1 // This file is Copyright its original authors, visible in version control
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
10 use crate::crypto::chacha20::ChaCha20;
11 use crate::crypto::streams::ChaChaReader;
12 use crate::ln::channelmanager::{HTLCSource, RecipientOnionFields};
14 use crate::ln::types::{PaymentHash, PaymentPreimage};
15 use crate::ln::wire::Encode;
16 use crate::routing::gossip::NetworkUpdate;
17 use crate::routing::router::{BlindedTail, Path, RouteHop};
18 use crate::sign::NodeSigner;
19 use crate::util::errors::{self, APIError};
20 use crate::util::logger::Logger;
21 use crate::util::ser::{LengthCalculatingWriter, Readable, ReadableArgs, Writeable, Writer};
23 use bitcoin::hashes::cmp::fixed_time_eq;
24 use bitcoin::hashes::hmac::{Hmac, HmacEngine};
25 use bitcoin::hashes::sha256::Hash as Sha256;
26 use bitcoin::hashes::{Hash, HashEngine};
28 use bitcoin::secp256k1;
29 use bitcoin::secp256k1::ecdh::SharedSecret;
30 use bitcoin::secp256k1::{PublicKey, Scalar, Secp256k1, SecretKey};
32 use crate::io::{Cursor, Read};
35 #[allow(unused_imports)]
36 use crate::prelude::*;
38 pub(crate) struct OnionKeys {
40 pub(crate) shared_secret: SharedSecret,
42 pub(crate) blinding_factor: [u8; 32],
43 pub(crate) ephemeral_pubkey: PublicKey,
44 pub(crate) rho: [u8; 32],
45 pub(crate) mu: [u8; 32],
49 pub(crate) fn gen_rho_from_shared_secret(shared_secret: &[u8]) -> [u8; 32] {
50 assert_eq!(shared_secret.len(), 32);
51 let mut hmac = HmacEngine::<Sha256>::new(&[0x72, 0x68, 0x6f]); // rho
52 hmac.input(&shared_secret);
53 Hmac::from_engine(hmac).to_byte_array()
57 pub(crate) fn gen_rho_mu_from_shared_secret(shared_secret: &[u8]) -> ([u8; 32], [u8; 32]) {
58 assert_eq!(shared_secret.len(), 32);
59 let mut engine_rho = HmacEngine::<Sha256>::new(b"rho");
60 engine_rho.input(&shared_secret);
61 let hmac_rho = Hmac::from_engine(engine_rho).to_byte_array();
63 let mut engine_mu = HmacEngine::<Sha256>::new(b"mu");
64 engine_mu.input(&shared_secret);
65 let hmac_mu = Hmac::from_engine(engine_mu).to_byte_array();
71 pub(super) fn gen_um_from_shared_secret(shared_secret: &[u8]) -> [u8; 32] {
72 assert_eq!(shared_secret.len(), 32);
73 let mut hmac = HmacEngine::<Sha256>::new(&[0x75, 0x6d]); // um
74 hmac.input(&shared_secret);
75 Hmac::from_engine(hmac).to_byte_array()
79 pub(super) fn gen_ammag_from_shared_secret(shared_secret: &[u8]) -> [u8; 32] {
80 assert_eq!(shared_secret.len(), 32);
81 let mut hmac = HmacEngine::<Sha256>::new(&[0x61, 0x6d, 0x6d, 0x61, 0x67]); // ammag
82 hmac.input(&shared_secret);
83 Hmac::from_engine(hmac).to_byte_array()
88 pub(super) fn gen_pad_from_shared_secret(shared_secret: &[u8]) -> [u8; 32] {
89 assert_eq!(shared_secret.len(), 32);
90 let mut hmac = HmacEngine::<Sha256>::new(&[0x70, 0x61, 0x64]); // pad
91 hmac.input(&shared_secret);
92 Hmac::from_engine(hmac).to_byte_array()
95 /// Calculates a pubkey for the next hop, such as the next hop's packet pubkey or blinding point.
96 pub(crate) fn next_hop_pubkey<T: secp256k1::Verification>(
97 secp_ctx: &Secp256k1<T>, curr_pubkey: PublicKey, shared_secret: &[u8],
98 ) -> Result<PublicKey, secp256k1::Error> {
99 let blinding_factor = {
100 let mut sha = Sha256::engine();
101 sha.input(&curr_pubkey.serialize()[..]);
102 sha.input(shared_secret);
103 Sha256::from_engine(sha).to_byte_array()
106 curr_pubkey.mul_tweak(secp_ctx, &Scalar::from_be_bytes(blinding_factor).unwrap())
109 // can only fail if an intermediary hop has an invalid public key or session_priv is invalid
111 pub(super) fn construct_onion_keys_callback<T, FType>(
112 secp_ctx: &Secp256k1<T>, path: &Path, session_priv: &SecretKey, mut callback: FType,
113 ) -> Result<(), secp256k1::Error>
115 T: secp256k1::Signing,
116 FType: FnMut(SharedSecret, [u8; 32], PublicKey, Option<&RouteHop>, usize),
118 let mut blinded_priv = session_priv.clone();
119 let mut blinded_pub = PublicKey::from_secret_key(secp_ctx, &blinded_priv);
121 let unblinded_hops_iter = path.hops.iter().map(|h| (&h.pubkey, Some(h)));
122 let blinded_pks_iter = path
125 .map(|t| t.hops.iter())
126 .unwrap_or([].iter())
127 .skip(1) // Skip the intro node because it's included in the unblinded hops
128 .map(|h| (&h.blinded_node_id, None));
129 for (idx, (pubkey, route_hop_opt)) in unblinded_hops_iter.chain(blinded_pks_iter).enumerate() {
130 let shared_secret = SharedSecret::new(pubkey, &blinded_priv);
132 let mut sha = Sha256::engine();
133 sha.input(&blinded_pub.serialize()[..]);
134 sha.input(shared_secret.as_ref());
135 let blinding_factor = Sha256::from_engine(sha).to_byte_array();
137 let ephemeral_pubkey = blinded_pub;
139 blinded_priv = blinded_priv.mul_tweak(&Scalar::from_be_bytes(blinding_factor).unwrap())?;
140 blinded_pub = PublicKey::from_secret_key(secp_ctx, &blinded_priv);
142 callback(shared_secret, blinding_factor, ephemeral_pubkey, route_hop_opt, idx);
148 // can only fail if an intermediary hop has an invalid public key or session_priv is invalid
149 pub(super) fn construct_onion_keys<T: secp256k1::Signing>(
150 secp_ctx: &Secp256k1<T>, path: &Path, session_priv: &SecretKey,
151 ) -> Result<Vec<OnionKeys>, secp256k1::Error> {
152 let mut res = Vec::with_capacity(path.hops.len());
154 construct_onion_keys_callback(
158 |shared_secret, _blinding_factor, ephemeral_pubkey, _, _| {
159 let (rho, mu) = gen_rho_mu_from_shared_secret(shared_secret.as_ref());
165 blinding_factor: _blinding_factor,
176 /// returns the hop data, as well as the first-hop value_msat and CLTV value we should send.
177 pub(super) fn build_onion_payloads(
178 path: &Path, total_msat: u64, mut recipient_onion: RecipientOnionFields,
179 starting_htlc_offset: u32, keysend_preimage: &Option<PaymentPreimage>,
180 ) -> Result<(Vec<msgs::OutboundOnionPayload>, u64, u32), APIError> {
181 let mut cur_value_msat = 0u64;
182 let mut cur_cltv = starting_htlc_offset;
183 let mut last_short_channel_id = 0;
184 let mut res: Vec<msgs::OutboundOnionPayload> = Vec::with_capacity(
185 path.hops.len() + path.blinded_tail.as_ref().map_or(0, |t| t.hops.len()),
188 for (idx, hop) in path.hops.iter().rev().enumerate() {
189 // First hop gets special values so that it can check, on receipt, that everything is
190 // exactly as it should be (and the next hop isn't trying to probe to find out if we're
191 // the intended recipient).
192 let value_msat = if cur_value_msat == 0 { hop.fee_msat } else { cur_value_msat };
193 let cltv = if cur_cltv == starting_htlc_offset {
194 hop.cltv_expiry_delta + starting_htlc_offset
199 if let Some(BlindedTail {
203 excess_final_cltv_expiry_delta,
205 }) = &path.blinded_tail
207 let mut blinding_point = Some(*blinding_point);
208 for (i, blinded_hop) in hops.iter().enumerate() {
209 if i == hops.len() - 1 {
210 cur_value_msat += final_value_msat;
211 res.push(msgs::OutboundOnionPayload::BlindedReceive {
212 sender_intended_htlc_amt_msat: *final_value_msat,
214 cltv_expiry_height: cur_cltv + excess_final_cltv_expiry_delta,
215 encrypted_tlvs: blinded_hop.encrypted_payload.clone(),
216 intro_node_blinding_point: blinding_point.take(),
217 keysend_preimage: *keysend_preimage,
218 custom_tlvs: recipient_onion.custom_tlvs.clone(),
221 res.push(msgs::OutboundOnionPayload::BlindedForward {
222 encrypted_tlvs: blinded_hop.encrypted_payload.clone(),
223 intro_node_blinding_point: blinding_point.take(),
228 res.push(msgs::OutboundOnionPayload::Receive {
229 payment_data: if let Some(secret) = recipient_onion.payment_secret.take() {
230 Some(msgs::FinalOnionHopData { payment_secret: secret, total_msat })
234 payment_metadata: recipient_onion.payment_metadata.take(),
235 keysend_preimage: *keysend_preimage,
236 custom_tlvs: recipient_onion.custom_tlvs.clone(),
237 sender_intended_htlc_amt_msat: value_msat,
238 cltv_expiry_height: cltv,
242 let payload = msgs::OutboundOnionPayload::Forward {
243 short_channel_id: last_short_channel_id,
244 amt_to_forward: value_msat,
245 outgoing_cltv_value: cltv,
247 res.insert(0, payload);
249 cur_value_msat += hop.fee_msat;
250 if cur_value_msat >= 21000000 * 100000000 * 1000 {
251 return Err(APIError::InvalidRoute { err: "Channel fees overflowed?".to_owned() });
253 cur_cltv += hop.cltv_expiry_delta as u32;
254 if cur_cltv >= 500000000 {
255 return Err(APIError::InvalidRoute { err: "Channel CLTV overflowed?".to_owned() });
257 last_short_channel_id = hop.short_channel_id;
259 Ok((res, cur_value_msat, cur_cltv))
262 /// Length of the onion data packet. Before TLV-based onions this was 20 65-byte hops, though now
263 /// the hops can be of variable length.
264 pub(crate) const ONION_DATA_LEN: usize = 20 * 65;
266 pub(super) const INVALID_ONION_BLINDING: u16 = 0x8000 | 0x4000 | 24;
269 fn shift_slice_right(arr: &mut [u8], amt: usize) {
270 for i in (amt..arr.len()).rev() {
271 arr[i] = arr[i - amt];
278 pub(super) fn construct_onion_packet(
279 payloads: Vec<msgs::OutboundOnionPayload>, onion_keys: Vec<OnionKeys>, prng_seed: [u8; 32],
280 associated_data: &PaymentHash,
281 ) -> Result<msgs::OnionPacket, ()> {
282 let mut packet_data = [0; ONION_DATA_LEN];
284 let mut chacha = ChaCha20::new(&prng_seed, &[0; 8]);
285 chacha.process(&[0; ONION_DATA_LEN], &mut packet_data);
287 let packet = FixedSizeOnionPacket(packet_data);
288 construct_onion_packet_with_init_noise::<_, _>(
292 Some(associated_data),
297 pub(super) fn construct_trampoline_onion_packet(
298 payloads: Vec<msgs::OutboundTrampolinePayload>, onion_keys: Vec<OnionKeys>,
299 prng_seed: [u8; 32], associated_data: &PaymentHash, length: u16,
300 ) -> Result<msgs::TrampolineOnionPacket, ()> {
301 let mut packet_data = vec![0u8; length as usize];
303 let mut chacha = ChaCha20::new(&prng_seed, &[0; 8]);
304 chacha.process(&vec![0u8; length as usize], &mut packet_data);
306 construct_onion_packet_with_init_noise::<_, _>(
310 Some(associated_data),
315 /// Used in testing to write bogus `BogusOnionHopData` as well as `RawOnionHopData`, which is
316 /// otherwise not representable in `msgs::OnionHopData`.
317 pub(super) fn construct_onion_packet_with_writable_hopdata<HD: Writeable>(
318 payloads: Vec<HD>, onion_keys: Vec<OnionKeys>, prng_seed: [u8; 32],
319 associated_data: &PaymentHash,
320 ) -> Result<msgs::OnionPacket, ()> {
321 let mut packet_data = [0; ONION_DATA_LEN];
323 let mut chacha = ChaCha20::new(&prng_seed, &[0; 8]);
324 chacha.process(&[0; ONION_DATA_LEN], &mut packet_data);
326 let packet = FixedSizeOnionPacket(packet_data);
327 construct_onion_packet_with_init_noise::<_, _>(
331 Some(associated_data),
335 /// Since onion message packets and onion payment packets have different lengths but are otherwise
336 /// identical, we use this trait to allow `construct_onion_packet_with_init_noise` to return either
338 pub(crate) trait Packet {
339 type Data: AsMut<[u8]>;
340 fn new(pubkey: PublicKey, hop_data: Self::Data, hmac: [u8; 32]) -> Self;
343 // Needed for rustc versions older than 1.47 to avoid E0277: "arrays only have std trait
344 // implementations for lengths 0..=32".
345 pub(crate) struct FixedSizeOnionPacket(pub(crate) [u8; ONION_DATA_LEN]);
347 impl AsMut<[u8]> for FixedSizeOnionPacket {
348 fn as_mut(&mut self) -> &mut [u8] {
353 pub(crate) fn payloads_serialized_length<HD: Writeable>(payloads: &Vec<HD>) -> usize {
354 payloads.iter().map(|p| p.serialized_length() + 32 /* HMAC */).sum()
357 pub(crate) fn construct_onion_message_packet<HD: Writeable, P: Packet<Data = Vec<u8>>>(
358 payloads: Vec<HD>, onion_keys: Vec<OnionKeys>, prng_seed: [u8; 32], packet_data_len: usize,
360 let mut packet_data = vec![0; packet_data_len];
362 let mut chacha = ChaCha20::new(&prng_seed, &[0; 8]);
363 chacha.process_in_place(&mut packet_data);
365 construct_onion_packet_with_init_noise::<_, _>(payloads, onion_keys, packet_data, None)
368 fn construct_onion_packet_with_init_noise<HD: Writeable, P: Packet>(
369 mut payloads: Vec<HD>, onion_keys: Vec<OnionKeys>, mut packet_data: P::Data,
370 associated_data: Option<&PaymentHash>,
373 let packet_data = packet_data.as_mut();
374 const ONION_HOP_DATA_LEN: usize = 65; // We may decrease this eventually after TLV is common
375 let mut res = Vec::with_capacity(ONION_HOP_DATA_LEN * (payloads.len() - 1));
378 for (i, (payload, keys)) in payloads.iter().zip(onion_keys.iter()).enumerate() {
379 let mut chacha = ChaCha20::new(&keys.rho, &[0u8; 8]);
381 for _ in 0..(packet_data.len() - pos) {
382 let mut dummy = [0; 1];
383 chacha.process_in_place(&mut dummy); // We don't have a seek function :(
386 let mut payload_len = LengthCalculatingWriter(0);
387 payload.write(&mut payload_len).expect("Failed to calculate length");
388 pos += payload_len.0 + 32;
389 if pos > packet_data.len() {
393 if i == payloads.len() - 1 {
397 res.resize(pos, 0u8);
398 chacha.process_in_place(&mut res);
403 let mut hmac_res = [0; 32];
404 for (i, (payload, keys)) in payloads.iter_mut().zip(onion_keys.iter()).rev().enumerate() {
405 let mut payload_len = LengthCalculatingWriter(0);
406 payload.write(&mut payload_len).expect("Failed to calculate length");
408 let packet_data = packet_data.as_mut();
409 shift_slice_right(packet_data, payload_len.0 + 32);
410 packet_data[0..payload_len.0].copy_from_slice(&payload.encode()[..]);
411 packet_data[payload_len.0..(payload_len.0 + 32)].copy_from_slice(&hmac_res);
413 let mut chacha = ChaCha20::new(&keys.rho, &[0u8; 8]);
414 chacha.process_in_place(packet_data);
417 let stop_index = packet_data.len();
418 let start_index = stop_index.checked_sub(filler.len()).ok_or(())?;
419 packet_data[start_index..stop_index].copy_from_slice(&filler[..]);
422 let mut hmac = HmacEngine::<Sha256>::new(&keys.mu);
423 hmac.input(packet_data);
424 if let Some(associated_data) = associated_data {
425 hmac.input(&associated_data.0[..]);
427 hmac_res = Hmac::from_engine(hmac).to_byte_array();
430 Ok(P::new(onion_keys.first().unwrap().ephemeral_pubkey, packet_data, hmac_res))
433 /// Encrypts a failure packet. raw_packet can either be a
434 /// msgs::DecodedOnionErrorPacket.encode() result or a msgs::OnionErrorPacket.data element.
435 pub(super) fn encrypt_failure_packet(
436 shared_secret: &[u8], raw_packet: &[u8],
437 ) -> msgs::OnionErrorPacket {
438 let ammag = gen_ammag_from_shared_secret(&shared_secret);
440 let mut packet_crypted = Vec::with_capacity(raw_packet.len());
441 packet_crypted.resize(raw_packet.len(), 0);
442 let mut chacha = ChaCha20::new(&ammag, &[0u8; 8]);
443 chacha.process(&raw_packet, &mut packet_crypted[..]);
444 msgs::OnionErrorPacket { data: packet_crypted }
447 pub(super) fn build_failure_packet(
448 shared_secret: &[u8], failure_type: u16, failure_data: &[u8],
449 ) -> msgs::DecodedOnionErrorPacket {
450 assert_eq!(shared_secret.len(), 32);
451 assert!(failure_data.len() <= 256 - 2);
453 let um = gen_um_from_shared_secret(&shared_secret);
456 let mut res = Vec::with_capacity(2 + failure_data.len());
457 res.push(((failure_type >> 8) & 0xff) as u8);
458 res.push(((failure_type >> 0) & 0xff) as u8);
459 res.extend_from_slice(&failure_data[..]);
463 let mut res = Vec::with_capacity(256 - 2 - failure_data.len());
464 res.resize(256 - 2 - failure_data.len(), 0);
467 let mut packet = msgs::DecodedOnionErrorPacket { hmac: [0; 32], failuremsg, pad };
469 let mut hmac = HmacEngine::<Sha256>::new(&um);
470 hmac.input(&packet.encode()[32..]);
471 packet.hmac = Hmac::from_engine(hmac).to_byte_array();
477 pub(super) fn build_first_hop_failure_packet(
478 shared_secret: &[u8], failure_type: u16, failure_data: &[u8],
479 ) -> msgs::OnionErrorPacket {
480 let failure_packet = build_failure_packet(shared_secret, failure_type, failure_data);
481 encrypt_failure_packet(shared_secret, &failure_packet.encode()[..])
484 pub(crate) struct DecodedOnionFailure {
485 pub(crate) network_update: Option<NetworkUpdate>,
486 pub(crate) short_channel_id: Option<u64>,
487 pub(crate) payment_failed_permanently: bool,
488 pub(crate) failed_within_blinded_path: bool,
490 pub(crate) onion_error_code: Option<u16>,
492 pub(crate) onion_error_data: Option<Vec<u8>>,
495 /// Note that we always decrypt `packet` in-place here even if the deserialization into
496 /// [`msgs::DecodedOnionErrorPacket`] ultimately fails.
497 fn decrypt_onion_error_packet(
498 packet: &mut Vec<u8>, shared_secret: SharedSecret,
499 ) -> Result<msgs::DecodedOnionErrorPacket, msgs::DecodeError> {
500 let ammag = gen_ammag_from_shared_secret(shared_secret.as_ref());
501 let mut chacha = ChaCha20::new(&ammag, &[0u8; 8]);
502 chacha.process_in_place(packet);
503 msgs::DecodedOnionErrorPacket::read(&mut Cursor::new(packet))
506 /// Process failure we got back from upstream on a payment we sent (implying htlc_source is an
509 pub(super) fn process_onion_failure<T: secp256k1::Signing, L: Deref>(
510 secp_ctx: &Secp256k1<T>, logger: &L, htlc_source: &HTLCSource, mut encrypted_packet: Vec<u8>,
511 ) -> DecodedOnionFailure
515 let (path, session_priv, first_hop_htlc_msat) = match htlc_source {
516 HTLCSource::OutboundRoute {
517 ref path, ref session_priv, ref first_hop_htlc_msat, ..
518 } => (path, session_priv, first_hop_htlc_msat),
524 // Learnings from the HTLC failure to inform future payment retries and scoring.
525 struct FailureLearnings {
526 network_update: Option<NetworkUpdate>,
527 short_channel_id: Option<u64>,
528 payment_failed_permanently: bool,
529 failed_within_blinded_path: bool,
531 let mut res: Option<FailureLearnings> = None;
532 let mut htlc_msat = *first_hop_htlc_msat;
533 let mut error_code_ret = None;
534 let mut error_packet_ret = None;
535 let mut is_from_final_node = false;
537 const BADONION: u16 = 0x8000;
538 const PERM: u16 = 0x4000;
539 const NODE: u16 = 0x2000;
540 const UPDATE: u16 = 0x1000;
542 // Handle packed channel/node updates for passing back for the route handler
543 let callback = |shared_secret, _, _, route_hop_opt: Option<&RouteHop>, route_hop_idx| {
548 let route_hop = match route_hop_opt {
551 // Got an error from within a blinded route.
552 error_code_ret = Some(BADONION | PERM | 24); // invalid_onion_blinding
553 error_packet_ret = Some(vec![0; 32]);
554 res = Some(FailureLearnings {
555 network_update: None,
556 short_channel_id: None,
557 payment_failed_permanently: false,
558 failed_within_blinded_path: true,
564 // The failing hop includes either the inbound channel to the recipient or the outbound channel
565 // from the current hop (i.e., the next hop's inbound channel).
566 let num_blinded_hops = path.blinded_tail.as_ref().map_or(0, |bt| bt.hops.len());
567 // For 1-hop blinded paths, the final `path.hops` entry is the recipient.
568 is_from_final_node = route_hop_idx + 1 == path.hops.len() && num_blinded_hops <= 1;
569 let failing_route_hop = if is_from_final_node {
572 match path.hops.get(route_hop_idx + 1) {
575 // The failing hop is within a multi-hop blinded path.
578 error_code_ret = Some(BADONION | PERM | 24); // invalid_onion_blinding
579 error_packet_ret = Some(vec![0; 32]);
583 // Actually parse the onion error data in tests so we can check that blinded hops fail
586 decrypt_onion_error_packet(&mut encrypted_packet, shared_secret)
588 error_code_ret = Some(u16::from_be_bytes(
589 err_packet.failuremsg.get(0..2).unwrap().try_into().unwrap(),
591 error_packet_ret = Some(err_packet.failuremsg[2..].to_vec());
594 res = Some(FailureLearnings {
595 network_update: None,
596 short_channel_id: None,
597 payment_failed_permanently: false,
598 failed_within_blinded_path: true,
605 let amt_to_forward = htlc_msat - route_hop.fee_msat;
606 htlc_msat = amt_to_forward;
608 let err_packet = match decrypt_onion_error_packet(&mut encrypted_packet, shared_secret) {
612 let um = gen_um_from_shared_secret(shared_secret.as_ref());
613 let mut hmac = HmacEngine::<Sha256>::new(&um);
614 hmac.input(&err_packet.encode()[32..]);
616 if !fixed_time_eq(&Hmac::from_engine(hmac).to_byte_array(), &err_packet.hmac) {
619 let error_code_slice = match err_packet.failuremsg.get(0..2) {
622 // Useless packet that we can't use but it passed HMAC, so it definitely came from the peer
624 let network_update = Some(NetworkUpdate::NodeFailure {
625 node_id: route_hop.pubkey,
628 let short_channel_id = Some(route_hop.short_channel_id);
629 res = Some(FailureLearnings {
632 payment_failed_permanently: is_from_final_node,
633 failed_within_blinded_path: false,
639 let error_code = u16::from_be_bytes(error_code_slice.try_into().expect("len is 2"));
640 error_code_ret = Some(error_code);
641 error_packet_ret = Some(err_packet.failuremsg[2..].to_vec());
643 let (debug_field, debug_field_size) = errors::get_onion_debug_field(error_code);
645 // indicate that payment parameter has failed and no need to update Route object
646 let payment_failed = match error_code & 0xff {
647 15 | 16 | 17 | 18 | 19 | 23 => true,
649 } && is_from_final_node; // PERM bit observed below even if this error is from the intermediate nodes
651 let mut network_update = None;
652 let mut short_channel_id = None;
654 if error_code & BADONION == BADONION {
655 // If the error code has the BADONION bit set, always blame the channel from the node
656 // "originating" the error to its next hop. The "originator" is ultimately actually claiming
657 // that its counterparty is the one who is failing the HTLC.
658 // If the "originator" here isn't lying we should really mark the next-hop node as failed
659 // entirely, but we can't be confident in that, as it would allow any node to get us to
660 // completely ban one of its counterparties. Instead, we simply remove the channel in
662 network_update = Some(NetworkUpdate::ChannelFailure {
663 short_channel_id: failing_route_hop.short_channel_id,
666 } else if error_code & NODE == NODE {
667 let is_permanent = error_code & PERM == PERM;
669 Some(NetworkUpdate::NodeFailure { node_id: route_hop.pubkey, is_permanent });
670 short_channel_id = Some(route_hop.short_channel_id);
671 } else if error_code & PERM == PERM {
673 network_update = Some(NetworkUpdate::ChannelFailure {
674 short_channel_id: failing_route_hop.short_channel_id,
677 short_channel_id = Some(failing_route_hop.short_channel_id);
679 } else if error_code & UPDATE == UPDATE {
680 if let Some(update_len_slice) =
681 err_packet.failuremsg.get(debug_field_size + 2..debug_field_size + 4)
684 u16::from_be_bytes(update_len_slice.try_into().expect("len is 2")) as usize;
685 if let Some(mut update_slice) = err_packet
687 .get(debug_field_size + 4..debug_field_size + 4 + update_len)
689 // Historically, the BOLTs were unclear if the message type
690 // bytes should be included here or not. The BOLTs have now
691 // been updated to indicate that they *are* included, but many
692 // nodes still send messages without the type bytes, so we
693 // support both here.
694 // TODO: Switch to hard require the type prefix, as the current
695 // permissiveness introduces the (although small) possibility
696 // that we fail to decode legitimate channel updates that
697 // happen to start with ChannelUpdate::TYPE, i.e., [0x01, 0x02].
698 if update_slice.len() > 2
699 && update_slice[0..2] == msgs::ChannelUpdate::TYPE.to_be_bytes()
701 update_slice = &update_slice[2..];
703 log_trace!(logger, "Failure provided features a channel update without type prefix. Deprecated, but allowing for now.");
705 let update_opt = msgs::ChannelUpdate::read(&mut Cursor::new(&update_slice));
706 if update_opt.is_ok() || update_slice.is_empty() {
707 // if channel_update should NOT have caused the failure:
708 // MAY treat the channel_update as invalid.
709 let is_chan_update_invalid = match error_code & 0xff {
714 > update_opt.as_ref().unwrap().contents.htlc_minimum_msat
724 .fee_proportional_millionths as u64,
726 .map(|prop_fee| prop_fee / 1_000_000)
727 .and_then(|prop_fee| {
728 prop_fee.checked_add(
729 update_opt.as_ref().unwrap().contents.fee_base_msat
733 .map(|fee_msats| route_hop.fee_msat >= fee_msats)
738 && route_hop.cltv_expiry_delta as u16
739 >= update_opt.as_ref().unwrap().contents.cltv_expiry_delta
741 14 => false, // expiry_too_soon; always valid?
742 20 => update_opt.as_ref().unwrap().contents.flags & 2 == 0,
743 _ => false, // unknown error code; take channel_update as valid
745 if is_chan_update_invalid {
746 // This probably indicates the node which forwarded
747 // to the node in question corrupted something.
748 network_update = Some(NetworkUpdate::ChannelFailure {
749 short_channel_id: route_hop.short_channel_id,
753 if let Ok(chan_update) = update_opt {
754 // Make sure the ChannelUpdate contains the expected
756 if failing_route_hop.short_channel_id
757 == chan_update.contents.short_channel_id
759 short_channel_id = Some(failing_route_hop.short_channel_id);
761 log_info!(logger, "Node provided a channel_update for which it was not authoritative, ignoring.");
764 Some(NetworkUpdate::ChannelUpdateMessage { msg: chan_update })
766 // The node in question intentionally encoded a 0-length channel update. This is
767 // likely due to https://github.com/ElementsProject/lightning/issues/6200.
768 short_channel_id = Some(failing_route_hop.short_channel_id);
769 network_update = Some(NetworkUpdate::ChannelFailure {
770 short_channel_id: failing_route_hop.short_channel_id,
776 // If the channel_update had a non-zero length (i.e. was
777 // present) but we couldn't read it, treat it as a total
781 "Failed to read a channel_update of len {} in an onion",
787 if network_update.is_none() {
788 // They provided an UPDATE which was obviously bogus, not worth
789 // trying to relay through them anymore.
790 network_update = Some(NetworkUpdate::NodeFailure {
791 node_id: route_hop.pubkey,
795 if short_channel_id.is_none() {
796 short_channel_id = Some(route_hop.short_channel_id);
798 } else if payment_failed {
799 // Only blame the hop when a value in the HTLC doesn't match the corresponding value in the
801 short_channel_id = match error_code & 0xff {
802 18 | 19 => Some(route_hop.short_channel_id),
806 // We can't understand their error messages and they failed to forward...they probably can't
807 // understand our forwards so it's really not worth trying any further.
809 Some(NetworkUpdate::NodeFailure { node_id: route_hop.pubkey, is_permanent: true });
810 short_channel_id = Some(route_hop.short_channel_id);
813 res = Some(FailureLearnings {
816 payment_failed_permanently: error_code & PERM == PERM && is_from_final_node,
817 failed_within_blinded_path: false,
820 let (description, title) = errors::get_onion_error_description(error_code);
821 if debug_field_size > 0 && err_packet.failuremsg.len() >= 4 + debug_field_size {
824 "Onion Error[from {}: {}({:#x}) {}({})] {}",
829 log_bytes!(&err_packet.failuremsg[4..4 + debug_field_size]),
835 "Onion Error[from {}: {}({:#x})] {}",
844 construct_onion_keys_callback(secp_ctx, &path, session_priv, callback)
845 .expect("Route that we sent via spontaneously grew invalid keys in the middle of it?");
847 if let Some(FailureLearnings {
850 payment_failed_permanently,
851 failed_within_blinded_path,
854 DecodedOnionFailure {
857 payment_failed_permanently,
858 failed_within_blinded_path,
860 onion_error_code: error_code_ret,
862 onion_error_data: error_packet_ret,
865 // only not set either packet unparseable or hmac does not match with any
866 // payment not retryable only when garbage is from the final node
867 DecodedOnionFailure {
868 network_update: None,
869 short_channel_id: None,
870 payment_failed_permanently: is_from_final_node,
871 failed_within_blinded_path: false,
873 onion_error_code: None,
875 onion_error_data: None,
880 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
881 #[cfg_attr(test, derive(PartialEq))]
882 pub(super) struct HTLCFailReason(HTLCFailReasonRepr);
884 #[derive(Clone)] // See Channel::revoke_and_ack for why, tl;dr: Rust bug
885 #[cfg_attr(test, derive(PartialEq))]
886 enum HTLCFailReasonRepr {
887 LightningError { err: msgs::OnionErrorPacket },
888 Reason { failure_code: u16, data: Vec<u8> },
891 impl core::fmt::Debug for HTLCFailReason {
892 fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
894 HTLCFailReasonRepr::Reason { ref failure_code, .. } => {
895 write!(f, "HTLC error code {}", failure_code)
897 HTLCFailReasonRepr::LightningError { .. } => {
898 write!(f, "pre-built LightningError")
904 impl Writeable for HTLCFailReason {
905 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), crate::io::Error> {
909 impl Readable for HTLCFailReason {
910 fn read<R: Read>(reader: &mut R) -> Result<Self, msgs::DecodeError> {
911 Ok(Self(Readable::read(reader)?))
915 impl_writeable_tlv_based_enum!(HTLCFailReasonRepr,
916 (0, LightningError) => {
920 (0, failure_code, required),
921 (2, data, required_vec),
925 impl HTLCFailReason {
927 pub(super) fn reason(failure_code: u16, data: Vec<u8>) -> Self {
928 const BADONION: u16 = 0x8000;
929 const PERM: u16 = 0x4000;
930 const NODE: u16 = 0x2000;
931 const UPDATE: u16 = 0x1000;
933 if failure_code == 1 | PERM { debug_assert!(data.is_empty()) }
934 else if failure_code == 2 | NODE { debug_assert!(data.is_empty()) }
935 else if failure_code == 2 | PERM | NODE { debug_assert!(data.is_empty()) }
936 else if failure_code == 3 | PERM | NODE { debug_assert!(data.is_empty()) }
937 else if failure_code == 4 | BADONION | PERM { debug_assert_eq!(data.len(), 32) }
938 else if failure_code == 5 | BADONION | PERM { debug_assert_eq!(data.len(), 32) }
939 else if failure_code == 6 | BADONION | PERM { debug_assert_eq!(data.len(), 32) }
940 else if failure_code == 7 | UPDATE {
941 debug_assert_eq!(data.len() - 2, u16::from_be_bytes(data[0..2].try_into().unwrap()) as usize) }
942 else if failure_code == 8 | PERM { debug_assert!(data.is_empty()) }
943 else if failure_code == 9 | PERM { debug_assert!(data.is_empty()) }
944 else if failure_code == 10 | PERM { debug_assert!(data.is_empty()) }
945 else if failure_code == 11 | UPDATE {
946 debug_assert_eq!(data.len() - 2 - 8, u16::from_be_bytes(data[8..10].try_into().unwrap()) as usize) }
947 else if failure_code == 12 | UPDATE {
948 debug_assert_eq!(data.len() - 2 - 8, u16::from_be_bytes(data[8..10].try_into().unwrap()) as usize) }
949 else if failure_code == 13 | UPDATE {
950 debug_assert_eq!(data.len() - 2 - 4, u16::from_be_bytes(data[4..6].try_into().unwrap()) as usize) }
951 else if failure_code == 14 | UPDATE {
952 debug_assert_eq!(data.len() - 2, u16::from_be_bytes(data[0..2].try_into().unwrap()) as usize) }
953 else if failure_code == 15 | PERM { debug_assert_eq!(data.len(), 12) }
954 else if failure_code == 18 { debug_assert_eq!(data.len(), 4) }
955 else if failure_code == 19 { debug_assert_eq!(data.len(), 8) }
956 else if failure_code == 20 | UPDATE {
957 debug_assert_eq!(data.len() - 2 - 2, u16::from_be_bytes(data[2..4].try_into().unwrap()) as usize) }
958 else if failure_code == 21 { debug_assert!(data.is_empty()) }
959 else if failure_code == 22 | PERM { debug_assert!(data.len() <= 11) }
960 else if failure_code == 23 { debug_assert!(data.is_empty()) }
961 else if failure_code & BADONION != 0 {
962 // We set some bogus BADONION failure codes in test, so ignore unknown ones.
964 else { debug_assert!(false, "Unknown failure code: {}", failure_code) }
966 Self(HTLCFailReasonRepr::Reason { failure_code, data })
969 pub(super) fn from_failure_code(failure_code: u16) -> Self {
970 Self::reason(failure_code, Vec::new())
973 pub(super) fn from_msg(msg: &msgs::UpdateFailHTLC) -> Self {
974 Self(HTLCFailReasonRepr::LightningError { err: msg.reason.clone() })
977 pub(super) fn get_encrypted_failure_packet(
978 &self, incoming_packet_shared_secret: &[u8; 32], phantom_shared_secret: &Option<[u8; 32]>,
979 ) -> msgs::OnionErrorPacket {
981 HTLCFailReasonRepr::Reason { ref failure_code, ref data } => {
982 if let Some(phantom_ss) = phantom_shared_secret {
984 build_failure_packet(phantom_ss, *failure_code, &data[..]).encode();
985 let encrypted_phantom_packet =
986 encrypt_failure_packet(phantom_ss, &phantom_packet);
987 encrypt_failure_packet(
988 incoming_packet_shared_secret,
989 &encrypted_phantom_packet.data[..],
992 let packet = build_failure_packet(
993 incoming_packet_shared_secret,
998 encrypt_failure_packet(incoming_packet_shared_secret, &packet)
1001 HTLCFailReasonRepr::LightningError { ref err } => {
1002 encrypt_failure_packet(incoming_packet_shared_secret, &err.data)
1007 pub(super) fn decode_onion_failure<T: secp256k1::Signing, L: Deref>(
1008 &self, secp_ctx: &Secp256k1<T>, logger: &L, htlc_source: &HTLCSource,
1009 ) -> DecodedOnionFailure
1014 HTLCFailReasonRepr::LightningError { ref err } => {
1015 process_onion_failure(secp_ctx, logger, &htlc_source, err.data.clone())
1018 HTLCFailReasonRepr::Reason { ref failure_code, ref data, .. } => {
1019 // we get a fail_malformed_htlc from the first hop
1020 // TODO: We'd like to generate a NetworkUpdate for temporary
1021 // failures here, but that would be insufficient as find_route
1022 // generally ignores its view of our own channels as we provide them via
1024 if let &HTLCSource::OutboundRoute { ref path, .. } = htlc_source {
1025 DecodedOnionFailure {
1026 network_update: None,
1027 payment_failed_permanently: false,
1028 short_channel_id: Some(path.hops[0].short_channel_id),
1029 failed_within_blinded_path: false,
1031 onion_error_code: Some(*failure_code),
1033 onion_error_data: Some(data.clone()),
1043 /// Allows `decode_next_hop` to return the next hop packet bytes for either payments or onion
1044 /// message forwards.
1045 pub(crate) trait NextPacketBytes: AsMut<[u8]> {
1046 fn new(len: usize) -> Self;
1049 impl NextPacketBytes for FixedSizeOnionPacket {
1050 fn new(_len: usize) -> Self {
1051 Self([0 as u8; ONION_DATA_LEN])
1055 impl NextPacketBytes for Vec<u8> {
1056 fn new(len: usize) -> Self {
1061 /// Data decrypted from a payment's onion payload.
1062 pub(crate) enum Hop {
1063 /// This onion payload was for us, not for forwarding to a next-hop. Contains information for
1064 /// verifying the incoming payment.
1065 Receive(msgs::InboundOnionPayload),
1066 /// This onion payload needs to be forwarded to a next-hop.
1068 /// Onion payload data used in forwarding the payment.
1069 next_hop_data: msgs::InboundOnionPayload,
1070 /// HMAC of the next hop's onion packet.
1071 next_hop_hmac: [u8; 32],
1072 /// Bytes of the onion packet we're forwarding.
1073 new_packet_bytes: [u8; ONION_DATA_LEN],
1078 pub(crate) fn is_intro_node_blinded_forward(&self) -> bool {
1082 msgs::InboundOnionPayload::BlindedForward {
1083 intro_node_blinding_point: Some(_), ..
1092 /// Error returned when we fail to decode the onion packet.
1094 pub(crate) enum OnionDecodeErr {
1095 /// The HMAC of the onion packet did not match the hop data.
1096 Malformed { err_msg: &'static str, err_code: u16 },
1097 /// We failed to decode the onion payload.
1098 Relay { err_msg: &'static str, err_code: u16 },
1101 pub(crate) fn decode_next_payment_hop<NS: Deref>(
1102 shared_secret: [u8; 32], hop_data: &[u8], hmac_bytes: [u8; 32], payment_hash: PaymentHash,
1103 blinding_point: Option<PublicKey>, node_signer: &NS,
1104 ) -> Result<Hop, OnionDecodeErr>
1106 NS::Target: NodeSigner,
1108 match decode_next_hop(
1113 (blinding_point, node_signer),
1115 Ok((next_hop_data, None)) => Ok(Hop::Receive(next_hop_data)),
1116 Ok((next_hop_data, Some((next_hop_hmac, FixedSizeOnionPacket(new_packet_bytes))))) => {
1117 Ok(Hop::Forward { next_hop_data, next_hop_hmac, new_packet_bytes })
1123 /// Build a payment onion, returning the first hop msat and cltv values as well.
1124 /// `cur_block_height` should be set to the best known block height + 1.
1125 pub fn create_payment_onion<T: secp256k1::Signing>(
1126 secp_ctx: &Secp256k1<T>, path: &Path, session_priv: &SecretKey, total_msat: u64,
1127 recipient_onion: RecipientOnionFields, cur_block_height: u32, payment_hash: &PaymentHash,
1128 keysend_preimage: &Option<PaymentPreimage>, prng_seed: [u8; 32],
1129 ) -> Result<(msgs::OnionPacket, u64, u32), APIError> {
1130 let onion_keys = construct_onion_keys(&secp_ctx, &path, &session_priv).map_err(|_| {
1131 APIError::InvalidRoute { err: "Pubkey along hop was maliciously selected".to_owned() }
1133 let (onion_payloads, htlc_msat, htlc_cltv) = build_onion_payloads(
1140 let onion_packet = construct_onion_packet(onion_payloads, onion_keys, prng_seed, payment_hash)
1141 .map_err(|_| APIError::InvalidRoute {
1142 err: "Route size too large considering onion data".to_owned(),
1144 Ok((onion_packet, htlc_msat, htlc_cltv))
1147 pub(crate) fn decode_next_untagged_hop<T, R: ReadableArgs<T>, N: NextPacketBytes>(
1148 shared_secret: [u8; 32], hop_data: &[u8], hmac_bytes: [u8; 32], read_args: T,
1149 ) -> Result<(R, Option<([u8; 32], N)>), OnionDecodeErr> {
1150 decode_next_hop(shared_secret, hop_data, hmac_bytes, None, read_args)
1153 fn decode_next_hop<T, R: ReadableArgs<T>, N: NextPacketBytes>(
1154 shared_secret: [u8; 32], hop_data: &[u8], hmac_bytes: [u8; 32],
1155 payment_hash: Option<PaymentHash>, read_args: T,
1156 ) -> Result<(R, Option<([u8; 32], N)>), OnionDecodeErr> {
1157 let (rho, mu) = gen_rho_mu_from_shared_secret(&shared_secret);
1158 let mut hmac = HmacEngine::<Sha256>::new(&mu);
1159 hmac.input(hop_data);
1160 if let Some(tag) = payment_hash {
1161 hmac.input(&tag.0[..]);
1163 if !fixed_time_eq(&Hmac::from_engine(hmac).to_byte_array(), &hmac_bytes) {
1164 return Err(OnionDecodeErr::Malformed {
1165 err_msg: "HMAC Check failed",
1166 err_code: 0x8000 | 0x4000 | 5,
1170 let mut chacha = ChaCha20::new(&rho, &[0u8; 8]);
1171 let mut chacha_stream = ChaChaReader { chacha: &mut chacha, read: Cursor::new(&hop_data[..]) };
1172 match R::read(&mut chacha_stream, read_args) {
1174 let error_code = match err {
1175 // Unknown realm byte
1176 msgs::DecodeError::UnknownVersion => 0x4000 | 1,
1177 // invalid_onion_payload
1178 msgs::DecodeError::UnknownRequiredFeature
1179 | msgs::DecodeError::InvalidValue
1180 | msgs::DecodeError::ShortRead => 0x4000 | 22,
1181 // Should never happen
1184 return Err(OnionDecodeErr::Relay {
1185 err_msg: "Unable to decode our hop data",
1186 err_code: error_code,
1190 let mut hmac = [0; 32];
1191 if let Err(_) = chacha_stream.read_exact(&mut hmac[..]) {
1192 return Err(OnionDecodeErr::Relay {
1193 err_msg: "Unable to decode our hop data",
1194 err_code: 0x4000 | 22,
1197 if hmac == [0; 32] {
1200 if chacha_stream.read.position() < hop_data.len() as u64 - 64 {
1201 // In tests, make sure that the initial onion packet data is, at least, non-0.
1202 // We could do some fancy randomness test here, but, ehh, whatever.
1203 // This checks for the issue where you can calculate the path length given the
1204 // onion data as all the path entries that the originator sent will be here
1205 // as-is (and were originally 0s).
1206 // Of course reverse path calculation is still pretty easy given naive routing
1207 // algorithms, but this fixes the most-obvious case.
1208 let mut next_bytes = [0; 32];
1209 chacha_stream.read_exact(&mut next_bytes).unwrap();
1210 assert_ne!(next_bytes[..], [0; 32][..]);
1211 chacha_stream.read_exact(&mut next_bytes).unwrap();
1212 assert_ne!(next_bytes[..], [0; 32][..]);
1215 return Ok((msg, None)); // We are the final destination for this packet
1217 let mut new_packet_bytes = N::new(hop_data.len());
1218 let read_pos = hop_data.len() - chacha_stream.read.position() as usize;
1219 chacha_stream.read_exact(&mut new_packet_bytes.as_mut()[..read_pos]).unwrap();
1220 #[cfg(debug_assertions)]
1222 // Check two things:
1223 // a) that the behavior of our stream here will return Ok(0) even if the TLV
1224 // read above emptied out our buffer and the unwrap() wont needlessly panic
1225 // b) that we didn't somehow magically end up with extra data.
1227 debug_assert!(chacha_stream.read(&mut t).unwrap() == 0);
1229 // Once we've emptied the set of bytes our peer gave us, encrypt 0 bytes until we
1230 // fill the onion hop data we'll forward to our next-hop peer.
1231 chacha_stream.chacha.process_in_place(&mut new_packet_bytes.as_mut()[read_pos..]);
1232 return Ok((msg, Some((hmac, new_packet_bytes)))); // This packet needs forwarding
1241 use crate::ln::features::{ChannelFeatures, NodeFeatures};
1242 use crate::ln::msgs;
1243 use crate::ln::types::PaymentHash;
1244 use crate::routing::router::{Path, Route, RouteHop};
1245 use crate::util::ser::{VecWriter, Writeable, Writer};
1247 #[allow(unused_imports)]
1248 use crate::prelude::*;
1250 use bitcoin::hashes::hex::FromHex;
1251 use bitcoin::secp256k1::Secp256k1;
1252 use bitcoin::secp256k1::{PublicKey, SecretKey};
1254 use super::OnionKeys;
1256 fn get_test_session_key() -> SecretKey {
1257 let hex = "4141414141414141414141414141414141414141414141414141414141414141";
1258 SecretKey::from_slice(&<Vec<u8>>::from_hex(hex).unwrap()[..]).unwrap()
1261 fn build_test_onion_keys() -> Vec<OnionKeys> {
1262 // Keys from BOLT 4, used in both test vector tests
1263 let secp_ctx = Secp256k1::new();
1266 paths: vec![Path { hops: vec![
1268 pubkey: PublicKey::from_slice(&<Vec<u8>>::from_hex("02eec7245d6b7d2ccb30380bfbe2a3648cd7a942653f5aa340edcea1f283686619").unwrap()[..]).unwrap(),
1269 channel_features: ChannelFeatures::empty(), node_features: NodeFeatures::empty(),
1270 short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0, maybe_announced_channel: true, // We fill in the payloads manually instead of generating them from RouteHops.
1273 pubkey: PublicKey::from_slice(&<Vec<u8>>::from_hex("0324653eac434488002cc06bbfb7f10fe18991e35f9fe4302dbea6d2353dc0ab1c").unwrap()[..]).unwrap(),
1274 channel_features: ChannelFeatures::empty(), node_features: NodeFeatures::empty(),
1275 short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0, maybe_announced_channel: true, // We fill in the payloads manually instead of generating them from RouteHops.
1278 pubkey: PublicKey::from_slice(&<Vec<u8>>::from_hex("027f31ebc5462c1fdce1b737ecff52d37d75dea43ce11c74d25aa297165faa2007").unwrap()[..]).unwrap(),
1279 channel_features: ChannelFeatures::empty(), node_features: NodeFeatures::empty(),
1280 short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0, maybe_announced_channel: true, // We fill in the payloads manually instead of generating them from RouteHops.
1283 pubkey: PublicKey::from_slice(&<Vec<u8>>::from_hex("032c0b7cf95324a07d05398b240174dc0c2be444d96b159aa6c7f7b1e668680991").unwrap()[..]).unwrap(),
1284 channel_features: ChannelFeatures::empty(), node_features: NodeFeatures::empty(),
1285 short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0, maybe_announced_channel: true, // We fill in the payloads manually instead of generating them from RouteHops.
1288 pubkey: PublicKey::from_slice(&<Vec<u8>>::from_hex("02edabbd16b41c8371b92ef2f04c1185b4f03b6dcd52ba9b78d9d7c89c8f221145").unwrap()[..]).unwrap(),
1289 channel_features: ChannelFeatures::empty(), node_features: NodeFeatures::empty(),
1290 short_channel_id: 0, fee_msat: 0, cltv_expiry_delta: 0, maybe_announced_channel: true, // We fill in the payloads manually instead of generating them from RouteHops.
1292 ], blinded_tail: None }],
1297 super::construct_onion_keys(&secp_ctx, &route.paths[0], &get_test_session_key())
1299 assert_eq!(onion_keys.len(), route.paths[0].hops.len());
1304 fn onion_vectors() {
1305 let onion_keys = build_test_onion_keys();
1307 // Test generation of ephemeral keys and secrets. These values used to be part of the BOLT4
1308 // test vectors, but have since been removed. We keep them as they provide test coverage.
1309 let hex = "53eb63ea8a3fec3b3cd433b85cd62a4b145e1dda09391b348c4e1cd36a03ea66";
1311 onion_keys[0].shared_secret.secret_bytes(),
1312 <Vec<u8>>::from_hex(hex).unwrap()[..]
1315 let hex = "2ec2e5da605776054187180343287683aa6a51b4b1c04d6dd49c45d8cffb3c36";
1316 assert_eq!(onion_keys[0].blinding_factor[..], <Vec<u8>>::from_hex(hex).unwrap()[..]);
1318 let hex = "02eec7245d6b7d2ccb30380bfbe2a3648cd7a942653f5aa340edcea1f283686619";
1320 onion_keys[0].ephemeral_pubkey.serialize()[..],
1321 <Vec<u8>>::from_hex(hex).unwrap()[..]
1324 let hex = "ce496ec94def95aadd4bec15cdb41a740c9f2b62347c4917325fcc6fb0453986";
1325 assert_eq!(onion_keys[0].rho, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1327 let hex = "b57061dc6d0a2b9f261ac410c8b26d64ac5506cbba30267a649c28c179400eba";
1328 assert_eq!(onion_keys[0].mu, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1330 let hex = "a6519e98832a0b179f62123b3567c106db99ee37bef036e783263602f3488fae";
1332 onion_keys[1].shared_secret.secret_bytes(),
1333 <Vec<u8>>::from_hex(hex).unwrap()[..]
1336 let hex = "bf66c28bc22e598cfd574a1931a2bafbca09163df2261e6d0056b2610dab938f";
1337 assert_eq!(onion_keys[1].blinding_factor[..], <Vec<u8>>::from_hex(hex).unwrap()[..]);
1339 let hex = "028f9438bfbf7feac2e108d677e3a82da596be706cc1cf342b75c7b7e22bf4e6e2";
1341 onion_keys[1].ephemeral_pubkey.serialize()[..],
1342 <Vec<u8>>::from_hex(hex).unwrap()[..]
1345 let hex = "450ffcabc6449094918ebe13d4f03e433d20a3d28a768203337bc40b6e4b2c59";
1346 assert_eq!(onion_keys[1].rho, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1348 let hex = "05ed2b4a3fb023c2ff5dd6ed4b9b6ea7383f5cfe9d59c11d121ec2c81ca2eea9";
1349 assert_eq!(onion_keys[1].mu, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1351 let hex = "3a6b412548762f0dbccce5c7ae7bb8147d1caf9b5471c34120b30bc9c04891cc";
1353 onion_keys[2].shared_secret.secret_bytes(),
1354 <Vec<u8>>::from_hex(hex).unwrap()[..]
1357 let hex = "a1f2dadd184eb1627049673f18c6325814384facdee5bfd935d9cb031a1698a5";
1358 assert_eq!(onion_keys[2].blinding_factor[..], <Vec<u8>>::from_hex(hex).unwrap()[..]);
1360 let hex = "03bfd8225241ea71cd0843db7709f4c222f62ff2d4516fd38b39914ab6b83e0da0";
1362 onion_keys[2].ephemeral_pubkey.serialize()[..],
1363 <Vec<u8>>::from_hex(hex).unwrap()[..]
1366 let hex = "11bf5c4f960239cb37833936aa3d02cea82c0f39fd35f566109c41f9eac8deea";
1367 assert_eq!(onion_keys[2].rho, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1369 let hex = "caafe2820fa00eb2eeb78695ae452eba38f5a53ed6d53518c5c6edf76f3f5b78";
1370 assert_eq!(onion_keys[2].mu, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1372 let hex = "21e13c2d7cfe7e18836df50872466117a295783ab8aab0e7ecc8c725503ad02d";
1374 onion_keys[3].shared_secret.secret_bytes(),
1375 <Vec<u8>>::from_hex(hex).unwrap()[..]
1378 let hex = "7cfe0b699f35525029ae0fa437c69d0f20f7ed4e3916133f9cacbb13c82ff262";
1379 assert_eq!(onion_keys[3].blinding_factor[..], <Vec<u8>>::from_hex(hex).unwrap()[..]);
1381 let hex = "031dde6926381289671300239ea8e57ffaf9bebd05b9a5b95beaf07af05cd43595";
1383 onion_keys[3].ephemeral_pubkey.serialize()[..],
1384 <Vec<u8>>::from_hex(hex).unwrap()[..]
1387 let hex = "cbe784ab745c13ff5cffc2fbe3e84424aa0fd669b8ead4ee562901a4a4e89e9e";
1388 assert_eq!(onion_keys[3].rho, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1390 let hex = "5052aa1b3d9f0655a0932e50d42f0c9ba0705142c25d225515c45f47c0036ee9";
1391 assert_eq!(onion_keys[3].mu, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1393 let hex = "b5756b9b542727dbafc6765a49488b023a725d631af688fc031217e90770c328";
1395 onion_keys[4].shared_secret.secret_bytes(),
1396 <Vec<u8>>::from_hex(hex).unwrap()[..]
1399 let hex = "c96e00dddaf57e7edcd4fb5954be5b65b09f17cb6d20651b4e90315be5779205";
1400 assert_eq!(onion_keys[4].blinding_factor[..], <Vec<u8>>::from_hex(hex).unwrap()[..]);
1402 let hex = "03a214ebd875aab6ddfd77f22c5e7311d7f77f17a169e599f157bbcdae8bf071f4";
1404 onion_keys[4].ephemeral_pubkey.serialize()[..],
1405 <Vec<u8>>::from_hex(hex).unwrap()[..]
1408 let hex = "034e18b8cc718e8af6339106e706c52d8df89e2b1f7e9142d996acf88df8799b";
1409 assert_eq!(onion_keys[4].rho, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1411 let hex = "8e45e5c61c2b24cb6382444db6698727afb063adecd72aada233d4bf273d975a";
1412 assert_eq!(onion_keys[4].mu, <Vec<u8>>::from_hex(hex).unwrap()[..]);
1414 // Packet creation test vectors from BOLT 4 (see
1415 // https://github.com/lightning/bolts/blob/16973e2b857e853308cafd59e42fa830d75b1642/bolt04/onion-test.json).
1416 // Note that we represent the test vector payloads 2 and 5 through RawOnionHopData::data
1417 // with raw hex instead of our in-memory enums, as the payloads contains custom types, and
1418 // we have no way of representing that with our enums.
1419 let payloads = vec!(
1420 RawOnionHopData::new(msgs::OutboundOnionPayload::Forward {
1421 short_channel_id: 1,
1422 amt_to_forward: 15000,
1423 outgoing_cltv_value: 1500,
1426 The second payload is represented by raw hex as it contains custom type data. Content:
1427 1. length "52" (payload_length 82).
1429 The first part of the payload has the `NonFinalNode` format, with content as follows:
1430 2. amt_to_forward "020236b0"
1431 02 (type amt_to_forward) 02 (length 2) 36b0 (value 14000)
1432 3. outgoing_cltv_value "04020578"
1433 04 (type outgoing_cltv_value) 02 (length 2) 0578 (value 1400)
1434 4. short_channel_id "06080000000000000002"
1435 06 (type short_channel_id) 08 (length 8) 0000000000000002 (value 2)
1437 The rest of the payload is custom type data:
1438 5. custom_record "fd02013c0102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f"
1441 data: <Vec<u8>>::from_hex("52020236b00402057806080000000000000002fd02013c0102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f0102030405060708090a0b0c0d0e0f").unwrap(),
1443 RawOnionHopData::new(msgs::OutboundOnionPayload::Forward {
1444 short_channel_id: 3,
1445 amt_to_forward: 12500,
1446 outgoing_cltv_value: 1250,
1448 RawOnionHopData::new(msgs::OutboundOnionPayload::Forward {
1449 short_channel_id: 4,
1450 amt_to_forward: 10000,
1451 outgoing_cltv_value: 1000,
1454 The fifth payload is represented by raw hex as it contains custom type data. Content:
1455 1. length "fd0110" (payload_length 272).
1457 The first part of the payload has the `FinalNode` format, with content as follows:
1458 1. amt_to_forward "02022710"
1459 02 (type amt_to_forward) 02 (length 2) 2710 (value 10000)
1460 2. outgoing_cltv_value "040203e8"
1461 04 (type outgoing_cltv_value) 02 (length 2) 03e8 (value 1000)
1462 3. payment_data "082224a33562c54507a9334e79f0dc4f17d407e6d7c61f0e2f3d0d38599502f617042710"
1463 08 (type short_channel_id) 22 (length 34) 24a33562c54507a9334e79f0dc4f17d407e6d7c61f0e2f3d0d38599502f61704 (payment_secret) 2710 (total_msat value 10000)
1465 The rest of the payload is custom type data:
1466 4. custom_record "fd012de02a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a"
1469 data: <Vec<u8>>::from_hex("fd011002022710040203e8082224a33562c54507a9334e79f0dc4f17d407e6d7c61f0e2f3d0d38599502f617042710fd012de02a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a").unwrap(),
1473 // Verify that the serialized OnionHopDataFormat::NonFinalNode tlv payloads matches the test vectors
1474 let mut w = VecWriter(Vec::new());
1475 payloads[0].write(&mut w).unwrap();
1476 let hop_1_serialized_payload = w.0;
1477 let hex = "1202023a98040205dc06080000000000000001";
1478 let expected_serialized_hop_1_payload = &<Vec<u8>>::from_hex(hex).unwrap()[..];
1479 assert_eq!(hop_1_serialized_payload, expected_serialized_hop_1_payload);
1481 w = VecWriter(Vec::new());
1482 payloads[2].write(&mut w).unwrap();
1483 let hop_3_serialized_payload = w.0;
1484 let hex = "12020230d4040204e206080000000000000003";
1485 let expected_serialized_hop_3_payload = &<Vec<u8>>::from_hex(hex).unwrap()[..];
1486 assert_eq!(hop_3_serialized_payload, expected_serialized_hop_3_payload);
1488 w = VecWriter(Vec::new());
1489 payloads[3].write(&mut w).unwrap();
1490 let hop_4_serialized_payload = w.0;
1491 let hex = "1202022710040203e806080000000000000004";
1492 let expected_serialized_hop_4_payload = &<Vec<u8>>::from_hex(hex).unwrap()[..];
1493 assert_eq!(hop_4_serialized_payload, expected_serialized_hop_4_payload);
1495 let pad_keytype_seed =
1496 super::gen_pad_from_shared_secret(&get_test_session_key().secret_bytes());
1498 let packet: msgs::OnionPacket = super::construct_onion_packet_with_writable_hopdata::<_>(
1502 &PaymentHash([0x42; 32]),
1506 let hex = "0002EEC7245D6B7D2CCB30380BFBE2A3648CD7A942653F5AA340EDCEA1F283686619F7F3416A5AA36DC7EEB3EC6D421E9615471AB870A33AC07FA5D5A51DF0A8823AABE3FEA3F90D387529D4F72837F9E687230371CCD8D263072206DBED0234F6505E21E282ABD8C0E4F5B9FF8042800BBAB065036EADD0149B37F27DDE664725A49866E052E809D2B0198AB9610FAA656BBF4EC516763A59F8F42C171B179166BA38958D4F51B39B3E98706E2D14A2DAFD6A5DF808093ABFCA5AEAACA16EDED5DB7D21FB0294DD1A163EDF0FB445D5C8D7D688D6DD9C541762BF5A5123BF9939D957FE648416E88F1B0928BFA034982B22548E1A4D922690EECF546275AFB233ACF4323974680779F1A964CFE687456035CC0FBA8A5428430B390F0057B6D1FE9A8875BFA89693EEB838CE59F09D207A503EE6F6299C92D6361BC335FCBF9B5CD44747AADCE2CE6069CFDC3D671DAEF9F8AE590CF93D957C9E873E9A1BC62D9640DC8FC39C14902D49A1C80239B6C5B7FD91D05878CBF5FFC7DB2569F47C43D6C0D27C438ABFF276E87364DEB8858A37E5A62C446AF95D8B786EAF0B5FCF78D98B41496794F8DCAAC4EEF34B2ACFB94C7E8C32A9E9866A8FA0B6F2A06F00A1CCDE569F97EEC05C803BA7500ACC96691D8898D73D8E6A47B8F43C3D5DE74458D20EDA61474C426359677001FBD75A74D7D5DB6CB4FEB83122F133206203E4E2D293F838BF8C8B3A29ACB321315100B87E80E0EDB272EE80FDA944E3FB6084ED4D7F7C7D21C69D9DA43D31A90B70693F9B0CC3EAC74C11AB8FF655905688916CFA4EF0BD04135F2E50B7C689A21D04E8E981E74C6058188B9B1F9DFC3EEC6838E9FFBCF22CE738D8A177C19318DFFEF090CEE67E12DE1A3E2A39F61247547BA5257489CBC11D7D91ED34617FCC42F7A9DA2E3CF31A94A210A1018143173913C38F60E62B24BF0D7518F38B5BAB3E6A1F8AEB35E31D6442C8ABB5178EFC892D2E787D79C6AD9E2FC271792983FA9955AC4D1D84A36C024071BC6E431B625519D556AF38185601F70E29035EA6A09C8B676C9D88CF7E05E0F17098B584C4168735940263F940033A220F40BE4C85344128B14BEB9E75696DB37014107801A59B13E89CD9D2258C169D523BE6D31552C44C82FF4BB18EC9F099F3BF0E5B1BB2BA9A87D7E26F98D294927B600B5529C47E04D98956677CBCEE8FA2B60F49776D8B8C367465B7C626DA53700684FB6C918EAD0EAB8360E4F60EDD25B4F43816A75ECF70F909301825B512469F8389D79402311D8AECB7B3EF8599E79485A4388D87744D899F7C47EE644361E17040A7958C8911BE6F463AB6A9B2AFACD688EC55EF517B38F1339EFC54487232798BB25522FF4572FF68567FE830F92F7B8113EFCE3E98C3FFFBAEDCE4FD8B50E41DA97C0C08E423A72689CC68E68F752A5E3A9003E64E35C957CA2E1C48BB6F64B05F56B70B575AD2F278D57850A7AD568C24A4D32A3D74B29F03DC125488BC7C637DA582357F40B0A52D16B3B40BB2C2315D03360BC24209E20972C200566BCF3BBE5C5B0AEDD83132A8A4D5B4242BA370B6D67D9B67EB01052D132C7866B9CB502E44796D9D356E4E3CB47CC527322CD24976FE7C9257A2864151A38E568EF7A79F10D6EF27CC04CE382347A2488B1F404FDBF407FE1CA1C9D0D5649E34800E25E18951C98CAE9F43555EEF65FEE1EA8F15828807366C3B612CD5753BF9FB8FCED08855F742CDDD6F765F74254F03186683D646E6F09AC2805586C7CF11998357CAFC5DF3F285329366F475130C928B2DCEBA4AA383758E7A9D20705C4BB9DB619E2992F608A1BA65DB254BB389468741D0502E2588AEB54390AC600C19AF5C8E61383FC1BEBE0029E4474051E4EF908828DB9CCA13277EF65DB3FD47CCC2179126AAEFB627719F421E20";
1507 assert_eq!(packet.encode(), <Vec<u8>>::from_hex(hex).unwrap());
1511 fn test_failure_packet_onion() {
1512 // Returning Errors test vectors from BOLT 4
1514 let onion_keys = build_test_onion_keys();
1516 super::build_failure_packet(onion_keys[4].shared_secret.as_ref(), 0x2002, &[0; 0]);
1517 let hex = "4c2fc8bc08510334b6833ad9c3e79cd1b52ae59dfe5c2a4b23ead50f09f7ee0b0002200200fe0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000";
1518 assert_eq!(onion_error.encode(), <Vec<u8>>::from_hex(hex).unwrap());
1520 let onion_packet_1 = super::encrypt_failure_packet(
1521 onion_keys[4].shared_secret.as_ref(),
1522 &onion_error.encode()[..],
1524 let hex = "a5e6bd0c74cb347f10cce367f949098f2457d14c046fd8a22cb96efb30b0fdcda8cb9168b50f2fd45edd73c1b0c8b33002df376801ff58aaa94000bf8a86f92620f343baef38a580102395ae3abf9128d1047a0736ff9b83d456740ebbb4aeb3aa9737f18fb4afb4aa074fb26c4d702f42968888550a3bded8c05247e045b866baef0499f079fdaeef6538f31d44deafffdfd3afa2fb4ca9082b8f1c465371a9894dd8c243fb4847e004f5256b3e90e2edde4c9fb3082ddfe4d1e734cacd96ef0706bf63c9984e22dc98851bcccd1c3494351feb458c9c6af41c0044bea3c47552b1d992ae542b17a2d0bba1a096c78d169034ecb55b6e3a7263c26017f033031228833c1daefc0dedb8cf7c3e37c9c37ebfe42f3225c326e8bcfd338804c145b16e34e4";
1525 assert_eq!(onion_packet_1.data, <Vec<u8>>::from_hex(hex).unwrap());
1527 let onion_packet_2 = super::encrypt_failure_packet(
1528 onion_keys[3].shared_secret.as_ref(),
1529 &onion_packet_1.data[..],
1531 let hex = "c49a1ce81680f78f5f2000cda36268de34a3f0a0662f55b4e837c83a8773c22aa081bab1616a0011585323930fa5b9fae0c85770a2279ff59ec427ad1bbff9001c0cd1497004bd2a0f68b50704cf6d6a4bf3c8b6a0833399a24b3456961ba00736785112594f65b6b2d44d9f5ea4e49b5e1ec2af978cbe31c67114440ac51a62081df0ed46d4a3df295da0b0fe25c0115019f03f15ec86fabb4c852f83449e812f141a9395b3f70b766ebbd4ec2fae2b6955bd8f32684c15abfe8fd3a6261e52650e8807a92158d9f1463261a925e4bfba44bd20b166d532f0017185c3a6ac7957adefe45559e3072c8dc35abeba835a8cb01a71a15c736911126f27d46a36168ca5ef7dccd4e2886212602b181463e0dd30185c96348f9743a02aca8ec27c0b90dca270";
1532 assert_eq!(onion_packet_2.data, <Vec<u8>>::from_hex(hex).unwrap());
1534 let onion_packet_3 = super::encrypt_failure_packet(
1535 onion_keys[2].shared_secret.as_ref(),
1536 &onion_packet_2.data[..],
1538 let hex = "a5d3e8634cfe78b2307d87c6d90be6fe7855b4f2cc9b1dfb19e92e4b79103f61ff9ac25f412ddfb7466e74f81b3e545563cdd8f5524dae873de61d7bdfccd496af2584930d2b566b4f8d3881f8c043df92224f38cf094cfc09d92655989531524593ec6d6caec1863bdfaa79229b5020acc034cd6deeea1021c50586947b9b8e6faa83b81fbfa6133c0af5d6b07c017f7158fa94f0d206baf12dda6b68f785b773b360fd0497e16cc402d779c8d48d0fa6315536ef0660f3f4e1865f5b38ea49c7da4fd959de4e83ff3ab686f059a45c65ba2af4a6a79166aa0f496bf04d06987b6d2ea205bdb0d347718b9aeff5b61dfff344993a275b79717cd815b6ad4c0beb568c4ac9c36ff1c315ec1119a1993c4b61e6eaa0375e0aaf738ac691abd3263bf937e3";
1539 assert_eq!(onion_packet_3.data, <Vec<u8>>::from_hex(hex).unwrap());
1541 let onion_packet_4 = super::encrypt_failure_packet(
1542 onion_keys[1].shared_secret.as_ref(),
1543 &onion_packet_3.data[..],
1545 let hex = "aac3200c4968f56b21f53e5e374e3a2383ad2b1b6501bbcc45abc31e59b26881b7dfadbb56ec8dae8857add94e6702fb4c3a4de22e2e669e1ed926b04447fc73034bb730f4932acd62727b75348a648a1128744657ca6a4e713b9b646c3ca66cac02cdab44dd3439890ef3aaf61708714f7375349b8da541b2548d452d84de7084bb95b3ac2345201d624d31f4d52078aa0fa05a88b4e20202bd2b86ac5b52919ea305a8949de95e935eed0319cf3cf19ebea61d76ba92532497fcdc9411d06bcd4275094d0a4a3c5d3a945e43305a5a9256e333e1f64dbca5fcd4e03a39b9012d197506e06f29339dfee3331995b21615337ae060233d39befea925cc262873e0530408e6990f1cbd233a150ef7b004ff6166c70c68d9f8c853c1abca640b8660db2921";
1546 assert_eq!(onion_packet_4.data, <Vec<u8>>::from_hex(hex).unwrap());
1548 let onion_packet_5 = super::encrypt_failure_packet(
1549 onion_keys[0].shared_secret.as_ref(),
1550 &onion_packet_4.data[..],
1552 let hex = "9c5add3963fc7f6ed7f148623c84134b5647e1306419dbe2174e523fa9e2fbed3a06a19f899145610741c83ad40b7712aefaddec8c6baf7325d92ea4ca4d1df8bce517f7e54554608bf2bd8071a4f52a7a2f7ffbb1413edad81eeea5785aa9d990f2865dc23b4bc3c301a94eec4eabebca66be5cf638f693ec256aec514620cc28ee4a94bd9565bc4d4962b9d3641d4278fb319ed2b84de5b665f307a2db0f7fbb757366067d88c50f7e829138fde4f78d39b5b5802f1b92a8a820865af5cc79f9f30bc3f461c66af95d13e5e1f0381c184572a91dee1c849048a647a1158cf884064deddbf1b0b88dfe2f791428d0ba0f6fb2f04e14081f69165ae66d9297c118f0907705c9c4954a199bae0bb96fad763d690e7daa6cfda59ba7f2c8d11448b604d12d";
1553 assert_eq!(onion_packet_5.data, <Vec<u8>>::from_hex(hex).unwrap());
1556 struct RawOnionHopData {
1559 impl RawOnionHopData {
1560 fn new(orig: msgs::OutboundOnionPayload) -> Self {
1561 Self { data: orig.encode() }
1564 impl Writeable for RawOnionHopData {
1565 fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
1566 writer.write_all(&self.data[..])