Merge pull request #1202 from TheBlueMatt/2021-12-fix-retries-races
[rust-lightning] / lightning / src / ln / msgs.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Wire messages, traits representing wire message handlers, and a few error types live here.
11 //!
12 //! For a normal node you probably don't need to use anything here, however, if you wish to split a
13 //! node into an internet-facing route/message socket handling daemon and a separate daemon (or
14 //! server entirely) which handles only channel-related messages you may wish to implement
15 //! ChannelMessageHandler yourself and use it to re-serialize messages and pass them across
16 //! daemons/servers.
17 //!
18 //! Note that if you go with such an architecture (instead of passing raw socket events to a
19 //! non-internet-facing system) you trust the frontend internet-facing system to not lie about the
20 //! source node_id of the message, however this does allow you to significantly reduce bandwidth
21 //! between the systems as routing messages can represent a significant chunk of bandwidth usage
22 //! (especially for non-channel-publicly-announcing nodes). As an alternate design which avoids
23 //! this issue, if you have sufficient bidirectional bandwidth between your systems, you may send
24 //! raw socket events into your non-internet-facing system and then send routing events back to
25 //! track the network on the less-secure system.
26
27 use bitcoin::secp256k1::key::PublicKey;
28 use bitcoin::secp256k1::Signature;
29 use bitcoin::secp256k1;
30 use bitcoin::blockdata::script::Script;
31 use bitcoin::hash_types::{Txid, BlockHash};
32
33 use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
34
35 use prelude::*;
36 use core::{cmp, fmt};
37 use core::fmt::Debug;
38 use io::{self, Read};
39 use io_extras::read_to_end;
40
41 use util::events::MessageSendEventsProvider;
42 use util::logger;
43 use util::ser::{Readable, Writeable, Writer, FixedLengthReader, HighZeroBytesDroppedVarInt};
44
45 use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
46
47 /// 21 million * 10^8 * 1000
48 pub(crate) const MAX_VALUE_MSAT: u64 = 21_000_000_0000_0000_000;
49
50 /// An error in decoding a message or struct.
51 #[derive(Clone, Debug, PartialEq)]
52 pub enum DecodeError {
53         /// A version byte specified something we don't know how to handle.
54         /// Includes unknown realm byte in an OnionHopData packet
55         UnknownVersion,
56         /// Unknown feature mandating we fail to parse message (eg TLV with an even, unknown type)
57         UnknownRequiredFeature,
58         /// Value was invalid, eg a byte which was supposed to be a bool was something other than a 0
59         /// or 1, a public key/private key/signature was invalid, text wasn't UTF-8, TLV was
60         /// syntactically incorrect, etc
61         InvalidValue,
62         /// Buffer too short
63         ShortRead,
64         /// A length descriptor in the packet didn't describe the later data correctly
65         BadLengthDescriptor,
66         /// Error from std::io
67         Io(/// (C-not exported) as ErrorKind doesn't have a reasonable mapping
68         io::ErrorKind),
69         /// The message included zlib-compressed values, which we don't support.
70         UnsupportedCompression,
71 }
72
73 /// An init message to be sent or received from a peer
74 #[derive(Clone, Debug, PartialEq)]
75 pub struct Init {
76         /// The relevant features which the sender supports
77         pub features: InitFeatures,
78 }
79
80 /// An error message to be sent or received from a peer
81 #[derive(Clone, Debug, PartialEq)]
82 pub struct ErrorMessage {
83         /// The channel ID involved in the error
84         pub channel_id: [u8; 32],
85         /// A possibly human-readable error description.
86         /// The string should be sanitized before it is used (e.g. emitted to logs
87         /// or printed to stdout).  Otherwise, a well crafted error message may trigger a security
88         /// vulnerability in the terminal emulator or the logging subsystem.
89         pub data: String,
90 }
91
92 /// A ping message to be sent or received from a peer
93 #[derive(Clone, Debug, PartialEq)]
94 pub struct Ping {
95         /// The desired response length
96         pub ponglen: u16,
97         /// The ping packet size.
98         /// This field is not sent on the wire. byteslen zeros are sent.
99         pub byteslen: u16,
100 }
101
102 /// A pong message to be sent or received from a peer
103 #[derive(Clone, Debug, PartialEq)]
104 pub struct Pong {
105         /// The pong packet size.
106         /// This field is not sent on the wire. byteslen zeros are sent.
107         pub byteslen: u16,
108 }
109
110 /// An open_channel message to be sent or received from a peer
111 #[derive(Clone, Debug, PartialEq)]
112 pub struct OpenChannel {
113         /// The genesis hash of the blockchain where the channel is to be opened
114         pub chain_hash: BlockHash,
115         /// A temporary channel ID, until the funding outpoint is announced
116         pub temporary_channel_id: [u8; 32],
117         /// The channel value
118         pub funding_satoshis: u64,
119         /// The amount to push to the counterparty as part of the open, in milli-satoshi
120         pub push_msat: u64,
121         /// The threshold below which outputs on transactions broadcast by sender will be omitted
122         pub dust_limit_satoshis: u64,
123         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
124         pub max_htlc_value_in_flight_msat: u64,
125         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
126         pub channel_reserve_satoshis: u64,
127         /// The minimum HTLC size incoming to sender, in milli-satoshi
128         pub htlc_minimum_msat: u64,
129         /// The feerate per 1000-weight of sender generated transactions, until updated by update_fee
130         pub feerate_per_kw: u32,
131         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
132         pub to_self_delay: u16,
133         /// The maximum number of inbound HTLCs towards sender
134         pub max_accepted_htlcs: u16,
135         /// The sender's key controlling the funding transaction
136         pub funding_pubkey: PublicKey,
137         /// Used to derive a revocation key for transactions broadcast by counterparty
138         pub revocation_basepoint: PublicKey,
139         /// A payment key to sender for transactions broadcast by counterparty
140         pub payment_point: PublicKey,
141         /// Used to derive a payment key to sender for transactions broadcast by sender
142         pub delayed_payment_basepoint: PublicKey,
143         /// Used to derive an HTLC payment key to sender
144         pub htlc_basepoint: PublicKey,
145         /// The first to-be-broadcast-by-sender transaction's per commitment point
146         pub first_per_commitment_point: PublicKey,
147         /// Channel flags
148         pub channel_flags: u8,
149         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
150         pub shutdown_scriptpubkey: OptionalField<Script>,
151         /// The channel type that this channel will represent. If none is set, we derive the channel
152         /// type from the intersection of our feature bits with our counterparty's feature bits from
153         /// the Init message.
154         pub channel_type: Option<ChannelTypeFeatures>,
155 }
156
157 /// An accept_channel message to be sent or received from a peer
158 #[derive(Clone, Debug, PartialEq)]
159 pub struct AcceptChannel {
160         /// A temporary channel ID, until the funding outpoint is announced
161         pub temporary_channel_id: [u8; 32],
162         /// The threshold below which outputs on transactions broadcast by sender will be omitted
163         pub dust_limit_satoshis: u64,
164         /// The maximum inbound HTLC value in flight towards sender, in milli-satoshi
165         pub max_htlc_value_in_flight_msat: u64,
166         /// The minimum value unencumbered by HTLCs for the counterparty to keep in the channel
167         pub channel_reserve_satoshis: u64,
168         /// The minimum HTLC size incoming to sender, in milli-satoshi
169         pub htlc_minimum_msat: u64,
170         /// Minimum depth of the funding transaction before the channel is considered open
171         pub minimum_depth: u32,
172         /// The number of blocks which the counterparty will have to wait to claim on-chain funds if they broadcast a commitment transaction
173         pub to_self_delay: u16,
174         /// The maximum number of inbound HTLCs towards sender
175         pub max_accepted_htlcs: u16,
176         /// The sender's key controlling the funding transaction
177         pub funding_pubkey: PublicKey,
178         /// Used to derive a revocation key for transactions broadcast by counterparty
179         pub revocation_basepoint: PublicKey,
180         /// A payment key to sender for transactions broadcast by counterparty
181         pub payment_point: PublicKey,
182         /// Used to derive a payment key to sender for transactions broadcast by sender
183         pub delayed_payment_basepoint: PublicKey,
184         /// Used to derive an HTLC payment key to sender for transactions broadcast by counterparty
185         pub htlc_basepoint: PublicKey,
186         /// The first to-be-broadcast-by-sender transaction's per commitment point
187         pub first_per_commitment_point: PublicKey,
188         /// Optionally, a request to pre-set the to-sender output's scriptPubkey for when we collaboratively close
189         pub shutdown_scriptpubkey: OptionalField<Script>,
190 }
191
192 /// A funding_created message to be sent or received from a peer
193 #[derive(Clone, Debug, PartialEq)]
194 pub struct FundingCreated {
195         /// A temporary channel ID, until the funding is established
196         pub temporary_channel_id: [u8; 32],
197         /// The funding transaction ID
198         pub funding_txid: Txid,
199         /// The specific output index funding this channel
200         pub funding_output_index: u16,
201         /// The signature of the channel initiator (funder) on the initial commitment transaction
202         pub signature: Signature,
203 }
204
205 /// A funding_signed message to be sent or received from a peer
206 #[derive(Clone, Debug, PartialEq)]
207 pub struct FundingSigned {
208         /// The channel ID
209         pub channel_id: [u8; 32],
210         /// The signature of the channel acceptor (fundee) on the initial commitment transaction
211         pub signature: Signature,
212 }
213
214 /// A funding_locked message to be sent or received from a peer
215 #[derive(Clone, Debug, PartialEq)]
216 pub struct FundingLocked {
217         /// The channel ID
218         pub channel_id: [u8; 32],
219         /// The per-commitment point of the second commitment transaction
220         pub next_per_commitment_point: PublicKey,
221 }
222
223 /// A shutdown message to be sent or received from a peer
224 #[derive(Clone, Debug, PartialEq)]
225 pub struct Shutdown {
226         /// The channel ID
227         pub channel_id: [u8; 32],
228         /// The destination of this peer's funds on closing.
229         /// Must be in one of these forms: p2pkh, p2sh, p2wpkh, p2wsh.
230         pub scriptpubkey: Script,
231 }
232
233 /// The minimum and maximum fees which the sender is willing to place on the closing transaction.
234 /// This is provided in [`ClosingSigned`] by both sides to indicate the fee range they are willing
235 /// to use.
236 #[derive(Clone, Debug, PartialEq)]
237 pub struct ClosingSignedFeeRange {
238         /// The minimum absolute fee, in satoshis, which the sender is willing to place on the closing
239         /// transaction.
240         pub min_fee_satoshis: u64,
241         /// The maximum absolute fee, in satoshis, which the sender is willing to place on the closing
242         /// transaction.
243         pub max_fee_satoshis: u64,
244 }
245
246 /// A closing_signed message to be sent or received from a peer
247 #[derive(Clone, Debug, PartialEq)]
248 pub struct ClosingSigned {
249         /// The channel ID
250         pub channel_id: [u8; 32],
251         /// The proposed total fee for the closing transaction
252         pub fee_satoshis: u64,
253         /// A signature on the closing transaction
254         pub signature: Signature,
255         /// The minimum and maximum fees which the sender is willing to accept, provided only by new
256         /// nodes.
257         pub fee_range: Option<ClosingSignedFeeRange>,
258 }
259
260 /// An update_add_htlc message to be sent or received from a peer
261 #[derive(Clone, Debug, PartialEq)]
262 pub struct UpdateAddHTLC {
263         /// The channel ID
264         pub channel_id: [u8; 32],
265         /// The HTLC ID
266         pub htlc_id: u64,
267         /// The HTLC value in milli-satoshi
268         pub amount_msat: u64,
269         /// The payment hash, the pre-image of which controls HTLC redemption
270         pub payment_hash: PaymentHash,
271         /// The expiry height of the HTLC
272         pub cltv_expiry: u32,
273         pub(crate) onion_routing_packet: OnionPacket,
274 }
275
276 /// An update_fulfill_htlc message to be sent or received from a peer
277 #[derive(Clone, Debug, PartialEq)]
278 pub struct UpdateFulfillHTLC {
279         /// The channel ID
280         pub channel_id: [u8; 32],
281         /// The HTLC ID
282         pub htlc_id: u64,
283         /// The pre-image of the payment hash, allowing HTLC redemption
284         pub payment_preimage: PaymentPreimage,
285 }
286
287 /// An update_fail_htlc message to be sent or received from a peer
288 #[derive(Clone, Debug, PartialEq)]
289 pub struct UpdateFailHTLC {
290         /// The channel ID
291         pub channel_id: [u8; 32],
292         /// The HTLC ID
293         pub htlc_id: u64,
294         pub(crate) reason: OnionErrorPacket,
295 }
296
297 /// An update_fail_malformed_htlc message to be sent or received from a peer
298 #[derive(Clone, Debug, PartialEq)]
299 pub struct UpdateFailMalformedHTLC {
300         /// The channel ID
301         pub channel_id: [u8; 32],
302         /// The HTLC ID
303         pub htlc_id: u64,
304         pub(crate) sha256_of_onion: [u8; 32],
305         /// The failure code
306         pub failure_code: u16,
307 }
308
309 /// A commitment_signed message to be sent or received from a peer
310 #[derive(Clone, Debug, PartialEq)]
311 pub struct CommitmentSigned {
312         /// The channel ID
313         pub channel_id: [u8; 32],
314         /// A signature on the commitment transaction
315         pub signature: Signature,
316         /// Signatures on the HTLC transactions
317         pub htlc_signatures: Vec<Signature>,
318 }
319
320 /// A revoke_and_ack message to be sent or received from a peer
321 #[derive(Clone, Debug, PartialEq)]
322 pub struct RevokeAndACK {
323         /// The channel ID
324         pub channel_id: [u8; 32],
325         /// The secret corresponding to the per-commitment point
326         pub per_commitment_secret: [u8; 32],
327         /// The next sender-broadcast commitment transaction's per-commitment point
328         pub next_per_commitment_point: PublicKey,
329 }
330
331 /// An update_fee message to be sent or received from a peer
332 #[derive(Clone, Debug, PartialEq)]
333 pub struct UpdateFee {
334         /// The channel ID
335         pub channel_id: [u8; 32],
336         /// Fee rate per 1000-weight of the transaction
337         pub feerate_per_kw: u32,
338 }
339
340 #[derive(Clone, Debug, PartialEq)]
341 /// Proof that the sender knows the per-commitment secret of the previous commitment transaction.
342 /// This is used to convince the recipient that the channel is at a certain commitment
343 /// number even if they lost that data due to a local failure.  Of course, the peer may lie
344 /// and even later commitments may have been revoked.
345 pub struct DataLossProtect {
346         /// Proof that the sender knows the per-commitment secret of a specific commitment transaction
347         /// belonging to the recipient
348         pub your_last_per_commitment_secret: [u8; 32],
349         /// The sender's per-commitment point for their current commitment transaction
350         pub my_current_per_commitment_point: PublicKey,
351 }
352
353 /// A channel_reestablish message to be sent or received from a peer
354 #[derive(Clone, Debug, PartialEq)]
355 pub struct ChannelReestablish {
356         /// The channel ID
357         pub channel_id: [u8; 32],
358         /// The next commitment number for the sender
359         pub next_local_commitment_number: u64,
360         /// The next commitment number for the recipient
361         pub next_remote_commitment_number: u64,
362         /// Optionally, a field proving that next_remote_commitment_number-1 has been revoked
363         pub data_loss_protect: OptionalField<DataLossProtect>,
364 }
365
366 /// An announcement_signatures message to be sent or received from a peer
367 #[derive(Clone, Debug, PartialEq)]
368 pub struct AnnouncementSignatures {
369         /// The channel ID
370         pub channel_id: [u8; 32],
371         /// The short channel ID
372         pub short_channel_id: u64,
373         /// A signature by the node key
374         pub node_signature: Signature,
375         /// A signature by the funding key
376         pub bitcoin_signature: Signature,
377 }
378
379 /// An address which can be used to connect to a remote peer
380 #[derive(Clone, Debug, PartialEq)]
381 pub enum NetAddress {
382         /// An IPv4 address/port on which the peer is listening.
383         IPv4 {
384                 /// The 4-byte IPv4 address
385                 addr: [u8; 4],
386                 /// The port on which the node is listening
387                 port: u16,
388         },
389         /// An IPv6 address/port on which the peer is listening.
390         IPv6 {
391                 /// The 16-byte IPv6 address
392                 addr: [u8; 16],
393                 /// The port on which the node is listening
394                 port: u16,
395         },
396         /// An old-style Tor onion address/port on which the peer is listening.
397         ///
398         /// This field is deprecated and the Tor network generally no longer supports V2 Onion
399         /// addresses. Thus, the details are not parsed here.
400         OnionV2([u8; 12]),
401         /// A new-style Tor onion address/port on which the peer is listening.
402         /// To create the human-readable "hostname", concatenate ed25519_pubkey, checksum, and version,
403         /// wrap as base32 and append ".onion".
404         OnionV3 {
405                 /// The ed25519 long-term public key of the peer
406                 ed25519_pubkey: [u8; 32],
407                 /// The checksum of the pubkey and version, as included in the onion address
408                 checksum: u16,
409                 /// The version byte, as defined by the Tor Onion v3 spec.
410                 version: u8,
411                 /// The port on which the node is listening
412                 port: u16,
413         },
414 }
415 impl NetAddress {
416         /// Gets the ID of this address type. Addresses in node_announcement messages should be sorted
417         /// by this.
418         pub(crate) fn get_id(&self) -> u8 {
419                 match self {
420                         &NetAddress::IPv4 {..} => { 1 },
421                         &NetAddress::IPv6 {..} => { 2 },
422                         &NetAddress::OnionV2(_) => { 3 },
423                         &NetAddress::OnionV3 {..} => { 4 },
424                 }
425         }
426
427         /// Strict byte-length of address descriptor, 1-byte type not recorded
428         fn len(&self) -> u16 {
429                 match self {
430                         &NetAddress::IPv4 { .. } => { 6 },
431                         &NetAddress::IPv6 { .. } => { 18 },
432                         &NetAddress::OnionV2(_) => { 12 },
433                         &NetAddress::OnionV3 { .. } => { 37 },
434                 }
435         }
436
437         /// The maximum length of any address descriptor, not including the 1-byte type
438         pub(crate) const MAX_LEN: u16 = 37;
439 }
440
441 impl Writeable for NetAddress {
442         fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
443                 match self {
444                         &NetAddress::IPv4 { ref addr, ref port } => {
445                                 1u8.write(writer)?;
446                                 addr.write(writer)?;
447                                 port.write(writer)?;
448                         },
449                         &NetAddress::IPv6 { ref addr, ref port } => {
450                                 2u8.write(writer)?;
451                                 addr.write(writer)?;
452                                 port.write(writer)?;
453                         },
454                         &NetAddress::OnionV2(bytes) => {
455                                 3u8.write(writer)?;
456                                 bytes.write(writer)?;
457                         },
458                         &NetAddress::OnionV3 { ref ed25519_pubkey, ref checksum, ref version, ref port } => {
459                                 4u8.write(writer)?;
460                                 ed25519_pubkey.write(writer)?;
461                                 checksum.write(writer)?;
462                                 version.write(writer)?;
463                                 port.write(writer)?;
464                         }
465                 }
466                 Ok(())
467         }
468 }
469
470 impl Readable for Result<NetAddress, u8> {
471         fn read<R: Read>(reader: &mut R) -> Result<Result<NetAddress, u8>, DecodeError> {
472                 let byte = <u8 as Readable>::read(reader)?;
473                 match byte {
474                         1 => {
475                                 Ok(Ok(NetAddress::IPv4 {
476                                         addr: Readable::read(reader)?,
477                                         port: Readable::read(reader)?,
478                                 }))
479                         },
480                         2 => {
481                                 Ok(Ok(NetAddress::IPv6 {
482                                         addr: Readable::read(reader)?,
483                                         port: Readable::read(reader)?,
484                                 }))
485                         },
486                         3 => Ok(Ok(NetAddress::OnionV2(Readable::read(reader)?))),
487                         4 => {
488                                 Ok(Ok(NetAddress::OnionV3 {
489                                         ed25519_pubkey: Readable::read(reader)?,
490                                         checksum: Readable::read(reader)?,
491                                         version: Readable::read(reader)?,
492                                         port: Readable::read(reader)?,
493                                 }))
494                         },
495                         _ => return Ok(Err(byte)),
496                 }
497         }
498 }
499
500 impl Readable for NetAddress {
501         fn read<R: Read>(reader: &mut R) -> Result<NetAddress, DecodeError> {
502                 match Readable::read(reader) {
503                         Ok(Ok(res)) => Ok(res),
504                         Ok(Err(_)) => Err(DecodeError::UnknownVersion),
505                         Err(e) => Err(e),
506                 }
507         }
508 }
509
510
511 /// The unsigned part of a node_announcement
512 #[derive(Clone, Debug, PartialEq)]
513 pub struct UnsignedNodeAnnouncement {
514         /// The advertised features
515         pub features: NodeFeatures,
516         /// A strictly monotonic announcement counter, with gaps allowed
517         pub timestamp: u32,
518         /// The node_id this announcement originated from (don't rebroadcast the node_announcement back
519         /// to this node).
520         pub node_id: PublicKey,
521         /// An RGB color for UI purposes
522         pub rgb: [u8; 3],
523         /// An alias, for UI purposes.  This should be sanitized before use.  There is no guarantee
524         /// of uniqueness.
525         pub alias: [u8; 32],
526         /// List of addresses on which this node is reachable
527         pub addresses: Vec<NetAddress>,
528         pub(crate) excess_address_data: Vec<u8>,
529         pub(crate) excess_data: Vec<u8>,
530 }
531 #[derive(Clone, Debug, PartialEq)]
532 /// A node_announcement message to be sent or received from a peer
533 pub struct NodeAnnouncement {
534         /// The signature by the node key
535         pub signature: Signature,
536         /// The actual content of the announcement
537         pub contents: UnsignedNodeAnnouncement,
538 }
539
540 /// The unsigned part of a channel_announcement
541 #[derive(Clone, Debug, PartialEq)]
542 pub struct UnsignedChannelAnnouncement {
543         /// The advertised channel features
544         pub features: ChannelFeatures,
545         /// The genesis hash of the blockchain where the channel is to be opened
546         pub chain_hash: BlockHash,
547         /// The short channel ID
548         pub short_channel_id: u64,
549         /// One of the two node_ids which are endpoints of this channel
550         pub node_id_1: PublicKey,
551         /// The other of the two node_ids which are endpoints of this channel
552         pub node_id_2: PublicKey,
553         /// The funding key for the first node
554         pub bitcoin_key_1: PublicKey,
555         /// The funding key for the second node
556         pub bitcoin_key_2: PublicKey,
557         pub(crate) excess_data: Vec<u8>,
558 }
559 /// A channel_announcement message to be sent or received from a peer
560 #[derive(Clone, Debug, PartialEq)]
561 pub struct ChannelAnnouncement {
562         /// Authentication of the announcement by the first public node
563         pub node_signature_1: Signature,
564         /// Authentication of the announcement by the second public node
565         pub node_signature_2: Signature,
566         /// Proof of funding UTXO ownership by the first public node
567         pub bitcoin_signature_1: Signature,
568         /// Proof of funding UTXO ownership by the second public node
569         pub bitcoin_signature_2: Signature,
570         /// The actual announcement
571         pub contents: UnsignedChannelAnnouncement,
572 }
573
574 /// The unsigned part of a channel_update
575 #[derive(Clone, Debug, PartialEq)]
576 pub struct UnsignedChannelUpdate {
577         /// The genesis hash of the blockchain where the channel is to be opened
578         pub chain_hash: BlockHash,
579         /// The short channel ID
580         pub short_channel_id: u64,
581         /// A strictly monotonic announcement counter, with gaps allowed, specific to this channel
582         pub timestamp: u32,
583         /// Channel flags
584         pub flags: u8,
585         /// The number of blocks such that if:
586         /// `incoming_htlc.cltv_expiry < outgoing_htlc.cltv_expiry + cltv_expiry_delta`
587         /// then we need to fail the HTLC backwards. When forwarding an HTLC, cltv_expiry_delta determines
588         /// the outgoing HTLC's minimum cltv_expiry value -- so, if an incoming HTLC comes in with a
589         /// cltv_expiry of 100000, and the node we're forwarding to has a cltv_expiry_delta value of 10,
590         /// then we'll check that the outgoing HTLC's cltv_expiry value is at least 100010 before
591         /// forwarding. Note that the HTLC sender is the one who originally sets this value when
592         /// constructing the route.
593         pub cltv_expiry_delta: u16,
594         /// The minimum HTLC size incoming to sender, in milli-satoshi
595         pub htlc_minimum_msat: u64,
596         /// Optionally, the maximum HTLC value incoming to sender, in milli-satoshi
597         pub htlc_maximum_msat: OptionalField<u64>,
598         /// The base HTLC fee charged by sender, in milli-satoshi
599         pub fee_base_msat: u32,
600         /// The amount to fee multiplier, in micro-satoshi
601         pub fee_proportional_millionths: u32,
602         pub(crate) excess_data: Vec<u8>,
603 }
604 /// A channel_update message to be sent or received from a peer
605 #[derive(Clone, Debug, PartialEq)]
606 pub struct ChannelUpdate {
607         /// A signature of the channel update
608         pub signature: Signature,
609         /// The actual channel update
610         pub contents: UnsignedChannelUpdate,
611 }
612
613 /// A query_channel_range message is used to query a peer for channel
614 /// UTXOs in a range of blocks. The recipient of a query makes a best
615 /// effort to reply to the query using one or more reply_channel_range
616 /// messages.
617 #[derive(Clone, Debug, PartialEq)]
618 pub struct QueryChannelRange {
619         /// The genesis hash of the blockchain being queried
620         pub chain_hash: BlockHash,
621         /// The height of the first block for the channel UTXOs being queried
622         pub first_blocknum: u32,
623         /// The number of blocks to include in the query results
624         pub number_of_blocks: u32,
625 }
626
627 /// A reply_channel_range message is a reply to a query_channel_range
628 /// message. Multiple reply_channel_range messages can be sent in reply
629 /// to a single query_channel_range message. The query recipient makes a
630 /// best effort to respond based on their local network view which may
631 /// not be a perfect view of the network. The short_channel_ids in the
632 /// reply are encoded. We only support encoding_type=0 uncompressed
633 /// serialization and do not support encoding_type=1 zlib serialization.
634 #[derive(Clone, Debug, PartialEq)]
635 pub struct ReplyChannelRange {
636         /// The genesis hash of the blockchain being queried
637         pub chain_hash: BlockHash,
638         /// The height of the first block in the range of the reply
639         pub first_blocknum: u32,
640         /// The number of blocks included in the range of the reply
641         pub number_of_blocks: u32,
642         /// True when this is the final reply for a query
643         pub sync_complete: bool,
644         /// The short_channel_ids in the channel range
645         pub short_channel_ids: Vec<u64>,
646 }
647
648 /// A query_short_channel_ids message is used to query a peer for
649 /// routing gossip messages related to one or more short_channel_ids.
650 /// The query recipient will reply with the latest, if available,
651 /// channel_announcement, channel_update and node_announcement messages
652 /// it maintains for the requested short_channel_ids followed by a
653 /// reply_short_channel_ids_end message. The short_channel_ids sent in
654 /// this query are encoded. We only support encoding_type=0 uncompressed
655 /// serialization and do not support encoding_type=1 zlib serialization.
656 #[derive(Clone, Debug, PartialEq)]
657 pub struct QueryShortChannelIds {
658         /// The genesis hash of the blockchain being queried
659         pub chain_hash: BlockHash,
660         /// The short_channel_ids that are being queried
661         pub short_channel_ids: Vec<u64>,
662 }
663
664 /// A reply_short_channel_ids_end message is sent as a reply to a
665 /// query_short_channel_ids message. The query recipient makes a best
666 /// effort to respond based on their local network view which may not be
667 /// a perfect view of the network.
668 #[derive(Clone, Debug, PartialEq)]
669 pub struct ReplyShortChannelIdsEnd {
670         /// The genesis hash of the blockchain that was queried
671         pub chain_hash: BlockHash,
672         /// Indicates if the query recipient maintains up-to-date channel
673         /// information for the chain_hash
674         pub full_information: bool,
675 }
676
677 /// A gossip_timestamp_filter message is used by a node to request
678 /// gossip relay for messages in the requested time range when the
679 /// gossip_queries feature has been negotiated.
680 #[derive(Clone, Debug, PartialEq)]
681 pub struct GossipTimestampFilter {
682         /// The genesis hash of the blockchain for channel and node information
683         pub chain_hash: BlockHash,
684         /// The starting unix timestamp
685         pub first_timestamp: u32,
686         /// The range of information in seconds
687         pub timestamp_range: u32,
688 }
689
690 /// Encoding type for data compression of collections in gossip queries.
691 /// We do not support encoding_type=1 zlib serialization defined in BOLT #7.
692 enum EncodingType {
693         Uncompressed = 0x00,
694 }
695
696 /// Used to put an error message in a LightningError
697 #[derive(Clone, Debug)]
698 pub enum ErrorAction {
699         /// The peer took some action which made us think they were useless. Disconnect them.
700         DisconnectPeer {
701                 /// An error message which we should make an effort to send before we disconnect.
702                 msg: Option<ErrorMessage>
703         },
704         /// The peer did something harmless that we weren't able to process, just log and ignore
705         // New code should *not* use this. New code must use IgnoreAndLog, below!
706         IgnoreError,
707         /// The peer did something harmless that we weren't able to meaningfully process.
708         /// If the error is logged, log it at the given level.
709         IgnoreAndLog(logger::Level),
710         /// The peer provided us with a gossip message which we'd already seen. In most cases this
711         /// should be ignored, but it may result in the message being forwarded if it is a duplicate of
712         /// our own channel announcements.
713         IgnoreDuplicateGossip,
714         /// The peer did something incorrect. Tell them.
715         SendErrorMessage {
716                 /// The message to send.
717                 msg: ErrorMessage
718         },
719 }
720
721 /// An Err type for failure to process messages.
722 #[derive(Clone, Debug)]
723 pub struct LightningError {
724         /// A human-readable message describing the error
725         pub err: String,
726         /// The action which should be taken against the offending peer.
727         pub action: ErrorAction,
728 }
729
730 /// Struct used to return values from revoke_and_ack messages, containing a bunch of commitment
731 /// transaction updates if they were pending.
732 #[derive(Clone, Debug, PartialEq)]
733 pub struct CommitmentUpdate {
734         /// update_add_htlc messages which should be sent
735         pub update_add_htlcs: Vec<UpdateAddHTLC>,
736         /// update_fulfill_htlc messages which should be sent
737         pub update_fulfill_htlcs: Vec<UpdateFulfillHTLC>,
738         /// update_fail_htlc messages which should be sent
739         pub update_fail_htlcs: Vec<UpdateFailHTLC>,
740         /// update_fail_malformed_htlc messages which should be sent
741         pub update_fail_malformed_htlcs: Vec<UpdateFailMalformedHTLC>,
742         /// An update_fee message which should be sent
743         pub update_fee: Option<UpdateFee>,
744         /// Finally, the commitment_signed message which should be sent
745         pub commitment_signed: CommitmentSigned,
746 }
747
748 /// Messages could have optional fields to use with extended features
749 /// As we wish to serialize these differently from Option<T>s (Options get a tag byte, but
750 /// OptionalFeild simply gets Present if there are enough bytes to read into it), we have a
751 /// separate enum type for them.
752 /// (C-not exported) due to a free generic in T
753 #[derive(Clone, Debug, PartialEq)]
754 pub enum OptionalField<T> {
755         /// Optional field is included in message
756         Present(T),
757         /// Optional field is absent in message
758         Absent
759 }
760
761 /// A trait to describe an object which can receive channel messages.
762 ///
763 /// Messages MAY be called in parallel when they originate from different their_node_ids, however
764 /// they MUST NOT be called in parallel when the two calls have the same their_node_id.
765 pub trait ChannelMessageHandler : MessageSendEventsProvider {
766         //Channel init:
767         /// Handle an incoming open_channel message from the given peer.
768         fn handle_open_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &OpenChannel);
769         /// Handle an incoming accept_channel message from the given peer.
770         fn handle_accept_channel(&self, their_node_id: &PublicKey, their_features: InitFeatures, msg: &AcceptChannel);
771         /// Handle an incoming funding_created message from the given peer.
772         fn handle_funding_created(&self, their_node_id: &PublicKey, msg: &FundingCreated);
773         /// Handle an incoming funding_signed message from the given peer.
774         fn handle_funding_signed(&self, their_node_id: &PublicKey, msg: &FundingSigned);
775         /// Handle an incoming funding_locked message from the given peer.
776         fn handle_funding_locked(&self, their_node_id: &PublicKey, msg: &FundingLocked);
777
778         // Channl close:
779         /// Handle an incoming shutdown message from the given peer.
780         fn handle_shutdown(&self, their_node_id: &PublicKey, their_features: &InitFeatures, msg: &Shutdown);
781         /// Handle an incoming closing_signed message from the given peer.
782         fn handle_closing_signed(&self, their_node_id: &PublicKey, msg: &ClosingSigned);
783
784         // HTLC handling:
785         /// Handle an incoming update_add_htlc message from the given peer.
786         fn handle_update_add_htlc(&self, their_node_id: &PublicKey, msg: &UpdateAddHTLC);
787         /// Handle an incoming update_fulfill_htlc message from the given peer.
788         fn handle_update_fulfill_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFulfillHTLC);
789         /// Handle an incoming update_fail_htlc message from the given peer.
790         fn handle_update_fail_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailHTLC);
791         /// Handle an incoming update_fail_malformed_htlc message from the given peer.
792         fn handle_update_fail_malformed_htlc(&self, their_node_id: &PublicKey, msg: &UpdateFailMalformedHTLC);
793         /// Handle an incoming commitment_signed message from the given peer.
794         fn handle_commitment_signed(&self, their_node_id: &PublicKey, msg: &CommitmentSigned);
795         /// Handle an incoming revoke_and_ack message from the given peer.
796         fn handle_revoke_and_ack(&self, their_node_id: &PublicKey, msg: &RevokeAndACK);
797
798         /// Handle an incoming update_fee message from the given peer.
799         fn handle_update_fee(&self, their_node_id: &PublicKey, msg: &UpdateFee);
800
801         // Channel-to-announce:
802         /// Handle an incoming announcement_signatures message from the given peer.
803         fn handle_announcement_signatures(&self, their_node_id: &PublicKey, msg: &AnnouncementSignatures);
804
805         // Connection loss/reestablish:
806         /// Indicates a connection to the peer failed/an existing connection was lost. If no connection
807         /// is believed to be possible in the future (eg they're sending us messages we don't
808         /// understand or indicate they require unknown feature bits), no_connection_possible is set
809         /// and any outstanding channels should be failed.
810         fn peer_disconnected(&self, their_node_id: &PublicKey, no_connection_possible: bool);
811
812         /// Handle a peer reconnecting, possibly generating channel_reestablish message(s).
813         fn peer_connected(&self, their_node_id: &PublicKey, msg: &Init);
814         /// Handle an incoming channel_reestablish message from the given peer.
815         fn handle_channel_reestablish(&self, their_node_id: &PublicKey, msg: &ChannelReestablish);
816
817         /// Handle an incoming channel update from the given peer.
818         fn handle_channel_update(&self, their_node_id: &PublicKey, msg: &ChannelUpdate);
819
820         // Error:
821         /// Handle an incoming error message from the given peer.
822         fn handle_error(&self, their_node_id: &PublicKey, msg: &ErrorMessage);
823 }
824
825 /// A trait to describe an object which can receive routing messages.
826 ///
827 /// # Implementor DoS Warnings
828 ///
829 /// For `gossip_queries` messages there are potential DoS vectors when handling
830 /// inbound queries. Implementors using an on-disk network graph should be aware of
831 /// repeated disk I/O for queries accessing different parts of the network graph.
832 pub trait RoutingMessageHandler : MessageSendEventsProvider {
833         /// Handle an incoming node_announcement message, returning true if it should be forwarded on,
834         /// false or returning an Err otherwise.
835         fn handle_node_announcement(&self, msg: &NodeAnnouncement) -> Result<bool, LightningError>;
836         /// Handle a channel_announcement message, returning true if it should be forwarded on, false
837         /// or returning an Err otherwise.
838         fn handle_channel_announcement(&self, msg: &ChannelAnnouncement) -> Result<bool, LightningError>;
839         /// Handle an incoming channel_update message, returning true if it should be forwarded on,
840         /// false or returning an Err otherwise.
841         fn handle_channel_update(&self, msg: &ChannelUpdate) -> Result<bool, LightningError>;
842         /// Gets a subset of the channel announcements and updates required to dump our routing table
843         /// to a remote node, starting at the short_channel_id indicated by starting_point and
844         /// including the batch_amount entries immediately higher in numerical value than starting_point.
845         fn get_next_channel_announcements(&self, starting_point: u64, batch_amount: u8) -> Vec<(ChannelAnnouncement, Option<ChannelUpdate>, Option<ChannelUpdate>)>;
846         /// Gets a subset of the node announcements required to dump our routing table to a remote node,
847         /// starting at the node *after* the provided publickey and including batch_amount entries
848         /// immediately higher (as defined by <PublicKey as Ord>::cmp) than starting_point.
849         /// If None is provided for starting_point, we start at the first node.
850         fn get_next_node_announcements(&self, starting_point: Option<&PublicKey>, batch_amount: u8) -> Vec<NodeAnnouncement>;
851         /// Called when a connection is established with a peer. This can be used to
852         /// perform routing table synchronization using a strategy defined by the
853         /// implementor.
854         fn sync_routing_table(&self, their_node_id: &PublicKey, init: &Init);
855         /// Handles the reply of a query we initiated to learn about channels
856         /// for a given range of blocks. We can expect to receive one or more
857         /// replies to a single query.
858         fn handle_reply_channel_range(&self, their_node_id: &PublicKey, msg: ReplyChannelRange) -> Result<(), LightningError>;
859         /// Handles the reply of a query we initiated asking for routing gossip
860         /// messages for a list of channels. We should receive this message when
861         /// a node has completed its best effort to send us the pertaining routing
862         /// gossip messages.
863         fn handle_reply_short_channel_ids_end(&self, their_node_id: &PublicKey, msg: ReplyShortChannelIdsEnd) -> Result<(), LightningError>;
864         /// Handles when a peer asks us to send a list of short_channel_ids
865         /// for the requested range of blocks.
866         fn handle_query_channel_range(&self, their_node_id: &PublicKey, msg: QueryChannelRange) -> Result<(), LightningError>;
867         /// Handles when a peer asks us to send routing gossip messages for a
868         /// list of short_channel_ids.
869         fn handle_query_short_channel_ids(&self, their_node_id: &PublicKey, msg: QueryShortChannelIds) -> Result<(), LightningError>;
870 }
871
872 mod fuzzy_internal_msgs {
873         use prelude::*;
874         use ln::{PaymentPreimage, PaymentSecret};
875
876         // These types aren't intended to be pub, but are exposed for direct fuzzing (as we deserialize
877         // them from untrusted input):
878         #[derive(Clone)]
879         pub(crate) struct FinalOnionHopData {
880                 pub(crate) payment_secret: PaymentSecret,
881                 /// The total value, in msat, of the payment as received by the ultimate recipient.
882                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
883                 pub(crate) total_msat: u64,
884         }
885
886         pub(crate) enum OnionHopDataFormat {
887                 Legacy { // aka Realm-0
888                         short_channel_id: u64,
889                 },
890                 NonFinalNode {
891                         short_channel_id: u64,
892                 },
893                 FinalNode {
894                         payment_data: Option<FinalOnionHopData>,
895                         keysend_preimage: Option<PaymentPreimage>,
896                 },
897         }
898
899         pub struct OnionHopData {
900                 pub(crate) format: OnionHopDataFormat,
901                 /// The value, in msat, of the payment after this hop's fee is deducted.
902                 /// Message serialization may panic if this value is more than 21 million Bitcoin.
903                 pub(crate) amt_to_forward: u64,
904                 pub(crate) outgoing_cltv_value: u32,
905                 // 12 bytes of 0-padding for Legacy format
906         }
907
908         pub struct DecodedOnionErrorPacket {
909                 pub(crate) hmac: [u8; 32],
910                 pub(crate) failuremsg: Vec<u8>,
911                 pub(crate) pad: Vec<u8>,
912         }
913 }
914 #[cfg(feature = "fuzztarget")]
915 pub use self::fuzzy_internal_msgs::*;
916 #[cfg(not(feature = "fuzztarget"))]
917 pub(crate) use self::fuzzy_internal_msgs::*;
918
919 #[derive(Clone)]
920 pub(crate) struct OnionPacket {
921         pub(crate) version: u8,
922         /// In order to ensure we always return an error on Onion decode in compliance with BOLT 4, we
923         /// have to deserialize OnionPackets contained in UpdateAddHTLCs even if the ephemeral public
924         /// key (here) is bogus, so we hold a Result instead of a PublicKey as we'd like.
925         pub(crate) public_key: Result<PublicKey, secp256k1::Error>,
926         pub(crate) hop_data: [u8; 20*65],
927         pub(crate) hmac: [u8; 32],
928 }
929
930 impl PartialEq for OnionPacket {
931         fn eq(&self, other: &OnionPacket) -> bool {
932                 for (i, j) in self.hop_data.iter().zip(other.hop_data.iter()) {
933                         if i != j { return false; }
934                 }
935                 self.version == other.version &&
936                         self.public_key == other.public_key &&
937                         self.hmac == other.hmac
938         }
939 }
940
941 impl fmt::Debug for OnionPacket {
942         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
943                 f.write_fmt(format_args!("OnionPacket version {} with hmac {:?}", self.version, &self.hmac[..]))
944         }
945 }
946
947 #[derive(Clone, Debug, PartialEq)]
948 pub(crate) struct OnionErrorPacket {
949         // This really should be a constant size slice, but the spec lets these things be up to 128KB?
950         // (TODO) We limit it in decode to much lower...
951         pub(crate) data: Vec<u8>,
952 }
953
954 impl fmt::Display for DecodeError {
955         fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
956                 match *self {
957                         DecodeError::UnknownVersion => f.write_str("Unknown realm byte in Onion packet"),
958                         DecodeError::UnknownRequiredFeature => f.write_str("Unknown required feature preventing decode"),
959                         DecodeError::InvalidValue => f.write_str("Nonsense bytes didn't map to the type they were interpreted as"),
960                         DecodeError::ShortRead => f.write_str("Packet extended beyond the provided bytes"),
961                         DecodeError::BadLengthDescriptor => f.write_str("A length descriptor in the packet didn't describe the later data correctly"),
962                         DecodeError::Io(ref e) => e.fmt(f),
963                         DecodeError::UnsupportedCompression => f.write_str("We don't support receiving messages with zlib-compressed fields"),
964                 }
965         }
966 }
967
968 impl From<io::Error> for DecodeError {
969         fn from(e: io::Error) -> Self {
970                 if e.kind() == io::ErrorKind::UnexpectedEof {
971                         DecodeError::ShortRead
972                 } else {
973                         DecodeError::Io(e.kind())
974                 }
975         }
976 }
977
978 impl Writeable for OptionalField<Script> {
979         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
980                 match *self {
981                         OptionalField::Present(ref script) => {
982                                 // Note that Writeable for script includes the 16-bit length tag for us
983                                 script.write(w)?;
984                         },
985                         OptionalField::Absent => {}
986                 }
987                 Ok(())
988         }
989 }
990
991 impl Readable for OptionalField<Script> {
992         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
993                 match <u16 as Readable>::read(r) {
994                         Ok(len) => {
995                                 let mut buf = vec![0; len as usize];
996                                 r.read_exact(&mut buf)?;
997                                 Ok(OptionalField::Present(Script::from(buf)))
998                         },
999                         Err(DecodeError::ShortRead) => Ok(OptionalField::Absent),
1000                         Err(e) => Err(e)
1001                 }
1002         }
1003 }
1004
1005 impl Writeable for OptionalField<u64> {
1006         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1007                 match *self {
1008                         OptionalField::Present(ref value) => {
1009                                 value.write(w)?;
1010                         },
1011                         OptionalField::Absent => {}
1012                 }
1013                 Ok(())
1014         }
1015 }
1016
1017 impl Readable for OptionalField<u64> {
1018         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1019                 let value: u64 = Readable::read(r)?;
1020                 Ok(OptionalField::Present(value))
1021         }
1022 }
1023
1024
1025 impl_writeable_msg!(AcceptChannel, {
1026         temporary_channel_id,
1027         dust_limit_satoshis,
1028         max_htlc_value_in_flight_msat,
1029         channel_reserve_satoshis,
1030         htlc_minimum_msat,
1031         minimum_depth,
1032         to_self_delay,
1033         max_accepted_htlcs,
1034         funding_pubkey,
1035         revocation_basepoint,
1036         payment_point,
1037         delayed_payment_basepoint,
1038         htlc_basepoint,
1039         first_per_commitment_point,
1040         shutdown_scriptpubkey
1041 }, {});
1042
1043 impl_writeable_msg!(AnnouncementSignatures, {
1044         channel_id,
1045         short_channel_id,
1046         node_signature,
1047         bitcoin_signature
1048 }, {});
1049
1050 impl Writeable for ChannelReestablish {
1051         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1052                 self.channel_id.write(w)?;
1053                 self.next_local_commitment_number.write(w)?;
1054                 self.next_remote_commitment_number.write(w)?;
1055                 match self.data_loss_protect {
1056                         OptionalField::Present(ref data_loss_protect) => {
1057                                 (*data_loss_protect).your_last_per_commitment_secret.write(w)?;
1058                                 (*data_loss_protect).my_current_per_commitment_point.write(w)?;
1059                         },
1060                         OptionalField::Absent => {}
1061                 }
1062                 Ok(())
1063         }
1064 }
1065
1066 impl Readable for ChannelReestablish{
1067         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1068                 Ok(Self {
1069                         channel_id: Readable::read(r)?,
1070                         next_local_commitment_number: Readable::read(r)?,
1071                         next_remote_commitment_number: Readable::read(r)?,
1072                         data_loss_protect: {
1073                                 match <[u8; 32] as Readable>::read(r) {
1074                                         Ok(your_last_per_commitment_secret) =>
1075                                                 OptionalField::Present(DataLossProtect {
1076                                                         your_last_per_commitment_secret,
1077                                                         my_current_per_commitment_point: Readable::read(r)?,
1078                                                 }),
1079                                         Err(DecodeError::ShortRead) => OptionalField::Absent,
1080                                         Err(e) => return Err(e)
1081                                 }
1082                         }
1083                 })
1084         }
1085 }
1086
1087 impl_writeable_msg!(ClosingSigned,
1088         { channel_id, fee_satoshis, signature },
1089         { (1, fee_range, option) }
1090 );
1091
1092 impl_writeable!(ClosingSignedFeeRange, {
1093         min_fee_satoshis,
1094         max_fee_satoshis
1095 });
1096
1097 impl_writeable_msg!(CommitmentSigned, {
1098         channel_id,
1099         signature,
1100         htlc_signatures
1101 }, {});
1102
1103 impl_writeable!(DecodedOnionErrorPacket, {
1104         hmac,
1105         failuremsg,
1106         pad
1107 });
1108
1109 impl_writeable_msg!(FundingCreated, {
1110         temporary_channel_id,
1111         funding_txid,
1112         funding_output_index,
1113         signature
1114 }, {});
1115
1116 impl_writeable_msg!(FundingSigned, {
1117         channel_id,
1118         signature
1119 }, {});
1120
1121 impl_writeable_msg!(FundingLocked, {
1122         channel_id,
1123         next_per_commitment_point,
1124 }, {});
1125
1126 impl Writeable for Init {
1127         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1128                 // global_features gets the bottom 13 bits of our features, and local_features gets all of
1129                 // our relevant feature bits. This keeps us compatible with old nodes.
1130                 self.features.write_up_to_13(w)?;
1131                 self.features.write(w)
1132         }
1133 }
1134
1135 impl Readable for Init {
1136         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1137                 let global_features: InitFeatures = Readable::read(r)?;
1138                 let features: InitFeatures = Readable::read(r)?;
1139                 Ok(Init {
1140                         features: features.or(global_features),
1141                 })
1142         }
1143 }
1144
1145 impl_writeable_msg!(OpenChannel, {
1146         chain_hash,
1147         temporary_channel_id,
1148         funding_satoshis,
1149         push_msat,
1150         dust_limit_satoshis,
1151         max_htlc_value_in_flight_msat,
1152         channel_reserve_satoshis,
1153         htlc_minimum_msat,
1154         feerate_per_kw,
1155         to_self_delay,
1156         max_accepted_htlcs,
1157         funding_pubkey,
1158         revocation_basepoint,
1159         payment_point,
1160         delayed_payment_basepoint,
1161         htlc_basepoint,
1162         first_per_commitment_point,
1163         channel_flags,
1164         shutdown_scriptpubkey
1165 }, {
1166         (1, channel_type, option),
1167 });
1168
1169 impl_writeable_msg!(RevokeAndACK, {
1170         channel_id,
1171         per_commitment_secret,
1172         next_per_commitment_point
1173 }, {});
1174
1175 impl_writeable_msg!(Shutdown, {
1176         channel_id,
1177         scriptpubkey
1178 }, {});
1179
1180 impl_writeable_msg!(UpdateFailHTLC, {
1181         channel_id,
1182         htlc_id,
1183         reason
1184 }, {});
1185
1186 impl_writeable_msg!(UpdateFailMalformedHTLC, {
1187         channel_id,
1188         htlc_id,
1189         sha256_of_onion,
1190         failure_code
1191 }, {});
1192
1193 impl_writeable_msg!(UpdateFee, {
1194         channel_id,
1195         feerate_per_kw
1196 }, {});
1197
1198 impl_writeable_msg!(UpdateFulfillHTLC, {
1199         channel_id,
1200         htlc_id,
1201         payment_preimage
1202 }, {});
1203
1204 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1205 // serialization format in a way which assumes we know the total serialized length/message end
1206 // position.
1207 impl_writeable!(OnionErrorPacket, {
1208         data
1209 });
1210
1211 // Note that this is written as a part of ChannelManager objects, and thus cannot change its
1212 // serialization format in a way which assumes we know the total serialized length/message end
1213 // position.
1214 impl Writeable for OnionPacket {
1215         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1216                 self.version.write(w)?;
1217                 match self.public_key {
1218                         Ok(pubkey) => pubkey.write(w)?,
1219                         Err(_) => [0u8;33].write(w)?,
1220                 }
1221                 w.write_all(&self.hop_data)?;
1222                 self.hmac.write(w)?;
1223                 Ok(())
1224         }
1225 }
1226
1227 impl Readable for OnionPacket {
1228         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1229                 Ok(OnionPacket {
1230                         version: Readable::read(r)?,
1231                         public_key: {
1232                                 let mut buf = [0u8;33];
1233                                 r.read_exact(&mut buf)?;
1234                                 PublicKey::from_slice(&buf)
1235                         },
1236                         hop_data: Readable::read(r)?,
1237                         hmac: Readable::read(r)?,
1238                 })
1239         }
1240 }
1241
1242 impl_writeable_msg!(UpdateAddHTLC, {
1243         channel_id,
1244         htlc_id,
1245         amount_msat,
1246         payment_hash,
1247         cltv_expiry,
1248         onion_routing_packet
1249 }, {});
1250
1251 impl Writeable for FinalOnionHopData {
1252         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1253                 self.payment_secret.0.write(w)?;
1254                 HighZeroBytesDroppedVarInt(self.total_msat).write(w)
1255         }
1256 }
1257
1258 impl Readable for FinalOnionHopData {
1259         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1260                 let secret: [u8; 32] = Readable::read(r)?;
1261                 let amt: HighZeroBytesDroppedVarInt<u64> = Readable::read(r)?;
1262                 Ok(Self { payment_secret: PaymentSecret(secret), total_msat: amt.0 })
1263         }
1264 }
1265
1266 impl Writeable for OnionHopData {
1267         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1268                 // Note that this should never be reachable if Rust-Lightning generated the message, as we
1269                 // check values are sane long before we get here, though its possible in the future
1270                 // user-generated messages may hit this.
1271                 if self.amt_to_forward > MAX_VALUE_MSAT { panic!("We should never be sending infinite/overflow onion payments"); }
1272                 match self.format {
1273                         OnionHopDataFormat::Legacy { short_channel_id } => {
1274                                 0u8.write(w)?;
1275                                 short_channel_id.write(w)?;
1276                                 self.amt_to_forward.write(w)?;
1277                                 self.outgoing_cltv_value.write(w)?;
1278                                 w.write_all(&[0;12])?;
1279                         },
1280                         OnionHopDataFormat::NonFinalNode { short_channel_id } => {
1281                                 encode_varint_length_prefixed_tlv!(w, {
1282                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1283                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1284                                         (6, short_channel_id, required)
1285                                 });
1286                         },
1287                         OnionHopDataFormat::FinalNode { ref payment_data, ref keysend_preimage } => {
1288                                 if let Some(final_data) = payment_data {
1289                                         if final_data.total_msat > MAX_VALUE_MSAT { panic!("We should never be sending infinite/overflow onion payments"); }
1290                                 }
1291                                 encode_varint_length_prefixed_tlv!(w, {
1292                                         (2, HighZeroBytesDroppedVarInt(self.amt_to_forward), required),
1293                                         (4, HighZeroBytesDroppedVarInt(self.outgoing_cltv_value), required),
1294                                         (8, payment_data, option),
1295                                         (5482373484, keysend_preimage, option)
1296                                 });
1297                         },
1298                 }
1299                 Ok(())
1300         }
1301 }
1302
1303 impl Readable for OnionHopData {
1304         fn read<R: Read>(mut r: &mut R) -> Result<Self, DecodeError> {
1305                 use bitcoin::consensus::encode::{Decodable, Error, VarInt};
1306                 let v: VarInt = Decodable::consensus_decode(&mut r)
1307                         .map_err(|e| match e {
1308                                 Error::Io(ioe) => DecodeError::from(ioe),
1309                                 _ => DecodeError::InvalidValue
1310                         })?;
1311                 const LEGACY_ONION_HOP_FLAG: u64 = 0;
1312                 let (format, amt, cltv_value) = if v.0 != LEGACY_ONION_HOP_FLAG {
1313                         let mut rd = FixedLengthReader::new(r, v.0);
1314                         let mut amt = HighZeroBytesDroppedVarInt(0u64);
1315                         let mut cltv_value = HighZeroBytesDroppedVarInt(0u32);
1316                         let mut short_id: Option<u64> = None;
1317                         let mut payment_data: Option<FinalOnionHopData> = None;
1318                         let mut keysend_preimage: Option<PaymentPreimage> = None;
1319                         // The TLV type is chosen to be compatible with lnd and c-lightning.
1320                         decode_tlv_stream!(&mut rd, {
1321                                 (2, amt, required),
1322                                 (4, cltv_value, required),
1323                                 (6, short_id, option),
1324                                 (8, payment_data, option),
1325                                 (5482373484, keysend_preimage, option)
1326                         });
1327                         rd.eat_remaining().map_err(|_| DecodeError::ShortRead)?;
1328                         let format = if let Some(short_channel_id) = short_id {
1329                                 if payment_data.is_some() { return Err(DecodeError::InvalidValue); }
1330                                 OnionHopDataFormat::NonFinalNode {
1331                                         short_channel_id,
1332                                 }
1333                         } else {
1334                                 if let &Some(ref data) = &payment_data {
1335                                         if data.total_msat > MAX_VALUE_MSAT {
1336                                                 return Err(DecodeError::InvalidValue);
1337                                         }
1338                                 }
1339                                 OnionHopDataFormat::FinalNode {
1340                                         payment_data,
1341                                         keysend_preimage,
1342                                 }
1343                         };
1344                         (format, amt.0, cltv_value.0)
1345                 } else {
1346                         let format = OnionHopDataFormat::Legacy {
1347                                 short_channel_id: Readable::read(r)?,
1348                         };
1349                         let amt: u64 = Readable::read(r)?;
1350                         let cltv_value: u32 = Readable::read(r)?;
1351                         r.read_exact(&mut [0; 12])?;
1352                         (format, amt, cltv_value)
1353                 };
1354
1355                 if amt > MAX_VALUE_MSAT {
1356                         return Err(DecodeError::InvalidValue);
1357                 }
1358                 Ok(OnionHopData {
1359                         format,
1360                         amt_to_forward: amt,
1361                         outgoing_cltv_value: cltv_value,
1362                 })
1363         }
1364 }
1365
1366 impl Writeable for Ping {
1367         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1368                 self.ponglen.write(w)?;
1369                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1370                 Ok(())
1371         }
1372 }
1373
1374 impl Readable for Ping {
1375         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1376                 Ok(Ping {
1377                         ponglen: Readable::read(r)?,
1378                         byteslen: {
1379                                 let byteslen = Readable::read(r)?;
1380                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1381                                 byteslen
1382                         }
1383                 })
1384         }
1385 }
1386
1387 impl Writeable for Pong {
1388         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1389                 vec![0u8; self.byteslen as usize].write(w)?; // size-unchecked write
1390                 Ok(())
1391         }
1392 }
1393
1394 impl Readable for Pong {
1395         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1396                 Ok(Pong {
1397                         byteslen: {
1398                                 let byteslen = Readable::read(r)?;
1399                                 r.read_exact(&mut vec![0u8; byteslen as usize][..])?;
1400                                 byteslen
1401                         }
1402                 })
1403         }
1404 }
1405
1406 impl Writeable for UnsignedChannelAnnouncement {
1407         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1408                 self.features.write(w)?;
1409                 self.chain_hash.write(w)?;
1410                 self.short_channel_id.write(w)?;
1411                 self.node_id_1.write(w)?;
1412                 self.node_id_2.write(w)?;
1413                 self.bitcoin_key_1.write(w)?;
1414                 self.bitcoin_key_2.write(w)?;
1415                 w.write_all(&self.excess_data[..])?;
1416                 Ok(())
1417         }
1418 }
1419
1420 impl Readable for UnsignedChannelAnnouncement {
1421         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1422                 Ok(Self {
1423                         features: Readable::read(r)?,
1424                         chain_hash: Readable::read(r)?,
1425                         short_channel_id: Readable::read(r)?,
1426                         node_id_1: Readable::read(r)?,
1427                         node_id_2: Readable::read(r)?,
1428                         bitcoin_key_1: Readable::read(r)?,
1429                         bitcoin_key_2: Readable::read(r)?,
1430                         excess_data: read_to_end(r)?,
1431                 })
1432         }
1433 }
1434
1435 impl_writeable!(ChannelAnnouncement, {
1436         node_signature_1,
1437         node_signature_2,
1438         bitcoin_signature_1,
1439         bitcoin_signature_2,
1440         contents
1441 });
1442
1443 impl Writeable for UnsignedChannelUpdate {
1444         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1445                 let mut message_flags: u8 = 0;
1446                 if let OptionalField::Present(_) = self.htlc_maximum_msat {
1447                         message_flags = 1;
1448                 }
1449                 self.chain_hash.write(w)?;
1450                 self.short_channel_id.write(w)?;
1451                 self.timestamp.write(w)?;
1452                 let all_flags = self.flags as u16 | ((message_flags as u16) << 8);
1453                 all_flags.write(w)?;
1454                 self.cltv_expiry_delta.write(w)?;
1455                 self.htlc_minimum_msat.write(w)?;
1456                 self.fee_base_msat.write(w)?;
1457                 self.fee_proportional_millionths.write(w)?;
1458                 self.htlc_maximum_msat.write(w)?;
1459                 w.write_all(&self.excess_data[..])?;
1460                 Ok(())
1461         }
1462 }
1463
1464 impl Readable for UnsignedChannelUpdate {
1465         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1466                 let has_htlc_maximum_msat;
1467                 Ok(Self {
1468                         chain_hash: Readable::read(r)?,
1469                         short_channel_id: Readable::read(r)?,
1470                         timestamp: Readable::read(r)?,
1471                         flags: {
1472                                 let flags: u16 = Readable::read(r)?;
1473                                 let message_flags = flags >> 8;
1474                                 has_htlc_maximum_msat = (message_flags as i32 & 1) == 1;
1475                                 flags as u8
1476                         },
1477                         cltv_expiry_delta: Readable::read(r)?,
1478                         htlc_minimum_msat: Readable::read(r)?,
1479                         fee_base_msat: Readable::read(r)?,
1480                         fee_proportional_millionths: Readable::read(r)?,
1481                         htlc_maximum_msat: if has_htlc_maximum_msat { Readable::read(r)? } else { OptionalField::Absent },
1482                         excess_data: read_to_end(r)?,
1483                 })
1484         }
1485 }
1486
1487 impl_writeable!(ChannelUpdate, {
1488         signature,
1489         contents
1490 });
1491
1492 impl Writeable for ErrorMessage {
1493         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1494                 self.channel_id.write(w)?;
1495                 (self.data.len() as u16).write(w)?;
1496                 w.write_all(self.data.as_bytes())?;
1497                 Ok(())
1498         }
1499 }
1500
1501 impl Readable for ErrorMessage {
1502         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1503                 Ok(Self {
1504                         channel_id: Readable::read(r)?,
1505                         data: {
1506                                 let mut sz: usize = <u16 as Readable>::read(r)? as usize;
1507                                 let data = read_to_end(r)?;
1508                                 sz = cmp::min(data.len(), sz);
1509                                 match String::from_utf8(data[..sz as usize].to_vec()) {
1510                                         Ok(s) => s,
1511                                         Err(_) => return Err(DecodeError::InvalidValue),
1512                                 }
1513                         }
1514                 })
1515         }
1516 }
1517
1518 impl Writeable for UnsignedNodeAnnouncement {
1519         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1520                 self.features.write(w)?;
1521                 self.timestamp.write(w)?;
1522                 self.node_id.write(w)?;
1523                 w.write_all(&self.rgb)?;
1524                 self.alias.write(w)?;
1525
1526                 let mut addr_len = 0;
1527                 for addr in self.addresses.iter() {
1528                         addr_len += 1 + addr.len();
1529                 }
1530                 (addr_len + self.excess_address_data.len() as u16).write(w)?;
1531                 for addr in self.addresses.iter() {
1532                         addr.write(w)?;
1533                 }
1534                 w.write_all(&self.excess_address_data[..])?;
1535                 w.write_all(&self.excess_data[..])?;
1536                 Ok(())
1537         }
1538 }
1539
1540 impl Readable for UnsignedNodeAnnouncement {
1541         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1542                 let features: NodeFeatures = Readable::read(r)?;
1543                 let timestamp: u32 = Readable::read(r)?;
1544                 let node_id: PublicKey = Readable::read(r)?;
1545                 let mut rgb = [0; 3];
1546                 r.read_exact(&mut rgb)?;
1547                 let alias: [u8; 32] = Readable::read(r)?;
1548
1549                 let addr_len: u16 = Readable::read(r)?;
1550                 let mut addresses: Vec<NetAddress> = Vec::new();
1551                 let mut addr_readpos = 0;
1552                 let mut excess = false;
1553                 let mut excess_byte = 0;
1554                 loop {
1555                         if addr_len <= addr_readpos { break; }
1556                         match Readable::read(r) {
1557                                 Ok(Ok(addr)) => {
1558                                         if addr_len < addr_readpos + 1 + addr.len() {
1559                                                 return Err(DecodeError::BadLengthDescriptor);
1560                                         }
1561                                         addr_readpos += (1 + addr.len()) as u16;
1562                                         addresses.push(addr);
1563                                 },
1564                                 Ok(Err(unknown_descriptor)) => {
1565                                         excess = true;
1566                                         excess_byte = unknown_descriptor;
1567                                         break;
1568                                 },
1569                                 Err(DecodeError::ShortRead) => return Err(DecodeError::BadLengthDescriptor),
1570                                 Err(e) => return Err(e),
1571                         }
1572                 }
1573
1574                 let mut excess_data = vec![];
1575                 let excess_address_data = if addr_readpos < addr_len {
1576                         let mut excess_address_data = vec![0; (addr_len - addr_readpos) as usize];
1577                         r.read_exact(&mut excess_address_data[if excess { 1 } else { 0 }..])?;
1578                         if excess {
1579                                 excess_address_data[0] = excess_byte;
1580                         }
1581                         excess_address_data
1582                 } else {
1583                         if excess {
1584                                 excess_data.push(excess_byte);
1585                         }
1586                         Vec::new()
1587                 };
1588                 excess_data.extend(read_to_end(r)?.iter());
1589                 Ok(UnsignedNodeAnnouncement {
1590                         features,
1591                         timestamp,
1592                         node_id,
1593                         rgb,
1594                         alias,
1595                         addresses,
1596                         excess_address_data,
1597                         excess_data,
1598                 })
1599         }
1600 }
1601
1602 impl_writeable!(NodeAnnouncement, {
1603         signature,
1604         contents
1605 });
1606
1607 impl Readable for QueryShortChannelIds {
1608         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1609                 let chain_hash: BlockHash = Readable::read(r)?;
1610
1611                 let encoding_len: u16 = Readable::read(r)?;
1612                 let encoding_type: u8 = Readable::read(r)?;
1613
1614                 // Must be encoding_type=0 uncompressed serialization. We do not
1615                 // support encoding_type=1 zlib serialization.
1616                 if encoding_type != EncodingType::Uncompressed as u8 {
1617                         return Err(DecodeError::UnsupportedCompression);
1618                 }
1619
1620                 // We expect the encoding_len to always includes the 1-byte
1621                 // encoding_type and that short_channel_ids are 8-bytes each
1622                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1623                         return Err(DecodeError::InvalidValue);
1624                 }
1625
1626                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1627                 // less the 1-byte encoding_type
1628                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1629                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1630                 for _ in 0..short_channel_id_count {
1631                         short_channel_ids.push(Readable::read(r)?);
1632                 }
1633
1634                 Ok(QueryShortChannelIds {
1635                         chain_hash,
1636                         short_channel_ids,
1637                 })
1638         }
1639 }
1640
1641 impl Writeable for QueryShortChannelIds {
1642         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1643                 // Calculated from 1-byte encoding_type plus 8-bytes per short_channel_id
1644                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1645
1646                 self.chain_hash.write(w)?;
1647                 encoding_len.write(w)?;
1648
1649                 // We only support type=0 uncompressed serialization
1650                 (EncodingType::Uncompressed as u8).write(w)?;
1651
1652                 for scid in self.short_channel_ids.iter() {
1653                         scid.write(w)?;
1654                 }
1655
1656                 Ok(())
1657         }
1658 }
1659
1660 impl_writeable_msg!(ReplyShortChannelIdsEnd, {
1661         chain_hash,
1662         full_information,
1663 }, {});
1664
1665 impl QueryChannelRange {
1666         /**
1667          * Calculates the overflow safe ending block height for the query.
1668          * Overflow returns `0xffffffff`, otherwise returns `first_blocknum + number_of_blocks`
1669          */
1670         pub fn end_blocknum(&self) -> u32 {
1671                 match self.first_blocknum.checked_add(self.number_of_blocks) {
1672                         Some(block) => block,
1673                         None => u32::max_value(),
1674                 }
1675         }
1676 }
1677
1678 impl_writeable_msg!(QueryChannelRange, {
1679         chain_hash,
1680         first_blocknum,
1681         number_of_blocks
1682 }, {});
1683
1684 impl Readable for ReplyChannelRange {
1685         fn read<R: Read>(r: &mut R) -> Result<Self, DecodeError> {
1686                 let chain_hash: BlockHash = Readable::read(r)?;
1687                 let first_blocknum: u32 = Readable::read(r)?;
1688                 let number_of_blocks: u32 = Readable::read(r)?;
1689                 let sync_complete: bool = Readable::read(r)?;
1690
1691                 let encoding_len: u16 = Readable::read(r)?;
1692                 let encoding_type: u8 = Readable::read(r)?;
1693
1694                 // Must be encoding_type=0 uncompressed serialization. We do not
1695                 // support encoding_type=1 zlib serialization.
1696                 if encoding_type != EncodingType::Uncompressed as u8 {
1697                         return Err(DecodeError::UnsupportedCompression);
1698                 }
1699
1700                 // We expect the encoding_len to always includes the 1-byte
1701                 // encoding_type and that short_channel_ids are 8-bytes each
1702                 if encoding_len == 0 || (encoding_len - 1) % 8 != 0 {
1703                         return Err(DecodeError::InvalidValue);
1704                 }
1705
1706                 // Read short_channel_ids (8-bytes each), for the u16 encoding_len
1707                 // less the 1-byte encoding_type
1708                 let short_channel_id_count: u16 = (encoding_len - 1)/8;
1709                 let mut short_channel_ids = Vec::with_capacity(short_channel_id_count as usize);
1710                 for _ in 0..short_channel_id_count {
1711                         short_channel_ids.push(Readable::read(r)?);
1712                 }
1713
1714                 Ok(ReplyChannelRange {
1715                         chain_hash,
1716                         first_blocknum,
1717                         number_of_blocks,
1718                         sync_complete,
1719                         short_channel_ids
1720                 })
1721         }
1722 }
1723
1724 impl Writeable for ReplyChannelRange {
1725         fn write<W: Writer>(&self, w: &mut W) -> Result<(), io::Error> {
1726                 let encoding_len: u16 = 1 + self.short_channel_ids.len() as u16 * 8;
1727                 self.chain_hash.write(w)?;
1728                 self.first_blocknum.write(w)?;
1729                 self.number_of_blocks.write(w)?;
1730                 self.sync_complete.write(w)?;
1731
1732                 encoding_len.write(w)?;
1733                 (EncodingType::Uncompressed as u8).write(w)?;
1734                 for scid in self.short_channel_ids.iter() {
1735                         scid.write(w)?;
1736                 }
1737
1738                 Ok(())
1739         }
1740 }
1741
1742 impl_writeable_msg!(GossipTimestampFilter, {
1743         chain_hash,
1744         first_timestamp,
1745         timestamp_range,
1746 }, {});
1747
1748 #[cfg(test)]
1749 mod tests {
1750         use hex;
1751         use ln::{PaymentPreimage, PaymentHash, PaymentSecret};
1752         use ln::features::{ChannelFeatures, ChannelTypeFeatures, InitFeatures, NodeFeatures};
1753         use ln::msgs;
1754         use ln::msgs::{FinalOnionHopData, OptionalField, OnionErrorPacket, OnionHopDataFormat};
1755         use util::ser::{Writeable, Readable};
1756
1757         use bitcoin::hashes::hex::FromHex;
1758         use bitcoin::util::address::Address;
1759         use bitcoin::network::constants::Network;
1760         use bitcoin::blockdata::script::Builder;
1761         use bitcoin::blockdata::opcodes;
1762         use bitcoin::hash_types::{Txid, BlockHash};
1763
1764         use bitcoin::secp256k1::key::{PublicKey,SecretKey};
1765         use bitcoin::secp256k1::{Secp256k1, Message};
1766
1767         use io::Cursor;
1768         use prelude::*;
1769
1770         #[test]
1771         fn encoding_channel_reestablish_no_secret() {
1772                 let cr = msgs::ChannelReestablish {
1773                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1774                         next_local_commitment_number: 3,
1775                         next_remote_commitment_number: 4,
1776                         data_loss_protect: OptionalField::Absent,
1777                 };
1778
1779                 let encoded_value = cr.encode();
1780                 assert_eq!(
1781                         encoded_value,
1782                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4]
1783                 );
1784         }
1785
1786         #[test]
1787         fn encoding_channel_reestablish_with_secret() {
1788                 let public_key = {
1789                         let secp_ctx = Secp256k1::new();
1790                         PublicKey::from_secret_key(&secp_ctx, &SecretKey::from_slice(&hex::decode("0101010101010101010101010101010101010101010101010101010101010101").unwrap()[..]).unwrap())
1791                 };
1792
1793                 let cr = msgs::ChannelReestablish {
1794                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1795                         next_local_commitment_number: 3,
1796                         next_remote_commitment_number: 4,
1797                         data_loss_protect: OptionalField::Present(msgs::DataLossProtect { your_last_per_commitment_secret: [9;32], my_current_per_commitment_point: public_key}),
1798                 };
1799
1800                 let encoded_value = cr.encode();
1801                 assert_eq!(
1802                         encoded_value,
1803                         vec![4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 3, 27, 132, 197, 86, 123, 18, 100, 64, 153, 93, 62, 213, 170, 186, 5, 101, 215, 30, 24, 52, 96, 72, 25, 255, 156, 23, 245, 233, 213, 221, 7, 143]
1804                 );
1805         }
1806
1807         macro_rules! get_keys_from {
1808                 ($slice: expr, $secp_ctx: expr) => {
1809                         {
1810                                 let privkey = SecretKey::from_slice(&hex::decode($slice).unwrap()[..]).unwrap();
1811                                 let pubkey = PublicKey::from_secret_key(&$secp_ctx, &privkey);
1812                                 (privkey, pubkey)
1813                         }
1814                 }
1815         }
1816
1817         macro_rules! get_sig_on {
1818                 ($privkey: expr, $ctx: expr, $string: expr) => {
1819                         {
1820                                 let sighash = Message::from_slice(&$string.into_bytes()[..]).unwrap();
1821                                 $ctx.sign(&sighash, &$privkey)
1822                         }
1823                 }
1824         }
1825
1826         #[test]
1827         fn encoding_announcement_signatures() {
1828                 let secp_ctx = Secp256k1::new();
1829                 let (privkey, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1830                 let sig_1 = get_sig_on!(privkey, secp_ctx, String::from("01010101010101010101010101010101"));
1831                 let sig_2 = get_sig_on!(privkey, secp_ctx, String::from("02020202020202020202020202020202"));
1832                 let announcement_signatures = msgs::AnnouncementSignatures {
1833                         channel_id: [4, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
1834                         short_channel_id: 2316138423780173,
1835                         node_signature: sig_1,
1836                         bitcoin_signature: sig_2,
1837                 };
1838
1839                 let encoded_value = announcement_signatures.encode();
1840                 assert_eq!(encoded_value, hex::decode("040000000000000005000000000000000600000000000000070000000000000000083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073acf9953cef4700860f5967838eba2bae89288ad188ebf8b20bf995c3ea53a26df1876d0a3a0e13172ba286a673140190c02ba9da60a2e43a745188c8a83c7f3ef").unwrap());
1841         }
1842
1843         fn do_encoding_channel_announcement(unknown_features_bits: bool, excess_data: bool) {
1844                 let secp_ctx = Secp256k1::new();
1845                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1846                 let (privkey_2, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
1847                 let (privkey_3, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
1848                 let (privkey_4, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
1849                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1850                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
1851                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
1852                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
1853                 let mut features = ChannelFeatures::known();
1854                 if unknown_features_bits {
1855                         features = ChannelFeatures::from_le_bytes(vec![0xFF, 0xFF]);
1856                 }
1857                 let unsigned_channel_announcement = msgs::UnsignedChannelAnnouncement {
1858                         features,
1859                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
1860                         short_channel_id: 2316138423780173,
1861                         node_id_1: pubkey_1,
1862                         node_id_2: pubkey_2,
1863                         bitcoin_key_1: pubkey_3,
1864                         bitcoin_key_2: pubkey_4,
1865                         excess_data: if excess_data { vec![10, 0, 0, 20, 0, 0, 30, 0, 0, 40] } else { Vec::new() },
1866                 };
1867                 let channel_announcement = msgs::ChannelAnnouncement {
1868                         node_signature_1: sig_1,
1869                         node_signature_2: sig_2,
1870                         bitcoin_signature_1: sig_3,
1871                         bitcoin_signature_2: sig_4,
1872                         contents: unsigned_channel_announcement,
1873                 };
1874                 let encoded_value = channel_announcement.encode();
1875                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a1735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap();
1876                 if unknown_features_bits {
1877                         target_value.append(&mut hex::decode("0002ffff").unwrap());
1878                 } else {
1879                         target_value.append(&mut hex::decode("0000").unwrap());
1880                 }
1881                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
1882                 target_value.append(&mut hex::decode("00083a840000034d031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b").unwrap());
1883                 if excess_data {
1884                         target_value.append(&mut hex::decode("0a00001400001e000028").unwrap());
1885                 }
1886                 assert_eq!(encoded_value, target_value);
1887         }
1888
1889         #[test]
1890         fn encoding_channel_announcement() {
1891                 do_encoding_channel_announcement(true, false);
1892                 do_encoding_channel_announcement(false, true);
1893                 do_encoding_channel_announcement(false, false);
1894                 do_encoding_channel_announcement(true, true);
1895         }
1896
1897         fn do_encoding_node_announcement(unknown_features_bits: bool, ipv4: bool, ipv6: bool, onionv2: bool, onionv3: bool, excess_address_data: bool, excess_data: bool) {
1898                 let secp_ctx = Secp256k1::new();
1899                 let (privkey_1, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1900                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1901                 let features = if unknown_features_bits {
1902                         NodeFeatures::from_le_bytes(vec![0xFF, 0xFF])
1903                 } else {
1904                         // Set to some features we may support
1905                         NodeFeatures::from_le_bytes(vec![2 | 1 << 5])
1906                 };
1907                 let mut addresses = Vec::new();
1908                 if ipv4 {
1909                         addresses.push(msgs::NetAddress::IPv4 {
1910                                 addr: [255, 254, 253, 252],
1911                                 port: 9735
1912                         });
1913                 }
1914                 if ipv6 {
1915                         addresses.push(msgs::NetAddress::IPv6 {
1916                                 addr: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240],
1917                                 port: 9735
1918                         });
1919                 }
1920                 if onionv2 {
1921                         addresses.push(msgs::NetAddress::OnionV2(
1922                                 [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 38, 7]
1923                         ));
1924                 }
1925                 if onionv3 {
1926                         addresses.push(msgs::NetAddress::OnionV3 {
1927                                 ed25519_pubkey: [255, 254, 253, 252, 251, 250, 249, 248, 247, 246, 245, 244, 243, 242, 241, 240, 239, 238, 237, 236, 235, 234, 233, 232, 231, 230, 229, 228, 227, 226, 225, 224],
1928                                 checksum: 32,
1929                                 version: 16,
1930                                 port: 9735
1931                         });
1932                 }
1933                 let mut addr_len = 0;
1934                 for addr in &addresses {
1935                         addr_len += addr.len() + 1;
1936                 }
1937                 let unsigned_node_announcement = msgs::UnsignedNodeAnnouncement {
1938                         features,
1939                         timestamp: 20190119,
1940                         node_id: pubkey_1,
1941                         rgb: [32; 3],
1942                         alias: [16;32],
1943                         addresses,
1944                         excess_address_data: if excess_address_data { vec![33, 108, 40, 11, 83, 149, 162, 84, 110, 126, 75, 38, 99, 224, 79, 129, 22, 34, 241, 90, 79, 146, 232, 58, 162, 233, 43, 162, 165, 115, 193, 57, 20, 44, 84, 174, 99, 7, 42, 30, 193, 238, 125, 192, 192, 75, 222, 92, 132, 120, 6, 23, 42, 160, 92, 146, 194, 42, 232, 227, 8, 209, 210, 105] } else { Vec::new() },
1945                         excess_data: if excess_data { vec![59, 18, 204, 25, 92, 224, 162, 209, 189, 166, 168, 139, 239, 161, 159, 160, 127, 81, 202, 167, 92, 232, 56, 55, 242, 137, 101, 96, 11, 138, 172, 171, 8, 85, 255, 176, 231, 65, 236, 95, 124, 65, 66, 30, 152, 41, 169, 212, 134, 17, 200, 200, 49, 247, 27, 229, 234, 115, 230, 101, 148, 151, 127, 253] } else { Vec::new() },
1946                 };
1947                 addr_len += unsigned_node_announcement.excess_address_data.len() as u16;
1948                 let node_announcement = msgs::NodeAnnouncement {
1949                         signature: sig_1,
1950                         contents: unsigned_node_announcement,
1951                 };
1952                 let encoded_value = node_announcement.encode();
1953                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
1954                 if unknown_features_bits {
1955                         target_value.append(&mut hex::decode("0002ffff").unwrap());
1956                 } else {
1957                         target_value.append(&mut hex::decode("000122").unwrap());
1958                 }
1959                 target_value.append(&mut hex::decode("013413a7031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f2020201010101010101010101010101010101010101010101010101010101010101010").unwrap());
1960                 target_value.append(&mut vec![(addr_len >> 8) as u8, addr_len as u8]);
1961                 if ipv4 {
1962                         target_value.append(&mut hex::decode("01fffefdfc2607").unwrap());
1963                 }
1964                 if ipv6 {
1965                         target_value.append(&mut hex::decode("02fffefdfcfbfaf9f8f7f6f5f4f3f2f1f02607").unwrap());
1966                 }
1967                 if onionv2 {
1968                         target_value.append(&mut hex::decode("03fffefdfcfbfaf9f8f7f62607").unwrap());
1969                 }
1970                 if onionv3 {
1971                         target_value.append(&mut hex::decode("04fffefdfcfbfaf9f8f7f6f5f4f3f2f1f0efeeedecebeae9e8e7e6e5e4e3e2e1e00020102607").unwrap());
1972                 }
1973                 if excess_address_data {
1974                         target_value.append(&mut hex::decode("216c280b5395a2546e7e4b2663e04f811622f15a4f92e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d269").unwrap());
1975                 }
1976                 if excess_data {
1977                         target_value.append(&mut hex::decode("3b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
1978                 }
1979                 assert_eq!(encoded_value, target_value);
1980         }
1981
1982         #[test]
1983         fn encoding_node_announcement() {
1984                 do_encoding_node_announcement(true, true, true, true, true, true, true);
1985                 do_encoding_node_announcement(false, false, false, false, false, false, false);
1986                 do_encoding_node_announcement(false, true, false, false, false, false, false);
1987                 do_encoding_node_announcement(false, false, true, false, false, false, false);
1988                 do_encoding_node_announcement(false, false, false, true, false, false, false);
1989                 do_encoding_node_announcement(false, false, false, false, true, false, false);
1990                 do_encoding_node_announcement(false, false, false, false, false, true, false);
1991                 do_encoding_node_announcement(false, true, false, true, false, true, false);
1992                 do_encoding_node_announcement(false, false, true, false, true, false, false);
1993         }
1994
1995         fn do_encoding_channel_update(direction: bool, disable: bool, htlc_maximum_msat: bool, excess_data: bool) {
1996                 let secp_ctx = Secp256k1::new();
1997                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
1998                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
1999                 let unsigned_channel_update = msgs::UnsignedChannelUpdate {
2000                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2001                         short_channel_id: 2316138423780173,
2002                         timestamp: 20190119,
2003                         flags: if direction { 1 } else { 0 } | if disable { 1 << 1 } else { 0 },
2004                         cltv_expiry_delta: 144,
2005                         htlc_minimum_msat: 1000000,
2006                         htlc_maximum_msat: if htlc_maximum_msat { OptionalField::Present(131355275467161) } else { OptionalField::Absent },
2007                         fee_base_msat: 10000,
2008                         fee_proportional_millionths: 20,
2009                         excess_data: if excess_data { vec![0, 0, 0, 0, 59, 154, 202, 0] } else { Vec::new() }
2010                 };
2011                 let channel_update = msgs::ChannelUpdate {
2012                         signature: sig_1,
2013                         contents: unsigned_channel_update
2014                 };
2015                 let encoded_value = channel_update.encode();
2016                 let mut target_value = hex::decode("d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2017                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2018                 target_value.append(&mut hex::decode("00083a840000034d013413a7").unwrap());
2019                 if htlc_maximum_msat {
2020                         target_value.append(&mut hex::decode("01").unwrap());
2021                 } else {
2022                         target_value.append(&mut hex::decode("00").unwrap());
2023                 }
2024                 target_value.append(&mut hex::decode("00").unwrap());
2025                 if direction {
2026                         let flag = target_value.last_mut().unwrap();
2027                         *flag = 1;
2028                 }
2029                 if disable {
2030                         let flag = target_value.last_mut().unwrap();
2031                         *flag = *flag | 1 << 1;
2032                 }
2033                 target_value.append(&mut hex::decode("009000000000000f42400000271000000014").unwrap());
2034                 if htlc_maximum_msat {
2035                         target_value.append(&mut hex::decode("0000777788889999").unwrap());
2036                 }
2037                 if excess_data {
2038                         target_value.append(&mut hex::decode("000000003b9aca00").unwrap());
2039                 }
2040                 assert_eq!(encoded_value, target_value);
2041         }
2042
2043         #[test]
2044         fn encoding_channel_update() {
2045                 do_encoding_channel_update(false, false, false, false);
2046                 do_encoding_channel_update(false, false, false, true);
2047                 do_encoding_channel_update(true, false, false, false);
2048                 do_encoding_channel_update(true, false, false, true);
2049                 do_encoding_channel_update(false, true, false, false);
2050                 do_encoding_channel_update(false, true, false, true);
2051                 do_encoding_channel_update(false, false, true, false);
2052                 do_encoding_channel_update(false, false, true, true);
2053                 do_encoding_channel_update(true, true, true, false);
2054                 do_encoding_channel_update(true, true, true, true);
2055         }
2056
2057         fn do_encoding_open_channel(random_bit: bool, shutdown: bool, incl_chan_type: bool) {
2058                 let secp_ctx = Secp256k1::new();
2059                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2060                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2061                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2062                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2063                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2064                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2065                 let open_channel = msgs::OpenChannel {
2066                         chain_hash: BlockHash::from_hex("6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000").unwrap(),
2067                         temporary_channel_id: [2; 32],
2068                         funding_satoshis: 1311768467284833366,
2069                         push_msat: 2536655962884945560,
2070                         dust_limit_satoshis: 3608586615801332854,
2071                         max_htlc_value_in_flight_msat: 8517154655701053848,
2072                         channel_reserve_satoshis: 8665828695742877976,
2073                         htlc_minimum_msat: 2316138423780173,
2074                         feerate_per_kw: 821716,
2075                         to_self_delay: 49340,
2076                         max_accepted_htlcs: 49340,
2077                         funding_pubkey: pubkey_1,
2078                         revocation_basepoint: pubkey_2,
2079                         payment_point: pubkey_3,
2080                         delayed_payment_basepoint: pubkey_4,
2081                         htlc_basepoint: pubkey_5,
2082                         first_per_commitment_point: pubkey_6,
2083                         channel_flags: if random_bit { 1 << 5 } else { 0 },
2084                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent },
2085                         channel_type: if incl_chan_type { Some(ChannelTypeFeatures::empty()) } else { None },
2086                 };
2087                 let encoded_value = open_channel.encode();
2088                 let mut target_value = Vec::new();
2089                 target_value.append(&mut hex::decode("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f").unwrap());
2090                 target_value.append(&mut hex::decode("02020202020202020202020202020202020202020202020202020202020202021234567890123456233403289122369832144668701144767633030896203198784335490624111800083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap());
2091                 if random_bit {
2092                         target_value.append(&mut hex::decode("20").unwrap());
2093                 } else {
2094                         target_value.append(&mut hex::decode("00").unwrap());
2095                 }
2096                 if shutdown {
2097                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2098                 }
2099                 if incl_chan_type {
2100                         target_value.append(&mut hex::decode("0100").unwrap());
2101                 }
2102                 assert_eq!(encoded_value, target_value);
2103         }
2104
2105         #[test]
2106         fn encoding_open_channel() {
2107                 do_encoding_open_channel(false, false, false);
2108                 do_encoding_open_channel(false, false, true);
2109                 do_encoding_open_channel(false, true, false);
2110                 do_encoding_open_channel(false, true, true);
2111                 do_encoding_open_channel(true, false, false);
2112                 do_encoding_open_channel(true, false, true);
2113                 do_encoding_open_channel(true, true, false);
2114                 do_encoding_open_channel(true, true, true);
2115         }
2116
2117         fn do_encoding_accept_channel(shutdown: bool) {
2118                 let secp_ctx = Secp256k1::new();
2119                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2120                 let (_, pubkey_2) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2121                 let (_, pubkey_3) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2122                 let (_, pubkey_4) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2123                 let (_, pubkey_5) = get_keys_from!("0505050505050505050505050505050505050505050505050505050505050505", secp_ctx);
2124                 let (_, pubkey_6) = get_keys_from!("0606060606060606060606060606060606060606060606060606060606060606", secp_ctx);
2125                 let accept_channel = msgs::AcceptChannel {
2126                         temporary_channel_id: [2; 32],
2127                         dust_limit_satoshis: 1311768467284833366,
2128                         max_htlc_value_in_flight_msat: 2536655962884945560,
2129                         channel_reserve_satoshis: 3608586615801332854,
2130                         htlc_minimum_msat: 2316138423780173,
2131                         minimum_depth: 821716,
2132                         to_self_delay: 49340,
2133                         max_accepted_htlcs: 49340,
2134                         funding_pubkey: pubkey_1,
2135                         revocation_basepoint: pubkey_2,
2136                         payment_point: pubkey_3,
2137                         delayed_payment_basepoint: pubkey_4,
2138                         htlc_basepoint: pubkey_5,
2139                         first_per_commitment_point: pubkey_6,
2140                         shutdown_scriptpubkey: if shutdown { OptionalField::Present(Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey()) } else { OptionalField::Absent }
2141                 };
2142                 let encoded_value = accept_channel.encode();
2143                 let mut target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020212345678901234562334032891223698321446687011447600083a840000034d000c89d4c0bcc0bc031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f024d4b6cd1361032ca9bd2aeb9d900aa4d45d9ead80ac9423374c451a7254d076602531fe6068134503d2723133227c867ac8fa6c83c537e9a44c3c5bdbdcb1fe33703462779ad4aad39514614751a71085f2f10e1c7a593e4e030efb5b8721ce55b0b0362c0a046dacce86ddd0343c6d3c7c79c2208ba0d9c9cf24a6d046d21d21f90f703f006a18d5653c4edf5391ff23a61f03ff83d237e880ee61187fa9f379a028e0a").unwrap();
2144                 if shutdown {
2145                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2146                 }
2147                 assert_eq!(encoded_value, target_value);
2148         }
2149
2150         #[test]
2151         fn encoding_accept_channel() {
2152                 do_encoding_accept_channel(false);
2153                 do_encoding_accept_channel(true);
2154         }
2155
2156         #[test]
2157         fn encoding_funding_created() {
2158                 let secp_ctx = Secp256k1::new();
2159                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2160                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2161                 let funding_created = msgs::FundingCreated {
2162                         temporary_channel_id: [2; 32],
2163                         funding_txid: Txid::from_hex("c2d4449afa8d26140898dd54d3390b057ba2a5afcf03ba29d7dc0d8b9ffe966e").unwrap(),
2164                         funding_output_index: 255,
2165                         signature: sig_1,
2166                 };
2167                 let encoded_value = funding_created.encode();
2168                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202026e96fe9f8b0ddcd729ba03cfafa5a27b050b39d354dd980814268dfa9a44d4c200ffd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2169                 assert_eq!(encoded_value, target_value);
2170         }
2171
2172         #[test]
2173         fn encoding_funding_signed() {
2174                 let secp_ctx = Secp256k1::new();
2175                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2176                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2177                 let funding_signed = msgs::FundingSigned {
2178                         channel_id: [2; 32],
2179                         signature: sig_1,
2180                 };
2181                 let encoded_value = funding_signed.encode();
2182                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2183                 assert_eq!(encoded_value, target_value);
2184         }
2185
2186         #[test]
2187         fn encoding_funding_locked() {
2188                 let secp_ctx = Secp256k1::new();
2189                 let (_, pubkey_1,) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2190                 let funding_locked = msgs::FundingLocked {
2191                         channel_id: [2; 32],
2192                         next_per_commitment_point: pubkey_1,
2193                 };
2194                 let encoded_value = funding_locked.encode();
2195                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2196                 assert_eq!(encoded_value, target_value);
2197         }
2198
2199         fn do_encoding_shutdown(script_type: u8) {
2200                 let secp_ctx = Secp256k1::new();
2201                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2202                 let script = Builder::new().push_opcode(opcodes::OP_TRUE).into_script();
2203                 let shutdown = msgs::Shutdown {
2204                         channel_id: [2; 32],
2205                         scriptpubkey:
2206                                      if script_type == 1 { Address::p2pkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).script_pubkey() }
2207                                 else if script_type == 2 { Address::p2sh(&script, Network::Testnet).script_pubkey() }
2208                                 else if script_type == 3 { Address::p2wpkh(&::bitcoin::PublicKey{compressed: true, key: pubkey_1}, Network::Testnet).unwrap().script_pubkey() }
2209                                 else                     { Address::p2wsh(&script, Network::Testnet).script_pubkey() },
2210                 };
2211                 let encoded_value = shutdown.encode();
2212                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202").unwrap();
2213                 if script_type == 1 {
2214                         target_value.append(&mut hex::decode("001976a91479b000887626b294a914501a4cd226b58b23598388ac").unwrap());
2215                 } else if script_type == 2 {
2216                         target_value.append(&mut hex::decode("0017a914da1745e9b549bd0bfa1a569971c77eba30cd5a4b87").unwrap());
2217                 } else if script_type == 3 {
2218                         target_value.append(&mut hex::decode("0016001479b000887626b294a914501a4cd226b58b235983").unwrap());
2219                 } else if script_type == 4 {
2220                         target_value.append(&mut hex::decode("002200204ae81572f06e1b88fd5ced7a1a000945432e83e1551e6f721ee9c00b8cc33260").unwrap());
2221                 }
2222                 assert_eq!(encoded_value, target_value);
2223         }
2224
2225         #[test]
2226         fn encoding_shutdown() {
2227                 do_encoding_shutdown(1);
2228                 do_encoding_shutdown(2);
2229                 do_encoding_shutdown(3);
2230                 do_encoding_shutdown(4);
2231         }
2232
2233         #[test]
2234         fn encoding_closing_signed() {
2235                 let secp_ctx = Secp256k1::new();
2236                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2237                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2238                 let closing_signed = msgs::ClosingSigned {
2239                         channel_id: [2; 32],
2240                         fee_satoshis: 2316138423780173,
2241                         signature: sig_1,
2242                         fee_range: None,
2243                 };
2244                 let encoded_value = closing_signed.encode();
2245                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2246                 assert_eq!(encoded_value, target_value);
2247                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value)).unwrap(), closing_signed);
2248
2249                 let closing_signed_with_range = msgs::ClosingSigned {
2250                         channel_id: [2; 32],
2251                         fee_satoshis: 2316138423780173,
2252                         signature: sig_1,
2253                         fee_range: Some(msgs::ClosingSignedFeeRange {
2254                                 min_fee_satoshis: 0xdeadbeef,
2255                                 max_fee_satoshis: 0x1badcafe01234567,
2256                         }),
2257                 };
2258                 let encoded_value_with_range = closing_signed_with_range.encode();
2259                 let target_value_with_range = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034dd977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a011000000000deadbeef1badcafe01234567").unwrap();
2260                 assert_eq!(encoded_value_with_range, target_value_with_range);
2261                 assert_eq!(msgs::ClosingSigned::read(&mut Cursor::new(&target_value_with_range)).unwrap(),
2262                         closing_signed_with_range);
2263         }
2264
2265         #[test]
2266         fn encoding_update_add_htlc() {
2267                 let secp_ctx = Secp256k1::new();
2268                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2269                 let onion_routing_packet = msgs::OnionPacket {
2270                         version: 255,
2271                         public_key: Ok(pubkey_1),
2272                         hop_data: [1; 20*65],
2273                         hmac: [2; 32]
2274                 };
2275                 let update_add_htlc = msgs::UpdateAddHTLC {
2276                         channel_id: [2; 32],
2277                         htlc_id: 2316138423780173,
2278                         amount_msat: 3608586615801332854,
2279                         payment_hash: PaymentHash([1; 32]),
2280                         cltv_expiry: 821716,
2281                         onion_routing_packet
2282                 };
2283                 let encoded_value = update_add_htlc.encode();
2284                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d32144668701144760101010101010101010101010101010101010101010101010101010101010101000c89d4ff031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010202020202020202020202020202020202020202020202020202020202020202").unwrap();
2285                 assert_eq!(encoded_value, target_value);
2286         }
2287
2288         #[test]
2289         fn encoding_update_fulfill_htlc() {
2290                 let update_fulfill_htlc = msgs::UpdateFulfillHTLC {
2291                         channel_id: [2; 32],
2292                         htlc_id: 2316138423780173,
2293                         payment_preimage: PaymentPreimage([1; 32]),
2294                 };
2295                 let encoded_value = update_fulfill_htlc.encode();
2296                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d0101010101010101010101010101010101010101010101010101010101010101").unwrap();
2297                 assert_eq!(encoded_value, target_value);
2298         }
2299
2300         #[test]
2301         fn encoding_update_fail_htlc() {
2302                 let reason = OnionErrorPacket {
2303                         data: [1; 32].to_vec(),
2304                 };
2305                 let update_fail_htlc = msgs::UpdateFailHTLC {
2306                         channel_id: [2; 32],
2307                         htlc_id: 2316138423780173,
2308                         reason
2309                 };
2310                 let encoded_value = update_fail_htlc.encode();
2311                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d00200101010101010101010101010101010101010101010101010101010101010101").unwrap();
2312                 assert_eq!(encoded_value, target_value);
2313         }
2314
2315         #[test]
2316         fn encoding_update_fail_malformed_htlc() {
2317                 let update_fail_malformed_htlc = msgs::UpdateFailMalformedHTLC {
2318                         channel_id: [2; 32],
2319                         htlc_id: 2316138423780173,
2320                         sha256_of_onion: [1; 32],
2321                         failure_code: 255
2322                 };
2323                 let encoded_value = update_fail_malformed_htlc.encode();
2324                 let target_value = hex::decode("020202020202020202020202020202020202020202020202020202020202020200083a840000034d010101010101010101010101010101010101010101010101010101010101010100ff").unwrap();
2325                 assert_eq!(encoded_value, target_value);
2326         }
2327
2328         fn do_encoding_commitment_signed(htlcs: bool) {
2329                 let secp_ctx = Secp256k1::new();
2330                 let (privkey_1, _) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2331                 let (privkey_2, _) = get_keys_from!("0202020202020202020202020202020202020202020202020202020202020202", secp_ctx);
2332                 let (privkey_3, _) = get_keys_from!("0303030303030303030303030303030303030303030303030303030303030303", secp_ctx);
2333                 let (privkey_4, _) = get_keys_from!("0404040404040404040404040404040404040404040404040404040404040404", secp_ctx);
2334                 let sig_1 = get_sig_on!(privkey_1, secp_ctx, String::from("01010101010101010101010101010101"));
2335                 let sig_2 = get_sig_on!(privkey_2, secp_ctx, String::from("01010101010101010101010101010101"));
2336                 let sig_3 = get_sig_on!(privkey_3, secp_ctx, String::from("01010101010101010101010101010101"));
2337                 let sig_4 = get_sig_on!(privkey_4, secp_ctx, String::from("01010101010101010101010101010101"));
2338                 let commitment_signed = msgs::CommitmentSigned {
2339                         channel_id: [2; 32],
2340                         signature: sig_1,
2341                         htlc_signatures: if htlcs { vec![sig_2, sig_3, sig_4] } else { Vec::new() },
2342                 };
2343                 let encoded_value = commitment_signed.encode();
2344                 let mut target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202d977cb9b53d93a6ff64bb5f1e158b4094b66e798fb12911168a3ccdf80a83096340a6a95da0ae8d9f776528eecdbb747eb6b545495a4319ed5378e35b21e073a").unwrap();
2345                 if htlcs {
2346                         target_value.append(&mut hex::decode("00031735b6a427e80d5fe7cd90a2f4ee08dc9c27cda7c35a4172e5d85b12c49d4232537e98f9b1f3c5e6989a8b9644e90e8918127680dbd0d4043510840fc0f1e11a216c280b5395a2546e7e4b2663e04f811622f15a4f91e83aa2e92ba2a573c139142c54ae63072a1ec1ee7dc0c04bde5c847806172aa05c92c22ae8e308d1d2692b12cc195ce0a2d1bda6a88befa19fa07f51caa75ce83837f28965600b8aacab0855ffb0e741ec5f7c41421e9829a9d48611c8c831f71be5ea73e66594977ffd").unwrap());
2347                 } else {
2348                         target_value.append(&mut hex::decode("0000").unwrap());
2349                 }
2350                 assert_eq!(encoded_value, target_value);
2351         }
2352
2353         #[test]
2354         fn encoding_commitment_signed() {
2355                 do_encoding_commitment_signed(true);
2356                 do_encoding_commitment_signed(false);
2357         }
2358
2359         #[test]
2360         fn encoding_revoke_and_ack() {
2361                 let secp_ctx = Secp256k1::new();
2362                 let (_, pubkey_1) = get_keys_from!("0101010101010101010101010101010101010101010101010101010101010101", secp_ctx);
2363                 let raa = msgs::RevokeAndACK {
2364                         channel_id: [2; 32],
2365                         per_commitment_secret: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
2366                         next_per_commitment_point: pubkey_1,
2367                 };
2368                 let encoded_value = raa.encode();
2369                 let target_value = hex::decode("02020202020202020202020202020202020202020202020202020202020202020101010101010101010101010101010101010101010101010101010101010101031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f").unwrap();
2370                 assert_eq!(encoded_value, target_value);
2371         }
2372
2373         #[test]
2374         fn encoding_update_fee() {
2375                 let update_fee = msgs::UpdateFee {
2376                         channel_id: [2; 32],
2377                         feerate_per_kw: 20190119,
2378                 };
2379                 let encoded_value = update_fee.encode();
2380                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202013413a7").unwrap();
2381                 assert_eq!(encoded_value, target_value);
2382         }
2383
2384         #[test]
2385         fn encoding_init() {
2386                 assert_eq!(msgs::Init {
2387                         features: InitFeatures::from_le_bytes(vec![0xFF, 0xFF, 0xFF]),
2388                 }.encode(), hex::decode("00023fff0003ffffff").unwrap());
2389                 assert_eq!(msgs::Init {
2390                         features: InitFeatures::from_le_bytes(vec![0xFF]),
2391                 }.encode(), hex::decode("0001ff0001ff").unwrap());
2392                 assert_eq!(msgs::Init {
2393                         features: InitFeatures::from_le_bytes(vec![]),
2394                 }.encode(), hex::decode("00000000").unwrap());
2395         }
2396
2397         #[test]
2398         fn encoding_error() {
2399                 let error = msgs::ErrorMessage {
2400                         channel_id: [2; 32],
2401                         data: String::from("rust-lightning"),
2402                 };
2403                 let encoded_value = error.encode();
2404                 let target_value = hex::decode("0202020202020202020202020202020202020202020202020202020202020202000e727573742d6c696768746e696e67").unwrap();
2405                 assert_eq!(encoded_value, target_value);
2406         }
2407
2408         #[test]
2409         fn encoding_ping() {
2410                 let ping = msgs::Ping {
2411                         ponglen: 64,
2412                         byteslen: 64
2413                 };
2414                 let encoded_value = ping.encode();
2415                 let target_value = hex::decode("0040004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2416                 assert_eq!(encoded_value, target_value);
2417         }
2418
2419         #[test]
2420         fn encoding_pong() {
2421                 let pong = msgs::Pong {
2422                         byteslen: 64
2423                 };
2424                 let encoded_value = pong.encode();
2425                 let target_value = hex::decode("004000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
2426                 assert_eq!(encoded_value, target_value);
2427         }
2428
2429         #[test]
2430         fn encoding_legacy_onion_hop_data() {
2431                 let msg = msgs::OnionHopData {
2432                         format: OnionHopDataFormat::Legacy {
2433                                 short_channel_id: 0xdeadbeef1bad1dea,
2434                         },
2435                         amt_to_forward: 0x0badf00d01020304,
2436                         outgoing_cltv_value: 0xffffffff,
2437                 };
2438                 let encoded_value = msg.encode();
2439                 let target_value = hex::decode("00deadbeef1bad1dea0badf00d01020304ffffffff000000000000000000000000").unwrap();
2440                 assert_eq!(encoded_value, target_value);
2441         }
2442
2443         #[test]
2444         fn encoding_nonfinal_onion_hop_data() {
2445                 let mut msg = msgs::OnionHopData {
2446                         format: OnionHopDataFormat::NonFinalNode {
2447                                 short_channel_id: 0xdeadbeef1bad1dea,
2448                         },
2449                         amt_to_forward: 0x0badf00d01020304,
2450                         outgoing_cltv_value: 0xffffffff,
2451                 };
2452                 let encoded_value = msg.encode();
2453                 let target_value = hex::decode("1a02080badf00d010203040404ffffffff0608deadbeef1bad1dea").unwrap();
2454                 assert_eq!(encoded_value, target_value);
2455                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2456                 if let OnionHopDataFormat::NonFinalNode { short_channel_id } = msg.format {
2457                         assert_eq!(short_channel_id, 0xdeadbeef1bad1dea);
2458                 } else { panic!(); }
2459                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2460                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2461         }
2462
2463         #[test]
2464         fn encoding_final_onion_hop_data() {
2465                 let mut msg = msgs::OnionHopData {
2466                         format: OnionHopDataFormat::FinalNode {
2467                                 payment_data: None,
2468                                 keysend_preimage: None,
2469                         },
2470                         amt_to_forward: 0x0badf00d01020304,
2471                         outgoing_cltv_value: 0xffffffff,
2472                 };
2473                 let encoded_value = msg.encode();
2474                 let target_value = hex::decode("1002080badf00d010203040404ffffffff").unwrap();
2475                 assert_eq!(encoded_value, target_value);
2476                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2477                 if let OnionHopDataFormat::FinalNode { payment_data: None, .. } = msg.format { } else { panic!(); }
2478                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2479                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2480         }
2481
2482         #[test]
2483         fn encoding_final_onion_hop_data_with_secret() {
2484                 let expected_payment_secret = PaymentSecret([0x42u8; 32]);
2485                 let mut msg = msgs::OnionHopData {
2486                         format: OnionHopDataFormat::FinalNode {
2487                                 payment_data: Some(FinalOnionHopData {
2488                                         payment_secret: expected_payment_secret,
2489                                         total_msat: 0x1badca1f
2490                                 }),
2491                                 keysend_preimage: None,
2492                         },
2493                         amt_to_forward: 0x0badf00d01020304,
2494                         outgoing_cltv_value: 0xffffffff,
2495                 };
2496                 let encoded_value = msg.encode();
2497                 let target_value = hex::decode("3602080badf00d010203040404ffffffff082442424242424242424242424242424242424242424242424242424242424242421badca1f").unwrap();
2498                 assert_eq!(encoded_value, target_value);
2499                 msg = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2500                 if let OnionHopDataFormat::FinalNode {
2501                         payment_data: Some(FinalOnionHopData {
2502                                 payment_secret,
2503                                 total_msat: 0x1badca1f
2504                         }),
2505                         keysend_preimage: None,
2506                 } = msg.format {
2507                         assert_eq!(payment_secret, expected_payment_secret);
2508                 } else { panic!(); }
2509                 assert_eq!(msg.amt_to_forward, 0x0badf00d01020304);
2510                 assert_eq!(msg.outgoing_cltv_value, 0xffffffff);
2511         }
2512
2513         #[test]
2514         fn query_channel_range_end_blocknum() {
2515                 let tests: Vec<(u32, u32, u32)> = vec![
2516                         (10000, 1500, 11500),
2517                         (0, 0xffffffff, 0xffffffff),
2518                         (1, 0xffffffff, 0xffffffff),
2519                 ];
2520
2521                 for (first_blocknum, number_of_blocks, expected) in tests.into_iter() {
2522                         let sut = msgs::QueryChannelRange {
2523                                 chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2524                                 first_blocknum,
2525                                 number_of_blocks,
2526                         };
2527                         assert_eq!(sut.end_blocknum(), expected);
2528                 }
2529         }
2530
2531         #[test]
2532         fn encoding_query_channel_range() {
2533                 let mut query_channel_range = msgs::QueryChannelRange {
2534                         chain_hash: BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap(),
2535                         first_blocknum: 100000,
2536                         number_of_blocks: 1500,
2537                 };
2538                 let encoded_value = query_channel_range.encode();
2539                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000186a0000005dc").unwrap();
2540                 assert_eq!(encoded_value, target_value);
2541
2542                 query_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2543                 assert_eq!(query_channel_range.first_blocknum, 100000);
2544                 assert_eq!(query_channel_range.number_of_blocks, 1500);
2545         }
2546
2547         #[test]
2548         fn encoding_reply_channel_range() {
2549                 do_encoding_reply_channel_range(0);
2550                 do_encoding_reply_channel_range(1);
2551         }
2552
2553         fn do_encoding_reply_channel_range(encoding_type: u8) {
2554                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206000b8a06000005dc01").unwrap();
2555                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2556                 let mut reply_channel_range = msgs::ReplyChannelRange {
2557                         chain_hash: expected_chain_hash,
2558                         first_blocknum: 756230,
2559                         number_of_blocks: 1500,
2560                         sync_complete: true,
2561                         short_channel_ids: vec![0x000000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2562                 };
2563
2564                 if encoding_type == 0 {
2565                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2566                         let encoded_value = reply_channel_range.encode();
2567                         assert_eq!(encoded_value, target_value);
2568
2569                         reply_channel_range = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2570                         assert_eq!(reply_channel_range.chain_hash, expected_chain_hash);
2571                         assert_eq!(reply_channel_range.first_blocknum, 756230);
2572                         assert_eq!(reply_channel_range.number_of_blocks, 1500);
2573                         assert_eq!(reply_channel_range.sync_complete, true);
2574                         assert_eq!(reply_channel_range.short_channel_ids[0], 0x000000000000008e);
2575                         assert_eq!(reply_channel_range.short_channel_ids[1], 0x0000000000003c69);
2576                         assert_eq!(reply_channel_range.short_channel_ids[2], 0x000000000045a6c4);
2577                 } else {
2578                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2579                         let result: Result<msgs::ReplyChannelRange, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2580                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2581                 }
2582         }
2583
2584         #[test]
2585         fn encoding_query_short_channel_ids() {
2586                 do_encoding_query_short_channel_ids(0);
2587                 do_encoding_query_short_channel_ids(1);
2588         }
2589
2590         fn do_encoding_query_short_channel_ids(encoding_type: u8) {
2591                 let mut target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e2206").unwrap();
2592                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2593                 let mut query_short_channel_ids = msgs::QueryShortChannelIds {
2594                         chain_hash: expected_chain_hash,
2595                         short_channel_ids: vec![0x0000000000008e, 0x0000000000003c69, 0x000000000045a6c4],
2596                 };
2597
2598                 if encoding_type == 0 {
2599                         target_value.append(&mut hex::decode("001900000000000000008e0000000000003c69000000000045a6c4").unwrap());
2600                         let encoded_value = query_short_channel_ids.encode();
2601                         assert_eq!(encoded_value, target_value);
2602
2603                         query_short_channel_ids = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2604                         assert_eq!(query_short_channel_ids.chain_hash, expected_chain_hash);
2605                         assert_eq!(query_short_channel_ids.short_channel_ids[0], 0x000000000000008e);
2606                         assert_eq!(query_short_channel_ids.short_channel_ids[1], 0x0000000000003c69);
2607                         assert_eq!(query_short_channel_ids.short_channel_ids[2], 0x000000000045a6c4);
2608                 } else {
2609                         target_value.append(&mut hex::decode("001601789c636000833e08659309a65878be010010a9023a").unwrap());
2610                         let result: Result<msgs::QueryShortChannelIds, msgs::DecodeError> = Readable::read(&mut Cursor::new(&target_value[..]));
2611                         assert!(result.is_err(), "Expected decode failure with unsupported zlib encoding");
2612                 }
2613         }
2614
2615         #[test]
2616         fn encoding_reply_short_channel_ids_end() {
2617                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2618                 let mut reply_short_channel_ids_end = msgs::ReplyShortChannelIdsEnd {
2619                         chain_hash: expected_chain_hash,
2620                         full_information: true,
2621                 };
2622                 let encoded_value = reply_short_channel_ids_end.encode();
2623                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e220601").unwrap();
2624                 assert_eq!(encoded_value, target_value);
2625
2626                 reply_short_channel_ids_end = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2627                 assert_eq!(reply_short_channel_ids_end.chain_hash, expected_chain_hash);
2628                 assert_eq!(reply_short_channel_ids_end.full_information, true);
2629         }
2630
2631         #[test]
2632         fn encoding_gossip_timestamp_filter(){
2633                 let expected_chain_hash = BlockHash::from_hex("06226e46111a0b59caaf126043eb5bbf28c34f3a5e332a1fc7b2b73cf188910f").unwrap();
2634                 let mut gossip_timestamp_filter = msgs::GossipTimestampFilter {
2635                         chain_hash: expected_chain_hash,
2636                         first_timestamp: 1590000000,
2637                         timestamp_range: 0xffff_ffff,
2638                 };
2639                 let encoded_value = gossip_timestamp_filter.encode();
2640                 let target_value = hex::decode("0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b1a11466e22065ec57980ffffffff").unwrap();
2641                 assert_eq!(encoded_value, target_value);
2642
2643                 gossip_timestamp_filter = Readable::read(&mut Cursor::new(&target_value[..])).unwrap();
2644                 assert_eq!(gossip_timestamp_filter.chain_hash, expected_chain_hash);
2645                 assert_eq!(gossip_timestamp_filter.first_timestamp, 1590000000);
2646                 assert_eq!(gossip_timestamp_filter.timestamp_range, 0xffff_ffff);
2647         }
2648 }