding_channel_update(false, false, true, true);
2049                 do_encoding_channel_update(true, true, true, false);
2050                 do_encoding_channel_update(true, true, true, true);
2051         }
2052
2053         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2054                 let secp_ctx = Secp256k1::new();
2055                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2056                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2057                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2058                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2059                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2060                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2061                 let open_channel = msgs::OpenChannel {
2062                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2063                         temporary_channel_id: [2; 32],
2064                         funding_satoshis: 1311768467284833366,
2065                         push_msat: 2536655962884945560,
2066                         dust_limit_satoshis: 3608586615801332854,
2067                         max_htlc_value_in_flight_msat: 8517154655701053848,
2068                         channel_reserve_satoshis: 8665828695742877976,
2069                         htlc_minimum_msat: 2316138423780173,
2070                         feerate_per_kw: 821716,
2071                         to_self_delay: 49340,
2072                         max_accepted_htlcs: 49340,
2073                         funding_pubkey: pubkey_1,
2074                         revocation_basepoint: pubkey_2,
2075                         payment_point: pubkey_3,
2076                         delayed_payment_basepoint: pubkey_4,
2077                         htlc_basepoint: pubkey_5,
2078                         first_per_commitment_point: pubkey_6,
2079                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2080                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2081                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2082                 };
2083                 let encoded_value = open_channel.encode();
2084                 let mut target_value = Vec::new();
2085                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2086                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2087                 if random_bit {
2088                         target_value.append(&mut hex::decode("20").unwrap());
2089                 } else {
2090                         target_value.append(&mut hex::decode("00").unwrap());
2091                 }
2092                 if shutdown {
2093                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2094                 }
2095                 if incl_chan_type {
2096                         target_value.append(&mut hex::decode("0100").unwrap());
2097                 }
2098                 assert_eq!(encoded_value, target_value);
2099         }
2100
2101         #[test]
2102         fn encoding_open_channel() {
2103                 do_encoding_open_channel(false, false, false);
2104                 do_encoding_open_channel(false, false, true);
2105                 do_encoding_open_channel(false, true, false);
2106                 do_encoding_open_channel(false, true, true);
2107                 do_encoding_open_channel(true, false, false);
2108                 do_encoding_open_channel(true, false, true);
2109                 do_encoding_open_channel(true, true, false);
2110                 do_encoding_open_channel(true, true, true);
2111         }
2112
2113         fn do_encoding_accept_channel(shutdown: bool) {
2114                 let secp_ctx = Secp256k1::new();
2115                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2116                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2117                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2118                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2119                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2120                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2121                 let accept_channel = msgs::AcceptChannel {
2122                         temporary_channel_id: [2; 32],
2123                         dust_limit_satoshis: 1311768467284833366,
2124                         max_htlc_value_in_flight_msat: 2536655962884945560,
2125                         channel_reserve_satoshis: 3608586615801332854,
2126                         htlc_minimum_msat: 2316138423780173,
2127                         minimum_depth: 821716,
2128                         to_self_delay: 49340,
2129                         max_accepted_htlcs: 49340,
2130                         funding_pubkey: pubkey_1,
2131                         revocation_basepoint: pubkey_2,
2132                         payment_point: pubkey_3,
2133                         delayed_payment_basepoint: pubkey_4,
2134                         htlc_basepoint: pubkey_5,
2135                         first_per_commitment_point: pubkey_6,
2136                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent }
2137                 };
2138                 let encoded_value = accept_channel.encode();
2139                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2140                 if shutdown {
2141                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2142                 }
2143                 assert_eq!(encoded_value, target_value);
2144         }
2145
2146         #[test]
2147         fn encoding_accept_channel() {
2148                 do_encoding_accept_channel(false);
2149                 do_encoding_accept_channel(true);
2150         }
2151
2152         #[test]
2153         fn encoding_funding_created() {
2154                 let secp_ctx = Secp256k1::new();
2155                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2156                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2157                 let funding_created = msgs::FundingCreated {
2158                         temporary_channel_id: [2; 32],
2159                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2160                         funding_output_index: 255,
2161                         signature: sig_1,
2162                 };
2163                 let encoded_value = funding_created.encode();
2164                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2165                 assert_eq!(encoded_value, target_value);
2166         }
2167
2168         #[test]
2169         fn encoding_funding_signed() {
2170                 let secp_ctx = Secp256k1::new();
2171                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2172                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2173                 let funding_signed = msgs::FundingSigned {
2174                         channel_id: [2; 32],
2175                         signature: sig_1,
2176                 };
2177                 let encoded_value = funding_signed.encode();
2178                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2179                 assert_eq!(encoded_value, target_value);
2180         }
2181
2182         #[test]
2183         fn encoding_funding_locked() {
2184                 let secp_ctx = Secp256k1::new();
2185                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2186                 let funding_locked = msgs::FundingLocked {
2187                         channel_id: [2; 32],
2188                         next_per_commitment_point: pubkey_1,
2189                 };
2190                 let encoded_value = funding_locked.encode();
2191                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2192                 assert_eq!(encoded_value, target_value);
2193         }
2194
2195         fn do_encoding_shutdown(script_type: u8) {
2196                 let secp_ctx = Secp256k1::new();
2197                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2198                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2199                 let shutdown = msgs::Shutdown {
2200                         channel_id: [2; 32],
2201                         scriptpubkey:
2202                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey() }
2203                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).script_pubkey() }
2204                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2205                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2206                 };
2207                 let encoded_value = shutdown.encode();
2208                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2209                 if script_type == 1 {
2210                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2211                 } else if script_type == 2 {
2212                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2213                 } else if script_type == 3 {
2214                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2215                 } else if script_type == 4 {
2216                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2217                 }
2218                 assert_eq!(encoded_value, target_value);
2219         }
2220
2221         #[test]
2222         fn encoding_shutdown() {
2223                 do_encoding_shutdown(1);
2224                 do_encoding_shutdown(2);
2225                 do_encoding_shutdown(3);
2226                 do_encoding_shutdown(4);
2227         }
2228
2229         #[test]
2230         fn encoding_closing_signed() {
2231                 let secp_ctx = Secp256k1::new();
2232                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2233                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2234                 let closing_signed = msgs::ClosingSigned {
2235                         channel_id: [2; 32],
2236                         fee_satoshis: 2316138423780173,
2237                         signature: sig_1,
2238                         fee_range: None,
2239                 };
2240                 let encoded_value = closing_signed.encode();
2241                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2242                 assert_eq!(encoded_value, target_value);
2243                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2244
2245                 let closing_signed_with_range = msgs::ClosingSigned {
2246                         channel_id: [2; 32],
2247                         fee_satoshis: 2316138423780173,
2248                         signature: sig_1,
2249                         fee_range: Some(msgs::ClosingSignedFeeRange {
2250                                 min_fee_satoshis: 0xdeadbeef,
2251                                 max_fee_satoshis: 0x1badcafe01234567,
2252                         }),
2253                 };
2254                 let encoded_value_with_range = closing_signed_with_range.encode();
2255                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2256                 assert_eq!(encoded_value_with_range, target_value_with_range);
2257                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2258                         closing_signed_with_range);
2259         }
2260
2261         #[test]
2262         fn encoding_update_add_htlc() {
2263                 let secp_ctx = Secp256k1::new();
2264                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2265                 let onion_routing_packet = msgs::OnionPacket {
2266                         version: 255,
2267                         public_key: Ok(pubkey_1),
2268                         hop_data: [1; 20*65],
2269                         hmac: [2; 32]
2270                 };
2271                 let update_add_htlc = msgs::UpdateAddHTLC {
2272                         channel_id: [2; 32],
2273                         htlc_id: 2316138423780173,
2274                         amount_msat: 3608586615801332854,
2275                         payment_hash: PaymentHash([1; 32]),
2276                         cltv_expiry: 821716,
2277                         onion_routing_packet
2278                 };
2279                 let encoded_value = update_add_htlc.encode();
2280                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2281                 assert_eq!(encoded_value, target_value);
2282         }
2283
2284         #[test]
2285         fn encoding_update_fulfill_htlc() {
2286                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2287                         channel_id: [2; 32],
2288                         htlc_id: 2316138423780173,
2289                         payment_preimage: PaymentPreimage([1; 32]),
2290                 };
2291                 let encoded_value = update_fulfill_htlc.encode();
2292                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2293                 assert_eq!(encoded_value, target_value);
2294         }
2295
2296         #[test]
2297         fn encoding_update_fail_htlc() {
2298                 let reason = OnionErrorPacket {
2299                         data: [1; 32].to_vec(),
2300                 };
2301                 let update_fail_htlc = msgs::UpdateFailHTLC {
2302                         channel_id: [2; 32],
2303                         htlc_id: 2316138423780173,
2304                         reason
2305                 };
2306                 let encoded_value = update_fail_htlc.encode();
2307                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2308                 assert_eq!(encoded_value, target_value);
2309         }
2310
2311         #[test]
2312         fn encoding_update_fail_malformed_htlc() {
2313                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2314                         channel_id: [2; 32],
2315                         htlc_id: 2316138423780173,
2316                         sha256_of_onion: [1; 32],
2317                         failure_code: 255
2318                 };
2319                 let encoded_value = update_fail_malformed_htlc.encode();
2320                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2321                 assert_eq!(encoded_value, target_value);
2322         }
2323
2324         fn do_encoding_commitment_signed(htlcs: bool) {
2325                 let secp_ctx = Secp256k1::new();
2326                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2327                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2328                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2329                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2330                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2331                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2332                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2333                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2334                 let commitment_signed = msgs::CommitmentSigned {
2335                         channel_id: [2; 32],
2336                         signature: sig_1,
2337                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2338                 };
2339                 let encoded_value = commitment_signed.encode();
2340                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2341                 if htlcs {
2342                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2343                 } else {
2344                         target_value.append(&mut hex::decode("0000").unwrap());
2345                 }
2346                 assert_eq!(encoded_value, target_value);
2347         }
2348
2349         #[test]
2350         fn encoding_commitment_signed() {
2351                 do_encoding_commitment_signed(true);
2352                 do_encoding_commitment_signed(false);
2353         }
2354
2355         #[test]
2356         fn encoding_revoke_and_ack() {
2357                 let secp_ctx = Secp256k1::new();
2358                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2359                 let raa = msgs::RevokeAndACK {
2360                         channel_id: [2; 32],
2361                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2362                         next_per_commitment_point: pubkey_1,
2363                 };
2364                 let encoded_value = raa.encode();
2365                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2366                 assert_eq!(encoded_value, target_value);
2367         }
2368
2369         #[test]
2370         fn encoding_update_fee() {
2371                 let update_fee = msgs::UpdateFee {
2372                         channel_id: [2; 32],
2373                         feerate_per_kw: 20190119,
2374                 };
2375                 let encoded_value = update_fee.encode();
2376                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2377                 assert_eq!(encoded_value, target_value);
2378         }
2379
2380         #[test]
2381         fn encoding_init() {
2382                 assert_eq!(msgs::Init {
2383                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2384                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2385                 assert_eq!(msgs::Init {
2386                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2387                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2388                 assert_eq!(msgs::Init {
2389                         features: InitFeatures::from_le_bytes(vec![]),
2390                 }.encode(), hex::decode("00000000").unwrap());
2391         }
2392
2393         #[test]
2394         fn encoding_error() {
2395                 let error = msgs::ErrorMessage {
2396                         channel_id: [2; 32],
2397                         data: String::from("rust-lightning"),
2398                 };
2399                 let encoded_value = error.encode();
2400                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2401                 assert_eq!(encoded_value, target_value);
2402         }
2403
2404         #[test]
2405         fn encoding_ping() {
2406                 let ping = msgs::Ping {
2407                         ponglen: 64,
2408                         byteslen: 64
2409                 };
2410                 let encoded_value = ping.encode();
2411                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2412                 assert_eq!(encoded_value, target_value);
2413         }
2414
2415         #[test]
2416         fn encoding_pong() {
2417                 let pong = msgs::Pong {
2418                         byteslen: 64
2419                 };
2420                 let encoded_value = pong.encode();
2421                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2422                 assert_eq!(encoded_value, target_value);
2423         }
2424
2425         #[test]
2426         fn encoding_legacy_onion_hop_data() {
2427                 let msg = msgs::OnionHopData {
2428                         format: OnionHopDataFormat::Legacy {
2429                                 short_channel_id: 0xdeadbeef1bad1dea,
2430                         },
2431                         amt_to_forward: 0x0badf00d01020304,
2432                         outgoing_cltv_value: 0xffffffff,
2433                 };
2434                 let encoded_value = msg.encode();
2435                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2436                 assert_eq!(encoded_value, target_value);
2437         }
2438
2439         #[test]
2440         fn encoding_nonfinal_onion_hop_data() {
2441                 let mut msg = msgs::OnionHopData {
2442                         format: OnionHopDataFormat::NonFinalNode {
2443                                 short_channel_id: 0xdeadbeef1bad1dea,
2444                         },
2445                         amt_to_forward: 0x0badf00d01020304,
2446                         outgoing_cltv_value: 0xffffffff,
2447                 };
2448                 let encoded_value = msg.encode();
2449                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2450                 assert_eq!(encoded_value, target_value);
2451                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2452                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2453                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2454                 } else { panic!(); }
2455                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2456                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2457         }
2458
2459         #[test]
2460         fn encoding_final_onion_hop_data() {
2461                 let mut msg = msgs::OnionHopData {
2462                         format: OnionHopDataFormat::FinalNode {
2463                                 payment_data: None,
2464                                 keysend_preimage: None,
2465                         },
2466                         amt_to_forward: 0x0badf00d01020304,
2467                         outgoing_cltv_value: 0xffffffff,
2468                 };
2469                 let encoded_value = msg.encode();
2470                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2471                 assert_eq!(encoded_value, target_value);
2472                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2473                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2474                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2475                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2476         }
2477
2478         #[test]
2479         fn encoding_final_onion_hop_data_with_secret() {
2480                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2481                 let mut msg = msgs::OnionHopData {
2482                         format: OnionHopDataFormat::FinalNode {
2483                                 payment_data: Some(FinalOnionHopData {
2484                                         payment_secret: expected_payment_secret,
2485                                         total_msat: 0x1badca1f
2486                                 }),
2487                                 keysend_preimage: None,
2488                         },
2489                         amt_to_forward: 0x0badf00d01020304,
2490                         outgoing_cltv_value: 0xffffffff,
2491                 };
2492                 let encoded_value = msg.encode();
2493                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2494                 assert_eq!(encoded_value, target_value);
2495                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2496                 if let OnionHopDataFormat::FinalNode {
2497                         payment_data: Some(FinalOnionHopData {
2498                                 payment_secret,
2499                                 total_msat: 0x1badca1f
2500                         }),
2501                         keysend_preimage: None,
2502                 } = msg.format {
2503                         assert_eq!(payment_secret, expected_payment_secret);
2504                 } else { panic!(); }
2505                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2506                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2507         }
2508
2509         #[test]
2510         fn query_channel_range_end_blocknum() {
2511                 let tests: Vec<(u32, u32, u32)> = vec![
2512                         (10000, 1500, 11500),
2513                         (0, 0xffffffff, 0xffffffff),
2514                         (1, 0xffffffff, 0xffffffff),
2515                 ];
2516
2517                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2518                         let sut = msgs::QueryChannelRange {
2519                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2520                                 first_blocknum,
2521                                 number_of_blocks,
2522                         };
2523                         assert_eq!(sut.end_blocknum(), expected);
2524                 }
2525         }
2526
2527         #[test]
2528         fn encoding_query_channel_range() {
2529                 let mut query_channel_range = msgs::QueryChannelRange {
2530                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2531                         first_blocknum: 100000,
2532                         number_of_blocks: 1500,
2533                 };
2534                 let encoded_value = query_channel_range.encode();
2535                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2536                 assert_eq!(encoded_value, target_value);
2537
2538                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2539                 assert_eq!(query_channel_range.first_blocknum, 100000);
2540                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2541         }
2542
2543         #[test]
2544         fn encoding_reply_channel_range() {
2545                 do_encoding_reply_channel_range(0);
2546                 do_encoding_reply_channel_range(1);
2547         }
2548
2549         fn do_encoding_reply_channel_range(encoding_type: u8) {
2550                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2551                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2552                 let mut reply_channel_range = msgs::ReplyChannelRange {
2553                         chain_hash: expected_chain_hash,
2554                         first_blocknum: 756230,
2555                         number_of_blocks: 1500,
2556                         sync_complete: true,
2557                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2558                 };
2559
2560                 if encoding_type == 0 {
2561                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2562                         let encoded_value = reply_channel_range.encode();
2563                         assert_eq!(encoded_value, target_value);
2564
2565                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2566                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2567                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2568                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2569                         assert_eq!(reply_channel_range.sync_complete, true);
2570                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2571                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2572                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2573                 } else {
2574                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2575                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2576                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2577                 }
2578         }
2579
2580         #[test]
2581         fn encoding_query_short_channel_ids() {
2582                 do_encoding_query_short_channel_ids(0);
2583                 do_encoding_query_short_channel_ids(1);
2584         }
2585
2586         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2587                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2588                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2589                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2590                         chain_hash: expected_chain_hash,
2591                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2592                 };
2593
2594                 if encoding_type == 0 {
2595                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2596                         let encoded_value = query_short_channel_ids.encode();
2597                         assert_eq!(encoded_value, target_value);
2598
2599                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2600                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2601                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2602                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2603                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2604                 } else {
2605                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2606                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2607                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2608                 }
2609         }
2610
2611         #[test]
2612         fn encoding_reply_short_channel_ids_end() {
2613                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2614                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2615                         chain_hash: expected_chain_hash,
2616                         full_information: true,
2617                 };
2618                 let encoded_value = reply_short_channel_ids_end.encode();
2619                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2620                 assert_eq!(encoded_value, target_value);
2621
2622                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2623                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2624                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2625         }
2626
2627         #[test]
2628         fn encoding_gossip_timestamp_filter(){
2629                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2630                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2631                         chain_hash: expected_chain_hash,
2632                         first_timestamp: 1590000000,
2633                         timestamp_range: 0xffff_ffff,
2634                 };
2635                 let encoded_value = gossip_timestamp_filter.encode();
2636                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2637                 assert_eq!(encoded_value, target_value);
2638
2639                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2640                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2641                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2642                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2643         }
2644 }