1b9836621e7761a3a0316c4f441ac4d2e826abbc
[rust-lightning] / lightning / src / ln / payment_tests.rs
1 // This file is Copyright its original authors, visible in version control
2 // history.
3 //
4 // This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
5 // or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
7 // You may not use this file except in accordance with one or both of these
8 // licenses.
9
10 //! Tests that test the payment retry logic in ChannelManager, including various edge-cases around
11 //! serialization ordering between ChannelManager/ChannelMonitors and ensuring we can still retry
12 //! payments thereafter.
13
14 use chain::{ChannelMonitorUpdateErr, Confirm, Listen, Watch};
15 use chain::channelmonitor::{ANTI_REORG_DELAY, ChannelMonitor, LATENCY_GRACE_PERIOD_BLOCKS};
16 use chain::transaction::OutPoint;
17 use ln::{PaymentPreimage, PaymentHash};
18 use ln::channelmanager::{BREAKDOWN_TIMEOUT, ChannelManager, ChannelManagerReadArgs, PaymentId, PaymentSendFailure};
19 use ln::features::InitFeatures;
20 use ln::msgs;
21 use ln::msgs::{ChannelMessageHandler, ErrorAction};
22 use util::events::{ClosureReason, Event, MessageSendEvent, MessageSendEventsProvider};
23 use util::test_utils;
24 use util::errors::APIError;
25 use util::enforcing_trait_impls::EnforcingSigner;
26 use util::ser::{ReadableArgs, Writeable};
27 use io;
28
29 use bitcoin::hashes::sha256::Hash as Sha256;
30 use bitcoin::hashes::Hash;
31 use bitcoin::{Block, BlockHeader, BlockHash};
32
33 use prelude::*;
34
35 use ln::functional_test_utils::*;
36
37 #[test]
38 fn retry_single_path_payment() {
39         let chanmon_cfgs = create_chanmon_cfgs(3);
40         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
41         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
42         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
43
44         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
45         let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
46         // Rebalance to find a route
47         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
48
49         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
50
51         // Rebalance so that the first hop fails.
52         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
53
54         // Make sure the payment fails on the first hop.
55         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
56         check_added_monitors!(nodes[0], 1);
57         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
58         assert_eq!(events.len(), 1);
59         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
60         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
61         check_added_monitors!(nodes[1], 0);
62         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
63         expect_pending_htlcs_forwardable!(nodes[1]);
64         expect_pending_htlcs_forwardable!(&nodes[1]);
65         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
66         assert!(htlc_updates.update_add_htlcs.is_empty());
67         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
68         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
69         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
70         check_added_monitors!(nodes[1], 1);
71         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
72         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
73         expect_payment_failed!(nodes[0], payment_hash, false);
74
75         // Rebalance the channel so the retry succeeds.
76         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
77
78         // Mine two blocks (we expire retries after 3, so this will check that we don't expire early)
79         connect_blocks(&nodes[0], 2);
80
81         // Retry the payment and make sure it succeeds.
82         nodes[0].node.retry_payment(&route, payment_id).unwrap();
83         check_added_monitors!(nodes[0], 1);
84         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
85         assert_eq!(events.len(), 1);
86         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 100_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
87         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
88 }
89
90 #[test]
91 fn mpp_failure() {
92         let chanmon_cfgs = create_chanmon_cfgs(4);
93         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
94         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
95         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
96
97         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
98         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
99         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
100         let chan_4_id = create_announced_chan_between_nodes(&nodes, 2, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
101
102         let (mut route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(&nodes[0], nodes[3], 100000);
103         let path = route.paths[0].clone();
104         route.paths.push(path);
105         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
106         route.paths[0][0].short_channel_id = chan_1_id;
107         route.paths[0][1].short_channel_id = chan_3_id;
108         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
109         route.paths[1][0].short_channel_id = chan_2_id;
110         route.paths[1][1].short_channel_id = chan_4_id;
111         send_along_route_with_secret(&nodes[0], route, &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], 200_000, payment_hash, payment_secret);
112         fail_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_hash);
113 }
114
115 #[test]
116 fn mpp_retry() {
117         let chanmon_cfgs = create_chanmon_cfgs(4);
118         let node_cfgs = create_node_cfgs(4, &chanmon_cfgs);
119         let node_chanmgrs = create_node_chanmgrs(4, &node_cfgs, &[None, None, None, None]);
120         let nodes = create_network(4, &node_cfgs, &node_chanmgrs);
121
122         let chan_1_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
123         let chan_2_id = create_announced_chan_between_nodes(&nodes, 0, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
124         let chan_3_id = create_announced_chan_between_nodes(&nodes, 1, 3, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
125         let chan_4_id = create_announced_chan_between_nodes(&nodes, 3, 2, InitFeatures::known(), InitFeatures::known()).0.contents.short_channel_id;
126         // Rebalance
127         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
128
129         let (mut route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[3], 1_000_000);
130         let path = route.paths[0].clone();
131         route.paths.push(path);
132         route.paths[0][0].pubkey = nodes[1].node.get_our_node_id();
133         route.paths[0][0].short_channel_id = chan_1_id;
134         route.paths[0][1].short_channel_id = chan_3_id;
135         route.paths[1][0].pubkey = nodes[2].node.get_our_node_id();
136         route.paths[1][0].short_channel_id = chan_2_id;
137         route.paths[1][1].short_channel_id = chan_4_id;
138
139         // Initiate the MPP payment.
140         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
141         check_added_monitors!(nodes[0], 2); // one monitor per path
142         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
143         assert_eq!(events.len(), 2);
144
145         // Pass half of the payment along the success path.
146         let success_path_msgs = events.remove(0);
147         pass_along_path(&nodes[0], &[&nodes[1], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), success_path_msgs, false, None);
148
149         // Add the HTLC along the first hop.
150         let fail_path_msgs_1 = events.remove(0);
151         let (update_add, commitment_signed) = match fail_path_msgs_1 {
152                 MessageSendEvent::UpdateHTLCs { node_id: _, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
153                         assert_eq!(update_add_htlcs.len(), 1);
154                         assert!(update_fail_htlcs.is_empty());
155                         assert!(update_fulfill_htlcs.is_empty());
156                         assert!(update_fail_malformed_htlcs.is_empty());
157                         assert!(update_fee.is_none());
158                         (update_add_htlcs[0].clone(), commitment_signed.clone())
159                 },
160                 _ => panic!("Unexpected event"),
161         };
162         nodes[2].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &update_add);
163         commitment_signed_dance!(nodes[2], nodes[0], commitment_signed, false);
164
165         // Attempt to forward the payment and complete the 2nd path's failure.
166         expect_pending_htlcs_forwardable!(&nodes[2]);
167         expect_pending_htlcs_forwardable!(&nodes[2]);
168         let htlc_updates = get_htlc_update_msgs!(nodes[2], nodes[0].node.get_our_node_id());
169         assert!(htlc_updates.update_add_htlcs.is_empty());
170         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
171         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
172         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
173         check_added_monitors!(nodes[2], 1);
174         nodes[0].node.handle_update_fail_htlc(&nodes[2].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
175         commitment_signed_dance!(nodes[0], nodes[2], htlc_updates.commitment_signed, false);
176         expect_payment_failed!(nodes[0], payment_hash, false);
177
178         // Rebalance the channel so the second half of the payment can succeed.
179         send_payment(&nodes[3], &vec!(&nodes[2])[..], 1_500_000);
180
181         // Make sure it errors as expected given a too-large amount.
182         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
183                 assert!(err.contains("over total_payment_amt_msat"));
184         } else { panic!("Unexpected error"); }
185
186         // Make sure it errors as expected given the wrong payment_id.
187         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, PaymentId([0; 32])) {
188                 assert!(err.contains("not found"));
189         } else { panic!("Unexpected error"); }
190
191         // Retry the second half of the payment and make sure it succeeds.
192         let mut path = route.clone();
193         path.paths.remove(0);
194         nodes[0].node.retry_payment(&path, payment_id).unwrap();
195         check_added_monitors!(nodes[0], 1);
196         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
197         assert_eq!(events.len(), 1);
198         pass_along_path(&nodes[0], &[&nodes[2], &nodes[3]], 2_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
199         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[3]], &[&nodes[2], &nodes[3]]], false, payment_preimage);
200 }
201
202 #[test]
203 fn retry_expired_payment() {
204         let chanmon_cfgs = create_chanmon_cfgs(3);
205         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
206         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
207         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
208
209         let _chan_0 = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
210         let _chan_1 = create_announced_chan_between_nodes(&nodes, 2, 1, InitFeatures::known(), InitFeatures::known());
211         // Rebalance to find a route
212         send_payment(&nodes[2], &vec!(&nodes[1])[..], 3_000_000);
213
214         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 100_000);
215
216         // Rebalance so that the first hop fails.
217         send_payment(&nodes[1], &vec!(&nodes[2])[..], 2_000_000);
218
219         // Make sure the payment fails on the first hop.
220         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
221         check_added_monitors!(nodes[0], 1);
222         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
223         assert_eq!(events.len(), 1);
224         let mut payment_event = SendEvent::from_event(events.pop().unwrap());
225         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
226         check_added_monitors!(nodes[1], 0);
227         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false);
228         expect_pending_htlcs_forwardable!(nodes[1]);
229         expect_pending_htlcs_forwardable!(&nodes[1]);
230         let htlc_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
231         assert!(htlc_updates.update_add_htlcs.is_empty());
232         assert_eq!(htlc_updates.update_fail_htlcs.len(), 1);
233         assert!(htlc_updates.update_fulfill_htlcs.is_empty());
234         assert!(htlc_updates.update_fail_malformed_htlcs.is_empty());
235         check_added_monitors!(nodes[1], 1);
236         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_updates.update_fail_htlcs[0]);
237         commitment_signed_dance!(nodes[0], nodes[1], htlc_updates.commitment_signed, false);
238         expect_payment_failed!(nodes[0], payment_hash, false);
239
240         // Mine blocks so the payment will have expired.
241         connect_blocks(&nodes[0], 3);
242
243         // Retry the payment and make sure it errors as expected.
244         if let Err(PaymentSendFailure::ParameterError(APIError::APIMisuseError { err })) = nodes[0].node.retry_payment(&route, payment_id) {
245                 assert!(err.contains("not found"));
246         } else {
247                 panic!("Unexpected error");
248         }
249 }
250
251 #[test]
252 fn no_pending_leak_on_initial_send_failure() {
253         // In an earlier version of our payment tracking, we'd have a retry entry even when the initial
254         // HTLC for payment failed to send due to local channel errors (e.g. peer disconnected). In this
255         // case, the user wouldn't have a PaymentId to retry the payment with, but we'd think we have a
256         // pending payment forever and never time it out.
257         // Here we test exactly that - retrying a payment when a peer was disconnected on the first
258         // try, and then check that no pending payment is being tracked.
259         let chanmon_cfgs = create_chanmon_cfgs(2);
260         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
261         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
262         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
263
264         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
265
266         let (route, payment_hash, _, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[1], 100_000);
267
268         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
269         nodes[1].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
270
271         unwrap_send_err!(nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)),
272                 true, APIError::ChannelUnavailable { ref err },
273                 assert_eq!(err, "Peer for first hop currently disconnected/pending monitor update!"));
274
275         assert!(!nodes[0].node.has_pending_payments());
276 }
277
278 fn do_retry_with_no_persist(confirm_before_reload: bool) {
279         // If we send a pending payment and `send_payment` returns success, we should always either
280         // return a payment failure event or a payment success event, and on failure the payment should
281         // be retryable.
282         //
283         // In order to do so when the ChannelManager isn't immediately persisted (which is normal - its
284         // always persisted asynchronously), the ChannelManager has to reload some payment data from
285         // ChannelMonitor(s) in some cases. This tests that reloading.
286         //
287         // `confirm_before_reload` confirms the channel-closing commitment transaction on-chain prior
288         // to reloading the ChannelManager, increasing test coverage in ChannelMonitor HTLC tracking
289         // which has separate codepaths for "commitment transaction already confirmed" and not.
290         let chanmon_cfgs = create_chanmon_cfgs(3);
291         let node_cfgs = create_node_cfgs(3, &chanmon_cfgs);
292         let node_chanmgrs = create_node_chanmgrs(3, &node_cfgs, &[None, None, None]);
293         let persister: test_utils::TestPersister;
294         let new_chain_monitor: test_utils::TestChainMonitor;
295         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
296         let mut nodes = create_network(3, &node_cfgs, &node_chanmgrs);
297
298         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
299         create_announced_chan_between_nodes(&nodes, 1, 2, InitFeatures::known(), InitFeatures::known());
300
301         // Serialize the ChannelManager prior to sending payments
302         let nodes_0_serialized = nodes[0].node.encode();
303
304         // Send two payments - one which will get to nodes[2] and will be claimed, one which we'll time
305         // out and retry.
306         let (route, payment_hash, payment_preimage, payment_secret) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
307         let (payment_preimage_1, _, _, payment_id_1) = send_along_route(&nodes[0], route.clone(), &[&nodes[1], &nodes[2]], 1_000_000);
308         let payment_id = nodes[0].node.send_payment(&route, payment_hash, &Some(payment_secret)).unwrap();
309         check_added_monitors!(nodes[0], 1);
310
311         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
312         assert_eq!(events.len(), 1);
313         let payment_event = SendEvent::from_event(events.pop().unwrap());
314         assert_eq!(payment_event.node_id, nodes[1].node.get_our_node_id());
315
316         // We relay the payment to nodes[1] while its disconnected from nodes[2], causing the payment
317         // to be returned immediately to nodes[0], without having nodes[2] fail the inbound payment
318         // which would prevent retry.
319         nodes[1].node.peer_disconnected(&nodes[2].node.get_our_node_id(), false);
320         nodes[2].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
321
322         nodes[1].node.handle_update_add_htlc(&nodes[0].node.get_our_node_id(), &payment_event.msgs[0]);
323         commitment_signed_dance!(nodes[1], nodes[0], payment_event.commitment_msg, false, true);
324         // nodes[1] now immediately fails the HTLC as the next-hop channel is disconnected
325         let _ = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
326
327         reconnect_nodes(&nodes[1], &nodes[2], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
328
329         let as_commitment_tx = get_local_commitment_txn!(nodes[0], chan_id)[0].clone();
330         if confirm_before_reload {
331                 mine_transaction(&nodes[0], &as_commitment_tx);
332                 nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
333         }
334
335         // The ChannelMonitor should always be the latest version, as we're required to persist it
336         // during the `commitment_signed_dance!()`.
337         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
338         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
339
340         persister = test_utils::TestPersister::new();
341         let keys_manager = &chanmon_cfgs[0].keys_manager;
342         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
343         nodes[0].chain_monitor = &new_chain_monitor;
344         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
345         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
346                 &mut chan_0_monitor_read, keys_manager).unwrap();
347         assert!(chan_0_monitor_read.is_empty());
348
349         let mut nodes_0_read = &nodes_0_serialized[..];
350         let (_, nodes_0_deserialized_tmp) = {
351                 let mut channel_monitors = HashMap::new();
352                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
353                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>::read(&mut nodes_0_read, ChannelManagerReadArgs {
354                         default_config: test_default_channel_config(),
355                         keys_manager,
356                         fee_estimator: node_cfgs[0].fee_estimator,
357                         chain_monitor: nodes[0].chain_monitor,
358                         tx_broadcaster: nodes[0].tx_broadcaster.clone(),
359                         logger: nodes[0].logger,
360                         channel_monitors,
361                 }).unwrap()
362         };
363         nodes_0_deserialized = nodes_0_deserialized_tmp;
364         assert!(nodes_0_read.is_empty());
365
366         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
367         nodes[0].node = &nodes_0_deserialized;
368         check_added_monitors!(nodes[0], 1);
369
370         // On reload, the ChannelManager should realize it is stale compared to the ChannelMonitor and
371         // force-close the channel.
372         check_closed_event!(nodes[0], 1, ClosureReason::OutdatedChannelManager);
373         assert!(nodes[0].node.list_channels().is_empty());
374         assert!(nodes[0].node.has_pending_payments());
375         let as_broadcasted_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
376         assert_eq!(as_broadcasted_txn.len(), 1);
377         assert_eq!(as_broadcasted_txn[0], as_commitment_tx);
378
379         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
380         nodes[0].node.peer_connected(&nodes[1].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
381         assert!(nodes[0].node.get_and_clear_pending_msg_events().is_empty());
382
383         // Now nodes[1] should send a channel reestablish, which nodes[0] will respond to with an
384         // error, as the channel has hit the chain.
385         nodes[1].node.peer_connected(&nodes[0].node.get_our_node_id(), &msgs::Init { features: InitFeatures::known()});
386         let bs_reestablish = get_event_msg!(nodes[1], MessageSendEvent::SendChannelReestablish, nodes[0].node.get_our_node_id());
387         nodes[0].node.handle_channel_reestablish(&nodes[1].node.get_our_node_id(), &bs_reestablish);
388         let as_err = nodes[0].node.get_and_clear_pending_msg_events();
389         assert_eq!(as_err.len(), 1);
390         match as_err[0] {
391                 MessageSendEvent::HandleError { node_id, action: msgs::ErrorAction::SendErrorMessage { ref msg } } => {
392                         assert_eq!(node_id, nodes[1].node.get_our_node_id());
393                         nodes[1].node.handle_error(&nodes[0].node.get_our_node_id(), msg);
394                         check_closed_event!(nodes[1], 1, ClosureReason::CounterpartyForceClosed { peer_msg: "Failed to find corresponding channel".to_string() });
395                         check_added_monitors!(nodes[1], 1);
396                         assert_eq!(nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0).len(), 1);
397                 },
398                 _ => panic!("Unexpected event"),
399         }
400         check_closed_broadcast!(nodes[1], false);
401
402         // Now claim the first payment, which should allow nodes[1] to claim the payment on-chain when
403         // we close in a moment.
404         nodes[2].node.claim_funds(payment_preimage_1);
405         check_added_monitors!(nodes[2], 1);
406         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[2], nodes[1].node.get_our_node_id());
407         nodes[1].node.handle_update_fulfill_htlc(&nodes[2].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
408         check_added_monitors!(nodes[1], 1);
409         commitment_signed_dance!(nodes[1], nodes[2], htlc_fulfill_updates.commitment_signed, false);
410
411         if confirm_before_reload {
412                 let best_block = nodes[0].blocks.lock().unwrap().last().unwrap().clone();
413                 nodes[0].node.best_block_updated(&best_block.0, best_block.1);
414         }
415
416         // Create a new channel on which to retry the payment before we fail the payment via the
417         // HTLC-Timeout transaction. This avoids ChannelManager timing out the payment due to us
418         // connecting several blocks while creating the channel (implying time has passed).
419         create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
420         assert_eq!(nodes[0].node.list_usable_channels().len(), 1);
421
422         mine_transaction(&nodes[1], &as_commitment_tx);
423         let bs_htlc_claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
424         assert_eq!(bs_htlc_claim_txn.len(), 1);
425         check_spends!(bs_htlc_claim_txn[0], as_commitment_tx);
426         expect_payment_forwarded!(nodes[1], None, false);
427
428         mine_transaction(&nodes[0], &as_commitment_tx);
429         mine_transaction(&nodes[0], &bs_htlc_claim_txn[0]);
430         expect_payment_sent!(nodes[0], payment_preimage_1);
431         connect_blocks(&nodes[0], TEST_FINAL_CLTV*4 + 20);
432         let as_htlc_timeout_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
433         check_spends!(as_htlc_timeout_txn[2], funding_tx);
434         check_spends!(as_htlc_timeout_txn[0], as_commitment_tx);
435         check_spends!(as_htlc_timeout_txn[1], as_commitment_tx);
436         assert_eq!(as_htlc_timeout_txn.len(), 3);
437         if as_htlc_timeout_txn[0].input[0].previous_output == bs_htlc_claim_txn[0].input[0].previous_output {
438                 confirm_transaction(&nodes[0], &as_htlc_timeout_txn[1]);
439         } else {
440                 confirm_transaction(&nodes[0], &as_htlc_timeout_txn[0]);
441         }
442         nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().clear();
443         expect_payment_failed!(nodes[0], payment_hash, false);
444
445         // Finally, retry the payment (which was reloaded from the ChannelMonitor when nodes[0] was
446         // reloaded) via a route over the new channel, which work without issue and eventually be
447         // received and claimed at the recipient just like any other payment.
448         let (new_route, _, _, _) = get_route_and_payment_hash!(nodes[0], nodes[2], 1_000_000);
449
450         assert!(nodes[0].node.retry_payment(&new_route, payment_id_1).is_err()); // Shouldn't be allowed to retry a fulfilled payment
451         nodes[0].node.retry_payment(&new_route, payment_id).unwrap();
452         check_added_monitors!(nodes[0], 1);
453         let mut events = nodes[0].node.get_and_clear_pending_msg_events();
454         assert_eq!(events.len(), 1);
455         pass_along_path(&nodes[0], &[&nodes[1], &nodes[2]], 1_000_000, payment_hash, Some(payment_secret), events.pop().unwrap(), true, None);
456         claim_payment_along_route(&nodes[0], &[&[&nodes[1], &nodes[2]]], false, payment_preimage);
457 }
458
459 #[test]
460 fn retry_with_no_persist() {
461         do_retry_with_no_persist(true);
462         do_retry_with_no_persist(false);
463 }
464
465 fn do_test_dup_htlc_onchain_fails_on_reload(persist_manager_post_event: bool, confirm_commitment_tx: bool, payment_timeout: bool) {
466         // When a Channel is closed, any outbound HTLCs which were relayed through it are simply
467         // dropped when the Channel is. From there, the ChannelManager relies on the ChannelMonitor
468         // having a copy of the relevant fail-/claim-back data and processes the HTLC fail/claim when
469         // the ChannelMonitor tells it to.
470         //
471         // If, due to an on-chain event, an HTLC is failed/claimed, we should avoid providing the
472         // ChannelManager the HTLC event until after the monitor is re-persisted. This should prevent a
473         // duplicate HTLC fail/claim (e.g. via a PaymentPathFailed event).
474         let chanmon_cfgs = create_chanmon_cfgs(2);
475         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
476         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
477         let persister: test_utils::TestPersister;
478         let new_chain_monitor: test_utils::TestChainMonitor;
479         let nodes_0_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
480         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
481
482         let (_, _, chan_id, funding_tx) = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known());
483
484         // Route a payment, but force-close the channel before the HTLC fulfill message arrives at
485         // nodes[0].
486         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 10000000);
487         nodes[0].node.force_close_channel(&nodes[0].node.list_channels()[0].channel_id).unwrap();
488         check_closed_broadcast!(nodes[0], true);
489         check_added_monitors!(nodes[0], 1);
490         check_closed_event!(nodes[0], 1, ClosureReason::HolderForceClosed);
491
492         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
493         nodes[1].node.peer_disconnected(&nodes[0].node.get_our_node_id(), false);
494
495         // Connect blocks until the CLTV timeout is up so that we get an HTLC-Timeout transaction
496         connect_blocks(&nodes[0], TEST_FINAL_CLTV + LATENCY_GRACE_PERIOD_BLOCKS + 1);
497         let node_txn = nodes[0].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
498         assert_eq!(node_txn.len(), 3);
499         assert_eq!(node_txn[0], node_txn[1]);
500         check_spends!(node_txn[1], funding_tx);
501         check_spends!(node_txn[2], node_txn[1]);
502         let timeout_txn = vec![node_txn[2].clone()];
503
504         assert!(nodes[1].node.claim_funds(payment_preimage));
505         check_added_monitors!(nodes[1], 1);
506
507         let mut header = BlockHeader { version: 0x20000000, prev_blockhash: nodes[1].best_block_hash(), merkle_root: Default::default(), time: 42, bits: 42, nonce: 42 };
508         connect_block(&nodes[1], &Block { header, txdata: vec![node_txn[1].clone()]});
509         check_closed_broadcast!(nodes[1], true);
510         check_added_monitors!(nodes[1], 1);
511         check_closed_event!(nodes[1], 1, ClosureReason::CommitmentTxConfirmed);
512         let claim_txn = nodes[1].tx_broadcaster.txn_broadcasted.lock().unwrap().split_off(0);
513
514         header.prev_blockhash = nodes[0].best_block_hash();
515         connect_block(&nodes[0], &Block { header, txdata: vec![node_txn[1].clone()]});
516
517         if confirm_commitment_tx {
518                 connect_blocks(&nodes[0], BREAKDOWN_TIMEOUT as u32 - 1);
519         }
520
521         header.prev_blockhash = nodes[0].best_block_hash();
522         let claim_block = Block { header, txdata: if payment_timeout { timeout_txn } else { claim_txn } };
523
524         if payment_timeout {
525                 assert!(confirm_commitment_tx); // Otherwise we're spending below our CSV!
526                 connect_block(&nodes[0], &claim_block);
527                 connect_blocks(&nodes[0], ANTI_REORG_DELAY - 2);
528         }
529
530         // Now connect the HTLC claim transaction with the ChainMonitor-generated ChannelMonitor update
531         // returning TemporaryFailure. This should cause the claim event to never make its way to the
532         // ChannelManager.
533         chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap().clear();
534         chanmon_cfgs[0].persister.set_update_ret(Err(ChannelMonitorUpdateErr::TemporaryFailure));
535
536         if payment_timeout {
537                 connect_blocks(&nodes[0], 1);
538         } else {
539                 connect_block(&nodes[0], &claim_block);
540         }
541
542         let funding_txo = OutPoint { txid: funding_tx.txid(), index: 0 };
543         let mon_updates: Vec<_> = chanmon_cfgs[0].persister.chain_sync_monitor_persistences.lock().unwrap()
544                 .get_mut(&funding_txo).unwrap().drain().collect();
545         assert_eq!(mon_updates.len(), 1);
546         assert!(nodes[0].chain_monitor.release_pending_monitor_events().is_empty());
547         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
548
549         // If we persist the ChannelManager here, we should get the PaymentSent event after
550         // deserialization.
551         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
552         if !persist_manager_post_event {
553                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
554         }
555
556         // Now persist the ChannelMonitor and inform the ChainMonitor that we're done, generating the
557         // payment sent event.
558         chanmon_cfgs[0].persister.set_update_ret(Ok(()));
559         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
560         get_monitor!(nodes[0], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
561         nodes[0].chain_monitor.chain_monitor.channel_monitor_updated(funding_txo, mon_updates[0]).unwrap();
562         if payment_timeout {
563                 expect_payment_failed!(nodes[0], payment_hash, true);
564         } else {
565                 expect_payment_sent!(nodes[0], payment_preimage);
566         }
567
568         // If we persist the ChannelManager after we get the PaymentSent event, we shouldn't get it
569         // twice.
570         if persist_manager_post_event {
571                 nodes[0].node.write(&mut chan_manager_serialized).unwrap();
572         }
573
574         // Now reload nodes[0]...
575         persister = test_utils::TestPersister::new();
576         let keys_manager = &chanmon_cfgs[0].keys_manager;
577         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[0].chain_source), nodes[0].tx_broadcaster.clone(), nodes[0].logger, node_cfgs[0].fee_estimator, &persister, keys_manager);
578         nodes[0].chain_monitor = &new_chain_monitor;
579         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
580         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
581                 &mut chan_0_monitor_read, keys_manager).unwrap();
582         assert!(chan_0_monitor_read.is_empty());
583
584         let (_, nodes_0_deserialized_tmp) = {
585                 let mut channel_monitors = HashMap::new();
586                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
587                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
588                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
589                                 default_config: Default::default(),
590                                 keys_manager,
591                                 fee_estimator: node_cfgs[0].fee_estimator,
592                                 chain_monitor: nodes[0].chain_monitor,
593                                 tx_broadcaster: nodes[0].tx_broadcaster.clone(),
594                                 logger: nodes[0].logger,
595                                 channel_monitors,
596                         }).unwrap()
597         };
598         nodes_0_deserialized = nodes_0_deserialized_tmp;
599
600         assert!(nodes[0].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
601         check_added_monitors!(nodes[0], 1);
602         nodes[0].node = &nodes_0_deserialized;
603
604         if persist_manager_post_event {
605                 assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
606         } else if payment_timeout {
607                 expect_payment_failed!(nodes[0], payment_hash, true);
608         } else {
609                 expect_payment_sent!(nodes[0], payment_preimage);
610         }
611
612         // Note that if we re-connect the block which exposed nodes[0] to the payment preimage (but
613         // which the current ChannelMonitor has not seen), the ChannelManager's de-duplication of
614         // payment events should kick in, leaving us with no pending events here.
615         let height = nodes[0].blocks.lock().unwrap().len() as u32 - 1;
616         nodes[0].chain_monitor.chain_monitor.block_connected(&claim_block, height);
617         assert!(nodes[0].node.get_and_clear_pending_events().is_empty());
618 }
619
620 #[test]
621 fn test_dup_htlc_onchain_fails_on_reload() {
622         do_test_dup_htlc_onchain_fails_on_reload(true, true, true);
623         do_test_dup_htlc_onchain_fails_on_reload(true, true, false);
624         do_test_dup_htlc_onchain_fails_on_reload(true, false, false);
625         do_test_dup_htlc_onchain_fails_on_reload(false, true, true);
626         do_test_dup_htlc_onchain_fails_on_reload(false, true, false);
627         do_test_dup_htlc_onchain_fails_on_reload(false, false, false);
628 }
629
630 #[test]
631 fn test_fulfill_restart_failure() {
632         // When we receive an update_fulfill_htlc message, we immediately consider the HTLC fully
633         // fulfilled. At this point, the peer can reconnect and decide to either fulfill the HTLC
634         // again, or fail it, giving us free money.
635         //
636         // Of course probably they won't fail it and give us free money, but because we have code to
637         // handle it, we should test the logic for it anyway. We do that here.
638         let chanmon_cfgs = create_chanmon_cfgs(2);
639         let node_cfgs = create_node_cfgs(2, &chanmon_cfgs);
640         let node_chanmgrs = create_node_chanmgrs(2, &node_cfgs, &[None, None]);
641         let persister: test_utils::TestPersister;
642         let new_chain_monitor: test_utils::TestChainMonitor;
643         let nodes_1_deserialized: ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>;
644         let mut nodes = create_network(2, &node_cfgs, &node_chanmgrs);
645
646         let chan_id = create_announced_chan_between_nodes(&nodes, 0, 1, InitFeatures::known(), InitFeatures::known()).2;
647         let (payment_preimage, payment_hash, _) = route_payment(&nodes[0], &[&nodes[1]], 100_000);
648
649         // The simplest way to get a failure after a fulfill is to reload nodes[1] from a state
650         // pre-fulfill, which we do by serializing it here.
651         let mut chan_manager_serialized = test_utils::TestVecWriter(Vec::new());
652         nodes[1].node.write(&mut chan_manager_serialized).unwrap();
653         let mut chan_0_monitor_serialized = test_utils::TestVecWriter(Vec::new());
654         get_monitor!(nodes[1], chan_id).write(&mut chan_0_monitor_serialized).unwrap();
655
656         nodes[1].node.claim_funds(payment_preimage);
657         check_added_monitors!(nodes[1], 1);
658         let htlc_fulfill_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
659         nodes[0].node.handle_update_fulfill_htlc(&nodes[1].node.get_our_node_id(), &htlc_fulfill_updates.update_fulfill_htlcs[0]);
660         expect_payment_sent!(nodes[0], payment_preimage);
661
662         // Now reload nodes[1]...
663         persister = test_utils::TestPersister::new();
664         let keys_manager = &chanmon_cfgs[1].keys_manager;
665         new_chain_monitor = test_utils::TestChainMonitor::new(Some(nodes[1].chain_source), nodes[1].tx_broadcaster.clone(), nodes[1].logger, node_cfgs[1].fee_estimator, &persister, keys_manager);
666         nodes[1].chain_monitor = &new_chain_monitor;
667         let mut chan_0_monitor_read = &chan_0_monitor_serialized.0[..];
668         let (_, mut chan_0_monitor) = <(BlockHash, ChannelMonitor<EnforcingSigner>)>::read(
669                 &mut chan_0_monitor_read, keys_manager).unwrap();
670         assert!(chan_0_monitor_read.is_empty());
671
672         let (_, nodes_1_deserialized_tmp) = {
673                 let mut channel_monitors = HashMap::new();
674                 channel_monitors.insert(chan_0_monitor.get_funding_txo().0, &mut chan_0_monitor);
675                 <(BlockHash, ChannelManager<EnforcingSigner, &test_utils::TestChainMonitor, &test_utils::TestBroadcaster, &test_utils::TestKeysInterface, &test_utils::TestFeeEstimator, &test_utils::TestLogger>)>
676                         ::read(&mut io::Cursor::new(&chan_manager_serialized.0[..]), ChannelManagerReadArgs {
677                                 default_config: Default::default(),
678                                 keys_manager,
679                                 fee_estimator: node_cfgs[1].fee_estimator,
680                                 chain_monitor: nodes[1].chain_monitor,
681                                 tx_broadcaster: nodes[1].tx_broadcaster.clone(),
682                                 logger: nodes[1].logger,
683                                 channel_monitors,
684                         }).unwrap()
685         };
686         nodes_1_deserialized = nodes_1_deserialized_tmp;
687
688         assert!(nodes[1].chain_monitor.watch_channel(chan_0_monitor.get_funding_txo().0, chan_0_monitor).is_ok());
689         check_added_monitors!(nodes[1], 1);
690         nodes[1].node = &nodes_1_deserialized;
691
692         nodes[0].node.peer_disconnected(&nodes[1].node.get_our_node_id(), false);
693         reconnect_nodes(&nodes[0], &nodes[1], (false, false), (0, 0), (0, 0), (0, 0), (0, 0), (0, 0), (false, false));
694
695         nodes[1].node.fail_htlc_backwards(&payment_hash);
696         expect_pending_htlcs_forwardable!(nodes[1]);
697         check_added_monitors!(nodes[1], 1);
698         let htlc_fail_updates = get_htlc_update_msgs!(nodes[1], nodes[0].node.get_our_node_id());
699         nodes[0].node.handle_update_fail_htlc(&nodes[1].node.get_our_node_id(), &htlc_fail_updates.update_fail_htlcs[0]);
700         commitment_signed_dance!(nodes[0], nodes[1], htlc_fail_updates.commitment_signed, false);
701         // nodes[0] shouldn't generate any events here, while it just got a payment failure completion
702         // it had already considered the payment fulfilled, and now they just got free money.
703 }