Rework `chain::Watch` return types to make async updates less scary
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use chain::{ChannelMonitorUpdateStatus, Confirm, Listen, Watch};
15 use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
16 use chain::transaction::OutPoint;
17 use chain::keysinterface::KeysInterface;
18 use ln::channel::EXPIRE_PREV_CONFIG_TICKS;
19 use ln::channelmanager::{self, BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, MPP_TIMEOUT_TICKS, MIN_CLTV_EXPIRY_DELTA, PaymentId, PaymentSendFailure};
20 use ln::msgs;
21 use ln::msgs::ChannelMessageHandler;
22 use routing::router::{PaymentParameters, get_route};
23 use util::events::{ClosureReason, Event, HTLCDestination, MessageSendEvent, MessageSendEventsProvider};
24 use util::test_utils;
25 use util::errors::APIError;
26 use util::enforcing_trait_impls::EnforcingSigner;
27 use util::ser::{ReadableArgs, Writeable};
28 use io;
29
30 use bitcoin::{Block, BlockHeader, BlockHash, TxMerkleNode};
31 use bitcoin::hashes::Hash;
32 use bitcoin::network::constants::Network;
33
34 use prelude::*;
35
36 use ln::functional_test_utils::*;
37
38 #[test]
39 fn retry_single_path_payment() {
40         let chanmon_cfgs = create_chanmon_cfgs(3);
41         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
42         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
43         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
44
45         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
46         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
47         // Rebalance to find a route
48         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
49
50         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
51
52         // Rebalance so that the first hop fails.
53         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
54
55         // Make sure the payment fails on the first hop.
56         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
57         check_added_monitors!(nodes[0], 1);
58         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
59         assert_eq!(events.len(), 1);
60         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
61         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
62         check_added_monitors!(nodes[1], 0);
63         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
64         expect_pending_htlcs_forwardable!(nodes[1]);
65         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
66         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
67         assert!(htlc_updates.update_add_htlcs.is_empty());
68         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
69         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
70         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
71         check_added_monitors!(nodes[1], 1);
72         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
73         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
74         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
75
76         // Rebalance the channel so the retry succeeds.
77         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
78
79         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
80         connect_blocks(&nodes[0], 2);
81
82         // Retry the payment and make sure it succeeds.
83         nodes[0].node.retry_payment(&route, payment_id).unwrap();
84         check_added_monitors!(nodes[0], 1);
85         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
86         assert_eq!(events.len(), 1);
87         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
88         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
89 }
90
91 #[test]
92 fn mpp_failure() {
93         let chanmon_cfgs = create_chanmon_cfgs(4);
94         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
95         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
96         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
97
98         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
99         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
100         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
101         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features()).0.contents.short_channel_id;
102
103         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
104         let path = route.paths[0].clone();
105         route.paths.push(path);
106         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
107         route.paths[0][0].short_channel_id = chan_1_id;
108         route.paths[0][1].short_channel_id = chan_3_id;
109         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
110         route.paths[1][0].short_channel_id = chan_2_id;
111         route.paths[1][1].short_channel_id = chan_4_id;
112         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
113         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
114 }
115
116 #[test]
117 fn mpp_retry() {
118         let chanmon_cfgs = create_chanmon_cfgs(4);
119         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
120         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
121         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
122
123         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
124         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
125         let (chan_3_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
126         let (chan_4_update, _, chan_4_id, _) = create_announced_chan_between_nodes(&nodes, 3, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
127         // Rebalance
128         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
129
130         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
131         let path = route.paths[0].clone();
132         route.paths.push(path);
133         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
134         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
135         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
136         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
137         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
138         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
139
140         // Initiate the MPP payment.
141         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
142         check_added_monitors!(nodes[0], 2); // one monitor per path
143         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
144         assert_eq!(events.len(), 2);
145
146         // Pass half of the payment along the success path.
147         let success_path_msgs = events.remove(0);
148         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
149
150         // Add the HTLC along the first hop.
151         let fail_path_msgs_1 = events.remove(0);
152         let (update_add, commitment_signed) = match fail_path_msgs_1 {
153                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
154                         assert_eq!(update_add_htlcs.len(), 1);
155                         assert!(update_fail_htlcs.is_empty());
156                         assert!(update_fulfill_htlcs.is_empty());
157                         assert!(update_fail_malformed_htlcs.is_empty());
158                         assert!(update_fee.is_none());
159                         (update_add_htlcs[0].clone(), commitment_signed.clone())
160                 },
161                 _ => panic!("Unexpected event"),
162         };
163         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
164         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
165
166         // Attempt to forward the payment and complete the 2nd path's failure.
167         expect_pending_htlcs_forwardable!(&nodes[2]);
168         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[2], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_4_id }]);
169         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
170         assert!(htlc_updates.update_add_htlcs.is_empty());
171         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
172         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
173         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
174         check_added_monitors!(nodes[2], 1);
175         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
176         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
177         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
178
179         // Rebalance the channel so the second half of the payment can succeed.
180         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
181
182         // Make sure it errors as expected given a too-large amount.
183         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
184                 assert!(err.contains("over total_payment_amt_msat"));
185         } else { panic!("Unexpected error"); }
186
187         // Make sure it errors as expected given the wrong payment_id.
188         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
189                 assert!(err.contains("not found"));
190         } else { panic!("Unexpected error"); }
191
192         // Retry the second half of the payment and make sure it succeeds.
193         let mut path = route.clone();
194         path.paths.remove(0);
195         nodes[0].node.retry_payment(&path, payment_id).unwrap();
196         check_added_monitors!(nodes[0], 1);
197         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
198         assert_eq!(events.len(), 1);
199         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
200         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
201 }
202
203 fn do_mpp_receive_timeout(send_partial_mpp: bool) {
204         let chanmon_cfgs = create_chanmon_cfgs(4);
205         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
206         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
207         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
208
209         let (chan_1_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
210         let (chan_2_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 0, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
211         let (chan_3_update, _, chan_3_id, _) = create_announced_chan_between_nodes(&nodes, 1, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
212         let (chan_4_update, _, _, _) = create_announced_chan_between_nodes(&nodes, 2, 3, channelmanager::provided_init_features(), channelmanager::provided_init_features());
213
214         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 100_000);
215         let path = route.paths[0].clone();
216         route.paths.push(path);
217         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
218         route.paths[0][0].short_channel_id = chan_1_update.contents.short_channel_id;
219         route.paths[0][1].short_channel_id = chan_3_update.contents.short_channel_id;
220         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
221         route.paths[1][0].short_channel_id = chan_2_update.contents.short_channel_id;
222         route.paths[1][1].short_channel_id = chan_4_update.contents.short_channel_id;
223
224         // Initiate the MPP payment.
225         let _ = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
226         check_added_monitors!(nodes[0], 2); // one monitor per path
227         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
228         assert_eq!(events.len(), 2);
229
230         // Pass half of the payment along the first path.
231         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), false, None);
232
233         if send_partial_mpp {
234                 // Time out the partial MPP
235                 for _ in 0..MPP_TIMEOUT_TICKS {
236                         nodes[3].node.timer_tick_occurred();
237                 }
238
239                 // Failed HTLC from node 3 -> 1
240                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[3], vec![HTLCDestination::FailedPayment { payment_hash }]);
241                 let htlc_fail_updates_3_1 = get_htlc_update_msgs!(nodes[3], nodes[1].node.get_our_node_id());
242                 assert_eq!(htlc_fail_updates_3_1.update_fail_htlcs.len(), 1);
243                 nodes[1].node.handle_update_fail_htlc(&nodes[3].node.get_our_node_id(), &htlc_fail_updates_3_1.update_fail_htlcs[0]);
244                 check_added_monitors!(nodes[3], 1);
245                 commitment_signed_dance!(nodes[1], nodes[3], htlc_fail_updates_3_1.commitment_signed, false);
246
247                 // Failed HTLC from node 1 -> 0
248                 expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[3].node.get_our_node_id()), channel_id: chan_3_id }]);
249                 let htlc_fail_updates_1_0 = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
250                 assert_eq!(htlc_fail_updates_1_0.update_fail_htlcs.len(), 1);
251                 nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates_1_0.update_fail_htlcs[0]);
252                 check_added_monitors!(nodes[1], 1);
253                 commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates_1_0.commitment_signed, false);
254
255                 expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain().expected_htlc_error_data(23, &[][..]));
256         } else {
257                 // Pass half of the payment along the second path.
258                 pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 200_000, payment_hash, Some(payment_secret), events.remove(0), true, None);
259
260                 // Even after MPP_TIMEOUT_TICKS we should not timeout the MPP if we have all the parts
261                 for _ in 0..MPP_TIMEOUT_TICKS {
262                         nodes[3].node.timer_tick_occurred();
263                 }
264
265                 claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
266         }
267 }
268
269 #[test]
270 fn mpp_receive_timeout() {
271         do_mpp_receive_timeout(true);
272         do_mpp_receive_timeout(false);
273 }
274
275 #[test]
276 fn retry_expired_payment() {
277         let chanmon_cfgs = create_chanmon_cfgs(3);
278         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
279         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
280         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
281
282         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
283         let chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
284         // Rebalance to find a route
285         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
286
287         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
288
289         // Rebalance so that the first hop fails.
290         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
291
292         // Make sure the payment fails on the first hop.
293         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
294         check_added_monitors!(nodes[0], 1);
295         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
296         assert_eq!(events.len(), 1);
297         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
298         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
299         check_added_monitors!(nodes[1], 0);
300         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
301         expect_pending_htlcs_forwardable!(nodes[1]);
302         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(&nodes[1], vec![HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_1.2 }]);
303         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
304         assert!(htlc_updates.update_add_htlcs.is_empty());
305         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
306         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
307         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
308         check_added_monitors!(nodes[1], 1);
309         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
310         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
311         expect_payment_failed!(nodes[0], payment_hash, false);
312
313         // Mine blocks so the payment will have expired.
314         connect_blocks(&nodes[0], 3);
315
316         // Retry the payment and make sure it errors as expected.
317         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
318                 assert!(err.contains("not found"));
319         } else {
320                 panic!("Unexpected error");
321         }
322 }
323
324 #[test]
325 fn no_pending_leak_on_initial_send_failure() {
326         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
327         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
328         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
329         // pending payment forever and never time it out.
330         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
331         // try, and then check that no pending payment is being tracked.
332         let chanmon_cfgs = create_chanmon_cfgs(2);
333         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
334         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
335         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
336
337         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
338
339         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
340
341         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
342         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
343
344         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)),
345                 true, APIError::ChannelUnavailable { ref err },
346                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
347
348         assert!(!nodes[0].node.has_pending_payments());
349 }
350
351 fn do_retry_with_no_persist(confirm_before_reload: bool) {
352         // If we send a pending payment and `send_payment` returns success, we should always either
353         // return a payment failure event or a payment success event, and on failure the payment should
354         // be retryable.
355         //
356         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
357         // always persisted asynchronously), the ChannelManager has to reload some payment data from
358         // ChannelMonitor(s) in some cases. This tests that reloading.
359         //
360         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
361         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
362         // which has separate codepaths for "commitment transaction already confirmed" and not.
363         let chanmon_cfgs = create_chanmon_cfgs(3);
364         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
365         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
366         let persister: test_utils::TestPersister;
367         let new_chain_monitor: test_utils::TestChainMonitor;
368         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
369         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
370
371         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
372         let (_, _, chan_id_2, _) = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
373
374         // Serialize the ChannelManager prior to sending payments
375         let nodes_0_serialized = nodes[0].node.encode();
376
377         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
378         // out and retry.
379         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
380         let (payment_preimage_1, payment_hash_1, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
381         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
382         check_added_monitors!(nodes[0], 1);
383
384         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
385         assert_eq!(events.len(), 1);
386         let payment_event = SendEvent::from_event(events.pop().unwrap());
387         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
388
389         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
390         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
391         // which would prevent retry.
392         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
393         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
394
395         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
396         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
397         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
398         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
399
400         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
401
402         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
403         if confirm_before_reload {
404                 mine_transaction(&nodes[0], &as_commitment_tx);
405                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
406         }
407
408         // The ChannelMonitor should always be the latest version, as we're required to persist it
409         // during the `commitment_signed_dance!()`.
410         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
411         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
412
413         persister = test_utils::TestPersister::new();
414         let keys_manager = &chanmon_cfgs[0].keys_manager;
415         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
416         nodes[0].chain_monitor = &new_chain_monitor;
417         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
418         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
419                 &mut chan_0_monitor_read, keys_manager).unwrap();
420         assert!(chan_0_monitor_read.is_empty());
421
422         let mut nodes_0_read = &nodes_0_serialized[..];
423         let (_, nodes_0_deserialized_tmp) = {
424                 let mut channel_monitors = HashMap::new();
425                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
426                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
427                         default_config: test_default_channel_config(),
428                         keys_manager,
429                         fee_estimator: node_cfgs[0].fee_estimator,
430                         chain_monitor: nodes[0].chain_monitor,
431                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
432                         logger: nodes[0].logger,
433                         channel_monitors,
434                 }).unwrap()
435         };
436         nodes_0_deserialized = nodes_0_deserialized_tmp;
437         assert!(nodes_0_read.is_empty());
438
439         assert_eq!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
440                 ChannelMonitorUpdateStatus::Completed);
441         nodes[0].node = &nodes_0_deserialized;
442         check_added_monitors!(nodes[0], 1);
443
444         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
445         // force-close the channel.
446         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
447         assert!(nodes[0].node.list_channels().is_empty());
448         assert!(nodes[0].node.has_pending_payments());
449         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
450         assert_eq!(as_broadcasted_txn.len(), 1);
451         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
452
453         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
454         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
455         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
456
457         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
458         // error, as the channel has hit the chain.
459         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
460         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
461         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
462         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
463         assert_eq!(as_err.len(), 1);
464         match as_err[0] {
465                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
466                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
467                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
468                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
469                         check_added_monitors!(nodes[1], 1);
470                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
471                 },
472                 _ => panic!("Unexpected event"),
473         }
474         check_closed_broadcast!(nodes[1], false);
475
476         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
477         // we close in a moment.
478         nodes[2].node.claim_funds(payment_preimage_1);
479         check_added_monitors!(nodes[2], 1);
480         expect_payment_claimed!(nodes[2], payment_hash_1, 1_000_000);
481
482         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
483         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
484         check_added_monitors!(nodes[1], 1);
485         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
486
487         if confirm_before_reload {
488                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
489                 nodes[0].node.best_block_updated(&best_block.0.header, best_block.1);
490         }
491
492         // Create a new channel on which to retry the payment before we fail the payment via the
493         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
494         // connecting several blocks while creating the channel (implying time has passed).
495         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
496         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
497
498         mine_transaction(&nodes[1], &as_commitment_tx);
499         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
500         assert_eq!(bs_htlc_claim_txn.len(), 1);
501         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
502         expect_payment_forwarded!(nodes[1], nodes[0], nodes[2], None, false, false);
503
504         if !confirm_before_reload {
505                 mine_transaction(&nodes[0], &as_commitment_tx);
506         }
507         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
508         expect_payment_sent!(nodes[0], payment_preimage_1);
509         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
510         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
511         assert_eq!(as_htlc_timeout_txn.len(), 2);
512         let (first_htlc_timeout_tx, second_htlc_timeout_tx) = (&as_htlc_timeout_txn[0], &as_htlc_timeout_txn[1]);
513         check_spends!(first_htlc_timeout_tx, as_commitment_tx);
514         check_spends!(second_htlc_timeout_tx, as_commitment_tx);
515         if first_htlc_timeout_tx.input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
516                 confirm_transaction(&nodes[0], &second_htlc_timeout_tx);
517         } else {
518                 confirm_transaction(&nodes[0], &first_htlc_timeout_tx);
519         }
520         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
521         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
522
523         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
524         // reloaded) via a route over the new channel, which work without issue and eventually be
525         // received and claimed at the recipient just like any other payment.
526         let (mut new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
527
528         // Update the fee on the middle hop to ensure PaymentSent events have the correct (retried) fee
529         // and not the original fee. We also update node[1]'s relevant config as
530         // do_claim_payment_along_route expects us to never overpay.
531         {
532                 let mut channel_state = nodes[1].node.channel_state.lock().unwrap();
533                 let mut channel = channel_state.by_id.get_mut(&chan_id_2).unwrap();
534                 let mut new_config = channel.config();
535                 new_config.forwarding_fee_base_msat += 100_000;
536                 channel.update_config(&new_config);
537                 new_route.paths[0][0].fee_msat += 100_000;
538         }
539
540         // Force expiration of the channel's previous config.
541         for _ in 0..EXPIRE_PREV_CONFIG_TICKS {
542                 nodes[1].node.timer_tick_occurred();
543         }
544
545         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
546         nodes[0].node.retry_payment(&new_route, payment_id).unwrap();
547         check_added_monitors!(nodes[0], 1);
548         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
549         assert_eq!(events.len(), 1);
550         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
551         do_claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
552         expect_payment_sent!(nodes[0], payment_preimage, Some(new_route.paths[0][0].fee_msat));
553 }
554
555 #[test]
556 fn retry_with_no_persist() {
557         do_retry_with_no_persist(true);
558         do_retry_with_no_persist(false);
559 }
560
561 fn do_test_completed_payment_not_retryable_on_reload(use_dust: bool) {
562         // Test that an off-chain completed payment is not retryable on restart. This was previously
563         // broken for dust payments, but we test for both dust and non-dust payments.
564         //
565         // `use_dust` switches to using a dust HTLC, which results in the HTLC not having an on-chain
566         // output at all.
567         let chanmon_cfgs = create_chanmon_cfgs(3);
568         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
569
570         let mut manually_accept_config = test_default_channel_config();
571         manually_accept_config.manually_accept_inbound_channels = true;
572
573         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, Some(manually_accept_config), None]);
574
575         let first_persister: test_utils::TestPersister;
576         let first_new_chain_monitor: test_utils::TestChainMonitor;
577         let first_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
578         let second_persister: test_utils::TestPersister;
579         let second_new_chain_monitor: test_utils::TestChainMonitor;
580         let second_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
581         let third_persister: test_utils::TestPersister;
582         let third_new_chain_monitor: test_utils::TestChainMonitor;
583         let third_nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
584
585         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
586
587         // Because we set nodes[1] to manually accept channels, just open a 0-conf channel.
588         let (funding_tx, chan_id) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
589         confirm_transaction(&nodes[0], &funding_tx);
590         confirm_transaction(&nodes[1], &funding_tx);
591         // Ignore the announcement_signatures messages
592         nodes[0].node.get_and_clear_pending_msg_events();
593         nodes[1].node.get_and_clear_pending_msg_events();
594         let chan_id_2 = create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
595
596         // Serialize the ChannelManager prior to sending payments
597         let mut nodes_0_serialized = nodes[0].node.encode();
598
599         let route = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 }).0;
600         let (payment_preimage, payment_hash, payment_secret, payment_id) = send_along_route(&nodes[0], route, &[&nodes[1], &nodes[2]], if use_dust { 1_000 } else { 1_000_000 });
601
602         // The ChannelMonitor should always be the latest version, as we're required to persist it
603         // during the `commitment_signed_dance!()`.
604         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
605         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
606
607         let mut chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
608
609         macro_rules! reload_node {
610                 ($chain_monitor: ident, $chan_manager: ident, $persister: ident) => { {
611                         $persister = test_utils::TestPersister::new();
612                         let keys_manager = &chanmon_cfgs[0].keys_manager;
613                         $chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &$persister, keys_manager);
614                         nodes[0].chain_monitor = &$chain_monitor;
615                         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
616                         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
617                                 &mut chan_0_monitor_read, keys_manager).unwrap();
618                         assert!(chan_0_monitor_read.is_empty());
619
620                         let mut chan_1_monitor = None;
621                         let mut channel_monitors = HashMap::new();
622                         channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
623
624                         if !chan_1_monitor_serialized.0.is_empty() {
625                                 let mut chan_1_monitor_read = &chan_1_monitor_serialized.0[..];
626                                 chan_1_monitor = Some(<(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
627                                         &mut chan_1_monitor_read, keys_manager).unwrap().1);
628                                 assert!(chan_1_monitor_read.is_empty());
629                                 channel_monitors.insert(chan_1_monitor.as_ref().unwrap().get_funding_txo().0, chan_1_monitor.as_mut().unwrap());
630                         }
631
632                         let mut nodes_0_read = &nodes_0_serialized[..];
633                         let (_, nodes_0_deserialized_tmp) = {
634                                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
635                                         default_config: test_default_channel_config(),
636                                         keys_manager,
637                                         fee_estimator: node_cfgs[0].fee_estimator,
638                                         chain_monitor: nodes[0].chain_monitor,
639                                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
640                                         logger: nodes[0].logger,
641                                         channel_monitors,
642                                 }).unwrap()
643                         };
644                         $chan_manager = nodes_0_deserialized_tmp;
645                         assert!(nodes_0_read.is_empty());
646
647                         assert_eq!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
648                                 ChannelMonitorUpdateStatus::Completed);
649                         if !chan_1_monitor_serialized.0.is_empty() {
650                                 let funding_txo = chan_1_monitor.as_ref().unwrap().get_funding_txo().0;
651                                 assert_eq!(nodes[0].chain_monitor.watch_channel(funding_txo, chan_1_monitor.unwrap()),
652                                         ChannelMonitorUpdateStatus::Completed);
653                         }
654                         nodes[0].node = &$chan_manager;
655                         check_added_monitors!(nodes[0], if !chan_1_monitor_serialized.0.is_empty() { 2 } else { 1 });
656
657                         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
658                 } }
659         }
660
661         reload_node!(first_new_chain_monitor, first_nodes_0_deserialized, first_persister);
662
663         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
664         // force-close the channel.
665         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
666         assert!(nodes[0].node.list_channels().is_empty());
667         assert!(nodes[0].node.has_pending_payments());
668         assert_eq!(nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
669
670         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
671         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
672
673         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
674         // error, as the channel has hit the chain.
675         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: channelmanager::provided_init_features(), remote_network_address: None }).unwrap();
676         let bs_reestablish = get_chan_reestablish_msgs!(nodes[1], nodes[0]).pop().unwrap();
677         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
678         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
679         assert_eq!(as_err.len(), 1);
680         let bs_commitment_tx;
681         match as_err[0] {
682                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
683                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
684                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
685                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
686                         check_added_monitors!(nodes[1], 1);
687                         bs_commitment_tx = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
688                 },
689                 _ => panic!("Unexpected event"),
690         }
691         check_closed_broadcast!(nodes[1], false);
692
693         // Now fail back the payment from nodes[2] to nodes[1]. This doesn't really matter as the
694         // previous hop channel is already on-chain, but it makes nodes[2] willing to see additional
695         // incoming HTLCs with the same payment hash later.
696         nodes[2].node.fail_htlc_backwards(&payment_hash);
697         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[2], [HTLCDestination::FailedPayment { payment_hash }]);
698         check_added_monitors!(nodes[2], 1);
699
700         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
701         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fail_htlcs[0]);
702         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
703         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1],
704                 [HTLCDestination::NextHopChannel { node_id: Some(nodes[2].node.get_our_node_id()), channel_id: chan_id_2 }]);
705
706         // Connect the HTLC-Timeout transaction, timing out the HTLC on both nodes (but not confirming
707         // the HTLC-Timeout transaction beyond 1 conf). For dust HTLCs, the HTLC is considered resolved
708         // after the commitment transaction, so always connect the commitment transaction.
709         mine_transaction(&nodes[0], &bs_commitment_tx[0]);
710         mine_transaction(&nodes[1], &bs_commitment_tx[0]);
711         if !use_dust {
712                 connect_blocks(&nodes[0], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
713                 connect_blocks(&nodes[1], TEST_FINAL_CLTV - 1 + (MIN_CLTV_EXPIRY_DELTA as u32));
714                 let as_htlc_timeout = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
715                 check_spends!(as_htlc_timeout[0], bs_commitment_tx[0]);
716                 assert_eq!(as_htlc_timeout.len(), 1);
717
718                 mine_transaction(&nodes[0], &as_htlc_timeout[0]);
719                 // nodes[0] may rebroadcast (or RBF-bump) its HTLC-Timeout, so wipe the announced set.
720                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
721                 mine_transaction(&nodes[1], &as_htlc_timeout[0]);
722         }
723
724         // Create a new channel on which to retry the payment before we fail the payment via the
725         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
726         // connecting several blocks while creating the channel (implying time has passed).
727         // We do this with a zero-conf channel to avoid connecting blocks as a side-effect.
728         let (_, chan_id_3) = open_zero_conf_channel(&nodes[0], &nodes[1], None);
729         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
730
731         // If we attempt to retry prior to the HTLC-Timeout (or commitment transaction, for dust HTLCs)
732         // confirming, we will fail as it's considered still-pending...
733         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], if use_dust { 1_000 } else { 1_000_000 });
734         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
735         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
736
737         // After ANTI_REORG_DELAY confirmations, the HTLC should be failed and we can try the payment
738         // again. We serialize the node first as we'll then test retrying the HTLC after a restart
739         // (which should also still work).
740         connect_blocks(&nodes[0], ANTI_REORG_DELAY - 1);
741         connect_blocks(&nodes[1], ANTI_REORG_DELAY - 1);
742         // We set mpp_parts_remain to avoid having abandon_payment called
743         expect_payment_failed_conditions(&nodes[0], payment_hash, false, PaymentFailedConditions::new().mpp_parts_remain());
744
745         chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
746         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
747         chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
748         get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
749         nodes_0_serialized = nodes[0].node.encode();
750
751         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
752         assert!(!nodes[0].node.get_and_clear_pending_msg_events().is_empty());
753
754         reload_node!(second_new_chain_monitor, second_nodes_0_deserialized, second_persister);
755         reconnect_nodes(&nodes[0], &nodes[1], (true, true), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
756
757         // Now resend the payment, delivering the HTLC and actually claiming it this time. This ensures
758         // the payment is not (spuriously) listed as still pending.
759         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_ok());
760         check_added_monitors!(nodes[0], 1);
761         pass_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], if use_dust { 1_000 } else { 1_000_000 }, payment_hash, payment_secret);
762         claim_payment(&nodes[0], &[&nodes[1], &nodes[2]], payment_preimage);
763
764         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
765         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
766
767         chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
768         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
769         chan_1_monitor_serialized = test_utils::TestVecWriter(Vec::new());
770         get_monitor!(nodes[0], chan_id_3).write(&mut chan_1_monitor_serialized).unwrap();
771         nodes_0_serialized = nodes[0].node.encode();
772
773         // Ensure that after reload we cannot retry the payment.
774         reload_node!(third_new_chain_monitor, third_nodes_0_deserialized, third_persister);
775         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
776
777         assert!(nodes[0].node.retry_payment(&new_route, payment_id).is_err());
778         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
779 }
780
781 #[test]
782 fn test_completed_payment_not_retryable_on_reload() {
783         do_test_completed_payment_not_retryable_on_reload(true);
784         do_test_completed_payment_not_retryable_on_reload(false);
785 }
786
787
788 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
789         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
790         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
791         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
792         // the ChannelMonitor tells it to.
793         //
794         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
795         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
796         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
797         let chanmon_cfgs = create_chanmon_cfgs(2);
798         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
799         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
800         let persister: test_utils::TestPersister;
801         let new_chain_monitor: test_utils::TestChainMonitor;
802         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
803         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
804
805         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
806
807         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
808         // nodes[0].
809         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10_000_000);
810         nodes[0].node.force_close_broadcasting_latest_txn(&nodes[0].node.list_channels()[0].channel_id, &nodes[1].node.get_our_node_id()).unwrap();
811         check_closed_broadcast!(nodes[0], true);
812         check_added_monitors!(nodes[0], 1);
813         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
814
815         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
816         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
817
818         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
819         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
820         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
821         assert_eq!(node_txn.len(), 3);
822         assert_eq!(node_txn[0], node_txn[1]);
823         check_spends!(node_txn[1], funding_tx);
824         check_spends!(node_txn[2], node_txn[1]);
825         let timeout_txn = vec![node_txn[2].clone()];
826
827         nodes[1].node.claim_funds(payment_preimage);
828         check_added_monitors!(nodes[1], 1);
829         expect_payment_claimed!(nodes[1], payment_hash, 10_000_000);
830
831         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: TxMerkleNode::all_zeros(), time: 42, bits: 42, nonce: 42 };
832         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
833         check_closed_broadcast!(nodes[1], true);
834         check_added_monitors!(nodes[1], 1);
835         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
836         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
837         assert_eq!(claim_txn.len(), 3);
838         check_spends!(claim_txn[0], node_txn[1]);
839         check_spends!(claim_txn[1], funding_tx);
840         check_spends!(claim_txn[2], claim_txn[1]);
841
842         header.prev_blockhash = nodes[0].best_block_hash();
843         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
844
845         if confirm_commitment_tx {
846                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
847         }
848
849         header.prev_blockhash = nodes[0].best_block_hash();
850         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { vec![claim_txn[0].clone()] } };
851
852         if payment_timeout {
853                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
854                 connect_block(&nodes[0], &claim_block);
855                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
856         }
857
858         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
859         // returning InProgress. This should cause the claim event to never make its way to the
860         // ChannelManager.
861         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
862         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::InProgress);
863
864         if payment_timeout {
865                 connect_blocks(&nodes[0], 1);
866         } else {
867                 connect_block(&nodes[0], &claim_block);
868         }
869
870         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
871         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
872                 .get_mut(&funding_txo).unwrap().drain().collect();
873         // If we are using chain::Confirm instead of chain::Listen, we will get the same update twice
874         assert!(mon_updates.len() == 1 || mon_updates.len() == 2);
875         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
876         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
877
878         // If we persist the ChannelManager here, we should get the PaymentSent event after
879         // deserialization.
880         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
881         if !persist_manager_post_event {
882                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
883         }
884
885         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
886         // payment sent event.
887         chanmon_cfgs[0].persister.set_update_ret(ChannelMonitorUpdateStatus::Completed);
888         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
889         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
890         for update in mon_updates {
891                 nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, update).unwrap();
892         }
893         if payment_timeout {
894                 expect_payment_failed!(nodes[0], payment_hash, false);
895         } else {
896                 expect_payment_sent!(nodes[0], payment_preimage);
897         }
898
899         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
900         // twice.
901         if persist_manager_post_event {
902                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
903         }
904
905         // Now reload nodes[0]...
906         persister = test_utils::TestPersister::new();
907         let keys_manager = &chanmon_cfgs[0].keys_manager;
908         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
909         nodes[0].chain_monitor = &new_chain_monitor;
910         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
911         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
912                 &mut chan_0_monitor_read, keys_manager).unwrap();
913         assert!(chan_0_monitor_read.is_empty());
914
915         let (_, nodes_0_deserialized_tmp) = {
916                 let mut channel_monitors = HashMap::new();
917                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
918                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
919                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
920                                 default_config: Default::default(),
921                                 keys_manager,
922                                 fee_estimator: node_cfgs[0].fee_estimator,
923                                 chain_monitor: nodes[0].chain_monitor,
924                                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
925                                 logger: nodes[0].logger,
926                                 channel_monitors,
927                         }).unwrap()
928         };
929         nodes_0_deserialized = nodes_0_deserialized_tmp;
930
931         assert_eq!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
932                 ChannelMonitorUpdateStatus::Completed);
933         check_added_monitors!(nodes[0], 1);
934         nodes[0].node = &nodes_0_deserialized;
935
936         if persist_manager_post_event {
937                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
938         } else if payment_timeout {
939                 expect_payment_failed!(nodes[0], payment_hash, false);
940         } else {
941                 expect_payment_sent!(nodes[0], payment_preimage);
942         }
943
944         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
945         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
946         // payment events should kick in, leaving us with no pending events here.
947         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
948         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
949         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
950 }
951
952 #[test]
953 fn test_dup_htlc_onchain_fails_on_reload() {
954         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
955         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
956         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
957         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
958         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
959         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
960 }
961
962 #[test]
963 fn test_fulfill_restart_failure() {
964         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
965         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
966         // again, or fail it, giving us free money.
967         //
968         // Of course probably they won't fail it and give us free money, but because we have code to
969         // handle it, we should test the logic for it anyway. We do that here.
970         let chanmon_cfgs = create_chanmon_cfgs(2);
971         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
972         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
973         let persister: test_utils::TestPersister;
974         let new_chain_monitor: test_utils::TestChainMonitor;
975         let nodes_1_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
976         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
977
978         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
979         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
980
981         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
982         // pre-fulfill, which we do by serializing it here.
983         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
984         nodes[1].node.write(&mut chan_manager_serialized).unwrap();
985         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
986         get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
987
988         nodes[1].node.claim_funds(payment_preimage);
989         check_added_monitors!(nodes[1], 1);
990         expect_payment_claimed!(nodes[1], payment_hash, 100_000);
991
992         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
993         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
994         expect_payment_sent_without_paths!(nodes[0], payment_preimage);
995
996         // Now reload nodes[1]...
997         persister = test_utils::TestPersister::new();
998         let keys_manager = &chanmon_cfgs[1].keys_manager;
999         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager);
1000         nodes[1].chain_monitor = &new_chain_monitor;
1001         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
1002         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
1003                 &mut chan_0_monitor_read, keys_manager).unwrap();
1004         assert!(chan_0_monitor_read.is_empty());
1005
1006         let (_, nodes_1_deserialized_tmp) = {
1007                 let mut channel_monitors = HashMap::new();
1008                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
1009                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
1010                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
1011                                 default_config: Default::default(),
1012                                 keys_manager,
1013                                 fee_estimator: node_cfgs[1].fee_estimator,
1014                                 chain_monitor: nodes[1].chain_monitor,
1015                                 tx_broadcaster: nodes[1].tx_broadcaster.clone(),
1016                                 logger: nodes[1].logger,
1017                                 channel_monitors,
1018                         }).unwrap()
1019         };
1020         nodes_1_deserialized = nodes_1_deserialized_tmp;
1021
1022         assert_eq!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor),
1023                 ChannelMonitorUpdateStatus::Completed);
1024         check_added_monitors!(nodes[1], 1);
1025         nodes[1].node = &nodes_1_deserialized;
1026
1027         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
1028         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
1029
1030         nodes[1].node.fail_htlc_backwards(&payment_hash);
1031         expect_pending_htlcs_forwardable_and_htlc_handling_failed!(nodes[1], vec![HTLCDestination::FailedPayment { payment_hash }]);
1032         check_added_monitors!(nodes[1], 1);
1033         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1034         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
1035         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
1036         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
1037         // it had already considered the payment fulfilled, and now they just got free money.
1038         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
1039 }
1040
1041 #[test]
1042 fn get_ldk_payment_preimage() {
1043         // Ensure that `ChannelManager::get_payment_preimage` can successfully be used to claim a payment.
1044         let chanmon_cfgs = create_chanmon_cfgs(2);
1045         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
1046         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
1047         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
1048         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1049
1050         let amt_msat = 60_000;
1051         let expiry_secs = 60 * 60;
1052         let (payment_hash, payment_secret) = nodes[1].node.create_inbound_payment(Some(amt_msat), expiry_secs).unwrap();
1053
1054         let payment_params = PaymentParameters::from_node_id(nodes[1].node.get_our_node_id())
1055                 .with_features(channelmanager::provided_invoice_features());
1056         let scorer = test_utils::TestScorer::with_penalty(0);
1057         let keys_manager = test_utils::TestKeysInterface::new(&[0u8; 32], Network::Testnet);
1058         let random_seed_bytes = keys_manager.get_secure_random_bytes();
1059         let route = get_route(
1060                 &nodes[0].node.get_our_node_id(), &payment_params, &nodes[0].network_graph.read_only(),
1061                 Some(&nodes[0].node.list_usable_channels().iter().collect::<Vec<_>>()),
1062                 amt_msat, TEST_FINAL_CLTV, nodes[0].logger, &scorer, &random_seed_bytes).unwrap();
1063         let _payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
1064         check_added_monitors!(nodes[0], 1);
1065
1066         // Make sure to use `get_payment_preimage`
1067         let payment_preimage = nodes[1].node.get_payment_preimage(payment_hash, payment_secret).unwrap();
1068         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
1069         assert_eq!(events.len(), 1);
1070         pass_along_path(&nodes[0], &[&nodes[1]], amt_msat, payment_hash, Some(payment_secret), events.pop().unwrap(), true, Some(payment_preimage));
1071         claim_payment_along_route(&nodes[0], &[&[&nodes[1]]], false, payment_preimage);
1072 }
1073
1074 #[test]
1075 fn sent_probe_is_probe_of_sending_node() {
1076         let chanmon_cfgs = create_chanmon_cfgs(3);
1077         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1078         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1079         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1080
1081         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1082         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1083
1084         // First check we refuse to build a single-hop probe
1085         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[1], 100_000);
1086         assert!(nodes[0].node.send_probe(route.paths[0].clone()).is_err());
1087
1088         // Then build an actual two-hop probing path
1089         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
1090
1091         match nodes[0].node.send_probe(route.paths[0].clone()) {
1092                 Ok((payment_hash, payment_id)) => {
1093                         assert!(nodes[0].node.payment_is_probe(&payment_hash, &payment_id));
1094                         assert!(!nodes[1].node.payment_is_probe(&payment_hash, &payment_id));
1095                         assert!(!nodes[2].node.payment_is_probe(&payment_hash, &payment_id));
1096                 },
1097                 _ => panic!(),
1098         }
1099
1100         get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1101         check_added_monitors!(nodes[0], 1);
1102 }
1103
1104 #[test]
1105 fn successful_probe_yields_event() {
1106         let chanmon_cfgs = create_chanmon_cfgs(3);
1107         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1108         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1109         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1110
1111         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1112         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1113
1114         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], 100_000);
1115
1116         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1117
1118         // node[0] -- update_add_htlcs -> node[1]
1119         check_added_monitors!(nodes[0], 1);
1120         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1121         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1122         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1123         check_added_monitors!(nodes[1], 0);
1124         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1125         expect_pending_htlcs_forwardable!(nodes[1]);
1126
1127         // node[1] -- update_add_htlcs -> node[2]
1128         check_added_monitors!(nodes[1], 1);
1129         let updates = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1130         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1131         nodes[2].node.handle_update_add_htlc(&nodes[1].node.get_our_node_id(), &probe_event.msgs[0]);
1132         check_added_monitors!(nodes[2], 0);
1133         commitment_signed_dance!(nodes[2], nodes[1], probe_event.commitment_msg, true, true);
1134
1135         // node[1] <- update_fail_htlcs -- node[2]
1136         let updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
1137         nodes[1].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1138         check_added_monitors!(nodes[1], 0);
1139         commitment_signed_dance!(nodes[1], nodes[2], updates.commitment_signed, true);
1140
1141         // node[0] <- update_fail_htlcs -- node[1]
1142         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1143         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1144         check_added_monitors!(nodes[0], 0);
1145         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1146
1147         let mut events = nodes[0].node.get_and_clear_pending_events();
1148         assert_eq!(events.len(), 1);
1149         match events.drain(..).next().unwrap() {
1150                 crate::util::events::Event::ProbeSuccessful { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1151                         assert_eq!(payment_id, ev_pid);
1152                         assert_eq!(payment_hash, ev_ph);
1153                 },
1154                 _ => panic!(),
1155         };
1156 }
1157
1158 #[test]
1159 fn failed_probe_yields_event() {
1160         let chanmon_cfgs = create_chanmon_cfgs(3);
1161         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1162         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None, None]);
1163         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1164
1165         create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1166         create_announced_chan_between_nodes_with_value(&nodes, 1, 2, 100000, 90000000, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1167
1168         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1169
1170         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 9_998_000, 42);
1171
1172         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1173
1174         // node[0] -- update_add_htlcs -> node[1]
1175         check_added_monitors!(nodes[0], 1);
1176         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1177         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1178         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1179         check_added_monitors!(nodes[1], 0);
1180         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1181         expect_pending_htlcs_forwardable!(nodes[1]);
1182
1183         // node[0] <- update_fail_htlcs -- node[1]
1184         check_added_monitors!(nodes[1], 1);
1185         let updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
1186         // Skip the PendingHTLCsForwardable event
1187         let _events = nodes[1].node.get_and_clear_pending_events();
1188         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &updates.update_fail_htlcs[0]);
1189         check_added_monitors!(nodes[0], 0);
1190         commitment_signed_dance!(nodes[0], nodes[1], updates.commitment_signed, false);
1191
1192         let mut events = nodes[0].node.get_and_clear_pending_events();
1193         assert_eq!(events.len(), 1);
1194         match events.drain(..).next().unwrap() {
1195                 crate::util::events::Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1196                         assert_eq!(payment_id, ev_pid);
1197                         assert_eq!(payment_hash, ev_ph);
1198                 },
1199                 _ => panic!(),
1200         };
1201 }
1202
1203 #[test]
1204 fn onchain_failed_probe_yields_event() {
1205         // Tests that an attempt to probe over a channel that is eventaully closed results in a failure
1206         // event.
1207         let chanmon_cfgs = create_chanmon_cfgs(3);
1208         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
1209         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
1210         let nodes = create_network(3, &node_cfgs, &node_chanmgrs);
1211
1212         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, channelmanager::provided_init_features(), channelmanager::provided_init_features()).2;
1213         create_announced_chan_between_nodes(&nodes, 1, 2, channelmanager::provided_init_features(), channelmanager::provided_init_features());
1214
1215         let payment_params = PaymentParameters::from_node_id(nodes[2].node.get_our_node_id());
1216
1217         // Send a dust HTLC, which will be treated as if it timed out once the channel hits the chain.
1218         let (route, _, _, _) = get_route_and_payment_hash!(&nodes[0], nodes[2], &payment_params, 1_000, 42);
1219         let (payment_hash, payment_id) = nodes[0].node.send_probe(route.paths[0].clone()).unwrap();
1220
1221         // node[0] -- update_add_htlcs -> node[1]
1222         check_added_monitors!(nodes[0], 1);
1223         let updates = get_htlc_update_msgs!(nodes[0], nodes[1].node.get_our_node_id());
1224         let probe_event = SendEvent::from_commitment_update(nodes[1].node.get_our_node_id(), updates);
1225         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &probe_event.msgs[0]);
1226         check_added_monitors!(nodes[1], 0);
1227         commitment_signed_dance!(nodes[1], nodes[0], probe_event.commitment_msg, false);
1228         expect_pending_htlcs_forwardable!(nodes[1]);
1229
1230         check_added_monitors!(nodes[1], 1);
1231         let _ = get_htlc_update_msgs!(nodes[1], nodes[2].node.get_our_node_id());
1232
1233         // Don't bother forwarding the HTLC onwards and just confirm the force-close transaction on
1234         // Node A, which after 6 confirmations should result in a probe failure event.
1235         let bs_txn = get_local_commitment_txn!(nodes[1], chan_id);
1236         confirm_transaction(&nodes[0], &bs_txn[0]);
1237         check_closed_broadcast!(&nodes[0], true);
1238         check_added_monitors!(nodes[0], 1);
1239
1240         let mut events = nodes[0].node.get_and_clear_pending_events();
1241         assert_eq!(events.len(), 2);
1242         let mut found_probe_failed = false;
1243         for event in events.drain(..) {
1244                 match event {
1245                         Event::ProbeFailed { payment_id: ev_pid, payment_hash: ev_ph, .. } => {
1246                                 assert_eq!(payment_id, ev_pid);
1247                                 assert_eq!(payment_hash, ev_ph);
1248                                 found_probe_failed = true;
1249                         },
1250                         Event::ChannelClosed { .. } => {},
1251                         _ => panic!(),
1252                 }
1253         }
1254         assert!(found_probe_failed);
1255 }